
Correct-by-Construction Development of
Dynamic Topology Control Algorithms

D E M FA C H B E R E I C H E L E K T R O T E C H N I K U N D I N F O R M AT I O N S T E C H N I K

D E R T E C H N I S C H E N U N I V E R S I TÄT D A R M S TA D T

Z U R E R L A N G U N G D E S A K A D E M I S C H E N G R A D E S

E I N E S D O K T O R - I N G E N I E U R S ( D R . - I N G . )

G E N E H M I G T E D I S S E RTAT I O N

V O N

R O L A N D S P E I T H ( G E B . K L U G E ) , M . S C .

G E B O R E N A M

1 6 . N O V E M B E R 1 9 8 9 I N G I E SS E N , H E S S E N

R E F E R E N T: P R O F. D R . R E R . N AT. A N D R E A S S C H Ü R R

K O R R E F E R E N T: P R O F. D R . R E R . N AT. H O L G E R G I E S E

TA G D E R E I N R E I C H U N G : 2 0 1 8 - 1 1 - 3 0

TA G D E R D I S P U TAT I O N : 2 0 1 9 - 0 3 - 1 4

D 1 7

D A R M S TA D T 2 0 1 9



The work of Roland Speith was supported by the Corporate Research Center (CRC) 1053

Multi-Mechanismen-Adaptation für das künftige Internet (MAKI) of the Deutsche Forschungs-
gemeinschaft (DFG) (https://www.maki.tu-darmstadt.de).

Speith, Roland
Correct-by-Construction Development of Dynamic Topology Control Algorithms
Darmstadt, Technische Universität Darmstadt
Year of publication at TUprints: 2019

URN: urn:nbn:de:tuda-tuprints-85627

URL: https://tuprints.ulb.tu-darmstadt.de/id/eprint/8562
Disputation date: 2019-03-14

Published under CC BY-SA 4.0 International
https://creativecommons.org/licenses/

©2019, Roland Speith

https://www.maki.tu-darmstadt.de
https://tuprints.ulb.tu-darmstadt.de/id/eprint/8562
https://creativecommons.org/licenses/


A B S T R A C T

Wireless devices are influencing our everyday lives today and will even more so in the
future. A wireless sensor network (WSN) consists of dozens to hundreds of small, cheap,
battery-powered, resource-constrained sensor devices (motes) that cooperate to serve a
common purpose. These networks are applied in safety- and security-critical areas (e.g.,
e-health, intrusion detection). The topology of such a system is an attributed graph
consisting of nodes representing the devices and edges representing the communica-
tion links between devices. Topology control (TC) improves the energy consumption
behavior of a WSN by blocking costly links. This allows a mote to reduce its transmis-
sion power. A TC algorithm must fulfill important consistency properties (e.g., that the
resulting topology is connected).

The traditional development process for TC algorithms only considers consistency
properties during the initial specification phase. The actual implementation is carried
out manually, which is error prone and time consuming. Thus, it is difficult to verify
that the implementation fulfills the required consistency properties. The problem be-
comes even more severe if the development process is iterative. Additionally, many TC
algorithms are batch algorithms, which process the entire topology, irrespective of the
extent of the topology modifications since the last execution. Therefore, dynamic TC is
desirable, which reacts to change events of the topology.

In this thesis, we propose a model-driven correct-by-construction methodology for
developing dynamic TC algorithms. We model local consistency properties using graph
constraints and global consistency properties using second-order logic. Graph transfor-
mation rules capture the different types of topology modifications. To specify the con-
trol flow of a TC algorithm, we employ the programmed graph transformation language
story-driven modeling. We presume that local consistency properties jointly imply the
global consistency properties. We ensure the fulfillment of the local consistency proper-
ties by synthesizing weakest preconditions for each rule. The synthesized preconditions
prohibit the application of a rule if and only if the application would lead to a violation
of a consistency property. Still, this restriction is infeasible for topology modifications
that need to be executed in any case. Therefore, as a major contribution of this thesis,
we propose the anticipation loop synthesis algorithm, which transforms the synthesized
preconditions into routines that anticipate all violations of these preconditions. This
algorithm also enables the correct-by-construction runtime reconfiguration of adaptive
WSNs. We provide tooling for both common evaluation steps. Cobolt allows to eval-
uate the specified TC algorithms rapidly using the network simulator Simonstrator.
cMoflon generates embedded C code for hardware testbeds that build on the sensor
operating system Contiki.
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Z U S A M M E N FA S S U N G

Drahtlos kommunizierende Geräte sind ein wesentlicher Bestandteil der zunehmenden
Digitalisierung unserer Gesellschaft. Ein drahtloses Sensornetzwerk (engl. Wireless Sen-
sor Network, WSN) umfasst eine Vielzahl günstiger, kleiner, batteriebetriebener Senso-
ren, die gemeinschaftlich einem Ziel dienen (z. B. in einer e-Health-Anwendung). Die
Topologie eines WSNs ist ein attributierter Graph, dessen Knoten die Geräte und des-
sen Kanten deren Kommunikationsverbindungen darstellen. Topologiekontrolle (engl.
Topology Control, TC) reduziert den Energieverbrauch eines WSN, indem bestimmte
physische Nachbarn eines Geräts ausgeblendet werden, wodurch sich dessen Sendeleis-
tung reduzieren lässt. Der Topologiekontrollalgorithmus muss dabei wesentliche Kon-
sistenzeigenschaften erhalten (z. B. den Zusammenhang des Topologie).

Ungeachtet ihrer großen Bedeutung werden Konsistenzeigenschaften in der traditio-
nellen Entwicklung von TC-Algorithmen nur in der anfänglichen Spezifikationsphase
betrachtet. Die anschließende Implementierung des TC-Algorithmus wird von Hand
durchgeführt und ist damit fehleranfällig und zeitaufwändig. Es ist schwierig nach-
zuweisen, dass die Implementierung die geforderten Konsistenzeigenschaften erfüllt,
insbesondere da TC-Algorithmen typischerweise iterativ entwickelt werden. Die beste-
henden Batch-TC-Algorithmen verarbeiten jeweils die gesamte Topologie ohne Wissen
aus vorherigen Ausführungen zu nutzen. Daher ist es wünschenswert dynamische TC-
Algorithmen zu entwicklen, die inkrementell auf Ereignisse reagieren.

In dieser Arbeit stellen wir eine modellbasierte Entwicklungsmethodik für garantiert
korrekte dynamische TC-Algorithmen vor. Wir modellieren lokale Konsistenzeigenschaf-
ten mittels Graph-Constraints, globale Konsistenzeigenschaften mittels Prädikatenlogik
zweiter Stufe sowie die möglichen Änderungen der Topologie und deren Kontrollfluss
mittels programmierter Graphtransformationsregeln. Unter der Annahme, dass die lo-
kalen Konsistenzbedingungen gemeinsam die globalen Konsistenzbedingungen impli-
zieren, können wir mithilfe bestehender statischer Analysetechniken Vorbedingungen
für die Graphtransformationsregeln synthetisieren, die sicherstellen, dass die modifi-
zierten Regeln die Konsistenzbedingungen erhalten. Die resultierende Einschränkung
ist für diejenigen Regeln, die das Umweltverhalten beschreiben, jedoch nicht zulässig.
Wir stellen daher einen Algorithmus vor, der jede synthetisierte Vorbedingung systema-
tisch in eine Antizipationsschleife überführt, welche alle unvermeidlichen Verletzungen
der entsprechenden Vorbedingungen auflöst. Wir zeigen, dass sich dieser neuartige Al-
gorithmus auch für die Rekonfiguration von adaptiven WSNs eignet. Um dem Nutzer
unseres Ansatzes eine schnelle Erprobung eines entwickelten TC-Algorithmus zu er-
möglichen, bieten wir Werkzeuge zur Evaluation im Netzwerksimulator (Cobolt) und
Hardware-Testbed (cMoflon) an.
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1
T H E N E E D F O R C O R R E C T- B Y- C O N S T R U C T I O N T O P O L O G Y
C O N T R O L A L G O R I T H M S

Our society is currently undergoing a rapid digitalization with more and more electronic
devices permeating our everyday life. The following examples illustrate that wireless
communication systems are one cornerstone of this process.

• The Internet of Things (IoT) consists of numerous everyday objects that are con-
nected to the Internet and among each other [273]. In 2016, the IoT consisted of 6 to
17 billion devices, depending on which device types are considered (e.g., smart-
phones, tablets) [170]. Wiring IoT devices is infeasible because these devices are
usually mobile (e.g., smartphones, smartwatches, body area networks, drones). Of-
ten, multiple IoT devices cooperate locally to produce meaningful data.

• To create smart factories [265, 266], production companies equip factories with
dense sensor networks to monitor each production step closely. This trend is also
called Industry 4.0 [134]. Formerly, industrial sensor networks were wired, leading
to high deployment and operational costs, error-prone installation, and low flexi-
bility. For the prospected degree of digitalization in smart factories, only wireless
technology is affordable [126]. The extent of certain types of industrial plants (e.g.,
solar power plants) requires that wireless sensor devices cooperatively collect and
forward data toward a central data sink device. Modern agriculture also benefits
from monitoring environmental parameters using wireless sensor networks (e.g.,
humidity, temperature) [203].

• An intelligent transportation system adapts itself to cope with traffic loads that
change periodically throughout the day and due to accidents and large-scale public
events [169]. Traditional traffic management systems are limited to counting vehi-
cles (e.g., using induction loops). Wireless communication systems offer additional
benefits [155]. Warning messages about traffic jams, accidents, or construction sites
are broadcast regionally already today to avoid rear-end collisions [169]. In pla-
tooning, multiple vehicles (often trucks) form a convoy and drive autonomously
at close distance (ca. 10 m to 15 m) to reduce drag [261]. The resulting safety de-
mands require that the vehicles of a platoon communicate reliably and with a small
guaranteed latency.

1



2 1 the need for correct-by-construction topology control

• Wireless technology saves lives. Wireless sensors are employed for (flash-)flood [32,
97], wildfire [148], or landslide warning systems [202], pollution detection [226], vol-
cano monitoring [178], structural health monitoring of buildings and bridges [115,
116], or in e-health applications (e.g., to detect whether a person has fallen) [5]. We
may expect that wireless devices will be used more extensively in these scenarios
in the future.

• Wireless devices open new leisure opportunities. Multi-player augmented-reality
games are becoming increasingly popular (e.g., Ingress1, Pokémon Go2). In these
games, players interact primarily via the Internet, which entails a conceivable la-
tency if the mobile infrastructure is congested. Novel approaches enhance the
infrastructure-based communication with additional ad-hoc communication chan-
nels, which allow users to communicate with fellow players that are in the geo-
graphic vicinity [207].

• Wireless sensors are used for wildlife and habitat monitoring (e.g., to protect natural
reserves against intruders) [50, 154]. Here, wireless technology simplifies tasks for
humans (e.g., counting or tracking animals) and avoids that animals are disturbed
unnecessarily (e.g., during breeding season). The monitored area may be too large
to cover it with radio towers, requiring collaboration among the sensor nodes to
collect and forward data to a base station.

In all described examples, wireless mobile devices cooperate to achieve a common
goal. Wireless sensors (also called motes) form a large class of such devices. A wire-
less sensor network (WSN) consists of a large number (i.e., dozens to thousands) of
small, cheap, battery-powered, resource-constrained wireless sensor devices that collab-
oratively provide services [218]. Examples are periodic data collection (e.g., seismic
vibrations for volcano monitoring) or event detection (e.g., a fallen person in an e-health
application) [219, 267]. Kahn and Katz coined the term “Smart Dust” for motes be-
cause of their small size, low price, and flexible interconnection via standardized pro-
tocols [106]. WSNs serve as running example of this thesis due to their importance in
research and society.

The underlay topology of a WSN is a graph that reflects the physical interconnections
among the motes. A node of the underlay topology represents a mote, and an edge
between two nodes states that a message can be transferred directly from the source to
the target mote. The overlay topology reflects the application-specific interconnections
of motes. For instance, a mote that transmits data to a dedicated central base station
establishes a single link in the overlay topology, which usually corresponds to a path of
underlay links. In WSNs, multi-hop routing is common because the transmission range
of a single mote is often too small to reach the base station directly.

1 Ingress page: https://www.ingress.com/ (visited: 2018-09-17)
2 Pokémon Go page: https://www.pokemongo.com/ (visited: 2018-09-17)

https://www.ingress.com/
https://www.pokemongo.com/


1.1 Challenges in wireless communication systems engineering 3

1.1 challenges in wireless communication systems engineering

Wireless networks (and especially WSNs) face several challenges due to the expected
density of wireless devices in the Future Internet. In the following, we outline a subset
of these challenges that is relevant for this thesis.

Performance goals

The first challenge is that scenario-specific performance goals need to be considered.
For instance, if multiple wireless devices start transmitting concurrently, the individual
messages may interfere and retransmissions of the same message become necessary,
which leads to increased end-to-end latency and energy consumption. This problem
even occurs if the motes wait for a free sending slot prior to transmitting (also called
the hidden-terminal problem [200]). In fact, reducing the energy consumption is one of
the most important performance goals for WSNs because, depending on the application
scenario, recharging a mote is difficult, dangerous, costly, or impossible.

Topology control (TC) is an established approach to improve both the interference in
and the energy consumption of a WSN [218, 219]. The idea of TC is to reduce the size
of the neighborhood of each mote in the underlay topology. This sparser topology can
then be used to lower the transmission power of the mote. Technically, a TC algorithm
builds a virtual topology on top of the input topology. The virtual topology is a view
of the input topology that contains only well-selected links. If TC is active, all network
mechanisms that usually use the (unfiltered) input topology now operate on the virtual
topology. A downside of this approach is that a message is often routed across more
hops to reach its destination in the virtual topology compared to the input topology.
The extended routing path length results in an increased end-to-end packet drop rate, la-
tency, and risk of overloading relay motes. Dozens of TC algorithms have been proposed
during the last decades (summarized, e.g., in [219, 264, 267]), each focusing on certain
performance goals (e.g., minimizing energy consumption, minimizing latency, bounding
path latency, ensuring fairness of resource consumption across all motes). With the ad-
vent of mm-wave communication, which requires directional instead of omni-directional
antennas, additional performance goals arose (e.g., limited mote degree to reduce the
computation complexity [234]). An ongoing debate is whether underlay and overlay
topologies should be considered separately or jointly when engineering TC algorithms.
A separate, application-agnostic approach fosters reuse, whereas a joint approach could
leverage application-specific knowledge (e.g., routing information).

Example 1.1 (Underlay, virtual, and overlay topology). Figure 1.1 summarizes the
concepts of underlay, virtual, and overlay topologies using a small WSN that con-
sists of four motes and one base station. The motes are TelosB devicesa [181]. This
mote type is frequently used for testbed experiments in WSN research. The under-
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✘ Hidden underlay link (virtual topology)

Figure 1.1: Example: WSN with underlay, virtual, and overlay topology

lay consists of two triangles of links and is shown as undirected black arrows, which
are annotated with the lengths of the links. The tree-shaped icons in the center of
the figure symbolize an obstacle that prevents motes 2 and 4 from communicating
directly. Mote 1 is currently transmitting data to the base station, as indicated by
the gray overlay link.

This example also shows the result of executing the TC algorithm kTC [227]. In
general, kTC hides a link from the virtual topology if this link has the largest weight
in a triangle of links and if its weight is at least k times larger than the minimal
weight in this triangle. The parameter k is configurable and set to 1.3 in this example.
Let’s assume that the weight of a link equals its length. Then, kTC hides the link
between motes 1 and 3 and the link between mote 3 and the base station from
the virtual topology. Therefore, the path of underlay links that corresponds to the
overlay link uses the relay motes 2, 3, and 4.

a Image CC BY-SA 3.0 https://commons.wikimedia.org/wiki/File:TelosB.jpg (visited: 2018-11-07)

Dynamic topologies

The second research challenge is that traditional approaches assume that WSNs are
static structures, which was known to be a false assumption already more than ten
years ago [264, 277]. In fact, the topology of most WSNs changes over time due to
environmental influences. For example, even if each mote is located at a fixed position,
an obstacle may move between two motes leading to a disruption or a degradation of
the quality of their connection. Furthermore, battery depletion and mote failures lead to
disappearing motes, and the replacement of failed devices leads to additional motes in
the topology. A TC algorithm should react dynamically to such context events. Ideally,
this reaction is incremental and reprocesses only the relevant parts of the topology [232].

https://commons.wikimedia.org/wiki/File:TelosB.jpg


1.1 Challenges in wireless communication systems engineering 5
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Specification

Simulation platform

Simulative evaluation Testbed evaluation

Testbed platform
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1 2 3

5 6

Iterations8

X YActivity Artifact

Figure 1.2: Overview of development phases of a TC algorithm

Consistency properties

The third research challenge is that, due to the safety-critical application scenarios of
WSNs, it is important that a TC algorithm fulfills certain consistency properties. Two
established consistency properties are the preservation of connectivity and coverage.
Any TC algorithm must preserve connectivity, which means that the virtual topology is
connected as long as the input topology is connected. Coverage applies to WSNs whose
motes can be disabled temporarily to save energy. In such WSNs, each mote observes
a small geographic region, and the observed regions of all devices shall jointly fulfill a
coverage criterion (e.g., cover the boundary of a certain area).

A TC algorithm that violates consistency properties may cause dangerous situations.
In an e-health system, a loss of connectivity may prevent the system to detect that a
person has fallen because measurements are lost. Similarly, the inhabitants of a valley
may be warned too late (or not at all) if information about an approaching avalanche is
lost due to a disconnected topology. In a wildlife reserve that shall be protected from
poachers by a WSN, a loss of coverage may endanger animals of a threatened species.

We shall discuss the necessary extensions to model coverage later. For now, we con-
centrate on the preservation of connectivity due to its fundamental role in almost all
application scenarios of WSNs.

Tedious, error-prone development process

As a fourth major research challenge, the traditional development of TC algorithms is
a tedious and error-prone manual process. As in many disciplines in communication
systems engineering, the development of a new TC algorithm consists of two major
tasks: specification and evaluation. In the following, we describe the individual steps of
these tasks and highlight current shortcomings (Figure 1.2).

During the specification phase (see 1 in Figure 1.2), relevant domain concepts (e.g.,
input, output, virtual topology and consistency properties, see 7 ) and the TC algorithm
are specified using a formal modeling language (e.g., graph theory or game theory,
see 4 ). Modeling languages are always selected to serve a particular purpose (e.g.,
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to prove the correctness w.r.t. consistency properties). We are interested in modeling
structural modifications of the WSN topology.

TC algorithms form two major groups: centralized and localized TC algorithms [267,
Sec. 1.2]. A centralized TC algorithm is executed as a single process based on a global
view of the topology. A localized TC algorithm is executed concurrently on multiple
motes based on a limited per-mote local view of the topology. A typical local view in
WSNs consists of all motes and links that are at most two hops away. A hop is the
traversal of a single link [235].

Centralized algorithms have access to a larger scope of knowledge, which may lead to
better decisions w.r.t. the desired performance goals. In comparison to centralized algo-
rithms, localized algorithms tend to be more robust and scalable, at the expense of possi-
bly less informed results due to their limited local knowledge. Also, the first version of
a localized TC algorithm may be developed based on global knowledge for conducting
initial simulation experiments. Our observation is that localized TC algorithms are more
prominent in the literature than centralized TC algorithms [219, 264, 267]. One reason
is that today’s motes are still resource constrained w.r.t. processing power and working
memory. This limits the computation complexity of the TC algorithm and the size of the
local view that can be stored on a single mote. A second reason is that collecting, storing,
and updating a global view of the topology on one or multiple motes entails a poten-
tially large amount of protocol messages. Additional protocol messages are required
to communicate the decisions of the centralized algorithm to all affected motes. These
protocol messages reduce the available bandwidth for the actual applications running
in the WSN.

The centralized and the localized perspective can be combined if each mote can be
configured to have dedicated responsibilities for monitoring and updating the topology.
A mote may only monitor its outgoing links because a link in the underlay topology is
defined as a possible physical connection from a source mote to a target mote. Therefore,
motes need to cooperate if a larger local view needs to be maintained. Each mote emits
neighborhood messages (e.g., periodically), which contain the current local view of the
mote. In general, if a K-hop local view is required on each mote, the neighborhood
messages must contain a (K-1)-hop local view.

In a localized TC algorithm, the neighborhood messages must contain enough infor-
mation to build a local view that is sufficient to find the desired structural patterns of
the active TC algorithm. For example, in case of kTC, each mote sends the set of its out-
going links (i.e., its 1-hop neighborhood) to all its neighbors because this information
allows each mote to find out whether one of its outgoing links is part of a triangle that
fulfills the kTC condition, which requires a 2-hop local view. In WSNs, each mote is
responsible for updating its outgoing links because hiding (or unhiding, resp.) a link is
often realized as adding (removing, resp.) the target mote of the link to (from, resp.) an
internal blacklist. This operation is only possible on the source mote of the link.
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In a centralized TC algorithm, all motes transmit their observed outgoing links to a
selected central mote that builds a global view of the topology and centrally selects the
links that shall be hidden from the virtual topology. The selection decisions are then
broadcast to all motes in the network. Therefore, a centralized TC algorithm is capable
of constructing, for instance, a global minimal spanning tree, which is not possible using
K-hop local knowledge only (for a fixed K and arbitrary network sizes).

Example 1.2 (Local monitoring and updating responsibilities). Figure 1.3 illustrates
the 2-hop local views of the motes with IDs 1 and 3 in the sample topology that is
shown in Figure 1.1. Each local view is framed with a rectangle and decorated with
the mote that owns the local view. In addition to the global view in Figure 1.1, the
links in the local views in Figure 1.3 are decorated with a unit-less metric to indicate
that, usually, the distance between motes is not available, but only some correlated
metric (e.g., the received signal strength indicator (RSSI)).

Regarding the monitoring responsibility, the links that a mote can detect locally
are labeled with «O» (e.g., the links from mote 1 to motes 2 and 3 in the local view
of mote 1). All links that originate from neighborhood messages are shown without
stereotype. For example, in the local view of mote 1, the links from mote 2 to
motes 1 and 3 originate from a neighborhood message from mote 2.

Regarding the updating responsibility, each mote decides which of its outgoing
links to hide from the virtual topology (e.g., the link from mote 1 to mote 3 in the
local view of mote 1).

In this thesis, we characterize the correctness of a TC algorithm in terms of infor-
mation that is present in the local view only. This characterization allows us to treat
centralized and localized TC algorithms uniformly. In case of a centralized TC algo-
rithm, we only consider the local view of the decision-making mote, which builds and
maintains a global view of the topology. Regarding the connections between the local
views in a WSN, we make the following assumptions. (i) The topology is jointly covered
by all local views (complete coverage). (ii) Each link can be updated by exactly one mote
(single responsibility). (iii) Each protocol messages eventually arrives at its destination
(reliable communication). The specification is refined and adjusted iteratively until all
required consistency properties can be shown (see 8 ).

Two subsequent evaluation phases follow the specification phase: the simulative
evaluation phase and the testbed evaluation phase. During the simulative evaluation
(see 2 ), the specification of the TC algorithm is implemented manually in a network
simulator (see 5 ) and evaluated w.r.t. the desired performance goals. Typical program-
ming languages of network simulators are Java, C, C++, and MATLAB. Examples of
state-of-the-art network simulators are OMNeT++3 [259] (C++-based) and ns-34 [253]

3 OMNeT++ page: https://omnetpp.org (visited: 2018-09-17)
4 ns-3 page: https://www.nsnam.org/ (visited: 2018-09-17)

https://omnetpp.org
https://www.nsnam.org/
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Figure 1.3: Example: Local knowledge

(C++-based), and Simonstrator
5 [208] (Java-based). A network simulator allows us to

evaluate a TC algorithm in a large number of scenarios. This evaluation underpins the
general applicability of the TC algorithm. If the TC algorithm fails to show the desired
effects, the specification is refined and the simulation implementation is adjusted to the
modified specification (see 8 ). The major challenge of the simulative evaluation is to
ensure that the implemented TC algorithm conforms to the specification, for which the
consistency properties were proved. In the literature, high-level pseudocode usually
serves to sketch the protocol that implements the specified TC algorithm. Implement-
ing a localized TC algorithm for simulative evaluation is more difficult compared to a
centralized TC algorithm because (at least for initial experiments) a centralized TC algo-
rithm may access global-knowledge information, which is often provided by the simula-
tor (e.g., consistent view of the physical topology, global-knowledge routing topology).
As soon as the simulations show satisfactory results, the TC algorithm is evaluated in
the final testbed evaluation.

During the testbed evaluation (see 3 ), the TC algorithm is evaluated in a hardware
testbed (see 6 ). This step entails additional manual effort for porting or adjusting the
simulation code to the target platform. Typical target languages for testbed evaluation
are C, C++, and assembler dialects. It is crucial and difficult to ensure that the testbed
implementation conforms to the specification. The testbed implementation is arguably

5 Simonstrator page: http://simonstrator.com (visited: 2018-10-04)

http://simonstrator.com
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harder to get right compared to the simulation implementation because the program-
ming languages tend to be on a lower level of abstraction (e.g., due to direct memory
access and missing garbage collection), and validation support (e.g., unit testing) is
barely available [239]. A prominent hardware platform is TelosB [181]. An example of
a hardware testbed is the FlockLab

6 [149] at ETH Zurich. If the TC algorithm fails to
meet the performance goals, the developer needs to refine the specification and adjust
the implementations (see 8 ).

The described process is iterative and, if carried out manually, error prone and time
consuming. All phases require deep expertise of the WSN domain, the theoretical spec-
ification framework, the network simulator, and the hardware testbed. This may be
the reason that testbed results of many TC algorithms are missing [66, Sec. 3]. Verify-
ing that the manually created simulation and testbed implementations conform to the
specification is difficult. Indeed, several lines of research used verification techniques
to identify critical corner cases that were not considered during the specification and
implementation of communication protocols. Seminal examples are the works by Zave
on verifying the Session Initiation Protocol (SIP) [280] and Chord [281, 282]. In gen-
eral, the lack of formal methods is still an open challenge in communication systems
research [49, 156, 162, 193, 280, 281].

The major challenges of communication systems research that are relevant for this
thesis are summarized in the following. (i) A novel TC algorithm must fulfill crucial con-
sistency properties to allow for applying it in typical safety-critical application scenarios.
(ii) Modern TC algorithms should cope with the inherently dynamic WSN topology to
fulfill the consistency properties permanently. (iii) The traditional manual development
of TC algorithms is tedious, time consuming, and error prone, and hinders the traceabil-
ity between specification and implementation artifacts.

Example 1.3 (Challenges). We illustrate challenge (iii) using the Cooperative Topol-
ogy Control Algorithm (CTCA) [35]. In [35], the authors first present a graph-based
informal description of the goal of developing CTCA. The goal of CTCA is to im-
prove the distribution of the motes’ lifetimes in a WSN [35, Sec. III]. This goal is
then formalized as an ordinary potential game [161]. The authors prove that CTCA
creates a stable and optimal topology. The implementation in the paper consists of
83 lines of pseudocode in four listings. The pseudocode contains network-specific
aspects such as handlers for sending and receiving the involved types of commu-
nication messages. It is highly nontrivial to understand the correspondences to
the game-theoretic formalization [35, Sec. V]. In a simulation study, the authors
compare CTCA with other state-of-the-art TC algorithms, without describing the
simulation setup in detail [35, Sec. VI]. To the best of our knowledge, no testbed
evaluation of CTCA has been published.

6 FlockLab page: https://flocklab.ethz.ch/ (visited: 2018-09-17)

https://flocklab.ethz.ch/
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1.2 goals

The described challenges show that the current way of developing TC algorithms must
be improved. Therefore, our overarching goal is to devise a practical methodology for
developing correct dynamic TC algorithms. More precisely, we pursue the following
major goals.

• Goal 1—Correctness by construction: The methodology should produce TC algo-
rithms that are guaranteed to be correct w.r.t. the specified consistency properties.
To avoid the described gap between specification and implementation, we must
translate the specification (semi-)automatically into implementations for simula-
tive and testbed evaluation. We must ensure that the specification-to-implemen-
tation transformation preserves correctness. Tracing specification artifacts to the
source code of the resulting implementation artifacts should be possible.

• Goal 2—Dynamic TC: To capture and cope with the inherent dynamics in modern
WSNs, the proposed methodology should result in dynamic TC algorithms. This
means that the developed TC algorithms should process context events instead of
entire topology snapshots. Switching between incremental and batch processing
mode should be possible to assess whether dynamic or batch TC is more suitable
in a certain domain.

• Goal 3—Practicality: The methodology shall cover all important development
phases of a TC algorithm: specification, simulative evaluation, and testbed eval-
uation. The specification artifacts should reflect the widely adopted graph-based
perspective of TC. The methodology must be accompanied with appropriate tool
support for simulative and testbed evaluation. The generated implementation ar-
tifacts should be competitive compared to manually implemented TC algorithms
w.r.t. relevant metrics (e.g., code size for hardware devices). Finally, the proposed
methodology should embrace the iterative development of TC algorithms.

• Goal 4—Conceptual and technical reusability: Numerous possible use cases for
a correct-by-construction development methodology exist in the research areas of
WSN and TC. The methodology should be flexible enough to serve as a blueprint
for developing TC algorithms for further domains. Especially adaptive WSNs,
which reconfigure or exchange algorithms at runtime, are a promising new ap-
plication domain, which should be considered. Moreover, topologies are a cross-
cutting area in the communication systems research domain. The proposed ap-
proach should expose clear formal and technical interfaces to enable its reuse in
other domains.
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1.3 contributions and thesis structure

To achieve these goals, we employ techniques from model-driven engineering [22, 233].
A model is an abstraction of a system under construction and serves a certain pur-
pose [129]. Model-driven engineering is a software development paradigm that treats
models as central, prescriptive artifacts, in contrast to the role of models as mere descrip-
tive artifacts (e.g., for documentation purposes) [233]. The system model is typically
accompanied by a set of model transformations, which describe the behavior of the
system in a platform-independent way. In the past, model-driven engineering proved
to be suitable for real-life application scenarios [94], including communication systems
engineering [4, 20]. Major challenges in model-driven engineering are (i) how to make
models understandable by domain experts, (ii) how models can be validated, (iii) how
the transformation of a model can be specified in a platform-independent way, (iv) how
code for a target platform can be generated from models and model transformations
such that the model elements can be traced to the generated code, and (v) how model-
ing tools can be integrated with existing software [233, p. 85]. All of these aspects are
relevant in the context of this thesis. In the following, we summarize each chapter and
state its contributions w.r.t. the goals stated in Section 1.2.

• In Chapter 1, we motivate why a systematic, correct-by-construction development
methodology for TC algorithms is crucially needed due to the safety-critical role of
WSNs in the ongoing digitalization of our society and in industry.

• In Chapter 2, we provide definitions for the domain concepts in the context of WSNs
and TC (see 7 in Figure 1.2). These definitions are fundamental to understand the
contributions of this thesis in detail. We also introduce our running example, the
TC algorithm kTC [227].

As a major contribution of Chapter 2, we extend the standard definitions to specify
dynamic TC algorithms and adaptive WSNs. To this end, we define the concepts of
TC mechanisms, TC multi-mechanisms, and TC transitions.

Regarding the goals of this thesis, these definitions prepare the ground for develop-
ing dynamic TC (Goal 1) and discussing the application of our approach to adaptive
WSNs (Goal 4).

• In Chapter 3, we introduce the modeling concepts for specifying topologies, consis-
tency properties, and TC (see 4 in Figure 1.2). We specify valid topologies using
metamodeling, local consistency properties using declarative graph constraints, and
global consistency properties using second-order logic. To support the development
of dynamic TC algorithms, we derive relaxed graph constraints that constitute an
inductive invariant of the TC algorithms. The relaxed graph constraints must hold
permanently (weak consistency), whereas the original graph constraints must hold
eventually for a finite number of context events (strong consistency). To specify



12 1 the need for correct-by-construction topology control

atomic topology modifications during the execution of the TC algorithms or due
to environmental influences, we use graph transformation rules. As language for
specifying the control flow of a TC algorithm, we use the programmed graph trans-
formation dialect story-driven modeling [60]. Story-driven modeling is a variant of
UML activity diagrams [78] with graph transformation rule applications as actions.

As a major contribution of Chapter 3, we show how to characterize local consistency
constraints of TC algorithms in a systematic way using graph constraints.

Regarding the goals of this thesis, this chapter presents our model of dynamic TC
(Goal 2). Furthermore, with metamodeling, graph constraints, graph transforma-
tion rules, and story-driven modeling, we use modeling techniques that represent
TC algorithms on a graph-based abstraction level, which is common in the TC re-
search area (Goal 3).

• In Chapter 4, we propose a two-step approach to obtain a correct TC algorithm
specification (see 1 in Figure 1.2).

First, we employ the constructive approach [44, 91] to establish the inductive vari-
ant that each rule application preserves weak consistency. For a given pair of rule
and constraint, the constructive approach produces additional weakest application
conditions for the rule. These additional application conditions prevent rule ap-
plications that would otherwise lead to consistency violations. The synthesized
application conditions also restrict the applicability of graph transformation rules
that specify context events (e.g., mote failures).

Therefore, in a second step, we show how to synthesize context event handlers.
A context event handler anticipates imminent inevitable consistency violations. It
retracts exactly those previous decisions of the TC algorithm that would lead to a
consistency violation after the context event took effect. We present the anticipation
loop synthesis algorithm, which transforms each synthesized application condition
into a control-flow fragment that anticipates violations of the given synthesized
application condition. We show how to generalize the anticipation loop synthesis
algorithm based on further use cases.

The major contributions of Chapter 4 are the proposed anticipation loop synthesis
algorithm and its application to further use cases.

Regarding the goals of this thesis, this chapter describes how we ensure correctness
by construction (Goal 1). By proposing the anticipation loop synthesis algorithm,
we ensure that the developed TC algorithms cope with all types of context events
correctly (Goal 2). For each refinement step, we propose algorithms, which make
the construction practically feasible (Goal 3).

• In Chapter 5, we present tool support for simulative and testbed evaluation of TC
algorithms. First, Cobolt supports the rapid simulative evaluation (see 2 in Fig-
ure 1.2) based on an integration of the graph transformation tool eMoflon [135]
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and the network simulator Simonstrator [208]. Its name alludes to the “Correct-
by-construction development of topology control algorithms.” This tool integra-
tion allows the user to evaluate a TC specified with eMoflon immediately inside
simulations implemented in Simonstrator. Second, cMoflon supports the rapid
testbed evaluation of TC algorithms (see 3 in Figure 1.2). cMoflon is a variant
of eMoflon that generates embedded C code for the Contiki IoT operating sys-
tem [51]. The prefix “c” of cMoflon alludes to Contiki.

The major contributions of this chapter are the model-driven tools, which allow the
developer to generate TC algorithm implementations for the different evaluation
phases based on a common specification.

Regarding the goals of this thesis, this chapter focuses on how we built both tools
to be practical (Goal 3) and how we ensured the correctness of the involved code
generators (Goal 1).

• In Chapter 6, we lift the results of the preceding chapters to families of TC algo-
rithms (see 1 , 2 , and 3 in Figure 1.2). We show how to specify families of
TC algorithms by employing techniques from dynamic software product line en-
gineering [86]. The TC algorithms inside a family share structural constraints. A
particular TC algorithm corresponds to a refinement of the graph constraint of its
family. This observation allows us to conduct a proof of consistency preservation
for an entire family of TC algorithms. We discuss the applicability of our approach
using three families of TC algorithms: triangle-based, cone-based, and tree-based
TC algorithms. We propose e-kTC, an energy-aware variant of the running example
kTC [227] that was inspired by the CTCA algorithm [35].

The major contribution of this chapter is the application of our approach to families
of TC algorithms, including the characterization of commonalities and differences
as well as the required information that a TC algorithm requires for its operation.

Regarding the goals of this thesis, we focus on investigating the conceptual and tech-
nical reusability in this chapter (Goal 4). We investigate in how far our methodology
is flexible enough to cover a set of representative TC algorithms.

• In Chapter 7, we conclude this thesis by discussing future research directions (e.g.,
regarding further application scenarios and extensions to probabilistic TC algo-
rithms).
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1.4 publications and supervised theses

The results presented in this thesis originate from more than four years of research. The
presented work was inspired and funded by the Corporate Research Center (CRC) 1053

Multi-Mechanismen-Adaptation für das künftige Internet (MAKI)7 of the Deutsche Forschungs-
gemeinschaft (DFG)8.

publications In the following, we summarize the most important publications in
the context of this thesis. Roland Speith (né Kluge) also was a co-author or first author
of the following additional publications [6, 8, 65, 118, 176, 177, 209, 210, 221, 236, 237,
240, 271, 274].

• Roland Kluge, Gergely Varró, and Andy Schürr: “A Methodology for Designing
Dynamic Topology Control Algorithms via Graph Transformation,” in Proceedings
of the International Conference on Model Transformation (ICMT), pp. 199–213, 2015,
Ref. [122].

In this conference paper, we derived a correct-by-construction batch variant of
the TC algorithm kTC using the constructive approach [44, 91].

• Roland Kluge and Michael Stein and Gergely Varró and Andy Schürr and Matthias
Hollick and Max Mühlhäuser: “A Systematic Approach to Constructing Incremen-
tal Topology Control Algorithms Using Graph Transformation,” in Journal of Visual
Languages and Computing (JVLC), pp. 47–83, 2016, Ref. [118].

In this article, which appeared in the special issue of JVLC in honor of Prof. SK
Chang, we presented the full kTC case study together with an evaluation for
correctness, incrementality, performance, and general applicability.

• Roland Kluge and Michael Stein and Gergely Varró and Andy Schürr and Matthias
Hollick and Max Mühlhäuser: “A Systematic Approach to Constructing Families
of Incremental Topology Control Algorithms Using Graph Transformation,” in In-
ternational Journal on Software Systems and Modeling (SoSyM), pp. 1–41, 2017,
Ref. [119].

In this article, which appeared in the STAF 2015 special issue of SoSyM, we
(i) lifted the derivation of correct-by-construction TC algorithm development
methodology to families of TC algorithms and (ii) introduced the rapid eval-
uation environment consisting of the graph transformation eMoflon and the
network simulator Simonstrator. This article was also invited for presenta-
tion at SE 2018 [120] and ICGT 2018 [121].

7 MAKI page: https://www.maki.tu-darmstadt.de (visited: 2018-09-17), English title: Multi-Mechanism
Adaptations for the Future Internet

8 DFG page: http://www.dfg.de/ (visited: 2018-09-17), English: German Research Foundation

https://www.maki.tu-darmstadt.de
http://www.dfg.de/
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• Roland Kluge, Michael Stein, David Giessing, Andy Schürr, and Max Mühlhäuser:
“cMoflon: Model-Driven Generation of Embedded C code for Wireless Sensor Net-
works,” in Proceedings of the European Conference on Modeling Foundations and
Applications, pp. 109–125, 2017, Ref. [117].

In this conference paper, we introduced cMoflon, which compiles batch pro-
grammed GT specifications into embedded C code for the Contiki IoT operat-
ing system. We conducted a case study with three TC algorithms: kTC, l*kTC
(a routing-aware variant of kTC) , and LMST (a tree-based TC algorithm).

supervised theses The following Bachelor’s and Master’s theses influenced the
results of this Ph.D. thesis.

• Maximilian Herbst: “Graph Constraints meet Topology Control: Designing Cor-
rect graph-based Topology Control Algorithms,” Bachelor’s thesis supervised by
Roland Kluge and Andy Schürr in 2016 [93].

This thesis builds on the SoSyM article [119] and investigates additional algo-
rithms, leading to a feature-based modeling of the family of cone-based TC
algorithms. Additionally, the thesis contains a discussion of negative results,
e.g., why LMST cannot be encoded using simple graph constraints.

• David Giessing: “From Programmed Graph Transformation to Embedded C code:
A Case Study,” Bachelor’s thesis supervised by Roland Kluge, Michael Stein, and
Andy Schürr in 2016 [77].

In this thesis, an initial version of cMoflon was implemented.

• Lukas Neumann: “Integration of a Graph Pattern Matcher into a Network Simula-
tor,” Bachelor’s thesis supervised by Roland Kluge and Andy Schürr in 2016 [168].

In this thesis, the interpreted batch graph pattern matcher Democles [260]
was integrated with the network simulator Simonstrator [208] in a prototype
implementation. An advantage an interpreter is that patterns can be created or
modified at runtime without the need to load compiled code dynamically. The
tool integration that resulted from this thesis was used in [240].

• Dario Mirizzi: “Design and Implementation of a Demonstrator for Topology Adap-
tation Algorithms,” Bachelor’s thesis supervised by Roland Kluge, Michael Stein,
and Andy Schürr in 2015 [160].

In this thesis, a demonstrator for exploring interactions of TC algorithms (on
the underlay) with video streaming mechanisms (on the overlay) was designed
and implemented, which we published as PerCom demonstration [237].
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1.5 technical remarks

This thesis is written in American English. Terms are shown in italics when they are
defined (formally) for the first time. Metamodel elements (classes and operations) are
printed in a sans-serif font. Proper nouns (e.g., tool or programming language names)
are set in small caps. Source code is shown using monospaced font (e.g., int i = 3;).
Whenever possible, we use the symbols X, Y, Z, J, K as variables for counters (e.g., in
loops or induction proofs) and the symbols N and M as variables for amounts (e.g., the
length of a sequence).

As suggested in [54, p. 140], adjective-noun composites where the adjective relates to
composite noun are typeset with a hyphen (-) to connect the composite nouns and an en-
dash (–) to connect the composite noun to the adjective. For instance, in the construction
“TC-algorithm–specific condition”, the attribute “specific” modifies “TC algorithm ” and
“TC-algorithm–specific” jointly modifies “condition.”

Most of the contributions presented in this thesis have been published in conference
papers and journal articles. Still, to avoid awkward formulations in past tense, we stick
to present tense throughout the thesis and state unpublished contributions explicitly.
The content of this thesis originates from joint work with numerous people—fellow
researchers, students, and my supervisor. To honor the contributions of these people, I
use the first person plural throughout the remainder of this thesis.



2
F U N D A M E N TA L S O F T O P O L O G Y C O N T R O L

In this chapter, we introduce the required terminology for the subsequent chapters. We
begin with summarizing standard definitions of graph theory, ad-hoc networks, topolo-
gies and static topology control [219, 264, 267]. Based on these definitions, we intro-
duce compatible terminology for describing dynamic topology control. To the best of
our knowledge, no single standard terminology for dynamic topology control exists.
Therefore, we introduce novel terminology to characterize dynamic topology control
and adaptive wireless sensor networks, which can reconfigure or exchange the enabled
topology control algorithm at runtime. Figure 2.1 locates the role of this chapter in the
entire TC algorithm development process (see also Figure 1.2).

Regarding notation, major definitions are presented in explicit environments (e.g.,
Definition 2.1) and auxiliary definitions are presented emphasized and in-text.

Modeling language

Domain concepts

Specification

Simulation platform

Simulative evaluation Testbed evaluation

Testbed platform

7

4

1 2 3

5 6

X YActivity Artifact Chapter focus

Figure 2.1: Location of Chapter 2 in TC algorithm development process
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2.1 graph theory

We begin with an introduction of standard graph-theoretic terminology to establish a
common understanding of the relevant concepts.

Definition 2.1 (Graph). A (directed) graph G = (V,E, src, trg) consists of a set of nodes
V, a set of edges E as well as source- and target-node mappings src, trg : E→ V. The
term graph element subsumes the terms node and edge. In the remainder of this
definition, let e, e1, e2 ∈ E and n, n1, n2 ∈ V. The node n1 is the source node of e if
n1 = src(e), and the node n2 is the target node of e if n2 = trg(e). In this case, we
say that n1 and n2 are adjacent, n1 and n2 are incident to e, e is an outgoing edge of n1

and an incoming edge of n2. If n1 and n2 are adjacent, we also say that n1 is a neighbor
of n2, and vice versa. The in-degree and out-degree of a node n are the numbers of
incoming and outgoing edges of n, respectively. The degree of a node n is the sum
of its in-degree and out-degree. The density of a graph G is the average degree of
its nodes and can be calculated as 2 · |E||V| , where |V| and |E| denote the node count
and edges count of the graph, respectively. The edge e1 is called the reverse edge of an
edge e2 if src(e1) = trg(e2) and trg(e1) = src(e2).

We adopt the following notation: Edges are denoted with the symbol e. If an edge has
two subscript indices (e.g., e12), these indices represent the source and target node iden-
tifiers, respectively (e.g., src(e12) := n1 and trg(e12) := n2). If an edge has a single sub-
script index (e.g., e1), we do not care about the source and target node identifiers.

Definition 2.2 (Element properties). A graph G = (V,E, src, trg) may be comple-
mented by element properties. A node property f : V → D is a function from V to
a property domain D. Similarly, an edge property f : E → D is a function from E to
a property domain D. Examples of property domains D that appear in this thesis are
natural numbers N, real numbers R, positive real numbers (incl. zero) R+, Boolean
values B = {true, false}, nodes V, and edges E.

In general, an edge may lack a reverse edge (i.e., the graph is asymmetric), the source and
target of an edge may be identical (i.e., the graph contains loops), and multiple edges may
have the same source and target nodes, respectively (i.e., the graph contains multi-edges).
The following definitions describe special classes of graphs.

Definition 2.3 (Undirected graph). In an undirected graph G = (V,E, src, trg), each
edge is symmetric, i.e., for each edge e12 ∈ E if and only if e21 ∈ E, and the values of
each edge property are identical for e12 and e21.

We say that a graph is structurally symmetric if each edge has a reverse edge. In contrast
to an undirected graph, pairs of reverse edges may differ in certain edge properties in
graph that is only structurally symmetric.
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Definition 2.4 (Simple graph). A simple graph G = (V,E, src, trg) contains neither
multi-edges (also known as parallel edges) nor loops, i.e., ∀e1, e2 ∈ E : src(e1) =

src(e2) ∧ trg(e1) = trg(e2) ⇒ e1 = e2, and ∀e ∈ E : src(e) 6= trg(e). A graph
that is not a simple graph is called a multi-graph.

The following definitions help to characterize whether one node is reachable from an-
other node.

Definition 2.5 (Path). A path P (e1, e2, . . . ) in a graph G = (V,E, src, trg) is a sequence
of edges e1, e2, · · · ∈ E in which subsequent edges ex and ex+1 share at least one node,
i.e., trg(ex) = src(ex+1) or src(ex) = trg(ex+1). A path is directed if the target node of
an edge ex is the source node of its successor edge ex+1 (i.e., trg(ex) = src(ex+1)). A
path is undirected if it is not directed. A path may be empty. The length of a path P is
equal to the number of edges on the path. A hop is the traversal of a single link on
a path [66].

Definition 2.6 (Connectivity). A graph is strongly connected if, for each pair of nodes
n1 and n2, a directed path from n1 to n2 exists. A graph is weakly connected if, for
each pair of nodes n1 and n2, an undirected path between n1 and n2 exists.

Each strongly connected graph is also weakly connected. The following definition intro-
duces triangles. A triangle describes a structure within a graph where two nodes are
connected by two alternative, disjoint paths of length one and two, respectively. Trian-
gles are a recurring structure in research on topology control.

Definition 2.7 (Triangle). A triangle is a triple of edges (e1, e2, e3), where src(e1) =

src(e2) ∧ trg(e1) = trg(e3) ∧ trg(e2) = src(e3).

Example 2.8 (Graphs). Figure 2.2 shows a multi-graph G = (V,E) with node set
V = {n1, n2, n3, n4} and edge set E = {e12, e13, e31, e32, e34, e44}. Without the loop
e44, the graph would be a simple graph. The graph contains one pair of reverse
edges consisting of e13 and e31. We denote pair of reverse edges with identical edge
properties edges using a line with two arrow heads. The in- and out-degree of n4 are
2 and 1, respectively, because the loop e44 contributes to the in- and out-degree of
n4. Therefore, n4 has a degree of 3. The density of G is 1

4 (3 + 2 + 4 + 3) = 2 · 6
4 = 3.

The graph G is weakly but not strongly connected. By adding e43, the reverse edge
of e34, we can make G strongly connected. A directed path in the graph is (e12, e21),
and an undirected path that witnesses weak connectivity is (e12, e32, e34). The graph
contains one triangle: (e12, e13, e32).
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Figure 2.2: Example: Multi-graph
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2.2 network topologies

In this section, we characterize ad-hoc networks, wireless sensor networks, and network
topologies.

Definition 2.9 (Ad-hoc network [219, 264]). An ad-hoc network is a wireless commu-
nication system without predefined communication infrastructure that consists of
battery-powered devices that use multi-hop communication to forward messages.

Multi-hop communication means that network devices are capable of forwarding (also
called relaying or routing) messages on behalf of other devices.

Definition 2.10 (wireless sensor network [219, 264]). A wireless sensor network (WSN)
is an ad-hoc network whose devices are low-power sensor devices (called motes) that
cooperatively collect, aggregate, and forward data toward data sinks in the network.

Traditional WSNs follow a many-to-one communication pattern with a single sink node.
WSNs are often employed in environments for which covering the entire area of interest
using a fixed infrastructure (e.g., radio towers, wired connections) is cost-intensive (due
to the extent of the observed area, e.g., for habitat observation [50, 247, 254], structural
health monitoring [115, 116], plant monitoring [126], pollution detection [226]), or im-
possible (due to adverse environmental conditions, e.g., for volcano monitoring [178]
and wildfire [148], (flash-)flood [32, 97] or landslide warning systems [202]). Wireless
Mesh Networks are an alternative concept to WSNs, where any mote may be a (tempo-
rary) data sink. Wireless Mesh Networks are applied, for instance, in disaster recovery
scenarios [228]. Further application scenarios of WSNs and Wireless Mesh Networks
can be found in [264, Ch. 1], [138], and [219].

A mote can be mobile (e.g., because it is attached to an animal [50]). In contrast, the
position of a static mote (also called stationary mote) does not change [219]. Traditionally,
motes are equipped with omnidirectional antennas, which transmit with equal power into
each direction [267, Sec. 1.1]. Motes that use mm-wave communication are equipped
with directional antennas, which concentrate the transmission power in a particular
direction [234].

Motes have different capabilities in terms of available mote metadata. Motes equipped
with GPS may determine their position dynamically with high precision. In a static
WSN, position information may be configured at deployment time. Additionally, a mote
may determine relative angles of the motes in its vicinity. In the following, we assume
that motes have unique identifiers (e.g., derived from its MAC address) [267, Sec. 1.1].
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Definition 2.11 (Topology). The (underlay) topology of a WSN is a simple graph GT =

(VT,ET) that models the motes and their interconnections. The nodes VT represent
the motes, and the edges ET represent the actual or potential communication links
between motes [267].

Topologies are also called communication graphs [219, 264]. For conciseness reasons, we
write topology for underlay topology. In the following, the terms mote and link refer to
the nodes and edges of a topology to avoid confusion with general graph terminology.
For the same reason, we use the variable ` to denote links in contrast to e for edges in
general.

Depending on the purpose of modeling a topology, additional information is associ-
ated with the topology via element properties. Examples are the identifier and transmis-
sion range of a mote, and the weight of a link.

The identifier id(n) ∈ N of a mote n is unique within the network. From now on,
the subscript of a mote denotes its identifier (i.e., id(nX) = X). In practice, the mote
identifier is (a function of) the MAC address of a mote. The transmission range r(n) ∈
R+ of a mote n is the maximum distance to another mote for which a connection is
possible in the absence of obstacles. If an obstacle blocks the line of sight between two
motes, communication may be impossible even if their distance is below their individual
transmission ranges. Depending on the radio module and communication protocol, a
mote may adjust its transmission power at runtime.

The weight w(`12) ∈ R+ of a link `12 describes the cost of transmitting a fixed amount
of data from mote n1 to mote n2. In the following, we denote the weight of a link `12

with w12 (i.e., w12 := w(`12)). In practice, the weight of a link is often proportional
to the Euclidean distance of its incident motes (if location information is available) or
inverse proportional to the received signal strength indicator (RSSI), which is provided by
the radio module of a mote. Using the Euclidean distance as link weight is a common
basis for estimating power consumption. In the absence of obstacles, the required power
P to transmit a message successfully across a link grows with a power of the length d of
the link: P ∝ dβ, where the attenuation β is typically between 2 and 5 [267, Sec. 1.1].

A classic theoretical model that relates the transmission ranges of motes with the ex-
istence of links is the unit disk graph model. The unit disk graph model assumes that
motes are embedded in the Euclidean plane and that all motes have a network-wide ho-
mogeneous maximum transmission power rmax. In a unit disk graph (UDG) [264, Sec. 2.3],
a link `12 exists if the distance of n1 and n2 in the Euclidean plane is at most rmax.
The UDG model makes strong assumptions on the availability of communication links
(e.g., absence of obstacles, reflections, and interference). Therefore, in recent years, the
following extensions to the UDG model have been proposed to bridge the gap between
theoretical model and real WSNs. In a quasi-unit-disk graph (q-UDG ) [128] each mote has
a lower and upper transmission range. If two motes are closer than the lower transmis-
sion range, successful communication is guaranteed and a link exists. Conversely, if two
motes are farther apart than the upper transmission range, communication is impossible
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and no link exists. If the distance between the motes lies between the lower and upper
transmission range, a communication attempt may or may not be successful. A com-
plementary refinement of the classic UDG model is the λ-UDG model, which imposes
lower bounds on mote distances. In a λ unit disk graph (λ-UDG ), the minimal distance
between any two motes is at least λ. The λ-UDG model is also called civilized UDG or
Ω(1) model [264]. UDG and its derivatives are models for the physical topology of a
WSN and can be used to investigate theoretical geometric properties of topologies (e.g.,
planarity). From a technical viewpoint, network simulators use the UDG model to deter-
mine which motes may communicate (e.g., [208]). In the following, we do not presume
a particular topology model and use the UDG model mainly for illustration purposes.
As a weaker precondition, we assume that the maxpower topology, as defined in the
following, serves as input topology of a topology control algorithm.

Definition 2.12 (Maxpower topology). The maxpower topology [219, p. 177] (also
called all-links graph [66]) of a WSN is the topology that is determined during a neigh-
bor discovery phase, during which each mote transmits with maximum power.

The fact that the maxpower topology is determined by measurement rather than calcula-
tion distinguishes it from the previously discussed UDG topology. For dynamic TC, the
neighbor discovery happens periodically to detect modifications of the topology. Note
that the definition of the maxpower topology assumes neither that the maximum trans-
mission power is homogeneous across the network nor that the existence of a link is
bound to the Euclidean distance of its incident motes.

Example 2.13 (Topology). Figure 2.3 shows a sample topology. We show mote
identifiers next to each circle and omit link identifiers for better readability (e.g., 1
for mote 1). The labels next to each link represent the weight of the link, which
is proportional to the Euclidean distance of its incident motes in this case. We use
double-headed arrows to denote pairs of reverse links because their weights are
identical in this example. The figure also depicts the minimal required transmission
ranges to obtain the shown topology as gray circular arcs. The shown topology is
not a UDG because the transmission ranges are not uniform (r(n1) ≈ 39, r(n4) ≈ 23).

The following definitions characterize the size of the part of the topology that is ac-
cessible from a particular mote.

Definition 2.14 (Global-view topology). For a given WSN, the global-view topology
represents all devices and all communication links among the motes in the network.

The global-view topology is used by centralized algorithms, which require a complete
view of the network. However, for many use cases, it is sensible to restrict the scope of
the considered topology, which leads to the following definitions.
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Figure 2.3: Example: Topology with transmission ranges

Definition 2.15 (Local-view topology). A local-view topology (local view for short) of a
mote n represents the motes and their communication links in the vicinity of n.

The vicinity is often characterized in terms of the number of required hops to reach a
particular mote, as captured by the following definition.

Definition 2.16 (K-hop local view [235]). A K-hop local view of a mote n1 is a local-
view topology that is defined by the maximum number of hops from n1 to other
motes in the topology. A mote n2 is in the K-hop local view of n1 if the shortest
undirected path between n1 and n2 has a length of at most K. In this case, n2 is
called a K-hop neighbor of n1. A link is in the K-hop local view of n1 if it is part of
some undirected path that starts at n1 and has a maximum length of K.

The preceding definition is intentionally general in that a K-hop local view only needs
to be weakly connected (due to the required undirected paths) for certain domains. For
the WSN domain, we assume that the input topology is structurally symmetric. This
assumption can be enforced technically by not including undirected links in the local
view of a mote. A typical value for K for WSNs is 1 or 2, depending on the density of
the topology and the available memory of the mote. This limitation is sensible for the
following reasons: The first reason for limiting K is the required storage (e.g., for the
routing information and the local neighborhood). In a densely connected WSN, the size
of a K-hop local view grows quadratically with K. The second reason for limiting K is
freshness of the local view: Whenever the input topology changes, these changes need
to be propagated to all (K−1)-hop neighbors of a mote. Therefore, the probability that
the local view is outdated grows with increasing local view size. The third reason for
limiting the local view size is bandwidth overhead: A mote is, by definition, only able to
observe its neighbors (i.e., its 1-hop neighborhood). To obtain a K-hop local view, motes
needs to receive and send neighborhood messages, which contain their current (K−1)-hop
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local view [267, p. 114] [264, Secs. 1.1, 5.3]. The size of the neighborhood messages may
also grow quadratically with K in dense topologies.

Example 2.17 (Local view). In the topology shown in Figure 2.3, the one-hop neigh-
borhood of n1 consists of motes n1, n2, n3 and links e12 and e13. The two-hop neigh-
borhood of n1 additionally contains mote n4 and links e21, e23, e31, e32, and e34. This
example also illustrates that a two-hop local view is required to check whether an
outgoing link of a mote is symmetric (e.g., that w12 equals w21).

Another technique for characterizing local views is the concept of virtual topologies,
introduced in the following definition.

Definition 2.18 (Virtual topology [264]). A virtual topology is a subgraph of a given
input topology that hides links of the input topology that should not be used by the
application (or other network mechanisms in general) [264, Sec. 5.1].

According to this definition, a virtual topology must contain all motes of the input
topology, but may neglect certain links.
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2.3 performance of topologies

For a given set of motes, many possible configurations (e.g., transmission range assign-
ments) may fulfill the required consistency properties. However, not all of these configu-
rations may perform equally well from the perspective of the application. The following
definitions allow us to characterize the performance of a WSN precisely.

Definition 2.19 (Nonfunctional property [37]). A nonfunctional property (NFP) is
a measurable value that can be derived from observing a network for a certain
amount of time and that signifies the performance of the network in the context of
the current application scenario.

To illustrate this rather abstract definition, we provide examples of typical NFPs: energy
consumption per mote or of the entire network [219], bandwidth per link or per end-to-
end connection [219], mote lifetime (i.e., the time until the depletion of the battery of a
node) [264, Sec. 5.1], computational complexity of routing [264, Sec. 5.1], computational
complexity of channel parameter negotiation [234]. Depending on the performance
requirement of the application or end user, using the minimum, maximum, mean, or
median as NFP value is reasonable.

The following definition captures whether increasing or decreasing the value of a
particular NFP is favorable in the current application scenario.

Definition 2.20 (Performance goal). A performance goal assigns an objective (i.e., min-
imization or maximization) to an NFP.

For example, in the context of WSNs, maximizing throughput, maximizing network
lifetime, minimizing energy consumption, and minimizing interference are examples of
performance goals [219, 267].

A key problem in network research is that certain NFPs (e.g., network lifetime) can
only be measured after a long time (or even after a network breakdown). Therefore, an
established approach is to estimate NFPs using metrics (e.g., link weight, density, RSSI,
node distance). These metrics should correlate with the desired NFP. For instance, the
energy required to transmit a fixed amount of data across a wireless link grows at least
quadratically with the length of the link [63, 230].
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2.4 topology control

We are now ready to define one of the core concepts of this thesis: topology con-
trol.

Definition 2.21 (Topology control). Topology control (TC) is an approach to create
and maintain a virtual topology to other network mechanisms based on an input
topology with the goal to achieve a performance goal while preserving consistency
properties.

Definition 2.22 (Topology control algorithm). A topology control algorithm (TC algo-
rithm) is an algorithm that instantiates the concept of TC by calculating a virtual
topology from an input topology with the goal of achieving a particular perfor-
mance goal.

Definition 2.23 (Topology control mechanism). A topology control mechanism (TC
mechanism) is a network component that contains a TC algorithm and additional
control logic that, for instance, decides when to invoke the TC algorithm or when
to update the input topology.

These definitions are deliberately more general than in the related work on WSNs (e.g.,
[219, 264, 267]). They allow us to reuse the concept of TC in other application scenar-
ios. For clarity and concreteness, we focus on TC for WSNs in the following. In 1984,
Takagi and Kleinrock published one of the first papers mentioning the term “topology
control” [251]. According to [219], TC refers to adjusting the transmission range of
motes to achieve better energy consumption while maintaining connectivity of the net-
work. More generally, in [267, p. 113], TC is defined as the task of selecting appropriate
neighbors to improve network lifetime and throughput, again while maintaining connec-
tivity. Another performance goal is to reduce the computational complexity for routing
messages [264, Sec. 5.1] or negotiating channel parameters [234].

Preserving connectivity is probably the most prominent required consistency property
of a TC algorithm [219, 264, 267]. In contexts with relaxed requirements, it may also
suffice for TC to provide approximate connectivity [264, Sec. 5.2]. In contrast, in contexts
with stricter safety requirements, k-connectivity may be necessary, which means that the
topology remains connected even if k nodes fail [264, Sec. 5.2].

Another common, but more specialized required consistency property of a TC algo-
rithm is the preservation of coverage. Preservation of coverage applies to WSNs where
a mote observes a certain geographic region and may go into a sleep state for a certain
amount of time if other motes cover the same region. During this period, the mote
consumes considerably less energy, but also collects no data. A coverage requirement
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for this type of WSN states that the set of awake motes must cover a predefined area
(blanket coverage) or the border of a specified area [138].

Preserving connectivity and coverage are consistency properties that result from the
application running in the WSN. Intermediate network layers may require that addi-
tional consistency properties hold. As a first example, a geographic routing algorithm
requires that the virtual topology is planar (e.g., [109, 136]). Planarity means that no
links intersect. Geographic routing algorithms derive forwarding decisions from the
target location of the message (instead of the address of the target mote). This makes ge-
ographic routing algorithms generally faster than generic routing algorithms because no
routing table needs to be maintained [267, Secs. 2.1,5.2]. However, if the input topology
of the geographic routing algorithm is not planar, packets cannot be routed properly.
Therefore, building a planar virtual topology is a further required consistency property
if geographic routing is used.

Related consistency properties are that the virtual topology must be θ-separated and
have bounded mote degree. A topology is θ-separated [143] if all outgoing links of a
mote are separated by an angle of at least θ. A topology has bounded mote degree if the
maximum number of neighbors of a mote is independent of the input topology size
and density. As a second example, link layer mechanisms that employ acknowledgment
messages require that the virtual topology is undirected [264, Sec. 5.2]. If the topology
is asymmetric, acknowledgment messages get lost.

In the following, we discuss different dimensions for characterizing a TC algorithm
according to its role in the network protocol stack, the minimal required information,
and the locality of the decisions.

2.4.1 Topology control in the network stack

The first dimension is the role of TC in the network protocol stack. The Open Systems
Interconnection (OSI) Reference Model [40] (left part of Figure 2.4) is an architecture
for organizing the tasks of protocols in distributed systems into 7 layers. This refer-
ence model has been standardized by the International Standards Organization (ISO) in
standard IS0 7498.

We briefly summarize the tasks of each layer and highlight those layers that are im-
portant for TC in WSNs

The application layer provides the functionality that is realized by the network. Often,
applications are characterized by their communication pattern. The communication pat-
tern of a network describes the possible ways in which motes may exchange data. If the
application uses many-to-one communication, many or all motes in the network transmit
toward a single sink device (base station), which is the usual use case in WSNs. If the
application uses many-to-many communication, motes may exchange data in a pairwise
manner. This communication pattern occurs for example in disaster recovery scenar-
ios [228]. The presentation layer (layer 6) decouples the application from the concrete
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Figure 2.4: OSI Reference Model with possible roles of a TC mechanism

representation of algorithm-specific data (e.g., encoding). The session layer (layer 5) man-
ages the state of application sessions. The transport layer (layer 4) provides an end-to-end
perspective of communication, even if packets have to be routed across multiple devices
or even networks in the background. The network layer (layer 3) is responsible for routing
packets toward their destination using multi-hop communication if two network devices
are not neighbors. The data link layer (layer 2) manages the access to the communication
medium by negotiating channel parameters and listening for free transmission slots and
provides hop-wise reliable communication. The physical layer (layer 1) is responsible for
encoding the data in a way that they may be transmitted using the physical communi-
cation medium.

Traditionally, the layers of the OSI reference model are categorized into the overlay
(layers 4 to 7), which is typically implemented and provided by end devices, and the
underlay (layers 1 to 3), which is provided by the communication infrastructure [40].

Important layers for the TC are the application (layer 7), network (layer 3), data link
(layer 2), and physical layer (layer 1). Presentation (layer 6), session (layer 6), and trans-
port layer (layer 4) are less frequently considered [264, Ch. 2].

In the related work [264, Ch. 2], TC is usually integrated with the data link layer [103,
173, 228] or located between data link and network layer (right part of Figure 2.4). In
the second case, TC provides a view of the topology maintained by the data link layer to
the network layer (layer 3) [66]. Figure 2.5 sketches the interaction of a TC mechanism
with other components in the network stack. A TC mechanism creates and maintains
its input topology via a topology monitoring component, which observes an input topology
provider mechanism (e.g., the raw MAC layer neighborhood or the output topology of
the data link layer). The control logic of a TC mechanism decides when to update
the virtual topology and the TC algorithm of the TC mechanism performs the actual
updates. One or more virtual topology consumer mechanisms observe the virtual topology
(e.g., the routing for adjusting the routing table or the radio module for adjusting the
transmission power).
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2.4.2 Required information for topology control

The second dimension is the classification of TC algorithms according to the required
information on a mote, which is often the major means for categorizing TC algorithms
in surveys (e.g., [219, 267]). In neighbor-based TC [219], a mote needs to be able to identify
the motes in its vicinity and to assign a link weight to the corresponding link. In direction-
based TC, a mote needs to be able to determine the relative directions of its neighbor
motes. In location-based TC, a mote needs to know its geographic position. Among these
three categories, neighbor-based TC requires the least knowledge, and location-based
TC requires the most knowledge. Besides application-agnostic TC, which is unaware of
the current overlay, application-aware TC [239, 267] may also access information provided
by higher-layer mechanisms (e.g., the hop count to the base station provided by the
network layer).

2.4.3 Locality

The third and last dimension that we discuss is the locality of decision making. A cen-
tralized algorithm is executed on one mote and its decisions are communicated to all
nodes in the network. The advantage of centralized algorithms is that they may derive
better decisions due to their larger knowledge base. However, the major disadvantages
of centralized algorithms are identical to the disadvantages of increasing the local-view
size, as discussed earlier. A distributed algorithm is executed on multiple nodes in the net-
work. During the execution of a distributed algorithm, nodes may communicate with
other nodes to publish their decisions or to acquire additional knowledge. Even execut-
ing a distributed algorithm, a mote may collect information about the entire network.
A localized algorithm is a distributed algorithm with limited local knowledge. Localized
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algorithms tend to be more robust and scalable compared to centralized algorithms.
However, due to the limited knowledge, decisions of a localized algorithms are usually
more conservative compared to a centralized algorithm and not optimal.

2.4.4 Running example: kTC

The TC algorithm kTC [227] is the running example of this thesis. kTC excludes hides a
link from the virtual topology if it fulfills the following kTC condition: A link `12 is not
part of the virtual topology of kTC if (i) `12 is the weight-maximal link in some triangle
(`12, `13, `32) (i.e., w12 ≥ max(w13, w32)) and (ii) w12 is at least k times larger than the
minimal weight in the triangle (i.e., w12 ≥ k ·min(w13, w32)). It is a common practice
in the TC literature to characterize a TC algorithm in terms of links to be omitted from
(rather than to be include in) its virtual topology. The first clause of the kTC condition
ensures that, in each triangle, the link with the highest power consumption should be
omitted. This may cause messages to be relayed via the intermediate mote n2. The
second clause uses the configuration parameter k of kTC to control the aggressiveness
of the link removal. Controlling the aggressiveness is sensible because removing the
immediate communication link `12 in favor of a multi-hop path (`13, `32) may increase
the end-to-end packet drop rate and latency (e.g., if n2 is already overloaded). kTC is a
neighbor-based, localized algorithm that requires a 2-hop local view.

We think that kTC is a suitable running example for this thesis because its theoretical
and practical properties has been investigated in multiple papers. Besides the original
paper, which presents the specification and the simulation results [227], a testbed imple-
mentation of kTC in the Contiki operating system exists [228]. Several variants of kTC
have been developed over the years (e.g., g-kTC [130, 238], l-kTC [130, 238], l*kTC [239],
e-kTC [119]). Finally, kTC shares the triangular pattern with other kTC algorithms in the
literature (e.g., XTC [270], RNG [109, 257], GG [70, 211]).

A recurring consideration during the development of TC algorithms is tie breaking.
A tie represents a situation, where (i) two links are equally suitable for omission from
the virtual topology, and (ii) omitting both links from the virtual topology violates con-
sistency [264, Sec. 5.3].

A tie can be broken using an additional predicate that enforces a strict order on the
links involved in a tie. The kTC condition reveals that kTC requires tie breaking because,
otherwise, two links could be removed from the same triangle. Removing two links from
a triangle may obviously break the connectivity of the topology. The following definition
reflects a generic tie-breaking strategy for weight-based TC algorithms that relies on the
fact that a mote has a unique identifier within a topology and that a topology is a simple
graph.
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Figure 2.6: Example: Topology control with kTC (k = 1.5)

Definition 2.24 (Unique link weight). Let ` be a link with associated weight w(`).
The unique link weight w′(`) of ` is defined as

w′(`) = (w(`), id(src(`)), id(trg(`))) ∈ R×N×N.

Definition 2.25 (Canonical order of tuples). Let D1, . . . ,DN be domains for which
a strict ordering < is defined individually (e.g., R, N). Given two tuples X =

(x1, x2, . . . , xN),Y = (y1, y2, . . . , yN) ∈ D1 ×D2 × · · · . The canonical (descending) order
≺ of X and Y is defined as

X ≺ Y ⇔x1 < y1∨
(x1 = y1 ∧ x2 < y2)∨
(x1 = y1 ∧ x2 = y2 ∧ x3 < y3)∨
. . .

(x1 = y1 ∧ x2 = y2 ∧ · · · ∧ xN < yN)

The canonical ascending order is the inverse of the canonical descending order:

X � Y ⇔ Y ≺ X

The canonical maximum max(X,Y) of X and Y is X if X � Y, else Y. Similarly, the
canonical minimum min(X,Y) of X and Y is X if X ≺ Y, else Y.

The idea behind Definition 2.24 is to use the canonical lexicographic order on the unique
weight of links as tie breaker. When comparing two links w.r.t. w′, the identifiers of the
source and target motes of the links only take effect if both links have equal weights.
Unique properties for other element properties may be derived in a similar way.
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Example 2.26 (kTC). Figure 2.6 shows an input topology (Figure 2.6a) and a cor-
responding virtual topology (Figure 2.6b) for kTC with k = 1.5. Contrary to the
previous example, link weights do not correlate with the length of the correspond-
ing arrow in this and subsequent examples. According to the kTC condition, four
links are eligible for inactivation (`12, `21, `23, `32). However, due to the tie breaking
in the triangles consisting of motes n1, n2, n3, only `12 and `21 are hidden from and
`23 and `32 are still visible in the virtual topology.

In [227], the authors show that kTC preserves connectivity and maintains a planar,
θ-separated virtual topology under a UDG assumption and if identifier-based tie
breaking is used.
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2.5 dynamic topology control

Even if the motes of a WSN do not move, the input topology usually changes over
time [277]. For example, an obstacle between two motes may lead to an increased link
weight or a link removal. The following definition summarizes the possible uncontrol-
lable modifications of a topology by the environment.

Definition 2.27 (Context event). A context event is a modification of a topology that
cannot be influenced by the TC algorithm. We distinguish between three categories
of context events: (i) A mote event describes that a mote is added to (mote addition)
or removed from (mote removal) the topology. (ii) A link event describes that a link is
added to (link addition) or removed from link removal) the topology. (iii) An (element)
property event describes that a node property (mote property event) or link property
(link property event) has changed. A complex context event consists of a sequence of
context events.

In the following, we discuss the possible reasons of each type of context event. A mote
removal occurs if a mote fails or if its battery has depleted. Mote additions occur, for
instance, if a failed or empty mote is replaced manually or recharged (e.g., using solar
power). A mote may be added to the topology, e.g., to replace a depleted mote. The
second case, however, is rare since WSNs are often used in hostile environments, which
make exchanging or recharging motes difficult. In the communication systems domain,
the term churn summarizes a temporal sequence of mote events.

A link event is either induced by mote events or by one mote entering or leaving
the transmission range of another mote. A link removal event occurs if (i) an obstacle
moves between its incident motes, or (ii) the distance of its incident motes grows larger
than the transmission range of its source mote. A link addition event occurs if (i) an
obstacle between the incident motes of the link disappears, or (ii) its incident motes
have converged so that their distance falls below the transmission range of the source
mote of the link.

An element property event may be either immediate or derived. An immediate property
event originates from the modification of the element that the property belongs to. A
derived property event is triggered by another context event. For instance, if the link
weight is calculated from the RSSI value of the underlying communication channel, a
link-weight modification event is an immediate event. If the weight of a link is equal
to the Euclidean distance of its incident motes (e.g., in case of location-based TC), a
link-weight modification event is derived from mote-position modification events.

In traditional WSNs, context events were perceived as exceptional conditions. In
the presence of today’s mobile devices and the requirement that consistency properties
should hold permanently, the handling of context events should be integrated construc-
tively into the development process of TC algorithms. The following definition captures
this requirement.
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Definition 2.28 (Dynamic TC mechanism). A TC mechanism is dynamic if it accepts
context events (in the sense of Definition 2.27) as input.

This definition is general and only mandates that context events must be observable.
Dynamic TC is related to adaptability, which describes that a TC algorithm is capable
of processing context events [264, Sec. 5.2]. Our notion of a TC mechanism separates
clearly between a TC algorithm, which is a one-time transformation and (by definition
of an algorithm) always terminates, and a TC mechanism, whose control logic may run
continuously (similar to a process). The following definitions specify in how far the TC
algorithm of a TC mechanism reacts to context events.

Definition 2.29 (Batch TC algorithm). A batch TC algorithm transforms an input
snapshot of a topology into a virtual topology.

Definition 2.30 (Incremental TC algorithm). An incremental TC algorithm is a TC
algorithm that takes a sequence of previous context events, previous TC algorithm
decisions, and the effect of the current context event as input and returns a sequence
of modifications of the virtual topology.

The sequence of previous context events that is provided as input to an incremental
TC algorithm determines its input topology. Even though batch TC requires less effort
for analyzing the context event, the required effort of reclassifying the entire topology
may be inadequate if the effect of the context event is small compared to the size of the
topology. The decision whether a batch or incremental TC algorithm is more suitable
for a given scenario depends only on the dynamics of the topology. An incremental
algorithm can always be used as batch algorithm by neglecting the provided information
about previous decisions of the TC algorithm.

From the TC literature, we learn that most TC algorithms are designed as batch al-
gorithms. This may originate from the complexity of defining appropriate routines for
handling each possible type of a context event.

2.5.1 Connecting input and virtual topology

The subgraph relation between input and virtual topology can be represented in at least
two ways (Table 2.1). The first alternative is to maintain separate input and virtual
topologies. In this case, context events only affect the input topology and the TC mecha-
nism synchronizes these modifications to the virtual topology by adding and removing
topology elements to and from the virtual topology, and by updating element properties.
During the synchronization, the TC algorithm has to ensure that the consistency prop-
erties are preserved (e.g., by adding a link that it previously removed from the virtual
topology).
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Table 2.1: Alternative representations of input and virtual topology

Property Separate representation Integrated representation

Involved graphs 2 3

TC decisions difference of input and
virtual topology

link property

Representation of pend-
ing context event

modification of input
topology

markers at affected ele-
ments

Handling of context
events

synchronization from in-
put to output topology

modification of link states

Advantages separation of input and
virtual topology | only
two involved graphs

explicit bookkeeping
of previous decisions |
more concise representa-
tion

Disadvantages difficult to achieve incre-
mentality due to implic-
itly encoded previous TC
decisions

additional storage for TC
mechanism topology |
need to maintain virtual
topology as view

The second alternative is to integrate information of the input and output topology
into a third, internal topology. We call this internal topology the TC mechanism topology
because it serves as central source of knowledge for all components of the TC mech-
anism. The virtual topology is realized using an additional link property that marks
whether or not a particular link is part of the virtual topology. When a context event is
observed, a marker is attached to the affected topology element(s). The TC mechanism
control logic then decides when to process the context event markers.

A crucial drawback of the separate representation of input and virtual topology com-
pared to the integrated representation is that information of previous TC algorithm
decisions is only stored implicitly as difference of both topologies. A dynamic TC algo-
rithm will probably need to recalculate these decisions frequently, which is an additional
computation step that is unnecessary using the integrated representation. Therefore, we
decided to use the integrated representation.

The state s(`12) of a link `12 stores which links are part of the virtual topology. For
conciseness reasons, we introduce the following shorthand notation s12 := s(`12). A link
`12 may be in one of three states, as detailed in the following.

• `12 is active (i.e., s12 = A) if it has been selected by the TC algorithm to be visible of the
virtual topology. This means that the link can be used by virtual topology consumer
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mechanisms (e.g., routing, application). An active link `12 is denoted by a solid arrow-
headed line: 1 2.

• `12 is inactive (i.e., s12 = I) it is hidden from the virtual topology. An inactive link `12 is
denoted by a dotted arrow-headed line: 1 2.

• `12 is unmarked (i.e., s12 = U) if it needs to be (re-)processed by the TC algorithm. Un-
marked links are temporarily visible in the virtual topology to ensure that the virtual topol-
ogy fulfills all consistency properties (e.g., connectivity) and are denoted by a dashed line:
1 2.

Apart from the three concrete states of a link, we introduce the following terminology
and notation to refer to ranges of link states.

• A don’t care link `12 may have an arbitrary state (i.e., s12 ∈ {A, I, U}) and is denoted
by a gray solid arrow-headed line:1 2.

The definition of a three-valued link state property is similar to three-valued logic ap-
proaches to model uncertainty (e.g., in SQL [275] or distributed graph querying [29]).
The A-view of a topology GT is the result of removing all inactive and unmarked links
from GT. The AU-view of a topology GT is the result of removing all inactive links from
GT.

We can now characterize the role of a TC algorithm within a TC mechanism as follows.
The virtual topology of the TC mechanism is an AU-view of the TC mechanism topology.
A TC algorithm is an algorithm that accepts a TC mechanism topology with zero or more
unmarked links as input and updates the link state in such a way that (i) all links are
marked upon termination, and (ii) the virtual topology fulfills all consistency properties.
Note that the first condition implies that, upon termination of the TC algorithm, the
A-view and AU-view of the TC mechanism topology are identical.

Example 2.31 (TC mechanism topology). We continue with the sample topologies
discussed in Example 2.26. Figure 2.6 shows the separate representation of input
and virtual topology at one point in time (for k = 1.5). Figure 2.7b shows the
corresponding TC mechanism topology. Here, `12 and `21 are inactive (i.e., s12 =

s21 = I), and all other links are active (e.g., s13 = A).
Figure 2.7a shows a completely unmarked topology, where every link is un-

marked (e.g., s12 = U). This is the initial state of the TC mechanism topology prior
to the first execution of the TC algorithm.

2.5.2 Context event handling

A TC mechanism must be able to react to context events. Therefore, a TC mechanism is
not only equipped with a dynamic TC algorithm implementation, but also with corre-
sponding context event handlers. A context event handler is an algorithm that processes
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Figure 2.7: Example: Integrated representation of input and virtual topology

a certain type of context event marker such that (i) the context event marker is removed
during the processing, (ii) the TC mechanism topology reflects the context event indi-
cated by the context event marker, and (iii) fulfills all consistency properties. Therefore,
the context event handlers of a TC mechanism must act in accordance with the TC al-
gorithm of the TC mechanism. We say that a context event is pending if it is known
to the TC mechanism (in the form of a context event marker) but not processed by a
context event handler yet. In examples, we use a triangle with accompanying context
event type indicator to denote a context event marker. The mnemonic ! −e next to a
link ` denotes that the removal of the link is pending (denoted ! −e(`) in text), the
mnemonic ! +e(X,Y,W) close to motes nX and nY indicates that the insertion of a link
`XY with weight W is pending, and the mnemonic ! w=W next to a link ` denotes
that a weight-modification event with new weight W is pending for this link (denoted

! mod-w(`,W) in text).
The TC mechanism control logic should invoke the TC algorithm and the context

event handlers in a suitable order to process context events in a timely manner. This
requirement is called agility [232, Ch. 4]. For instance, if the input topology is rather
stable (i.e., the arrival rate of context events is relatively small), the TC algorithm may
run to completion before checking for pending context events. In contrast, if the input
topology is rather unstable (i.e., context events arrive frequently), the TC mechanism
may interrupt the TC algorithm after processing one or a few unmarked links to process
pending context events. Therefore, a TC algorithm should support interruptions after
processing individual unmarked links.

A TC mechanism should adjust the reaction time depending on the type of context
event to ensure stability of the virtual topology [232, Ch. 5]. For instance, the TC mech-
anism should react quickly to link removal events to ensure that the topology remains
connected. In contrast, the TC mechanism may delay the handling of link addition
events or define thresholds for link-weight-modification events to ensure that the new
links are established reliably or to avoid fluctuating link state modifications. In the fol-
lowing, we assume that a separate topology monitoring component decides on the point in
time when a context event should become visible in the TC mechanism topology.
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Figure 2.8: Architecture of a TC mechanism

2.5.3 Architecture of a topology control mechanism

Figure 2.8 shows the architecture of a TC mechanism that we build upon in the follow-
ing. This view enables a more fine-grained perspective of TC mechanisms compared
to Figure 2.5. The depicted TC mechanism is capable of handling all mote, link, and
link-weight-modification events. The TC mechanism control logic is responsible for in-
voking the TC algorithm and context event handlers based on observed modifications of
the TC mechanism topology, which is the integrated representation of input and virtual
topology. The TC algorithm activates or inactivates links in the TC mechanism topology
according to the underlying algorithm-specific condition. The context event handlers
process context events and, thereby, revoke previous decisions of the TC algorithm to
avoid violations of the consistency properties in the virtual topology. The virtual topol-
ogy of the TC mechanism is an AU-view of the TC mechanism topology and is visible
to virtual topology consumer mechanisms. The topology monitoring updates the TC
mechanism topology based on the input topology provider mechanism that it listens
to. Separating the tasks of (re-)marking (TC algorithm) and unmarking links (context
event handlers) is reasonable because this separation allows the TC mechanism control
logic to process multiple context events in sequence before invoking the TC algorithm.
Invoking the TC algorithm inside a context event handler may waste computation time
because the next invoked context event handler could unmark the just marked links
again due to another pending context event.
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Example 2.32 (Dynamic TC). This example illustrates the interplay of the compo-
nents of a TC mechanism that is configured with kTC and k = 1.5. Figure 2.9a
shows an unmarked initial topology. After invoking the TC algorithm, `12 and `21

are inactive, and all other links are active (Figure 2.9b). Now the topology moni-
toring indicates a pending removal of `23 and `32 (Figure 2.9c). The TC mechanism
reacts to the new pending event by invoking the context event handler for link re-
movals. This context event handler unmarks `12 and `21 because leaving these links
inactive would lead to a disconnected virtual topology as soon as `23 and `32 have
been removed (Figure 2.9d). The TC mechanism reacts to the freshly unmarked link
by invoking the TC algorithm again (Figure 2.9e). Then, the topology monitoring
detects a pending modification of w14 and w41 from 4 to 5 (Figure 2.9f). The con-
text event handler for link-weight modifications is invoked by the TC mechanism
and unmarks `14 and `41 because the modified link weights make these links (cur-
rently) eligible for inactivation (Figure 2.9g). Finally, the TC algorithm is invoked
and inactivates `14 and `41 (Figure 2.9h)

2.5.4 Adaptive wireless sensor networks

In a traditional WSN, which is designed for a more or less fixed environment and appli-
cation scenario, a mote is configured at design time to use a single TC mechanism. In a
modern WSN, however, the set of active applications may vary over time. For example,
in the context of the IoT, a wireless local-area network inside an apartment may only
run smart home applications initially (e.g., for controlling the room temperature and
ambient light). This setting is not safety critical and, at this point, the performance goal
should be to reduce the energy consumption of the involved battery-powered devices,
possibly at the cost of reduced robustness. Let’s assume now that a medical incident
requires that a resident of the apartment needs to transmit medical data frequently to an
e-health service provider. This application is more safety critical than the smart-home
application, and, probably, a more robust TC mechanism should be used to avoid data
loss.

In an adaptive WSN [7, 61, 182, 183, 184, 263], a mote can exchange certain components
at runtime. The following definition describes a component that allows a WSN or a mote
to exchange the current TC mechanism transparently for input topology provider and
virtual topology consumer mechanisms.

Definition 2.33 (Topology control multi-mechanism). A topology control multi-mech-
anism (TC multi-mechanism) is a component that encapsulates one or more com-
patible TC mechanisms and provides the same interface to input topology provider
and virtual topology consumer mechanisms as a TC mechanism (Figure 2.10). Two
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Figure 2.9: Example: Dynamic topology control (k = 1.5)
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TC mechanisms are compatible if they are able to process the same types of context
events. The reconfiguration logic enables, configures, and disables TC mechanisms
and configures the aggregation strategy of the TC multi-mechanism virtual topology
based on the current performance goals and consistency properties. Only the en-
abled TC mechanisms are provided with context events of the TC multi-mechanism
input topology and maintain individual virtual topologies. The virtual topology of
the TC multi-mechanism is aggregated from the virtual topologies of the enabled
TC mechanisms.

The selected aggregation strategy must ensure that the virtual topology of the TC multi-
mechanism fulfills the consistency properties. One possible aggregation strategy is to
activate a link in the virtual topology of the TC multi-mechanism if it is active in at least
one virtual topology of an enabled TC mechanism. Using this aggregation strategy, the
aggregated virtual topology is connected if at least one of the virtual topologies of the
enabled TC mechanisms is connected. The following definition subsumes the possible
actions of a TC multi-mechanism reconfiguration logic.

Definition 2.34 (Topology control transition). A topology control transition (TC transi-
tion) is the execution of one or more of the following actions: (i) reconfiguration of
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the virtual topology aggregation strategy, (ii) enabling of a TC mechanism, (iii) dis-
abling of a TC mechanism, or (iv) reconfiguration of a TC mechanism. A TC transi-
tion is carried out by the TC multi-mechanism reconfiguration logic.

This proposed TC multi-mechanism architecture implements the proxy pattern [71].
The interfaces to provider and consumer mechanisms are identical, which allows to
exchange the current TC mechanism or even combine the decisions of multiple TC
mechanisms transparently. Given that multiple TC mechanisms are enabled within a
TC multi-mechanism, a possible virtual topology aggregation strategy is to create the
union of the individual virtual topologies. This strategy may also be employed if one
TC mechanism has been enabled just recently with the goal to replace another TC mech-
anism. Simply disabling the latter TC mechanism and enabling the new TC mechanism
may result in a disruption of higher-layer mechanisms (e.g., the routing).

We introduced the concepts of TC multi-mechanisms and TC transitions to sketch
how to integrate the developed TC mechanisms into an architecture of a modern WSN.
Our focus during the subsequent chapters lies on developing individual correct TC
mechanisms.





3
S E L E C T I O N O F S P E C I F I C AT I O N L A N G U A G E S

In Chapter 2, we introduced terminology from the TC domain. In this chapter, we
introduce the modeling languages that allow us to set up a model-driven methodology
for developing correct TC mechanisms. We concentrate on the development of a single
TC mechanism and, for now, neglect the details of the TC (multi-)mechanism control
logic. We refer to the specification of a TC algorithm and and its corresponding context
event handlers collectively as TC mechanism specification, and to the topology of a TC
mechanism simply as topology. Figure 3.1 locates the role of this chapter in the entire
TC algorithm development process (see also Figure 1.2).

selection criteria and chapter structure The specification languages that
we introduce in this chapter cover the following four aspects of the target domain.

First, as a common basis for the entire specification, we want to characterize the set
(or more technically, the language) of structurally valid topologies. A topology is struc-
turally valid if it represents a topology in the sense of Definition 2.11 (i.e., an attributed
simple graph). Metamodeling, introduced in Section 3.1, is a graph-based technique to
describe the set of structurally valid topologies in terms of a single model, called the
topology metamodel.

Second, we want to specify the TC-algorithm–specific conditions and further consis-
tency properties (e.g., connectivity) declaratively. We refer to the TC-algorithm–specific
conditions and consistency properties collectively as the consistency specification in the
following. The set of topologies that fulfill the consistency specification is a subset of

Modeling language

Domain concepts

Specification

Simulation platform

Simulative evaluation Testbed evaluation

Testbed platform

7

4

1 2 3

5 6

X YActivity Artifact Chapter focus

Figure 3.1: Location of Chapter 3 in TC algorithm development process
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Figure 3.2: Connection of modeling languages and specification refinement (Chapter 4)

structurally valid topologies. Graph constraints, introduced in Section 3.2, capture local
consistency properties, which can be expressed using first-order logic in terms of re-
quired or forbidden subtopologies (e.g., a triangle for which the kTC-specific condition
holds). In Section 3.3, we illustrate how to handle global consistency properties, which
cannot be expressed using graph constraints. The required preservation of connectivity
is an important example of such a property [59].

Third, we want to specify possible types of modifications that the TC mechanism ap-
plies to the topology. Graph transformation rules, introduced in Section 3.4, capture
possible types of modifications as pairs of pre- and postconditions (e.g., with an un-
marked link as precondition and an active link as postcondition). An application of a
graph transformation rule replaces an occurrence of its precondition with an occurrence
of its postcondition.

Fourth, we want to specify the control flow of topology modifications in an imperative
way. In Section 3.5, we propose to use story-driven modeling [60] for this purpose, a
dialect of UML activity diagrams [78] that supports applying graph transformation rules
as one type of action. A declarative specification, in our context, describes whether or
not a given state of the topology is correct and what actions are available to modify the
topology. An imperative specification describes the steps that are necessary to arrive at
a particular topology.

To be able to derive a TC mechanism specification that fulfills the consistency specifi-
cation, we must be able to check whether a given modification may or may not violate
the consistency specification. This analysis shall be applicable not only to a concrete
situation (i.e., a particular modification of a particular topology), but also on the level



47

of topology modifications and consistency properties. If a particular modification type
violates the consistency specification, we need to be able to adjust this modification
type systematically to ensure that the consistency specification is no longer violated.
One state-of-the-art static analysis technique that identifies consistency-violating modi-
fications and returns appropriate refinement instructions is the constructive approach by
Heckel and Wagner [91]. Generally speaking, the constructive approach is an iterative
algorithm that generates additional preconditions [47] for each possible type of modifi-
cation. The constructive approach partly determines our choice of modeling techniques:
graph constraints for specifying local consistency properties and graph transformation
rules for specifying topology modifications. Our choice of story-driven modeling for
composing topology modifications is not affected by the constructive approach, but
rather motivated by its availability in the model-driven engineering tool eMoflon.

In Section 3.6, we illustrate how the configuration options of individual TC mecha-
nisms and entire TC multi-mechanisms can be specified using feature diagrams. Feature
diagrams also allow for describing interdependencies of configuration options (e.g., to
capture which TC mechanisms are suitable in which application scenarios).

Figure 3.2 illustrates the role of the modeling techniques presented in this chapter in
the context of the constructive approach, which forms the basis of Chapter 4. As indi-
cated in the figure, we propose further refinement steps that build on the constructive
approach in Chapter 4. In Section 3.7, we conclude this chapter with a survey of related
work on modeling approaches in communication systems engineering.
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3.1 metamodeling

Metamodeling is a technique for specifying possible states of a system from a syntactic
point of view. In general, a model is a representation of another entity or set of entities
that fulfills a particular purpose [129]. An entity may be a real-world system or a model
that contains additional information compared to the currently considered model. To
categorize models according to abstraction levels, we use the Model-Driven Architecture
of the Object Management Group [233, Ch. 6]. The Object Management Group (OMG)1 is
a consortium, founded in 1989, that aims to foster the application of MDE in industry
by defining conceptual and technical standards for MDE. The Model-Driven Architecture
(MDA) [233, Ch. 12]2, first presented by the OMG in 2001, is such a standard and defines
different abstraction levels of models and the relations between abstraction levels in a
modeling-language–independent way.

According to the MDA, models are categorized into metalevels (named M0, M1, etc.)
Figure 3.3 illustrates these metalevels based on a small example. Models on higher
metalevels are more abstract than models on lower metalevels. A model on metalevel
N (e.g., M1) describes a set of valid models on the next lower metalevel N− 1 (e.g., M0).
Conversely, a model on metalevel N is an instance of (or conforms to) a model on metalevel
N+ 1. An M0 model is a special case because it is a representation of the state of a real-
life system (e.g., the state of a WSN). An M1 model describes a set of valid M0 models
and captures the concepts of a particular target domain (e.g., WSN topologies). In the
same way as an M1 model describes the set of valid M0 models, we also need to declare
what constitutes a valid M1 model. This is the purpose of an M2 model, which is
often domain independent and contains abstract object-oriented concepts (e.g., classes,
attributes, inheritance, associations). Prominent examples of M2 models are the Unified
Modeling Language (UML) [78, 80] and Ecore [241].

Conceptually, the metalevel hierarchy has no upper bound. For practical reasons,
however, a model on a sufficiently high metalevel (e.g., Ecore on level M2 in Figure 3.3)
is usually self-descriptive. A self-descriptive model is abstract enough to express its own
syntax. The proposed metamodeling hierarchy of the MDA is limited to four levels
(M0 to M3). The universal M3 model proposed by the MDA is the Meta-Object Facility
(MOF) [233, Sec 12.2]. However, the high expressiveness of MOF hindered the imple-
mentation of MDE tools that should fully conform to the MOF. Therefore, the OMG
defined Essential MOF (EMOF), a subset of MOF that the standardization body deemed
sufficient for most modeling tools. In contrast to EMOF, Complete MOF (CMOF) com-
prises all modeling concepts of MOF. The M2 model of UML is formulated in terms of
CMOF, while Ecore is specified in EMOF. Throughout this thesis, we use the Ecore

meta-metamodel (M2), which is the metamodel of the Eclipse Modeling Framework.

1 OMG page: https://www.omg.org/ (visited: 2018-09-17)
2 MDA page: https://www.omg.org/mda/ (visited: 2018-09-17)

https://www.omg.org/
https://www.omg.org/mda/
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The Eclipse Modeling Framework3 (EMF) [241] is an open-source Eclipse framework for
modeling and code generation that constitutes the basis of numerous modeling tools in
industry and academia. According to Ed Merks, the lead developer of EMF, Ecore was
designed to be the de-facto reference implementation of EMOF [101]. For this reason,
Ecore not only conforms to EMOF but is also self-describing.

The MDA terminology deviates from the practice in the MDE research community. In
the MDA, an M0 model is called an “instance model”, an M1 model is called a “model”,
and an M2 model is called a “metamodel” [233, Fig. 6.2]. In contrast, state-of-the-art
MDE papers use the terms “model” for M0 models and “metamodel” for M1 models
(e.g., in the following proceedings [98, 215]). For consistency with the related work,
we apply the latter naming convention in the following, as captured by the following
definition.

Definition 3.1 (Metamodeling terminology). An (instance) model is a representation
of the state of a system at one point in time and resides on metalevel M0. A meta-
model is a model that describes the set of all possible instance models and resides on
metalevel M1. A meta-metamodel is the specification of valid metamodels and resides
on metalevel M2.

The following example illustrates the metamodeling terminology and notation.

Example 3.2 (Metamodeling terminology and notation). Figure 3.3 illustrates the
metamodeling hierarchy using the terminology introduced in Definition 3.1. A gray
arrow indicates a mapping from an abstract to a concrete concept (e.g., from classes
of the metamodel (M1) to objects in the instance model (M0)).

The state of a WSN and its environment at a particular point in time, comprising
the state of all communication components, batteries, the physical environment, etc.,
is indicated by the cloud at the bottom of the figure.

The instance model of the WSN is a directed weighted graph. For instance mod-
els, we use the object diagram notation, which depicts objects as rectangular boxes
and associations between objects as directed arrows. The box is decorated with an
object identifier (e.g., 1, 12) and the object type (e.g., Mote, Link), both underlined and
separated by a column. The box of an object lists the properties of the object (e.g.,
the identifier of a mote or the weight of a link). An arrow in an M0 model represents
an association and is labeled with a descriptive role name. A double-headed arrow
represents a pair of opposite associations (e.g., source and outgoing).

The topology metamodel in this example declares that two types of objects exist:
Mote and Link. For metamodels, we use the class diagram notation, which depicts each
class as box (decorated with the class name) and each association type as arrow. The
arrow of an association type is labeled with the descriptive role name and number

3 EMF page: https://www.eclipse.org/modeling/emf/ (visited: 2018-09-19)

https://www.eclipse.org/modeling/emf/
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of allowed instances of an association per instance of a class. In this example, a mote
(class Mote) has zero or more outgoing and incoming links (specified by the outgoing
and incoming association types with multiplicity constraints 0..*). Conversely, a link
(class Link) has exactly one source and one target mote (specified by the source and
target association types with multiplicity constraints 1 = 1..1). The meta-metamodel
is an excerpt of Ecore, which conforms to the EMOF meta-meta-metamodel. EMOF
and CMOF are not shown here for conciseness reasons.

The following definition introduces all metamodeling concepts that occur in this the-
sis. Even though we use Ecore as meta-metamodel in this thesis, the terminology is
independent of Ecore. Metamodel elements from the topology metamodel shown in
Figure 3.4 serve as examples. This metamodel enriches the metamodel shown in Fig-
ure 3.3 by additional concepts (e.g., TC algorithm and context event handlers).

Definition 3.3 (Metamodeling concepts in detail). A metamodel is a graph whose
nodes are classes and whose directed edges are relations between classes.

A class is named after the type of entity that it models (e.g., Mote in Figure 3.4),
and contains attributes and operations. An attribute represents a property of an en-
tity and possesses a name and a data type. For instance, a Mote instance has an
integer-valued id attribute. We restrict attributes to have only primitive types. An
operation of a class specifies its behavior. For instance, we can invoke the operation
handle on any object of type ContextEventHandler. The signature of an operation con-
sists of the operation name (handle), return type (e.g., Boolean), and parameter list.
Each parameter has a name (e.g., e) and a type (e.g., ContextEvent). An enumeration
is a special data type with a finite, predefined domain (e.g., State). An enumeration
is decorated with the stereotype «Enum» and its box lists its possible values (e.g.,
{Unmarked, Active, Inactive}).

A relation can be an association or an inheritance relation. An association is a di-
rected edge that allows to navigate from instances of the source class to instances of
the target class (e.g., a mote to its outgoing links). An association is depicted as reg-
ular arrow and labeled with a descriptive role name (e.g., outgoing) and a multiplicity
constraint (e.g., 0..*), which imposes a lower bound (e.g., 0) and an upper bound on the
number of instances of the association in a valid model. If no upper bound exists,
we use the asterisk symbol (i.e., *). Pairs of associations may be marked as each
other’s opposite association. In a valid model, the instances of opposite association
types must exist together. For instance, if an outgoing association from a Mote to a
Link instance exists, then a source association must exist from the Link to the Mote
instance.

A containment association is a special type of associations that represents a part-of
relationship and runs from a containee class (representing the “part”) to a container
class (representing the “whole”). When an instance of a container class is removed
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from a model, all instances of containee classes are removed as well. A containment
association is shown as a black diamond at the end of the container class. For
instance, Topology is the container class for the containee classes Mote and Link.

An inheritance relation points from a subclass to its superclass (e.g., from MoteEvent
to ContextEvent). A subclass possesses all attributes and operations of all its (tran-
sitive) superclasses. A class may be a subclass of zero or more superclasses. The
inheritance relation of a metamodel must be acyclic. An inheritance relation is de-
picted as arrow with an empty triangle as head.

A class is abstract if it cannot be the declared type of an object in a model (e.g.,
ContextEvent). Only concrete (i.e., non-abstract) subclasses of an abstract class may
occur as object type (e.g., MoteAddition). An operation is abstract if it possesses no
implementation. A class that contains abstract operations is also abstract. Abstract
classes and operations are decorated with the stereotype «abstract».

The following example illustrates the metamodeling concepts that were introduced in
Definition 3.3.

Example 3.4 (Metamodel of running example). Figure 3.4 shows the topology meta-
model of our running example. We do not explain each metamodel element in
detail, but highlight the intent of the individual parts of the metamodel. We use the
primitive types int, double, Boolean of Ecore for representing natural numbers, real
numbers, and Boolean values.

The classes in the top-left part of the diagram represent the fact that a topology
is a weighted graph (with node type Mote and edge type Link). Mote::id state that
a mote has an identifier. Link::state and Link::weight represent the weight and state
of a link. The scoping operator (::) indicates to which class an attribute or operation
belongs.

The top-right part of the diagram shows the abstract superclass TopologyControl-
Algorithm for TC algorithms, which specifies that each TC algorithm must provide a
parameterless run operation. The diagram also shows two subclasses that represent
the kTC and the Maxpower algorithm (KtcAlgorithm, MaxpowerAlgorithm).

The center part of the diagram shows the considered types of context events. The
abstract superclass ContextEvent models that each context event is attached to ex-
actly one topology (ContextEvent::topology) and that a topology may have zero or
more attached pending context events (Topology::pendingContextEvents). We repre-
sent the affected motes and links in terms of primitive attributes (e.g., moteId) that
relate to Mote::id. We use primitive attributes instead of associations to Mote and
Link to keep the context event class hierarchy decoupled from concrete Mote and
Link objects. Otherwise, for instance, a LinkAddition would require that the source
and target mote of the link that shall be created exist, which may not be the case if
the corresponding mote addition events are also still pending.
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The bottom part of the diagram shows the context event handlers that correspond
to the context events. The abstract superclass ContextEventHandler reflect the fact
that each concrete context event handler has access to the topology (ContextEvent-
Handler::topology) and provides a handle operation, which accepts a context event as
parameter (e: ContextEvent) and returns true if this context event handler success-
fully handled the context event. This structure instantiates the visitor pattern [71]
(i.e., each subclass of ContextEventHandler can visit any type of ContextEvent). The
subclasses of ContextEvent provide refined operations that accept the respective sub-
class instances of ContextEvent (e.g., MoteAddition::handleMoteAddition).

The topology metamodel in Figure 3.4 is suitable for neighbor-based TC algorithms,
which only rely on the graph structure and the link weights. To support, for instance,
location-based TC algorithms, we need to add metamodel elements (e.g., Mote::longitude
and Mote::latitude to represent the geographic position of a mote).

In the following example, we compare the object diagram notation with the compact
notation, which we introduced for our running example in Chapter 2.

Example 3.5 (Topology model and notation). Figure 3.5 shows a sample topology
model in object diagram and compact notation. The compact notation corresponds
to the notation that we introduced for topologies in Chapter 2. Two link-weight
modification events are attached to the topology, specifying that the weights of the
links `13 and `31 will soon decrease from 69 to 27. The enabled TC algorithm is kTC
with k = 1.3. Five context event handlers are connected to the topology to handle
the five context event types.

The compact notation only contains information about the partial model consist-
ing of Mote and Link objects (with their properties and associations) and the pend-
ing context events. In contrast, the object diagram notation represents all (mote
and link) properties in a uniform and easily extensible way (e.g., the required ad-
ditional attributes for location-based TC algorithms). However, a crucial drawback
of the object diagram notation is its verbosity, that is, its extensive space consump-
tion and the arguably low readability already for the small example discussed in
Example 3.5. If we had drawn the six topology-nodes and the twelve topology-links
associations of the sample model, the diagram would have become hardly under-
standable. Therefore, we use the compact notation whenever possible to represent
topology models in the following. We assume that exactly one topology exists and
provide information about the enabled TC algorithm separately.
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Topology
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trgId:int, weight:double) : void abstract
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LinkAdditionHandler

handle(e:ContextEvent) : Boolean 

handleLinkAddition(srcId:int, 
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Figure 3.4: Example: Topology metamodel with concrete classes for kTC and Maxpower algo-
rithms. The classes for the corresponding context event handler are omitted for con-
ciseness reasons.
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Figure 3.5: Example: Topology with pending link-weight modification events at `13 and `31, TC
algorithm kTC with k = 1.3, and corresponding context event handlers (object dia-
gram notation only)
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3.2 local consistency properties

In this section, we describe how graph constraints [83, 91] can be used to specify local
consistency properties. A local consistency property is a consistency property that can be
expressed in terms of required and forbidden subtopologies together with constraints
over the attributes of the involved motes and links. We distinguish between two types of
local consistency properties. First, structural consistency properties complement the meta-
model by expressing all those consistency properties that cannot be expressed using the
metamodeling techniques introduced in Definition 3.3 For example, a topology should
contain neither loops nor parallel links, which is not reflected by the topology meta-
model in Figure 3.4. Second, TC-algorithm–specific consistency properties can also be local
(e.g., the required triangle for kTC) that justifies the inactivation of a particular link).
The following example provides precise definitions of the local consistency properties
of the running example.

Example 3.6 (Local consistency properties). The following first-order logic expres-
sions state sample structural and kTC-specific local consistency properties. In gen-
eral, local consistency properties can refer to any elements of the model, not only
to the topology-related parts. In our running example, GT is a topology model that
conforms to the metamodel in Figure 3.4. In the following, we interpret a topology
model as directed graph GT = (VT,ET). The node set VT of GT is the set of Mote
objects, and the edge set ET is the set of Link objects. The src and trg functions are
given by the source-outgoing and target-incoming associations in the topology model.
For instance, for a given link `, src(`) is the unique mote that is reachable from `
via the source association, and trg(`) is the unique mote that is reachable from ` via
the target association. Additionally, we interpret the id, weight, and state attributes
of Mote and Link instances as properties of the motes and links in GT.

We begin with the two structural local consistency properties that ensure that a
topology is a simple graph. The following expression states that a valid topology
contains no loops:

∀GT = (VT,ET) : 6 ∃` ∈ ET : src(`) = trg(`). (3.1)

The following expression states that a valid topology contains no parallel links:

∀GT = (VT,ET) : 6 ∃`1, `2 ∈ ET : `1 6= `2 ∧ src(`1) = src(`2) ∧ trg(`1) = trg(`2).
(3.2)

The local consistency properties of kTC describe under which circumstances a
link may be active or inactive. In accordance with the practice in the TC literature,
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we begin with the consistency property for inactive links. Typically, the local consis-
tency specification of an inactive link requires that a “witness” exists in the topology
for each inactive link. For kTC, the witness for a link `1 is a triangle (`1, `2, `3) (see
ϕtriangle) in which `1, `2, and `3 fulfill additional attribute constraints (see ϕkTC).

∀GT=(VT,ET) : ∀`1∈ET : s(`1) = I⇒ ∃`2, `3∈ET :

ϕtriangle(`1, `2, `3) ∧ ϕkTC (w(`1), w(`2), w(`3), id(src(`1)), id(trg(`1)), id(trg(`2)))

with

ϕtriangle(`1, `2, `3)⇔ src(`1) = src(`2) ∧ src(`3) = trg(`2) ∧ trg(`3) = trg(`1), (3.3)

ϕkTC(wXY, wXZ, wZY,X,Y,Z) :⇔
(wXY,X,Y) � max ((wXZ,X,Z) , (wZY,Z,Y))∧
(wXY,X,Y) � k ·min ((wXZ,X,Z) , (wZY,Z,Y))
⇔
w′XY > max(w′XZ, w′ZY) ∧w′XY > k ·min(w′XZ, w′ZY). (3.4)

The signature of the kTC-specific predicate ϕkTC contains the implicit assumption
that the involved links form a triangle (see ϕtriangle predicate). The operator ≺ refers
to the descending canonical ordering on R×N×N (see Definition 2.25).

The kTC-specific condition for active links is complementary to Equation (3.4) in
the sense that it forbids all those links to be active that are eligible for inactivation.

∀GT = (VT,ET) : 6 ∃`1, `2, `3 ∈ ET : s1 = A∧ ϕtriangle(`1, `2, `3) ∧ ϕkTC(`1, `2, `3) (3.5)

In Equations (3.4) and (3.5), it is not necessary to require that `1, `2, `3 are pairwise
different because ϕkTC can only be true if all three links are distinct.

A local consistency property is either positive or negative. A positive local consistency
property consists of a premise part and a conclusion part. Each occurrence of the premise
part in the local view (e.g., an inactive link `1) must be extensible to an occurrence of
the conclusion part (e.g., a witnessing triangle (`1, `2, `3) for `1). A negative condition
consists of a premise part that may not occur within the topology (e.g., two parallel
links). The subsequent definitions lead us to the introduction of graph constraints, a
formalism that mirrors exactly this premise-conclusion structure. We begin with the
definition of graph patterns, the building blocks of graph constraints.

Definition 3.7 (Graph pattern [56, 91, 214]). Let GMM = (VMM,EMM) be a metamodel
with a classes VMM and association types EMM. A (graph) pattern p relative to a
metamodel GMM consists of (i) a pattern graph Gp = (Vp ,Ep), whose nodes and
edges are called object variables and association variables and serve as placeholders for
objects and associations, respectively, (ii) a function type : (Vp ∪Ep)→ (VMM ∪EMM)
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(a) Object diagram notation

1
ploop

(b) Compact notation

Figure 3.6: Example: Loop pattern ploop

that assigns to each variable a (variable) type, which is a class for object variables (i.e.,
m|Vp ⊆ VMM

a) and an association type for association variables (i.e., m|Ep ⊆ EMM),
and (iii) a set of attribute constraints over the attributes of the object variable types.
An attribute constraint consists of an operator and a number of parameters, where
the parameter count must be consistent with the operator. All attribute constraints
of a pattern are conjoined (i.e., implicitly connected by a logic conjunction). The
typing function must preserve the source and target classes of association types:

∀v12 ∈ Ep : type(srcp(v12)) = srcMM(type(v12)) ∧ type(trgp(v12)) = trgMM(type(v12))

a For a function f : X → Y and a subset W ⊆ X, the function f|W is the restriction of f on W: f|W : W → Y

Typical operators are relational operators (e.g., <,>,≤,≥,=, 6=), but we also allow for
user-specified operators, for which an interpretation must be given as first-order logic
expression (similar to ϕkTC in Example 3.6).

Definition 3.8 (Topology pattern). A topology pattern is a special type of pattern
whose metamodel is the topology metamodel. An object variables of a topology
pattern has either Mote or Link as type and is called mote variable or link variable,
respectively.

The notion of topology patterns serves to introduce a concise terminology for our run-
ning example. In general, we use the symbol v to denote a pattern variable with mote
variables having a one-digit index (e.g., v1), and link variables having a two-digit index
(e.g., v12).

Example 3.9 (Structural consistency patterns). Figure 3.6 shows the pattern that de-
scribes a loop in the topology. Similar to Section 3.1, we introduce a generic object
diagram notation (Figure 3.6a) and a compact notation (Figure 3.6b), which is tai-
lored to our running example and simplifies understanding the pattern structure.
The pattern consists of two object variables having types Mote and Link, respec-
tively, and of four association variables having types Mote::outgoing, Mote::incoming,
Link::source, and Link::target, respectively. The pattern has no attribute constraints
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Figure 3.7: Example: Parallel-links pattern pparallel

and is also a topology pattern with one mote variable and one link variable that
has a identical source and target motes. This topology-specific perspective is also
reflected by the compact notation shown in Figure 3.6b. The link variables are de-
picted in gray because the pattern does not impose any constraints on the link state.
The compact notation usually shows the object identifiers of mote variables and
omits the object identifiers of link variables.

Figure 3.7 shows the second structural consistency pattern, which represents two
parallel links. This topology pattern has four object variables, eight association
variables, two mote variables and two link variables.

Example 3.10 (kTC-specific patterns). The inactive-link pattern pi shown in Fig-
ure 3.8 represents a single inactive link. We collect the attribute constraints of a
pattern in a separate box. The compact notation contains no such box because we
encode attribute constraints that relate to the link state into the stroke and color of
the corresponding arrows (e.g., dotted-black for inactive links). The pattern pkTC,i
shown in Figure 3.9 represents a triangle in which the link represented by the link
variable e12 should be inactive according to kTC. Finally, Figure 3.9c shows the com-
plementary pattern pkTC,a, which matches a forbidden triangle, that is, an active link
in a triangle that should actually be inactive according to the kTC-specific conditions.
The only difference between pkTC,i and pkTC,a lies in the link state constraints related
to e12.

The indices of mote and link variables in attribute constraint boxes relate to the
object identifiers of the mote and link variables, and not to the mote identifiers.
In the described patterns and in subsequent examples, we use the following ab-
breviated form of ϕkTC (introduced in Example 3.6) as shorthand notation for the
kTC-specific attribute constraints:

ϕkTC(v1, v2, v3) := ϕkTC (w(v12), w(v13), w(v32), id(v1), id(v2), id(v3)) (3.6)

The following definition describes how the occurrence of a pattern in a model is
represented.
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Figure 3.9: Example: kTC patterns pkTC,i and pkTC,a

Definition 3.11 (Pattern match). Let p be a pattern with pattern graph Gp = (Vp ,Ep),
GM = (VM,EM) be a model, where VM is the set of objects and EM is the set of
associations, and p and GM conform to the same metamodel MM. A match m of a
pattern p in a model GM is a mapping from the object variables Vp and association
variables Ep of p to the objects and associations of GM that preserves source and
target objects of associations:

m : (Vp ∪ Ep)→ (VM ∪ EM)
m|Vp ⊆ VM

m|Ep ⊆ EM
∀v12 ∈ Ep : m(srcp(v12)) = srcGM(m(v12)) ∧m(trgp(v12)) = trgGM

(m(v12))

Additionally, (i) m must respect the variable type mappings, and (ii) the attribute
constraints of p must be fulfilled when replacing the variables with the respective
objects and association in the image of m.

A pattern match can be injective or noninjective. In the first case, distinct pattern variables
are mapped to distinct objects. In the latter, general case, distinct pattern variables may
be mapped to the same object. In this thesis, we apply injective matching. One reason
for this selection is that the constructive approach requires injective matching. Still, we
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Figure 3.10: Example: Matches m1 and m2 of inactive-link and kTC pattern in sample topology

also think that an injective match is more intuitive to interpret for the user because no
two variable mappings may coalesce to the same object in the model.

Example 3.12 (Pattern match). Figure 3.10 shows two matches m1 and m2 of the
inactive-link pattern pi and pkTC,i in the sample topology (k = 1.3). The mappings
from mote variables to motes are depicted as (blue-gray) arrows that are labeled
with the matches. The corresponding mappings from link variables to links are
omitted for conciseness reasons. Match m1 maps mote variables v1 and v2 of pi to
motes n3 and n4, respectively, and link variable v12 to link `12. Match m2 additionally
maps mote variable v3 to the mote n4 and link variables v13 and v32 to links `34 and
`45, respectively.

The following definitions capture when one pattern (or match) can be considered to be
a part of another pattern (or match).

Definition 3.13 (Pattern extension). A pattern p2 is an extension of a pattern p1 if the
pattern graph of p1 is a subgraph of p2 and if the restriction of any match of p2 to
the variables of p1 fulfills the attribute constraints of p1.

Definition 3.14 (Match extension). Let GM be a model, p1 and p2 be patterns and p2
extends p1. A match m2 of p2 in GM is an extension of a match m1 of p1 in GM if the
restriction of m2 to the variables of p1 is identical to m1: More formally,

m2|(Vp1∪Ep1 )
= m1.
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Figure 3.11: Structure of a graph constraint. The conclusion cX may be empty.

Example 3.15 (Pattern and match extension). The pattern pkTC,i (Figure 3.9) extends
the inactive-link pattern pi (Figure 3.8) by one additional mote variable, two link
variables, and the two attribute constraints related to w′. Match m2 in Figure 3.10

extends m1 by a mapping from mote variable v3 to mote n4.

The definition of graph patterns and pattern matches allow us to specify required
and forbidden structures in the topology. The definitions of pattern and match exten-
sions are the basis for specifying the premise-conclusion structure of local consistency
properties using graph constraints, as described by the following definition.

Definition 3.16 (Graph constraint [91]). A graph constraint CX consists of one premise
pattern pX (short: premise) and a (potentially empty) set of conclusion patterns cX,1,
cX,2,. . . , which are collectively called the conclusion cX of CX (Figure 3.11). Each
conclusion pattern is an extension of the premise. The constraint CX is called a
positive constraint if the conclusion contains at least one pattern. Otherwise, the
constraint is called a negative constraint.

A graph constraint characterizes whether a given model is consistent or not.

Definition 3.17 (Fulfillment of graph constraint). A graph constraint CX is fulfilled on
a model GM if each match of the premise pX in GM can be extended to a match of at
least one conclusion pattern. In this case, we also say that the model GM fulfills the
graph constraint CX.

This definition also sheds light on the dichotomy into positive and negative graph con-
straints (Definition 3.16). A negative graph constraint forbids the existence of certain
submodels (described by its premise pattern), whereas a positive graph constraint re-
quires the existence of a submodel (given each conclusion) if another, typically smaller
submodel exists (i.e., the premise pattern). The following definition lifts the notion of
fulfillment of individual graph constraints to sets of graph constraints.
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Cno-loops

pno-loops
1

(a) No-loops constraint Cno-loops

Cno-parallel-links

pno-parallel-links

1 2

(b) No-parallel-links constraint Cno-parallel-links

Figure 3.12: Example: Structural constraints Cno-loops and Cno-parallel-links

Definition 3.18 (Consistency w.r.t. constraint sets). A model is consistent w.r.t. a set
of graph constraints C if it fulfills all constraints in C ∈ C.

The subsequent examples illustrate the concepts graph constraints, constraint fulfillment,
and consistency. The shown graph constraints build on the already defined patterns. For
consistency with the naming conventions of the premise and conclusion (patterns) inside
a graph constraint, we renamed the pattern accordingly. We begin with an example that
shows how to specify that topologies structurally valid.

Example 3.19 (Structural constraints). Figure 3.12 shows the two structural graph
constraints Cno-loops and Cno-parallel-links that express the structural local consistency
properties Equation (3.1) and Equation (3.2). The no-loops constraint Cno-loops is a
negative constraint that forbids loops in the topology. The no-parallel-links con-
straint Cno-parallel-links is a negative constraint that forbids parallel links in the topol-
ogy. The premises pno-loops and pno-parallel-links are equivalent to the patterns ploop and
pparallel. A topology is structurally consistent if it is consistent w.r.t. the constraint set
CT = {Cno-loops,Cno-parallel-links}.

In the next example, we provide the two graph constraints that specify the TC-algorithm–
specific local consistency properties of kTC.

Example 3.20 (kTC-specific constraints). Figure 3.13 shows the two graph constraints
that specify when a link may be inactive (Figure 3.13a) and may not be active (Fig-
ure 3.13b). According to the inactive-link constraint CkTC,i, each inactive link v12

(see pkTC,i) must be part of the triangle that fulfills the kTC condition (see ckTC,i,1).
The premise pkTC,i is identical to pi in Figure 3.8 and the sole conclusion pattern
ckTC,i,1 is equivalent to pkTC,i in Figure 3.9. The required mapping from premise to
conclusion patterns is given via the object variable identifiers. For example, v1 of
pkTC,i is mapped to v1 of ckTC,i,1. The active-link constraint CkTC,a (Figure 3.13b) is
a negative constraint that specifies that no active link may be part of a triangle that
fulfills the kTC-specific condition.
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CkTC,i

1 2

3

ϕkTC(v1,v2,v3)

ckTC,i,1

1 2

pkTC,i

(a) Inactive-link constraint CkTC,i

CkTC,a

1 2

3

ϕkTC(v1,v2,v3)

pkTC,a

(b) Active-link constraint CkTC,a

Figure 3.13: Example: kTC-specific graph constraints CkTC,i and CkTC,a

A topology is weakly consistent w.r.t. kTC if it is consistent w.r.t. the constraint
set CW = {CkTC,i,CkTC,a} ∪ CT. This notion of consistency is “weak” because it
only refers to the marked links in the topology. This means that a fully unmarked
topology is weakly consistent but the virtual topology would still contain all links of
the input topology. Weak consistency an invariant of the TC algorithm and context
event handler specification.

To obtain a stronger notion of consistency, we introduce the two equivalent mark-
ing constraints shown in Figure 3.14. The no-unmarked-links constraint Cu shown
in Figure 3.14a requires that there are no unmarked links. The only–marked-links
constraint Cu shown in Figure 3.14b requires that each link in the topology is either
active or inactive. Both constraints are equivalent because State has finite domain.
In subsequent examples, we use the no-unmarked-links constraint Cu.

A topology is strongly consistent w.r.t. kTC if it is consistent w.r.t. the constraint
set CS = {CkTC,i,CkTC,a,Cu} ∪ CT = {Cu} ∪ CW. This means that a topology may
only be strongly consistent if it is weakly consistent and all links are marked. We
require strong consistency as a postcondition of the TC algorithm. If the topology
is dynamic, which is the usual case, it is impossible to maintain strong consistency
permanently because context events lead to new unmarked links in the topology.

The topology shown in Figure 3.10 is weakly consistent (for kTC with k = 1.3)
because it fulfills all constraints in CW, but it not strongly consistent because matches
of the premise of the no-unmarked-links constraint Cu exist at `13 and `31. If `13 and
`31 were inactive, the topology would be strongly consistent.

We conclude the examples of graph constraints and consistency with the Maxpower-
specific consistency constraints.
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Cu

1 2

pu

(a) No–unmarked-links constraint Cu

Cai

1 2pai

1 2cai,1

1 2cai,2

(b) Only–marked-link constraint Cai

Figure 3.14: Example: Equivalent marking constraints Cu and Cai

CMaxpower,i

1 2

pMaxpower,i

(a) Inactive-link constraint CMaxpower,i

CMaxpower,a

1 2

pMaxpower,a

1 2

cMaxpower,a,1

(b) Active-link constraint CMaxpower,a

Figure 3.15: Example: Maxpower-specific graph constraints CMaxpower,i and CMaxpower,a.

Example 3.21 (Maxpower-specific constraint). Figure 3.15 shows the consistency con-
straints of the Maxpower algorithm. Maxpower requires that each link in the topology
is active. This requirement is specified by the inactive-link constraint CMaxpower,i (Fig-
ure 3.15a). The the active-link constraint CMaxpower,a (Figure 3.15b) is always fulfilled
(due to its equal premise and conclusion patterns) and only shown here for consis-
tency with the other examples.

The three levels of consistency, introduced in Example 3.19 and Example 3.20, are
increasingly stricter. Structural consistency (Example 3.19) can be understood as a mini-
mal technical requirement for structurally valid topologies. Weak and strong consistency
(Example 3.20), in contrast, both imply (we could also say, rely on) structural consistency
and are specific to the TC algorithm under construction. The following definition gener-
alizes the notion of (structural, weak, and strong) consistency.

Definition 3.22 (Levels of consistency). We define three levels of consistency (Table 3.1):
structural consistency, weak consistency, and strong consistency. Strong consistency
implies weak consistency, and weak consistency implies structural consistency A
topology is structurally consistent if it conforms to the current topology metamodel
and fulfills auxiliary consistency properties that only depend on the application do-
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Table 3.1: Summary of consistency levels for TC mechanisms. The first column refers to the
three levels of consistency and whether the particular consistency level is valid for the
domain (e.g., TC algorithms in general) or for a particular algorithm (e.g., kTC). The
second column specifies whether the respective constraints need to hold permanently
(i.e., as invariant) or only at certain points in time (e.g., as postcondition). The third
column lists the constraints in the constraint set of the given consistency level.

Level Scope Constraint set

structural
(domain)

invariant of TC al-
gorithm and context
event handlers

CT = {Cno-loops,Cno-parallel-links}

weak
(algorithm)

invariant of TC al-
gorithm and context
event handlers

CW = {Cno-loops,Cno-parallel-links,Ca,Ci}

strong
(algorithm)

postcondition of TC
algorithm

CS = {Cno-loops,Cno-parallel-links,Ca,Ci,Cai/Cu}

main (i.e., not on the algorithm under development). A topology is weakly consistent
if it fulfills structural consistency and all marked links fulfill the TC-algorithm–spe-
cific conditions. A topology is strongly consistent if it fulfills weak consistency and
all links are marked.

In the following, we assume that weak consistency can be formulated in terms of two
graph constraints: the active-link constraint Ca and the inactive-link constraint Ci. Still,
our approach is not limited to this assumption.
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3.3 global consistency properties

Graph constraints are suitable for specifying consistency properties that can be ex-
pressed in first-order logic. Now, we illustrate how to handle global consistency properties,
which cannot be expressed in first-order logic with attribute constraints.

An important global consistency property of TC algorithms is that the virtual topol-
ogy must be connected as long as the input topology is connected. If the input topology
is disconnected already, the virtual topology is disconnected as well because the virtual
topology is a subgraph of the input topology. Unfortunately, connectivity is a graph
property that cannot be expressed in first-order logic [59]. Graph constraints, as intro-
duced in Definition 3.16, are a special type of nested graph constraints with one nesting
level. We refer to the former type of graph constraints as non-nested graph constraints
if necessary in the following. Nested graph constraints are as expressive as first-order
logic [83]. Consequently, non-nested graph constraints are less expressive than first-
order logic, which makes expressing connectivity using (either non-nested or nested)
graph constraints impossible.

We require that the TC algorithm developer proves the following claim: If the topology
fulfills weak consistency, all consistency properties are fulfilled. The following example
illustrates how to prove of preserved connectivity for kTC.

Example 3.23 (Proof of connectivity preservation for kTC). For our running exam-
ple, we have to show the following claim.
Claim: The virtual topology is connected if the input topology is connected and
the TC mechanism topology is weakly consistent w.r.t. the kTC-specific graph con-
straints.
Proof sketch: The virtual topology of a TC mechanism is the AU-view of the TC
mechanism topology and, therefore, is connected if each pair of motes is connected
by an AU-path (i.e., a path of active or unmarked links) in the TC mechanism topol-
ogy (see Definition 2.6). The mote and link sets of the input topology and TC
mechanism topology are equal. This means that the TC mechanism topology is
connected if the input topology is connected.

Therefore, it is sufficient to show the following claim. For a given path P be-
tween two motes nx1 and nxM , an alternative AU-path P′ between these motes can
be constructed. In the following, we show for each link j̀ on P (by induction)
that its incident motes are connected by an AU-path Pj . The alternative path P′ can
be constructed by concatenating the per-link alternative AU-paths, as illustrated by
Figure 3.16a.

Induction claim: If the topology is connected and weakly consistent, then the in-
cident motes of each link j̀ are connected by an AU-path Pj . We show that this
claim holds by induction over the links of the topology GT = (VT,ET), sorted by w′
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according to ≺. Let L = (`1, `2, . . . ) be a list that contains all links in ET and let L be
sorted by increasing w′ (i.e., w′(`1) ≺ w′(`2) ≺ · · · ).

Induction start (j = 1): Let’s first assume that j̀ = `1 = `XY is inactive. In this
case, the fulfillment of CkTC,i implies that there are links `XZ and `ZY that are both
shorter than `XY w.r.t. w′ due to the kTC-specific condition (i.e., w′XZ ≺ w′XY and
w′ZY ≺ w′XY). This contradicts the assumption that `1 is the shortest link w.r.t. w′.
Therefore, `1 is either active or unmarked and constitutes an AU-path.

Induction step (j = N → N+ 1): We assume that the induction claim holds for
all links j̀ with j ≤ N. We have to show that the claim also holds for link `N+1.
We distinguish between the three possible states of j̀ , as illustrated in Figure 3.16b.
If j̀ is active (Case 1) or unmarked (Case 2), the induction claim holds. If j̀ is
inactive, the fulfillment of CkTC,i implies that there are links `XZ and `ZY that are
both shorter than `XY w.r.t. w′ due to the kTC-specific condition (i.e., w′XZ ≺ w′XY
and w′ZY ≺ w′XY). Therefore, `XZ = j̀1 and `ZY = j̀2 for some j1, j2 ≤ N, and the
induction claim holds for `XZ and `ZY. This implies that AU-paths P1 and P2 exist
from nX to nZ and from nZ to nY, respectively. The concatenation of P1 and P2 is an
AU-path from nX to nY, and the induction claim follows for j = N+ 1.
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Original path P:

Alternative AU-path P':

x1 x2 x3 xM-1 xM

…

x1 x2 x3 xM-1 xM

…

by induction by induction by induction

P1 P2 PM-1

ℓ1 ℓ2 ℓM-1

(a) Construction of alternative AU-path P′ from nX1 to nXM

Case 1:

Case 2:

Case 3: ⇒
due to Ci ϕkTC(vX,vY,vZ)

P1
P2

X Y

X Y

X Y X Y

Z

(b) Case distinction in induction step

Figure 3.16: Sketches for proof of preserved connectivity for kTC
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3.4 elementary topology modifications

Graph constraints characterize valid and invalid states of a topology w.r.t. structural
or TC-algorithm–specific consistency properties. The modeling technique introduced in
this section formalizes elementary modifications of the topology. Examples of such mod-
ifications are the activation or inactivation of a link. As modeling technique, we selected
graph transformation rules because they are suitable to capture structural modifications
and constitute a (technical) prerequisite for applying the constructive approach.

Definition 3.24 (Graph transformation rule [56, 214]). A graph transformation rule
(GT rule) RX consists of a left-hand side pattern LHSX, a right-hand side pattern RHSX,
and a potentially empty set of application conditions ACx,1, ACx,2, . . . Each application
condition is a (positive or negative) graph constraint [56, 82, 214]. Additionally, RX
contains a partial mappinga from the variables of LHSX to the variables of RHSX
and mappings from the variables of LHSX to the premise of each application condi-
tion. A GT rule has zero or more rule parameters X1, X2, . . . A rule parameter has a
name and type. A rule parameter decorated with “out” is an output rule parameter.
All other parameters are input rule parameters, which can be interpreted as partial
match of LHSX or used inside attribute constraints. Figure 3.17 depicts a GT rule
schematically.

A GT rule must fulfill the following two well-formedness requirements. First,
the attribute constraints of RHSX represent attribute value modifications and may,
therefore, only use the equality operator (i.e., =)b. Second, the intersection of LHSX
and RHSX must be a valid graph. This means that, if an association variable occurs
in LHSX and RHSX, then the incident object variables of this association variable
must also be part of both LHSX and RHSX. Without the second well-formedness

Graph transformation rule RX (X1 : EClassifier, …)

Left-hand side LHSX

Application condition ACX,1

(here: PACX,1)

partial
mapping Right-hand side RHSX

Application condition ACX,2

(here: NACX,2) ⋯
mapping mapping

pX,1 cX,1,1 cX,1,2 ⋯ pX,2

Figure 3.17: Structure of a GT rule with a positive application condition ACX,1/PACX,1 and a
negative application condition ACX,2/NACX,2.
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Graph transformation rule RX (X1 : EClassifier,…)
Left-hand side LHSX

Application condition ACX,Y

Right-hand side RHSX

pX,Y

cX,Y,1 cX,Y,2 ⋯
Gm

mX

⋯mX,Y

mX,Y,Z

Model

Figure 3.18: Illustration of GT rule applicability

requirement, the model resulting from an application of a GT rule may contain
dangling associations.

a A partial mapping from a pattern p1 to a pattern p2 maps a subset of the variables of p1 to variables
in p2.

b In general, arithmetic expressions for calculating new attribute values are also allowed but not dis-
cussed here for conciseness reasons.

Regarding notation, the mappings inside a GT rule are implicitly given by equality of
variable names across patterns (as usual). We use the abbreviations PAC and NAC
for positive and negative application conditions respectively, and the abbreviation AC
for application conditions in general. The rules that relate to topologies always have
an implicit (i.e., hidden) variable for the unique topology. A GT rule is a declarative
specification of a possible modification of a model. The following definitions capture
how a concrete model can be modified by applying a GT rule to it.

Definition 3.25 (GT rule applicability). A GT rule RX is applicable at a match mX of
LHSX in a model GM if the extension of mX to a match mX,Y of the premise pX,Y of each
application condition ACX,Y can be further extended to a match mX,Y,Z of at least one
conclusion pattern cX,Y,Z of ACX,Y (Figure 3.18), and if the following dangling edge
condition is fulfilled.

The dangling edge condition prescribes that a GT rule RX is only applicable at a
match if removing all model elements that are matched by a variable that occurs only
in LHSX and not in RHSX results in valid graph (i.e., without dangling associations).

This definition implies that a GT rule is only applicable at a match if this match cannot
be extended to any match of the premise of any negative application condition. For
conciseness reasons, we refer to a match m of the LHS of a GT rule R in a model GM as
the match m of the rule R in a model GM.

Definition 3.26 (GT rule application). Let RX be a GT rule that is applicable at some
match m in a model GM. An application of RX at m consists of the following three
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Ra (v12:Link)

LHSa RHSa

1 2 1 2

(a) Activation rule Ra (plain)

Ri (v12:Link)

LHSi RHSi

1 2 1 2

(b) Inactivation rule Ri (plain)

Figure 3.19: Example: TC rules

steps. (i) Each model element that is matched by a variable that occurs only in LHSX
and not in RHSX is removed. (ii) For each variable that occurs in RHSX but not in
LHSX, a fresh copy of this variable is inserted into the model GM. (iii) Each equality
constraint of RHSX is interpreted as an attribute assignment.

A model element that is neither removed nor created during the rule application
is preserved.

Regarding the development of TC mechanisms, we distinguish between three types
of GT rules. (i) A TC rule specifies an elementary modification that is performed by a
TC algorithm (Example 3.27). (ii) A context event rule specifies an elementary modifica-
tion of the topology that is caused by the environment (e.g., the removal of a link). As
shown in Example 3.28, we associate with each context event class (e.g., MoteAddition)
in the metamodel a corresponding context event rule whose application operationalizes
the corresponding context event (e.g., R+n). (iii) A context event handler rule is an addi-
tional rule that is used within the specification of a context event handler. We derive
appropriate context event handler rules of kTC in the subsequent Chapter 4.

In our scenario, a GT rule is either restrictable or irrestrictable. A restrictable GT rule
can be modified freely during the developed of the TC mechanism by adding application
conditions (e.g., TC or context event handler rules). An irrestrictable GT rule represents
a modification of the topology caused by the environment (i.e., context event rules).
These modifications are not under the control of the sensor operating system and must
be handled by adjusting the topology. In the following, we discuss all GT rules that are
relevant for our running example.

Example 3.27 (TC rules). Figure 3.19 shows the activation rule Ra and the inacti-
vation rule Ri, which specify the unconditional activation and inactivation of links.
Both GT rules expect the link to be marked as input parameter, represented by the
link variable v12. Both LHS patterns impose no additional attribute constraints on
v12. The attribute constraint sv12 = A of RHSa (indicated by the black solid line)
states that given link is active after applying Ra. Conversely, v12 is inactive after
applying Ri.
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Example 3.28 (Context event rules). Figure 3.20 shows the five rules that represent
the five different types of context events of the running example.

The node addition rule R+n specifies the addition of a mote with a given mote
identifier x. The LHS pattern is depicted as empty box because the new mote
only requires the topology as context. The negative application condition NAC+n,1

ensures that the mote v1 is only created if the topology contains no other mote with
the same identifier. The node removal rule R-n specifies that a mote v1 is removed
from the topology. The two negative application conditions NAC-n,1 and NAC-n,2

ensure that v1 may only be removed if it is isolated. This ensures that the removal
of v1 leaves no dangling links in the topology.

The link addition rule R+e specifies the addition of a link from a mote v1 to a
mote v2 having the given weight w. The negative application condition NAC+e,1

ensures that no parallel links are added. The added link is unmarked after the rule
application. The link removal rule R−e specifies the removal of a given link v12.
Finally, the link-weight modification rule Rmod-w specifies the change of the weight
of the given link v12 to w. The modified link is unmarked after the rule application.

Table 3.2 maps the context event classes in Figure 3.4 to their corresponding con-
text event rules.

Example 3.29 (Auxiliary rules). Figure 3.21 shows four auxiliary rules that we use
to identify motes and links in a topology and to unmark a given link. The find-
unmarked–link rule Rfind-u identifies some unmarked link and returns it as output
parameter. The find-mote rule Rfind-n finds, for a given mote identifier x, a mote v1

having this identifier. The find-link rule Rfind-e finds, for two given mote identifiers
x and y, a link v12 with source mote nX and target mote nY. The application of Rfind-u,
Rfind-n and Rfind-e leave the topology unchanged because its LHS and RHS patterns
are identical. The unmarking rule Ru unmarks a given link v12 regardless of the
current state of v12.
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R+n (x : int)

LHS+n RHS+n 1
x

NAC+n,1

1
x

p+n,1

(a) Mote addition rule R+n

R-n (v1 : Mote)

LHS-n RHS-n1

NAC-n,1

p-n,1 1 2

NAC-n,2

p-n,2 1 2

(b) Mote removal rule R-n
R+e (v1 : Mote, v2 : Mote, w : double)

LHS+e RHS+e
1 2 1 2

NAC+e,1

p+e,1 1 2

w12 = w

(c) Link addition rule R+e

R−e (v12 : Link)

LHS−e RHS−e
1 2 1 2

(d) Link removal rule R−e
Rmod-w (v12 : Link, w : double)

LHSmod-w RHSmod-w

1 2
w12 = w

1 2

(e) Link weight modification rule Rmod-w

Figure 3.20: Example: Context event rules

Table 3.2: Operationalization of context events (First column: context event object, see also Fig-
ure 3.4; second column: corresponding context event rule application, see Figure 3.20)

Context event class Operationalizing GT rule application

MoteAddition e R+n(e.moteId)
MoteRemoval e R-n(e.moteId)
LinkAddition e R+e(e.srcId, e.trgId, e.weight)
LinkRemoval e R−e(e.srcId, e.trgId)
LinkWeightModification e Rmod-w(e.srcId, e.trgId,weight)
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Rfind-e(x : int, y : int, out v12:Link)

LHSfind-e RHSfind-e

1 2 1 2
x y x y

(a) Find-link rule Rfind-e

Rfind-n (x : int, out v1 : Mote)

LHSfind-n RHSfind-n

1 1
x x

(b) Find mote rule Rfind-n

Rfind-u (out v12:Link)

LHSfind-u RHSfind-u

1 2 1 2

(c) Find-unmarked–link rule Rfind-u

Ru(v12:Link)

LHSu RHSu

1 2 1 2
x y x y

(d) Unmarking rule Ru

Figure 3.21: Example: Auxiliary rules Rfind-n, Rfind-e, Rfind-u, and Ru
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3.5 execution order of topology modifications

In the previous section, we introduced graph transformation as a modeling technique to
specify elementary topology modifications. Given a model, a set of GT rules, and a set
of matches of these rules in the model, it is generally undefined which rule to apply at
which match first (rule and match nondeterminism).

In this section, we introduce a modeling technique that allows us to restrict the rule
and match nondeterminism by (i) specifying the application order of GT rules and
(ii) providing GT rules with input parameters to GT rule applications. The construc-
tive approach does not restrict the choice of the control flow specification language. We
propose to use story-driven modeling [60], a dialect of programmed GT that borrows
from UML activity diagrams and allows for GT rule applications as actions [78].

Definition 3.30 (Story-driven modeling [60]). In story-driven modeling (SDM), each
operation is specified by a story diagram [60]. A story diagram is a graph that spec-
ifies the control flow of an operation and consists of activity nodes and activity edges.
An activity edge ( ) may be labeled with a success ([S]) or failure guard ([F]). An
activity node can be of one of four types: start node, stop nodes, story node, or op-
eration node. The unique start node ( ) of a story diagram has exactly one outgoing,
unguarded activity edge. Each of the zero or more stop nodes ( ) has at least one
incoming activity edge and no outgoing activity edges. If the operation has a return
type, each stop node is labeled with the return value.

A story node contains a GT rule application consisting of the rule name and param-
eter bindings for each input rule parameter. An operation node contains an invocation
of another operation. A story or operation node has at least one incoming activity
edge, and either one unguarded outgoing activity edge or two outgoing activity
edges labeled with [S] and [F], respectively. An operation variable represent local vari-
ables of the story diagram. These variables are declared in parentheses next to the
operation name (e.g., var v12 : Link ) and are used to pass information to the opera-
tion or among rule and operation invocations. An operation variable can be assigned
based on parameters of a successfully applied rule or invoked operation, which is
denoted with a leading assignment operator (e.g., v12 = Rfind-u()), and passed to rule
applications or operation invocations, which is denoted with trailing parentheses
(e.g., Ra(v12)).

Definition 3.31 (Execution of story diagram [60]). A story diagram is executed as fol-
lows: The execution begins at the (unique) start node and continues along activity
edges until arriving at a stop node. The execution of story and operation nodes is
similar: When the execution arrives at a story node, the contained graph transforma-
tion rule is applied (if possible). When the execution arrives at at an operation node,
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MaxpowerAlgorithm::run(var v12:Link) : void

v12=Rfind-u()[F] Ra(v12)
[S]

Figure 3.22: Story diagram of Maxpower algorithm

the contained operation is invoked. In case of two outgoing activity edges, if the
rule application was successful or if the operation invocation returned a non-null
result, the execution continues along the [S]-edge, else along the [F]-edge. In case of
one one outgoing activity edge, the execution continues along this activity edge in
any case after the rule application or operation invocation.

In contrast to UML activity diagrams [78], no single standardized version of SDM exists.
The preceding definitions represent an SDM dialect that is provided (similarly) by the
GT tool eMoflon [135]. This SDM dialect is less expressive than the original implemen-
tation of SDM in, e.g., FUJABA [60]. By “less expressive”, we mean that eMoflon rejects
story diagrams for which FUJABA can generate code. The SDM dialect of eMoflon sim-
plifies the generation of source code for target programming languages such as Java, C,
or C++ by rejecting story diagrams that could only be realized using jumps (“goto”) in
the generated source code. In contrast, the generated code of FUJABA used exceptions
for jumping to arbitrary locations in the control flow.

Our first example for SDM provides a specification of the TC algorithm Maxpower.
Then, we continue with story diagrams that specify the handle operations of the sub-
classes of ContextEventHandler in Figure 3.4. Finally, we provide story diagrams for the
concrete context event handlers of Maxpower. The purpose of the next chapter is to
derive a TC mechanism specification of kTC that is guaranteed to preserve weak consis-
tency.

Example 3.32 (Story diagram of Maxpower algorithm). Figure 3.22 shows the story
diagram that specifies the TC algorithm Maxpower. The specification consists of a
loop whose condition is the invocation of Rfind-u (to identify some unmarked link
v12). The link variable v12 is an operation variable and does not count to the op-
eration parameters (i.e., MaxpowerAlgorithm::run has no parameters). In the loop
body, the activation rule Ra is applied to v12. The execution of the story diagram
terminates if the topology contains no more unmarked links.

It is straightforward to show that this TC algorithm terminates for any initial
state of the topology. In each iteration, the number of unmarked links decreases by
one. Given that a topology contains a finite number of links, the number of loop
iterations is also finite.
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Example 3.33 (Story diagrams of generic context event handlers). Figure 3.23 shows
the specifications of the generic handle operations of the abstract context event
handler classes in Figure 3.4. The purpose of these specifications is to determine
whether the context event handler is responsible for handling the event, and to
invoke the specialized context event handling operation of the respective subclass
(e.g., MoteAddition::handleMoteAddition).

Figure 3.23a specifies the handling of mote addition events. The leftmost story
node in Figure 3.23a represents a type cast (attempt) of the parameter evt from the
superclass ContextEvent to the subclass MoteAddition. If the type cast is successful
(i.e., evt has the type MoteAddition), the execution continues along the [S]-edge, else
the execution arrives at the leftmost stop node and returns false. We use this shortcut
notation for type casts to keep the specification concise. A solution using GT rules
is also possible but more verbose.

Figure 3.23b specifies the handling of mote removal events. It extracts the mote
v1, which shall be removed and invokes the appropriate subclass method. For sim-
plicity, we assume that v1 is isolated already (i.e., that the incident links of v1 have
been removed by previously handled link removal events).

The specifications for link-related context event handlers in Figure 3.23 are com-
pletely analogous to the two discussed examples. Thus, we omit their detailed
description here.

Example 3.34 (SDM specification of Maxpower-specific context event handlers). Fig-
ure 3.24 shows the specifications of all context event handlers that are specific to the
Maxpower algorithm. The corresponding story diagrams forward the given parame-
ters to the context event rules (Figure 3.20).
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MoteAdditionHandler::handleEvent(evt:ContextEvent, var moteAddition : MoteAddition) : Boolean

moteAddition: MoteAddition = evt
[S]

false

handleMoteAddition(moteAddition.moteId)

[F]

true

(a) MoteAdditionHandler::handleEvent
MoteRemovalHandler::handleEvent(evt:ContextEvent, 

var moteRemoval : MoteRemoval, var v1 : Mote) : Boolean

moteRemoval: MoteRemoval = evt
[S]

false handleMoteRemoval(v1)

[F]

true

v1 = Rfind-n(moteRemoval.moteId)

[S][F]

(b) MoteRemovalHandler::handleEvent

[S]

LinkAdditionHandler::handleEvent(evt:ContextEvent, var la:LinkAddition, var v1:Mote, var v2:Mote) 

: Boolean

linkAddition: LinkAddition = evt
[S]

false

handleLinkAddition(v1, v2, linkAddition.weight)

[F]

true

v1=Rfind-n(linkAddition.srcId)

v2=Rfind-n(linkAddition.trgId)

[S]
[F]

[F]

(c) LinkAdditionHandler::handleEvent
LinkRemovalHandler::handleEvent(evt:ContextEvent, var lr : LinkRemoval, var v12 : Link) : Boolean

lr: LinkRemoval = evt
[S]

false

[F]

v12 =Rfind-e(lr.srcId, lr.trgId)

handleLinkRemoval(v12)true

[S][F]

(d) LinkRemovalHandler::handleEvent
LinkWeightModificationHandler::handleEvent(evt:ContextEvent,

var lwm: LinkWeightModification, var v12 : Link) : Boolean

lwm :  LinkWeightModification = evt
[S]

false handleLinkWeightModification(v12, lwm.weight)

[F]

true

v12 =Rfind-e(lwm.srcId, lwm.trgId)

[S][F]

(e) LinkWeightModificationHandler::handleEvent

Figure 3.23: Story diagrams of context event handlers
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MaxpowerMoteAdditionHandler::

handleMoteAddition(id : int) : void

R+n(id)

(a) Mote addition handler

MaxpowerMoteRemovalHandler::

handleMoteRemoval(v1 : Mote) : void

R-n(v1)

(b) Mote removal handler

MaxpowerLinkAdditionHandler::handleLinkAddition

(v1:Mote, v2:Mote, w:double) : void

R+e(v1, v2, w)

(c) Link addition handler

MaxpowerLinkRemovalHandler::

handleLinkRemoval(v12 : Link) : void

R−e(v12)

(d) Link removal handler

MaxpowerLinkWeightModificationHandler::handleLinkWeightModification(v12:Link, w:double) : void

Rmod-w(v12, w)

(e) Link weight modification handler

Figure 3.24: Story diagrams for Maxpower-specific context event handlers
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3.6 configuration space specification

Modern WSN motes provide numerous configuration options, which can be either se-
lected at compile time or, in case of adaptive WSNs, at runtime [183]. The space of con-
figuration options can be captured using feature models from the domain of Software
Product Line (SPL) engineering. A feature model usually provides a high-level, formal
view of the system (also called the problem space). In contrast metamodeling (Section 3.1)
is a technique for describing abstract representations of concrete systems that is closer
to the actual implementation (also called the solution space) [180, 258]. While traditional
SPLs typically describe the configuration space of a software system at or before its de-
ployment, a dynamic software product line (DSPL) represents the possible reconfiguration
at runtime [222].

A classic feature model [107, 108] represents only Boolean configuration options of a
system as features. In [108], Karatas et al. introduced extended feature models, which also
support to model configuration options with domains beyond Boolean values using
feature attributes (e.g., integers, real numbers). In extended feature models, a feature
attribute belongs to a parent feature. An established notation for feature models are
feature diagrams in the style of the Feature-Oriented Domain Analysis (FODA) [107]. A
feature diagram layouts a feature model in a tree-like structure. In the following, we
introduce basic terminology of feature models and feature diagrams.

In FODA notation, a feature is denoted by a rectangular box and a feature attribute
is denoted by a circle or ellipsis. Rectangles and circles are labeled with the name of
the feature or feature attribute, respectively. A feature model instance assigns to each
feature the value true (i.e., the feature is selected) or false (i.e., the feature is deselected).
An attribute of a selected feature is configured with a value from its domain. A feature
model specifies additional constraints among features and feature attribute. The unique
root feature of a feature model is always selected in a valid feature model instance. The
root feature is always shown on the top of a feature diagram. Except for the root feature,
all features and feature attributes possess a parent feature. The parent-feature relation
is acyclic. In a feature diagram, a child feature is connected to and placed below its
parent feature. A child feature can only be selected if its parent feature is selected. A
child feature can be either mandatory feature, an optional feature, or part of a feature
group, which is labeled with either «XOR» or «OR». A mandatory child feature must be
selected if its parent feature is selected (denoted with a solid black circle on top of the
child feature’s rectangle). An optional child feature may be selected if its parent feature is
selected (denoted with a framed circle on top of the child feature’s rectangle). Within an
«XOR» feature group, exactly one child feature must be selected. Within an «OR» feature
group, at least one child feature must be selected.

Cross-tree constraints can further restrict the set of possible feature model instances.
Its name indicates that a cross-tree constraint involves two features that are not part of
the parent-feature relation. A require cross-tree constraint from a source feature to a target
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feature specifies that the target feature must be selected if the source feature is selected
(denoted by a directed arrow labeled with «require»). An exclude cross-tree constraint
among two features specifies that at least one of the features must be deselected (denoted
by a two-headed arrow labeled with «exclude»).

A context feature model [88] is a feature model where each feature and feature attribute
is assigned one of two categories. A context feature represents a configuration option
that is determined by the system context and cannot be modified by the system (e.g.,
the density of motes). A system feature is configuration option that can be modified by
the system (e.g., to react to modifications of the system context). A feature attribute is
labeled according to its parent feature. A context feature attribute belongs to a context
feature and a system feature attribute belongs to a system feature.

In recent years, the expressiveness of extended feature models has been enhanced
by introducing multiplicities, which further reduces the gap between problem space
and solution space [195, 221, 272]. These extensions could be used, e.g., to specify the
maximum number of concurrently active TC mechanisms within a TC multi-mechanism.

Example 3.35 (Feature model and feature model instance). Figure 3.25 shows the
feature diagram of a feature model with seven features and three feature attributes.
System and context features are decorated with small rectangles containing either
an S or C.

The root feature is Mote and has the optional system child feature TC and the
mandatory context child feature PerformanceGoal. The child features of Performance-
Goal describe the possible performance goals of the mote: reducing the energy
consumption (LowEnergy), increasing the robustness (HighRobustness), and reducing
packet latency (LowLatency). Exactly one performance goal may be selected («XOR»
group).

The system feature TC has two child features for the TC algorithms kTC [227] and
l*kTC [239]. We omit details about l*kTC at this point. Exactly one TC algorithm
may be selected («XOR» group). The TC algorithms have three real-valued three
attributes: k belonging to kTC, and k and a belonging to l*kTC. The cross-tree
constraints enforce that TC is disabled if high robustness is required («exclude»)
and that a TC algorithm must be selected if low energy consumption is desired
(«require»).

Features and feature attributes with a gray background describe a valid feature
model instance. The value within the square brackets of the selected feature at-
tribute k indicate that kTC has been configured with k = 1.2.

This example also illustrates that the problem-space perspective is usually more
abstract compared to the solution-space perspective: In the feature model, kTC is
represented by a feature with an attached feature attribute. In contrast, the meta-
model in Figure 3.4 represents a TC algorithm using six classes for the TC algorithm
and the different context event handlers.
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Mote

TC PerformanceGoal

kTC

l*kTC

k[1.2]

k

a

LowEnergy

HighRobustness

بexcludeا

بXORا
f Selected feature f

f Feature f
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real
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D

f Optional feature f
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Figure 3.25: Example: Feature diagram with feature model instance (grey)
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3.7 related work

In this section, we survey related work on approaches for specifying TC algorithms and
communication systems in general. Communication systems have been the running
example or target domain of many works in the MDE and GT community (e.g., [90, 124,
157]). We also investigate additional modeling techniques w.r.t. their modeling purpose
and potential for extending our approach.

3.7.1 Snapshot-based approaches

By a snapshot-based approach, we mean an approach that specifies a TC algorithm declara-
tively as relation over valid input and virtual topologies. This characterization is widely
used in the WSN domain (see, e.g., the following surveys [219, 264, 267]).

Not all snapshot-based approaches can be specified using the modeling techniques
presented in this chapter. This is the case if at least one of the following assumptions
is violated: (i) The consistency specification is partly expressible in terms of graph con-
straints [91]; (ii) The joint fulfillment of all graph constraints in the consistency specifi-
cation implies the fulfillment of the entire consistency specification.

For example, a centralized TC algorithm that requires the virtual topology of the entire
WSN to be a global minimum spanning tree is not expressible in first-order logic. A
spanning tree of an underlying weighted graph is an acyclic subgraph with identical node
set and reduced edge set compared to the underlying graph. For a given underlying
graph, a minimum spanning tree (MST) has the smallest sum over link weights among
all spanning trees. We can also reformulate this consistency property as follows: The
virtual topology forms a global minimum spanning tree if we inactivate all links that are
the weight-maximal link on some cycle in the input topology (see cycle cancellation rule
of Kruskal’s algorithm [127]). Due to the required global coordination and the missing
redundancy, the global minimum spanning tree algorithm is usually not used in practice.
Instead, in case of many-to-one communication in a WSN, several routing protocols
construct a approximately minimum spanning tree on top of the virtual topology of the
TC algorithm (e.g., [99, 276]).

A related TC algorithm is the Local Minimum Spanning Tree (LMST) algorithm [140],
which is a localized variant of the global minimum spanning tree algorithm. The LMST
algorithm builds a minimum spanning tree within the local view of each mote and
inactivates all of its outgoing links that are not part of the LMST. Non-nested graph
constraints in the sense of [91] are not expressive enough to model LMST because, as for
the global minimum spanning tree algorithm, the patterns of the graph constraints are
not of a fixed size.

If the number of neighbors in the local view of a mote is limited by an upper bound
(e.g., if a minimal geographic distance between motes is known), we can solve this prob-
lem using graph constraints as follows. Regarding the inactivation of links, we create
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Figure 3.26: LMST-specific graph constraints for limited neighborhood size x

one positive graph constraint that contains a conclusion pattern for each possible length
of a cycle that justifies the inactivation of a link if it is the weight-maximal link on the cy-
cle. Regarding the activation of links, we create one negative graph constraint for each
possible cycle length. From the end-user perspective, this approach is, of course, not
desirable due to the excessive amount of resulting application conditions. Figure 3.26

sketches this solution for LMST, where the maximum neighborhood size is limited by
some value x.

A less pragmatic and more foundational approach is the extension of graph con-
straints to nested graph constraints [55, 83], which allow to encode first-order logic
expressions. Instead of simple conclusion patterns, the conclusion of a nested graph
constraint can be another nested graph constraint. Therefore, arbitrary nesting is possi-
ble (conceptually). Still, first-order logic is not sufficient to express properties such as
the acyclicity of a graph, which is required for the LMST algorithm.

To overcome this limitation, several formalisms have been proposed. In [167], Navarro
et al. extend the logic of nested graph conditions [83] to represent paths of unbounded
length. In contrast to nested graph constraints, Navarro et al. do not show how to
ensure the correctness of a specification constructively w.r.t. their constraint formalism.
Therefore, this constraint formalism is not compatible with our major goal of devising a
correct-by-construction methodology.
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In [84], Habel and Radke present HR∗ constraints, a new type of graph constraints that
allow to express path-related properties. They showed that the constructive approach
is also applicable to HR∗ constraints [196]. Therefore, using HR∗ constraints instead of
graph constraints in our scenario is possible, at least from a conceptual point of view.
If we use HR∗ constraints a formalization of consistency properties of tree-based TC
algorithms (e.g., LMST [140]) should be possible.

3.7.2 Graph-grammar–based approaches

In this thesis, we model not only consistency properties of TC algorithms using graph
constraints but also the possible topology modifications and their execution order using
programmed GT.

In the following paragraphs, we survey works that solve challenges in communication
systems engineering using programmed GT and graph grammars. We will also see
how the proposed modeling techniques could be useful in our scenario to investigate
additional (e.g., stochastic) properties of TC algorithms or to describe additional types
of TC algorithms (e.g., probabilistic TC algorithms).

In [28], Bucchiarone et al. propose to specify self-adaptive systems using attributed
graph grammars to identify dependencies and conflicts between GT rules. A self-adap-
tive system observes its internal state and environment and, based on these observations,
adapts itself if necessary (e.g., to compensate for defect components (self-healing) or to
improve its performance (self-optimization)) [42]. As running example, Bucchiarone et
al. consider a case study of a car logistics scenario. Similar to this thesis, they distinguish
between system rules, which represent actions of the self-adaptive system and context
rules, which describe effects of the (uncontrollable) environment. The conducted depen-
dency and conflict analysis (using the GT tool AGG [248]) helps to understand whether
the specification always terminates for a given context event rule. In contrast to this
work, they do not analyze whether the specification fulfills the required consistency
properties.

In a survey paper on research challenges during the development of complex self-
adaptive systems [19], Bennaceur et al. highlight that techniques such as the constructive
approach are suitable to ensure that inter- and intra-model consistency requirements are
preserved by a behavioral specification.

In [29], Bur et al. model a distributed cyber-physicalsystem as distributed runtime
graph model that is dispersed over several (resource-constrained) devices. The purpose
of their approach is to identify violations of consistency properties that are specified as
graph queries. In contrast to the interpretation of graph constraints in this thesis, a suc-
cessful evaluation of a graph query in [29] corresponds to a violation of the consistency
specification. The distributed character of the runtime model is captured using 3-valued
logic, where each local model element is either present, absent, or in an unknown state.
In this thesis, we focus on the per-node perspective of a TC algorithm and assume
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that the underlying communication mechanism ensures an eventual delivery of context
events to neighbor motes. The approach by Bur et al. is a promising extension of our
approach, when message transfer shall be modeled explicitly during the specification
phase (e.g., for detecting liveness issues such as deadlocks, livelocks, or starvation [61]).

In [124], Krause et al. propose probabilistic GT as a means to specify GT rules with
multiple RHS patterns where each RHS pattern is annotated with a probability. The sum
of probabilities over all RHS patterns of a GT rule must add up to 1.0. In comparison
to multiple non-probabilistic GT rules with identical LHS patterns and distinct RHS
patterns, a probabilistic GT rule can assign to each RHS pattern a different likelihood.
The authors illustrate the usefulness of probabilistic GT based on a WSN case study
with a gossiping application. One possible gossiping scenario is that a mote forwards
a message to one of its neighbor motes based on a probability distribution [102]. For
instance, a mote may decide to forward a message with a probability of 90 % and to not
forward it with a probability of 10 %. In [124], the transmission of a message is modeled
as a probabilistic GT rule with two RHS patterns for modeling a positive forwarding
decision with probability p and a negative forwarding decision with probability 1 −
p. The authors show how a probabilistic GT system can be translated into a Markov
Decision Process based on a given start graph. To enable model checking, the resulting
Markov Decision Process may only represent a finite state space. The analysis goals
that are verified using the model checker PRISM [131] are formulated in Probabilistic
Computational Tree Logic (PCTL) [87] (e.g., “How large is the probability that mote X
has received a message after Y transmission iterations in the given topology?”).

In [157], Maximova et al. propose probabilistic timed GT as a means to annotate GT
rules with probabilities in the spirit of the already discussed probabilistic GT [124] and,
additionally, clock constraints as known from timed automata (e.g., to specify that a
given GT rule may only be applicable within a certain time period). As running exam-
ple, the authors consider the RailCab scenario [92], which consists of small autonomous
railroad shuttles. The RailCab shuttles need to communicate to avoid collisions, e.g., at
railroad switches. Conceptually, the authors show how to translate a probabilistic timed
GT system into a corresponding probabilistic timed automaton [132] based on a given
start graph. As in probabilistic GT, the resulting probabilistic timed automaton repre-
sents a finite portion of the state space of the probabilistic timed GT system. Analysis
goals for model checking a probabilistic timed GT system are specified in Probabilistic
Timed Computational Tree Logic (PTCTL) [132] and verified using PRISM [131]. For
example, one analysis goal is to estimate the probability of an emergency break given
that the communication attempt between two shuttles fails with a certain probability
within a given period of time.

In [90], Heckel et al. introduce stochastic GT as a means to annotate a GT rule with an
application rate, which signifies the expected waiting time until the GT rule is applied
at a match in a graph. As running example, they model a communication system with
mobile devices, which connect to radio stations in their vicinity. The stochastic GT rules
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specify the device movement behavior as well as failure and repair rates of radio towers.
They propose to translate a stochastic GT system into a continuous-time Markov chain
(CTMC) based on a given start graph via an intermediate representation as labeled
transition system (LTS). The resulting continuous-time Markov chain can only represent
a finite number of graphs. The authors propose to specify analysis goals in Continuous
Stochastic Logic (CSL) [10]. To evaluate the analysis goals, the authors use the model
transformation tool GROOVE [204] for creating a finite part of the state space of a given
stochastic GT system as labeled transition system. This labeled transition system is
annotated with the application rates and passed to the PRISM model checker to evaluate
the analysis goals specified in Continuous Stochastic Logic. Complementary to [90],
Torrini et al. present a simulation environment for evaluating specifications based on
stochastic GT in [256].

In [17], Becker and Giese present a development approach for the architecture of self-
adaptive systems [42] based on UML class and object diagrams as well as SDM [60].
First, they identify eight requirements that such a modeling approach should fulfill
(e.g., multiple levels of abstraction, techniques for specifying dynamics, time constraints
and correctness, representation of the system environment). Regarding the notion of
correctness, they discuss the utility of simulation and verification using inductive invari-
ants [53]. The former method provides anecdotal evidence based on selected execution
traces of the system, and the latter method allows to verify statically the correctness
of the specification. Similar to the already discussed probabilistic and stochastic ap-
proaches to GT [90, 124] the authors propose to analyze the timing behavior of the
specification based on an analysis of a finite subset of the state space of the system in a
model checker.

Probabilistic, timed probabilistic, and stochastic GT are complementary to the tech-
niques used in this thesis because their purpose is to verify probabilistic and time-re-
lated properties of a system based on a finite state space. Our goal is to refine a system
specification to ensure that consistency properties hold, regardless of the system size.
Stochastic GT could be used in the context of the development of TC algorithms to spec-
ify arrival rates of context events (e.g., to determine whether it makes sense to invoke
the TC algorithm specification at a particular point in time or for a given unmarked
link). Probabilistic GT could be used to model gossip-based TC algorithms, which de-
cide whether to activate and inactivate a link based on probability distribution. Under
such circumstances, the graph constraints that we use for specifying local consistency
properties can not longer be used as is. Instead, we would need to characterize con-
sistency properties, for instance, as a threshold on the number of constraint violations
or as an expectation values thereof. This extension of the concept of graph constraints
is outside the scope of this thesis. Another alternative could be to adjust the consis-
tency specification to be more restrictive w.r.t. link inactivation. For instance, we could
require that a link may only be inactive if it is part of a triangle that fulfills the kTC
condition and if, additionally, none (or at most one) of the other two links is inactive
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already. This modification could limit the expected stretch factor, which signifies how
much longer a path in the virtual topology is compared to the corresponding path in
the input topology.

3.7.3 Game-theoretic approaches

In game-theoretic approaches, the individual motes are considered as player who try
to improve their individual benefit according to a local reward function, which maps
each combination of state and action of a player to a reward. If the reward function is
properly designed [161], the pursuit of a mote’s individual goal also maximizes some
desired global property (e.g., minimizes the overall energy consumption or the fairness
w.r.t. energy consumption). Surveys of game-theoretic approaches to developing TC
algorithms can be found in [153, 231].

In Chapter 1, we shortly discussed the example of the CTCA algorithm [35, 36] for
illustrating the difficulty of bridging the gap between the formal (game-theoretic) spec-
ification and the actual implementation (as pseudo- and simulation code). The idea
behind CTCA is close to the idea of kTC: From a graph-theoretic point of view, CTCA
also resolves triangles but the cost function is different from the distance-based cost
function of kTC. Each mote knows about its battery level (i.e., its remaining energy)
and the estimated energy that is required to transmit a fixed amount of data across each
of its links in the input topology. Each mote shares this information with its one-hop
neighbors. A mote estimates its expected remaining lifetime and the expected remain-
ing lifetime of its neighbors based on the active links with largest transmission power.
CTCA inactivates a link if it is part of a triangle, where the other two links have a larger
expected remaining lifetime, and activates all other links. Using the expected remaining
lifetime as link weight, a mote with high energy level may activate an energy-intensive
link to assist a neighbor with low energy level.

Our observation is that, in contrast to the traditional style of formulating a TC al-
gorithm as relation over input and virtual topologies, the structure of game-theoretic
problem formulations is naturally incremental because each mote performs elementary
actions (e.g., add a link to or remove a link from the virtual topology). These elementary
actions can be modeled as GT rules. To apply our approach, we would need to enrich
each such GT rule with a context in which taking the corresponding action is benefi-
cial in the game-theoretic sense. To provide a concrete example for this idea, we show
how to specify the game-theoretic CTCA algorithm as an energy-aware variant of kTC
in Chapter 6.

3.7.4 Role-centric approaches

Role-centric approaches focus on separating the concerns of different stakeholders of
the TC algorithm development process. Classic roles are the domain expert, who wants
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to focus on a particular use case of a WSN (e.g., wildlife monitoring), and the network
expert, who is an expert for a particular sensor platform and its operating system (e.g.,
Tiny OS [95]). Our observation is that this research space is huge. Therefore, we sum-
marize only a few of the existing works in the following.

In [212, 213], Rodrigues et al. present an MDE approach to developing WSN algo-
rithms in a platform-independent way. The development workflow consists of (i) a
transformation from a platform-independent model (represented as textual DSL) to a
platform-specific model and, (ii) a model-to-text transformation via platform-specific
templates. The business logic of a WSN algorithm is specified as UML state machine [78].
The discussed metamodel contains only two types of topology (i.e., flat and hierarchi-
cal), but it appears that their approach could be extended to support additional TC
algorithms. The proposed approach provides no means to verify correctness properties
or to integrate such properties constructively.

In [252], Tei et al. present an MDE approach to develop data-processing WSN appli-
cations. The application programmer specifies the data flow from the sensor nodes to
the sink node and the network expert provides the implementation of data-processing
operations and the code templates for the sensor platform. As an intermediate repre-
sentation, the data flow model is transformed into a group model, which describes the
deployment plan for a concrete WSN. Their approach treats the choice of the network
topology as design decision of the network expert. The topology is mapped to the
selected routing algorithm. Tei et al. support tree, star, and flat topologies. Possible ex-
tensions of the specification to general TC algorithms are not discussed. Our approach
to develop TC algorithms in a model-driven manner is complementary to the approach
by Tei et al. because the active TC algorithm should not affect the functionality of a
specified data-processing application.

Berardinelli et al. invented the Agilla Modeling Framework4 to simulate applications
written in the agent-based Agilla language [61]. Agilla is an agent-based specification
framework for specifying WSN applications. This paradigm allows a WSN application
to move from one mote to another one (roughly similar to a minimalist virtual machine).
The Agilla Modeling Framework builds on Foundational UML (fUML) [158], a subset
of the UML with formalized semantics. In the Agilla Modeling Framework, activity
diagrams are used to represent the control flow of WSN applications. This is similar to
the usage of SDM in this thesis to describe the control flow of TC algorithms. However,
the abstraction level of a specification in the Agilla Modeling Framework is lower in
comparison to the topology patterns that we employ in this thesis. For instance, in
Agilla, typical instructions serve to manipulate actors or fetch sensor values.

In [4], Al Saad et al. present ScatterClipse, an MDE tool for developing WSN appli-
cations based on the ScatterWeb [220] WSN platform. The authors model the control
flow of test cases for a WSN using hierarchical activity diagrams, where an activity node
can contain an activity subdiagram. Operations that are supported by the framework

4 AMF page: http://sealabtools.di.univaq.it/tools.php (visited: 2018-09-17)

http://sealabtools.di.univaq.it/tools.php
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include logging as well as sending and receiving packets. The instruction set appears
to be smaller compared to Agilla. The specification is translated into platform-spe-
cific code using a code generator than can be configured using custom code templates.
The specification can be instrumented with assertions that are evaluated later on the
sensor nodes. The reduced instruction set implies that a considerable part of the ap-
plication logic needs to be implemented as platform-specific code. Even though the
authors mention model checking as a means to verify the specification, their notion of
model checking appears to the limited to syntactic and semantic checks of the visual
application model (e.g., that naming conventions are obeyed to).

All of the role-centric MDE approaches have in common that their major goal is to
provide a modeling environment for WSN applications that relieves the application
developer from the low-level details of a concrete sensor platform. These approaches
usually provide tool support for visual modeling or Domain-Specific Languages and al-
low to configure the code generation using code templates. The abstraction level of the
provided modeling primitives is usually higher than the abstraction level of program-
ming the target platform immediately (e.g., using C-dialects or Assembler). Several
of the approaches that we surveyed support the reconfiguration of the topology. Still,
this reconfiguration is often only possible at design time, and only a limited set of pre-
configured topologies is available (e.g., flat vs. tree). In contrast, our approach focuses
on the topology of the network and is orthogonal to the specification of the concrete
WSN application, even though the selection of a particular TC algorithm may have a
drastic influence on the performance of a particular WSN application. Finally, separat-
ing concerns of experts for specification frameworks and the network experts is also an
important goal of this thesis.





4
S Y N T H E S I S O F C O R R E C T T O P O L O G Y C O N T R O L M E C H A N I S M S

In Chapter 3, we introduced techniques for specifying (i) when a topology is structurally
valid (using metamodeling and structural graph constraints, see Sections 3.1 and 3.2),
(ii) when the topology fulfills the consistency specification (using TC-algorithm–specific
graph constraints, see Sections 3.2 and 3.3), (iii) what types of elementary topology
modifications exist (using GT rules, see Section 3.4), and (iv) how GT rules can be
composed into a TC mechanism specification (using SDM, see Section 3.5). Finally, we
provided a specification of the Maxpower algorithm (Example 3.32). The example of
the Maxpower algorithm is arguably simple and served to provide an overview of the
introduced modeling techniques.

chapter structure In this chapter, we describe an iterative refinement approach
to synthesize a correct TC mechanism specification. As before, kTC serves as running
example. We begin with applying the constructive approach [44, 91] and, based on the
resulting TC mechanism specification, we determine further required refinement steps
to come up with a correct TC mechanism specification. Figure 4.1 locates the role of this
chapter in the entire TC algorithm development process (see also Figure 1.2).

In Section 4.1, we characterize in how far applying a GT rule preserves or violates a
graph constraint. This characterization leads us to the definition of the correctness of a
TC mechanism specification (Definition 4.7).

Modeling language

Domain concepts

Specification

Simulation platform

Simulative evaluation Testbed evaluation

Testbed platform

7

4

1 2 3

5 6

X YActivity Artifact Chapter focus

Figure 4.1: Location of Chapter 4 in TC algorithm development process
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In Section 4.2, we explain how the constructive approach by Heckel and Wagner [91]
allows us to refine the TC mechanism specification to ensure that each topology modi-
fication preserves weak consistency. Intuitively, the constructive approach restricts the
applicability of a given GT rule based on a given graph constraint by transforming the
graph constraint into a set of additional synthesized application conditions for the rule. Af-
ter repeating this procedure for each combination of GT rule and graph constraint in the
constraint set of weak consistency, all refined GT rules preserve weak consistency. Ap-
plying the constructive approach leaves the control flow specification unchanged; only
individual GT rules are modified. As a result, weak consistency is an inductive invariant
of the TC mechanism specification [53]. This means that each GT rule application pre-
serves weak consistency and, therefore, the entire control flow specification preserves
weak consistency.

The TC mechanism specification is consistency preserving by construction at this
point. However, applying the constructive approach to context event rules, reduces
the applicability of these GT rules. From the domain perspective, restricting the appli-
cability of a GT rule means that we forbid certain environmental changes to occur (e.g.,
a link may not be removed if the resulting topology would violate weak consistency).
This contradicts the requirement that context event rules are irrestrictable. In Section 4.4,
we show how to resolve this problem by introducing an additional refinement step that
transforms each synthesized application condition of a context event rule into an antic-
ipation loop. An anticipation loop for a particular application condition unmarks exactly
those links that would otherwise prevent the application of the context event rule due
to a violation of this application condition. The algorithm for synthesizing anticipation
loops is the major contribution of this section (see Algorithm 4.3).

In Section 4.5, we discuss the applicability of the proposed anticipation loop synthesis
algorithm in general (Section 4.5.1) and based on two additional use cases: the handling
of parameter modifications of the TC algorithm (Section 4.5.2) and the constructive re-
finement of the TC algorithm specification to ensure termination (Section 4.5.3).

related publications and theses In [122], we presented how to employ the
constructive approach to TC algorithms for the first time. In [118], we presented the
full kTC case study with all intermediate synthesis steps. In [119], we presented the
anticipation loop synthesis algorithm and, additionally, used it to ensure constructively
that the TC algorithm specification terminates (see also Section 4.5.3).
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4.1 consistency preservation and violation

In this section, we investigate how applying a GT rule (see Definition 3.24) to a model
influences the fulfillment of graph constraints (see Definition 3.16). We first concen-
trate on individual GT rule applications and, then, consider the influence of the control
flow specification. The following definition focuses on consistency preservation in gen-
eral.

Definition 4.1 (Consistency preservation in general). A modification of a model pre-
serves consistency w.r.t. a consistency level C if the model is consistent w.r.t. C after
the modification given that the model was consistent w.r.t. C prior to the modifica-
tion.

We now concretize the preceding general definition to consistency preservation for GT
rules w.r.t. graph constraints. We begin with a situation where a particular GT rule ap-
plication preserves or violates a particular constraint and lift this definition to constraint
sets, GT rules, and, finally, story diagrams.

Definition 4.2 (Constraint and consistency preservation of GT rule application). The
application of a GT rule R at a match m preserves a constraint C if the topology fulfills C
prior to and after the application of R at m. Otherwise, the application R at m violates
C.

The application of a GT rule R at a match m preserves consistency w.r.t. a constraint set
C if the rule application preserves all constraints in C. Otherwise, the application of
R at m violates consistency w.r.t. C.

A closer look at the premise-conclusion structure of graph constraints allows us to char-
acterize constraint violation reasons. The violation of a positive graph constraint due to a
GT rule application can have one of two reasons: The first possible reason is that the rule
application destroys a match of a conclusion pattern and this match is the only exten-
sion of a match of the premise without either (i) destroying the corresponding match of
the premise or (ii) creating another extension of the premise match to some conclusion
pattern match. The second possible reason is that the rule application creates a match
of the premise that cannot be extended to a match of any conclusion pattern.

A violation of a negative graph constraint due to a GT rule application can only occur
if a new match of the premise of the constraint is created by applying the GT rule. In any
case, the violation of a graph constraint can be represented as a match of the premise of
the graph constraint.

The preceding definition considers a concrete situation where a GT rule is a applied
at a particular match in a model. The following definition lifts the preceding definition
to GT rules in general.



96 4 synthesis of correct topology control mechanisms

Definition 4.3 (Constraint and consistency preservation of GT rule). A GT rule R
preserves a constraint C if, for all valid models GM and all matches m of R in GM, the
application of R at m preserves C. Otherwise, R violates C.

A GT rule R preserves consistency w.r.t. a constraint set C if, for all models GM and all
matches m of R in this model, the application of R at m preserves consistency w.r.t.
C. Otherwise, R violates consistency w.r.t. C.

Finally, the following definitions lift the notion of constraint and consistency preserva-
tion to the execution of story diagrams.

Definition 4.4 (Constraint and consistency preservation of story diagram execution).
The execution of a story diagram SD preserves a constraint C if each GT rule application
that occurs until the execution reaches the stop node preserves C. Otherwise, the
execution of SD violates C.

The execution of a story diagram preserves consistency w.r.t. a constraint set C if each
GT rule application that occurs until the execution reaches the stop node preserves
consistency w.r.t. C. Otherwise, the execution of SD violates C.

The following definition lifts the notion of constraint and consistency preservation to a
perspective that is independent of an individual execution of a story diagram.

Definition 4.5 (Constraint and consistency preservation of story diagram). A story
diagram SD preserves a constraint C if, for each valid model GM, the execution of SD
preserves C. Otherwise, SD violates C.

A story diagram SD preserves consistency w.r.t. a constraint set C if, for all valid mod-
els GM, the execution of SD preserves consistency w.r.t. C. Otherwise, SD violates
consistency w.r.t. C.

The preceding definitions (Definition 4.1 to Definition 4.5) disregard models that are
inconsistent prior to the GT rule application or story diagram execution, respectively.
This means that a consistency preserving GT rule or story diagram has undefined be-
havior for inconsistent input models. Therefore, achieving consistency preservation is
usually only sensible if it can be established as invariant. For instance, weak consis-
tency is an invariant of the TC algorithm and the context event handlers and should be
preserved consequently.

However, not all consistency properties can be maintained as invariant. For instance,
strong consistency is not an invariant but only the postcondition of the TC algorithm
because context events necessarily produce unmarked links and thereby violate strong
consistency (e.g., when a link is created by a link addition event). To characterize the
interplay of such consistency properties with modifications of the model, we introduce
the notion of consistency enforcement in the following.
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Definition 4.6 (Consistency enforcement in general). A modification of a model GM
enforces consistency w.r.t. a precondition consistency level Cpre and a postcondition consis-
tency level Cpost if GM is consistent w.r.t. Cpost after the modification given that GM
was consistent w.r.t. Cpre before the modification.

The definition of consistency enforcement (Definition 4.6) is a generalization of the def-
inition of consistency preservation (Definition 4.1). In the latter case, the precondition
and postcondition consistency levels coincide: Cpre = Cpost. Analogous specialized defini-
tions for constraint and consistency enforcement can be given for GT rule applications,
GT rules, story diagram executions, and story diagrams (Definition 4.1 to Definition 4.5).
For the sake of brevity, we omit these analogous definitions here. In the literature,
consistency-enforcing modifications are also called consistency guaranteeing (e.g., in [91])
or consistency establishing (e.g., in [89]).

The preceding general definitions of consistency preservation lead us to the following
definition of correctness of TC mechanism specifications.

Definition 4.7 (Correctness of TC mechanism). A TC mechanism is correct w.r.t. a
given three-level consistency specification (in the sense of Definition 3.22) if the follow-
ing six correctness criteria CC1,. . . , CC6 are fulfilled. (i) The TC algorithm spec-
ification terminates (CC1), preserves weak consistency (CC2), and enforces strong
consistency (CC3). (ii) each TC-algorithm–specific context event handler terminates
(CC4), preserves weak consistency (CC5), and processes the context event (CC6).

A context event handler processes a context event if it (i) removes the corresponding
context event marker from the topology, and (ii) applies the corresponding opera-
tionalizing context event rule according to Table 3.2.

In the following example, we illustrate Definition 4.7 by proving the correctness of the
Maxpower specification.

Example 4.8 (Correctness of Maxpower specification). We now sketch why the Max-
power specification is correct by showing that all six correctness criteria are fulfilled.
The Maxpower specification consists of the story diagrams shown in Figures 3.22

and 3.24.
Criterion CC1: The Maxpower algorithm specification in Figure 3.22 terminates.

Proof idea: The execution of the story diagram terminates if the topology contains
no more unmarked links (see [F]-edge at the story node containing the application
of the find-unmarked–link rule Rfind-u). The number of unmarked links decreases
by one with each iteration of the loop because the activation rule Ra is always ap-
plicable to an unmarked link v12 identified by applying the find-unmarked–link
rule Rfind-u. For a given topology, the set of links is finite and so is the number of
loop iterations.
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Criterion CC2: The Maxpower algorithm specification in Figure 3.22 preserves weak
consistency. Proof idea: The constraint set of weak consistency for Maxpower con-
sists of Cno-loops, Cno-parallel-links, the inactive-link constraint CMaxpower,i (Figure 3.15a),
and the active-link constraint CMaxpower,a (Figure 3.15b). The constraint CMaxpower,a
is always fulfilled due to its equal premise and conclusion patterns. The constraint
CMaxpower,i is violated if an inactive link exists in the topology. We show the preserva-
tion of consistency by considering the effect of each possible successful application
of a GT rule in Figure 3.22. Applying the find-unmarked–link rule Rfind-u preserves
weak consistency because this rule does not modify the topology. Applying the
activation rule Ra activates the given link v12 and, therefore, neither creates a loop
(Cno-loops) nor a parallel link (Cno-parallel-links), and never inactivates a link (CMaxpower,i).
Therefore, the Maxpower algorithm specification preserves weak consistency.

Criterion CC3: The Maxpower algorithm specification in Figure 3.22 enforces strong
consistency. Proof idea: An execution of the Maxpower algorithm specification may
only terminate if Rfind-u is inapplicable. This is the case if the topology contains
no unmarked links and, therefore, fulfills the no-unmarked-links constraint Cu. In
conjunction with CC2, we conclude that the Maxpower specification enforces strong
consistency.

Criterion CC4: The execution of each Maxpower-specific context event handler spec-
ification shown in Figure 3.24 terminates. Proof idea: No story diagram in Figure 3.24

contains loops. Therefore, the execution of each story diagram always terminates.
Criterion CC5: Each Maxpower-specific context event handler specification shown

in Figure 3.24 preserves weak consistency. Proof idea: The argumentation in this case
is similar to the one for CC2: Neither rule application in the context event handler
specification creates a loop (Cno-loops) or a parallel link (Cno-parallel-links), or inactivates
a link (CMaxpower,i). Therefore, the context event handler specification preserves weak
consistency.

Criterion CC6: Each Maxpower-specific context event handler specification shown
in Figure 3.24 processes the corresponding context event. Proof idea: The single GT
rule application in each context event handler diagram corresponds to the opera-
tionalizing GT rule application that is required according to Table 3.2.

In the next step, we prepare the construction of a correct TC mechanism specification
for the kTC example. We begin with specifying initial control flow template in the
following examples.

Example 4.9 (Control flow specification templates). We propose to use a modified
version of the Maxpower specification as starting point for developing the kTC spec-
ification. We expect a TC mechanism developer to provide suitable control flow
specification templates for the TC mechanism under construction.
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TopologyControlAlgorithm::run(var v12:Link) : void

v12=Rfind-u() Ra(v12)
[S]

Ri(v12)
[S]

[F]
[F]

Figure 4.2: Story diagram of TC algorithm template

As generic TC algorithm specification template, we use the story diagram shown in
Figure 4.2, which extends the specification of the Maxpower algorithm by an applica-
tion of the inactivation rule Ri if the activation rule Ra is inapplicable. The order in
which unmarked links are identified is undetermined, which allows the execution
environment to choose freely which links to process first. The application of Ri is
unreachable in the template because Ra is always applicable to a link v12 identified
by applying Rfind-u. This behavior is intended because we refine Ra and Ri in subse-
quent steps, which cause Ra to be inapplicable for certain unmarked links v12. The
order of applying first Ra and then Ri is chosen arbitrarily here.

As context event handler specification templates, we use the story diagrams of the
Maxpower-specific context event handlers shown in Figure 3.24. Each of these story
diagrams constitutes a minimal implementation that fulfills the correctness criterion
CC6, which requires that a context event handler processes a pending context event
according to Table 3.2.

Now, we investigate in how far the proposed TC algorithm template preserves weak
consistency w.r.t. kTC. This is an optional step that serves to understand which con-
straints are preserved or violated by which GT rules.

Example 4.10 (Consistency violations by template specification). Table 4.1 summa-
rizes which of the kTC-specific weak consistency constraints {CkTC,i,CkTC,a} are vi-
olated by which of the GT rules in the template specification (Figures 3.24 and 4.2).
The parameter k of kTC is set to 1.3.

The structural constraints Cno-loops and Cno-parallel-links are preserved by all GT rules
thanks to (i) the negative application condition NAC+e,1 of the link addition rule
R+e, which prevents the creation of parallel links, and (ii) the injectivity of matches,
which prevents that the mote variables v1 and v2 in R+e, which represent the source
and target motes of the created link, are mapped to the same mote.

For each constraint violation, the constraint-violating GT rule applications refers
to the sample topology shown in Figure 4.3. The GT rule applications Ra(`9 11),
Ra(`11 9), R+e(n5, n7, 1)), R+e(n7, n10, 1)), Rmod-w(`79, 1), and Rmod-w(`97, 1) each create
a match of the premise of the negative constraint CkTC,a. The GT rule applications
Ri(`12) and Ri(`21) create a match of the premise of the positive constraint CkTC,i that
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Table 4.1: Example: Preservation (3) and violation (7) of weak consistency w.r.t. kTC (k = 1.3)
by template specification (Figures 3.24 and 4.2). Consistency-violating GT rule appli-
cations refer to Figure 4.3. (Cnl = Cno-loops, Cnpl = Cno-parallel-links)

Cx Ra Ri R+n R-n R+e R−e Rmod-w

CkTC,a 7 3 3 3 7 3 7

Ra(`9 11),
Ra(`11 9)

R+e(n4, n5, 1),
R+e(n7, n10, 1)

Rmod-w(`79, 1),
Rmod-w(`97, 1)

CkTC,i 3 7 3 3 3 7 7

Ri(`12) R−e(`46),
R−e(`64)

Rmod-w(`23, 8),
Rmod-w(`32, 8)

Cnl 3 3 3 3 3 3 3

Cnpl 3 3 3 3 3 3 3

cannot be extended to a match of the conclusion pattern ckTC,i,1. The GT rule appli-
cations R−e(`46), R−e(`64), Rmod-w(`23, 8), and Rmod-w(`32, 8) each destroy a match of
the conclusion pattern ckTC,i,1 of CkTC,i without destroying the corresponding match
of the premise pkTC,i or creating a new match of ckTC,i,1.

The premise matches that represent violations of CkTC,a and CkTC,i are shown as
red cross marks (7) in Figure 4.3a.

After introducing the concepts of constraint and consistency preservation and viola-
tion and defining when a TC mechanism specification is correct, we focus on how to
ensure constructively that a (potentially incorrect) TC mechanism specification becomes
correct in the subsequent section.
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4.2 constructive approach

In this section, we introduce the goal of and ideas behind the constructive approach by
Heckel and Wagner [91]. The goal of this approach is to refine a set of GT rules R based
on a set of graph constraints C such that the refined GT rules R′ preserve consistency
w.r.t. the constraint set C. To achieve this goal, the approach iteratively refines each GT
rule RX in R based on each constraint CY in C (Algorithm 4.1). The synthesis algorithm
SynthesizeApplicationConditions is the core of the constructive approach and is re-
sponsible for synthesizing a set acs of additional application conditions (line 4) for the
GT rule RX based on the graph constraint CY (line 5). The original synthesis algorithm
presented in [91] is only able to process purely structural GT rules and graph constraints,
whose patterns contain no attribute constraints. Deckwerth and Varró [44] extended the
synthesis algorithm with an additional step for handling attribute constraints. In [44],
the authors discussed only negative application conditions, but their results carry over
to positive application conditions in an analogous way.

Figure 4.4 illustrates how the synthesis algorithm generates the required application
conditions for RX by conducting two major steps: the specialization step 1 and the an-
ticipation step 2 . At this point, we describe the general idea behind each step and de-
scribe the detailed (technical) steps in the context of the running example in Section 4.3.
A formal description of the algorithm can be found in [91].

During the specialization step ( 1 , [91, Prop. 3.1]), the graph constraint CX is trans-
formed into a set of postconditions PCX,Y,J of RX. This step is called specialization step
because its purpose is to transform a (global) graph constraint, which is independent of
any GT rule, into a postcondition, which is associated with a particular GT rule. Each
rule-constraint pair (RX,CY) results in zero or more postconditions (as indicated by the
index J). A postcondition of RX is similar to an application condition, but it relates to
RHSX (instead of LHSX). This means that a mapping from the variables of RHSX to
each postcondition premise p′X,Y,J exists. Each postcondition premise p′X,Y,J is a possible
overlapping of RHSX and pY and each postcondition conclusion pattern c′X,Y,J,Z,K is a
possible extension of p′X,Y,J according to the conclusion patterns cY,Z of CY. Multiple

Algorithm 4.1 Constructive approach algorithm

1: procedure ConstructiveApproach(R: Set of GT rules, C: Set of graph constraints)
2: for all RX ∈ R do
3: for all CY ∈ C do
4: acs = SynthesizeApplicationConditions(RX,CY)

5: RX.applicationConditions = RX.applicationConditions ∪ acs
6: end for
7: end for
8: end procedure
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Graph transformation rule RX 

Left-hand side LHSX Right-hand side RHSX

Graph constraint CY

Premise pY

Conclusion cY

Application conditions ACX,Y,J

Premise pX,Y,J

Conclusion cX,Y,J

Conclusion patterns cX,Y,J,Z,K

Postconditions PCX,Y,J

Premise p'X,Y,J

Conclusion c'X,Y,J

Conclusion patterns c'X,Y,J,Z,K

2 Anticipation step 1 Specialization step

Conclusion patterns cY,Z

Figure 4.4: Schema of synthesis algorithm SynthesizeApplicationConditions

postcondition conclusion patterns may result from each combination of postcondition
premise p′X,Y,J and constraint conclusion pattern cY,Z (as indicated by the index K). If
multiple postcondition conclusion patterns result originate from one constraint conclu-
sion pattern cY,Z, this situation reflects different situations in which the application of
RX may preserve CY via cY,Z.

For example, one postcondition conclusion pattern may reflect that the required match
of the constraint conclusion pattern still exists after the application of RX, and another
postcondition conclusion pattern may reflect that an alternative extension of the match of
pY shall be found. An example of this phenomenon is the synthesis algorithm iteration
for the rule-constraint pair (Rmod-w,CkTC,i).

After introducing postconditions of GT rules, we extend the set of criteria that deter-
mine when a GT rule is applicable as follows.

Definition 4.11 (GT rule applicability (with postconditions)). A GT rule is applicable
if all criteria in Definition 3.25 are fulfilled and if any extension of RHSX in the
model resulting from applying RX to a match of a postcondition premise p′X,Y,J can
be further extended to a match of a postcondition conclusion pattern c′X,Y,J,Z,K.

According to Definition 4.11, the GT rule RX already preserves CY after the specialization
step. Still, the disadvantage of a postcondition compared to an application condition is
that a postcondition is checked after applying the GT rule, which implies that we have
to roll back a GT rule application if the resulting model violates a postcondition.

To overcome this drawback, the second anticipation step ( 2 , [91, Prop. 3.2]) transforms
each synthesized postcondition PCX,Y,J into an application condition ACX,Y,J. This step
is called anticipation step because the created application conditions anticipate any vio-
lation of CY without applying RX. The anticipation step works by applying RX in reverse
order to each pattern in PCX,Y,J.
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Table 4.2: Role of indices in synthesis algorithm description

Index Relates to Appears in steps

X GT rule RX all steps

Y constraint CY all steps

Z constraint conclusion pattern cY,Z of CY 1.2 ,1.3 , 2

J postcondition PCX,Y,J all steps

K condition conclusion patterns cX,Y,J,Z,K/c′X,Y,J,Z,K 1.2 ,1.3 , 2

Tu sum up the roles of the involved indices in the synthesis algorithm, (i) the index
X refers to the currently processed RX (e.g.,X = i for Ri), (ii) the index Y refers to the
currently processed graph constraint CY (e.g.,Y = i for CkTC,i = Ci), (iii) the index Z refers
to the currently processed constraint conclusion pattern cY,Z, (iv) the index J indicates
that multiple postconditions may result for a given rule-constraint pair, and (v) the index
K indicates that multiple application and postcondition conclusion patterns may result
from a given pair of GT rule RX and constraint conclusion cY,Z. Table 4.2 summarizes
the described roles of the index variables.

Deckwerth and Varró’s approach for handling attribute constraints [44] combines the
attribute constraints of RHSX and CY during the specialization step 1 in a similar way
as described earlier. In contrast, the anticipation step 2 is more elaborate because we
cannot simply drop attribute constraints that refer to variables that occur in RHSX and
not in LHSX. We will discuss the attribute handling in detail for our running example.

Our goal is to establish weak consistency as an inductive invariant of the TC mecha-
nism specification. We assume that weak consistency holds as a precondition prior to
any GT rule application. This assumption allows us to filter the synthesis results using
the filter rules summarized in Table 4.3. A synthesized pattern can be filtered out if
if never matches in a weakly consistent topology. For instance, a pattern that contains
a loop link variable or two parallel link variables never matches because Cno-loops and
Cno-parallel-links are fulfilled for a weakly consistent topology (denoted by Hnl and Hnpl).
We also filter patterns that contain a contradiction in the attribute constraints (denoted
by Hcac). A possible contradiction is a link variable that must have two different states
(e.g., s(v12) = A∧ s(v12) = U). If a postcondition premise p′X,Y,J is filtered out due to one
of the filter rules, the entire corresponding post- and application conditions PCX,Y,J and
ACX,Y,J is removed as well. Finally, we filter out a synthesized application condition after
the anticipation step if it is always fulfilled for a weakly consistent topology (denoted
by Hwc).
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Table 4.3: Filter rules during synthesis algorithm

Symbol Scope Justification

Hcac pattern no matches due to contradiction in attribute constraints

Hnl pattern no matches due to loop link variable

Hnpl pattern no matches due to parallel link variables

Hwc application
condition

application condition always fulfilled due to weak consis-
tency precondition

Graph transformation rule RX 

Left-hand side LHSX Right-hand side RHSX

Premise pY

Premise pX,Y,J

Conclusion pattern cX,Y,J,Z,1
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Figure 4.5: Detailed view of synthesis algorithm in Figure 4.4 (regular rectangles: artifacts,
rounded rectangles: algorithm (sub-)steps, m: variable mapping)
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4.3 application of constructive approach to running example

In this section, we apply the constructive approach to the TC and context event rules of
the running example (Sections 4.3.1 and 4.3.2) and interpret the resulting synthesized
application conditions (Section 4.3.3). In Section 4.2, we kept the discussion of the
constructive approach deliberately declarative and refrained from presenting technical
details of the application condition synthesis algorithm. In this section, we describe
how to conduct each step precisely. Figure 4.5 is a refined view of Figure 4.4 that shows
the substeps of SynthesizeApplicationConditions as rounded rectangles with their
respective input and output artifacts as regular rectangles.

4.3.1 Refinement of topology control rules

We now explain the synthesis algorithm step by step using the rule-constraint pair
(Ri,CkTC,i). For orientation purposes, Table 4.4 summarizes all results and the page
counts for all six iterations of the synthesis algorithm for kTC.

When executing the synthesis algorithm, we have the choice among two perspectives
of the involved patterns. The generic perspective based on graph patterns is to interpret
object variables as nodes and association variables as edges (see Definition 3.7). The
domain-specific perspective based on topology pattern is to interpret mote variables as
nodes and link variables as edges (see Definition 3.8). As discussed earlier, the advan-
tage of the latter perspective is the more concise and easier-to-understand representation

Table 4.4: Summary of application condition synthesis results for kTC per rule-constraint pair
(RX,CY) (num. gluings: number of postcondition premises in 1.1 , num. ACs: number
of application conditions after filtering 2 , start, end: page range of discussion, result:
figure showing refined rule)
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Num. gluings 6 12 12 6 12 6

Num. ACs 1 1 2 2 2 2

Start page 107 115 116 120 121 121

End page 111 118 118 121 121 125

Result (Fig.) 4.9g 4.11 4.12 4.14 4.18 4.18
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of patterns. Also, no information is lost when using the latter perspective because the
only difference is that we interpret the combination of a source-outgoing association vari-
able, an incoming-target association variable, and an object variable of type Link as a
single link variable (as apparent in Figures 3.6 to 3.9). Therefore, we use the domain-
specific view of topology patterns in the following. Still, all steps can also be performed
using generic graph patterns as well.

We abbreviate CkTC,i as Ci, CkTC,a as Ca, and ϕkTC as ϕ in all figures of this section to
improve the readability of the synthesis results.

Synthesis iteration for (Ri,Ci). During the gluing step 1.1 , the premises p′X,Y,J of the
synthesized postconditions PCX,Y,J are determined by calculating all possible overlaps
of RHSX and pY. The gluing step also determines the set of additional postconditions
PCX,Y,J. An overlap of two patterns is represented formally by a gluing.

Definition 4.12 (Gluing). A gluing gA,B of two patterns pA and pB is a pattern and two
jointly surjective mappings mA and mB from pA and pB to the variables of gA,B. The
joint surjectivity of the mappings implies that each variable in gA,B has a preimage
w.r.t. mA or mB, or both. The images of mA and mB must overlap in at least one mote
variable.

The preimage of an element b ∈ B w.r.t. a function f : A → B, is an element a ∈ A for
which f (a) = b. A pair of functions f1 : A → C, f2 : B → C is jointly surjective if each
element in C has a preimage w.r.t. at least one of the functions f1 or f2. In the context of
the gluing step, we use the variables NA and NB to denote the number of mote variables
in pA and pB, respectively. Due to the required overlap of the ranges of mA and mB, a
gluing gA,B has at most NA +NB − 1 mote variables.

The link variables of a gluing are derived from the link variables of pA and pB as
follows: If two mote variables in pA or pB are connected by a link variable, then their
images in gA,B are also connected by a link variable. Each mote variable pair in gA,B is
connected by at most one link variable. Technically, gluings with parallel link variables
are possible as well. Still, such gluings can never be matched because we assume that
the topology fulfills the no-parallel-links constraint Cno-parallel-links. Therefore, we only
keep gluings with merged parallel link variables (Hnpl).

To encode the mappings mA and mB of a gluing, we label a gluing gA,B with a sequence
of mote variables gA,B[vAB1 , . . . , vABNA+NB−1 ], where vAB1 , . . . , vABNA+NB−1 ∈ VpB ∪ { } (il-
lustrated by Figure 4.6). All mote variable identifiers of pB occur in the gluing sequence,
and the remaining NA − 1 entries are filled with the placeholder “ ”.

In the following, we assume that mote variables can be compared by their identifier
(i.e., a total ordering <mv exists on the set of mote variables). Furthermore, all mote
variables are smaller than the placeholder “ ” according to <mv. The lower (gluing)
subsequence consists of the first NA entries of gA,B (denoted by gA,B[1,NA]) and represents
the gluing mote variables that are in the image of mA. The upper (gluing) subsequence
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consists of the remaining NB − 1 entries of gA,B (denoted by gA,B[NA,NA +NB − 1]) and
represents the gluing mote variables that are only in the image of mB.

The placeholder “ ” has a different meaning depending on the part of the sequence
in which it occurs. If a “ ” occurs in the lower subsequence, it indicates that the
corresponding gluing mote variable has no preimage in mB If a “ ” occurs in the upper
subsequence, it indicates that the corresponding gluing mote variable is absent from
this gluing. To avoid creating isomorphic gluings, which only differ in the names of
mote variables, we require that the subsequence gA,B[NA + 1,NA + NB − 1] is sorted in
ascending order according to <mv.

Example 4.13 (Gluing). Figure 4.7 an exemplary gluing p′i,i,2 of RHSi, which is the
RHS pattern of the inactivation rule Ri, and the premise pkTC,i of the inactive-link
constraint CkTC,i (abbreviated as pi and Ci in the figure, respectively). Instead of the
symbol g for gluings in general, we use the naming convention for postcondition
premise patterns directly. The figure shows the corresponding mappings mRHS-i
and mp-i from the mote variables of RHSi and pkTC,i to p′i,i,2. The gluing sequence
g[1 | 2] represents that variables v1 and v2 of pkTC,i are mapped to the mote
variables v1 and v3 of p′i,i,2.

Algorithm 4.2 sketches an algorithm for generating all gluings according to the pre-
ceding description. The algorithm follows the generate-and-filter paradigm: First, an
initial gluing sequence g0 is populated where the first NB entries correspond to the mote
variable identifiers of pB and the remaining entries (if exist) are filled with (lines 2–4).
Then, all permutations gA,B of g0 are generated (line 6). Finally, only those generated
permutations are kept whose upper sequence is sorted ascendingly according to <mv

(lines 8–13).
Finally, the attribute handling of the gluing substep consists of the following two mod-

ifications of the synthesized postcondition premises. For each postcondition premise,
(i) the attribute constraints of RHSX and CY are combined and attached to the postcon-
dition premise, and (ii) the attribute variables in the combined attribute constraints are
renamed according to the variable names of the postcondition premises.

Preimage in mapping mA: vA,1   , … , vA,NA

Gluing gA,B: [vAB,1 , … , vAB,NA | vAB,NA+1,…, vAB,NA+NB-1] , vAB,C ∈ VB ∪ {_}

upper subsequence

gA,B[NA+1,NA+NB-1], 

sorted according to <mv

lower subsequence

gA,B[1,NA]

Figure 4.6: Gluing sequence (schematic)
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p'i,i,2 1 2

s12=I ∧ s13=I3

Ri (v12:Link)

LHSi RHSi1 2 1 2

Ci

1 2

3
ϕ(v1,v2,v3)

ci,1

1 2pi

mRHS-i mRHS-i

mp-i

mp-i

c'i,i,2,1

s12 = I

s13 = I ∧ ϕ(v1,v3,v4)

mp-i,c-i

(by identifier)

1 2

3 4
mc-i

mp-i

mc-i

mp'ii2-cii21 (by identifier)

Figure 4.7: Example: Gluing p′i,i,2 of RHSi and pkTC,i with extension to c′i,i,2,1

Example 4.14 (Gluing substep 1.1 for (Ri,CkTC,i)). Figures 4.8c to 4.8h show the
six synthesized postcondition premises p′i,i,1, . . . , p′i,i,6 for the rule-constraint pair
(Ri,CkTC,i). To improve readability, we repeat the inactivation rule Ri and CkTC,i
in Figures 4.8a and 4.8b, respectively. We list the attribute constraints copied from
RHSi and CkTC,i in the first and second row of the attribute constraints box, respec-
tively. To illustrate how the synthesized attribute constraints are derived, we do not
employ the compact notation to encode the link state information in all figures that
relate to the specialization step 1 .

Each postcondition premise p′i,i,J is labeled with the corresponding gluing se-
quence, which encodes the mappings to RHSi and CkTC,i. The lower and upper
gluing subsequences are separated by a vertical bar (“| ”) to improve readability.
This separation is also represented by the mote variables of the lower and upper
subsequences appearing in two different rows in the figure. The gluing mote vari-
ables v1 and v2 in this example always relate to the mote variables v1 and v2 of Ri,
respectively, whereas the mote variables v3 and v4 only have preimages in pkTC,i. For
example, the gluing sequence [1 | 2] that corresponds to p′i,i,2 represents that the
mote variables v1 and v3 of p′i,i,2 map to v1 and v2 of CkTC,i, respectively, and that v2

of p′i,i,2 has no preimage in CkTC,i.
None of the postcondition premises p′i,i,J can be filtered out according to the rules

in Table 4.3. Therefore, we create six postconditions for Ri in this iteration.

In the next two substeps, the extension substep 1.2 and the self-gluing substep 1.3 ,
we construct the postcondition conclusion c′X,Y,J for each postcondition PCX,Y,J sepa-
rately. During the extension substep 1.2 , each constraint conclusion pattern cY,Z is used
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Ri (v12:Link)

LHSi

RHSi

1 2

1 2

(a) Ri (rep.)

Ci
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3

ϕ(v1,v2,v3)

ci,1

1 2
pi

(b) Ci (rep.)

p'i,i,1 ‒ [ϭ Ϯ|_]

1 2

s12 = I 

s12 = I

(c) p′i,i,1

p'i,i,2 ‒ [ϭ _|Ϯ]

1 2

s12 = I 

s13 = I3

(d) p′i,i,2

p'i,i,3 ‒ [Ϯ ϭ|_]

1 2

s12 = I 

s21 = I

(e) p′i,i,3
p'i,i,4 ‒ [Ϯ _|ϭ]

1 2

s12 = I 

s31 = I3

(f) p′i,i,4

p'i,i,5 ‒ [_ ϭ|Ϯ]

1 2

s12 = I 

s23 = I 3

(g) p′i,i,5

p'i,i,6 ‒ [_ Ϯ|ϭ]

1 2

s12 = I 

s32 = I 3

(h) p′i,i,6
c'i,i,1,1

1 2

s12 = I 

s12 = I

ϕ(v1,v2,v3)

3

(i) c′i,i,1,1

c'i,i,2,1
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3

s12 = I 

s13 = I

ϕ(v1,v3,v4)

4

(j) c′i,i,2,1
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ϕ(v2,v1,v3)
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(k) c′i,i,3,1
c'i,i,4,1
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ϕ(v3,v1,v4)
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(l) c′i,i,4,1
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(m) c′i,i,5,1
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ϕ(v3,v2,v4)

4

(n) c′i,i,6,1
c'i,i,2,2

1 2,4

3 s1[2,4] = I 

s13 = I

ϕ(v1,v3,v[2,4])

(o) c′i,i,2,2

c'i,i,4,2

1 2,4

3 s1[2,4] = I 

s31 = I

ϕ(v3,v1,v[2,4])

(p) c′i,i,4,2

c'i,i,5,2

1,4 2

3 s[1,4]2 = I 

s23 = I

ϕ(v2,v3,v[1,4])

(q) c′i,i,5,2

c'i,i,6,2

1,4 2

3 s[1,4]2 = I 

s32 = I

ϕ(v3,v2,v[1,4])

(r) c′i,i,6,2

Figure 4.8: Results of specialization step 1 for (Ri,CkTC,i)
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LHSi RHSi
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pi,1

1 2

ci,1,1

1 2

ϕ(v1,v2,v3)
3

PACi,1 ⚙

(g) Refined inactivation rule R′i with synthe-
sized PACi,1 (orig. from ACi,i,1)

Figure 4.9: Results of anticipation step 2 for (Ri,CkTC,i)
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Algorithm 4.2 Gluing generation algorithm

1: function allGluings (pA: Pattern, pB: Pattern)
2: g0: Gluing sequence of length NA +NB − 1
3: g0[1,NB] = VpB . Copy mote variable identifiers of pB into first NB entries
4: g0[NB + 1,NA +NB − 1] = . Fill remaining entries
5:

6: allGluings : Set of gluings = allPermutations(g0)

7:

8: filteredGluings : Set of gluings = ∅
9: for all gA,B ∈ allGluings do

10: if gA,B[NA + 1,NA +NB − 1] is sorted ascendingly according to <mv then
11: filteredGluings = filteredGluings ∪ gA,B
12: end if
13: end for
14:

15: return filteredGluings
16: end function

separately to extend the postcondition premise p′X,Y,J to a basic postcondition conclusion
pattern c′X,Y,J,Z,1. The resulting basic postcondition conclusion pattern is unique. The
extension is carried out long the two mappings from (i) constraint premise pY to post-
condition premise p′X,Y,J and (ii) constraint premise pY to constraint conclusion pattern
cY,Z.

Example 4.15 (Extension substep 1.2 in detail). To illustrate the extension substep
in detail, we use Figure 4.7 again. In the center part, the figure shows one possible
gluing p′i,i,2 of RHSi and pkTC,i and its extension along the premise-gluing mapping
mp-i and the premise-conclusion mapping mp-i,c-i.

For the given combination of gluing p′i,i,2 and constraint conclusion pattern ckTC,i,1,
the resulting pattern c′i,i,2,1 is unique and obtained by adding mote variable v4 and
link variables v14 and v43 as well as the attribute constraint ϕ(v1, v2, v3). In this
example, the constraint and postcondition premise-conclusion mappings are shown
as block arrows instead of individual mote mappings to improve readability. As
usual, the exact mappings are implicitly given by equal mote variable identifiers in
premise and conclusion patterns.

Example 4.16 (Extension substep 1.2 for (Ri,CkTC,i)). Figure 4.8i to Figure 4.8n show
the six basic conclusion patterns c′i,i,1,1, . . . , c′i,i,6,1 that result from the extension sub-
step for (Ri,CkTC,i). All constraints in our example have only one conclusion pat-
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tern. Therefore, to improve readability, we omit the counter Z, which is always 1.
For instance, c′i,i,3,1 in Figure 4.8k represents c′i,i,3,1,1 according to the naming scheme
shown in Figure 4.5.

The basic conclusion patterns use the shorthand notation ϕkTC(v1, v2, v3) to denote
that the triangle consisting of the mote variables v1, v2, and v3 fulfills the kTC-specific
condition for inactivating a link (see also Equation (3.6)).

The subsequent self-gluing substep 1.3 is performed for each basic postcondition
conclusion pattern c′X,Y,J,Z,1 separately. During this step, additional postcondition con-
clusion patterns are synthesized by gluing the basic postcondition conclusion pattern
c′X,Y,J,Z,1 with itself. The set of conclusion patterns c′X,Y,J,Z,K corresponds to all different
ways how a match of the constraint premise pY (represented by a match of the postcondi-
tion premise p′X,Y,J) can be extended to a match of the constraint conclusion pattern cY,Z.
To obtain a self-gluing, we merge mote variables of the basic postcondition conclusion
pattern. Only those self-glued postcondition conclusion patterns c′X,Y,J,Z,K are kept for
which an injective mapping from p′X,Y,J and a total injective mapping from cY,Z exists. If
the first mapping were not injective, a match of the postcondition premise p′X,Y,J could
never be extended to a match of the self-glued conclusion pattern c′X,Y,J,Z,K. If the second
mapping were not injective, a match of the postcondition conclusion pattern c′X,Y,J,Z,K
could not witness that the graph constraint CY is fulfilled.

The required injectivity from p′X,Y,J and cY,Z to c′X,Y,J,Z,K implies that only those mote
variables that were introduced freshly during the preceding extension substep 1.2 can
be merged with the other mote variables. As during the gluing substep, we keep only
those gluings without parallel link variables (Hnpl). After the self-gluing substep, all
postconditions are complete.

The attribute handling for the extension substep and the self-gluing substep is per-
formed analogously to the gluing substep. The attribute constraints of c′X,Y,J,Z,K consist
of the attribute constraints of p′X,Y,J plus a copy of the attribute constraints of cY,Z with
appropriately renamed variables.

Example 4.17 (Self-gluing substep 1.3 for (Ri,CkTC,i)). Figures 4.8o to 4.8r shows the
resulting self-glued postcondition conclusion patterns c′i,i,J,2 for (Ri,CkTC,i). Only the
four basic conclusion patterns c′i,i,2,1, c′i,i,4,1, c′i,i,5,1, and c′i,i,6,1 are eligible for the self-
gluing substep because each self-glued postcondition conclusion pattern must have
at least three mote variables due to the required injective mappings from p′i,i,J and
ckTC,i,1.

If two mote variables are glued together, the resulting mote variable in the self-
gluing postcondition conclusion pattern contains a comma-separated list of the orig-
inal mote variable identifiers (e.g., 2,4 in c′i,i,2,2, which results from gluing v2 and v4

in c′i,i,2,1). In attribute constraints, the identifiers of glued mote variables are shown
in square brackets (e.g., “[2,4]” in c′i,i,2,2). Technically, additional self-gluings are pos-
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sible (e.g., of mote variables v1 and v3). However, all of these gluings result in link
variables that form loops and never match due to the weak consistency precondition
(Hnl). This observation can be generalized as follows: During the self-gluing sub-
step, we only consider pairs of mote variables in the basic postcondition conclusion
pattern that are not neighbors (e.g., v2 and v4 in c′i,i,2,2).

The final anticipation step 2 is carried out for each synthesized postcondition PCX,Y,J
separately. We obtain the synthesized application condition ACX,Y,J from PCX,Y,J by
applying the GT rule RX in reverse order to the postcondition premise p′X,Y,J and all
conclusion patterns c′X,Y,J,Z,K. During the inverse application of RX, we first consider
modifications of the pattern graph (i.e., additions and removals of mote and link vari-
ables) and then handle the attribute constraints. We carry out the attribute handling for
each premise and conclusion pattern separately: (i) The attribute constraints of LHSX
are added to the attribute constraints of the application condition pattern. (ii) If an at-
tribute value is reassigned by the GT rule application (e.g., s12 = I in the right-hand
side of Ri) and the left-hand side LHSX also refers to this attribute (e.g., s12 = U in Ri),
then we distinguish the LHS and RHS attribute values. We the suffix R to the variable
that occurs in RHSX (e.g., s12R) and insert an existential quantification over the domain
of the RHS variable (e.g., ∃ s12R ∈ {A, I, U} : s12R = I). (iii) We apply the same strategy
if an attribute variable relates to an element created by RX (i.e., a variable that occurs
in RHSX and not in LHSX). During the anticipation step, such elements are removed
from the postcondition patterns because RX is applied in reverse order. (iv) All attribute
variables that are neither reassigned nor related to added elements are left unchanged.
After the anticipation step, we may filter the synthesized application conditions. We
drop a synthesized application condition if it is always fulfilled on a weakly consistent
topology (Hwc).

Example 4.18 (Anticipation step 2 for (Ri,CkTC,i)). Figure 4.9 shows the unfiltered
set of synthesized application conditions for (Ri,CkTC,i). In contrast to the preceding
examples, we employ the compact notation here to reduce the size of the figures.
Using the compact notation is possible because the attribute constraints (esp. related
to link states) are guaranteed to be free of contradictions due to the previous filtering
steps (Hcac). Additionally, we renamed all merged mote variables to conform to the
mote variable identifiers of Ri. For instance, v2 in ci,i,2,2 corresponds to v[2,4] in c′i,i,2,2.
From now on, we mark synthesized application conditions with a gear symbol ( )
to distinguish them from the application conditions that existed prior to executing
the application condition synthesis algorithm.
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Regarding the attribute handling, the state of v12 is reassigned by Ri. This means
that the attribute constraint s12 = I is replaced with the following attribute con-
straint during the anticipation step:

∃ s12R ∈ {A, I, U} : s12R = I.

This attribute constraint is a tautology, which is always fulfilled. In this and the
following examples, we omit an attribute constraint that constitutes a tautology.

The five application conditions ACi,i,2, . . . ,ACi,i,6 can be filtered out because they
are always fulfilled on weakly consistent topologies (Hwc). This means that the
only additional application condition synthesized for (Ri,CkTC,i) is ACi,i,1. The re-
fined inactivation rule R′i is shown in Figure 4.9g. In R′i , we rename ACi,i,1 to PACi,1
according to the naming conventions of GT rules.

The original constructive approach in [91] contains a third major step: the minimization
step, which removes synthesized application conditions that block GT rule applications
to inconsistent models. The purposes of this minimization step and our proposed filter
rules in Table 4.3 are similar. However, the reduction criterion of the minimization step
in [91, Constr. 3.3.] is not applicable to GT rules that contain attribute constraints because
the reduction criterion relates only to created elements of RX. If we applied the original
minimization step in our scenario, too many candidates of premises would be dropped
and the resulting refined rule R′X would still violate the constraint CY. Therefore, we
skip the minimization step from [91] in this work and apply the filter rules shown in
Table 4.3 instead.

After considering the steps of the application condition synthesis algorithm for the
rule-constraint pair (Ri,CkTC,i) in detail, we present the corresponding results for the
remaining rule-constraint pairs in this section and Section 4.3.2. Conceptually, the con-
tent of these subsections constitutes one large example. Still, to improve readability we
refrain from presenting this content in example environments. We only discuss the syn-
thesis results for combinations of GT rules and graph constraints that result in additional
application conditions for the GT rules (7 in Table 4.1). For all other combinations, the
constructive approach produces either no additional application conditions or weaker
application conditions, which are already implied by the existing application conditions.
We continue with (Ra,CkTC,a).

Synthesis iteration for (Ra,CkTC,a). Figure 4.10c to Figure 4.10n show the twelve syn-
thesized postcondition premises p′a,a,1, . . . , p′a,a,12 for (Ra,CkTC,a) generated during the
gluing substep 1.1 . To improve readability, we repeat the activation rule Ra and the ac-
tive-link constraint CkTC,a in Figures 4.10a and 4.10b here. In comparison to (Ri,CkTC,i),
twice as many postcondition premises are created because the premise of CkTC,a has
three mote variables (instead of two mote variables for CkTC,i). Therefore, the postcondi-
tion premise has at most 2 + 3− 1 = 4 mote variables. The lower and the upper gluing
subsequence have both length 2.
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This example also illustrates why only gluings with ascending upper gluing sequence
are kept: The gluing sequence [12 | 3 ] is kept and corresponds to p′a,a,1, but the gluing
sequence [12 | 3] is dropped because the resulting gluings would be isomorphic to
p′a,a,1: We obtain the latter gluing by renaming mote variable v3 of the former gluing
to v4. None of the postcondition premises can be filtered according to Table 4.3. Thus,
twelve postconditions PCa,a,1, . . . ,PCa,a,12 are created from the postcondition premises
during the gluing substep.

The extension substep 1.2 and the self-gluing substep 1.3 can be skipped for the rule-
constraint pair (Ra,CkTC,a) because the conclusion of CkTC,a is empty. Therefore, we con-
tinue with the anticipation step 2 by applying Ra in reverse order to the twelve postcon-
dition premises p′a,a,J. The only effect of applying Ra in reverse order to a postcondition
premise is to introduce an attribute constraint s12 = U in each premise and to replace the
RHS attribute constraint s12 = A with the attribute constraint ∃ s12R ∈ {A, I, U} : s12R = A,
which is a tautology and omitted therefore. Figures 4.10o to 4.10r show four selected
application condition premises. We chose these application condition premises because
pa,a,1, pa,a,2, and pa,a,8 are the only postcondition premises that have three mote variables
and contain merged link variables of Ra and CkTC,a. Furthermore, pa,a,3 is a representa-
tive of the remaining nine application condition premises, which all contain four mote
variables and no merged link variables. Each application condition premise results in
one potential negative application condition of Ra. For conciseness reasons, we show
the premises instead of the full negative application conditions here.

Some of the application conditions can be filtered out because they are always fulfilled
on weakly consistent topologies (Hwc). For example, a weakly consistent topology never
contains a match of pa,a,3 (shown in Figure 4.10q). Otherwise, the motes and links
matched by the link variable triangle consisting of v1, v3, v4 would constitute a match of
the premise—and, thereby, a violation—of CkTC,a. In total, we can filter out eleven of the
twelve synthesized postcondition premises: pa,a,2, . . . , pa,a,12. Thus, only the application
condition ACa,a,1 must be added to the activation rule Ra to ensure that the refined GT
rule R′a preserves CkTC,a.

The refined activation rule R′a, whose application condition NACa,1 corresponds to
pa,a,1, is shown in Figure 4.11.

The iteration of the synthesis algorithm for (Ra,CkTC,a) is the last one that affects a TC
rule.

4.3.2 Refinement of context event rules

The remaining four iterations of the synthesis algorithm for the rule-constraint pairs
(R+e,CkTC,a), (R−e,CkTC,i), (Rmod-w,CkTC,a), and (Rmod-w,CkTC,i) affect context event rules
and are discussed in the following.

Synthesis iteration for (R+e,CkTC,a). Figure 4.13 shows the twelve generated postcondi-
tion premises p′+e,a,1, . . . , p′+e,a,12 that result from the gluing substep 1.1 for (R+e,CkTC,a).
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Ra (v12:Link)

LHSa RHSa

1 2 1 2

(a) Ra (repeated)

CkTC,a

1 2

3

ϕkTC(v1,v2,v3)

pkTC,a

(b) Ca (repeated)
p'a,a,1 ‒ [ϭ Ϯ|ϯ _]

s12 = A

s12 = A ᴧ ϕ(v1,v2,v3)

1 2

3

(c) p′a,a,1

p'a,a,2 ‒ [ϭ ϯ|Ϯ _]

s12 = A

s13 = A ᴧ ϕ(v1,v3,v2)

1 2

3

(d) p′a,a,2

p'a,a,3 ‒ [ϭ _|Ϯ ϯ]

s12 = A

s13 = A ᴧ ϕ(v1,v3,v4)

1 2

3 4

(e) p′a,a,3

p'a,a,4 ‒ [Ϯ ϭ|ϯ _]

s12 = A

s21 = A ᴧ ϕ(v2,v1,v3)

1 2

3

(f) p′a,a,4
p'a,a,5 ‒ [Ϯ ϯ|ϭ _]

s12 = A

s31 = A ᴧ ϕ(v3,v1,v2)

1 2

3

(g) p′a,a,5

p'a,a,6 ‒ [Ϯ _|ϭ ϯ]

s12 = A

s31 = A ᴧ ϕ(v3,v1,v4)

1 2

3 4

(h) p′a,a,6

p'a,a,7 ‒ [ϯ ϭ|Ϯ _]

s12 = A

s34 = A ᴧ ϕ(v3,v4,v1)

1 2

3 4

(i) p′a,a,7

p'a,a,8 ‒ [ϯ Ϯ|ϭ _]

s12 = A

s32 = A ᴧ ϕ(v3,v2,v1)

1 2

3

(j) p′a,a,8
p'a,a,9 ‒ [ϯ _|ϭ Ϯ]

s12 = A

s34 = A ᴧ ϕ(v3,v4,v1)

1 2

3 4

(k) p′a,a,9

p'a,a,10 ‒ [_ ϭ|Ϯ ϯ]

s12 = A

s23 = A ᴧ ϕ(v2,v3,v4)

1 2

3 4

(l) p′a,a,10

p'a,a,11 ‒ [_ Ϯ|ϭ ϯ]

s12 = A

s32 = A ᴧ ϕ(v3,v2,v4)

1 2

3 4

(m) p′a,a,11

p'a,a,12 ‒ [_ ϯ|ϭ Ϯ]

s12 = A

s34 = A ᴧ ϕ(v3,v4,v2)

1 2

3 4

(n) p′a,a,12
pa,a,1

s12 = U

s12 = U ᴧ ϕ(v1,v2,v3)

1 2

3

(o) pa,a,1

pa,a,2

s12 = U

s13 = A ᴧ ϕ(v1,v3,v2)

1 2

3

(p) pa,a,2 (Hwc)

pa,a,3

s12 = U

s13 = A ᴧ ϕ(v1,v3,v4)

1 2

3 4

(q) pa,a,3 (Hwc)

pa,a,8

s12 = U

s32 = A ᴧ ϕ(v3,v2,v1)

1 2

3

(r) pa,a,8 (Hwc)

Figure 4.10: Postcondition and application condition premises p′a,a,J/pa,a,J for (Ra,CkTC,a)
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pa,1

ϕ(v1,v2,v3)

1 2

3

R'a (v12:Link)

LHSa RHSa

1 2

NACa,1 ⚙
1 2

Figure 4.11: Refined activation rule R′a with synthesized application condition NACa,1 (resulting
from pa,a,1 and ensuring preservation of CkTC,a)

p+e,2

ϕ(w13,w,w23,id1,id3,id2)

p+e,3

ϕ(w32,w31,w,id3,id2,id1)

NAC+e,2 NAC+e,3

R'+e (v1 : Mote, v2 : Mote, w : double)

LHS+e RHS+e

1 2

3

1 2

3

1 2 1 2

NAC+e,1

p+e,1 1 2

w12 = w

⚙ ⚙

Figure 4.12: Refined link addition rule R′+e with synthesized application conditions NAC+e,1 and
NAC+e,2 (originating from p+e,a,2 and p+e,a,8 and ensuring the preservation of CkTC,a)
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R+e (v1 : Mote, v2 : Mote, w : double)

LHS+e RHS+e

1 2 1 2

NAC+e,1

p+e,1

1 2w12 = w

(a) R+e (repeated)

CkTC,a

1 2

3

ϕkTC(v1,v2,v3)

pkTC,a

(b) Ca (repeated)
p'+e,a,1 ‒ [ϭ Ϯ|ϯ _]

1 2

s12 = U ᴧ w12 = w

s12 = A ᴧ ϕ(v1,v2,v3)

3

(c) p′+e,a,1 (Hcac)

p'+e,a,2 ‒ [ϭ ϯ|Ϯ _]
1 2

s12 = U ᴧ w12 = w

s13 = A ᴧ ϕ(v1,v3,v2)

3

(d) p′+e,a,2

p'+e,a,3 ‒ [ϭ _|Ϯ ϯ]
1 2

s12 = U ᴧ w12 = w

s13 = A ᴧ ϕ(v1,v3,v4)

3 4

(e) p′+e,a,3

p'+e,a,4 ‒ [Ϯ ϭ|ϯ _]
1 2

s12 = U ᴧ w12 = w

s21 = A ᴧ ϕ(v2,v1,v3)

3

(f) p′+e,a,4
p'+e,a,5 ‒ [Ϯ ϯ|ϭ _]

1 2

s12 = U ᴧ w12 = w

s31 = A ᴧ ϕ(v3,v1,v2)

3

(g) p′+e,a,5

p'+e,a,6 ‒ [Ϯ _|ϭ ϯ]

1 2

s12 = U ᴧ w12 = w

s31 = A ᴧ ϕ(v3,v1,v4)

3 4

(h) p′+e,a,6

p'+e,a,7 ‒ [ϯ ϭ|Ϯ _]

1 2

s12 = U ᴧ w12 = w

s34 = A ᴧ ϕ(v3,v4,v1)

3 4

(i) p′+e,a,7

p'+e,a,8 ‒ [ϯ Ϯ|ϭ _]

1 2

s12 = U ᴧ w12 = w

s32 = A ᴧ ϕ(v3,v2,v1)

3

(j) p′+e,a,8
p'+e,a,9 ‒ [ϯ _|ϭ Ϯ]

1 2

s12 = U ᴧ w12 = w

s34 = A ᴧ ϕ(v3,v4,v1)

3 4

(k) p′+e,a,9

p'+e,a,10 ‒ [_ ϭ|Ϯ ϯ]

1 2

s12 = U ᴧ w12 = w

s23 = A ᴧ ϕ(v2,v3,v4)

3 4

(l) p′+e,a,10

p'+e,a,11 ‒ [_ Ϯ|ϭ ϯ]

1 2

s12 = U ᴧ w12 = w

s32 = A ᴧ ϕ(v3,v2,v4)

3 4

(m) p′+e,a,11

p'+e,a,12 ‒ [_ ϯ|ϭ Ϯ]

1 2

s12 = U ᴧ w12 = w

s34 = A ᴧ ϕ(v3,v4,v2)

3 4

(n) p′+e,a,12

p+e,a,2

1 2

3∃w12R ∈ ℝ: [

w12R = w ᴧ s13 = A ᴧ
ϕ(w13,w12R,w23,

id1, id3,id2) ]

(o) p+e,a,2

p+e,a,3

1 2

3 4∃w12R ∈ ℝ: [

w12R = w ᴧ s14 = A ᴧ
ϕ(v1, v3,v4) 

]

(p) p+e,a,3 (Hwc)

p+e,a,8

∃w12R ∈ ℝ: [

w12R = w ᴧ s32 = A ᴧ
ϕ(w32,w31,w12R,

id3, id2,id1) ]

1 2

3

(q) p+e,a,8

Figure 4.13: Postcondition and application condition premises p′+e,a,J/p+e,a,J for (R+e,CkTC,a)
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The pattern graphs of the gluings are almost identical compared to (Ra,CkTC,a). Only
the first line of the combined attribute constraints, which originates from RHSmod-w
differs: s12 = U ∧w12 = w, where w is an implicit parameter, instead of s12 = A. Dur-
ing this substep, we filter out p′+e,a,1because of the contradictory attribute constraints
s12 = U ∧ s12 = A (Hcac). The remaining eleven of the twelve postcondition premises
p′+e,a,2, . . . , p′+e,a,12 all result in new postconditions PC+e,a,J of R+e. The extension sub-
step 1.2 and the self-gluing substep 1.3 can be skipped due to the empty conclusion of
CkTC,a.

For the anticipation step 2 , we chose the representative application condition pre-
mises p′+e,a,1, p′+e,a,2, p′+e,a,3, and p′+e,a,8. The argumentation for their representativeness
is analogous compared to (Ra,CkTC,a). In comparison to (Ra,CkTC,a), the attribute han-
dling during the anticipation step for (R+e,CkTC,a) is different because the reverse appli-
cation of R+e to the postcondition premises p′+e,a,J removes v12. Therefore, we (i) in-
troduce existential quantifications for all attributes of the removed link variable v12

that are referenced in the attribute constraints (i.e., w12), (ii) append the suffix “R ”
to their indices to avoid confusion with attributes of LHS variables (i.e., w12 → w12R),
and (iii) use the kTC-specific predicate with six parameters (see Equation (3.4)) in the
application condition premises p+e,a,J for p+e,a,2 and p+e,a,8. For p+e,a,2, the expres-
sion ϕkTC(v1, v3, v2), which is equal to ϕkTC(w13, w12, w23, id(v1), id(v3), id(v2)), becomes
ϕkTC(w13, w12R, w23, id(v1), id(v3), id(v2)). For p+e,a,3, we keep the ternary constraint
ϕkTC(v1, v2, v4) because its parameters do not refer to the existentially quantified vari-
able w12R. As in the previous iterations, we omit the attribute constraint s12R ∈ {A, I, U} :
s12R = U because it is a tautology.

The refined link addition rule R′+e is shown in Figure 4.12 with the negative applica-
tion conditions NAC+e,2 and NAC+e,3, which correspond to the synthesized application
conditions p+e,a,2 and p+e,a,8. To improve readability, we also substitute the existential
quantification of w12R and the assignment constraint w12R = w with an immediate ref-
erence to the parameter w.

Synthesis iteration for (R−e,CkTC,i). Figures 4.15c to 4.15h show the six postcondition
premises p′−e,i,1, . . . , p′−e,i,6 that result from the gluing substep 1.1 for (R−e,CkTC,i). We
omit the results of the extension substep 1.2 and self-gluing substep 1.3 for (R−e,CkTC,i)
because they are analogous compared to the results for (Ri,CkTC,i) shown in Figure 4.8.
The sole difference between c′−e,i,J,1 and c′i,i,J,1 is that that the former patterns lack the link
variable v12. In the self-glued postcondition conclusion patterns c′−e,i,J,2 the removed link
variable v12 is partly reconstructed: v[1,4]2 for c′−e,i,5,2 and c′−e,i,6,2 (see also Figures 4.15m
and 4.15n), and v1[2,4] for c′−e,i,2,2 (see also Figure 4.15j).

During the anticipation step 2 , the reverse application of R−e causes the addition of
a link variable v12 (Figure 4.15). This link variable is also added if the postcondition
premise and conclusion patterns already contains a link variable v12, leading to parallel
link variables. We remove all patterns that contain parallel link variables (Hnpl). This
filter rule applies to the premise p−e,i,1 (leading to the removal of AC−e,i,1) as well as the
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R'−e (v12 : Link)

LHS−e RHS−e

1 2 1 2

p−e,ϭ

1 2

3

c−e,ϭ,ϭ

1 2

3

ϕ(v1,v3,v4)

4

PAC−e,ϭ ⚙
p−e,Ϯ

1 2

3

c−e,Ϯ,ϭ

1 2

3

ϕ(v3,v2,v4)

4

PAC−e,Ϯ ⚙

Figure 4.14: Refined link removal rule R′−e with synthesized application conditions PAC−e,1 and
PAC−e,2 (corresponding to AC−e,i,2 and AC−e,i,6)

self-glued conclusion patterns c−e,i,2,2 and c−e,i,6,2. Furthermore, the following applica-
tion conditions are always fulfilled for weakly consistent topologies and can be removed
(Hwc): AC−e,i,3, AC−e,i,4, and AC−e,i,5. After applying all filtering rules, only two appli-
cation conditions remain: AC−e,i,2 (with a single conclusion pattern c−e,i,2,1) and AC−e,i,6
(also with a single conclusion pattern c−e,i,6,1).

The refined link removal rule with the positive application conditions PAC−e,1 and
PAC−e,2, which correspond to AC−e,i,2 and AC−e,i,6, is shown in Figure 4.14.

Synthesis iteration for (Rmod-w,CkTC,a). The result of the gluing substep 1.1 for the
rule-constraint pair (Rmod-w,CkTC,a) is identical to the gluing of RHS+e and pa because
the patterns involved in the gluing substep are identical in both constellations (see Fig-
ure 4.13). The anticipation step 2 for (Rmod-w,CkTC,a), in contrast, is similar to the
anticipation step for (R+e,CkTC,a). The only difference is that the link variable v12 is also
present in the application condition premises pmod-w,a,J. Still, as for (R+e,CkTC,a), the
kTC-specific attribute constraint ϕkTC relates to to the RHS link weight w12R of v12. All
but two application condition premises can be omitted because they never match on a
weakly consistent topology: pmod-w,a,2 and pmod-w,a,8 (Figure 4.16). Finally, we rename
the mote variables in pmod-w,a,2 and pmod-w,a,8 to conform to the mote variable names
in Rmod-w. Figure 4.18 shows the refined link-weight modification rule R′mod-w with the
corresponding negative application conditions NACmod-w,1 and NACmod-w,2. The figure
also shows the results of the following, final iteration of the synthesis algorithm for
(Rmod-w,CkTC,i).

Synthesis iteration for (Rmod-w,CkTC,i). Figures 4.17c to 4.17h show the six postcondi-
tion premises p′mod-w,i,1, . . . , p′mod-w,i,6 that result from the gluing substep 1.1 for the rule-
constraint pair (Rmod-w,CkTC,i). To improve readability, we repeat the link-weight mod-
ification rule Rmod-w and the inactive-link constraint CkTC,i in Figures 4.17a and 4.17b.
The premise p′mod-w,i,1 can be filtered out because it never matches due to the contra-
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R−e (v12 : Link)

LHS−e

RHS−e

1 2

1 2

(a) R−e (rep.)

Ci

1 2

3

ϕ(v1,v2,v3)

ci,1

1 2
pi

(b) Ci (rep.)

p'−e,i,ϭ ‒ [ϭ Ϯ|_]

1 2

s12 = I

(c) p′−e,i,1

p'−e,i,Ϯ ‒ [ϭ _|Ϯ]

1 2

s13 = I3

(d) p′−e,i,2

p'−e,i,ϯ ‒ [Ϯ ϭ|_]

1 2

s21 = I

(e) p′−e,i,3
p'−e,i,4 ‒ [Ϯ _|ϭ]

1 2

s31 = I3

(f) p′−e,i,4

p'−e,i,5 ‒ [_ ϭ|Ϯ]

1 2

s23 = I 3

(g) p′−e,i,5

p'−e,i,6 ‒ [_ Ϯ|ϭ]

1 2

s32 = I 3

(h) p′−e,i,6

p−e,i,1

c−e,i,1,1

ϕ(v1,v2,v3)

AC−e,i,1 ⚙

1 2

1 2

3

(i) AC−e,i,1 (Hnpl)

p−e,i,Ϯ

1 23

c−e,i,Ϯ,ϭ

ϕ(v1,v3,v4)

1 2

3 4

c−e,i,Ϯ,Ϯ

ϕ(v1,v3,v2)

AC−e,i,Ϯ ⚙

1 2

3

(j) AC−e,i,2 (c−e,i,2,2: Hnpl)

c−e,i,3,1

ϕ(v2,v1,v3)

1 2

3

p−e,i,3

1 2

AC−e,i,3 ⚙

(k) AC−e,i,3 (Hwc)

p−e,i,4

1 23

c−e,i,4,ϭ

1 2

3

ϕ(v3,v1,v4)

4

c−e,i,4,Ϯ

1 2

3

ϕ(v3,v1,v2)

AC−e,i,4 ⚙

(l) AC−e,i,4 (Hwc)

p−e,i,5

1 2 3

c−e,i,5,ϭ

1 2

3

ϕ(v2,v3,v4)

4

c−e,i,5,Ϯ

1 2

3

ϕ(v2,v3,v1)

AC−e,i,5 ⚙

(m) AC−e,i,5 (Hwc)

p−e,i,6

1 2 3

c−e,i,6,ϭ

1 2

3

ϕ(v3,v2,v4)

4

c−e,i,6,Ϯ

1 2

3

ϕ(v3,v2,v1)

AC−e,i,6 ⚙

(n) AC−e,i,6 (c−e,i,6,2: Hnpl)

Figure 4.15: Synthesis results for (R−e,CkTC,i)
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pmod-w,a,2

1 2

3∃w12R ∈ ℝ: (

w12R = w ∧ s13 = A 

ϕ(w13,w12R,w23,

id1, id3,id2) ]

(a) pmod-w,a,2

pmod-w,a,3

1 2

3 4∃w12R ∈ ℝ: (

w12R = w ∧ s14 = A

ϕ(v1, v3,v4) ]

(b) pmod-w,a,3

pmod-w,a,8

∃w12R ∈ ℝ: (

w12R = w ∧ s32 = A 

ϕ(w32,w31,w12R,

id3, id2,id1) ]

1 2

3

(c) pmod-w,a,8

Figure 4.16: Selected application condition premises pmod-w,a,J for (Rmod-w,CkTC,a) (after 2 )

dictory attribute constraints (Hcac). The results of the extension substep 1.2 and the
self-gluing substep 1.3 are omitted here because they are similar compared to the post-
condition conclusion patterns shown in Figure 4.8. The pattern graphs are identical, but
the first row of the attribute constraints differs. Compared to (Ri,CkTC,i), the attribute
constraint s12 = I is replaced with s12 = U ∧w12 = w. In total, five postconditions
PCmod-w,i,1, . . . ,PCmod-w,i,6 result from the specialization step.

During the anticipation step 2 , the attribute constraints are adjusted by replacing
the RHS variable w12 with an existential quantification of w12R and an assignment at-
tribute constraint (as for (R+e,CkTC,a) and (Rmod-w,CkTC,a)). We omit the corresponding
constraint for the state of v12 (i.e., ∃ s12R ∈ {A, I, U} : s12R = U) as usual because it is a
tautology.

Three application conditions ACmod-w,i,3, . . . ,ACmod-w,i,5 can be filtered out because they
are always fulfilled for weakly consistent topologies (Hwc). Only the remaining applica-
tion conditions are shown in Figures 4.17i and 4.17j.

Notably, in contrast to (Ri,CkTC,i), we cannot filter out any gluings of these applica-
tion conditions. This means that the remaining two application conditions ACmod-w,i,2
and ACmod-w,i,6 both contain two conclusion patterns. The reason for this difference to
(Ri,CkTC,i) is that the modification of w12 may or may not lead to the destruction of
a match of cmod-w,i,6,2. In the case of (Ri,CkTC,i), the inactivation of v12 does not affect
weak consistency. To sum up, the two conclusion patterns of the application condition
ACmod-w,i,2 reflect that the weight of a link v12 may only change to a new value w if for
each outgoing inactive link v13 of v1 either an alternative triangle (consisting of v13, v14,
v43) exists for which the kTC predicate ϕkTC holds (cmod-w,i,2,1), or the triangle consisting
of v13, v12, v23 fulfills ϕkTC after the link weight of v12 has changed to w (cmod-w,i,2,2).
The application condition ACmod-w,i,6 represents the analogous situation for all incoming
inactive links of v2.
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Rmod-w (v12 : Link, w : double)

LHSmod-w RHSmod-w

1 2
w12 = w

1 2

(a) Rmod-w (rep.)

Ci

1 2

3

ϕ(v1,v2,v3)

ci,1

1 2
pi

(b) Ci (rep.)

p'mod-w,i,1 ‒ [ϭ Ϯ|_]

1 2

s12 = U ᴧ w12 = w 

s12 = I

(c) p′mod-w,i,1 (Hcac)

p'mod-w,i,2 ‒ [ϭ _|Ϯ]

1 2

s12=Uᴧw12=w 

s13= I3

(d) p′mod-w,i,2

p'mod-w,i,3 ‒ [Ϯ ϭ|_]

1 2

s12 = U ᴧ w12 = w 

s21 = I

(e) p′mod-w,i,3

p'mod-w,i,4 ‒ [Ϯ _|ϭ]

1 2

s12=Uᴧw12=w 

s31= I3

(f) p′mod-w,i,4

p'mod-w,i,5 ‒ [_ ϭ|Ϯ]

1 2

s12=Uᴧw12=w 

s23= I 3

(g) p′mod-w,i,5

p'mod-w,i,6 ‒ [_ Ϯ|ϭ]

1 2

s12=Uᴧw12=w 

s32 = I 3
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Figure 4.17: Selected synthesis results for (Rmod-w,CkTC,i)
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Figure 4.18: Refined link-weight modification rule R′mod-w with synthesized application condi-
tions NACmod-w,1 and NACmod-w,2 (originating from pmod-w,a,2 and pmod-w,a,8 and en-
suring the preservation of CkTC,a) as well as PACmod-w,3 and PACmod-w,4 (originating
from ACmod-w,i,2 and ACmod-w,i,6 and ensuring the preservation of CkTC,i)

Finally, we attach ACmod-w,i,2 and ACmod-w,i,6 to the link-weight modification rule Rmod-w
and perform the usual renaming of variables and the replacement of w12R with the
parameter w. Figure 4.18 shows the resulting refined link-weight modification rule.

We discuss the effect of the two distinct application condition conclusion patterns of
PACmod-w,3 and PACmod-w,4 using the sample topology Figure 4.19 (kTC with k = 1.3.
Here, six context events are pending, and four of the pending context events can be
applied. The link-weight modification event that relates to `12 can be applied because,
after the link-weight modification from 1 to 5.5, the match {v12 7→ `14} of pkTC,i can be
extended to a match of the conclusion pattern ckTC,i,1 that corresponds to the alternative
triangle (n1, n4, n3). Application condition PACmod-w,3 and, in particular, the application
condition conclusion pattern cmod-w,3,1 capture this situation. Similarly, the link-weight
modification event that relates to `21 can be applied because, after the link-weight mod-
ification from 1 to 5.5, the match {v12 7→ `41} of pkTC,i can be extended to a match of the
conclusion pattern ckTC,i,1 that corresponds to the alternative triangle (n4, n1, n3). Ap-
plication condition PACmod-w,4 and, in particular, the application condition conclusion
pattern cmod-w,4,1 capture this situation. The situation is different for the next pair of
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Figure 4.19: Effect of synthesized positive application conditions PACmod-w,3 and PACmod-w,4

pending context events, which determine that the weight of `45 and `54 are about to
change from 1 to 5. In this case, no alternative triangle exists, but the existing extensions
of the matches from the premise pkTC,i to the conclusion pattern ckTC,i,1 are still valid
after applying the link-weight modification events (7 > 1.3 · 5 = 6.5). The situation
for `45 is captured by PACmod-w,3 and cmod-w,3,2, and the situation for `54 is captured by
PACmod-w,4 and cmod-w,4,2. Only the context events that relate to `67 and `76 cannot be
applied because either PACmod-w,3 (for `67) or PACmod-w,4 (for `76) cannot be fulfilled. In
both cases neither an alternative, ϕkTC-fulfilling triangle exists nor would the existing
triangle fulfill ϕkTC after applying the context event.

4.3.3 Interpretation of synthesized application conditions

In this subsection, we investigate in how far the synthesized application conditions cause
a different behavior of the TC mechanism specification compared to the template specifi-
cation. Figure 4.20 shows the story diagram of the kTC algorithm, whose control flow is
identical to the template TC algorithm specification and whose GT rule applications con-
tain the refined rules R′a (Figure 4.11) and R′i (Figure 4.9g). We obtain the story diagrams
of the context event handler specification from the template specification in Figure 3.24

in an analogous manner. For conciseness reasons, we do not show these story diagrams
here. In Example 4.19, we now attempt to prove the correctness of the current state of
the kTC specification.

Example 4.19 (Correctness of kTC specification after synthesis algorithm). We eval-
uate which correctness criteria the kTC specification fulfills after applying the con-
structive approach. Figure 4.20 shows the TC algorithm specification, which con-
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tains the refined TC rules R′a and R′i . We obtain the refined context event handler
diagrams from Figure 3.24 by using the refined context event rules R′+e (Figure 4.12),
R′−e (Figure 4.14), and R′mod-w (Figure 4.18). For conciseness reasons, we do not show
the refined context event handler diagrams here.

Criterion CC1: The kTC specification in Figure 4.20 terminates. Proof idea: The exe-
cution of the story diagram terminates if the topology contains no more unmarked
links (see application of Rfind-u). We now show that the number of unmarked links
decreases by one with each iteration. This is the case if at least one of the two GT
rules R′a and R′i is applicable to the unmarked link v12. Thus, v12 is left unmarked
if and only if neither R′a nor R′i is applicable. We now assume that neither GT rule
is applicable and show that this implies a contradiction. The fact that R′a is inappli-
cable allows us to conclude that v12 is part of a triangle together with links v13 and
v32 for which ϕkTC is true. The fact that R′i is inapplicable allows us to conclude
that no such triangle exists because no match of ci,1,1 exists. This is a contradiction.
Therefore, for a given unmarked link v12, at least one of the two rules R′a and R′i is
applicable. For a given topology, the set of links is finite and so is the number of
loop iterations.

Criterion CC2: The kTC specification in Figure 4.20 preserves weak consistency.
Proof idea: Each GT rule application in the story diagram (i.e., Rfind-u, R′a, R′i) pre-
serves weak consistency; the find-unmarked–link rule Rfind-u preserves weak consis-
tency because it does not modify the topology, and R′a and R′i preserve weak consis-
tency by construction because, by applying the constructive approach to these GT
rules, we added application conditions that prevent any application of R′a and R′i
that would otherwise introduce a violation of CW = {CkTC,i,CkTC,a}. Therefore, the
kTC diagram preserves weak consistency.

Criterion CC3: The kTC specification in Figure 4.20 enforces strong consistency.
Proof idea: An execution of the story diagram shown in Figure 4.20 may only termi-
nate if Rfind-u is inapplicable. This is the case if the topology contains no unmarked
links and, therefore, fulfills the no-unmarked-links constraint Cu. Together with
the previously shown criterion CC2 we conclude that the kTC specification enforces
strong consistency.

Criterion CC4: The execution of each kTC-specific context event handler story dia-
gram terminates. Proof idea: Each context event handler story diagram in Figure 3.24

contains a single GT rule application and no loops. Even though the applicability
of the context event rules has decreased due to the additional application condi-
tions, the termination behavior of the story diagrams has not changed because the
outgoing activity edge of the respective story nodes has no guard. Therefore, the
execution of each context event handler diagram always terminates.

Criterion CC5: Each kTC-specific context event handler specification preserves
weak consistency. Proof idea: By applying the constructive approach to R+e, R−e,
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KtcAlgorithm::run(var v12:Link) : void

v12=Rfind-u() R'a(v12)
[S]

R'i(v12)
[S]

[F]
[F]

Figure 4.20: Story diagram of kTC algorithm after applying the constructive approach

and Rmod-w, we added application conditions to these GT rules that prohibit the ap-
plication of each GT rule at a match that would otherwise lead to a violation of weak
consistency. Therefore, each kTC-specific context event handler diagram preserves
weak consistency.

Criterion CC6: Each kTC-specific context event handler specification processes the
corresponding context event. Observation: We reuse the sample topology from the
beginning of this chapter to illustrate why CC6 does not hold. Figure 4.21 shows
the sample topology from the beginning of the chapter (Figure 4.3a) together with
the refined link-weight modification rule R′mod-w. For the moment, we only consider
the pending link-weight modification events. The four synthesized application con-
ditions of R′+e are placed close to the part of the topology that contains a violation
of the respective application condition. The violation of each application condi-
tion is marked as a match of the premise of the application condition that cannot
be extended to a match of one of conclusion patterns: m1 for NACmod-w,1, m2 for
NACmod-w,2, m3 for PACmod-w,3, m4 for PACmod-w,4. Similarly, we can identify matches
of the premises of the synthesized application conditions of R′+e and R′−e in Fig-
ure 4.3a that cannot be extended to a match of a conclusion pattern.

Verdict: The current kTC specification is not correct because CC6 is violated.
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Figure 4.21: Violations of application conditions of R′mod-w in Figure 4.3a
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4.4 synthesis of anticipation loops

The preceding attempt to prove the correctness of the kTC specification failed because
the application of the constructive approach restricted the applicability of the context
event handler rules (see Example 4.19). In this section, we show how to re-establish the
applicability of the context event rules in a systematic, consistency-preserving way. We
introduce the anticipation loop synthesis step 3 , an additional refinement step that en-
sures that each context event handler processes a given context event without violating
weak consistency. The anticipation loop synthesis algorithm is one major contribution
of this thesis.

This step expects as input a TC mechanism specification that has been refined using
the constructive approach and that fulfills the correctness criteria CC1 to CC5. This
implies that the TC algorithm specification is already correct because the only related
correctness criteria CC1 to CC3 are fulfilled. Therefore, we focus on the context event
handler specification in the following.

In contrast to the constructive approach, the anticipation loop synthesis step modifies
the control flow specification and synthesizes additional rules, the context event handler
rules.

4.4.1 Violation of application conditions

The underlying idea of the envisioned anticipation loop synthesis step is to transform
each synthesized application condition of the context event rules into control flow frag-
ment that unmarks exactly those links that are part of a violation of the considered
application condition. We use the term “anticipation” here because each anticipation
loop foresees the violation of a particular application condition of the context event rule
that follows. We begin with a definition that characterizes the violation of an application
conditions.

Definition 4.20 (Violation of application condition). A violation of an application con-
dition ACX,Y of a GT rule RX is an extension of the match of LHSX to the premise of
ACX,Y that cannot be extended to a match of any conclusion pattern cX,Y,Z.

The following example illustrates this definition.

Example 4.21 (Violation of application condition and resolution). To illustrate the
concept of violated application conditions, we reuse the initial example of this chap-
ter, shown in Figure 4.3. In Figure 4.22a, each link that is labeled with a red cross
mark (7) indicates a violation of a synthesized application condition of the refined
context event rules R′+e (Figure 4.12), R′−e (Figure 4.14), or R′mod-w (Figure 4.18). In
comparison to Figure 4.3, the violations of the synthesized application conditions of
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Table 4.5: Example: Violations of application condition in Figure 4.3a

Context event ! +e(5,7,1) ! +e(7,10,1) ! −e(`64) ! −e(`46)

AC NAC+e,2 NAC+e,3 PAC−e,1 PAC−e,2
Violation {v13 7→ `47} {v32 7→ `74} {v13 7→ `4 10} {v32 7→ `10 4}

Context event ! mod-w(`79,1) ! mod-w(`97,1) ! mod-w(`23,8) ! mod-w(`32,8)

AC NACmod-w,1 NACmod-w,2 PACmod-w,3 PACmod-w,4

Violation {v13 7→ `78} {v32 7→ `87} {v13 7→ `24} {v32 7→ `42}

the TC rules (i.e., PACi,1 at `12 and NACa,1 at `9 11) are resolved by activating and in-
activating the links `12 and `21 as well as `9 11 and `11 9, respectively. This resolution
is ensured by the TC algorithm specification (CC3).

In contrast, all red cross marks shown in Figure 4.22a are problematic because
they prevent the application of the pending context events (CC6). During the (par-
tially) failed proof of correctness for the current version of the kTC specification, we
discussed why the refined link-weight modification rule R′mod-w is inapplicable to
each pending link-weight modification event in Figure 4.3a. The exact violations of
each application condition are shown in Example 4.19.

Table 4.5 summarizes the violations of the application conditions of the refined
link-weight modification rule R′mod-w as well as the violations of the refined link
addition rule R′+e and the refined link removal rule R′−e.

which links constitute a violation of which application condition during the pro-
cessing a given context event. We only provide the partial match that involves the
link variable of the application condition premise that is associated with a marking
constraint. For instance, the violation of NAC+e,2 contains the mapping from the v12

with marking constraint s(v12) = A to `47.
Notably, all violation reasons shown in Figure 4.22a can be resolved by setting the

respective link to unmarked. Unmarking a link always preserves weak consistency
and, at the same time, allows the context event handlers to process the pending con-
text events because the premise of each synthesized application condition contains
a constraint of the form s(vYZ) = A or s(vYZ) = I.

Figure 4.22b shows the topology after unmarking all links that cause the viola-
tion of a synthesized application condition of a context event rule. In this state of
the topology, all pending context events can be processed. The result is shown in
Figure 4.22c. After handling all context events, the next step is to execute the TC
algorithm specification to ensure that all links are marked (not shown here).
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Figure 4.22: Example: Violation of application conditions and resolution via anticipation with
kTC parameter k set to 1.3 (continued from Figure 4.3)



4.4 Synthesis of anticipation loops 133

4.4.2 Anticipation loop synthesis algorithm

preliminaries We now generalize the insights gathered from Example 4.21. The
following definition summarizes the necessary preconditions that allow us to resolve a
violation of an application conditions by unmarking links.

Definition 4.22 (Anticipatibility preconditions). The strategy of unmarking links to
ensure the applicability of context event rules relies on two preconditions that each
synthesized application condition in the context event handler specification must
fulfill. The first anticipatibility precondition is that each application condition premise
contains at least one marking constraint, which is an attribute constraint that restricts
the state of at least one link variable (i.e., s(vYZ) = A or s(vYZ) = I for some link
variable vXY). The second anticipatibility precondition is that unmarking a link (i.e.,
applying the unmarking rule Ru) preserves weak consistency.

Note that the first precondition is fulfilled if the premises of each weak consistency
constraint contains a marking constraint. The reason is that the context event rules gen-
erally do not contain attribute constraints related to the state of the involved links in the
LHS pattern. This implies that the reverse application of the context event rule to the
postcondition patterns during the anticipation step 2 does not introduce fresh marking
constraints. Therefore, any marking constraint in the synthesized application condition
originates from the graph constraint that caused the addition of the application condi-
tion during the synthesis algorithm.

Example 4.23 (Anticipatibility preconditions). For our running example, the first
anticipatibility precondition is fulfilled because all eight synthesized application
conditions contain marking constraints: s13 = A in NAC+e,2 and NACmod-w,1, s32 = A

in NAC+e,3 and NACmod-w,2, s13 = I in PAC−e,1 and PACmod-w,3, s32 = I in PAC−e,2
and PACmod-w,4. All marking constraints result from the attribute constraints of the
premises of CkTC,a and CkTC,i, respectively.

The second anticipatibility precondition is also fulfilled because applying the un-
marking rule Ru preserves CW.

Based on the anticipatibility preconditions and to enforce that CC6 is fulfilled, the
procedure SynthesizeAnticipationLoops in Algorithm 4.3 refines each context event
handler in the TC mechanism specification by synthesizing anticipation loops.

Definition 4.24 (Anticipation loop). An anticipation loop w.r.t. a pending context event
CE and a synthesized application condition ACX,Y,J is a loop in a story diagram that
unmarks all links in the topology that are part of a violation of ACX,Y,J during the
handling of CE.
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The algorithm operates in-place by modifying the given context event handler spec-
ification handleX. In the following, the context event rule that is invoked by handleX is
denoted by R′X and the story node that contains the application of R′X is denoted by
SNe. After the algorithm has terminated, the refined context event handler diagram
fulfills CC6. The pending context event CE is encoded as the values of the parameter list
(X1,X2, . . . ) of handleX.

Example 4.25 (Notation of anticipation loop synthesis algorithm). This example
illustrates the usage of the variables handleX, SNe, and (X1,X2, . . . ). The pend-
ing addition of a link with weight 1 from mote n5 to mote n7 (i.e., ! +e(n5,n7,1))
in Figure 4.22a is represented by an invocation of handleX = KtcLinkAdditionHan-
dler::KtcLinkAdditionHandler with parameter values (X1,X2,X3) = (n5, n7, 1).

The pending removal of `46 (i.e., ! −e(`46) ) in Figure 4.22a is represented by an
invocation of handleX = KtcLinkRemovalHandler::KtcLinkRemovalHandler with param-
eter values (X1) = (`46).

The pending modification of the weight of `23 to 8 (i.e., ! mod-w(`23,8)) in Fig-
ure 4.22a is represented by the invocation of the context event handler operation
handleX = KtcLinkWeightModificationHandler::handleLinkWeightModification (see Fig-
ure 3.23e) with the parameter values (X1,X2) = (`23, 8).

For each of discussed pending context events, the story node SNe is equal to the
single story node of the context event handler diagram.

Without loss of generality, we make the following technical assumptions: First, the
story node containing the invocation of R′X has one incoming activity edge. Second,
the parameter list (X1,X2, . . . ) of handleX is equal to the parameter list of R′X without
modifications. Third, the parameter list unambiguously determines the context event,
that is, the extension of the partial match that is represented by (X1,X2, . . . ) to a match
of LHSX is always unique. If the first assumption were violated, all incoming activity
edges of the story node containing the application of R′X could be redirected to a freshly
introduced story node in front of the context event story node. If the second assump-
tion were violated, we could introduce an intermediate operation that reorganizes the
parameter list and refine this intermediate operation as described in the following. If the
third assumption were violated, the parameter list of handleX and R′X would not specify
the context event precisely, which is undesirable.

explanation of algorithm We now describe the steps of the anticipation loops
synthesis algorithm in detail. We assume that the anticipatibility preconditions (Defini-
tion 4.22) hold.

The synthesis algorithm for anticipation loops processes each synthesized application
condition ACX,J separately by invoking SynthesizeAnticipationLoop (lines 3–5). For a
given synthesized application condition ACX,J, the procedure SynthesizeAnticipation-
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Algorithm 4.3 Anticipation loop synthesis algorithm

Require: Anticipatibility preconditions (Definition 4.22).
Ensure: Correctness criterion CC6 fulfilled for handleX (see Definition 4.7)

procedure SynthesizeAnticipationLoops(handleX: context event handler diagram)
R′X = Refined context event rule in handleX
for all synthesized application condition ACX,J of R′X do . See symbol

SynthesizeAnticipationLoop(handleX,RX,ACX,J)

end for
end procedure

procedure SynthesizeAnticipationLoop(handleX: context event handler diagram,
R′X: refined context event rule, ACX,J: synthesized application condition of R′X)

SNe = Story node in handleX containing the invocation of R′X
(X1,X2, . . . ) = Parameter list of invocation of R′X and handleX

. Create anticipation rule Ranticipate,X,J
Create new GT rule Ranticipate,X,J with parameters (X1,X2, . . . )
LHSanticipate,X,J = extension of LHSX along LHSX-pX,J mapping in R′X
vYZ = link variable in LHSanticipate,X,J with s(vYZ) = A or s(vYZ) = I

RHSanticipate,X,J = pattern with graph of LHSanticipate,X,J and constraint s(vYZ) = U

for all conclusion pattern cX,J,K of ACX,J do
NACanticipate,X,Y: NAC = Fresh negative application condition
panticipate,X,J,K = extension of LHSanticipate,X,J along pX,J-cX,J,K mapping in ACX,J

end for

. Create application of Ranticipate,X,J into handleX
SNanticipate,X,J = Fresh story node containing Ranticipate,X,J(X1,X2, . . . )
Redirect incoming activity edge of SNe to have target SNanticipate,X,J
Insert [S]-edge with source and target SNanticipate,X,J
Insert [F]-edge with source SNanticipate,X,J and target SNe

end procedure
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ContextEventHandler::handleX(X1:EClassifier, X2:EClassifier,…) : void

RX(X1,X2,…)…

(a) Story diagram before insertion

ContextEventHandler::handleX(X1:EClassifier, X2:EClassifier,…) : void

RX(X1,X2,…)… Ranticipate,X,J(X1,X2,…)
[S]

[F]

(b) Story diagram after insertion

Figure 4.23: Insertion of anticipation loop in story diagram (schematic)

Loop creates and inserts an anticipation loop that removes all violations of ACX,J for the
given parameter list (X1,X2, . . . ).

At the beginning of the procedure SynthesizeAnticipationLoop, a fresh anticipation
rule Ranticipate,X,J is created. This rule has the same parameter list as R′X (line 13). The
LHS pattern LHSanticipate,X,J matches if the topology contains a violation of ACX,J for the
partial match resulting from the given parameters (X1,X2, . . . ) (line 14). Thanks to the
anticipatibility precondition, at least one link variable vYZ has an associated marking
constraint in LHSanticipate,X,J (line 15). If multiple candidates for vYZ exist, any of them
may be chosen because it suffices to unmark one link variable during the rule applica-
tion to destroy the violation of ACX,J. The RHS pattern RHSanticipate,X,J is derived from
LHSanticipate,X,J by copying the pattern graph of LHSanticipate,X,J and inserting a single at-
tribute constraint that ensures that vYZ is unmarked after applying Ranticipate,X,J (line 16).

Afterwards, each conclusion pattern cX,J,K of ACX,J is translated into a negative ap-
plication condition of Ranticipate,X,J (lines 17–20). The generated application is negative
because each conclusion pattern cX,J,K represents a situation in which applying R′X pre-
serves ACX,J and, thus, unmarking vYZ is unnecessary.

Finally, an application of the generated rule Ranticipate,X,J is inserted in front of SNe

(lines 23–26, visualized by Figure 4.23). The [S]-edge at SNanticipate,X,J forms a loop and,
thereby, ensures that Ranticipate,X,J is applied as long as possible (line 25). The execution
may only continue to SNe if all violations of ACX,J have been resolved.

Before we prove the correctness of Algorithm 4.3 in Section 4.4.3, we illustrate the
algorithm using our running example kTC.

Example 4.26 (Anticipation loop synthesis step 3 for kTC). Figure 4.25a shows
the kTC-specific link addition handler after the synthesis of two anticipation loops.
The anticipation loops around the applications of Ranticipate,+e,2 (Figure 4.25b) and
Ranticipate,+e,3 (Figure 4.25c) originate from the synthesized application conditions
NAC+e,2 and NAC+e,3, respectively.
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Figure 4.25d shows the kTC-specific link removal handler after the synthesis of
two anticipation loops. The anticipation loops that apply Ranticipate,−e,1 (Figure 4.25e)
and Ranticipate,−e,2 (Figure 4.25f) originate from the synthesized application condi-
tions NAC+e,2 and NAC+e,3, respectively.

Figure 4.26a shows the kTC-specific link-weight modification handler after the
synthesis of four anticipation loops. The anticipation loops that apply the rules
Ranticipate,mod-w,1 (Figure 4.26b), Ranticipate,mod-w,2 (Figure 4.26c), Ranticipate,mod-w,3 (Fig-
ure 4.26d), and Ranticipate,mod-w,4 (Figure 4.26e) originate from the synthesized appli-
cation conditions NACmod-w,1, NACmod-w,2, PACmod-w,3, PACmod-w,4, respectively.

Example 4.27 (Effect of application conditions of anticipation loops). This exam-
ple illustrates how the negative application conditions of the anticipation rules
Ranticipate,mod-w,3 and Ranticipate,mod-w,4 ensure that no links are being unmarked un-
necessarily. Let’s consider the example shown in Figure 4.24a (continued from Fig-
ure 4.19, kTC parameter k = 1.3). In this example, the anticipation loops only take
effect when the context events at `67 and `76 are processed by the link-weight mod-
ification handler. For the remaining four pending link-weight modification events,
the negative application conditions prevent an application of Ranticipate,mod-w,3 and
Ranticipate,mod-w,4 because the topology is weakly consistent even after the link-weight
modification events have been processed.

The negative application conditions NACanticipate,mod-w,3,1 and NACanticipate,mod-w,4,1
prevent that `14 and `41 are being unmarked unnecessarily due to the existence of
an alternative ϕkTC-fulfilling triangle. Analogously, the negative application con-
ditions NACanticipate,mod-w,3,2 and NACanticipate,mod-w,4,2 prevent that `46 and `64 are
being unmarked unnecessarily because the affected triangle still fulfills ϕkTC after
the link-weight modification event has been processed. The topology that results
from handling all context events is shown in Figure 4.24b. In total, eight links need
to be unmarked.

After applying the anticipation loop synthesis algorithm to our running example, we are
now ready to conduct the proof of correctness for the kTC specification again.

Example 4.28 (Correctness of kTC specification after anticipation loop synthesis).
After the anticipation loop synthesis step 3 , the kTC specification consists of the
(unchanged) TC algorithm specification shown in Figure 4.20 and the context event
handler specification shown in Figures 4.25a, 4.25d and 4.26a. The criteria CC1, CC2,
and CC3 need not be revisited because we did not modify the TC algorithm speci-
fication during the anticipation loop synthesis step. In contrast, the modifications
of the context event handler diagrams may—and in case of CC6, should—affect the
remaining correctness criteria.
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(b) Topology after context event handling

Figure 4.24: Example: Effect of negative application conditions of anticipation rules (kTC with
k = 1.3)

Criterion CC4: The execution of each kTC-specific context event handler story dia-
gram in Figures 4.25a, 4.25d and 4.26a terminates. Proof idea: The only reason why
the context event handlers may not terminate are the freshly introduced anticipa-
tion loops. This may only happen if at least one anticipation rule Ranticipate,X,J is
applicable infinitely often. However, this can never occur because each successful
application of an anticipation rule Ranticipate,X,J unmarks a link that was marked pre-
viously. The topology contains only a finite number of marked links and, therefore,
each context event handler terminates.

Criterion CC5: Each kTC-specific context event handler specification preserves
weak consistency. Proof idea: The only possible violation of weak consistency could
originate from the introduced anticipation rules Ranticipate,X,J. Still, the only modifi-
cation performed by an anticipation rule is that a marked link is being unmarked.
Unmarking a link never violates weak consistency (as discussed in Example 4.23).
Therefore, each context event handler preserves weak consistency.

Criterion CC6: Each kTC-specific context event handler specification processes the
corresponding context event. Proof idea: Upon termination of each anticipation loop,
no violations of the corresponding synthesized application conditions of the context
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event rules exist. A new violation of an application condition ACX,J may only be
created if a link is being activated or inactivated. Still, no links are being marked
during the execution of a context event handler. Therefore, no violation of any syn-
thesized application condition of the context event rule exists when the execution
of the story diagram arrives at SNe.

Verdict: The kTC specification consisting of the TC algorithm specification in Fig-
ure 4.20 and the context event handlers in Figures 4.25a, 4.25d and 4.26a is correct.

4.4.3 Proof of correctness for anticipation loop synthesis algorithm

In the following, we prove that the anticipation loop synthesis algorithm (Algorithm 4.3)
produces context event handlers that are correct according to the criteria CC4, CC5, and
CC6 (Definition 4.7). We split the proof into two steps. First, we define correctness on the
level of anticipation loops and prove that the synthesized anticipation loops are correct.
Second, we use this result to prove that the refined context event handler specification
is correct.

4.4.3.1 Correctness of synthesized anticipation loops

We begin with the characterization of correctness for anticipation loops in the following
definition.

Definition 4.29 (Correctness of anticipation loop). Let ACX,J be a synthesized appli-
cation condition of a GT rule RX (from Algorithm 4.3), and Ranticipate,X,J the antici-
pation rule synthesized from ACX,J using Algorithm 4.3. An anticipation loop w.r.t.
ACX,J is correct if

(i) Ranticipate,X,J is applicable if and only if a violation of ACX,J w.r.t. the context
event that is currently processed exists (least change),

(ii) the application of Ranticipate,X,J reduces the number of violations of ACX,J in the
model (violation resolution), and

(iii) the application of Ranticipate,X,J does not create additional violations of any ap-
plication condition of RX, including ACX,J (consistency preservation).

The intention behind Definition 4.29 is that an anticipation loop shall only resolve viola-
tions of application conditions that relate to the current context event (least-change and
violation-resolution properties) and that anticipation loops can be arranged in any order
without threatening weak consistency.

Our goal is now to prove the following correctness theorem for synthesized anticipa-
tion loops.
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Figure 4.25: kTC-specific link addition and removal handlers with synthesized anticipation loops
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Figure 4.26: kTC-specific link-weight modification handler with refined link-weight modification
rule R′mod-w and synthesized anticipation rules Ranticipate,mod-w,1, Ranticipate,mod-w,2,
Ranticipate,mod-w,3, and Ranticipate,mod-w,4
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Figure 4.27: Sketch for proof of correctness of anticipation loop synthesis algorithm

Theorem 4.30 (Correctness of synthesized anticipation loops). An anticipation loop
that originates from executing Algorithm 4.3 for a synthesized application condition
ACX,J is correct w.r.t. Definition 4.29.

We split the proof of Theorem 4.30 into four paragraphs and begin with a preparatory
sketch of the involved rules.

preliminaries for proofs Figure 4.27 shows a sketch of a GT rule RX with a syn-
thesized application condition ACX,J as well as the structure of and the relations among
the involved patterns in RX and Ranticipate,X,J. To improve the visual presentation, we ab-
breviate Ranticipate,X,J as Ra.,X,J in the figure and represent identical pattern elements (i.e.,
mote variables, link variables, and attribute constraints) using rectangles with identical
color and filling.

We shortly recapitulate the properties of the involved variables and patterns. The GT
rule RX has a list of input rule parameters, which uniquely characterize the pending
context event that is processed by applying RX (shown as ). These rule parameters
constitute a partial match of LHSX. Furthermore, LHSX may contain variables that
are not bound by the partial match (shown as ). To ensure that the context event
characterized by the rule input parameters is unambiguous, the extension from the
partial match determined by the rule parameters to a match of LHSX is unique. The
RHS pattern RHSX of RX is omitted here because it is not relevant for the synthesis
of the anticipation rule Ranticipate,X,J. Now, let’s consider the synthesized application
condition ACX,J. The premise pX,J of ACX,J is an extension of LHSX (shown as ), and
each conclusion pattern cX,J,1, cX,J,2,. . . of ACX,J is an extension of pX,J (shown as ). As



4.4 Synthesis of anticipation loops 143

usual, we omit the mappings from a LHS pattern to the application condition premise
patterns of a rule and from the premise to the conclusion patterns of an application
condition to improve readability.

From the construction of Ranticipate,X,J (Algorithm 4.3) and the anticipatibility precondi-
tions (Definition 4.22), we know that the following relations between RX and Ranticipate,X,J
hold.

• Ranticipate,X,J is invoked using the same parameters as RX ( ).
• LHSanticipate,X,J is identical to pX,J ( , , ) and contains a marking constraint

s(vYZ) = A or s(vYZ) = I for some link variable vYZ.
• RHSanticipate,X,J results from LHSanticipate,X,J by removing all attribute constraints

and adding the unmarking attribute constraint s(vYZ) = U/ This difference is indi-
cated by .

• The premise panticipate,X,J,K of each NAC of the anticipation rule Ranticipate,X,J is iden-
tical to the corresponding conclusion pattern cX,J,K of the synthesized application
condition ACX,J ( ).

To show that the synthesized application condition is correct, we consider a concrete
violation of ACX,J caused by the pending context event (represented by the rule param-
eters of RX). According to Definition 4.20, this violation is a match mX,J of pX,J that (i) is
an extension of the match mX of LHSX and (ii) cannot be extended to a match of any
conclusion pattern cX,J,1, cX,J,2,. . . exists. In Figure 4.27, the existence and nonexistence
of matches are shown as arrows and crossed arrows (7) from a pattern to the topol-
ogy GT, respectively. We can now show that the three required correctness criteria for
anticipation loops (Definition 4.29) hold.

proof of least-change criterion From the identified mappings between RX
and Ranticipate,X,J, we conclude that the existence of a match mX of pX,J implies that a
match manticipate,X,J of LHSanticipate,X,J exists and that both matches are identical. The GT
rule Ranticipate,X,J is applicable for the given context event if and only if no extension of
manticipate,X,J to a match manticipate,X,J,K of any of its NACs NACanticipate,X,J,K exists. Due
to the fact that the premise patterns of these NACs are identical to the corresponding
conclusion patterns in RX, we can reformulate this statement as follows: Ranticipate,X,J is
applicable for the given context event if and only if no extension of mX,J to a match mX,J,K
of any conclusion pattern cX,J,K of ACX,J exists. This is only the case if mX,J constitutes
a violation of ACX,J. Therefore, Ranticipate,X,J is applicable for the given context event if
and only if this context event entails a violation of ACX,J.

proof of violation-resolution criterion To show that the violation-resolu-
tion criterion holds, we prove that a match manticipate,X,J of LHSanticipate,X,J that corre-
sponds to a violation of an application condition no longer exists after the application
of the anticipation rule Ranticipate,X,J.
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We know that LHSanticipate,X,J contains at least one marking attribute constraint for a
link variable vYZ (i.e., s(vYZ) = A or s(vYZ) = I). Therefore, a match of LHSanticipate,X,J
maps link variable vYZ to a marked link. For the same link variable vYZ, the RHS pat-
tern RHSanticipate,X,J contains an unmarking constraint (i.e., s(vYZ) = U). This constraint
ensures that the marked link that vYZ maps to becomes unmarked during the rule ap-
plication. Therefore, the original match manticipate,X,J no longer exists. This means that
the violation that is represented by manticipate,X,J is resolved by applying the anticipation
rule Ranticipate,X,J at manticipate,X,J.

proof of consistency-preservation criterion The only modification that
the anticipation rule Ranticipate,X,J performs is to set the state of a link to unmarked.
According to the second anticipatibility precondition, unmarking a link preserves weak
consistency (Definition 4.22). Therefore, applying an anticipation rule preserves weak
consistency.

To sum up, all three correctness criteria for anticipation loops (Definition 4.29) are
fulfilled by the synthesized anticipation loops and, therefore, Theorem 4.30 holds.

4.4.3.2 Correctness of refined context event handlers

We have already shown that each synthesized application condition is correct (Theo-
rem 4.30). In the following, we build on this result to show that a context event handler
that has been refined using Algorithm 4.3 is correct in the sense of Definition 4.7. As
a reminder, we repeat the relevant correctness criteria for context event handlers in the
following definition.

Definition 4.31 (Correctness of context event handler (excerpt of Definition 4.7)). A
context event handler of a TC mechanism specification is correct w.r.t. a given three-
level consistency specification (in the sense of Definition 3.22) if the following three
correctness criteria are fulfilled.

(i) For a given context event, the context event handler terminates (CC4).
(ii) The context event handler preserves weak consistency (CC5).

(iii) The context event handler processes the context event (CC6).
A context event handler processes a context event if it (i) removes the corresponding
context event marker from the topology, and (ii) applies the corresponding opera-
tionalizing context event rule according to Table 3.2.

The following theorem is the main result of this section.

Theorem 4.32 (Correctness of refined context event handler specification). Let the
operation handleX be a context event handler that terminates (CC4) and preserves
weak consistency (CC5). Then, after a refinement handleX using Algorithm 4.3,
handleX is correct w.r.t. Definitions 4.7 and 4.31.
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ContextEventHandler::handleX(X1:EClassifier, X2:EClassifier,…) : void
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Figure 4.28: Sketch of refined context event handler for proof of correctness

In the subsequent paragraphs, we show all three correctness criteria for the refined
context event handler.

preliminaries for proofs We first summarize the notation for the following
proofs. As a reminder, Figure 4.28 shows the structure of a refined context event han-
dler handleX. The GT rule RX is the considered context event rule that possess a number
of synthesized application conditions (Algorithm 4.1). The rule and operation parame-
ters X1, X2, . . . represent the context event that is processed by handleX. The operation
handleX is the context event handler that corresponds to RX and has been refined using
Algorithm 4.3. With ACX,J, we denote one of the synthesized application conditions of
RX. For each synthesized application condition ACX,J, a corresponding anticipation loop
with an anticipation loop Ranticipate,X,J exists. Due to Theorem 4.30, we know that each
anticipation loop is correct. This means that applying Ranticipate,X,J produces no addi-
tional violations of application conditions of RX and resolves at least one violation of
ACX,J.

proof of termination Now we show that the execution of the refined context
event handler specification terminates for a given context event (CC4) under the as-
sumption that the unrefined context event handler terminates. The control flows of the
unrefined and the refined context event handlers differ only in the additional anticipa-
tion loops that have been inserted in front of the story node containing RX. The story
node that contains RX has an outgoing activity edge leading to the stop node. There-
fore, it is sufficient to show that each anticipation loop terminates to prove that handleX
also terminates. Let’s consider an arbitrary anticipation loop of an anticipation rule
Ranticipate,X,J. The anticipation loop does not terminate if and only if the contained GT
rule Ranticipate,X,J is applicable infinitely often due to the looping [S]-edge.

The number of motes and links in a topology is finite. Therefore, the number of
violations of ACX,J is finite. The fulfilled violation-resolution criterion of Ranticipate,X,J
guarantees that the number of violations of ACX,J decreases with each application of
Ranticipate,X,J. This implies that the number of iterations of the anticipation loop is finite.
Therefore, the context event handler terminates.
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proof of preserved weak consistency Next, we show that the refined context
event handler handleX preserves weak consistency under the assumption that it pre-
served weak consistency prior to the refinement. Similar to the proof of termination, we
only have to consider the anticipation loops because they constitute the only difference
between unrefined and refined context event handler specification.

Due to the fulfilled consistency-preservation criterion of correct anticipation loops,
we know that each anticipation rule preserves weak consistency. This means that weak
consistency is an invariant of handleX, and we conclude that handleX preserves weak
consistency.

proof of application of context events Finally, we show that the refined
context event handler handleX processes each context event. This is equivalent to the re-
quirement that RX is applicable for each context event (as stated in Table 3.2). A context
event preserves the original (i.e., non-synthesized) application conditions of RX. There-
fore, the only reason for RX to be inapplicable is a violation of one of the synthesized
application conditions.

We show that RX is applicable by contradiction. Therefore, let’s assume that the execu-
tion of handleX has arrived at the application of RX and that a violation of a synthesized
application condition ACX,J of RX exists. The control flow of the refined context event
handler ensures that the application of RX can only be reached if the anticipation rule
Ranticipate,X,J that corresponds to ACX,J was inapplicable previously. At this point, the
topology was free of violations of ACX,J because the anticipation loop iterates as long as
possible and resolves a violation of ACX,J in each iteration. This means that a violation
of ACX,J must have been introduced by a GT rule application that followed the antic-
ipation loop of Ranticipate,X,J. Algorithm 4.3 inserts the sequence of anticipation loops
immediately in front of the application of RX. Therefore, all modifications of the topol-
ogy between the application of Ranticipate,X,J and RX result from a successful applications
of another anticipation rule Ranticipate,X,K. Still, this is impossible because the consistency-
preservation criterion holds for each anticipation loop. Therefore, no violation of ACX,J
w.r.t. the current context event may exist when the execution arrives at the story node
containing RX.

To sum up, a context event handler specification that has been refined using Algo-
rithm 4.3 is correct and Theorem 4.32 holds.
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4.5 applicability of anticipation loop synthesis algorithm

In this section, we first discuss the applicability of the anticipation loop synthesis al-
gorithm in general and, then, outline two additional scenarios where the anticipation
loop synthesis algorithm allows to overcome the reduced applicability of GT rules. The
first use case is the handling of parameter modifications of the enabled TC algorithm in
adaptive WSNs. The second use case is to enforce the termination of the TC algorithm
specification.

4.5.1 Discussion of applicability

The anticipation loop synthesis algorithm has multiple preconditions that could limit its
applicability to further use cases beyond the discussed running example.

In Section 4.4, we already discussed that the assumed structure of context event han-
dler operations—one story node containing the application of the context event rule
with the same parameters as the surrounding context event handler operation that has
one incoming activity edge—does not limit the applicability of Algorithm 4.3 because
these restrictions can be alleviated by introducing appropriate intermediate operations
and activity nodes, respectively.

The first anticipatibility precondition in Definition 4.22 requires that each application
condition that shall be processed contains a link with a marking constraint. This pre-
condition does not limit the applicability of Algorithm 4.3 because the TC algorithm
can never produce a match of an application condition premise that lacks a marking
constraint. The reason for this guarantee is that the only modifications that originate
from GT rule applications inside the TC algorithm are the activation and inactivation of
links. No other attributes or associations are modified by the TC algorithm.

The second anticipatibility precondition requires that unmarking a link never violates
weak consistency. This property may exclude use cases for Algorithm 4.3 where the
premise or a conclusion pattern of an application condition requires links to be in a par-
ticular state. Whether or not Algorithm 4.3 is still applicable in this case can be verified
statically by applying the constructive approach to the unmarking rule Ru. If the con-
structive approach returns at least one synthesized application condition, Algorithm 4.3
is inapplicable because each synthesized application condition represents a situation
where unmarking a link may violate weak consistency.

In Section 4.5.3, we discuss a scenario where the TC-algorithm–specific constraints
contain additional marking attribute constraints and outline how Algorithm 4.3 can be
extended to not require the second anticipatibility precondition.
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Figure 4.29: Extension of specification for TC algorithm parameter reconfiguration use case

4.5.2 Handling parameter modifications of topology control algorithms

Modern WSNs are adaptive in the sense that the configuration parameters of an indi-
vidual TC algorithm can be reconfigured or entire TC algorithms can be exchanged at
runtime (see also Definition 2.33). In the following, we show how to use the construc-
tive approach ( 1 and 2 ) and our proposed anticipation loop synthesis algorithm 3 to
ensure that the topology is weakly consistent after reconfiguring a parameter of the TC
algorithm. For this, we have to widen our view of the TC mechanism specification. Until
now, we worked with a fixed notion of weak consistency (i.e., an immutable constraint
set CW). The just described scenario is different in that the constraint set that constitutes
weak consistency changes at runtime due to the TC algorithm parameter modification.
For the following steps, we use a shorthand kTC predicate ϕkTC that has four param-
eters. It is identical to the shorthand kTC predicate introduced in Equation (3.6) but
allows to configure the parameter k. Furthermore, we annotate the constraint sets that
determine weak and strong consistency with the current value of k. For instance, C1.3

kTC,a
and C1.3

kTC,i denote that the k parameter of kTC is set to 1.3. The kTC-specific constraints
with configurable k are shown in Figures 4.29a and 4.29b.

To investigate the effects of this extension, we proceed as follows. First, we introduce
TC algorithm parameter modification GT rules as a new category of GT rules that are
irrestrictable (like context event rules) because the modification of a TC algorithm pa-
rameter shall always be successful. Figure 4.29c shows the new GT rule Rmod-kTC-k in
object diagram notation. The GT rule specifies that the parameter k of the TC algorithm
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(c) After increasing k to 1.4

Figure 4.30: Example: Consistency violations (7) due to modification of kTC parameter k

kTC changes to a new value k (provided as input rule parameter). As usual, the implicit
object variable for the unique Topology instance is hidden from the GT rule.

Second, we create a handler operation in the TC algorithm class within the meta-
model and implement the operation as story diagram that contains a single story node
that applies the TC algorithm parameter modification rule. Figure 4.29d shows the story
diagram that implements the new operation KtcAlgorithm::handleParameterModificationK.
The extension of the metamodel is not shown here for conciseness reasons. The oper-
ation has a single parameter k, which represents the new value of k and is passed as
parameter to the GT rule in the single story node of the story diagram.

Figure 4.30 illustrates that the specification violates CkTC,a at this point. The initial
topology in Figure 4.30a is strongly consistent if k is set to 1.3. The remaining subfig-
ures illustrate the effect of decreasing k to 1.1 (Figure 4.30b) and increasing k to 1.4
(Figure 4.30c). In the former case, the links `57 and `75 violate CkTC,a because their
weights are now larger than k · 4 = 4.4. In the latter case, the links `13 and `31 violate
CkTC,i because their weights are no longer larger large enough (5.5 < k · 4 = 5.6). The
red cross marks (7) indicates that only two of the four inactive links violate weak consis-
tency (i.e., form a match of the negative graph constraint CkTC,a). As in Figure 4.22c, the
consistency violations could be resolved by unmarking `57 and `75 in the former case
and `13 and `31 in the latter case.

Third, we apply the constructive approach ( 1 and 2 ) and the anticipation loop syn-
thesis algorithm ( 3 ) to refine the TC algorithm parameter modification diagram as to
ensure that weak consistency holds w.r.t. the modified constraint set after executing the
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TC algorithm parameter modification operation. Figure 4.31a shows the single postcon-
dition premise p′mod-kTC-k,a,1, and Figure 4.31b the corresponding application condition
premise pmod-kTC-k,a,1 that result from the gluing substep 1.1 and the anticipation step
2 for (Rmod-kTC-k,CkTC,a). Figure 4.31c shows the application condition ACmod-kTC-k,i, f or

the rule-constraint pair (Rmod-kTC-k,CkTC,i). In these figures, we use a mixed notation that
represents mote and link variables in compact notation and all other types of variables
in object diagram notation. The glued part of RHSmod-kTC-k and pkTC,a is the hidden
topology. Figure 4.31d shows the refined parameter modification rule R′mod-kTC-k after
applying the constructive approach.

To ensure that R′mod-kTC-k is always applicable, the anticipation loop synthesis step 2
finally inserts two anticipation loops that correspond to the two synthesized application
conditions into KtcAlgorithm::handleParameterModificationK (Figure 4.31e). Figures 4.31f
and 4.31g show the corresponding anticipation rules.

4.5.3 Enforcing termination of topology control algorithm specification

In Example 4.19, the proof of termination for the kTC algorithm specification was ar-
guably simple because the only two synthesized application conditions of R′a and R′i
are “complementary” to each other, that is, one of the two rules R′a and R′i is always
applicable to a given unmarked link v12. This property ensures that the TC algorithm
specification marks a link in each iteration of the loop. This observation does not hold
in general. In [119], we show how to use the same algorithm presented here for refining
the story diagram of the kTC algorithm specification to ensure that it always terminates.

In this thesis, we give a brief summary of the case study, which we discuss in detail
in [118, 119, 122]. We begin with the modified TC-algorithm–specific constraint set CMW
=
{
CM
kTC,i,CM

kTC,a

}
∪ CT, whose kTC-specific constraints are shown in Figure 4.32. The

considered GT rules are identical to our running example.
The shown active- and inactive-link constraints contain marking constraints for the

link variables v13 and v32. This means that the negative graph constraint CM
kTC,a is more

“lenient” than CkTC,a because a topology that violates CkTC,a may fulfill CM
kTC,a. In con-

trast, CM
kTC,i is “stricter” than CkTC,i because an extension of a premise match must addi-

tionally fulfill the marking constraints compared to CkTC,i.
If we apply the constructive to the modified constraint set CMW, we obtain a different set

of synthesized application conditions. For the moment, we focus on the refined TC rules
R′a and R′i , which result from applying the constructive approach ( 1 and 2 ) and are
shown in Figures 4.33a and 4.33b, respectively. The refined TC algorithm story diagram
is identical to one shown in Figure 4.20. However, both refined TC rules possess three
synthesized application conditions. The application conditions PACi,1 and NACa,1 are
similar to before (apart from the additional marking constraints). The only differences
are the new marking conditions s13, s32 ∈ {A, I}. As in the preceding examples, PACi,1
and NACa,1 are complementary: A link v12 that fulfills PACi,1 does not fulfill NACa,1,
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(g) Ranticipate,mod-kTC-k,2

Figure 4.31: Example: Results of applying the constructive approach to Rmod-kTC-k
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ϕkTC(v1,v2,v3)
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ckTC,i,1
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pkTC,i

(a) CM
kTC,i
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3

ϕkTC(v1,v2,v3)

s13,s32 ∈ {A,I}

pkTC,a

(b) CM
kTC,a

Figure 4.32: kTC-specific constraints with marking constraints for v13 and v32

and vice versa. The four other application conditions NACi,2, NACi,3, NACa,2, NACa,3

result from the synthesis algorithm iterations for the rule-constraint pairs
(
Ra,CM

kTC,a

)
and

(
Ri,CM

kTC,a

)
. Notably, the patterns of NACi,2 and NACa,2 as well as NACi,3 and NACa,3

are identical.
In fact, the identical pairs of application conditions may prevent the termination of

the TC algorithm specification.

Example 4.33 (Nontermination of kTC with CMW). We illustrate this observation us-
ing the topology shown in Figure 4.34a (kTC with k = 1.3). In the shown weakly
consistent topology, the four links `12, `21, `47, and `74 are still unmarked. Still, both
TC rules are inapplicable to the topology (among others) due to the identical pairs
of negative application conditions NACa,2-NACi,2 (for `12, `47) and NACa,3-NACi,3 (for
`21 and `74). This means that the TC algorithm specification never terminates for the
topology in Figure 4.34a. The corresponding strongly consistent topology is shown
in Figure 4.34f. Table 4.6 summarizes the application conditions that prevent the
application of R′a and R′i . The complementary application conditions NACa,1 and
PACi,1 are not problematic in this context because the control flow of the TC algo-
rithm specification ensures that both GT rules are tried if one of the GT rules is
inapplicable. The solution in for the given topology is to retract marking decision
systematically before trying to apply R′a and R′i . For example, `14 and `41 should be
inactive because they are both the weight-maximal links in a ϕkTC-fulfilling triangle
(as shown in Figure 4.34f). This modification, however, would produce a new vio-
lation of CkTC,i at `35. In Figure 4.34b, the marking decisions for `14 and `41 have
been retracted. In Figure 4.34c, the link `12 and `21 that caused the preceding retrac-
tion step have been activated. Throughout this example, we process pairs of reverse
links jointly to reduce the number of intermediate steps. When generalizing the pre-
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(b) Refined activation rule R′a

Figure 4.33: Refined TC rules after application of constructive approach based on CMW
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Table 4.6: Reasons for inapplicability of R′a and R′i in Figure 4.34a (preventing link: violation of
application condition of R′a or R′i , bold: problematic pairs of application conditions)

Link Final
state

Preventing
link(s)

Reasons for R′a Reasons for R′i

`12 A `14 NACa,2 NACi,2,PACi,1

`21 A `41 NACa,3 NACi,3,PACi,1

`47 I `46,`36 NACa,1,NACa,2 NACi,2

`74 I `64,`63 NACa,1,NACa,3 NACi,3

sented idea of retraction, we perform the retraction operation for each unmarked
link separately (e.g., unmark `14, then mark `12). In Figure 4.34d, we see that the
retraction step must be carried out recursively because unmarking a link may cause
a violation of weak consistency. Therefore, to enable the marking of `47 and `47,
the four links `46, `36, `64, and `63 have to be unmarked. In Figure 4.34e, the links
`47 and `74 that caused the second retraction step have been inactivated. Finally, in
Figure 4.34f, the remaining unmarked links have been marked.

The solution to the nontermination problem that we discussed in the preceding ex-
ample can be generalized in a similar way as for context event handlers. However, the
anticipation loop synthesis algorithm cannot be applied directly in this scenario because
the second anticipatibility precondition is violated (see Definition 4.22): Unmarking a
link (i.e., applying Ru) may violate weak consistency (which necessitates the recursive
retraction step in Figure 4.34d).

For the sake of conciseness, we only sketch the three required modifications of our
approach in the following. First, we refine Ru during the application of the constructive
approach as usual ( 1 and 2 ) because Ru may violate weak consistency. The unmark-
ing rule Ru is irrestrictable (like context event rules) because we use it to unmark links
intentionally. Therefore, we introduce unmarking handler operations handleu into the
TC algorithm class (e.g., KtcAlgorithm) and the context event handler classes (e.g., Kt-
cLinkAdditionHandler), which is also subject to the anticipation loop synthesis algorithm.
The specifications of handleu are identical in each class. Whenever a link v12 shall be un-
marked in the specification, we insert an invocation of the unmarking handler operation
handleu: handleu(v12).

Second, the anatomy of the synthesized anticipation loops changes because of the
violated anticipatibility precondition that Ru preserves weak consistency. Instead of
unmarking a link that violates a synthesized application condition, we delegate the
unmarking process to handleu (see sketch in Figure 4.35) The synthesized anticipation
rule Ranticipate,X,J now has equal LHS and RHS patterns and the identified unmarked
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(f) After marking remaining links

Figure 4.34: Example: Solution to nontermination of refined TC algorithm specification (7: vio-
lation of NACa,2-NACi,2 or NACa,3-NACi,3, kTC with k = 1.3)
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vYZ = Ranticipate,X,J

(X1,X2,…)

ContextEventHandler::handleX(X1:EClassifier, X2:EClassifier,…, vYZ:Link) : void

RX(X1,X2,…)…

[S]

[F]

handleU(vYZ)

With s(vYZ) = A or s(vYZ) = I

Figure 4.35: Structure of synthesized anticipation loops (generalized, vYZ: link variable with
marking constraint in ACX,Y)

link is passed to handleu. This also applies to the synthesized anticipation loops inside
handleu. In other words, the unmarking handler operation handleu contains recursive
invocations of itself.

Example 4.34 (Unmarking handler). Figure 4.36 shows the refined unmarking rule
R′u and the refined unmarking handler KtcAlgorithm::handleu. During the applica-
tion of the constructive approach ( 1 and 2 ), the unmarking rule Ru receives two
synthesized application conditions PACu,1 and PACu,2, which are similar to the syn-
thesized application conditions of R′−e. The positive application condition PACu,1
ensures that each outgoing inactive link v13 of v1 is still part of a ϕkTC -fulfilling
triangle after unmarking v12. Similarly, the positive application condition PACu,2
ensures that each incoming inactive link v32 of v2 is still part of a ϕkTC -fulfilling
triangle after unmarking v12.

To ensure that R′u is always applicable for a given link v12, the unmarking handler
operation handleu contains two synthesized anticipation loops that eliminate all vio-
lations of PACu,1 and PACu,2. For conciseness reasons, the actual anticipation rules
are not shown here.

Third, to ensure that the TC algorithm specification terminates, we apply a modified
version of the anticipation loop synthesis algorithm to each pair of shared application
conditions ACa,X-ACi,Y of R′a and R′i . A retraction loop w.r.t. an unmarked link v12 and a
pair of shared application conditions ACa,X-ACi,Y of the activation and inactivation rules is a
story node that applies the retraction rule Rretract,aX,iY that corresponds to ACa,X-ACi,Y
as long as possible. An application of a retraction rule identifies a marked link that is
par of a violation of ACa,X-ACi,Y. In general, the retraction rule unmarks a link vYZ that
is part of a violation of ACa,X-ACi,Y. As for the anticipation loop synthesis algorithm,
the application condition pair ACa,X-ACi,Y must contain a marking constraint for vYZ
(e.g., s(vYZ) = A or s(vYZ) = I) to ensure that each application of the retraction rule
destroys a violation of ACa,X-ACi,Y. For each shared synthesized application condition
of R′a and R′i , we insert a retraction operation invocation at the beginning of the loop
body (i.e., in front of Ra when using the proposed template specification in Figure 4.2)
Figure 4.37a sketches the structure of the inserted retraction loop. The link variable vYZ
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(b) Refined unmarking rule R′u

Figure 4.36: Refined unmarking handler and unmarking rule R′u for kTC

must be chosen such that entire retraction process (including the recursive invocation
of handleu) terminates. The termination proofs for the TC algorithm and context event
specifications (CC1 and CC4) need to consider the recursive behavior of handleu.

A general strategy to conduct termination proofs for GT rule systems is to define
a potential function ν (also called Noetherian function), which maps a topology GT to a
tuple of natural numbers ν(GT) ∈ NN for some N ∈ N. In our scenario, possible tuple
elements could be the number of links per link state or the number of motes. To show
that the retraction process terminates, we have to prove descending chain condition [150].
This property states that the value of ν(GT) decreases strictly w.r.t. the canonical order
on NN with each possible sequence of GT rule application. If this property cannot be
shown for a certain GT rule, we can still try to leverage information from the control flow
specification. The major challenge when applying this proof strategy in our scenario is
the proper choice of the Noetherian function ν.

The following example illustrates an alternative idea for proving the termination of
kTC.

Example 4.35 (Retraction loops for kTC). Figure 4.37 shows the concrete refined kTC
specification with the two synthesized retraction rules Rretract,a2,i2 (Figure 4.37c) and
Rretract,a3,i3 (Figure 4.37d). To ensure that the kTC specification terminates, we un-
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mark the link variable that represents the weight-maximal link in a ϕkTC -fulfilling
triangle (e.g., v13 in Rretract,a2,i2 and v32 in Rretract,a3,i3). We apply a similar strategy
during the anticipation loop synthesis for the unmarking handler operation handleu
and the context event handler operations.

The following observation allows us to prove that all operations terminate (CC1
and CC4) and preserve weak consistency: First, whenever handleu is invoked on a
link vYZ during the processing of another link v12 (e.g., inside handleu in Figure 4.36),
the unique weight w′(vXY) is larger than the unique weight w′(v12) of v12: w′(vXY)
� w′(v12).

Based on this observation, we can conduct a proof by induction that is similar to
the proof of connectivity (Example 3.23) as sketched in the following:

Induction claim: For a given topology GT = (VT,ET), the invocation of KtcAlgo-
rithm::handleu for a given marked link j̀ ∈ ET : s( j̀) ∈ {A, I} terminates, preserves
weak consistency, and unmarks the link j̀ . Let L = (`1, `2, . . . ) be a list that contains
all links in ET and let L be sorted by decreasing w′ (i.e., w′(`1) � w′(`2) � · · · ).

Induction start (j = 1): During the execution of KtcAlgorithm::handleu(`1), none of
the anticipate rules is applicable. Otherwise, we would find a link `k (matched by
variable vYZ) with w′(`k) � w′(`1), which contradicts the fact that `1 is the link with
maximum unique weight in GT. Thus, the execution of KtcAlgorithm::handleu(`1) ef-
fectively consists of the application of R′u to `1. The rule application preserves weak
consistency by construction, and the operation always terminates. Furthermore, the
application of Ru to `1 is successful because both application conditions PACu,1 and
PACu,2 are fulfilled. Therefore, the induction claim holds for j = 1.

Induction step (j = N → N+ 1): We now assume that the induction claim holds
for all links j̀ in L with j ≤ N, and show that the induction claim also holds for
link `N+1 (i.e., that the execution of KtcAlgorithm::handleu(`N+1) terminates, pre-
serves weak consistency, and unmarks `N+1). By construction of the anticipation
rules Ranticipate,u,1 and Ranticipate,u,2, each link `k (represented by variable vYZ) that is
passed to a recursive invocation of KtcAlgorithm::handleu is longer than `N+1 w.r.t.
w′: w′(`k) � w′(`N+1). This means that k is smaller than or equal to N because
of the sorting of L according to w′. Therefore, each recursive invocation of KtcAl-
gorithm::handleu terminates, preserves connectivity, and causes `k to be unmarked
because we assume that the induction claim holds for all j̀ with j ≤ N. This means
that each anticipation loop terminates because the execution of the body of each an-
ticipation loop destroys the match of the corresponding anticipation rule. Therefore,
the execution eventually arrives at the application of R′u to `N+1. Furthermore, the
application of R′u to `N+1 is successful because both application conditions PACu,1
and PACu,2 are fulfilled by construction of the anticipation loops ( 3 ), and R′u pre-
serves weak consistency ( 1 and 2 ). Therefore, the induction claim holds for `N+1.

We close the description of the second use case by discussing a potential improve-
ment regarding the retraction of marking decisions. Our model of TC mechanisms (see
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KtcAlgorithm::run(var v12:Link, var vYZ:Link) : void

v12=Rfind-u() R'a(v12)
[S]

R'i(v12)

[F]
[S]

[F]
vYZ = Rretract,a2,i2 (v12)

[F]
vYZ = Rretract,a3,i3 (v12)

[F]

[S]

handleU(vYZ)

[S]

handleU(vYZ)

(b) Refined kTC story diagram with two retraction loops
Rretract,a2,i2 (v12:Link, out v13:Link)

LHSretract,a2,i2 RHSretract,a2,i2

ϕ(v1,v3,v2)

s23∈{A,I}

1 2

3

⚙

1 2

3

(c) Rretract,a2,i2

Rretract,a3,i3 (v12:Link , out v32:Link)

LHSretract,a3,i3 RHSretract,a3,i3

⚙

ϕ(v3,v2,v1)

s31∈{A,I}

1 2

3

1 2

3

(d) Rretract,a3,i3

Figure 4.37: Sketch of refined TC algorithm specification in general and for kTC

Figure 2.8) distinguishes between two types of components that both set the link state
attribute: The TC algorithm is responsible for enforcing strong consistency, that is, for
deciding whether to activate or inactivate the currently unmarked links in the topology.
The context event handlers are responsible for processing pending context events by
unmarking links in a way that weak consistency is preserved. Inside a context event
handler, anticipation loops unmark links (potentially recursively, see Section 4.5.3) to
preserve weak consistency.

A complementary strategy would be to decide whether weak consistency can be pre-
served by toggling the state of a link (i.e., from active to inactive, or vice versa). Exam-
ple 4.33 illustrates a situation where this strategy could save unnecessary unmarking
operations: In Figure 4.34b, instead of retracting the marking decisions for `14 and `41,
we can inactivate `14 and `41 immediately. Afterwards, weak consistency still holds.
This strategy also avoids the recursive retraction that is caused by the marking attempts
for `47 and `74 (Figure 4.34d). Here, inactivating `46 and `64 results in a weakly consis-
tent topology, and the states of `36 and `63 can be left unchanged. This idea could be
generalized in future work.
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4.6 related work

In this section, we survey related work on (i) conceptual extensions of the constructive
approach and their potential application to developing TC algorithms, (ii) works that
build on the results of the constructive approach (similar to the anticipation loop syn-
thesis algorithm described in this thesis), and (iii) alternate approaches to ensure that a
specification (or implementation thereof) fulfills consistency properties.

4.6.1 Conceptual extensions of the constructive approach

Graphical consistency constraints (for short graph constraints), as introduced in [91] and
as used throughout this paper, express the requirement that particular combinations of
nodes and edges should be present in or absent from a graph. This formalism has been
generalized to be applicable to High-Level Replacement (HLR) categories in [56]. Habel
and Pennemann generalized the constructive approach to support declarative consis-
tency specifications formulated as nested graph constraints, which are as expressive as
first-order logic [83]. In his Ph.D. thesis [175], Pennemann provides details on his exten-
sion of the constructive approach to nested graph constraints. The (non-nested) graph
constraints that we employ in this thesis are a special case of nested graph constraints
(with nesting depth of one). As an extension of the original constructive approach,
Deckwerth and Varró proposed to handle attribute constraints in an additional process-
ing step [44]. In his dissertation [43], Deckwerth extends the results of [44] to a more
general category of typed projective graph transformations (see [43, Ch. 7] for details).
We make extensive use of their attribute handling approach in this thesis. In [250],
Taentzer and Rensink show how to handle type graphs with type inheritance using the
constructive approach.

Graph constraints provide the benefit that they can be used to constructively refine GT
rules. Still, their expressiveness is relatively limited. For instance, global constraints such
as connectivity cannot be expressed using graph constraints. For this reason, we needed
to prove manually that the fulfillment of the TC-algorithm–specific graph constraints
in our running example implies that the topology is AU-connected (see Example 3.23).
In [84], Habel and Radke present HR∗ constraints, a new type of graph constraints
that allow to express path-related properties. They showed that the constructive ap-
proach is also applicable to HR∗ constraints [196]. Details can be found in Radke’s Ph.D.
thesis [197]. We assume that the synthesis of anticipation loops is also possible for syn-
thesized application conditions based on HR∗ constraints. However, employing HR∗

constraints in the context of developing TC algorithms could lead to practical issues.
The size of the local view that is required to check whether an HR∗ application condi-
tion is fulfilled may be unbounded. Still, HR∗ constraints could be useful to represent
tree-based TC algorithms (e.g., LMST [140]). In case of LMST, an HR∗ constraint could
be used to specify that no active link may be part of a cycle in the topology where this
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link is the weight-maximal link (see cycle cancellation rule of Kruskal’s algorithm [127]).
An extensive discussion of HR∗ constraints can be found in Radke’s dissertation [197].

The constructive approach is a mechanical algorithm. Executing it manually entails
considerable manual effort as the large amount of synthesis results for the our small run-
ning example show. Fortunately, tool support for translating nested graph constraints
into application conditions of GT rules has been proposed recently1 [164]. The OCL2AC
tool translates OCL constraints first into nested graph constraints and then applies the
specialization 1 and anticipation step 2 to the nested graph constraints to obtain ap-
plication conditions. In the context of OCL2AC, the specialization step is called shift
step and the latter step is called “left step”). OCL2AC builds on the Henshin [9] graph
transformation tool. Henshin is an EMF-based tool that interprets GT rules at runtime.
The OCL2AC tool builds on previous conceptual work by Radke et al. [198, 199]. Cur-
rently, OCL2AC is not capable of handling simple relational attribute constraints. For
this reason, its application to the kTC example is not possible yet.

Plump and Poskitt followed another line of research rooted at the original construc-
tive approach [91]. Their focus lies on synthesizing preconditions of graph programs
in the GP (for “Graph Programs”) GT language [179]. For this purpose, they propose
the E-constraint formalism, an extension to nested graph constraints that supports node
attributes based on infinite domains (e.g., natural numbers) and attribute constraints.
In [186, 187], they propose a Hoare calculus to derive preconditions of entire graph pro-
grams based on the preconditions of individual rules, which are in turn derived from
a given set of E-constraints in the spirit of the constructive approach. In his Ph.D. the-
sis [185], Poskitt provides more details of the Hoare-style verification approach using E-
constraints and presents an adoption to GP2 [12], the successor of GP. The approach by
Poskitt and Plump is also applicable to our scenario. Their handling of node attributes
is an alternative to the approach by Deckwerth and Varró [43, 44], whose approach to
attribute handling should be applicable to nested graph constraints as well (thanks to
the generalization of [44] in [43]). Poskitt and Plump’s approach even supports scenar-
ios where the pre- and postconditions of the considered GT rules vary from rule to rule.
In contrast, in this thesis, we ensure constructively that all refined GT rules preserve
weak consistency. More precisely, using the conventional {precondition}-modification-
{postcondition} notation, we ensure that {CW} R {CW} holds for each TC and context
event rule R and that {CW} TopologyControlAlgorithm::run {CS} holds for the TC algo-
rithm specification.

In [188], as an extension to E-constraints, Plump and Poskitt present M-constraints,
which allow to express Monadic Second-order logic [39] constraint (e.g., to require con-
nectivity, acyclicity, or two-colorability of graphs). Their construction of application
conditions from M-constraints uses the same schema as the original constructive ap-
proach [91]. Still, the construction is more elaborate because the algorithm needs to
keep track of potential intermediate paths between nodes. The expressiveness of M-

1 OCL2AC page: https://ocl2ac.github.io/home/ (visited: 2018-09-19)

https://ocl2ac.github.io/home/
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constraints is lower than the expressiveness of the HR∗ constraints by Radke and Habel
because the latter formalism is capable of expressing node-counting Monadic Second-
order constraints (e.g., to ensure that a graph always has even node count).

4.6.2 Further usage scenarios of constructive approach

The constructive approach by Heckel and Wagner [91] has been applied in various sce-
narios. In the following, we survey usage scenarios that build immediately on the con-
structive approach. For conciseness reasons, we omit usage that build, for instance, on
nested graph constraints.

In [159], Mens et al. synthesize application conditions for rules that represent refac-
toring strategies [62]. In the same spirit, [27] presents an approach to refactoring using
distributed GT to represent the architectural aspects of refactoring operations. In [81],
the authors specify which elements shall be present in an abstract view of a base model
in terms of positive and negative patterns, which can be interpreted as simplified pos-
itive and negative graph constraints. These graph constraints are then specialized into
application conditions of GT rules that maintain the end-user view of a base model. In
contrast to this thesis, the authors of the preceding works use the constructive approach
unchanged and do not introduce additional steps.

In [26], propose an approach to refining a behavioral specification for ensuring that a
set of positive and negative graph constraints, which they call enforced generative patterns,
is fulfilled. The development of construction rules for Petri nets serves as illustrative
example. Similar to [81], the authors represent integrity properties of Petri nets as
positive (i.e., desired) and negative (i.e., forbidden) patterns instead of the precondition-
conclusion structure in [91]. In contrast to positive constraints in the sense of [91],
Bottoni et al. only support positive constraints with one conclusion pattern. The authors
discuss several strategies for ensuring consistency of a GT-based specification w.r.t. a
set of positive and negative patterns. The first strategy is to extend the effect of a GT
rule (i.e., the RHS pattern). The second strategy is to extend the required context for
applying a GT rule (i.e., the LHS pattern). The third strategy is to combine the first
and the second strategy by extending both the effect and the required context of a
GT rule. Their idea extends the concept of weakest preconditions [47], which forms
the basis of the constructive approach, by not only synthesizing preconditions but also
additional actions (e.g., the addition of missing required graph elements). In this thesis,
synthesizing additional actions is often not an alternative because this would entail,
for instance, the creation of motes and/or links or changes to the value of the link
state attribute during arbitrary rule applications. Still, we think that using enforced
generative patterns according to the third (mixed) strategy, could be a suitable approach
to shortcut unnecessary intermediate unmarking steps. Even though attribute handling
is not supported in the approach presented in [26], the authors outline briefly that their
approach can be extended to support attribute constraints as well.
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In [174], Bottoni et al. present an approach to handle modifications of the constraint
set for a specification. They distinguish between eight different modification types (e.g.,
increase/decrease premise/conclusion pattern graph size) and propose appropriate re-
finement strategies to ensure that the GT rule preserves the modified constraint set. The
modification of constraint sets is a generalization of the discussed TC algorithm parame-
ter modification in Section 4.5.2. In contrast to this thesis, Bottoni et al. only allow for GT
rules that either only construct or only delete elements. Furthermore, they only support
attribute assignment, but point out that an extension to a general attribute handling is
probably possible.

4.6.3 Approaches to ensuring consistency properties

We conclude the discussion of related work in this chapter by surveying different tech-
niques for ensuring that a piece of software fulfills formal requirements. In general,
at least three major approaches exist for this purpose. Correct-by-construction approaches
integrate the requirements during the construction of the software, which is the funda-
mental idea of this thesis. Verification-based approaches examine a system often based on
finite subset of the state space (if no suitable abstractions exist). Test-based approaches
exercises the algorithm by executing a set of representative test cases, each consisting of
input data and the expected result and, for each test case, comparing the actual result
with the expected result.

In [85], the authors highlight that combining these approaches is useful in realis-
tic projects. In [69], the authors compare 23 verification approaches (incl.conceptual
papers as well as model transformation tools) regarding their verification strategies.
Amongst others, the authors distinguish between different types of modeling languages
(e.g., graph-based vs. general UML models), analysis goals (e.g., behavioral vs. transla-
tion correctness) and employed verification techniques (e.g., theorem proving vs. model
checking). The main results of the survey are presented as tabular feature model in
[69, Tab. 1]. From the discussed verification approaches, the already discussed works
by Poskitt and Plump [187] as well as Giese and Lambers [76] are closest in spirit to
this thesis. The latter work presents results that have been extended by Dyck in [53] as
part of the KorMoran project2. We already discussed the relation between [187] and
this thesis. The work by Giese and Lambers [76] proposes to evaluate whether a model
transformation specified as triple graph grammar (TGG) [224] preserves a behavioral
specification given as set of GT rules using bisimulation.

correctness by construction Correct-by-construction approaches are being stud-
ied extensively in the context of hardware design and software development processes
(e.g., [14, 15, 190]). However, to the best of our knowledge, we are the first group to pro-
pose a correct-by-construction design methodology for TC algorithms. In the following,

2 KorMoran page: https://hpi.de/giese/forschung/projekte/kormoran.html (visited: 2018-09-19)

https://hpi.de/giese/forschung/projekte/kormoran.html
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we discuss a prominent example of a correct-by-construction methodology in greater
detail. In [2], the authors present Event-B, a correct-by-construction methodology for
systems engineering that works by stepwise refinement. The rational behind Event-B is
that the developer starts with an initial coarse-grained specification of the system under
development and then refines the specification gradually into a fine-grained specifica-
tion. An Event-B model consists of contexts and machines, where a context specifies,
for instance, the ranges of variables. A machine is a behavioral specification consisting
of (i) a set of variables, which characterize the state of the system, (ii) a set of invari-
ants that the machine shall fulfill permanently, and (iii) a set of events, which specify
how the state of the machine evolves. The rationale behind the Event-B approach is
now that the user starts building an Event-B model and receives feedback about which
proof obligations have to be shown such that a specified event preserves the invariants
of a machine. Based on the necessary proof obligations, the developer may either infer
that the Event-B model is incomplete (e.g., because preconditions are missing) or prove
that the proof obligation holds (semi-automatically or manually). Rodin provides an
Eclipse -based interface for creating Event-B models. A concise summary of Event-B
is available in [1] alongside with the presentation of Rodin Additionally, [1, Sec. 4] il-
lustrates the idea of incremental model refinement in Event-B using an access-control
sample scenario. Using Rodin, the developer receives interactive feedback about pend-
ing proof obligations and may use automatic or interactive theorem proving as well as
model checking (for models with a finite state space). Additionally, Rodin automatically
hides proof obligations that are fulfilled trivially and allows to find out which invari-
ants lead to which proof obligations (traceability). We pursue a similar goal as Event-B
but use different modeling techniques. For instance, we employ graph constraints for
specifying local consistency properties. If the consistency specification contains global
consistency properties (e.g., connectivity), we are obliged to prove that the fulfillment of
local consistency properties implies the preservation of the global consistency properties.
In contrast to Event-B, our usage of the constructive approach allows us to refine the
specification (semi-)automatically by synthesizing application conditions that ensure the
preservation of local consistency properties (i.e., graph constraints). Similar to Event-
B, our approach is not fully mechanic because (i) we need to prove manually that the
global consistency properties are fulfilled whenever the local consistency properties are
fulfilled, and (ii) after applying the constructive approach and the anticipation loop syn-
thesis algorithm, we need to prove manually that the specification terminates (due to
reduced applicability of the refined GT rules).

In [41], de Lara et al. present an MDE correct-by-construction approach for refining
triple graph grammar rules based on positive and negative patterns, which are inter-
preted as positive and negative graph constraints (similar to [81]). The authors specify
valid output models in terms of pattern triples and provide a translation algorithm that
is tailored to triple graph grammars.
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In [16], Becker et al. specify unsafe states of a mechatronic system using negative
graph patterns (i.e., negative graph constraints). They present an algorithm for verify-
ing statically whether a specification of the mechatronic system as set of GT rules may
violate the safety graph constraints using the specialization step of [91]. To reduce the
number of false-positive results, they employ the anticipation step (called ApplyBack
in the paper) to identify only those GT rules that turn a consistent model into an in-
consistent model. The authors provide an implementation of the proposed verification
algorithm that encodes the GT rules and the graph constraints into first-order logic ex-
pressions These expressions can be evaluated using the tool CrocoPat

3 [23]. In this
thesis, we extend the constructive approach for the scenario of local algorithms by en-
abling the anticipation of unavoidable consistency violations. To distinguish between
constraints that need to hold permanently (like the safety constraints in [16]) and con-
straints that are necessary for the ensuring that all links are classified, we introduce the
dichotomy of weak and strong consistency.

In [38], Clarisó et al. propose to translate metamodel invariants formulated as OCL
constraints [79] into weakest preconditions of model transformation rules. Their ap-
proach is not bound to GT rules. Instead, they refine the model transformation rule
on the level of atomic operations (e.g., object deletion or creation). They propose to
use their constructive approach also for automatic transformation diagnosis, were a model
finder tools is used to generate models for which the refined model transformation rules
are inapplicable. The metamodel invariants in [38] correspond to the structural consis-
tency level introduced in Definition 3.22. In this thesis, we also employed (manual)
transformation diagnosis for motivating why we need to introduce anticipation loops
for irrestrictable GT rules (e.g., context event rules). In contrast to the graph constraints
the constraint language OCL is at least as expressive as first-order logic. In contrast to
the results of this thesis, the authors of [38] need not conduct any additional refinement
steps (like the anticipation step) to re-establish the applicability of irrestrictable rules
because the invariants specified as OCL need to hold permanently. Still, we think that
our approach could be combined with [38] if irrestrictable rules exist.

An inspiration for us was the work by Fritsche et al. [64], who present an algorithm to
derive shortcut rules in the context of model synchronization using triple graph gram-
mars (TGGs) [223, 224]. From a pair of TGG rules, they synthesize a new TGG rule
whose effect corresponds to the retraction of the first TGG rule and the application of
the second TGG rule of the rule pair. This strategy can help to reduce information loss
and increase efficiency in incremental model transformation scenarios.

In a recent work, Kosiol et al. [123] report on ongoing efforts to create a correct-by-
construction development methodology for TGGs that follows a consistency-enforcing
strategy. Instead of synthesizing application conditions to ensure that a TGG rule ap-
plication preserves consistency, they propose to modify the actions of the TGG rule to

3 Website: https://www.sosy-lab.org/people/beyer/CrocoPat/ (visited: 2018-09-12)

https://www.sosy-lab.org/people/beyer/CrocoPat/
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enforce that consistency is fulfilled after applying the TGG rule. They leverage that TGG
rules are monotonic (i.e., only create and preserve model elements).

In [165, 166], Nassar et al. present an approach to repair invalid EMF models. For
instance, an invalid model can contain superfluous model elements (i.e., objects and
associations) due to violated upper multiplicity bounds or lack model elements due to
violated lower multiplicity bounds. Consequently, their approach consists of a model-
trimming and a model-completing phase, which remove superfluous and add missing
elements, respectively. They derive appropriate repair operations from the metamodel,
formalize their approach, prove that it is correct, and provide interactive tool support
for model repair based on the model transformation tool Henshin [9]. Their focus lies
on re-establishing the validity of models in a systematic way. In contrast, our approach
is to start with weakly consistent (i.e., also valid) model and to derive a TC mechanism
specification that preserves weak consistency and, in case of the TC algorithm, enforces
strong consistency. In a preceding work, Taentzer et al. [249] propose to introduce the
underlying concept of consistency-improving repair operations. Their goal is to repair
an invalid model step by step. This means that the model may be invalid after a repair
step, but its degree of invalidity should decrease. Their approach also takes the sequence
of (user) edit operations that lead to the inconsistent model into account by identifying
appropriate repair operations for each performed edit operation.

verification One technique for verifying correctness properties of software is model
checking [205]. Many model checking approaches are only suitable for verifying prop-
erties for models of a finite size. The benefit of the correct-by-construction approach, as
applied in this thesis, is that it ensures correctness for models of arbitrary size because
each refined GT rule is guaranteed to preserve the specified correctness properties.

In [167], Navarro et al. extend the logic of nested graph conditions by Habel and
Pennemann [83] to paths of unbounded length. The present a technique for proving
whether a given graph condition with paths is fulfilled for a given graph and, for in-
stance, whether a given (sub-)expression in the logic of nested graph conditions with
paths is always true or false (i.e., a tautology or a contradiction). In contrast to the idea
behind this thesis, their approach is primarily suitable to verify the fulfillment of graph
constraints with paths instead of refining a behavioral specification to ensure that the
graph constraints are preserved.

In [280], Zave specifies the Session Initiation Protocol (SIP) in the specification lan-
guage Promela to verify SIP using the model checker Spin [96]. In Promela, a protocol
is specified as a set of concurrent processes (e.g., server and client process), which ex-
change messages according to a predefined set of restrictions. Spin is able to construct
the state space for a given Promela specification up to a fixed size and determines
whether a sequence of events in the state space exists that violates liveness or safety
properties. Using Spin, Zave was able to detect several race conditions in SIP.
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In a spirit similar to [280], Zave investigated the frequently cited and built-upon
Chord protocol [243] for maintaining distributed hash tables in peer-to-peer networks
in [281]. Using the model checker Alloy [100], Zave was able to identify sequences of
events that lead to an unrecoverable state of a Chord network. Also in this case, the
state space investigated using Alloy was finite, but obviously sufficient to detect several
specification flaws of Chord. In [282], Zave finally showed how to improve the Chord

specification to overcome the detected problems.
In [110], model checking is applied to detect bugs in the TC algorithm LMST [140],

leading to an improved implementation thereof.
Graph abstractions [13] are a formalism that alleviates the problem that the verifica-

tion of systems is often limited to a finite part of the state space. By means of graph
abstractions symbolic representations of whole classes of models can be introduced. The
benefit of the correct-by-construction approach, as applied in this paper, is that it ensures
correctness for models of arbitrary size because each refined GT rule is guaranteed to
preserve the specified correctness properties.

In Section 3.7, we already discussed examples of verification techniques for probabilis-
tic and stochastic properties of GT systems [90, 124, 157].

testing In comparison to correct-by-construction and verification-based approaches,
the goal of testing is to derive a finite number of representative test cases that cover a
part of the space of possible input values of a piece of software that is as large as possi-
ble [163]. Testing is a complementary approach to the correct-by-construction approach
that we present in this thesis. From a practical viewpoint, testing is always necessary,
e.g., to ensure that the synthesized application conditions have been properly specified
in an MDE tool. For an overview of testing techniques for communication system algo-
rithms, we refer the reader to the survey article by Lai [133].





5
T O O L S U P P O RT F O R R A P I D E VA L U AT I O N

In this chapter, we present tool support for evaluating TC mechanism specifications
rapidly using a network simulator and hardware testbeds. Figure 4.1 locates the role
of this chapter in the entire TC algorithm development process (see also Figure 1.2).
One of the major goals of our approach is to provide the TC mechanism developer with
an interface that allows to specify the TC mechanisms on the level of metamodels and
GT rules. Therefore, we decided to build on an existing MDE tool for developing the
TC mechanism specification. We chose the modeling tool eMoflon [135] because it is
extensible enough to compile the same TC mechanism specification into executable code
for different target platforms (e.g., Java, C). We discuss reasons for choosing eMoflon

in Section 5.1.
In Section 5.2, we present Cobolt, a tool for evaluating a TC mechanism specifica-

tion modeled with eMoflon using the network simulator Simonstrator [208]. We
chose the established network simulator Simonstrator because it provides the neces-
sary components for simulating WSNs and is implemented in Java. Choosing Java as
target language simplifies the implementation of an interface to the code generated us-
ing eMoflon. We enabled the simulative evaluation of TC mechanism specifications
by introducing a reusable TC component in Simonstrator. Similar to the proposed ar-
chitecture of TC mechanisms in Figure 2.8, the TC component has extension points for
(i) receiving updates from the input topology (e.g., WiFi), (ii) providing update events
to the virtual topology (i.e., a reduced view of the WiFi topology), (iii) invoking the Java
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Figure 5.1: Location of Chapter 5 in TC algorithm development process
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code that eMoflon generates from the TC mechanism specification. Furthermore, the
TC component allows to exchange or reconfigure the active TC algorithm.

In Section 5.3, we present cMoflon, a tool for evaluating a TC mechanism specifica-
tion on hardware motes running the sensor operating system Contiki [51]. We selected
Contiki because it is a widely used operating system for IoT devices and the ToCoCo

framework [239] provides a suitable programming interface for implementing TC algo-
rithms in Contiki. cMoflon generates C code that is tailored to the ToCoCo framework.
We designed cMoflon to reuse the eMoflon build process where possible. One of our
goals during the design of cMoflon was to compare the generated C code with manual
implementations of three TC algorithms (kTC, l*kTC, LMST [239]). For this purpose, we
evaluated the generated TC algorithms in the FlockLab

1 [149] testbed at ETH Zurich,
which consists of 30 TelosB [181] motes.

In Section 5.4, we survey related work on MDE and code generation approaches for
network simulation and testbed evaluation.

As a preview of this chapter, Table 5.1 compares the developed tools Cobolt and
cMoflon for simulative and testbed evaluation w.r.t. key properties. Cobolt builds on
the unmodified MDE tool eMoflon, whereas cMoflon is a variant of eMoflon that
generates embedded C code. The target platform of the TC algorithms generated using
Cobolt is the Java-based network simulator Simonstrator, which runs on regular PCs
or, for larger experiments, headless on compute servers. In contrast, the TC algorithms
generated using cMoflon run on hardware motes (e.g., TelosB) and build on the To-
CoCo framework for TC in Contiki. Even though the emulation of these TC algorithms
using the Cooja emulator of Contiki is possible, such experiments are typically of a
considerably smaller size compared to the simulation experiments with Simonstrator

due to the computational effort of emulating the CPU of each mote. The TC algorithms
generated with Cobolt can be supported easily, for instance, using the debugger view
of Eclipse. A TC algorithm generated with cMoflon can be debugged by inspecting
logging messages (testbed and Cooja) or the Cooja debugger, which is documented
only sparsely.

1 FlockLab page: https://flocklab.ethz.ch/ (visited: 2018-09-17)

https://flocklab.ethz.ch/
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Table 5.1: Comparison of developed tools Cobolt and cMoflon

Property Simulation Testbed

Goal experiments based on numer-
ous scenarios

experiments in selected realis-
tic environment(s)

Typical size up to 1000 motes dozens of motes (e.g., 30 in
FlockLab [149])

Novel tool Cobolt (Section 5.2) cMoflon (Section 5.3)

Our evalua-
tion goals

Correctness, applicability, dy-
namic vs. batch TC (see Sec-
tion 5.2.4)

Correctness, efficiency (see
Section 5.3.4)

Integration novel Simonstrator compo-
nents and mapping to EMF

custom code generator

Software
platform

eMoflon [135], Simonstra-
tor [208]

Contiki [51], ToCoCo [239]

Hardware
platform

computer hardware mote (e.g.,
TelosB [181])

Language Java C

TC mode batch, dynamic batch

Evaluation
type

simulation testbed, emulation (Cooja)

Debugging
support

++ (regular Java debugger) o (logfile, Contiki debugger)
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5.1 selection of modeling tool

The selection of the modeling tool focuses on the specification phase of our approach.
Ideally, the selected modeling tool should support all specification activities described in
Chapter 3. These activities comprise (MT1) metamodeling valid topologies (Section 3.1),
(MT2) specifying topology modifications as GT rules (Section 3.4) (MT3) specifying local
consistency properties as graph constraints (Section 3.2), (MT4) specifying the control
flow of topology modifications (Section 3.5), (MT5) applying the constructive approach
by refining the GT rules based on the weak consistency graph constraints, (MT6) evalu-
ating the TC mechanism specification in a network simulator and in hardware testbeds.

In the following discussion, we only consider modeling tools that are being devel-
oped actively. Only few model transformation tools allow for the specification of graph
constraints (MT3) (e.g., AGG [248]). Still, from the perspective of our approach, spec-
ifying graph constraints is only sensible if the tool supports applying the constructive
approach (MT5) (i.e., the synthesis of application conditions for GT rules based on graph
constraints).

Regarding (MT5), we are aware of two implementations: First, in his Ph.D. thesis [43],
Deckwerth presented the prototype SyGrAV for synthesizing application conditions of
GT rules from graph constraints. SyGrAV builds on eMoflon [135] and supports the
handling of attribute constraints in patterns, as described in [44]. Unfortunately, the tool
was not released publicly, and its development is apparently discontinued. Second, Nas-
sar et al. recently presented the tool OCL2AC [164], which allows to transform nested
graph constraints into application conditions of GT rules. OCL2AC builds on the MDE
tool Henshin [9]. Unfortunately, OCL2AC currently can only handle simple relational
attribute constraints and only one attribute constraint per attribute of a variable. The
attribute constraints that are required to express TC algorithms such as kTC are not sup-
ported (e.g., specifying attribute constraints that comprise arithmetic operations). Due
to the generally missing sufficient tool support for applying the constructive approach,
we exclude (MT3) and (MT5) from the list of selection criteria for modeling tools. In-
stead, for our running example, we conduct the constructive approach manually and
specify the resulting GT rules directly using the chosen modeling tool. In the following,
we discuss the remaining criteria (MT1), (MT2), (MT4), and (MT6) further.

Numerous tools for specifying and generating code from metamodels exist (MT1)
(e.g., Enterprise Architect

2, Eclipse EMF3). To further restrict the search space, we
take the specification of GT rules into account (MT2). Several model transformation
tools allow to specify metamodels and GT rules (e.g., ATL [104], GrGen.NET [74], Hen-
shin [9], eMoflon [135], Viatra [21], Democles [260], GP2 [185], GROOVE [204]). For
a comprehensive overview of 60 model transformation tools, we refer to a recent sur-
vey [105]. A subset of the aforementioned tools support the specification of control flow.

2 Enterprise Architect page: https://sparxsystems.com.au/products/ea/ (visited: 2018-10-14)
3 EMF page: https://www.eclipse.org/modeling/emf/ (visited: 2018-09-19)

https://sparxsystems.com.au/products/ea/
https://www.eclipse.org/modeling/emf/
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Model transformation tools with a specification language for the control flow comprise
GrGen.NET [74], GP2 [185], and eMoflon [135]. These tools all fulfill the selection
criteria (MT1), (MT2), and (MT4). As discussed in Chapter 4, our approach is not tied
to a specific control flow specification language. The anticipation loop synthesis algo-
rithm (Algorithm 4.3) can certainly be adopted to other control flow languages (e.g.,
control-flow units in Henshin [9] or graph programs in GP2 [185]).

The only remaining selection criterion to discuss is how the model transformation
specification can be evaluated in network simulators and on testbed platforms (MT6).
At this point, we refrain from presenting a comprehensive survey of network simulators
and hardware testbeds. Our general observation is that the programming of hardware
motes is often carried out in C-like languages (e.g., NesC [73]), whereas network sim-
ulators tend to use C/C++ (e.g., ns-3 [253], OMNeT++ [259]) or Java (e.g., Simonstra-
tor [208], SIDnet-SWANS [75]).

Ideally, the selected modeling tool should allow to generate code for multiple target
platforms. If this is not possible, an adoption of the code generation process should
be feasible. Still, not all model transformation tools generate code from the specifica-
tion. For example, the main model transformation engine of Henshin [9] is an inter-
preter, even though an extension for generating code for bulk-synchronous execution
exists [125]. Other model transformation tools follow an event-driven approach (e.g., Vi-
atra [21]) and provide a model transformation engine that tracks all available matches
for each pattern. Without major efforts for porting these data structures, they bind
the respective tools to one target platform. Model transformation tools that support
the generation of target-platform code comprise eMoflon [135] (Java based on EMF),
GP2 [185] (C), and GrGen.NET [74] (C#, .NET). All of the compiler-based model trans-
formation tools that we are aware of support the generation of code for only one target
language. Also, given that sensor devices tend to be highly resource-constrained, it
would be beneficial if the code generation templates could be adjusted and exchanged
easily. Therefore, we needed to decide for a model transformation tool that supports at
least one of the desired target languages C, C++, or Java. We would then extend the
selected modeling tool to support the code generation for the missing target language.
Eventually, we decided to build our work on eMoflon [135] because its underlying
pattern matching engine Democles was built to exchange the target platform without
affecting other steps of the build process [260].

emoflon build process In the following, we describe how eMoflon generates
code from a visual specification. Figure 5.2 provides an overview of the code genera-
tion workflow of eMoflon. The workflow consists of the three major phases import,
validation, and code generation. All major specification artifacts (i.e., metamodel, story
diagrams, GT rules) are created using the eMoflon add-in for the commercial modeling
tool Enterprise Architect

4 (called as eMoflon EA in Figure 5.2).

4 Enterprise Architect page: https://sparxsystems.com.au/products/ea/ (visited: 2018-10-14)

https://sparxsystems.com.au/products/ea/
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The validation of and code generation from the specification is performed using the
eMoflon plugin, which builds on Eclipse Modeling Components (called as eMoflon

Eclipse in Figure 5.2). For this purpose, eMoflon EA exports the specification artifacts
as an XMI file, which is then processed further by eMoflon Eclipse. The import re-
sults in an Ecore file that contains the metamodel and the story diagrams. Each story
diagram is attached to its corresponding EOperation in the metamodel.

To translate the Ecore-based metamodel, eMoflon uses the existing EMF code gener-
ation process. This process produces for each EClass a Java class skeleton that contains
(amongst others) default implementations for getters and setters of the attributes and ref-
erences of a class, and empty method bodies for EOperations that shall be implemented
by the user.

The code generator of eMoflon extends the EMF build process as follows. Each story
diagram is translated into the body of the Java method that corresponds to the EOper-
ation of the story diagram. To decouple the representation of the control flow as story
diagram from the actual code generation logic, each story diagram is translated first into
a control flow model. The control flow model of a story diagram represents the structure of
an imperative, goto-free method implementation and facilitates the mapping to control-
flow structures in Java, C, or C++. These concepts comprise scoping, scoped variables,
conditions, loop types (e.g., do-while, while-do, foreach). Story diagrams that cannot
be translated into a control flow model are rejected. For this reason, the current step is
called the validation step.

The construction of the control flow model is complemented by transforming the GT
rule applications inside story nodes. Each GT rule is first transformed into up to five
patterns of different types. The pattern type determines the role of the pattern during
the application of a GT rule. The black pattern of a GT rule contains all variables that
are part of the LHS pattern of the GT rule. A GT rule is only applicable, if a match
of its black pattern exists. The red pattern of a GT rule contains all those elements that
are deleted by the rule application (i.e., all variables that exist in the LHS but not in the
RHS pattern). The red pattern is always a subpattern of the black pattern of a GT rule.
Analogously, the green pattern of a GT rule contains all variables that exist in the RHS
pattern but not in the LHS pattern of the GT rule. The remaining two types of patterns
enrich story diagrams with additional language features that we did not discuss until
now. In eMoflon, a variable may be bound not only using pattern matching but also by
assigning it from (i) another variable (possibly of a supertype to enable conditions based
on subtype checks) or (ii) the invocation of an EOperation, which returns an instance of
a compatible type. Such variables are collected in the binding pattern of a GT rule. Finally,
eMoflon handles the invocation of EOperations and the extraction of return values of
EOperations from pattern matches uniformly as expression patterns. The latter two pattern
types exist for technical reasons and will not be considered in the following.
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The code generation per pattern is carried out using an operation-driven pattern match-
ing engine [260]. In the following, we summarize the Democles code generation process
for patterns and refer the reader to [260] for a detailed description.

As a first step, Democles decomposes a pattern into a set of declarative constraints.
These constraints represent the attribute constraints of a pattern and the pattern graph
uniformly. For example, an object variable v may be associated with a type constraint
that requires that an object that is mapped by v in a match must have the type Mote. As
another example, a pair (v1, v2) of object variables may be associated with a constraint
that requires that a source-outgoing association from v1 to v2 exists in a match. Each
constraint has a number of constraint parameters (e.g., one parameter in case of the Mote
type constraint and two parameters in case of the source-outgoing association constraint).

As a second step, based on the Ecore metamodel, Democles then infers how each
constraint can be satisfied based on different binding constellations of the constraint
parameters. This step is called operationalization. For example, the type constraint can
only be checked if the given variable v is already bound. In contrast, regarding the
(v1, v2) object variable pair that is associated with a source-outgoing association, (i) if both
variables are bound, then the corresponding operation checks whether a source-outgoing
association exists between the mapped objects, (ii) if v1 is bound and v2 is unbound, then
an iterator of the outgoing links of the match of v1 is assigned to v2, each representing
a partial match that needs to be complemented further, or (iii) v1 is unbound and v2 is
bound, a mapping from v1 to the unique source node of v2 is added to the match.

As a third step, Democles creates the search plan for each pattern (if exists). The
search plan of a pattern is a sequence of operations (calculated in the previous, second step)
that lead to a complete match of the pattern based on an initial partial match. For a black
pattern, Democles takes the partial match consisting of the rule input parameters as
starting point to decide which operations to use. In contrast, in a red pattern, Democles

expects all variables to be bound, and the generated search plan contains only removal
operations, which delete all model elements that correspond to the variables of the red
pattern. Finally, the generated search plan of a green pattern creates model elements for
all free variables in the pattern and interprets bound elements as context. Therefore, the
search plan of a green pattern contains only creation operations.

As a fourth and last step, Democles translates the search plan of each pattern into
a static Java method using a hierarchical StringTemplate

5. The order of invocations
of the pattern methods in the method body that corresponds to the control flow model
ensures that the pattern methods are invoked in the proper order (e.g., black before red
before green).

eMoflon allows the user to provide the following two types of extensions of the code
generation workflow. First, the user may specify user-defined attribute constraints. A
user-defined attribute constraint consists of a constraint signature (i.e., a constraint name
and parameter list) and a set of operationalizations. An operationalization is a code frag-

5 StringTemplate page: http://www.stringtemplate.org/ (visited: 2018-10-15)

http://www.stringtemplate.org/
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ment with placeholders for the operation parameters. Democles consults the library of
user-defined attribute constraints if it encounters an unknown constraint type. Second,
the user may provide injections. An injection is platform-specific code that implements a
method body or contributes additional methods and attributes to a class. Injections are
stored in separate files having the extension inject. This technique allows users to pro-
vide platform-specific implementations of EOperations that are difficult to specify using
GT rules.
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5.2 model-based simulative evaluation with cobolt

After the specification of a TC mechanism, the first step is usually to evaluate the TC
mechanism using a network simulator. Using a network simulator is advantageous be-
cause it allows to test the TC mechanism rapidly and reproducibly in a large number of
scenarios. To produce meaningful results regarding the applicability or performance of
a TC mechanism, the network simulator needs to provide realistic models for all simu-
lated aspects of the system (e.g., physical transmission medium, interference, message
loss in relation to distance).

In this section, we present Cobolt, a tool for evaluating a specified TC algorithm
rapidly using the network simulator Simonstrator. Cobolt stands for “Correct-by-
construction development of topology control algorithms.” In the following, we discuss
our reasons for choosing the network simulator Simonstrator and its important con-
cepts and capabilities (Section 5.2.1). Afterwards, we describe the architecture behind
Cobolt, an extension of Simonstrator that allows to integrate TC mechanisms gener-
ated with eMoflon into existing network experiments (Section 5.2.2). In Section 5.2.3,
we summarize implementation-related challenges that occurred during development of
Cobolt. In Section 5.2.4, we illustrate the utility of our integration based on a simulative
evaluation of the specification of the TC algorithm kTC.

related publications and theses We presented Cobolt in [119]. Complemen-
tary tool support for pure interpreted pattern matching in the Simonstrator simulator
was developed in the Bachelor’s thesis by Lukas Neumann [168]. Dario Mirizzi de-
signed and implemented a demonstrator for showcasing the effects of TC in a mobile
video streaming scenario in his Bachelor’s thesis using Simonstrator [160]. His work
influenced a PerCom demonstration paper by Stein et al. [237], which I also contributed
to.

5.2.1 Selection of network simulator

The model transformation tool eMoflon generates EMF-based Java code. Therefore,
our first selection criterion for the network simulation environment was that it should
integrate with TC algorithms implemented in Java. This criterion precludes several net-
work simulators such as ns-3 or OMNeT++, for which the TC algorithm needs to be
implemented in C++. In 2015, when we started to develop Cobolt, we were aware
of two mature Java-based simulation environments for wireless networks: Peerfact-
Sim.KOM6 [242] and SIDnet-SWANS7 [75]. SIDnet-SWANS appeared to be discon-
tinued already at that time, while PeerfactSim.KOM appeared to be supported and

6 PeerfactSim.KOM page: http://peerfact.kom.e-technik.tu-darmstadt.de/ (visited: 2018-10-04)
7 SIDnet-SWANS website http://www.ece.northwestern.edu/~ocg474/SIDnet.html (visited: 2018-10-04)

http://peerfact.kom.e-technik.tu-darmstadt.de/
http://www.ece.northwestern.edu/~ocg474/SIDnet.html
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extended actively8. In fact, PeerfactSim.KOM became part of the network simulation
environment Simonstrator

9 [208], which aimed at not only simulating network al-
gorithms but also evaluating them on Android hardware. From now on, we refer to
PeerfactSim.KOM as Simonstrator for simplicity.

Due to these observations and the prospected technical support during the develop-
ment of Cobolt, we opted for Simonstrator as target platform for evaluating the TC
mechanisms generated using eMoflon.

5.2.2 Architecture

In the following, we summarize important Simonstrator concepts and, then, describe
our design goals and decisions as well as the contributed components.

5.2.2.1 Structure of simulation setup in Simonstrator

Figure 5.3 illustrates a typical setup of a Simonstrator experiment. In Simonstrator,
a device is represented by a host. The host builder is responsible for initializing all hosts
based on an configuration file (XML). A host contains a number of host components (indi-
cated with the symbol). A host component possesses a lifecycle that is implemented
using strategy methods for initialization and shutdown. Host components of a particu-
lar type are created by a host component factory. A layer-specific host component resides on
a particular layer of the OSI reference model. The general structure of a host shown in
Figure 5.3 resembles the organization of the OSI model shown in Figure 2.4. To ensure
that a host component on a particular layer provides the necessary interfaces (e.g., end-
to-end message transfer on the transport layer), Simonstrator requires components
on all layers below the application layer to inherit from a corresponding skeleton host
component (e.g., skeleton transport component). In Figure 5.3, the mnemonic of layer-
specific components contains an additional character that indicates this component is a
layer-specific component (e.g., T for transport-layer host components). All other host
components are generic host components. Simonstrator was originally built for evalu-
ating overlay protocols (i.e., above the transport layer) and provides implementations for
widely used underlay protocols (i.e., physical, link, network, and transport layer). The
host component for location and movement stores the current (usually two-dimensional)
location as well as movement speed and direction of each host. This host component
additionally decides how movement speed and direction evolve over time. Figure 5.3
lists examples for typical protocols on each layer.

8 PeerfactSim.KOM refs.: http://peerfact.kom.e-technik.tu-darmstadt.de/de/publications/index.

html (visited: 2018-10-04)
9 Simonstrator page: http://simonstrator.com (visited: 2018-10-04)

http://peerfact.kom.e-technik.tu-darmstadt.de/de/publications/index.html
http://peerfact.kom.e-technik.tu-darmstadt.de/de/publications/index.html
http://simonstrator.com
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Figure 5.3: Structure of Simonstrator simulation setup with Cobolt-specific extensions

A particularity of Simonstrator is that the same application may be evaluated using
the network simulators PeerfactSim.KOM [242] or OMNeT++ [259] as well as on An-
droid

10 devices. Unfortunately, the support for OMNeT++ appears to be discontinued.

5.2.2.2 Design decisions

During the development of Cobolt, we took the following three major design decisions.
First, an existing experimental setup should be reusable with minor changes. Therefore,
we decided to introduce a new host-component type TopologyControlComponent . This
component observes the configured input (link) layer, presents a virtual (link) layer to the
network layer, manages the available TC algorithms and their context event handlers,
and reconfigures the enabled TC algorithm.

Second, the developed components should be reusable (e.g., for arbitrary link layers or
between other layers). Especially, the interfaces for monitoring the input topology and
providing the virtual topology should not rely on the particularities of one network layer
but rather use graph-based abstractions. To achieve the goal of reusability, we created

10 Android page: https://www.android.com/ (visited: 2018-10-22)

https://www.android.com/
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Figure 5.4: TopologyControlComponent with important interfaces

interfaces for all relevant interaction points between the TopologyControlComponent and
other components.

Third, our extensions of Simonstrator should be as independent of eMoflon as
possible. This separation allows TC developers to use Cobolt for implementing TC al-
gorithms manually and to generate TC algorithm code using different MDE tools. We
achieved independence from eMoflon by defining a generic interface for TC mecha-
nism implementations.

5.2.2.3 Cobolt-specific components

We now discuss the internal architecture of the TopologyControlComponent, the interfaces
and the implementations of each interface that correspond to our running example.

topology control component Figure 5.4 shows the TopologyControlComponent
along with the four major interfaces that we use to separate concerns regarding (i) the
monitoring of the input topology, (ii) the invocation of the TC algorithm and context
event handlers, (iii) the reconfiguration of the enabled TC algorithm, and (iv) the pre-
sentation of the virtual topology.

We now discuss each of these interfaces along with exemplary implementations in
detail. The input topology of the TopologyControlComponent is retrieved via exactly
one registered implementation of the ObservableTopologyProvider interface. The main
functionality of this interface is to return a graph-based snapshot of the (surrounding)
network. From the perspective of dynamic TC, it would be desirable to receive events
about recent modifications of the network instead of snapshots. Unfortunately, these
events are not provided by the link-layer components in Simonstrator. Therefore, we
opted to derive the context events inside the TopologyControlComponent given a previous
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state of the input topology and the current input topology. To extract input topologies
from a link-layer host component, this host component needs to implement the interface
ObservableTopologyProvider. The ObservableTopologyProvider interface and the required
extensions of the link-layer host component were developed by Stein et al. during their
work on [240].

The second major interface of TopologyControlComponent is the TopologyControlFacade
interface. This interface hides one or more TC algorithms with their respective context
event handlers. A TopologyControlComponent must have at least one registered Topology-
ControlFacade. From the perspective of TopologyControlComponent, subclasses of Topolo-
gyControlFacade allow to select an active TC algorithm, configure the parameters of an
active TC algorithm, and receive context events. A TopologyControlFacade is responsi-
ble for tracking the current state of the TC mechanism topology that results from the
context events that the TopologyControlFacade has received from the TopologyControlCom-
ponent so far and from the previous TC algorithm and context event handler invocations.
The subclass EMoflonFacade of TopologyControlFacade maintains an EMF-based topology
model and encapsulates one or more TC algorithms with their corresponding context
event handlers specified using eMoflon. Another use case of the TopologyControlFacade
is to record context events for visualization purposes. This use case is covered by the
class JsonContextEventRecorderFacade, which is not described in detail here.

The third major interface of TopologyControlComponent is the TopologyControlRecon-
figurator interface. A TopologyControlComponent can consult zero or more registered
TopologyControlReconfigurators to determine when to adjust the parameters of the active
TC algorithm (e.g., k of kTC) or to switch to another TC algorithm. These decisions are
based on context information that is provided by the TopologyControlComponent (e.g.,
host movement speed, host density, communication pattern(s) of the application). The
class SingleShotReconfigurator allows to configure a single reconfiguration decision. This
class allows the user to observe the varying system performance when enabling or dis-
abling TC during a simulation run. The name of the subclass CoalaReconfigurator alludes
to the name of the reconfiguration engine Coala [271]. Coala uses a linear regression
algorithm trained using supervised learning to map a given system context and non-
functional property (NFP) to the TC algorithm configuration that promises the best
performance w.r.t. the NFP. For details on Coala, we refer the reader to [271], where
Cobolt has been used in a case study.

The fourth major interface of TopologyControlComponent is AdaptableTopologyProvider .
Similar to ObservableTopologyProvider, this interface provides a graph-based view of a
component. The AdaptableTopologyProvider interface extends ObservableTopologyProvider
by means to add elements to and remove elements from the graph view. A TopologyCon-
trolComponent uses exactly one AdaptableTopologyProvider to present its virtual topol-
ogy. After running the TC algorithm or a context event handler via the TopologyCon-
trolFacade, the collected link state modifications are propagated to the AdaptableTopolo-
gyProvider. As TC-specific subclass of AdaptableTopologyProvider, we implemented the
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LogicalLinkLayer component, which is a link-layer host component and is aware of (i) the
link layer component that provides the input topology and (ii) the link state modifica-
tions communicated by the TopologyControlComponent. Internally, the logical link layer
component maintains a blacklist of inactive links. The logical link layer component was
developed by Stein et al. in the context of [240].

emoflonfacade Due to its central role in Cobolt, we now present the details of
EMoflonFacade, the eMoflon-specific implementation of TopologyControlFacade. Fig-
ure 5.5 shows that EMoflonFacade encapsulates two synchronized perspectives of the
TC mechanism topology and a set of TC algorithms with their corresponding context
event handlers. The first view builds on the SimGraph graph data structure, which is
used for graph-based algorithms throughout Simonstrator. This view is visible to
other host components for analysis and visualization purposes.

The second view is an EMF-based TC mechanism topology model, which conforms to
the topology metamodel (see Figure 3.4). The topology metamodel also defines the in-
terfaces of the TC algorithm and context event handler specifications. The control logic
of EMoflonFacade ensures that incoming context events lead to updates of both TC mech-
anism topology views. For practical reasons, an EMoflonFacade can contain multiple TC
algorithms with their corresponding context event handlers. Based on requests from the
TopologyControlComponent, the EMoflonFacade selects, configures, and invokes the active
TC algorithm. Therefore, a EMoflonFacade reflects all aspects of a TC multi-mechanism
(see also Definition 2.33), apart from the following properties: (i) The reconfiguration
logic resides outside the EMoflonFacade in subclasses of TopologyControlReconfigurator,
and (ii) The TC multi-mechanism maintains only one topology for all TC mechanisms.

Currently, the single implemented strategy for reconfiguring TC mechanism parame-
ters or switching from TC mechanism A to a TC mechanism B is to first unmark all links,
then perform the parameter modification or reconfiguration to TC mechanism B, and, fi-
nally, run the reconfigured TC algorithm. More sophisticated transition strategies could
transform a weakly consistent topology w.r.t. TC mechanism A into a weakly consistent
topology w.r.t. TC mechanism B using less unmarking operations. In Section 4.5.2, we
sketched how to handle parameter modifications of kTC.

visualization support We found it helpful to get a visual impression of the result-
ing virtual topology. Simonstrator provides components for visualizing the network
topology and metric plots. The visualization of the current logical link layer compo-
nent has been contributed by Michael Stein, originally. During our work on Cobolt,
we extended the visualization component and build convenience methods for plotting
metrics of a simulated WSN (e.g., latency, energy consumption, packet drop rate). Fig-
ure 5.6 provides an impression of how a running simulation can be inspected using a
visualization of the virtual topology (left-hand side), the current simulation statistics
(standard Simonstrator progress view), and metric plots (right-hand side). The topol-
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ogy visualization shows a WSN with 100 motes, distributed uniformly onto an area of
800 m× 800 m.

We experienced that the TC visualization component in Simonstrator was difficult
to extend (e.g., with pan and zoom). Therefore, we created a novel visualization that
presents the input and the output topology of a TC mechanism in one view, alongside
with plots for metrics. This visualization is part of the CoalaViz tool [176, 177] and
implemented as a web user interface based on Vaadin

11. Figure 5.7 shows a screen-
shot of the Coala user interface. The left-hand side panel shows the current state of
the WSN. The blue circles denote motes (e.g., n39) and the single green circle (labeled
with 40) in the center of the panel represents the base station. Active links are marked
black (e.g., `39 38) and inactive links are marked gray (e.g., `39 30). The top panel on
the right-hand side shows a plot of the average latency of all packets within the last
three simulated minutes. The panel below the metric plot illustrates the current system
state as feature diagram (see also Section 3.6). Rectangular boxes indicate either system
features (e.g., possible TC algorithms) or context features (e.g., mote density, current
application). Rounded rectangular boxes represent feature attributes (e.g., TC algorithm
parameters, TC interval). Gray rectangular and rounded rectangular boxes denote the
feature model instance representing the current system configuration. The panel below
the feature diagram lists the available performance goals and their weights (e.g., end-to-
end drop rate, end-to-end latency, Jain fairness of the energy consumption, and mean
energy consumption over all motes).

11 Vaadin page: https://vaadin.com/ (visited: 2018-10-11)

https://vaadin.com/


5.2 Model-based simulative evaluation with Cobolt 185

Figure 5.6: Topology visualization, simulation progress, and metric plots in Simonstrator

Figure 5.7: Coala visualization of network, metrics, and configuration (space)
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5.2.3 Implementation aspects

In the following, we discuss the technical aspects of integrating eMoflon and Simon-
strator as well as the specification of GT rules with multiple application conditions in
eMoflon.

5.2.3.1 Integration of eMoflon and Simonstrator

We implemented Cobolt for Simonstrator 2. For a given specification, eMoflon pro-
duces one or more Eclipse plugins12 that contain the generated code. In contrast, Si-
monstrator builds on Apache Maven

13. Both frameworks are not compatible natively.
The code generated from the TC algorithm and context event handler specifications
could be transferred into Maven artifacts, but this would slow the specify-generate-test
development cycle considerably. To bridge the gap between Eclipse bundles generated
by eMoflon and the Maven-based infrastructure of Simonstrator, we use the Eclipse

Tycho framework14.

5.2.3.2 Specifying multiple application conditions in eMoflon

Another implementation aspect is that the specification frontend of eMoflon supports
only one NAC per GT rule and no PACs. To specify the GT rules for our running
example using eMoflon, we adapted the specification according to the rules described
in the following.

If a GT rule has one NAC, this NAC can be specified directly in eMoflon. If a
GT rule has one PAC with a single conclusion pattern, we can replace the LHS with
the conclusion pattern because the premise and the conclusion pattern both extend the
original LHS pattern. If a GT rule RX has more than one positive or negative application
condition, respectively, or a PAC with more than one conclusion pattern, we transform a
story node containing an application of RX (see Figure 5.8a) into a larger SDM fragment
(see Figure 5.8d).

We discuss the transformation for a sample GT rule RX that has one negative appli-
cation condition NACX,1 and one positive application condition PACX,2 with two conclu-
sion patterns cX,2,1 and cX,2,2 (Figure 5.8b). Figure 5.8a shows an original SDM fragment
that consists of an application of RX with a number of input parameters and output
parameters (indicated by text in normal font enclosed by square brackets, e.g., [Input
parameters]). Figure 5.8d shows the resulting SDM fragment that can be specified in
eMoflon. The resulting SDM fragment in Figure 5.8d possesses the same incoming
activity edges, an outgoing activity edge labeled with [End] (explanation follows), and

12 Eclipse PDE page: https://www.eclipse.org/pde/ (visited: 2018-10-10)
13 Maven page: https://maven.apache.org/ (visited: 2018-10-10)
14 Tycho page: https://www.eclipse.org/tycho/ (visited: 2018-10-10)

https://www.eclipse.org/pde/
https://maven.apache.org/
https://www.eclipse.org/tycho/
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RX( [Input parameters]
[out: Output param.])

[F] [S]
……

…

(a) Original SDM fragment
RX ([Input parameters]

[out: Output param.])

LHSX
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cX,2,1 cX,2,2

pX,1 pX,2
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(b) Sample rule RX

ACFlag

fulfilled: Boolean

Topology
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(c) Helper class ACFlag
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[End] (instead of [F])

…
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[S]
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[S]

[S]

[F]
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[F]
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Step 3

(d) SDM fragment for eMoflon

Figure 5.8: Sketch of transformation of application conditions into eMoflon
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one [S]-edge. For specifying arbitrary many application conditions of a GT rule using
eMoflon, we split the application of RX into the following three steps.

step 1 : find lhs match In the first step, we iterate over all matches of the LHS
pattern LHSX of RX (see Rcheck-LHS in Figure 5.8d). This rule application is the target of
the original incoming activity edge of RX, receives the original input parameters of RX as
input, and returns a match of LHSX (represented using multiple rule output parameters,
[out: LHS match]). In the subsequent steps, we evaluate for each match of LHSX whether
it fulfills all application conditions, and apply RX to the first such match of LHSX.

To collect all matches of LHSX, we employ a foreach story node. A foreach node is a
special type of story node in eMoflon that collects and caches all matches of the LHS
pattern of the contained rule when the execution arrives at the foreach node. In figures,
a foreach node is indicated by two stacked rounded rectangles. For each cached match,
the execution continues along the [ForEach]-edge. Only after each cached match has been
processed, the execution continues along the [End]-edge. When the execution continues
along the [End]-edge, the cache that corresponds to the foreach node is cleared.

step 2 : check application conditions In the second step, we check whether
all application conditions are fulfilled for a given match of LHSX. We transform each
application condition into an SDM fragment (nested dashed rounded rectangles in Fig-
ure 5.8d) that has an outgoing [S]-edge to indicate that the application condition is
fulfilled and an outgoing [F]-edge to indicate that the application condition is violated.
An outgoing [F]-edge returns to the outermost foreach node, which iterates over all
matches of LHSX. An outgoing [S]-edge leads either to the SDM fragment for the next
application condition to check (e.g., after the SDM fragment of NACX,1) or, if all applica-
tion conditions have been checked, to the actual application of RX (e.g., after the SDM
fragment of PACX,2).

To indicate whether an application is fulfilled or not, we introduce the helper class
ACFlag into the metamodel (Figure 5.8c), which is attached to Topology for technical
reasons. As for Topology, we assume that a single instance of ACFlag exists and is
globally accessible via the global Topology object to simplify the notation. The ACFlag
class possesses a Boolean attribute, that is set to true if the application conditions are
fulfilled tentatively. Before starting to check the application conditions for the current
LHS match, the AC flag is set to true (see Rmark-AC-fulfilled). At the end of each SDM
fragment that corresponds to the check of an application condition, the application of
Ris-AC-violated checks for a detected violation of the application condition.

To check a negative application condition, we try to find a match of the premise of the
application condition (e.g., Rmatch-p1 for pX,1). If such a match exists, we know that this
application condition is violated and set the AC flag to false (via Rmark-AC-violated).

To check a positive application condition, we need a larger SDM fragment. For each
match of the premise (e.g., [p2 match] in Figure 5.8d), we check whether the premise
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match can be extended to a match of at least one conclusion pattern. If no such extension
exists, the AC flag is set to false and the execution returns to the outermost foreach node.
For iterating over all extensions of the current LHSX match to a match of pX,2, we also
use a foreach story node.

step 3 : apply rhs The third step is the actual application of RX. The application of
the GT rule Rapply-RHS receives the match of LHSX that fulfills all application conditions
as input parameter (i.e., [LHS match]) and binds the output parameters according to the
original rule RX (denoted by [out: Output parameters of RX]. The LHS and RHS patterns
of Rapply-RHS are identical to LHSX and RHSX, respectively, and, therefore, Rapply-RHS is
always applicable. For this reason, the single outgoing activity edge is unguarded.

5.2.3.3 Consistency checking

Cobolt allows to check that local and global consistency properties hold after each
invocation of the TC algorithm and context event handler specification. These con-
sistency checks serve as assertions that the generated code is correct w.r.t. the speci-
fication. Cobolt already provides a number of consistency checks (e.g., for AU- and
A-connectivity). For novel TC algorithms the developer may provide her own consis-
tency checks. Due to the fact that evaluating consistency checks after each TC algorithm
and context event handler invocation increases the execution time of experiments, the
user may also decide to disable consistency checks entirely.

5.2.3.4 Code and tool availability

Cobolt is open source and available on GitHub
15.

5.2.4 Evaluation of Cobolt

In this section, we present an evaluation of Cobolt. In Section 5.2.4.1, we state the
research questions according to the goals of this thesis. In Section 5.2.4.2, we describe
the evaluation setup, and in Sections 5.2.4.3 to 5.2.4.5, we present and discuss the results
of this evaluation.

5.2.4.1 Research questions

We conduct our evaluation based on the kTC algorithm to answer a number of research
questions regarding the correctness and applicability of Cobolt and the efficiency of
dynamic TC in comparison to batch TC. Due to a lack of published and open source
independent manual implementations of TC algorithms in Simonstrator, we cannot

15 Cobolt repository: https://github.com/eMoflon/cobolt (visited: 2018-10-11)

https://github.com/eMoflon/cobolt
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evaluate, for instance, the efficiency of the generated kTC algorithm in comparison to a
manually implemented and tuned variant of kTC.

rq1–correctness A major goal of this thesis is that the TC mechanism specifica-
tion and the resulting generated evaluation artifacts are correct (see Goal 1 in Section 1.2).
Therefore, RQ1 relates to the correctness of Cobolt. To this end, we evaluate the follow-
ing subquestions qualitatively and quantitatively.

• How is the correctness of the generated TC algorithms ensured?
• How is the correctness of the generated code for kTC ensured?

rq2–efficiency Cobolt shall be applicable in practice (Goal 3 in Section 1.2). We
want to identify whether a rapid development process is possible using Cobolt and
how the execution time of the generated TC algorithms contributes to the execution
time of the entire simulation study. To this end, we evaluate the following subquestions
quantitatively.

• How does the computational effort of a generated TC algorithm relate to the sim-
ulation duration?

• Is this computational effort reasonable?

rq3–dynamic tc In the final part of this evaluation, we investigate in which scenar-
ios dynamic TC or batch TC are more efficient (Goal 2 in Section 1.2). We investigate
the following subquestions quantitatively.

• In which experiments is dynamic TC more efficient than batch TC?
• For which classes of scenarios is dynamic TC more efficient than batch TC?

As classes, we consider dense and spare topologies, large and small topologies (in terms
of mote count), and stationary and mobile WSNs.

5.2.4.2 Evaluation setup

All experiments were performed on a 64-bit workstation with an Intel i7-2600 CPU16

(2 cores, 3.4 GHz) and 8 GB of RAM. We reserved a maximum of 2 GB of RAM for the
Java Virtual Machine that ran the simulations. The operating system was Windows 7

Professional (64 bit). We use the Java JDK 1.8 Update 171 (64 bit), Eclipse IDE 2018-09,
eMoflon 3.5.1, Simonstrator 2.5.0 (modified), and Cobolt 1.0, Enterprise Architect

11.
In several parts of this evaluation, we use data from a collection of 240 experiments

that we conducted. In the following, we describe how we designed these experiments.
One of our goals was to cover a large range of application scenarios of WSNs. From
the numerous possible dimensions that determine each application scenario, we chose

16 Intel Core i7-2600 specification: https://ark.intel.com/products/52213/Intel-Core-i7-2600-

Processor-8M-Cache-up-to-3-80-GHz- (visited: 2018-11-19)

https://ark.intel.com/products/52213/Intel-Core-i7-2600-Processor-8M-Cache-up-to-3-80-GHz-
https://ark.intel.com/products/52213/Intel-Core-i7-2600-Processor-8M-Cache-up-to-3-80-GHz-
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Table 5.2: Summary of configuration parameters for simulation experiments

Category Parameter Value

Simulation

Duration 1 h of simulated time

Seed count 10

World size {300 m, 600 m, 900 m}
Node count {100, 250}
Movement Gauss–Markov [31] (α=0.2, v∈{0 m

s , 1.4 m
s })

Placement (initial) uniform at random

Energy (initial) uniform at random in [30 %, 100 %] of 1300 J

Underlay

Transmission radius 130 m

Link layer IEEE 802.11 Ad-Hoc

TC algorithm kTC with k = 1.41

Incrementality {batch, dynamic}
Link weight Euclidean distance

TC interval 1 min

Routing protocol global-knowledge routing

Transport protocol UDP

Overlay
Application data collection application (many-to-one)

Message size 1 kB

Transmission interval uniform at random in 100 ms to 200 ms

the following variable dimensions: mote count (few vs. many), network extent (small
area vs. large area), mobility (stationary vs. mobile motes). To assess the effect of batch
TC in comparison to dynamic TC, we introduce the fourth dimension of incrementality
(i.e., batch vs. dynamic). To keep the extent of this evaluation reasonable, we refrained
from varying the following possible additional dimensions: physical channel model, link
layer, routing protocol, transport protocol, communication pattern (e.g., many-to-many).

Table 5.2 summarizes the fixed and variable parameters of the simulation experiments
that we conducted. Variable parameters (i.e., mote count, world size, mobility speed,
and TC incrementality mode) are shown in set notation. The choices of the fixed param-
eter values and variable parameter ranges are inspired by the following works from the
TC literature: [34, 72, 109, 130, 142, 143, 211, 227, 238, 270].

In the following, we explain the chosen parameters briefly. We terminated each sim-
ulation run after 1 h of simulation time. A simulation starts with a set of either 100 or
250 motes. These motes are distributed uniformly at random onto a square area with a
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Basic configuration

(single values in
Table 5.2)

N = 1 N = 3×2×2×2 = 24 N = 24×10 = 240

Simulation scenarios

(sets of values in
Table 5.2)

Executed experiments

(10 random seeds 
per scenario)

Figure 5.9: Simulation setup with scenario-specific parameter values and random seeds

fixed side length (either 300 m, 600 m, or 900 m). The base station is located in the center
of the simulation area.

As movement model, we chose a Gauss–Markov model [31], in which motes can move
freely within the boundaries of the simulated area. The movement speed is Gaussian
and the movement direction is Markovian (see [31] for details). We set the movement
speed in one half of the experiments to 0 m

s (i.e., the WSN is stationary) and in the other
half to 1.4 m

s , which corresponds to a typical walking speed [137].
For simulating the energy consumption, we chose a state-based energy model. A mote

can be in one of four states (i.e., sending, receiving, idle, off). In each state, it consumes a
fixed power. The initial energy of each mote is chosen uniformly at random within 30 %
to 100 % of 1300 J. The maximum energy of 1300 J corresponds to the typical capacity
of a single AAA battery. The base station has a static power supply in our experiments
(i.e., its energy level is infinite).

In the following, we describe the components of the network stack. On the physical
and link layer, we chose the IEEE 802.11 Ad-Hoc protocol [278] because it was readily
available in Simonstrator and has been used in other works (e.g., [239]). The weights
of the links in the underlay are equal to their Euclidean distance. On the network
layer, we chose a routing algorithm that uses global knowledge because investigating
the interactions of TC and a realistic routing algorithm (e.g., RPL [276]) were not in the
focus of this evaluation. On the transport layer, we selected the packet-oriented User
Datagram Protocol (UDP) protocol [189]. This protocol is typically used for small data
units.

On the application layer, we used a data collection application. Each mote regularly
transmits a message with 1 kB of payload to the base station. We chose 1 kB to avoid
fragmentation on the transport layer. To reduce the number of collisions, the waiting
time between transmission is chosen uniformly at random in the range from 100 ms to
200 ms.

As TC algorithm, we chose kTC with k = 1.41. We chose k according to the experi-
ments in [227]. kTC is executed every 1 min. In half of the experiments, we executed
kTC in batch and dynamic mode, respectively.

The chosen battery model and application lead to the depletion of a small number
of motes (i.e., 1 to 13 motes) during 138 of the 240 experiments. Together with the
movement model that was active in 120 of the 240 experiments, all five types of context
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Figure 5.10: Steps in correct-by-construction methodology for discussion of correctness (jointly
for Cobolt and cMoflon, rectangle: artifact, rounded rectangle: process step)

events were covered (i.e., node addition, node removal, link addition, link removal, and
link weight change).

To reduce the effects of randomness (e.g., due to the initial mote position distribu-
tion), we repeated each scenario 10 times with different random seeds. Simonstrator

provides a factory for pseudo-random numbers per host component that ensures that,
for a fixed seed, the sequence of random numbers is predetermined. This handling
of random numbers makes our results reproducible (except for the CPU time measure-
ments, which depend on the hardware).

In total, we obtain nmote × nworld size × nspeed × nTC mode = 24 simulation scenarios. As
illustrated in Figure 5.9, using 10 seeds per scenario, we obtain 240 experiments.

5.2.4.3 Results and discussion for RQ1 (correctness)

In the following, we investigate how we ascertained correctness of Cobolt by investigat-
ing possible faults during each step in our methodology, starting from the specification
and ending with the execution of the TC algorithm.

Figure 5.10 depicts the artifacts (rectangles) and steps (rounded rectangles) in our
methodology. This figures serves as orientation for the discussion of correctness of
Cobolt and cMoflon, as indicated by the captions below the artifacts and process
steps. The major steps in our methodology are the refinement of the GT rules and the
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story diagrams based on the local consistency constraints (as described in Chapter 4),
the generation of platform-specific code from this specification, the compilation of the
source code to an executable binary, and the execution of the binary, which results in
the (simulation) output. In this evaluation, we consider the correctness both on the
specification level and of the resulting source code and executable binary.

Conceptually, the specification refinement results in a correct TC mechanism specifi-
cation. Still, different types of faults may occur during the practical application of the
constructive approach and the subsequent code generation. First, due to the lacking
tool support, the specification refinement needs to be carried out manually. Second,
the code generator (i.e., eMoflon) may contain faults that lead to generated platform-
specific source code that fails to conform to the specification. Third, the compiler that
translates the platform-specific code into an executable binary file (here, the Java com-
piler) may lead to an executable representation that does not conform to the language
specification of the source-code language. Fourth, the execution environment (here, the
Java Virtual Machine) may execute the binary file in an erroneous manner.

Given that the chosen target language Java has been used in practice for more than
20 years now, we rely on its proper behavior in the following. Therefore, we will focus
on the specification refinement and code generation step in the following because these
steps are either carried out manually or performed automatically by a tool that is not as
mature as the Java compiler or Java Virtual Machine.

specification refinement The manual refinement of the TC mechanism specifi-
cation based on the constructive approach and the anticipation loop synthesis algorithm
is an elaborate task. Additionally, due to the lacking support for multiple application
conditions per GT rule in eMoflon, we need to adjust the specification a third time,
as discussed in Section 5.2.3.2. We systematized the three involved refinement steps
as far as possible by providing exact algorithms for synthesizing application conditions
(Algorithm 4.1) and anticipation loops (Algorithm 4.3). The result of the specification
refinement cannot be tested in isolation.

Nevertheless, the involved graph constraints can be used to derive potential consis-
tency-violating situations. For example, by inspecting the premise pattern of a negative
constraint, we can determine possible modifications of the topology that could lead to
a match of the premise and, therewith, a violation of the constraint (e.g., adding a link
that completes a ϕkTC-fulfilling triangle). The identified sample sequences of topology
modifications can be translated into unit tests.

quantitative discussion for ktc During the specification of kTC, we performed
three major test runs, which we describe in the following.

In the first test run, we defined 24 unit tests for kTC using the aforementioned strategy
of investigating a subset of the potential violations of the kTC-specific graph constraints.
These unit tests address the execution of kTC in batch and dynamic mode. We manu-
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ally derived these test cases to cover possible sequences of topology modifications that
could lead to a consistency violation. To assess the effectiveness of our test, we mea-
sured the instruction and branch coverage for the classes that implement kTC achieved
by the 24 unit tests. For this purpose, we used the tool EclEmma

17 (version 1.3.1). The
implementation of kTC is split into two classes. The abstract class TriangleBasedTopolo-
gyControlAlgorithm contains, for instance, the control flow for invoking the TC algorithm
and the context event handlers within a TC mechanism. The concrete subclass PlainKTC
contains the actual implementation of the kTC-specific patterns. For the abstract class Tri-
angleBasedTopologyControlAlgorithm, the test suite achieved 71.2 % instruction and 62.4 %
branch coverage (1427 of 2005 instructions). For the kTC-specific class PlainKTC, the test
suite achieved 90.9 % instruction and 66.2 % branch coverage (438 of 482 instructions).
This sums up to a total instruction coverage of 75.0 % (1865 of 2487 instructions).

In the second test run, we used the capability of Cobolt to check the weak and
strong consistency constraints after each execution of a context event handler and the
TC algorithm, respectively (see also Section 5.2.3.3). During the 240 experiments that
we conducted 288 000 of these checks were performed and no consistency violation was
detected. The number of consistency checks corresponds to the 600 invocations of the
TC algorithm and the context event handling, respectively (i.e., 600× 2× 240 = 288 000).

In the third test run, we created a dedicated simulation setup to measure the instruc-
tion and branch coverage of the generated code for kTC. This simulation setup consists
of the base configuration shown in Table 5.2 with 250 motes, 900 m world size, a mobility
speed of 1.4 m

s (to increase the number of context events), and kTC running in dynamic
mode. In contrast to Table 5.2, we executed the simulation until all 250 motes had run
out of energy (after 98 min of simulated time). For the abstract class TriangleBasedTopolo-
gyControlAlgorithm, the test suite achieved 77.9 % instruction and 67.4 % branch coverage
(1561 of 2005 instructions). For the kTC-specific class PlainKTC, the test suite achieved
72.4 % instruction and 54.8 % branch coverage (349 of 482 instructions). This sums up to
a total instruction coverage of 76.8 % (1910 of 2487 instructions).

The merged coverage results of the 24 unit tests and the simulation run show the
following coverage values. For the abstract class TriangleBasedTopologyControlAlgorithm,
the 78.0 % instruction and 68.5 % branch coverage could be achieved (1564 of 2005 in-
structions). For the kTC-specific class PlainKTC, 90.9 % instruction and 67.7 % branch
coverage could be achieved (438 of 482 instructions). This amounts to a total instruction
coverage of 80.5 % (2002 of 2487 instructions).

Remarkably, the simulation run led to lower instruction and branch coverage values
for PlainKTC, but to larger coverage values for TriangleBasedTopologyControlAlgorithm. In
total, the joint testing of the generated code of kTC based on the JUnit test suite and the
simulation run increased the instruction and code coverage compared to the individual
results. These results indicate that kTC is well tested.

17 EclEmma page: https://www.eclemma.org/ (visited: 2018-10-31)

https://www.eclemma.org/
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quantitative discussion for build process Cobolt relies on the unmodified
build process of eMoflon. Therefore, we investigated to which degree the code gen-
erator of eMoflon is tested. eMoflon has been under development since 2012. Since
then, a public tests repository18 has been built up. Apparently, eMoflon is proven in
use. Version 3.5.1 of eMoflon has been tested against a public test suite consisting of
179 projects and a total number of 372 JUnit

19 unit tests. These tests consist of small
to medium-sized specifications resulting from research projects and student theses. To
quantify in how far the test suite certifies that the eMoflon build process is well-tested,
we measured the instruction coverage of the build process.

As experimental setup, we created a fresh eMoflon developer workspace. This
workspace contains the source code of all 64 projects that constitute the code base of
eMoflon Eclipse. Afterwards, we started a runtime Eclipse workspace20. In this run-
time workspace, we triggered the code generation for the 179 projects that constitute
the aforementioned test suite. The used test suite can be found on GitHub

21. We as-
sess the quality of the test suite by measuring the instruction coverage of the relevant
projects. We determine a set of 20 eMoflon projects that are relevant for the SDM code
generation process. The names of the relevant projects are shown in the first column of
Table 5.3. As before, we used EclEmma to measure the code coverage in the developer
workspace.

The instruction coverage of all eMoflon projects is 28.2 % (375 422 of 1 329 766 in-
structions). For the 20 projects that are relevant for the SDM build process, we obtain
an instruction coverage of 57.6 % (116 469 of 202 077 instructions). Table 5.3 summarizes
the coverage per project. The coverage ranges from 2.2 % to 93.3 %. As a result of
this observation, we first performed a manual inspection of the projects with the lowest
coverage.

First, the reason for the small coverage of 2.2 % for the project org.moflon.core.moca.-
processing originates from the fact that this project contains a large amount of generated
EMF code that serves for processing XMI data structures. We think that the low coverage
is not critical here.

Second, the coverage for project org.moflon.sdm.compiler.eclipse was 30.2 %. We found
out that 1217 of 2770 instructions serve to conduct a preprocessing of the code-generat-
ing class. This task is not meant to be executed by an eMoflon instance. Furthermore,
95 instructions were dead code. Therefore, only 1401 instructions were relevant for the
eMoflon build process. The coverage for this part of the project was 59.6 % (836 of 1401
instructions).

18 eMoflon test suite: https://github.com/eMoflon/emoflon-tests (visited: 2018-10-12)
19 JUnit page: https://junit.org/ (visited: 2018-10-12)
20 For details on Eclipse runtime workspaces, see: https://help.eclipse.org/oxygen/topic/org.eclipse.

pde.doc.user/guide/tools/launchers/eclipse_application_launcher.htm (visited: 2018-11-19)
21 Eclipse Team Project Set file on GitHub: https://github.com/eMoflon/emoflon-tool/blob/emoflon-

tie_3.5.1/org.moflon.ide.workspaceinstaller.psf/resources/psf/tests/AllTests.psf (visited: 2018-
11-19)

https://github.com/eMoflon/emoflon-tests
https://junit.org/
https://help.eclipse.org/oxygen/topic/org.eclipse.pde.doc.user/guide/tools/launchers/eclipse_application_launcher.htm
https://help.eclipse.org/oxygen/topic/org.eclipse.pde.doc.user/guide/tools/launchers/eclipse_application_launcher.htm
https://github.com/eMoflon/emoflon-tool/blob/emoflon-tie_3.5.1/org.moflon.ide.workspaceinstaller.psf/resources/psf/tests/AllTests.psf
https://github.com/eMoflon/emoflon-tool/blob/emoflon-tie_3.5.1/org.moflon.ide.workspaceinstaller.psf/resources/psf/tests/AllTests.psf
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Table 5.3: Coverage for SDM-related eMoflon projects (Project name: o.m.s = org.moflon.sdm,
Ncov

ins /Ntotal
ins : number of covered/total instructions)

Project name Coverage Ncov
ins Ntotal

ins

org.moflon.core.moca.processing 2.2 % 210 9723

o.m.s.compiler.eclipse 30.2 % 836 277

MocaTree 37.0 % 1411 3816

o.m.s.constraints.democles 47.8 % 379 793

org.moflon.core.mocatomoflon 52.6 % 24 586 46 764

o.m.s.runtime.democles 53.6 % 5433 10 131

o.m.s.constraints.operationspecification 53.7 % 2062 3838

o.m.s.compiler.democles.validation.controlflow 54.4 % 16 527 30 387

o.m.s.compiler.democles.validation.result 54.6 % 930 1703

o.m.s.democles.literalexpressionsolver 56.4 % 3621 6419

org.moflon.core.dfs 56.5 % 2429 4301

SDMLanguage 60.1 % 13 953 23 224

o.m.s.constraints.constraintstodemocles 61.0 % 384 6296

o.m.s.constraints.scopevalidation 65.4 % 1301 1989

o.m.s.compiler.democles 67.4 % 4771 7074

org.moflon.ide.core 67.6 % 4819 713

o.m.s.compiler.democles.validation.scope 67.9 % 19 719 29 027

o.m.s.compiler.democles.pattern 77.1 % 11 622 15 078

o.m.s.controlflow.reversenavigation 92.4 % 375 406

o.m.s.constraints.codegenerator 93.3 % 1101 118

Summary 57.6 % 116 469 202 077
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Third, the coverage values of 37.0 % and 47.8 % for MocaTree and org.moflon.sdm.con-
straints.democles originate from the fact that both projects contain only generated data
structures for representing XML trees and constraints of patterns. The same argument
applies to the 53.6 % coverage of org.moflon.sdm.runtime.democles, which represents the
control flow metamodel.

From a coarse-grained inspection of the remaining relevant projects, we conclude
that it is difficult to achieve a high coverage of code generated from EMF metamodels
because this code contains, for instance, numerous methods that provide reflection capa-
bilities. Furthermore, thanks to our experiments, we were able to identify a considerable
amount of code that is not used within eMoflon. This code is, therefore, uncritical for
the build process but contributes to the total number of noncovered instructions.

To gather a deeper understanding of how the coverage is distributed, we conducted
an in-depth analysis of the project org.moflon.sdm.compiler.democles.validation.scope. This
project is responsible for transforming story diagrams into control flow models and
consists mainly of generated EMF code. The actual transformation is implemented
as story diagrams as well because eMoflon has been bootstrapped [135]. EclEmma

reported an instruction coverage of 67.9 % (19 719 of 29 027 instructions). The majority
of the 569 generated pattern methods have a coverage between 88 % and 100 % (488
methods, ca. 85.7 %). Further 45 pattern methods (ca. 7.9 %) have a coverage of 0 %. This
can be explained by the fact that these methods mainly serve for error reporting, which
is not tested by the eMoflon test suite. From our analysis, we conclude, that 6 entirely
untested methods (i.e., with 0 % coverage) exist that should be covered by further tests.

To sum up this in-depth analysis of the coverage of one of the core project of eMoflon,
we can conclude that the test coverage for the relevant transformation methods is already
at a good level with more than 85 % of the pattern methods of the transformation having
a coverage of more than 88 %.

To summarize the discussion of the build process of eMoflon, our analyses reveal
that the coverage is already decent in general. We found that dead code and code of
preprocessing components lead to a falsely reduced code coverage.

We answer RQ1 as follows. The specification refinement steps of our methodology
are correct by construction, as shown by proofs in the related work [44, 91] (regarding
the constructive approach) or in this thesis (regarding the anticipation loop synthesis,
see Section 4.4.3). In contrast, the correctness of neither the involved code generator
(i.e., eMoflon) nor the execution environment (i.e., the Java Virtual Machine) can
be proved formally. Regarding the Java Virtual Machine, we think that it is proven
in use. Regarding eMoflon, it is only possible to certify that the generated code for
concrete specifications returns correct results for concrete input models. This strategy
is used to test (i) each eMoflon release based on 372 unit tests in 179 realistic test
projects, and (ii) the kTC specification for our experiments. To determine whether these
tests are effective, we analyzed in how far (i) the first set of tests achieves a reasonable
coverage of the build process components in eMoflon, and (ii) the second set of tests
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achieves a reasonable coverage of the generated code of kTC. For eMoflon, we found
that the instruction coverage is decent in general (57.6 %). For kTC, we achieved a good
instruction coverage of 80.5 %. These results are reasonable because the eMoflon and
the generated code of kTC contain boilerplate EMF code (e.g., to provide reflection on
the metamodel level), which is unnecessary in our scenario. Additionally, some of the
build process components of eMoflon contain either dead code or code that is not
relevant for the actual SDM build process but contributes to the fraction of noncovered
instructions (e.g., developer code or irrelevant utility classes).

threats to validity A major threat to construct validity of this part of the evalua-
tion is that we could not evaluate the code coverage of (i) the Democles code generation
engine, which is integrated as binary library in eMoflon, and (ii) the Enterprise Ar-
chitect add-in, which is implemented in C# (instead of Java). Measuring the code
coverage of both components is feasible technically but required excessive manual ef-
fort, which is beyond the scope of this evaluation. Furthermore, this threat is mitigated
by the fact that the generated code in the runtime workspace is exercised by 372 unit
tests. These unit tests constitute integration tests for the entire build process.

5.2.4.4 Results and discussion for RQ2 (efficiency)

In the following, we investigate the applicability of Cobolt in the context of realistic
simulation setups. We use the experimental setup described in Section 5.2.4.2.

metrics We assess the computational cost of using Cobolt in terms of the CPU time
for each invocation of the TC algorithm and the context event handlers and compare
these values with the CPU time required for the entire simulation.

results Figure 5.11 compares the CPU time for the TC algorithm execution, the
context event handling, and the entire simulation in all 240 experiments as three box-
plots. The boxplots follow the convention that (i) the horizontal line indicates the me-
dian value, (ii) the lower and upper caps mark the 25 %- and 75 %-percentile (i.e., the
first and third quartile), (iii) the whiskers enclose all values within the 1.5-inter-quartile
range, and (iv) outliers are shown as circles. For a given ordered sequence of values
x1 < x2 < · · · < xN, the p %-percentile is xbN·p+1c if N uneven and the mean value of
xN·p and xN·p+1 if N is even. The inter-quartile range (IQR) is equal to xN·75 % - xN·25 %.
If the range of values does not exceed the 1.5-IQR interval, the upper and lower ends
of the whiskers reflect minimum and maximum data points. The lower whisker marks
the minimum data point that at least as large as xN·25 % − IQR. Conversely, the upper
whisker marks the largest data point that is at most as large as xN·75 % + IQR.

In Figure 5.11, each boxplot is labeled with the median value. No outliers were ob-
served. For each experiment, we calculated the sum over the execution time of the
repeated execution of the TC algorithm and the context event handlers. The plot shows
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Figure 5.11: Execution time comparison of simulation, TC algorithm, and context event handling
(label per boxplot: median execution time, N: number of data points per boxplot)

that the median simulation duration is 607.5 s. The execution of the TC component
requires 10.7 s in the median case (i.e., 1.8 % of the median simulation execution time).

The plot also shows that the simulation execution time varies between 107 s (lower
whisker) and 1760 s (upper whisker). The corresponding ranges for the TC algorithm is
0.061 s to 20.2 s and for the context event handlers 0.36 s to 371 s.

discussion The preceding results show that the code generated by Cobolt con-
tributes a small fraction to the entire simulation duration during the experiments. There-
fore, we conclude that Cobolt is well applicable for practical network simulations.

The reason for the large inter-quartile ranges in Figure 5.11 can be explained by the
fact that each boxplot summarizes the total execution time values for 240 experiments
and that the experiments cover a wide range of topologies. This can be quantified using
the initial topology density (i.e., the initial link count divided by the initial mote count).
The median density of all 240 experiments is 22.7 with first and third quartiles equal
to 12.2 and 40.8. The maximum initial density is 104, which is an extreme value in
comparison to the experimental setups in the consulted TC works. These numbers also
indicate that our experiments cover a representative range of topology sizes.

To sum up, we answer RQ2 as follows. With a median fraction of 1.8 % of the total
simulation execution time, the computational overhead of the code generated using
Cobolt is low. This allows us to conclude that Cobolt is applicable in realistic WSN
simulation scenarios

threats to validity A major threat to external validity is the choice of the simula-
tion scenarios. Regarding the experimental setup, we mitigated this threat by extracting
typical evaluation setups from 11 works on TC. Even though we used a single TC al-
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Figure 5.12: Execution time comparison batch vs. dynamic (label per boxplot: median execution
time, N: number of data points per boxplot)

gorithm, kTC, in this evaluation, we observed that kTC is a typical representative of TC
algorithms based on studying prominent TC survey papers [219, 264, 267]. In this con-
text, “typical” means that the computational complexity of several state-of-the-art TC
algorithms is comparable to kTC, for instance, because they also use a triangular pattern
graph. A detailed discussion of our investigation of the aforementioned surveys follows
in the subsequent Chapter 6.

A second threat to external validity is our choice of the hardware platform for de-
veloping the TC algorithm and conducting the experiments because the CPU execution
time strongly depends on the chosen hardware platform. This threat does not apply to
this evaluation because we used a workstation with a CPU that was released in 2011

and 2 GB of working memory, which should be available in today’s workstations. There-
fore, we can be sure that the execution time of the generated code as well as the entire
simulation will be smaller when the experiments are conducted on a more recent hard-
ware. Furthermore, it is not probable that the proportions of the execution time values
differ drastically because both the execution of the generated code as well as the other
simulation processes are mainly CPU intensive tasks.

A major threat to the internal validity of our results is that numerous processes within
a simulation run are random (e.g., node movement, inter-transmission waiting time,
initial energy distribution). To mitigate the influence of randomness, we evaluated each
of the 24 simulation scenarios with 10 different random seeds.

5.2.4.5 Results and discussion for RQ3 (dynamic topology control)

In the following, we compare the efficiency of dynamic and batch TC in the context of
the conducted experiments. For this research question, we reuse the experimental setup
Section 5.2.4.2.
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Figure 5.13: Link state modification comparison batch vs. dynamic (label per boxplot: median
link state modification count, N: number of data points per boxplot)

metrics We quantify the effort of batch and dynamic TC in terms of the required
(i) execution time (as before), and (ii) number of link state modifications. A link state
modification is the change of the state of a link (e.g., from U to A or I during the TC
algorithm execution). We measure these metrics per execution of the TC algorithm and
each context event handler.

results The leftmost two boxplots in Figure 5.12 compare the execution time (in
s) of the 120 experiments for which kTC was executed in batch and dynamic mode,
respectively. The rightmost two boxplots show the fraction of time that is consumed by
the execution of the TC algorithm and the context event handlers, respectively.

For each experiment, we calculated the sum of the respective execution time values.
This means that each boxplot aggregates 120 data points.

The median execution time for batch TC is 10 s, and the median execution time for
dynamic TC is 81 s. The ranges for batch and dynamic TC are 0.82 s to 59.9 s and 0.75 s
to 272 s, respectively.

The detailed boxplots for the dynamic scenario reveal that the major fraction of the
time for dynamic TC is spent in context event handling (78 s in the median case).

As a second metric for assessing the cost of batch vs. dynamic TC, we consider the link
state modification count. The x axis of Figure 5.13 is identical to Figure 5.12. In contrast,
the y axis of the plot shows the total number of link state modifications per experiment.
Again, each boxplot summarizes 120 experiments with batch and dynamic TC enabled,
respectively. Each data point corresponds to the added link state modification counts of
all TC and context event handler executions per experiment.

The plots shows that batch TC requires 258 162 link state modifications in the median
case, whereas dynamic TC requires 50 104 link state modifications. The link state modi-
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fication counts for the execution of the TC algorithm and the context event handling are
almost identical (24 998 vs. 25 052).

discussion The results shown in Figures 5.12 and 5.13 allow for the following con-
clusions. First, batch TC is considerably faster than dynamic TC regarding CPU time in
the median case. The results regarding execution time reveal that a large fraction of the
time that a context event handler consumes is spent in analyzing the topology (and not
in link state modifications). This can be seen when comparing the median number of
link state modifications for the TC algorithm and the context event handlers, which are
almost equal in Figure 5.13, with the required execution time, which differs by a factor
of 78 (Figure 5.12). One reason of the large amount of time for analyzing the topology is
that the state of a link is stored as attribute value. This means that identifying a link hav-
ing a particular state entails a linear search through the entire list of links (either of the
incident links of a mote or of all links in the topology). This behavior could be improved
in the future by allowing a faster access to all links having a given state. For instance,
this could be achieved using dedicated associations in the metamodel or by employing
an incremental pattern matcher (e.g., Viatra [21]), which keeps track of all matches of
relevant patterns in a time-efficient manner. Still, the result in Section 5.2.4.4 show that
the TC algorithm and context event handler executions contribute only 1.8 % of the en-
tire simulation duration. Therefore, it is doubtable whether further optimizations lead
to a perceivable improvement.

Second, dynamic TC clearly outperforms batch TC regarding the link state modifica-
tion count. In the median case, batch TC requires 5.2 times more link state modifications
(i.e., 50 104 instead of 258 162 link state modifications). A link state modification usually
entails an adaptation of the transmission power of a mote. This means that the second
result is the more salient one compared to the execution time comparison.

To sump up, we answer RQ3 as follows. In the median case, (i) dynamic TC requires
a larger CPU execution time during simulations compared to batch TC, and (ii) dy-
namic TC is considerably more efficient regarding the hardware-independent link state
modification count.

threats to validity The discussion of threats to validity from Section 5.2.4.4 ap-
plies analogously to this part of the evaluation and is not repeated here for conciseness
reasons.
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5.3 model-based testbed evaluation with cmoflon

With Cobolt, we presented tool support for the model-based simulative evaluation of
TC algorithms. In this section, we describe cMoflon, a complementary tool for the
testbed evaluation of TC algorithms. cMoflon is a variant of eMoflon that gener-
ates embedded C code for the IoT operating system Contiki [51]. The prefix “c” of
cMoflon alludes to the target platform Contiki that replaces the target platform EMF
of eMoflon. Additionally, cMoflon is also a case study that showcases how eMoflon

can be adjusted to generate code for new target platforms.

design goals Our foremost design goal during the development of cMoflon was
to use the same TC algorithm specification for simulation and testbed evaluation. This
is especially important because, with Cooja, only an emulator (instead of a simulator)
for Contiki exists. Cooja emulates the CPU of a mote. This allows the user to evaluate,
for instance, the energy consumption of TC algorithms precisely. Still, the emulation of
the CPU of each mote leads to computationally expensive experiments even for small
mote counts. Therefore, it is important that the same specification can be evaluated
using cMoflon and Cobolt to increase the user’s confidence in the correctness of the
specification.

One of the major goals of this thesis is to ensure the correctness of the generated TC
algorithms (see Goal 1 in Section 1.2). Ensuring the correctness of a code generator
is difficult in general. To profit from the extensively tested build process of eMoflon

and its continuing development, cMoflon should reuse build process components from
eMoflon where possible.

WSN platforms tend to be resource constrained. This applies especially to the avail-
able program memory (the so-called text segment). Therefore, the code generated using
cMoflon shall map directly to internal data structures of the target platform where
possible. We decided to generate C code for ToCoCo, an existing framework for imple-
menting TC algorithms based on the Contiki operating system [239]. This choice allows
us to profit from a well-tested framework for TC and to compare the TC algorithms gen-
erated using cMoflon with the three manually implemented TC algorithms that ship
with ToCoCo.

Covering the requirements of all existing TC algorithms immediately is impossible.
Therefore, we decided to develop cMoflon based on the requirements of the three TC
algorithms kTC, l*kTC and LMST. To support further TC algorithms, cMoflon provides
extension points regarding custom attribute constraints and auxiliary data structures.

choice of l*ktc and lmst We chose the TC algorithms l*kTC and LMST as
additional running example for this section on cMoflon because of the following two
reasons. The first reason is that kTC, l*kTC, and LMST have been developed manu-
ally and independently from cMoflon for ToCoCo. Their implementations in ToCoCo
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have been published in [239], and their source code is available online22. This allows
us to compare the TC algorithms generated using cMoflon with their manually im-
plemented counterparts using the same operating system (i.e., Contiki) and TC library
(i.e., ToCoCo). In contrast, no published and independent manual implementation of a
TC algorithm in Simonstrator exists. Therefore, we did not consider these examples
in the evaluation of Cobolt (Section 5.2.4).

The second reason is that the selected algorithms are also representative for a larger
class of TC algorithms. kTC and l*kTC are representatives of the class of triangle-based
TC algorithms, which comprises well-known TC algorithms such as RNG [109], GG [211],
XTC [270], or DG [48]. The TC surveys in [219, 264, 267]) provide further evidence
of this claim because, for each of the mentioned triangle-based TC algorithms, they
present additional variants that have been developed over the years. LMST lends itself as
example because it is a widely known and built-upon TC algorithm: The corresponding
INFOCOM conference paper has been cited at least 241 times23, and the corresponding
journal paper has been cited at least 181 times24 until today. This indicates that LMST is
a representative TC algorithm.

Therefore, if we are able to specify and generate code for kTC, l*kTC, and LMST using
cMoflon, this is a strong argument for its applicability.

related publications and theses We presented cMoflon 1.0.0 in [121]. David
Giessing designed and implemented the first prototype of cMoflon in his Bachelor’s
thesis [77].

5.3.1 Architecture

We begin the description of cMoflon with an architectural overview. To understand
the architecture of cMoflon, we briefly describe the operating system Contiki and
ToCoCo. Then, we outline how we built the cMoflon as a variant of eMoflon.

5.3.1.1 Contiki

Our choice of Contiki as underlying sensor operating system was mainly determined
by the fact that it is a widely used operating system for sensor devices. Since its publica-
tion in 2004, the corresponding LCN paper [51] has been cited 815 times25. Furthermore,
with ToCoCo [239], a convenient abstraction layer for implementing TC algorithms
based on Contiki exists. The kernel of Contiki provides non-preemptive multi-pro-
cess execution with preemptive multi-threading available as application library. The
code size of Contiki on an MSP430 microcontroller is ca. 3.9 kB.

22 ToCoCo repository (original): https://github.com/steinmic/ToCoCo (visited: 2018-10-12)
23 According to https://ieeexplore.ieee.org/document/1209193/ (visited: 2018-11-25)
24 According to https://ieeexplore.ieee.org/document/1427709/ (visited: 2018-11-25)
25 Citation count according to https://ieeexplore.ieee.org/document/1367266 (visited: 2018-10-16)

https://github.com/steinmic/ToCoCo
https://ieeexplore.ieee.org/document/1209193/
https://ieeexplore.ieee.org/document/1427709/
https://ieeexplore.ieee.org/document/1367266
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Figure 5.14: Architecture of the ToCoCo evaluation framework

5.3.1.2 ToCoCo

Instead of developing a cMoflon-specific framework for TC in Contiki, we built on
the existing ToCoCo framework [239]. ToCoCo eases the implementation of novel TC
algorithms by hiding the low-level technical details from the TC algorithm developer.
Figure 5.14 illustrates the architecture of ToCoCo, which defines a number of different
component types. The interfaces of all component types build on the central topology ab-
straction component. The topology abstraction component provides a graph-based view of
the local view of a mote and stores the virtual topology as a blacklist of ignored neigh-
bors. For each component type, ToCoCo ships with one or more existing implementations
and allows the TC algorithm developer to add further implementations. We describe the
role of each component type in the following. In this context, Figure 5.15 summarizes
the described component configuration options as feature diagram (see also Section 3.6).
The figure also highlights the partial configuration that we used for the evaluation of
cMoflon.

An optional TC component controls the execution of the active TC algorithm and de-
cides which neighbors shall be added to or removed from the virtual topology. Choos-
ing a TC algorithm is optional. ToCoCo ships with three TC algorithms: kTC [227, 228],
l*kTC [130, 239], and LMST [140]. For each of these TC algorithms, we provide a gener-
ated counterpart.

An optional neighbor discovery component provides the weighted input topology to the
topology abstraction component. The responsibility of this component is the monitor-
ing of immediate neighbors to identify incident links and the message exchange with
other motes to increase the size of the local view according to the needs of the selected
TC algorithm. ToCoCo currently provides only a single neighbor discovery protocol,
which builds up a two-hop local view using broadcast messages. The weight of links
is either set to the measured RSSI or to the mote distance based on preconfigured posi-
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tion information per mote. Neighborhood discovery is mandatory if a TC component is
active.

An optional power control component adjusts the transmission power of the radio mod-
ule to ensure that all active links can be used by the routing component. Three different
power-control algorithms are available: binary search, adaptive, or calibrated.

An optional routing component provides a convenient interface to the application to
exchange messages among motes. ToCoCo reuses routing algorithms of the RIME [52]
stack (e.g., broadcast, unicast, routed message forwarding).

The application is not a component per se but is specific to the current use case. To-
CoCo ships with four sample applications: data collection, random walk, power calibra-
tion, and a wireless mesh protocol.

Typically, the business logic of a ToCoCo component is implemented as one or more
Contiki processes and contained in a single pair of header (.h) and implementation (.c)
file. The configuration options of a component are registered as preprocessor constants
in a central configuration file. The original version of ToCoCo [239] is available open
source on GitHub

26. For our work on cMoflon, we created an open-source fork27

and extended the existing suite of evaluation scripts (e.g., for plotting time series of
topologies and for the batch compilation of TC algorithms).

26 ToCoCo repository (original): https://github.com/steinmic/ToCoCo (visited: 2018-10-12)
27 ToCoCo repository (cMoflon fork): https://github.com/eMoflon/ToCoCo (visited: 2018-10-12)

https://github.com/steinmic/ToCoCo
https://github.com/eMoflon/ToCoCo
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5.3.1.3 Integration with eMoflon build process

Figure 5.16 shows the build process of cMoflon. This figure highlights which com-
ponents of eMoflon we reused (see also Figure 5.2) and which parts we implement
specifically for cMoflon. All build steps that are modified in cMoflon compared to
eMoflon are highlighted in blue and marked with a “C”. We reused the Enterprise

Architect add-in (eMoflon EA) as well as the import and validation components of
eMoflon without modifications. At this point, we provide a summary of the code gen-
eration workflow. Detailed descriptions of how individual artifacts are mapped to C
code can be found in Section 5.3.3.

First, instead of generating class skeletons from each EClass in the metamodel, we de-
cided to distinguish between concepts that can be mapped to internal data structures of
ToCoCo and Contiki, and user-specified concepts (e.g., helper data structures). There-
fore, cMoflon expects to find certain EClasses and certain attributes of these classes in
the metamodel (e.g., Mote, Link, Link::weight). Second, the transformation from control
flow model to C code is similar compared to Java because both languages share most
control structures (scopes, scoping of variables, conditions, do-while loops, while-do
loops). Third, the transformation from search plan to C code is also structurally similar
to eMoflon. Here, we reused the strategy of mapping each search plan to a hierarchical
StringTemplate.

5.3.2 Specification

We now describe the particularities of cMoflon regarding the specification perspec-
tive (this section) and the code generation (Section 5.3.3). To highlight the capabili-
ties of cMoflon, we extend our running example by two additional TC algorithms:
(i) l*kTC [239] is a variant of kTC that requires user-defined attribute constraints, and
(ii) LMST [140] is a tree-based TC algorithm that possesses a more complex control flow
specification compared to kTC and requires auxiliary data structures.

5.3.2.1 The l*kTC algorithm

Until now, we considered as running example the TC algorithm kTC [227], which is an
application-agnostic TC algorithm. An application-agnostic TC algorithm is unaware of the
active application (e.g., data collection or pairwise message exchange). In [239], Stein
et al. point out that considering application-related information in a TC algorithm may
help to improve the quality of the virtual topology (e.g., w.r.t. latency). To showcase
this advantage, they propose l*kTC, a variant of kTC that is tailored to data collection
scenarios, where all motes report to a dedicated base station. In such scenarios, each
mote n is aware of its hop-count h(n), which is the number of hops that are necessary
to reach the base station. In the following, we assume that h(n) < 0, if hop-count
information for a mote n is missing. l*kTC inactivates a link `XY if the link (i) `XY is
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the weight-maximal link in a triangle (`XY, `XZ, `ZY), and (ii) the weight of `XY is at least
k times larger than the minimal weight in the triangle, and (iii) inactivating `XY keeps
the increase in the hop count of nX and nY below a given stretch factor a compared with
the input topology. The first two conditions are identical to the kTC-specific conditions
(see Equation (3.4) in Section 3.2), while the last condition is specific to l*kTC. The
third, l*kTC-specific condition can be expressed using first-order logic with arithmetic
expressions as follows (hX, hY, hZ denote the hop count of motes nX, nY, nZ):

ϕl*kTC(wXY, wXZ, wZY, hX, hY, hZ,X,Y,Z) :⇔ (5.1)

ϕkTC(wXY, wXZ, wZY,X,Y,Z) (5.2)

∧min(hX, hY, hZ) ≥ 0 (5.3)

∧ (hX = hY ⇒ true) (5.4)

∧
(

hX 6= hY ⇒
hZ+1

max(hX, hY)
≤ a

)
(5.5)

Clause 5.2 mandates that a link may only be inactivated if it fulfills the kTC-specific con-
ditions. Clause 5.3 requires that a link may only be inactivated if hop-count information
for all involved motes is available. Clause 5.4 states that, if the hop counts of nX and
nY are equal, then the link shall be inactivated because the path of neither nX nor nY to
the base station becomes longer by inactivating `XY. Clause 5.5 covers the complemen-
tary case when one of the motes nX or nY is closer to the base station compared to the
other mote. In this case, the fraction of the enlarged routing path length (hZ+1) and the
maximum current hop count of nX and nY may not exceed the stretch factor a.

The l*kTC algorithm is a heuristic TC algorithm: The calculation of the assumed
increase in routing path length is performed locally and, therefore, independently of the
decisions of all other motes. Therefore, the increase of the routing path length of a given
mote to the base station in the virtual topology is not limited by the factor a in general.

Example 5.1 (l*kTC). Figure 5.17 shows a sample output topology of l*kTC for the
kTC parameter k = 1.3 and the stretch factor a = 1.5. Mote n1 acts as base station,
and each mote is labeled with the current hop-count distance to n1 in parentheses.

The links `47 and `74 are inactive because their weights are maximal and at least k
times larger than the minimal weight in the triangles (`47, `45, `57) and (`74, `75, `54),
respectively. Additionally, the hop-count increase is h(n5)+1

max(h(n4),h(n7)
= 3

2 = 1.5, which
does not exceed a.

In contrast, the links `14 and `41 are active even though they are part of the
ϕkTC-fulfilling triangles (`14, `12, `24) and (`41, `42, `21), respectively. The reason is
that the increase in hop count is h(n2)+1

max(h(n1),h(n2)
= 2

1 = 2, which exceeds a.
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Figure 5.17: Example: Topology of l*kTC with k = 1.3, a = 1.5

5.3.2.2 The LMST algorithm

The third considered TC algorithm is LMST [140]. We already discussed this algorithm
briefly to highlight the limitations of graph constraints without path expressions in
Section 3.7. The idea behind LMST is that each mote calculates a local minimum spanning
tree, which is a minimum spanning tree within its local view. Then, the mote activates all
outgoing links that are part of the local minimum spanning tree. In general, the resulting
topology is not necessarily symmetric because a link that is part of the local minimum
spanning tree in one local view could be excluded from the local minimum spanning
tree in another local view [140]. Therefore, the LMST algorithm drops unidirectional
links in the virtual topology of LMST (i.e., active links for which the reverse link is
inactive). In [140], the authors show that this step does not violate connectivity.

LMST is an exciting further example for our methodology because its virtual topology
is a minimum spanning tree, which must be acyclic. Similar to connectivity, acyclicity
is a property that cannot be expressed using first-order logic [59]. Therefore, to develop
LMST using our methodology, we have to provide a set graph constraints whose joint
fulfillment implies that the active links in the virtual topology form a minimum span-
ning tree. We refrain from describing the detailed construction process for LMST at this
point because or goal is to use LMST for illustrating the capabilities of cMoflon. The
following example concludes the introduction of LMST.

Example 5.2 (LMST). Figure 5.18 shows the result of applying LMST to the same
input topology as in Example 5.1. In contrast to l*kTC, no dedicated base station
is marked because LMST is an application-agnostic TC algorithm. Three pairs of
links are inactive. The links `14 and `41 are the weight-maximal links on the cycle
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Figure 5.18: Example: Virtual topology of LMST

consisting of the links `14, `42, and `21 as well as `41, `12, `24, respectively. Analogous
cycles justify the inactivation of `13, `31, `47, `74, `67, and `76.

As illustrated in this example, the virtual topology of LMST always contains
at least as many inactive links as the virtual topology of kTC because each ϕkTC-
fulfilling triangle constitutes a cycle that justifies the inactivation of the weight-max-
imal link on this cycle.

5.3.2.3 Basic metamodel of cMoflon

After introducing the three TC algorithms that serve as running examples for cMoflon,
we now present the basic metamodel of cMoflon. Figure 5.19 shows the basic metamodel
together with the necessary extensions for kTC, l*kTC, and LMST (see dotted frames).
The basic metamodel consists of all metamodel elements that are not enclosed by a
dotted frame. cMoflon expects to find these metamodel elements, which are handled
specially by cMoflon. As in the general TC metamodel (Figure 3.4), we interpret the
topology as directed graph, whose nodes represent the motes of the topology (Mote)
and whose links possess properties to store the state and weight of each link (Link::state,
Link::weight). A TC algorithm is represented by a concrete subclass of TopologyControlAl-
gorithm, whose run operation contains the TC algorithm logic.

What distinguishes the cMoflon metamodel from the general TC metamodel is that
the TC algorithm is attached to a particular mote (instead of the entire topology). The
reason is that TC algorithms specified with cMoflon are always executed as localized
algorithm based on a local view of the topology. The mote that is attached to the TC
algorithm instance is the self-mote, which represents the mote that owns the local view.
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Figure 5.19: Basic cMoflon metamodel with extensions for kTC, l*kTC, and LMST

5.3.2.4 Specifying kTC

The kTC algorithm can be specified without modifying Mote or Link because kTC only
requires information about the weight of links. The actual TC algorithm is modeled
by introducing the new subclass KtcAlgorithm of TopologyControlAlgorithm. The control
flow of the KtcAlgorithm::run operation is specified an analogous way as shown earlier in
Chapter 4. The ToCoCo framework does not provide notifications about changes to the
input topology. Therefore, we only consider the TC algorithm specification and neglect
context event handlers throughout this chapter.

5.3.2.5 Specifying l*kTC

In contrast to kTC, the TC algorithm l*kTC required additional information about the
hop count of each mote. We represent this property by adding a corresponding attribute
to the Mote class (see Figure 5.19). As for kTC, we also create a subclass LStarKtcAlgo-
rithm of TopologyControlAlgorithm to specify the control flow of l*kTC. Figure 5.20a
shows the corresponding story diagram, which possesses the same structure as the
kTC and Maxpower algorithms that we specified earlier. The GT rule Rfind-u serves to
identify an unmarked link v12 and is identical to the corresponding GT rules in the
story diagrams for kTC and Maxpower. The GT rules R′l*kTC,a and R′l*kTC,i conduct the
actual marking of the identified unmarked link v12. Both rules could result from ap-
plying the constructive approach and are, therefore, decorated with a gear symbol at
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LStarKtcAlgorithm::run(var v12:Link) : void

v12=Rfind-u() R'l*kTC,a(v12)
[S]

R'l*kTC,i (v12)
[S]

[F]
[F]

(a) Story diagram for LStarKtcAlgorithm ::run
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(c) R′l*kTC,a

Figure 5.20: Specification of l*kTC

the synthesized application conditions. In the figure, we use a shorthand version of the
l*kTC-specific predicate:

ϕl*kTC(v1, v2, v3)⇔ ϕl*kTC(w12, w13, w32, h(v1), h(v2), h(v3), id(v1), id(v2), id(v3))

The l*kTC-specific clauses Equations (5.3) to (5.5) of the l*kTC constraint are imple-
mented as a single user-defined constraint hopcountOK in cMoflon. The hopcountOK
constraint has four parameters corresponding to the three hop-count values hX, hY, and
hZ as well as the stretch factor a. Regarding the operationalization, the only supported
adornment mandates that all four parameters are bound. The evaluation of the con-
straint is implemented by the helper function shown in Listing 5.1. In the code, an
implication a⇒ b is implemented in the usual way as ¬a ∨ b.

5.3.2.6 Specifying LMST

For the specification of LMST in cMoflon, we follow the same approach as Stein et al.
in [239]. They separate the implementation of LMST into a tree-construction phase and
a marking phase. During the tree-construction phase, the local minimum spanning tree
is built up using Prim’s algorithm [191] and stored in an additional tree data structure.
The tree structure stores for each mote the parent link, which is the link that connects the
mote to the tree. Prim’s algorithm works by iterating over all links in increasing order of
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1 static bool hopcountOK(EInt hX, EInt hY, EInt hZ, EDouble a) {
2 if (min(hX, min(hY, hZ)) < 0)
3 return false;
4 bool result = true;
5 result &= (!(hX == hY) || true);
6 result &= (!(hX != hY) || ((hZ + 1) * 1.0 / max(hX, hY) < a));
7 return result;
8 }

Listing 5.1: C code for evaluating the user-defined hopcountOK constraint

unique weight and adding all those links to the minimum spanning tree whose addition
does not lead to a cycle in the tree.

The classes Tree and TreeEntry represent the tree data structure in the metamodel.
The tree is accessible from LmstAlgorithm and points to a list of tree entries (entries-Tree
association). Each tree entry represents one mote (mote-entry association) and has at
most one parent link.

Additionally, we introduce a fourth link state Processed for technical reasons. This
state serves for marking the current candidate link for insertion into the minimum span-
ning tree.

To specify the control flow of the LMST algorithm, we create a subclass LmstAlgorithm
of TopologyControlAlgorithm. Besides the obligatory run operation, we specify additional
helper operations. The Boolean init operation initializes the tree data structure by creat-
ing a single Tree object and, for each Mote object, a TreeEntry object. The return value
indicates whether the initialization was successful (i.e., enough memory could be allo-
cated). The cleanup operation serves to tear down the tree data structure. The findShort-
estUnconnectedLink identifies a link of minimal weight that has one incident mote with
a parent link and another incident mote without a parent link. We provides injections
for the init and cleanup operations and specified the run and findShortestUnconnectedLink
operations using story diagrams. For the sake of conciseness, we omit the story diagram
of findShortestUnconnectedLink here.

Figure 5.21a shows the story diagram that implements the run operation of LmstAl-
gorithm. First, the init operation is invoked. If the invocation is successful (i.e., returns
true), the execution continues to the tree-construction phase. Otherwise, the execution
continues to the invocation of cleanup. The tree-construction phase consists of a loop
that continues as long as findShortestUnconnectedLink returns a (weight-minimal) link
that connects a previously unconnected mote to the tree. A mote is connected to the tree
by establishing a parent-entry association (see Rconnect-to-tree in Figure 5.21b). If no more
suitable links can be found, the execution enters the marking phase, which is a loop
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over all unmarked outgoing links of the self-mote (see RLMST,find-u in Figure 5.21c). The
GT rule RLMST,a specifies that an unmarked link v12 shall be activated if it is the parent
link of its target mote. If RLMST,a is inapplicable, v12 is inactivated by applying RLMST,i.
If no more outgoing unmarked links of the self-mote exist, the execution continues to
the invocation of cleanup and, finally, terminates.

5.3.2.7 Supported metamodeling concepts and extension points

After describing the specification of the three considered TC algorithms, we now de-
scribe which extensions of the basic metamodel are supported in cMoflon. cMoflon

supports the following types of extensions on the metamodel level: adding (E1) cus-
tom attributes and associations (e.g., Mote::hopCount, entries-Tree), (E2) custom attribute
constraints (e.g., hopcountOK), and (E3) custom classes (e.g., TreeEntry). In our running
example, l*kTC required (E1) and (E2), and LMST required (E3).

cMoflon does not support inheritance relations except for inheritance from Topolo-
gyControlAlgorithm to indicate that a TC algorithm exists.

5.3.3 Code generation

In the following, we list a number of detailed implementation decisions that we took
during the development of cMoflon regarding the code generator. As mentioned ear-
lier, we did not develop a general-purpose code generator but tailored the generated
code to the available data structures of the target platform.

5.3.3.1 Mimicking object orientation

To provide a systematic mapping from classes and their operations to functions in C, we
use a typical scheme that composes function name of the class name and method name
and inserts a synthetic pointer parameter this. For example, the function prototype
that corresponds to KtcAlgorithm::run is

1 void ktcAlgorithm_run(KTC_ALGORITHM_T* this).

This example also illustrates how we map EClass names systematically to C type
names. The C type name results from splitting the class name at uppercase letters, in-
serting underscores, converting all letters to uppercase, and appending the suffix _T. We
generate for each attribute getter and setter function prototypes and, for each association
type, we generate getter function prototype returning an object of type list_t. The
type list_t is a generic list data structure provided by the Contiki standard library28.
For the attributes Link::state and Link::weight and the source-outgoing and target-incoming
associations, we not only provide prototypes but also mappings to the internal data
structures of ToCoCo, as described later.

28 Contiki linked list library http://contiki.sourceforge.net/docs/2.6/a01682.html (visited: 2018-10-16)

http://contiki.sourceforge.net/docs/2.6/a01682.html
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vXY = RLMST,find-u (this)
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Figure 5.21: Specification of LMST
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Figure 5.22: Anatomy of a generated TC algorithm in cMoflon

5.3.3.2 Representing a topology control algorithm

Figure 5.22 shows the structure of the header (.h) and implementation file (.c) that
cMoflon generates for each subclass of TopologyControlAlgorithm. The header file is
composed of TC-algorithm–independent type definitions and function declarations (e.g.,
standard Ecore data types and their comparators) and TC-algorithm–specific type defi-
nitions and function declarations (e.g., for the tree data structure of LMST).

The implementation file starts with the corresponding definitions of TC-algorithm–
independent and TC-algorithm–specific functions. Afterwards, the definitions of the
pattern-matching and operation-implementing functions are inserted. At the end of the
implementation file follows the Contiki process that contains the configuration and
invocation of the TC algorithm.

5.3.3.3 Representing motes and links

We map the class Mote to the ToCoCo data structure networkaddr_t, which basically
stores the unique address of a mote. For consistency reasons, we use the type MOTE_T
in the generated source, which is a typedef for networkaddr_t.

We map the class Link to the ToCoCo data structure neighbor_t. For consistency
reasons, we use the type LINK_T in the generated source, which is a typedef for
neighbor_t.
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In ToCoCo, both directions of a link are stored in one instance of neighbor_t. This
reduces the memory footprint compared to linking two different structures for each
direction. This strategy avoids replicating the pointer to each incident mote and the
linking between reverse links. Inside neighbor_t, each direction of a link pair is asso-
ciated with a weight. A negative link weight indicates that the link in the corresponding
direction is missing. In this case, the link is asymmetric. For identifying asymmetric
links, cMoflon provides the attribute constraint isWeightDefined. For a given double
value, the constraint evaluates to true if the value of weight indicates that the weight is
present and false if the link in this direction is missing.

ToCoCo guarantees that all links incident to the self-mote have the self-mote as first
mote. For all other links, the order is undefined. Currently, the developer needs to
consider this property on the specification level by checking links that are not incident
to the self-mote in both directions. This results from technical reasons because the code
generator of Democles does not support multiple bodies per pattern, which could be
used to evaluate a link in both directions. An alternate solution to this problem would
have been to reflect the internal structure of neighbor_t in the metamodel, but this
would mean that we pollute the specification with details of the implementation. Fur-
thermore, such a platform-specific modification would break the interoperability with
Cobolt.

5.3.3.4 Representing data types and helper classes

As shown in Table 5.4, cMoflon provides mappings for standard Ecore data types as
well as for the Mote, Link, and (as an example) for the LMST-specific classes LmstAl-
gorithm, Tree, TreeEntry. The LMST-specific classes are provided by the developer as
injections. For instance, the C type that corresponds to the TreeEntry class, must have
the name TREE_ENTRY_T. Regarding the standard Ecore types, the developer may ei-
ther use the corresponding C type (e.g., char) or the typedef of the Ecore type (e.g.,
EChar).

5.3.3.5 Representing link states

The state enumeration is represented by the enumeration type LinkState. For mem-
ory efficiency reasons, we extended the neighbor_t data structure of ToCoCo by an
additional attribute. This additional attribute can be switched off using a preprocessor
flag to ensure backwards compatibility with ToCoCo.

We provide a custom setter function link_setMarked for the link state, which up-
dates the blacklist of the topology abstraction component of ToCoCo. Inactivating a link
corresponds to adding the target mote to the blacklist and activating a link corresponds
to removing the target mote from the blacklist. The function only handles link state
modifications that affect outgoing links of the self-mote because modifying the state of
all non-incident links has no effect.
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Table 5.4: Type mappings in cMoflon (incl. LMST-specific ones, [X]: EMF type name)

Metamodel elem. Type mapping Built in?

Mote typedef networkaddr_t NODE_T X

Link typedef neighbor_t LINK_T X

boolean typedef bool EBoolean X

double typedef double EDouble X

float typedef float EFloat X

int typedef int EInt X

long typedef long ELong X

char typedef char EChar X

char typedef short EShort X

byte typedef char EByte X

string typedef const char* EString X

LmstAlgorithm typedef struct {
NODE_T* node;
struct TREE_T* tree;

} LMSTALGORITHM_T;

–

Tree typedef struct {
LMSTALGORITHM_T* algo;
list_t entries;
// Memory for tree entries
struct memb* mem;

} TREE_T;

–

TreeEntry typedef struct {
struct TREEENTRY_T* next;
NODE_T* node;
LINK_T* parent;
TREE_T* tree;
bool isInTree;

} TREEENTRY_T;

–

5.3.3.6 Representing object creation and deletion

cMoflon supports the specification of GT rules that modify attributes of variables and
create or delete elements. For structural modifications (i.e., creation or deletion of ob-
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jects), cMoflon creates prototypes for the corresponding red and green patterns but
leaves the actual memory management to the developer.

5.3.3.7 Representing matches and collections of matches

An important implementation decision was how to represent matches and collections of
matches. The first questions was whether to generate a dedicated match type for each
pattern (as in, e.g., Viatra [21]) or to use an untyped, generic representation of matches
(as in, e.g., eMoflon [135]).

The first alternative allows for returning matches by value because, for each pattern-
matching function, the memory layout of the match data structure is known in advance.
In this case, no additional memory management is necessary. The major disadvantage
of this alternative is that we would need to create custom data type per pattern, which
consumes additional memory in the text section of the compiled binary. This increased
text section size reduces the available memory for the stack and heap sections, which is
precious on resource-constrained devices.

The second alternative alleviates this problem by representing a match uniformly as
generic array. For example, in eMoflon, a match has the type Object[], and a collec-
tion of matches has the type Object[][]. The corresponding types in C are void**
for matches and void*** for collections of matches. Each entry of a generic array is
a reference (Java) or pointer (C) to an element of the match. The code generator keeps
track of the dynamic type of each element and inserts statements that extract and cast
the match elements to the proper type in the method body implementation. The major
disadvantage of this alternative is that it requires to perform memory management for
the matches. Due to importance of reducing the memory consumption as much as pos-
sible on motes, we opted for the second alternative. This entails that we have to manage
the memory of the involved match data structures.

A match can be stored either in static or dynamic memory. If we use static mem-
ory management (i.e., global variables), the corresponding memory region is reserved
permanently for the match and unavailable to the WSN application or other ToCoCo

component. If we use dynamic memory management (i.e., malloc, free), we only
acquire as much memory as needed to store the current match or collection of matches.
After the termination of the TC algorithm, the memory is freed and available again to
other processes. In both cases, the execution of TC may fail if insufficient memory is
available. In case of static memory management, the global memory that has been re-
served at compile time may turn out to be too small to store the required number of
matches. In case of dynamic memory management, the heap may be too small, which
results in a failure of TC at runtime.

The preceding discussion shows that no best solution exists. After preliminary experi-
ments with both types of memory management, we decided to follow a hybrid strategy.
For all types of story nodes but foreach nodes, we use a global data structure for stor-
ing the current match. The size of this data structure is determined by the maximum
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1 static void* _result[7]; // Match data structure
2 // Omitted code...
3 static void** pattern_KtcAlgorithm_FindU_blackBFF(NODE_T* n1) {
4 LINK_T* e12;
5 list_t e12_n1_outgoing = node_getOutgoingLinks(n1);
6 for(e12=list_head_pred(e12_n1_outgoing,n1,node_isOutgoing);
7 e12!=NULL;
8 e12=list_item_next_pred(e12, n1, node_isOutgoing)) {
9 NODE_T* n2 = link_getTarget(e12);

10 if (!node_equals(n2, n1)) {
11 LinkState e12_marked = link_getMarked(e12);
12 if(linkState_equals(e12_marked, UNCLASSIFIED)){
13 // Match found: Store pointers in match
14 _result[0]= n1;
15 _result[1]= e12;
16 _result[2]= n2;
17 return _result;
18 }
19 }
20 }
21 return NULL; // Signal that no match exists
22 }

Listing 5.2: Example: Memory management for single-match pattern

number of variables that occur in a pattern in the specification. This number can be
calculated at compile time. For example, for each of the three TC algorithms kTC, l*kTC
and LMST, the maximum number of variables per pattern is seven. On the TelosB plat-
form [181], a pointer requires 2 B. Therefore, the size of the global match data structure
was 7 · 2 B = 14 B in total.

For foreach story nodes, we use the dynamic memory to hold the matches and a list
in global memory for storing pointers to these matches. The size of the collection of
matches of a pattern in a foreach story node cannot be determined at compilation time
because it usually depends on the size model at runtime. Therefore, the processing of
a foreach node may fail at runtime due to a lack of dynamic memory or insufficient
reserved memory in the global match collection list.

For illustration purposes, Listing 5.2 shows an excerpt of the generated code of
kTC. Line 1 contains the declaration of the global match data structure. During the
search plan generation, cMoflon determined that all patterns have at most seven vari-
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ables. Given that a pointer requires 2 B on the platform, this data structure requires
7 · 2 B = 14 B in global memory. Each function that corresponds to a single-match pat-
tern, returns a pointer of type void**. This also allows to return NULL if no match
could be found (Line 21). If a match has been be found (e.g., an unmarked link in List-
ing 5.2), the required number of entries is used in the match data structure (Line 13).
For the specification of kTC, l*kTC and LMST, we refrained from using foreach nodes
entirely. To test that foreach nodes are translated into proper C code, we used a dummy
algorithm that inactivates all links whose weight is below a given threshold.

5.3.3.8 Providing hop-count information

The l*kTC algorithm requires information about the hop count of each mote. cMoflon

provides a configuration option that inserts a hop-count propagation process into the gen-
erated Contiki process. The original implementation of this process stems from the
ToCoCo framework [239]. The process provides configuration to control the minimum
and maximum intervals between broadcasts of the hop count of a mote. Other TC algo-
rithms specified with cMoflon that require access to hop-count information can reuse
this hop-count propagation process.

5.3.3.9 Binary image size

The size of the generated machine code influences the available dynamic memory on
the mote. Therefore, we experimented with some techniques to reduce the size of the
compiled machine code. In a first attempt, we reduced the size of the resulting binary
image by making all generated methods static. Using static functions allows the
linker to omit symbols for external linkage.

The binary image size can also be reduced on the specification level. One example
is the handling of pairs of [S] and [F]-edges compared to unlabeled activity edges. For
the latter type of activity edges, the code generator inserts an error-handling routine
that is when the pattern matching fails. In the former case, the execution continues
unconditionally to the next activity node. For example, in Figure 5.20a, the activity edge
that returns from the application of Rl*kTC,i to the loop head is unguarded. Still, we
know that a rule application always succeeds at this point. Therefore, we could insert a
second activity edge and label the activity edges with [S] and [F], respectively.

Finally, the build process of eMoflon inserts null-pointer checks whenever a single-
valued EReference is traversed (i.e., with multiplicity 0..1 or 1..1). In the latter case, this
check can be omitted if we know that the model conforms to the metamodel (which
should be a valid assumption if no GT rule application violates this property and we
start with a valid model). For example, a link always possesses exactly one source
and target mote. This is ensured by the corresponding data structure neighbor_t in
ToCoCo, which has always two networkaddr_t that correspond to the incident motes.
Therefore, we could omit null-pointer checks in the C code whenever we access the
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source and target mote of a link. This analysis is currently unimplemented in eMoflon

and could lead to further improvements in the binary image size.

5.3.3.10 Tool and code availability

In this thesis, we present cMoflon 2.0.0, an extension of cMoflon 1.0.0, which we
presented in [117]. cMoflon is open-source and available on GitHub

29. In an additional
repository30, we provide the specifications of the TC algorithms Maxpower, kTC, l*kTC,
and LMST.

5.3.4 Evaluation of cMoflon

In the following, we present evaluation results for cMoflon. We state the research
questions regarding correctness and efficiency in Section 5.3.4.1, describe the experi-
mental setup in Section 5.3.4.2, and discuss the results for each research question in
Sections 5.3.4.3 and 5.3.4.4.

5.3.4.1 Research Questions

rq1–correctness Our foremost goal is to ensure that the C code generated using
cMoflon is correct. Similar to the evaluation of Cobolt, we answer the following
subquestions.

• How can we ensure the correctness of a TC algorithm generated using cMoflon?
• How can we ensure the correctness of the three generated TC algorithms kTC,

l*kTC, and LMST?
We evaluate the first subquestion based on metrics for reuse of eMoflon components in
cMoflon, and the second subquestion based on an inspection of the resulting topologies
of the generated TC algorithms in 84 testbed experiments.

rq2–efficiency In the second part of the evaluation, we focus on efficiency. In
contrast to the evaluation of Cobolt, we have access to manual implementations for
each of the three TC algorithms, which were developed independently of cMoflon.
This allows us to compare the generated with the manual variant of each TC algorithm.

The scarcest resource of a mote is often the available memory at runtime. The amount
of runtime memory (i.e., stack and heap) is determined by the total working memory
and the size of the memory segments that store the machine code (text section) as well
as the global variables and literals (data and BSS). Therefore, we evaluate the generated
TC algorithms w.r.t. both code memory and runtime memory efficiency. The available
memory is, amongst others, determined by the memory consumption of the machine
code in the binary image. Therefore, it is important that a binary executable that results

29 cMoflon repository: https://github.com/eMoflon/cmoflon (visited: 2018-10-11)
30 cMoflon examples repository: https://github.com/eMoflon/cmoflon-examples (visited: 2018-10-16)

https://github.com/eMoflon/cmoflon
https://github.com/eMoflon/cmoflon-examples
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from code generated using cMoflon is compact enough to be deployed on a memory-
constrained mote.

A typical dimension for evaluating runtime efficiency is execution time. However, the
execution time is not of major importance in the context of a batch TC scenario because
the TC algorithm is executed infrequently. Nevertheless, an excessive execution time
would threaten the applicability of cMoflon in the envisioned future scenarios that
employ dynamic TC. To this end, we also evaluate the execution time of the generated
TC algorithms. In summary, we will answer the following subquestions.

• How large is the code memory consumption of each generated TC algorithm?
• Is the code memory consumption reasonable?
• How large is the runtime memory consumption of the generated TC algorithms?
• How does the execution time of the generated TC algorithms compare to their

manually implemented counterparts?
We evaluate these subquestions quantitatively based on the measured size of the sensor
images and the execution time of the generated TC algorithms in testbed experiments.

In comparison to Cobolt, we only consider two instead of three research questions
in the evaluation of cMoflon. The reason is that we cannot perform a comparison of
dynamic and batch TC because ToCoCo provides no support for the propagation of
context events. Therefore, we focus on investigating the correctness of cMoflon (RQ1)
and the efficiency of the generated TC algorithms (RQ2).

5.3.4.2 Experimental setup

We conduct the quantitative part of the evaluation based on the three TC algorithms
kTC, l*kTC, and LMST, which serve as running example for cMoflon. As baseline, we
consider the manually implemented variants of all algorithms, which are available in
ToCoCo [239].

We executed the generated and manually implemented TC algorithms on the ca. 30
TelosB [181] motes of the FlockLab testbed [149] at ETH Zurich. Figure 5.23 shows the
state of FlockLab on 2018-11-28 at 1500 (CET)31. In total, we conducted 14 experiments
for each of the six manually implemented and generated TC algorithms, resulting in
84 experiments. The experiments took place from Friday, 2018-11-09 until Monday, 2018-
11-12.

As operating system, we used Contiki 3.0. We used the same basic configuration
as in [239] (see highlighted configuration in Figure 5.15). Each experiment starts with
a neighbor-discovery phase, during which each mote builds up a two-hop local view
of its neighborhood. In FlockLab, the local neighborhood of each mote has stabilized
after ca. 10 min. Therefore, the TC algorithm runs once after 10.5 min. Each experiment
stops after 21 min. The WSN application is a data collection application (many-to-one
communication). Mote 1 (top-left in Figure 5.23) is the base station in all experiments.

31 Origin of FlockLab map: https://user.flocklab.ethz.ch/user/testbedstatus.php

https://user.flocklab.ethz.ch/user/testbedstatus.php


226 5 tool support for rapid evaluation

Figure 5.23: FlockLab location map with floor plan and mote status

The FlockLab input topology changes frequently, even though the motes are sta-
tionary. One possible reason is that the motes are placed in an office building of the
university where staff moves along the floors. Additionally, motes get maintained on
a regular basis and, therefore, are sometimes unavailable for testbed experiments. For
example, mote 28 was unavailable during four experiments (with a corresponding main-
tenance notice on the website) and mote 11 was unavailable in one experiment (without
official announcement).

Due to the observed fluctuations in the testbed topology, we performed the experi-
ments in collated order. This means that we executed 14 batches of experiments. Within
each batch, the six algorithms ran in the following order: kTC (manual), l*kTC (manual),
LMST (manual), kTC (generated), l*kTC (generated), and LMST (generated).

5.3.4.3 Results and discussion for RQ1 (correctness)

In Section 5.2.4.3, we already discussed the possible reasons for faults during the differ-
ent development phases of a TC algorithm when using our methodology. All aspects
regarding the specification refinement carry over to cMoflon because cMoflon reuses
the visual specification frontend of eMoflon without modifications. Regarding the tar-
get platform, we use the programming language C and the compiler msp430-gcc

32, a
cross-compiler variant of gcc

33 for the MSP430 microcontroller of the TelosB motes,
which are the platform for executing the compiled binaries. Similar to the Java compiler

32 msp430-gcc tool chain: https://github.com/contiki-os/contiki/wiki/MSP430X (visited: 2018-11-23)
33 gcc page: https://www.gnu.org/software/gcc/ (visited: 2018-11-23)

https://github.com/contiki-os/contiki/wiki/MSP430X
https://www.gnu.org/software/gcc/
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and the Java Virtual Machine in the context of Cobolt, we assume that the employed
msp430-gcc compiler and the TelosB motes work correctly.

Therefore, the major difference between Cobolt and cMoflon is the code generator.
Cobolt relies on the unmodified build process of eMoflon, whereas cMoflon is a
dedicated code generator from SDM to embedded C for Contiki.

This exchange could introduce new faults in the build process. Due to time con-
straints, it was not possible for us to build a test suite for cMoflon that is comparable
in size to the test suite of eMoflon (179 test projects, 372 unit tests). To reduce the
potential of introducing faults, we reused as many components of eMoflon as possible.
Regarding the running examples of this section, we validated that the virtual topologies
of the generated TC algorithms fulfill the TC-algorithm–specific conditions. Unfortu-
nately, for technical reasons, we were unable to unit-test the generated TC algorithms in
Contiki.

metrics for build process We determined the number of lines of code and the
project count in both eMoflon and cMoflon. For this purpose, we used the tool cloc

34

(Version 1.81). We used the source code of eMoflon 3.5.135, cMoflon 1.5.036, and
Democles 1.4.0.

eMoflon is a bootstrapped tool. This means that parts of the eMoflon source code
are generated using itself. The following measurements comprise this generated code,
which is not available on GitHub, but requires an eMoflon developer workspace.

eMoflon and cMoflon build on the template language StringTemplate
37 for model-

to-text generation. The line-counting tool cloc currently lacks support for StringTem-
plate. Therefore, we counted the amount of StringTemplate code separately. In
eMoflon, we considered all files having the extension stg (for “StringTemplate group”)
that are relevant for the SDM build process, and, in cMoflon, we considered all stg files.

results for build process Table 5.5 summarizes the number of projects and the
number of lines of code for eMoflon, Democles, and cMoflon. The main program-
ming languages for eMoflon are Java and C#. The 35 622 lines of C# code originate
entirely from the eMoflon add-in for Enterprise Architect. Due to the fact that
eMoflon is a bootstrapped tool, 89.9 % of its Java code is generated code (i.e., 510 801
of 568 124 lines of code). Democles and cMoflon mainly use Java.

The amount of Java code in cMoflon corresponds to 0.67 % of the total amount of
Java code and to 6.6 % of the manually implemented code in eMoflon.

34 cloc page: https://github.com/AlDanial/cloc (visited: 2018-11-21)
35 eMoflon 3.5.1 source code: https://github.com/eMoflon/emoflon-tool/releases/tag/emoflon-tie_3.

5.1 (visited: 2018-11-21)
36 cMoflon 1.5.0 source code: https://github.com/eMoflon/cmoflon/releases/tag/cmoflon_1.5.0 (visited:

2018-11-21)
37 StringTemplate page: http://www.stringtemplate.org/ (visited: 2018-10-15)

https://github.com/AlDanial/cloc
https://github.com/eMoflon/emoflon-tool/releases/tag/emoflon-tie_3.5.1
https://github.com/eMoflon/emoflon-tool/releases/tag/emoflon-tie_3.5.1
https://github.com/eMoflon/cmoflon/releases/tag/cmoflon_1.5.0
http://www.stringtemplate.org/
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Table 5.5: Size comparison eMoflon vs. cMoflon (ST: StringTemplate, LOC: lines of code)

Tool Projects LOC Java LOC C# LOC ST

eMoflon 64 568 124 35 622 373

Democles 11 8676 0 0

cMoflon 5 3797 0 987

The amount of StringTemplate code in cMoflon is 2.6 times larger compared to
eMoflon. The primary reason is that cMoflon also generates the header and imple-
mentation files using StringTemplate. In contrast, eMoflon uses a Java string factory
that has been generated from JET38 templates for the same purpose.

discussion for build process Judging by the lines of source code, we conclude
that cMoflon is a lean variant of eMoflon. The considerable architectural reuse of
eMoflon build process components in cMoflon is also apparent in Figure 5.16. This
degree of reuse, especially of complex components (e.g., the transformation from SDM
to control flow model) reduces the potential for introducing faults into cMoflon com-
pared to eMoflon.

metrics for concrete topology control algorithms For assessing whether
the generated code produces a correct virtual topology, we inspected the reported input
and virtual topology that each mote reports on a regular basis in a logfile. We inspected
the virtual topology at the end of each testbed experiment (i.e., after 20 min) to ensure
that the TC algorithm execution had terminated on all motes.

results and discussion for concrete topology control algorithms The
inspection of the logfiles of the motes in the 84 experiments revealed no errors in the vir-
tual topology. Therefore, we are confident that the generated TC algorithms are correct.

answer to rq1 To sum up, we answer RQ1 as follows. As for Cobolt, the speci-
fication is correct by construction, and we rely on the correctness of the compiler and
execution environment. In contrast to Cobolt, unit-testing the cMoflon build process
and the generated code was not possible for technical reasons. Instead, we inspected the
generated code of the three representative TC algorithms manually and ensured that the
corresponding binary executables returned correct results in 84 testbed experiments.

38 JET page: https://www.eclipse.org/modeling/m2t/?project=jet (visited: 2018-11-21)

https://www.eclipse.org/modeling/m2t/?project=jet
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threats to validity The major threat to validity is the choice of metrics for in-
vestigating the correctness of cMoflon. One alternate option would be to compare the
output of cMoflon with a reference code generator. Unfortunately, we are not aware of
any reference code generator for TC in Contiki. Still, the evaluated metrics indicate that
the space for introducing faults into the build process (compared to eMoflon) is limited.
Additionally, the analysis of the three TC algorithms that serve as running example in
this section increase our confidence in the correctness of cMoflon.

5.3.4.4 Results and discussion for RQ2 (efficiency)

In the second part of the evaluation of cMoflon, we assess the efficiency of cMoflon

and the generated code for the three considered TC algorithms kTC, l*kTC, and LMST.
We assess the efficiency of cMoflon in terms of the required code generation time,
and we assess the efficiency of the resulting TC algorithms in terms of code memory
consumption and execution time.

metrics for code generation For measuring the code generation time, we in-
stalled cMoflon in an Eclipse IDE 2018-09 (with Modeling Components) and set up a
fresh Eclipse workspace. Then, we imported the cMoflon example projects39 contain-
ing the specifications of kTC, l*kTC, and LMST. From the user perspective, the code
generation consists of two steps. First, the user exports her specification from Enter-
prise Architect into an XMI file. We measured the duration of this step manually.
Second, inside Eclipse, the code is generated from the exported XMI file. For this step,
we used the execution time reported by eMoflon.

results for code generation To reduce warm-up effects, we measured the du-
ration of each code generation step ten times. The median export duration from Enter-
prise Architect was 3.9 s (min. 3.7 s, max. 4.5 s). The medium build time in Eclipse

was 0.94 s (min. 0.56 s, max. 2.63 s). We observed the maximum build time during the
first execution of the eMoflon builder. All subsequent executions took at most 1.05 s.

discussion for code generation The preceding results show that the median
(4.9 s) and maximum (7.1 s) execution time of the code generation in our experiments
are reasonable and do not restrict the applicability of cMoflon.

metrics for binary image size The number of generated lines of code is not
salient to assess the code memory consumption because the compiler may conduct opti-
mizations (e.g., removal of unused functions, inlining). Therefore, we use the Unix tool
size

40 to examine the size of the sections in the compiled binary images. For a given bi-
nary image, size reports four values. The text section size (in B) is the size of the memory

39 cMoflon examples repository: https://github.com/eMoflon/cmoflon-examples (visited: 2018-10-16)
40 size page: https://linux.die.net/man/1/size (visited: 2018-10-31)

https://github.com/eMoflon/cmoflon-examples
https://linux.die.net/man/1/size
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Table 5.6: Binary image size comparison (∆G
M: Manual-to-generated size increase)

Algorithm Text[B] ∆G
M Data[B] ∆G

M BSS[B] ∆G
M Total[B] ∆G

M

MP 37 843 – 234 – 9212 – 47 289 –

kTCM 39 161 – 234 – 9224 – 48 619 –

kTCG 41 091 4.9 % 242 3.4 % 9440 2.3 % 50 773 4.4 %

l*kTCM 40 305 – 244 – 9474 – 50 023 –

l*kTCG 42 587 5.7 % 252 3.3 % 9690 2.3 % 52 529 5.0 %

LMSTM 39 357 – 242 – 9436 – 49 035 –

LMSTG 41 745 6.1 % 244 0.8 % 9444 0.1 % 51 433 4.9 %

that is consumed by the machine code in the memory of the running system. The data
section size (in B) is the size of the memory that is consumed by (string) literal values
and initialized global variables. The BSS section size (in B) is the size of the memory that
is consumed by uninitialized global variables. We measure the size of these sections
for seven binary images: three binary images for the generated TC algorithms, three
binary images for their manual counterparts, and one binary image with disabled TC
as baseline.

results for binary image size Table 5.6 provides an overview of the sizes of
the compiled binary images for the baseline Maxpower algorithm (abbreviated as MP)
and the three TC algorithms kTC, l*kTC, LMST (manual and generated). The table
shows the total image size as well as the size of the text, binary, and BSS sections (in
B). Each column that contains absolute size values is accompanied by a subsequent
column labeled with ∆G

M, which shows the increase in size for a generated TC algorithm
compared to a manually implemented TC algorithm.

We observe that l*kTC has the largest manual-to-generated size increase (5.0 %). Still,
this increase is only 0.6 percentage points above the lowest manual-to-generated size
increase for kTC.

discussion for binary image size The preceding results indicate that the in-
crease in binary image size is moderate and relatively homogeneous for all three con-
sidered TC algorithms. It is not surprising that LMST and l*kTC result in larger images
compared to kTC. The former algorithm possess a considerably more complex control
flow (e.g., comprising multiple EOperations) and the latter algorithm required additional
source code for propagating the hop-count information to other motes.
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metrics for runtime memory consumption The code generated by cMoflon

consumes static memory for storing matches of GT rules in regular story nodes. The
required memory is determined and reserved at compilation time. Additionally, to store
the auxiliary tree data structure for LMST, we used dynamic memory. The required heap
memory varies with the actual size of the neighborhood of a mote.

results for runtime memory consumption For all three TC algorithms, the
maximum number of variables per pattern was seven. Each variable is represented by a
pointer variable. On the TelosB platform, a pointer requires 2 B of memory. Therefore,
the total memory consumption for the match data structure is 14 B for all considered TC
algorithms.

Regarding the size of the tree data structure for the generated variant of LMST, the
consumed heap memory consists of one tree object (instance of Tree in Figure 5.19)
having a size of 8 B, and as many tree entries (instances of TreeEntry) as motes exist in
the two-hop neighborhood. Each tree entry has a size of 10 B. In the 14 simulation runs,
the total size of the tree data structure ranged from 128 B to 278 B with a median size
of 218 B. These numbers correspond to a minimum, median, and maximum size of the
two-hop neighborhood of 12, 21, and 27 motes, respectively.

discussion for runtime memory consumption Given a total working mem-
ory of 48 kB on the TelosB platform, the memory consumption for matches and the tree
of LMST is reasonable.

The memory efficiency of LMST could certainly be improved, for example, by encod-
ing the state of each link (i.e., “in tree”, “connected to tree forward”, “connected to tree
backward”) more concisely. Still, to establish comparability with the manual implemen-
tation of LMST in [239], we chose the same representation of the tree data structure in
this case. Furthermore, in all evaluation runs, the heap was large enough to store the
tree data structure, and the required memory was only reserved during the execution
of LMST.

The global match data structure could also be placed in dynamic memory with only
minor changes to the build process. However, for the considered TC algorithms, the
amount of memory that could be saved in the course of this optimization (i.e., 14 B)
could be outweighed by the resulting increased size of the text section because we would
have to insert statements for allocating and deallocating the reserved dynamic memory,
along with the necessary error handling if insufficient dynamic memory is available.

metrics for execution time To evaluate the execution time, we measure the
CPU time (in ms) that the execution of the run method requires on each mote.

results for execution time Figure 5.24 summarizes the execution time for the
manual and generated variant of each TC algorithm. The differences in the number of
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Figure 5.24: Execution time comparison of manual and generated TC algorithms (label per box-
plot: median execution time, fourth boxplot: generated l*kTC after adjustment of
search plan, N: number of data points per boxplot (left/right))

data points per boxplot in Figures 5.24 and 5.25 originate from the fact that the number
of available motes during the experiments varied between 26 and 27.

A special case is the fourth boxplot, which corresponds to an adjusted variant of the
generated l*kTC algorithm. In the following, we explain how we derived the adjusted
variant of l*kTC from the generated l*kTC. During the evaluation of the original 84
experiments, we determined that the median execution time of the generated l*kTC was
ca. 64 s, which is more than 350 times larger than the execution time of the manual
variant of l*kTC (see Figure 5.25).

We observed that this excessive execution time originates from the fact that the l*kTC-
specific predicate is evaluate early in the search plan generated by cMoflon. The prob-
lem is that the auxiliary hop-count information is not stored inside the data structure
that represents the Mote class but in a separate list. Each time that the hop count of a
mote is required, this list is scanned using linear search to identify the list entry that be-
longs to this mote. The original search plan evaluated the l*kTC-specific predicate after
matching the first and second of the three link variables of the triangle pattern because,
at this point, all three motes of the potential match are bound.

Multiple solutions to this problem are possible. First, the hop-count information could
be stored inside the struct networkaddr_t, which corresponds to the Mote class.
This is an undesirable solution because it entails a modification of a core data structure
of ToCoCo only for the purpose of supporting hop-count–based TC algorithms. Second,



5.3 Model-based testbed evaluation with cMoflon 233

l*kTC manual
(N=377) 

l*kTC original
(N=376) 

l*kTC adjusted
(N=378) 

Algorithm

101

102

103

104

105
E

xe
cu

ti
on

 t
im

e 
[m

s]

181

64,015

542

Manual
Generated
Adjusted

Figure 5.25: Execution time comparison of manual, generated, and adjusted l*kTC (logarithmic
y axis, label per boxplot: median execution time, N: number of data points per
boxplot)

the search plan generation algorithm of Democles allows to assign weights to each
operation to signal that certain operations are costly. Unfortunately, these search plan
weights cannot be influenced by the user, currently. Attribute constraints always have a
low weight and are, therefore, evaluated as early as possible.

To investigate how much the execution time could be reduced if the search plan
weights could be influenced, we moved the evaluation of the l*kTC-specific constraint to
the end of the search plan. We executed the adjusted l*kTC algorithm in another batch
of 14 experiments (without intermediate execution of the manual variant of l*kTC). The
results are shown as the fourth boxplot in Figure 5.24.

In the median case, the adjusted variant of l*kTC requires 542 ms. This is 361 ms
more than the manual variant of l*kTC, and ca. 118 times faster compared with the
unmodified generated variant of l*kTC. A similar situation can be observed for kTC. In
this case, the manual variant requires 366 ms more time than the manual variant in the
median case.

Surprisingly, the execution time of the generated LMST algorithm is 116 ms smaller
compared to the manual variant.

discussion for execution time The evaluation results concerning execution
time are encouraging. The execution times for the generated kTC and l*kTC algorithm
are larger compared to their manual counterparts. Still, this increase is moderate given
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that the TC algorithms are executed in batch mode. We think that the execution time
could be lowered even more in a (future) dynamic TC scenario with cMoflon.

A key insight of the preceding results is that a highly desirable feature for cMoflon

(and eMoflon in general) is to make search plan weights configurable. Otherwise, the
user may be forced to modify the generated code manually to fix unfavorable decisions
of the search plan generation or to change core data structures of the ToCoCo frame-
work, which is certainly error prone.

answers to rq2 To sum up, we answer RQ2 as follows for the investigated three
TC algorithms. The increase in the size of the compiled binary image ranges from 4.4 %
to 5.0 %. This increase is relatively homogeneous and reasonable. Further improvements
(e.g., the reduction of null-pointer checks) could lead to a decreased binary image size.
With 14 B of permanently reserved global memory for all three TC algorithms, the gen-
erated code has a small memory footprint regarding static memory. A large enough
amount of dynamic memory for the auxiliary data structures of LMST was available in
all 14 runs of the generated LMST variant.

The generated kTC and l*kTC variants showed an increase and the generated LMST
variant showed a decrease in execution time compared to the manual variants. In the
former two cases, the absolute increase was in the order of several hundred milliseconds,
which is reasonable for batch TC. For l*kTC, a manual adjustment of the search plan was
necessary due to the missing configuration options for search plan weights in eMoflon.

threats to validity A major threat to external validity of our results is that we
evaluated the efficiency of the generated code only using one sensor platform (i.e.,
TelosB) and one hardware testbed (i.e., FlockLab). Still, we think that both choices
are representative. TelosB is a rather resource-constrained mote platform, has been first
proposed in 2005, and is still widely used [194]. These observations allow us to general-
ize our findings regarding the memory consumption and the execution time of the TC
algorithms generated using cMoflon. Our observation is also that FlockLab is heavily
used by the research community and, therefore, constitutes a representative (research)
testbed.

A major threat to internal validity is that the input topology of the testbed varies
continuously (e.g., due to moving obstacles), which could lead to unsystematic errors in
the measurements. To mitigate this threat, we evaluated each TC algorithm repeatedly
(i.e., 14 times) over a period of four days.
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5.4 related work

In this section, we survey related work first on existing approaches to integrate modeling
tools with network simulators or to use GT tools for network simulation and, then, on
code generation approaches for WSNs.

5.4.1 Network simulation and model-driven engineering

Kulcsár et al. presented a predecessor of Cobolt in [130]. Their tool served to evaluate
properties of virtual topology snapshots resulting from a TC algorithm specified using
eMoflon. Their focus was on highlighting that MDE is suitable to prototype novel TC
algorithms rapidly. In contrast to Cobolt, their tool was not able play back the vir-
tual topology into a running simulation. Instead, they captured snapshots of the input
topology from a running simulation in PeerfactSim.KOM [242] and transformed this
snapshot once into a corresponding EMF-based model. This model was then processed
by the generated TC algorithm prototype.

Several works in the GT research area evaluate their approaches based on communica-
tion and cyber-physical systems. Our impression is that many of these works represent
few aspects of the system to highlight the capabilities of their modeling approach. For
example, in [157], Maximova et al. use the scenario of small communicating autonomous
rail-mounted vehicles to illustrate how timed probabilistic GT can be used to estimate
the probability of emergency breaks. We discussed this example already in detail in Sec-
tion 4.6. Still, their goal was not to use their approach for simulating larger networks or
to derive implementations for hardware testbeds.

In the line of research [112, 113] that lead to his Ph.D. thesis [111], Ajab Khan de-
veloped a formal and technical framework for the stochastic simulation of voice-over-
IP overlay communication networks using graph transformation. Their graph-based
network model represents the clients (resource-constrained peers and powerful super-
peers) and their connections as model. They employ stochastic GT rules [90] to model
context events (e.g., peers joining and leaving the network). Instead of connecting to
an existing simulator, they build a standalone simulation environment by modeling all
relevant aspects of the system as GT rules. Technically, they use the stochastic GT simu-
lation engine GraSS (Graph-based Stochastic Simulation [256]), whose development has
been discontinued. In contrast to Khan et al., we decided to connect to an established
network simulator instead of trying to model all system dynamics using GT rules. Our
first reason for this is that developing algorithms for the simulation of underlay dy-
namics (e.g., interference, physical obstacles, mote movement) is an elaborate task. The
resulting algorithms should be thoroughly tested. For example, Simonstrator reuses
underlay models from the ns-3 simulator [253]. Another related reason is that we ex-
pected that the acceptance of our tool support would be larger if we use a network
simulator that is used in publications in communication systems engineering. A third
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reason is that Simonstrator is being extended continuously with functionality such
as the batch execution of experiments, the visualization of the network topology, and
the plotting of metrics. Therefore, we decided to only represent the business logic of
TC algorithms using programmed GT and, for all other aspects, built on an existing
simulation infrastructure.

Real-time Maude [171] is a prominent example of a simulator for communication sys-
tems. In a case study, Ölveczky et al. could show that Maude produces comparable or
even more reliable results for the simulation of coverage-based TC algorithms [152]. Sim-
ilar to using GT rules for specifying TC algorithms, Maude uses rewrite rules to model
transitions between system states in general. These transitions can be further annotated
with timing constraints to allow for evaluating, for instance the minimum or maximum
execution time of a trace of transitions. Even though Maude appears to be suitable
to simulate WSNs, we are not aware of any works that allow for refining a Maude

specification constructively based on weakest preconditions to ensure that required con-
sistency properties hold. This property, however, is important for our scenario. As a
consequence, Maude can be understood as complementary tool to the tool support that
we describe in this chapter.

5.4.2 Code generation for wireless sensor networks

A recent systematic mapping study summarizes 21 MDE approaches for WSNs: 15 ap-
proaches allow generating code for C/C++ or NesC and 11 approaches support topolo-
gies, but none allows to explicitly specify TC algorithms [58]. Most MDE approaches
focus on architectures for WSNs.

The ScatterClipse [4] framework is an Eclipse-based toolkit for generating and test-
ing WSN applications. In ScatterClipse, the developer specifies the implementation of
a WSN algorithm as activity diagram. In contrast to SDM, the actions of these activity
diagrams correspond to low-level instructions (e.g., the extraction of a sensor sample)
rather than applications of GT rules. Still, ScatterClipse has a formal foundation be-
cause it uses only those modeling languages of fUML, the foundational UML, which is
a subset of the UML for which formal semantics have been standardized.

The Agilla [20] framework is an agent-based MDE platform for WSNs. As in Scat-
terClipse, Agilla provides an instruction-based view of the specification of the devel-
oped WSN algorithm.

The SAMSON framework [184] provides an architecture description language of a
WSN and allows to generate code for Contiki. All of these approaches (would) rep-
resent TC as a software component, concealing the concrete TC implementation. This
makes our approach complementary to many existing MDE middleware approaches: In
this context, TC can be seen as a service component that should be configured accord-
ing to the demands of the active application (e.g., concerning robustness, path lengths).
As part of the SAMSON tooling environment, a code generator for the WSN operat-
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ing system Contiki has been developed. To the best of our knowledge, no other MDE
approaches for generating code of TC algorithms exist in the literature.

In [12], a C code generator for the Graph Programming Language 2 (GP2) [11] is
presented. Similar to Democles [260], the code generation and pattern matching back-
end of eMoflon, GP2 transforms the graph patterns into a depth-first search plan with
matching operations. Similar to cMoflon, each operation corresponds to a particu-
lar (hierarchical) code template and the pattern matching is rooted, that is, the pattern
matching starts at a given model element to limit the search space. In contrast to GP2,
cMoflon uses story diagrams for specifying the control flow. Story diagrams support
the invocation of arbitrary user-defined operations, and the search plan generation can
be easily configured using modules for search plan weights and strategies [260]. While
EMF has emerged as de-facto target language for MDE tools, a number of tools support
other target platforms (e.g., GrGen.NET [74] for the .Net platform or PROGRES [225]
for Modula2 and C code). EMF4CPP [57]41 aimed to provide full support for creating
C++ code from EMF models, but appears to be discontinued.

Bur et al. [29] implemented a C++ code generator for executing graph queries speci-
fied in Viatra in a distributed manner. They built the MoDeS3 demonstrator for safety-
critical cyber-physicalsystems [262]. The system consists of a simulated train network
with resource-constrained embedded devices. Each embedded device is responsible for
monitoring safety properties in a certain region. As target devices, they used Arduino

42,
Raspberry Pi

43, and BeagleBoard
44.

In [229], Schwichtenberg et al. present a prototype of the code generation framework
CrossEcore. CrossEcore generates source code from an Ecore metamodel for the tar-
get languages C#, Swift, TypeScript, and JavaScript. CrossEcore allows to exchange
the code templates for classes, OCL constraints, and unit tests. In contrast to SDM in
eMoflon, the user cannot specify operation implementations in a platform-independent
manner.

To sum up, we know neither of a tool for generating embedded C code from pro-
grammed GT nor of an MDE methodology that constructively integrates integrity prop-
erties into the development of TC algorithms and targets the evaluation of the resulting
TC algorithms in simulation and testbed environments.

41 Website: https://github.com/catedrasaes-umu/emf4cpp
42 Arduino page: https://www.arduino.cc/ (visited: 2018-09-19)
43 Raspberry Pi page: https://www.raspberrypi.org/ (visited: 2018-09-19)
44 BeagleBoard page:https://beagleboard.org/ (visited: 2018-09-19)

https://github.com/catedrasaes-umu/emf4cpp
https://www.arduino.cc/
https://www.raspberrypi.org/
https://beagleboard.org/
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D E V E L O P M E N T O F FA M I L I E S O F T O P O L O G Y C O N T R O L
A L G O R I T H M S

In the preceding chapters, we discussed and showed which modeling techniques are
suitable to specify the building blocks of a TC mechanism (Chapter 3), how the exist-
ing constructive approach and our novel anticipation loop synthesis algorithm can be
used to obtain correct-by-construction TC mechanisms (Chapter 4), and how the spec-
ified TC mechanisms can be evaluated rapidly in a network simulator and hardware
testbeds (Chapter 5). In this chapter, we show that our approach is applicable based
on a set of 32 TC algorithms. The majority of these TC algorithms originates from the
survey articles [219, 267], the book [264], and the TC comparison paper [66]. We selected
all major TC algorithms and some of the presented variants from the aforementioned
works. The set of TC algorithms is complemented by further existing variants of kTC
(l-kTC [130], g-kTC [130], l*kTC [239]), and e-kTC, an energy-aware variant of kTC that
we presented first in [119]. Figure 6.1 locates the role of this chapter in the entire TC
algorithm development process (see also Figure 1.2).

In [219, 264, 267], TC algorithms are categorized based on the required information
(e.g., as neighbor-based or location-based TC algorithms). We observed that TC algo-
rithms also form families based on common structural characteristics of their local con-
sistency properties (e.g., a triangle pattern). The individual TC algorithms in a family
refine this family constraint. To the best of our knowledge, this observation has not
been captured systematically before. Therefore, as one contribution of this chapter, we

Specification Simulative evaluation Testbed evaluationSpecification Simulative evaluation Testbed evaluation

Modeling language

Domain concepts

Specification

Simulation platform

Simulative evaluation Testbed evaluation

Testbed platform
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1 2 3
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Figure 6.1: Location of Chapter 6 in TC algorithm development process
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propose to specify the variability within a family of TC algorithms using feature models
(see also Section 3.6). This representation also enables the derivation of TC transitions
at runtime in adaptive WSNs (see also Definition 2.34).

The structure of this chapter follows the same steps as in Chapters 2 and 3. In Sec-
tion 6.1, we present the considered TC algorithms. Due to the large number of TC algo-
rithms, we only present and discuss a subset of these TC algorithms. For the selected
TC algorithms, we state the TC-algorithm–specific conditions in terms of first-order logic
with arithmetic expressions in Section 6.2. We show that the conditions of certain TC
algorithms can be formulated as conjunction of two parts: a common (structural) con-
dition and a condition that is specific to the particular TC algorithm. In Section 6.3, we
show how feature models and extensions of graph constraints allow us to represent the
relations of TC algorithms within a family. In Section 6.4, we leverage the commonal-
ities within a TC algorithm family to prove the preservation of connectivity jointly for
all considered triangle-based TC algorithms. After illustrating the applicability of our
methodology based on a larger set of TC algorithms, we discuss which types of TC algo-
rithms can be developed using our methodology in general (Section 6.5). We conclude
this chapter with a survey of related work on variability modeling in communication
systems engineering (Section 6.6).

related publications and theses In [119], we presented the approach dis-
cussed in this chapter based on a reduced set of TC algorithms. Maximilian Herbst inves-
tigated further TC algorithms and proposed a fine-grained categorization into triangle-
and cone-based TC algorithms in his Bachelor’s thesis [93].



6.1 Landscape of topology control algorithms 241

21

Lune

x

y

(a) Lune of link `12

x

y

2

1

3

Circumcircle

(b) Circumcircle of n1, n2, n3

x

y

2

1
θ
θ

θ-dominating region

Angular
bisector

(c) θ-dominating region of `12

Figure 6.2: Illustration of lune, circumcircle, and θ-dominating region

6.1 landscape of topology control algorithms

In this section, we describe how we determined the set of TC algorithms and grouped
them into families. We selected all major TC algorithms and variants of these major
TC algorithms from the [66, 219, 264, 267]. Finally, we added the following variants of
the kTC [227] algorithm: l-kTC [130], g-kTC [130], l*kTC [239], e-kTC [119]. In total, we
collected 32 TC algorithms.

Figure 6.3 and Table 6.1 provide a visual and a detailed summary of the collected TC
algorithms, respectively. The following definitions introduce concepts that occur for the
first time in Table 6.1.

Definition 6.1 (Lune). Let n1 and n2 be two motes that are embedded in the Eu-
clidean plane and connected by a link `12. The lune of a link `12 is the intersection
of the two circles that are centered at the motes n1 and n2, respectively, and have a
radius equal to the length of `12 (Figure 6.2a).

Definition 6.2 (Circumcircle of three motes). Let n1, n2, and n3 be three motes that
are embedded in the Euclidean plane and form a connected graph. The circumcircle
of motes n1, n2, n3 is the unique circle that runs through n1, n2, and n3 (Figure 6.2b).

Definition 6.3 (θ-dominating region). For a given angle θ ∈ [0, 180°], the θ-dominat-
ing region of a link `XY is the 2θ-cone emanating from nX and having `XY aligned
with its angular bisector (Figure 6.2c).
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Figure 6.3: Visualization of landscape of collected TC algorithms

According to [219, 267], the collected algorithms can be categorized into three groups:
19 neighbor-based, two tree-based, and ten cone-based TC algorithms. The Maxpower
algorithm is not part of any of these categories because it activates all links uncondi-
tionally. We observed that a subset of 15 neighbor-based TC algorithms use a triangular
pattern in their specification. Regarding the applicability of our approach, we made
the following observations. We found that our approach supports the development of
batch and dynamic variants of 17 TC algorithms (marked with a green check mark, 3).
For further six TC algorithms only batch TC is supported (marked with a green check
mark bearing a subscript “B”, 3B). We explain the reasons for this categorization later
in Section 6.5.

Our methodology is inapplicable to eight TC algorithms due to the following two
reasons. The first reason is that certain TC algorithms are presented using a purely
imperative characterization from which we could not extract a declarative graph-based
specification of a valid virtual topology (marked with (I)). This applies to four TC al-
gorithms in total: BDS, BPS, LINT, and MobileGrid. The second reason is that certain
algorithms comprise calculations that evaluate path conditions (e.g., to calculate exact
routing path lengths, marked with ?P). This reason applies to four TC algorithms: l-kTC,
g-kTC, LMST, and LMST+RNG′. In Section 6.2, we will discuss nine of the fully compat-
ible TC algorithms (underlined in Figure 6.3 and Table 6.1). In Section 6.5, we explain
why our approach is partly applicable to six and inapplicable to eight TC algorithms.
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Table 6.1: Details of TC algorithm landscape (Algorithm: A: discussed in Section 6.2. [X]: Ref.
to origin. Type: N: neighbor-based, ∆: triangle-based, T: tree-based/sink structures,
C: cone-based. Description: [3,3B,?P,(I)]: applicable, applicable for batch TC, appli-
cability unclear due to path constraints, inapplicable due to imperative specification.)

Algorithm Type Description

Maxpower [66] – [3] Activates all links. Common baseline. Also called
all-links graph (ALG). Details: Section 6.2.2.1.

Triangle-based algorithms

RNG [109] [219,
264, 267]

∆ [3] Relative neighborhood graph. Inactivates a link `XY
if a mote nZ in the lune of nX and nY exists. Details: Sec-
tion 6.2.2.3.

RNG′ [141] [267] ∆ [3] Modified relative neighborhood graph. Inactivates
a link if it fulfills the RNG-specific condition and if
there is no mote nZ on the boundary of the lune such
that (i) id(nZ) < id(nX) and w(`XZ) < w(`XY),
or (ii) id(nZ) < id(nY) and w(`YZ) < w(`XY), or
(iii) id(nZ) < min(id(nX), id(nY)) and w(`XZ) < w(`XY)

IDRNG [34] [66] ∆ [3B] Inclusive directed RNG. Inactivates a link `12 only
if no longer link exists that must be active.

XTC [270] [66,
219, 264]

∆ [3] Inactivates the weight-maximal link in each trian-
gle. Produces subgraph of RNG that is equal to RNG in
the absence of ties. ID-based tie breaking. Details: Sec-
tion 6.2.2.4

XTCRLS [66] ∆ [3] XTC with restricted link strength (RLS). Inactivates a
link if it is inactivated by XTC and has a worse signal-to-
noise ration than r. The parameter r is configurable and
set to −86 dB in [66] based on experiments.

kTC [227] [66] ∆ [3] Inactivates a link if it is the weight-maximal link in
a triangle and if its weight is at least k times larger than
the minimal weight in the same triangle. The parameter
k is configurable in the range [1,

√
2). Running example.

Details: Sections 2.4.4 and 6.2.2.5.
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Table 6.1 (continued): Details of TC algorithm landscape (Algorithm: A: discussed in Sec-
tion 6.2. [X]: Ref. to origin. Type: N: neighbor-based, ∆: triangle-based, T: tree-based/sink
structures, C: cone-based. Description: [3,3B,?P,(I)]: applicable, applicable for batch TC, appli-
cability unclear due to path constraints, inapplicable due to imperative specification.)

Algorithm Type Description

l-kTC, g-kTC [130,
238]

∆ [?P] Inactivates link `12 if it fulfills the kTC-specific con-
dition and if inactivation does not increase routing path
length of n1, n2 beyond a stretch factor a. Increase in
routing path length evaluated based on the assumption
that only the current candidate link (l-kTC) or all can-
didate links (g-kTC) are inactive. Parameter a is config-
urable. Both algorithms require global view of topology.

l*kTC [239] ∆ [3] Localized version of l-kTC that estimates the in-
crease in routing path length based on the hop counts
of motes in the neighborhood. Running example in Sec-
tion 5.3. Details: Sections 5.3.2.1 and 6.2.2.6.

e-kTC [119] ∆ [3] An energy-aware variant of kTC. Uses the inverse es-
timated remaining lifetime of a mote as weight. Inspired
by CTCA [35]. Details: Section 6.2.2.9.

GG [211] [66, 219,
264, 267]

∆ [3] Gabriel graph. Inactivates a link `12 if the circle with
diameter `12 contains a mote n3. Details: Section 6.2.2.2.

DG [48] [219, 264,
267]

∆ [3] Delaunay graph. Inactivates a link `12 if the mote n2

is inside the circumcircle of a triangle that n1 is part of.
Requires global information and position information of
each mote [267, p.119].

Localized
DG [142]
[264, 267]

∆ [3] Localized version of DG. Only considers Delaunay
triangulation of neighborhood. Activates all links that
GG activates.

Restricted DG [72]
[267]

∆ [3] Localized version of DG. Activates a link `12 if `12 is
in the Delaunay triangulations of n1 and n2. Two steps:
Determining local Delaunay triangulation and communi-
cate the decisions to all neighbors to ensure symmetric
links.
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Table 6.1 (continued): Details of TC algorithm landscape (Algorithm: A: discussed in Sec-
tion 6.2. [X]: Ref. to origin. Type: N: neighbor-based, ∆: triangle-based, T: tree-based/sink
structures, C: cone-based. Description: [3,3B,?P,(I)]: applicable, applicable for batch TC, appli-
cability unclear due to path constraints, inapplicable due to imperative specification.)

Algorithm Type Description

Neighbor-based algorithms

BDS [25] [267] N [(I)] Bounded-degree spanner algorithm based on Delau-
nay triangulation. Ensures that each mote has degree of
at least three and that routing path lengths are bounded.
Requires global position information of motes. Pseu-
docode specification.

BPS [268] [267] N [(I)] Bounded-degree spanner algorithm based on De-
launay triangulation. Localized algorithm. Pseudocode
specification.

k-Neigh [24] [66,
219, 264]

N [3B] Activates the k nearest neighbors. Optionally, asym-
metric links can be removed. No correctness guarantee
w.r.t. connectivity possible, but experiments show that,
for k = 9, the virtual topology is connected with high
probability.

MobileGrid [151]
[219]

N [(I)] Adjusts the transmission range of a mote to keep
the number of motes within the transmission range
(called the contention index) around a desired value ex-
tracted from a lookup table. Lookup table is populated
based on simulation experiments. No proof of correct-
ness (e.g., w.r.t. connectivity) is provided.

LINT [201] [219] N [(I)] Centralized algorithm with TC as constrained opti-
mization problem with (bi-)connectivity as constraints
and minimizing the energy consumption as perfor-
mance goal. Requires global knowledge. No local char-
acterization of consistency. Our methodology is inappli-
cable.

Cone-based algorithms

YG [146] [66, 219,
264, 267]

C [3] Yao graph. Separates area around mote into c
equally-separated cones and activates only the weight-
minimal outgoing link in each cone. Details: Sec-
tion 6.2.2.7
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Table 6.1 (continued): Details of TC algorithm landscape (Algorithm: A: discussed in Sec-
tion 6.2. [X]: Ref. to origin. Type: N: neighbor-based, ∆: triangle-based, T: tree-based/sink
structures, C: cone-based. Description: [3,3B,?P,(I)]: applicable, applicable for batch TC, appli-
cability unclear due to path constraints, inapplicable due to imperative specification.)

Algorithm Type Description

Reverse Yao [146]
[66, 219, 264, 267]

C [3] Variant of YG that considers incoming instead of
outgoing links.

GYG [146] [267] C [3] Applies YG, then applies GG.

YGG [146] [267] C [3] Applies GG, then applies YG. In [267], the impera-
tive algorithms for obtaining YGG are called OrdYaoGG,
SYaoGG.

Directed tree [145]
[267]

C [3B] First calculates the Yao graph in the local view of
a mote n1 having c cones. Then, creates directed tree of
a Yao graph by recursively investigating each neighbor
mote n2 in the Yao graph as follows. Divides the area
around n2 into c cones, adds the nearest neighbor n3 in
each cone, and inactivates the link `13 (if active).

θ-graph [192] [264,
267]

C [3] Separates area around mote into c equally-sepa-
rated cones (of angle θ = 360°

c ). Activates the link with
the weight-minimal projection on the angular bisector
in each cone. Configurable parameter c. Details: Sec-
tion 6.2.2.8.

θ-graph+GG [269]
[267]

C [3] Applies θ-graph, then apply GG.

Yao Yao [206]
[219, 267]

C [3] Combination of YG and Reverse Yao to bound in-
and outdegree. Also called Sparsified Yao.

Symmetric
Yao [144] [267]

C [3] Activates link `12 only if its reverse link `21 is also
active according to YG on n2.

SθGG [143] [267] C [3B] Processes links in increasing order of unique
weight. Activates link if it is not covered by θ-dominat-
ing region of already active link. Configurable parame-
ter θ.

LSθGG[143] C [3B] Sparsens topology of SθGG by inactivating links in
mote quadruples in 2-hop neighborhood. Link process-
ing order relevant.
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Table 6.1 (continued): Details of TC algorithm landscape (Algorithm: A: discussed in Sec-
tion 6.2. [X]: Ref. to origin. Type: N: neighbor-based, ∆: triangle-based, T: tree-based/sink
structures, C: cone-based. Description: [3,3B,?P,(I)]: applicable, applicable for batch TC, appli-
cability unclear due to path constraints, inapplicable due to imperative specification.)

Algorithm Type Description

CBTC [139] [219,
264]

C [3B] Cone-based TC. Imperative. Processes links in in-
creasing order of unique weight. Activates links until
θ-cones of active links jointly cover angular range of the
mote. Configurable parameter θ. Also called cone-cover-
ing graph.

Tree-based algorithms

LMST [140] [66,
219, 267]

T [?P] Local minimum spanning tree. Constructs mini-
mum spanning tree in local view. Running example in
Section 5.3. Applicability unclear due to acyclicity con-
straints.

LMST+RNG′ [147]
[267]

T [?P] Local minimum spanning tree on top of an RNG′.
Same considerations regarding graph constraints as
for LMST. Applicability unclear due to acyclicity con-
straints.
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6.2 specification of topology control algorithms

In this section, we first present additional element properties that are necessary to un-
derstand the nine TC algorithms that we discuss afterwards in detail.

6.2.1 Element properties and context events

The algorithms in Table 6.1 partly require access to element properties that we introduce
now.

property definitions Cone-based TC algorithms require estimations of the (rela-
tive) angles of their neighbors. Table 6.1 contains ten cone-based TC algorithms. Usually,
the angle of a neighbor is based on the location of a mote, but can also be determined
using directional antennas. Neighbor-based TC algorithms may also use location infor-
mation to improve estimations of link weights. The position pos(n1) of a mote n1 is a pair
(lng(n1), lat(n1)) consisting of the real-valued longitude lng(n1) (also known as x coordi-
nate) and the the real-valued latitude lat(n1) (also known as y coordinate) of n1. In the
following, we denote the longitude lng(n1) and latitude lat(n1) of a mote n1 concisely as
lng1 and lat1.

The angle a(`12) of a link `12 can be calculated if the positions of its incident motes are
known. In the following, we denote the angle a(`12) of a link `12 concisely as a12.

a12 = arctan
(

lat1− lat2

lng1− lng2

)
.

A cone-based TC algorithm usually calculates the weight of a link from the distance
of its incident motes because information about mote positions is available anyway. The
length len(`12) of a link `12 can be calculated if the positions of its incident motes are
known. We use the Euclidean distance of motes as an estimate for the actual geo-
graphic distance (i.e., the distance on the globe) because the maximum length of a link
is bounded by the maximum transmission radius of a mote (e.g., a few hundred meters
for WiFi). Therefore, using the Euclidean distance instead of the geographic distance is
usually sufficient. In the following, we denote the length len(e12) of a link `12 concisely
as len12.

len(e12) =
√
(lng1− lng2)

2 + (lat1− lat2)2.

Energy-aware TC algorithms require information about the remaining energy of a
mote. The only energy-aware TC algorithm in Table 6.1 is e-kTC. The real-valued energy
En of a mote n is the remaining energy stored in the battery of n. In the following, we
usually neglect the concrete unit.

The application-aware TC algorithm l*kTC [239] is applicable in scenarios with a dedi-
cated data sink (e.g., a base station) The integer-valued hop count h(n1) of a mote n1 is the
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number of hops that are required to reach the base station. If no hop-count information
is available for a mote n1 (e.g., because the network is disconnected), we assume that
h(n1) < 0. In the following, we denote the hop count h(n1) of a mote n1 concisely as h1.

metamodel extensions The element properties introduced in the preceding para-
graphs can be represented in the topology metamodel in a similar way as the mote
identifier and link weight properties introduced in Section 2.2. We represent (i) the
mote position as two attributes Mote::longitude and Mote::latitude of type double, (ii) the
mote hop count as the attribute Mote::hopCount of type int (as in Figure 5.19), (iii) the
mote energy as the attribute Mote::energy of type double, and (iv) the link length and an-
gle as the attributes Link::length and Link::angle of type double. For conciseness reasons,
we do not show the extended metamodel at this point.

context events For each new property, we introduce corresponding context events
rules and context event handler story diagrams. The context events for mote longitude,
latitude, and energy are immediate context events, whereas the context events for mote
position, link length, and link angle are all derived from modifications of the longitude
and latitude of a mote. We assume that the hop-count attribute is updated when neces-
sary by the routing.

The position and energy level of a mote typically change continuously. We assume
that the corresponding context events are detected by the topology monitoring at dis-
crete points in time and indicated as context event markers.

6.2.2 Presentation of topology control algorithms

Next, we provide a formal specification for each of the nine of 24 TC algorithms to
which our approach is applicable (Sections 6.2.2.1 to 6.2.2.9). As in Chapter 3, we state
for each TC algorithm the condition that determines when a link may be inactive in the
virtual topology using first-order logic with arithmetic expressions. In Section 6.2.2.10,
we additionally introduce the generic weight-based predicate ϕmin-weight. This predicate
is inspired by XTCRLS [66] and can be combined freely with all discussed TC algorithms.

6.2.2.1 Maxpower algorithm (revisited)

For completeness, we shortly revisit the TC algorithm Maxpower, which inactivates no
links. Therefore, the set of inactive links in the virtual topology GT of Maxpower can be
characterized using first-order logic with arithmetic expressions as follows:

∀GT=(VT,ET) : ∀`1∈ET : s(`1) = I⇔ false.



250 6 development of families of topology control algorithms

6.2.2.2 Gabriel graph algorithm

The virtual topology of the Gabriel Graph (GG) algorithm [211, 267] is built as follows.
A link `1 is inactive in the virtual topology of GG if and only if the circle with diameter
`1 and center between n1 and n2 contains no motes apart from n1 and n2 [70]. The
formulation is location-based because each mote requires knowledge about its latitude
and longitude to assess whether another mote is inside the described circle. Using
Thales’ theorem [3, p. 50], we obtain the following equivalent formulation that only uses
link weights. A link is inactive if it is part of a triangle and its squared weight is smaller
than the sum of the squared weights of the other links `2 and `3. The set of inactive
links in the virtual topology GT of GG can be characterized using first-order logic with
arithmetic expressions as follows:

∀GT=(VT,ET) : ∀`1∈ET :

s(`1) = I⇒ ∃`2, `3∈ET : ϕtriangle(`1, `2, `3) ∧ ϕGG(`1, `2, `3)

with

ϕGG(`1, `2, `3) = w2
1 > w2

2 +w2
3 . (6.1)

In the preceding condition, we reuse the triangle predicate ϕtriangle (see Equation (3.3)),
which takes three links as parameters and evaluates to true if these links form a triangle.
As a reminder, we repeat the definition of ϕtriangle here:

ϕtriangle(`1, `2, `3)⇔ src(`1) = src(`2) ∧ src(`3) = trg(`2) ∧ trg(`3) = trg(`1).

6.2.2.3 Relative neighborhood algorithm

In the virtual topology of the Relative Neighborhood Graph (RNG) algorithm [109, 267],
the lune (Definition 6.1) of each active link `12 contains no motes. Under the assumption
that the triangle inequality holds for the link weight attribute, we can reformulate this
condition as follows. A link `1 is inactive in the virtual topology of RNG if it is the
weight-maximal link in a triangle (`1, `2, `3) in which `2 and `3 have smaller weights.
The set of inactive links in the virtual topology GT of RNG can be characterized using
first-order logic with arithmetic expressions as follows:

∀GT=(VT,ET) : ∀`1∈ET :

s(`1) = I⇒ ∃`2, `3∈ET : ϕtriangle(`1, `2, `3) ∧ ϕRNG(`1, `2, `3)

with

ϕRNG(`1, `2, `3) = w1 > max(w2, w3). (6.2)

6.2.2.4 XTC algorithm

The idea behind XTC [270, Sec. 3] is that a large link weight indicates a low link quality.
A link `1 is inactive in the virtual topology of XTC if and only if two links of higher
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quality (i.e., smaller weight) exist that connect the source with the target of `1, possibly
via multiple intermediate links. This is equivalent to the following formulation. A link
in the output topology of XTC is inactive if it is the weight-maximal link in a triangle.
In [270, Sec. 4], the authors refine the formulation of XTC based on unique link weights
(see also Definition 2.24). The set of inactive links in the virtual topology GT of XTC can
be characterized using first-order logic with arithmetic expressions as follows:

∀GT=(VT,ET) : ∀`1∈ET :

s(`1) = I : ∃`2, `3∈ET : ϕtriangle(`1, `2, `3) ∧ ϕXTC(`1, `2, `3)

with

ϕXTC(`1, `2, `3) :⇔ w′1 > max(w′2, w′3). (6.3)

This condition is apparently similar to the condition of RNG. This may lead to the
impression that the output topology of XTC is identical to RNG. However, this is true
only if link weights are unique because RNG applies the >-operator based on (raw) link
weights while XTC applies the >-operator for unique link weights.

6.2.2.5 kTC algorithm (revisited)

We already introduced kTC [227] in Section 2.4.4. Still, based on this formulation of
the XTC predicate in Equation (6.3), we can rewrite the kTC-specific predicate ϕkTC as a
refinement of ϕXTC as follows:

ϕkTC(`1, `2, `3) :⇔ ϕXTC(`1, `2, `3) ∧w′1 > k ·min(w′2, w′3).

This reformulation of ϕkTC explicates the following relation between kTC and XTC. Each
link that is inactivated by kTC is also inactivated by XTC and each link that is activated
by XTC is also activated by kTC.

6.2.2.6 l*kTC algorithm (revisited)

We introduced l*kTC in Section 5.3.2.1 and repeat its description here briefly to discuss
its relation to the other triangle-based TC algorithms. l*kTC [239] is an application-
aware variant of kTC that is tailored to many-to-one communication scenarios (e.g.,
data collection). In such scenarios, the hop count h1 of each mote n1 is defined as the
number of hops on the routing path to the base station (see also Section 6.2.1). The
intention behind the l*kTC algorithm is to inactivate only a subset of the links that
would be inactivated by kTC to avoid stretching routing paths excessively. A link `1 is
inactive in the virtual topology of l*kTC if (i) `1 fulfills the kTC-specific condition, and
(ii) inactivating `1 keeps the increase in the hop count of the incident motes of `1 below
a configurable stretch factor a compared with the input topology. Evaluating the second
condition precisely requires global knowledge to determine in how far the routing path
to the base station changes due to an inactivation of `1. To keep the required knowledge
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local, l*kTC estimates the increase in routing path length based only on the triangle that
fulfills the first, kTC-specific condition. The set of inactive links in the virtual topology
GT of l*kTC can be characterized using first-order logic with arithmetic expressions as
follows:

∀GT=(VT,ET) : ∀`1∈ET :

s(`1) = I⇒ ∃`2, `3∈ET : ϕtriangle(`1, `2, `3) ∧ ϕl*kTC(`1, `2, `3)

with

ϕl*kTC(`XY, `XZ, `ZY) :⇔
ϕkTC(`XY, `XZ, `ZY)

∧min(hX, hY, hZ) ≥ 0

∧ (hX = hY ⇒ true)

∧
(

hX 6= hY ⇒
hZ+1

max(hX, hY)
≤ a

)
.

The formulation of ϕl*kTC based on ϕkTC allows us to conclude that, for a given input
topology, l*kTC inactivates a subset of the links that kTC inactivates. Conversely, each
link that is activated by l*kTC is also activated by kTC.

6.2.2.7 Yao Graph Algorithm

The TC algorithms that we discussed until now are all neighbor-based TC algorithms.
Additionally, each of these TC algorithms builds on the triangle predicate ϕtriangle. To
investigate a second major family of TC algorithms, we consider the YG and θ-graph
algorithms in the following.

The YG algorithm [279] is a cone-based TC algorithm, which requires information
about the relative angles of each neighbor mote. In this thesis, we assume that the angle
of each link is determined based on information about mote positions, which can be
configured statically (e.g., in the FlockLab testbed [149]) or determined at runtime (e.g.,
using the Global Positioning System, WiFi triangulation, or Bluetooth beacons [209]).

In the YG algorithm, the area around a mote is separated into c ∈ N cones of equal
angle. Within each cone, YG activates the link to its closest neighbor in this cone. The
parameter c can be configured and should be larger than 6. Without loss of generality,
we assume that c is a divisor of 360. As a preparation for the definition of the YG-specific
predicate, we introduce the following variables. The cone size a cone is the angle that a
cone covers. For c cones, we obtain a cone size of a cone = 360°

c . The xth cone (with
x ∈ {1, 2, . . . , c}) covers the angular range [(x − 1) · a cone, x · a cone). The cone function
cone : ET × R → N determines for a given link `12 and cone count c the number
x ∈ {1, 2, . . . , c} of the cone emanating from n1 that contains n2:

cone(`12, c) =
⌊

a12

a cone

⌋
=

⌊
a12
360°
c

⌋
.
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The set of inactive links in the virtual topology GT of YG can be characterized using
first-order logic with arithmetic expressions as follows:

∀GT=(VT,ET) : ∀`1∈ET :

s(`1) = I⇒ ∃`2∈ET : ϕsameSrc(`1, `2) ∧ ϕsameCone(`1, `2, c) ∧ ϕYG(`1, `2)

with

ϕsameSrc(`1, `2) :⇔ id(src(`1)) = id(src(`2)) ∧ id(trg(`1)) 6= id(trg(`2)),

ϕsameCone(`1, `2, c) :⇔ cone(`1, c) = cone(`2, c), and

ϕYG(`1, `2) :⇔ w′1 > w′2 . (6.4)

6.2.2.8 Theta-graph algorithm

The θ-graph algorithm [192] is related to the YG algorithm. The algorithm also activates
exactly one link in each of the c cones of equal size. The θ in the name of the algorithm
designates the cone size: θ := a cone =

360°
c . In contrast to the YG algorithm, the θ-graph

algorithm activates a link in a cone if its projected length on the angular bisector of the
cone is minimal among all links in the same cone. We determine the projected length
of a link on the angular bisector of the xth cone using the function proj : ET ×R → R,
which is defined as:

proj(`12, c) = len12 · cos(a12− abisector)

= len12 · cos(a12− (cone(`12, c) + 0.5) · a cone))

= len12 · cos

(
a12−

(⌊
a12
360°
c

⌋
+ 0.5) · 360°

))
.

The set of inactive links in the virtual topology GT of the θ-graph algorithm can be
characterized using first-order logic with arithmetic expressions as follows:

∀GT=(VT,ET) : ∀`1∈ET :

s(`1) = I⇒ ∃`2∈ET : ϕsameSrc(`1, `2) ∧ ϕsameCone(`1, `2, c) ∧ ϕθ-graph(`1, `2)

with

ϕθ-graph(`XY, `XZ, c) :⇔ proj′(`XY, c) > proj′(`XZ, c). (6.5)

Similar to the unique weight w′(`) of a link `, we introduce the unique projected length
proj′(`) of a link ` as tie breaker.

6.2.2.9 e-kTC algorithm

We used the CTCA algorithm [35] as motivating example in Chapter 1 to highlight the
difficulty of ensuring traceability between specification and implementation. In the fol-
lowing, we present e-kTC, a variant of kTC that is energy-aware and inspired by CTCA.
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First, we introduce our definition of network lifetime. Afterwards, we discuss an exam-
ple that shows that kTC may lead to a reduced network lifetime in comparison to the
Maxpower algorithm. Subsequently, we present e-kTC.

In the WSN community, extending the lifetime of a network is a key optimization goal.
Numerous possible definitions of network lifetime exist [33]. We apply a definition that
is tailored to the per-mote lifetime. A mote n1 is alive if its remaining energy is positive
(i.e., E1 > 0), and dead if its battery is empty (i.e., E1 = 0). This definitions allows us to
characterize the lifetime of a topology

Definition 6.4 (Lifetime of a network). Let Gt1
T ,Gt2

T , . . . be a sequence of topology
snapshots at discrete points in time t1, t2, . . . The lifetime LT of the network is the first
point in time tx at which one mote is dead in Gtx

T .

The following example illustrates how applying kTC may reduce the lifetime of a net-
work compared to the Maxpower algorithm.

Example 6.5 (Reduced network lifetime with kTC). Figure 6.4 shows a sample topol-
ogy and the link states that result from applying kTC with k = 1.3. The label at a
link `12 denotes its weight w12, which is set to its length len12. We assume that
(i) the value of the power P(`1) that is required to use a link `1 is the squared length
of this link (i.e., P(`1) = len1 · len1), and (ii) mote n1 periodically transmits data
continuously to mote n5.

These messages are relayed using motes n2, n3, and n4. The lifetime of the network
is determined by `23. This link has the smallest fraction of remaining energy and
required transmission power among the links on the only possible routing path:
LT = E2

len23 · len23
= 125

6·6 = 3.47. This means that the lifetime of the network is four
units.

If we use Maxpower instead of kTC in this example, all links are active. We may
assume that the messages from n1 to n5 are routed using links `13 and `35 because
this is the shortest routing path from n1 to n5. In this case, the lifetime of the
network is determined by the energy of n5 and the energy consumption of `35:
LT = 1000

10·10 = 10. This means that, under this simple model, the death of the first
mote can be postponed by six time units when using Maxpower instead of kTC.

The problem of unbalanced energy consumption, which is apparent in Example 6.5,
is well-known in the WSN literature [114]. In the following, we derive an energy-aware
variant of kTC that estimates the remaining lifetime of each mote and uses the inverse
estimated lifetime as inverse weight. We call this variant e-kTC.

For an energy-aware TC algorithm, estimating the remaining lifetime of a mote is
important. This estimate allows the TC algorithm to relieve a mote proactively that
would otherwise fail soon. The expected transmission power P̂(`12) of a link `12 represents
the minimum estimated power that is necessary to reach n2 from n1. According to Friis’
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Figure 6.4: Example: Reduced network lifetime with kTC

free space propagation model [63], P̂(`1) is proportional to a power of the length of a
link `1 with an attenuation exponent β ≥ 2:

P̂(`1) ∝ lenβ(`1)

The expected transmission power per link can be used to estimate the remaining lifetime
of a mote w.r.t. this link.

Definition 6.6 (Expected remaining lifetime w.r.t. a link). Let `12 be a link with
source mote having energy level E1 and an estimated transmission power expected
transmission power P̂(`12) of `12. The expected remaining lifetime L̂(`12) of n1 w.r.t. `12

is defined as:

L̂(`12) =
E1

P̂(`12)
. (6.6)

The expected remaining lifetime of a mote w.r.t. a particular link is equal to the re-
maining time until the death of the mote if we assume that only this link is used for
transmitting messages. Based on the expected remaining lifetime of a mote w.r.t. an
individual link (Definition 6.6), we can estimate the remaining lifetime of the mote as
follows.

Definition 6.7 (Expected remaining lifetime w.r.t. a link). Let n1 be a mote in the
topology GT = (VT,ET) . The expected remaining lifetime L̂(n1) of n1 is the minimum
expected remaining lifetime of its outgoing active links:

L̂(n1) = min
`12∈ET : s12=A

L̂(`12).

Definition 6.6 and Definition 6.7 implicitly presume that transmitting a message con-
sumes energy only at the sending mote. However, on real hardware, transmitting a



256 6 development of families of topology control algorithms

message also consumes energy at the receiving mote. We neglect this additional cost for
the moment because it can be modeled by refining the calculation of P̂(`1) [35].

For the other neighbor-based TC algorithms that we discussed until now, we assumed
that pairs of reverse links have the same weights. In practice, a binary aggregation
function ensures these link weights are identical. Any binary function that is symmetric
in its parameters is suitable as aggregation function (e.g., min, max, mean). To calculate
such an aggregated weight, we need access to the reverse link of each link in the triangle.
An undirected triangle consists of six links `1, ′̀1, `2, ′̀2, `3, ′̀3 where (i) `1, `2, and `3 form a
regular triangle, and (ii) ′̀

1, ′̀2, and ′̀
3 are the inverse links of `1 `2, and `3, respectively. In

case of e-kTC, we consider undirected triangles because the expected remaining lifetimes
of two links `12 and `21 differ if the energy levels E1 and E2 of the incident motes n1 and
n2 differ. We use the minimum function to aggregate the potentially different values
L̂(`12) and L̂(`12) in this case. For e-kTC, we use the minimum function because the
incident mote with the lower energy level determines the point in time when a link
disappears.

Definition 6.8 (Aggregated expected remaining lifetime). Let `12 be a link that has

a reverse link `21. The aggregated expected remaining lifetime L̂
min
12 of `12 is defined as:

L̂
min
12 = min(L̂(`12), L̂(`21)).

Note that L̂
min
12 = L̂

min
21 .

Definition 6.8 allows us to characterize the virtual topology of e-kTC as follows. In
the virtual topology of e-kTC, a link is inactive if and only if (i) this link is part of
an undirected triangle, (ii) it has the minimum aggregated expected remaining lifetime
among the links in the triangle, and (iii) its aggregated expected remaining lifetime is
at least k times shorter than the maximum aggregated expected remaining lifetime of
the other links in the triangle. As for kTC, the parameter k can be used to control
the aggressiveness of the link-inactivation behavior. The lower k is, the more links are
inactivated, in general.
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The set of inactive links in the virtual topology GT of e-kTC can be characterized using
first-order logic with arithmetic expressions as follows:

∀GT=(VT,ET) : ∀`1∈ET :

s(`1) = I⇒ ∃ ′̀1, `2, ′̀2, `3, ′̀3∈ET :

ϕunTriangle(`1, ′̀1, `2, ′̀2, `3, ′̀3) ∧ ϕe-kTC(`1, ′̀1, `2, ′̀2, `3, ′̀3)

with

ϕunTriangle(`1, ′̀1, `2, ′̀2, `3, ′̀3) :⇔
ϕtriangle(`1, `2, `3) ∧ ϕrev(`1, ′̀1) ∧ ϕrev(`2, ′̀2) ∧ ϕrev(`3, ′̀3) , (6.7)

ϕrev(`1, `2) :⇔ src(`1) = trg(`2) ∧ trg(`1) = src(`2) , and (6.8)

ϕe-kTC(`XY, `YX`XZ, `ZX, `ZY, `YZ) :⇔

L̂
′min
X,Y < min(L̂

′min
X,Z , L̂

′min
Z,Y ) ∧ L̂

′min
X,Y < k ·max(L̂

′min
X,Z , L̂

′min
Z,Y ). (6.9)

The predicate ϕunTriangle is true if the given links form an undirected triangle (Equa-
tion (6.7)). It is defined using the auxiliary reverse-link predicate ϕrev, which evaluates
to true if the second link is the reverse of the first link, and vice versa (Equation (6.8)).
The predicate ϕe-kTC captures the e-kTC-specific condition (Equation (6.9)). As usual, we
employ mote identifiers as tie breakers and compare the unique aggregated expected
remaining lifetime of the links in the triangle. The following example shows how e-kTC
helps to extend the lifetime of a network.

Example 6.9 (Extended network lifetime with e-kTC). We use the same input topol-
ogy as in Example 6.5 and make the same assumptions regarding energy consump-
tion. Each link is annotated with its weight (w, equal to its length) and the aggre-
gated expected remaining lifetime w.r.t. this link (L). The resulting aggregated value
is highlighted in bold.

We apply e-kTC with k = 1.0. This means that e-kTC inactivates each link with
minimal aggregated expected remaining lifetime in each triangle. In contrast to the
decision of kTC in Example 6.5, e-kTC inactivates links `23, `32, `45, and `54. This
means that messages from n1 to n5 are still transmitted using the energy-intensive
links `13 and `35 because motes n1 and n3 have a large remaining energy compared
to n2 and n4.

Let’s assume now that n1 is transmitting messages continuously to n5. We simu-
late this behavior for two time units and obtain the topology shown in Figure 6.5b.
In this topology, the aggregated expected remaining lifetime values of `35 and `53

have dropped to 8, which is the new minimum in the undirected triangle consisting
of motes n3, n4, and n5. Therefore, e-kTC activates `45 and `54, and inactivates `35

and `53.
If we assume that e-kTC is invoked periodically every time unit, then the network

lifetime is 15 time units. Mote n2 is the first mote to run out of energy. This means
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Figure 6.5: Example: Extended network lifetime with e-kTC

that e-kTC is able to extend the network lifetime by five time units compared to the
Maxpower algorithm.

The preceding example illustrates that it is highly important to execute e-kTC dynam-
ically to keep the network alive for as long as possible. In [119], we assessed e-kTC in
a simulative evaluation. For the sake of conciseness, we do not repeat this evaluation
here.

6.2.2.10 The minimum-weight predicate

Inspired by the idea of XTCRLS [66], which (re-)activates links that provide a sufficiently
large signal-to-noise ratio, we propose an auxiliary predicate that can be combined with
any neighbor-based TC algorithm.

Working memory is a highly limited resource on motes. For this reason, keeping the
entire neighborhood of a mote in working memory may be infeasible if the topology
is dense. Fortunately, it is often unnecessary to store low-weight links because the
energy consumption of a mote is typically predominated by links with large weight.
Additionally, reducing the size of the processed neighborhood may reduce the execution
time of a TC algorithm.
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The minimum-weight predicate ϕmin-weight formalizes this reduction step. In the follow-
ing condition, the parameter wthres represents the configurable minimal weight of a link
to be included in the considered neighborhood.

∀GT=(VT,ET) : ∀`1∈ET :

s(`1) = I⇒ ϕtriangle(`1, `2, `3) ∧ ϕmin-weight(`1, `2, `3, wthres)

with

ϕmin-weight(`1, `2, `3, wthres) = min(w1, w2, w3) ≥ wthres . (6.10)

This predicate can be used to compose new variants of the previously specified TC
algorithms. For instance, a modified version of kTC with minimum-weight predicate
can be specified in first-order logic with arithmetic expressions as follows:

∀GT=(VT,ET) : ∀`1∈ET :

s(`1) = I⇒ ϕtriangle(`1, `2, `3) ∧ ϕkTC(`1, `2, `3) ∧ ϕmin-weight(`1, `2, `3, wthres).
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Figure 6.6: Feature diagram of with two TC algorithm families

6.3 specification of families of topology control algorithms

In this section, we propose how to specify families of TC algorithms using feature mod-
els and extensions of graph constraints.

6.3.1 Specification using feature models

In Section 6.2, we observed that all of the discussed TC algorithms share certain pred-
icates (e.g., the triangle predicate ϕtriangle or the same-cone predicate ϕsameCone). We
propose to capture the variability within families of TC algorithms using context feature
models (as introduced in Section 3.6).

Figure 6.6 depicts a context feature model that captures the following properties. First,
a mote may access different types of information, which is represented by the subtree
below the System Information context feature. Depending on the mote hardware and
operating system, the child features of System Information are selected at compilation
time, at configuration time, or even at runtime (see also [30]). This branch of the feature
model also captures that information about link angles and link lengths can be accessed
as soon as mote position information is available (specified as «require» constraint).

Second, a mote has an optional, configurable TC algorithm (TC). If TC is deselected,
the Maxpower algorithm is active. The two child features of TC correspond to the two
families of TC algorithms that we discuss in this chapter: Triangle-based is the (direct or
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indirect) parent feature of all TC algorithms that employ the triangle predicate ϕtriangle:
RNG, GG, XTC, kTC, l*kTC, e-kTC. Similarly, Cone-based is the parent feature of the
two cone-based TC algorithms YG and θ-graph, which share the predicates ϕsameSrc and
ϕsameCone. Furthermore, the feature kTC is a child of XTC to indicate that ϕkTC builds
on ϕXTC. For the same reason, l*kTC is a child of kTC. We placed e-kTC below XTC
instead of kTC because its predicate is inspired by but not the same as the kTC-specific
predicate ϕkTC.

Using a feature model, we can also specify formally which TC algorithms access
which types of system information using «require» constraints. For example, a triangle-
based TC algorithm require access to the weight of a link, and a cone-based TC algorithm
uses the position of motes in its local view. Additionally, l*kTC needs access to the hop
count of each mote, and e-kTC requires information about the energy level of a mote.

The feature in the top-left corner that contains an ellipsis ( . . . ) indicates that we omit-
ted further features that represent, for instance, routing mechanisms or WSN applica-
tions. Figure 5.15 provides a more comprehensive overview of possible system features
of a mote.

Using feature models for representing TC algorithm families has several advantages.
First, the relations of TC-algorithm–specific predicates are visualized in the feature dia-
gram. Second, we can identify all TC algorithms that are compatible with a particular
mote type based on «require» constraints from TC algorithms to context features. Third,
feature models form the basis for specifying possible TC transitions of a TC multi-mech-
anism.

Finally, we discuss how to represent TC algorithms that combine predicates of two dif-
ferent families in the feature model. Examples of such TC algorithms are Yao Yao, YGG,
GYG, and θ+GG. In all of these examples, a two-level virtual topology is constructed.
For example, the YGG algorithm applies first GG and then YG. We propose to model
such a TC algorithm as child-feature of the first-level TC algorithm (e.g., GG) and add a
«require» constraint to the second-level TC algorithm (e.g., YG).

6.3.2 Specification using constraint refinement

Representing TC algorithms using feature models helps the developer to understand
the configuration space of a mote and the variability within families of TC algorithms.
Still, this specification does not provide enough information to apply our correct-by-con-
struction methodology. One reason is that possible individual topology modifications
and their control flow cannot be represented in a feature model.

Therefore, we specify the commonalities of the local consistency properties of a TC
family as a family graph constraint. All members of a family refine the family graph
constraint according to the following definition.
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Definition 6.10 (Constraint refinement). A constraint CY refines a constraint CX if CY
can be obtained by performing one or more of the following modifications to CY:
(i) addition of object or link variables to a conclusion pattern, (ii) addition of ob-
ject or link variable to the premise pattern (possibly entailing an extension of the
conclusion patterns), (iii) addition of attribute constraints to a conclusion pattern,
(iv) addition of attribute constraints to the premise pattern (possibly entailing an
extension of the conclusion patterns), or (v) addition of conclusion patterns.

This definition defines a refinement relationship between graph constraints on a syntac-
tic level. Depending on the performed modification, the set of models that fulfill the
refined constraint CY can be larger than or smaller than the refined constraint CX. The
following example illustrates Definition 6.10 for the families of triangle and cone-based
TC algorithms.

Example 6.11 (Constraint refinement). Figure 6.7 shows the two family constraints
Ctriangle,a and Ctriangle,i for active and inactive links of triangle-based TC algorithms,
and how the XTC-specific and kTC-specific constraints refine the family constraints.
The family constraints reflect a link `1 in the virtual topology of a triangle-based TC
algorithm may only be inactive if it is part of a triangle (`1, `2, `3):

∀GT=(VT,ET) : ∀`1∈ET : s(`1) = I⇒ ∃`2, `3∈ET : ϕtriangle(`1, `2, `3)

We recognize that the constraint CkTC,i is stricter than its family constraint Ctriangle,i
in the sense that all topologies that fulfill CkTC,i also fulfill Ctriangle,i, but not vice
versa. A link that is part of a ϕkTC-fulfilling triangle is always part of a triangle, but
not every triangle fulfills ϕkTC. In contrast, CkTC,a is less strict than its family con-
straint Ctriangle,a. Any active link in a triangle violates Ctriangle,a, whereas a violation
of CkTC,a contains an active link that fulfills the kTC-specific attribute constraints.

In this example, only attribute constraints are added during the refinement. In
case of e-kTC, fresh link variables v21, v23, and v31 are added to obtain an undirected
triangle together with the e-kTC-specific attribute constraints during the refinement
of Ctriangle,a and Ctriangle,i.

Figure 6.8 shows the family constraints Ccone,a and Ccone,i for active and inactive
links of cone-based TC algorithms, and how the YG-specific constraints refine these
family constraints. The attribute constraint sc corresponds to the predicate ϕsameCone.
The predicate ϕsameSrc is represented by the two link variables that share a common
source mote variable.
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Figure 6.7: Example: Refinement in the family of triangle-based TC algorithms
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6.4 proving global consistency properties

In this section, we illustrate how to prove global consistency properties for a family of
TC algorithms. We use the family of triangle-based TC algorithms and the global con-
sistency property of required connectivity of the virtual topology as primary example.
Afterwards, we point out how the corresponding proof could be conducted for cone-
based TC algorithms. We focus on the preservation of connectivity here because it is a
crucial consistency property that each TC algorithm must fulfill.

The general proof idea is to show that a triangle-based TC algorithm preserves con-
nectivity if a strict ordering of the link variables in the family constraints exists. For a
concrete triangle-based TC algorithm, we then have to prove that it ensures the required
strict ordering. The following proof is a generalization of the corresponding proof for
the concrete triangle-based TC algorithm kTC (Example 3.23).

Example 6.12 (Proof of connectivity for triangle-based TC algorithms). In this ex-
ample, we consider a triangle-based TC algorithm A. This means that the TC-algo-
rithm–specific constraints CA,a and CA,i refine the family constraints Ctriangle,a and
Ctriangle,i. A topology is weakly consistent w.r.t. A if it fulfills the constraint set
{Cno-loops,Cno-parallel-links,CA,a,CA,i}, and it is strongly consistent w.r.t. A if it addition-
ally fulfills Cu.

An A-specific link order ≺A is a total ordering of the links of a topology GT =

(VT,ET) such that each triangle (v12, v13, v32) that corresponds to a match of ptriangle,a
and ctriangle,i,1 (see Figure 6.7) fulfills the following inequalities:

v13 ≺A v12 and v32 ≺A v12.

For the kTC example, we defined ≺kTC based on the unique weight of each link:

v13 ≺kTC v12 :⇔ w′13 < w′12 .

Based on these preliminaries, we now state the claim that we have to prove.
Claim: Let A be a triangle-based TC algorithm for which a A-specific link order
exists. The virtual topology of A is connected if the input topology of A is connected
and the TC mechanism topology is weakly consistent w.r.t. the A-specific graph
constraints.
Proof sketch: The virtual topology of a TC mechanism is the AU-view of the TC
mechanism topology and, therefore, is connected if each pair of motes is connected
by an AU-path (i.e., a path of active or unmarked links) in the TC mechanism topol-
ogy (see Definition 2.6). The mote and link sets of the input topology and TC
mechanism topology are equal. This means that the TC mechanism topology is
connected if the input topology is connected.
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Figure 6.9: Construction of alternative AU-path P′ from nX1 to nXM in proof of preserved connec-
tivity for triangle-based TC algorithms (identical to Figure 3.16a)

Therefore, it is sufficient to show the following claim. For a given path P be-
tween two motes nx1 and nxM , an alternative AU-path P′ between these motes can
be constructed. In the following, we show for each link j̀ on P (by induction) that
its incident motes are connected by an AU-path Pj . The alternative path P′ can be
constructed by concatenating the per-link alternative AU-paths, as illustrated by Fig-
ure 6.9. This idea is the same as for the proof of connectivity for kTC (Example 3.23).

Induction claim: If the topology is connected and weakly consistent, then the inci-
dent motes of each link j̀ are connected by an AU-path Pj . We show that this claim
holds by induction over the links of the topology GT = (VT,ET), sorted according
to the A-specific link order ≺A. Let L = (`1, `2, . . . ) be a list that contains all links in
ET and let L be sorted according to ≺A.

Induction start (j = 1): Let’s first assume that the first link j̀ = `1 = `XY in L is
inactive. In this case, the fulfillment of the inactive-link constraint CA,i implies that
there are links `XZ and `ZY with `XZ ≺A `XY and `ZY ≺A `XY. This means that both
`XZ and `ZY appear before `XY in L, which contradicts the assumption that `1 is the
first link in L. Therefore, `1 is either active or unmarked and constitutes an AU-path.

Induction step (j = N → N+ 1): We now assume that the induction claim is true
for all links j̀ in L with j ≤ N. We have to show that the claim also holds for
link `N+1. We distinguish between the three possible states of j̀ , as illustrated in
Figure 6.10. If j̀ is active (Case 1) or unmarked (Case 2), the induction claim holds.
If j̀ is inactive, the fulfillment of CA,i implies that there are links `XZ and `ZY with
`XZ ≺A `XY and `ZY ≺A `XY. Therefore, `XZ = j̀1 and `ZY = j̀2 for some j1, j2 ≤ N,
and the induction claim holds for `XZ and `ZY. This implies that AU-paths P1 and P2

exist from nX to nZ and from nZ to nY, respectively. The concatenation of P1 and P2

is an AU-path from nX to nY, and the induction claim follows for j = N+ 1.

For conciseness reasons, we omit the detailed proof for the family of cone-based TC
algorithms at this point. The idea, however, is similar, even though the family constraint
only contains two links. Still, cone-based TC algorithms usually build on position in-
formation. If we assume that the input topology is a UDG, we can conclude that the
missing link `32 in Figure 6.8 exists and conduct the proof of correctness similar to
Example 6.12.
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Figure 6.10: Case distinction in induction step in proof of preserved connectivity for kTC
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6.5 discussion of applicability

In this section, we discuss the applicability of our methodology. First, we discuss the
applicability based on further examples the TC landscape. Then, we present and discuss
a decision diagram that serves as guideline for evaluating whether our approach is
applicable to a particular domain.

6.5.1 Discussion based on examples from the topology control landscape

From the collected 32 TC algorithms, we discussed nine TC algorithms that can be
developed systematically using our approach in Sections 6.2 to 6.4. For the sake of
conciseness, we refrained from deriving the story diagrams of the TC algorithm and
context event handler specifications.

further fully supported tc algorithms We claim that the remaining TC algo-
rithms marked with a green check mark (3) in Figure 6.3 and Table 6.1 can be developed
in an analogous way for the following reasons.

First, RNG′ and XTCRLS are refinements of RNG and XTC, respectively, that add further
attribute constraints. The localized versions Restricted DG and Localized DG of DG are
triangle-based TC algorithms that refine the family constraint by adding a fourth link
variable v14 and attribute constraints that check whether v12 is inside the circumcircle of
n1, n3, and n4.

Second, each TC algorithm that is a combination of two other fully supported TC
algorithms can be represented by combining the attribute constraints, extending the
pattern graphs, or both. This argument applies to Yao Yao, YGG, GYG, and θ+GG. In the
following example, we briefly explain the resulting graph constraints for YGG.

Example 6.13 (Constraints for YGG). Figure 6.11 shows the graph constraints for
YGG. The positive inactive-link constraint CYGG,i specifies that a link v12 may be
inactive in two cases. First, v12 may be inactive if the YG-specific condition is fulfilled
(i.e., v12 is the weight-minimal link in a cone). Second, v12 may be inactive if it is
part of a triangle that fulfills the GG-specific condition. In contrast to the original GG
algorithm, the two link variables v13 and v32 must both be active. These additional
marking constraints ensure that both links have been selected within their respective
cone.

The two active-link constraints CYGG,i and CYGG,i complement the inactive-link
constraint CYGG,i in the usual way. They prevent the activation of a link that should
actually be inactive.

When applying our approach to YGG, the additional marking constraints in cYGG,i,2
and CYGG,i require the application of the generalized variant of the anticipation loop
synthesis algorithm (as in Section 4.5.3).
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Figure 6.11: Example: Graph constraints for YGG

tc algorithms supported in batch mode A subset of six TC algorithms pro-
cesses unmarked links in a particular order (marked with 3B in Figure 6.3 and Table 6.1):
IDRNG, k-Neigh, CBTC, Directed Tree, SθGG, and LSθGG. To specify these TC algorithms,
we need to add an application condition to the rule Rfind-u that ensures that the identified
unmarked link is minimal (e.g., w.r.t. its unique weight) among all unmarked links. The
TC-algorithm–specific graph constraints of these TC algorithms contain more than one
marking constraint. In Section 4.5.3, we discussed how the anticipation loop synthesis
algorithm can be extended to such use cases. Therefore, we think that applying our
approach to scenarios with inherent batch processing logic is possible, but needs further
investigation.

unclear applicability It is currently unclear in how far the four TC algorithms
l-kTC, g-kTC, LMST and LMST+RNG′ are supported by our approach (see ?P in Fig-
ure 6.3 and Table 6.1). We discussed the case of LMST already in Section 4.6. For a fixed
maximum neighborhood size, this restriction could be circumvented by deriving graph
constraints for each possible path length. This approach would be infeasible in practice
due to the excessive amount of application conditions that would need to be checked. In
Section 5.3.2.2, we followed another approach by introducing auxiliary data structures
and separating the control flow of LMST into a tree construction and marking phase.
Similar to how we proved connectivity (which is inexpressible using nested graph con-
straints) based on triangle-based local patterns, we should investigate in how far the
acyclicity constraints of LMST can be expressed using a set of graph constraints. Finally,
a third approach for specifying TC algorithms with unbounded path expressions could
be to employ graph constraints that are enriched with path conditions. To this end, we
discussed several of the existing approaches in Section 4.6.
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inapplicability due to missing declarative specification For four TC
algorithms, either no declarative characterization of the output topology exists (applies
to MobileGrid and LINT, also noted by [219]) or the pseudocode formulation was so
extensive that we were not able to extract the TC-algorithm–specific constraints (applies
to BDS and BPS).

tool support We do not provide an evaluation of applicability using Cobolt or
cMoflon at this point. The reason is that this chapter mainly serves to underpin the
applicability of our approach from the specification perspective. We think that it is
evident that WSN topologies can be modeled using metamodeling and that the corre-
sponding topology modification types can be described using GT. Therefore, as soon
as we are able to characterize the local consistency properties of a TC algorithm using
graph constraints and show that these local consistency properties jointly imply the
global consistency properties, our approach is applicable to a TC algorithm.

To this end, Section 6.2 provides exact specifications for nine algorithms, and this
section additionally sketches how eight more TC algorithms can be developed using
our approach.

For further results, we refer to the following publications that evaluate several of the
considered algorithms using Cobolt. In [119], we conducted a comparative simulation
study of kTC and e-kTC in combination with the minimum-weight predicate ϕmin-weight.
In [271], we used Coala to evaluate for nine classes of system contexts which of the fol-
lowing TC algorithms performs best w.r.t. mean latency: kTC, YG, e-kTC, and LMST. An
evaluation of the discussed TC algorithms using cMoflon should be possible because
both position and energy information is available on the testbed motes.

6.5.2 Discussion based on modeling techniques

Figure 6.12 shows a decision diagram that helps us to answer the question whether our
proposed correct-by-construction methodology is applicable in a particular domain. We
deliberately leave the domain open and do not restrict ourselves to TC, which serves
as running example throughout this thesis. In the following, we will briefly discuss the
significance of each question in Figure 6.12.

graph-based model A fundamental question for the applicability of our approach
is whether the required view of the algorithm under development can be represented as
attributed graph. In this thesis, we chose metamodeling as a graph-based specification
technique, but our approach is not limited to this technique. Given the prominence of
object-oriented software engineering paradigm, metamodeling is certainly not limiting
the applicability of our approach.
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consistency properties To be compatible with our methodology, the consistency
properties of the domain need to be expressible at least partially using nested graph con-
straints. If not all consistency properties are expressible using nested graph constraints,
we can still try to prove that the fulfillment of the nested graph constraints implies the
fulfillment of the remaining consistency properties. For our running example, we could
show that the triangle-based graph constraints that characterize kTC imply that the kTC
specification also preserves connectivity, which is a global consistency property. The
example of LMST shows that formulating local consistency properties appropriately to
prove the global consistency properties (e.g., that the virtual topology is a tree in case of
LMST) is an elaborate task.

Even though we used graph constraints without nesting in this thesis, the constructive
approach can be applied to nested graph constraints as well [83, 164]. In Section 4.6, we
also discussed formalisms that are more expressive than graph constraints. For our
methodology, it is important that an adoption of the constructive approach exists for
these formalisms and that the construction process is possible with reasonable manual
effort or supported by tools.

modification types The second major prerequisite for our development method-
ology is that possible types of modifications can be specified as GT rules. Under the
assumption that the view of the algorithm can be modeled as attributed graph, it is rea-
sonable that all relevant elementary modifications of the topology can be specified as GT
rules. For each modification type specified as GT rule, we can then ensure constructively
that this GT rule preserves all consistency properties.

Even if certain types of modifications cannot be modeled using GT, we can try to prove
and (if necessary) ensure that these types of modifications preserve weak consistency.
Whether or not this is possible depends on the concrete use case. The major advantage of
this conceptual extension point is that complex modification types need not be specified
using GT rules. The main drawback, however, is that all modification types that are
not specified using GT need to be implemented for all desired target platforms, which
makes evaluating the same algorithm on multiple platforms difficult.

control flow We employed SDM in this thesis to specify the control flow of an
algorithm. A story diagram can represent all control flow concepts of typical imper-
ative programming languages (e.g., Java, C, C++). It supports specifying conditions
(if-then-else), loops (while-do, do-while), operation-local variables, invoking arbitrary
EOperations inside a story diagram (including recursion). Therefore, we think that SDM
is expressive enough to cover most use cases. In contrast to invoking GT rules from
a host language (e.g., Java), using a control flow specification language has the advan-
tage that the control flow specification can be translated into multiple target languages.
Furthermore, to obtain meaningful results, we need to prove that the algorithm speci-
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Figure 6.12: Decision diagram for applicability of correct-by-construction methodology

fication enforces strong consistency. This is arguably easier if we work with a suitable
abstraction of the control flow rather than source code.

Regarding the specification refinement, the constructive approach by Heckel and Wag-
ner [91] does not require the user to use a particular control flow specification language.
Instead, each GT rule is refined individually based on a set of graph constraints.

In contrast, the anticipation loop synthesis algorithm modifies the control flow of
the context event handlers. In this thesis, we specify the control flow of context event
handlers using SDM. Still, our approach is not limited to SDM. A closer view at the
anticipation loop synthesis algorithm reveals that it requires the following properties to
be applicable in the context of a different control flow specification language.

First, sequential rule application must be supported. This is necessary to prepend the
application of the anticipation rules to the application of the context event rule.
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Second, it should be possible to specify the application of GT rules based on a set of
rule input parameters. This is necessary to ensure that an anticipation rule has access
to the pending context event that (potentially) violates the synthesized application con-
dition of the anticipation rule. Still, even if the control flow language does not provide
means to pass parameters to rule applications, the information about the pending con-
text event could be encoded as additional model elements (e.g., similar to the context
event markers that we used in Chapter 2 for illustration purposes).

Third, the control flow specification language should have support for specifying the
exhaustive (i.e., “as-long-as-possible”) application of a GT rule. This is necessary be-
cause an anticipation loop shall only terminate if all violations of the corresponding
application condition have been resolved. This requirement is necessary to reuse the
structure of the correctness proofs in Section 4.4.3.

Our observation is that state-of-the-art GT languages (e.g., in Henshin [9] or GP2 [11])
provide all three required modeling capabilities. Therefore, an adoption of the anticipa-
tion loop synthesis algorithm to these control flow specification languages should be
feasible with only minor (i.e., technical) adjustments to the correctness proofs in Sec-
tion 4.4.3.

In the context of the modified kTC-specific graph constraints in Section 4.5.3 and the
combined TC algorithms Yao Yao, YGG, GYG, and θ+GG in Section 6.5.1, we presented
the generalized anticipation loop synthesis algorithm, which builds on weaker assump-
tions regarding the involved graph constraints. For such graph constraints, a more
elaborate termination proof may be necessary (as in Example 4.35). In Section 4.5.3,
we sketched in general and showed for kTC that a termination proof can be performed
based on the descending chain property of a potential function [150].

conclusion The preceding discussion shows that neither programmed GT nor meta-
modeling constitute major limitations of our methodology. If at all, the expressiveness
of nested graph constraints and GT rules limit the applicability of our approach to other
domains.
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6.6 related work

In this section, we discuss related work on variability modeling in combination with GT
and as a research challenge in the communication systems domain.

We proposed to organize families of TC algorithms in a notation similar to feature
diagrams in [119]. In this thesis, we employed context feature models to indicate which
features are selected by the environment and which features are selected by the TC
multi-mechanism. Furthermore, we discussed our modeling approach based on the
additional TC algorithm family of cone-based TC algorithms.

Only few contributions connect GT with techniques from DSPL engineering. For in-
stance, in [245], the authors propose to model families of GT rules by merging multiple
related GT rules into one GT rule whose variables are annotated with presence condi-
tions. A presence condition specifies for each annotated variable in which variant of
the GT rule it is contained. Based on this approach, the authors present tool support for
automatically deriving variability-based GT rules from a set of traditional GT rules [244]
and for editing the derived variability-aware rules [246]. In future work, this approach
should be investigated w.r.t. its applicability to the WSN domain.

Several works apply DSPL techniques to support the development of adaptive com-
munication systems. In [18], the authors specify the reconfiguration space of a flood
warning WSN as a DSPL. In contrast to this thesis, their focus lies on modeling the dif-
ferent communication interfaces (e.g., WiFi or Bluetooth) of a mote and the conditions
under which the respective interfaces should be enabled. In [172], the authors specify
a product family of devices that act as environment monitoring and guidance system
in a museum at the same time. In contrast to this thesis, their focus lies not on TC but
on modeling variability w.r.t. the following four dimensions: communication scope (i.e.,
unicast vs. anycast communication), measured metrics (e.g., humidity or temperature),
actuation (e.g., visual or acoustic), and localization technology (e.g., RFID-based local-
ization). In [46], the possible configuration dimensions of wireless sensor-actor network
(WSAN) motes are outlined using feature models. The authors propose a middleware
that allows to instantiate the possible configurations in a memory- and energy-efficient
way on WSAN motes. One of the considered components reflects the topology of the
WSAN motes. In contrast to this thesis, the authors of [46] focus on surveying the typ-
ical complexity of the WSN domain. They treat the two considered TC algorithms (i.e.,
flat tree and hierarchical tree) as black boxes. In [68] (an extension of [46]), an SPL
engineering process is presented that allows to configure resource-efficient middleware
systems for WSAN motes with dedicated tasks based on a user-selected configuration
(e.g., to build vehicular area networks [45] or intelligent living spaces [67]). The map-
ping between configuration space and the solution space is performed via model trans-
formation and code generation engine (e.g., for Java 2 ME). Finally, [183] presents a
variability-aware reference architecture that builds on [68].



274 6 development of families of topology control algorithms

In fact, DSPLs are also applied to model self -adaptive systems. Such systems monitor
their environment, analyze the monitored data, plan appropriate measures and execute
them to adapt to changing contextual environments. In [217], a framework for precal-
culating possible or probable configurations for resource-constraint devices is proposed.
Such techniques are also useful in the WSN domain because the resources of WSN
motes are typically highly limited. While traditional WSNs were typically configured
at deployment time using a fixed TC algorithm (if any) and a fixed parameter set, self-
adaptive WSNs can be suitable (e.g., for environmental monitoring to detect wildfires
or floods). For instance, in [7], the authors present a framework that may be used, for
example, for reconfiguring parameters of WSN motes in a wildfire detection network.
In their case study, the framework is able to predict critical situations (e.g., imminent
wildfires) and react appropriately by increasing the sampling rate. Use cases such as
flood or wildfire detection show that switching between TC algorithms is a sensible use
case and should be a future line of research.

To sum up, existing works on adaptive WSNs mainly focus on specifying variability
and reconfigurations on the architectural level of WSNs [7, 18, 46, 67, 172, 183, 216, 217].
In contrast, in this thesis, we focus on leveraging variability of TC algorithm families
constructively. To this end, our work is complementary to the related work in this area.



7
C O N C L U S I O N

In this thesis, we present a practical model-based methodology for developing correct-
by-construction dynamic TC algorithms. Such algorithms have been an important sub-
ject of research in the WSN research community in the past and are gaining even more
importance with the advent of the IoT, which heavily builds on wireless networks.

Our research is driven by the initial observation that the development process of TC
algorithms (see Figure 7.1) suffers from a gap between the specification phase and the
evaluation phase. The specification phase serves to prove that the specified TC algorithm
fulfills crucial consistency properties, and the evaluation phase serves to assess the ap-
plicability and performance of the TC algorithm implementation. Traditionally, the gap
between the specification and evaluation phases arises from the fact that TC algorithms
are implemented manually and, often, using low-level programming languages. This
approach is obviously error prone and time consuming, and—worst of all—hinders the
traceability between specification and implementation.

We tackle these shortcomings by proposing an MDE methodology for developing TC
algorithms. In the following, we summarize the goals and corresponding contributions
of this thesis briefly and end with an outline of future research directions.

Modeling language

Domain concepts

Specification

Simulation platform

Simulative evaluation Testbed evaluation

Testbed platform

7

4

1 2 3

5 6

Iterations8

X YActivity Artifact

Figure 7.1: Overview of development phases of a TC algorithm (repeated from Figure 1.2)
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7.1 summary

The TC literature lacks a standard representation of the input and output topologies of
a TC algorithm. We propose to represent the input topology and virtual topology of
a TC algorithm jointly as one attributed graph. The membership of a link in the vir-
tual topology is encoded as a link property. This uniform representation allows us to
develop a batch TC algorithm, which processes entire topology snapshots and neglects
previous decisions, as well as a dynamic TC algorithm, which accepts individual change
events of the underlying topology as input and outputs corresponding updates of the
virtual topology (Goal 2). We extended the established TC terminology with concepts
for representing elementary modifications of the topology (as context events), the archi-
tecture of a dynamic TC algorithm (as TC mechanism, consisting of a TC algorithm and
context event handlers), and the architecture of a TC multi-mechanism, which supports
the reconfiguration and exchange of TC mechanisms at runtime (TC transitions).

We build our approach on the following formal methods. We specify the set of valid
input and virtual topologies of a TC algorithm using a type graph with attributes (i.e.,
a metamodel). We capture local consistency properties as graph constraints [91] and
global consistency properties using second-order logic predicates on the virtual topol-
ogy of a TC algorithm. We require that the local consistency properties jointly imply
the global consistency properties. To enable dynamic TC algorithms, we distinguish
between the following two levels of consistency: (i) weak consistency, which must hold
permanently, and (ii) strong consistency, which must hold eventually after each TC al-
gorithm execution. Each level of consistency is characterized by a set of local graph con-
straints. We formalize possible modifications of the topology using GT rules [56, 214],
and the order of topology modifications using programmed GT [60]. Based on this
foundation, we define six criteria for evaluating whether a TC mechanism specification
is correct (Definition 4.7).

To ensure that the TC mechanism specification is correct, we propose a two-step pro-
cess. In the first step, we employ the constructive approach [44, 91] for refining each
GT rule to ensure that the refined GT rule preserves weak consistency. The refinement
is carried out by synthesizing weakest application conditions for the GT rules. In the
second step, we use the novel anticipation loop synthesis algorithm to refine the control
flow of context event handlers to ensure that inevitable violations of synthesized applica-
tion conditions are resolved prior to handling a context event. In general, this technique
can also be used to ensure that the TC algorithm execution always terminates. Using
these two refinement steps, we achieve that a TC mechanism specification is correct by
construction (Goal 1).

We also aimed at a practical development methodology, which supports the specifi-
cation, simulative evaluation, and testbed evaluation phase (Goal 3). To bridge the gap
between the first and the latter two phases, we propose tool support for the rapid eval-
uation of a specified TC algorithm. For simulation experiments, we present Cobolt, a
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tool integration of the MDE tool eMoflon [135] and the network simulator Simonstra-
tor [208]. For testbed evaluation, we present cMoflon, a lean variant of eMoflon that
generates embedded C code for the IoT operating system Contiki [51]. We present eval-
uation results for assessing the applicability and efficiency of both tools. For Cobolt, we
chose the TC algorithms kTC [227] as case study. For cMoflon, we added l*kTC [239]
and LMST [140] as further examples.

Finally, we show that our methodology is capable of representing state-of-the-art TC
algorithms based on a collection of 32 TC algorithms from which 17 TC algorithms
are supported in batch and dynamic mode, and six TC algorithms are supported in
batch mode only due to the required ordered processing of links. The TC simulator
component that we developed as part of Cobolt provides generic, reusable interfaces.
cMoflon is a blueprint for developing future domain-specific code generators on top
of eMoflon. These results show that our methodology is reusable within and beyond
the TC research area (Goal 4).
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7.2 outlook

expressiveness of graph constraints For specifying local consistency proper-
ties, we use premise–conclusion graph constraints [91]. Since the first proposal of the
constructive approach in 1995, numerous formalisms have been proposed that allow for
expressing additional consistency properties. Examples are nested graph constraints
and extensions of graph constraints based on path expressions (as discussed in Sec-
tion 4.6). To evaluate our methodology based on further types of (graph) constraints,
the following two prerequisites must be fulfilled. First, an adoption of the constructive
approach for the constraint type must exist. For example, nested graph constraints can
also be translated into application conditions [199]. Second, the chosen constraint type
should be capable of representing attribute constraints. For premise–conclusion graph
constraints, a corresponding extension of the constructive approach exists [44]. Unfor-
tunately, to the best of our knowledge, no published works on handling this type of
attribute constraints exist for nested graph constraints or constraints with path expres-
sions.

usage scenarios A key consistency property of a TC mechanism is that it main-
tains connectivity. This means that the virtual topology of the TC mechanism must be
connected as long as the input topology is connected. Another common consistency
property of TC algorithms is coverage (see also Section 2.4). Coverage requirements
are relevant if each mote monitors a certain geographic region (e.g., for intrusion detec-
tion). A recurring coverage requirement is that the boundary of a given area should be
covered by the joint monitoring areas of all motes. To save energy, a mote may switch
into an idle state if the remaining active motes still fulfill the coverage requirements. A
promising line of research is the application of our approach to scenarios with coverage
requirements. To incorporate coverage requirements, we need to extend the topology
metamodel by attributes that represent the operation mode of a mote (i.e., active or idle)
and the monitored area (e.g., the radius in meters). This extension allows us to encode
the following local consistency property as graph constraint: A mote may only be idle if
the monitored area of the active motes in its local view fulfill the coverage requirements.
For tie breaking, we can use additional attribute constraints that relate to the remaining
energy of the involved motes. The modification of the operation mode of a mote can
be modeled using GT rules. Under these assumptions, we can use our correct-by-con-
struction methodology to derive an algorithm for preserving coverage while reducing
the number of active motes. This algorithm can also be combined with a link-based TC
algorithm.

Another possible extension of our approach relates to the development of probabilistic
TC algorithms. A possible probabilistic variant of kTC inactivates a link that fulfills the
kTC condition with a certain probability p and activates it with probability 1− p. This
probabilistic choice avoids the common problem of triangle-based TC algorithms that



7.2 Outlook 279

the length of routing paths in the virtual topology can grow drastically in comparison
to the input topology. Probabilistic TC algorithms can be modeled using probabilistic
GT [124]. A probabilistic GT rule has one or more RHS patterns and a probability distri-
bution over these patterns. For the described probabilistic kTC, we obtain an inactivation
rule with two RHS patterns: the original RHS, which mandates the inactivation of the
link, and an alternative RHS pattern, which activates the link. The described probabilis-
tic kTC violates the original consistency constraints of kTC. The reason is that the TC
mechanism topology may contain active links that fulfill the kTC condition. A solution
to this problem is to introduce an additional link state (e.g., P). This state indicates that
a link was processed by the probabilistic inactivation rule and, nevertheless, shall be
active. Furthermore, we could add probabilistic rules for reevaluating the marking of I-
and P-links. Such reevaluation rules could alleviate another problem of triangle-based
TC algorithms: Due to the inactivation of a link in a triangle, the intermediate mote
tends to carry additional load because it serves as relay.

Besides these exemplary WSN application scenarios, our approach is applicable in
further domains, as sketched in the following. The constructive approach has been used
in several works in the security domain (e.g., on rule-based access control [175]). As
discussed earlier, applying the pure constructive approach prevents the application of
consistency-violating modifications of the system state, for example, due to unfavorable
earlier decisions. In our scenario, this leads to a potential nontermination of the TC algo-
rithm (see also Section 4.5). In the security domain, we would like to ensure that certain
modifications of the system are always conducted, even if this leads to the revocation of
earlier decisions. The anticipation loop synthesis algorithm can be used to revoke only
those low-priority decisions that block the pending high-priority modification.

In the cloud computing domain, a common challenge is to map virtual networks in a
data center network. This task is called virtual network embedding [255]. The sequence
of embedding requests cannot be predicted. This means that the embedding of a virtual
network with lower priority may prevent the embedding of a virtual network having a
higher priority that arrives later. If the graph constraints are sufficiently expressive to
characterize a valid embedding (e.g., in terms of available computing capacity and stor-
age of the substrate network), our approach can be used to revoke earlier low-priority
embedding decisions in favor of high-priority embedding decisions.

tool support With OCL2AC [164], tool support for the synthesis of application con-
ditions of GT rules based on nested graph constraints exists. OCL2AC handles nested
graph constraints [83], which are, from a structural point of view, more expressive than
premise–conclusion constraints [91]. Unfortunately, the current version of OCL2AC does
not support the handling of complex attribute constraints (e.g., involving arithmetics),
which are crucial from the perspective of the TC domain. After the addition of this
feature, OCL2AC could be used to automate the transformation step from graph con-
straints to application conditions that we conducted manually.
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eMoflon does not support the specification of multiple application conditions per GT
rule (see also Section 5.2). This technical limitation requires a manual transformation
of the TC mechanism specification before evaluating it with Cobolt or cMoflon. It is
desirable to extend eMoflon to support multiple application conditions per GT rule to
avoid this error-prone manual step.

The ToCoCo framework, which we use as a target platform for testbed experiments,
only supports the implementation of batch TC algorithms. Extending ToCoCo to pro-
vide access to context events would alleviate this limitation.

topology control reconfiguration The focus of this work lies on the correct-
by-construction development of individual TC mechanisms. In Section 2.5.4, we also
modeled the reconfiguration inside a TC multi-mechanism to changing user require-
ments (e.g., from minimizing energy consumption to reducing latency) and system con-
texts (e.g., mote density, active communication patterns) as TC multi-mechanism. We
experimented with deriving reconfiguration decisions of a TC multi-mechanism based
on performance-influence models using the tool Coala [271]. Given a reconfiguration
decision that demands a change from a source TC mechanism to a target TC mecha-
nism, an open question is how to transform the source into the target topology such
that a minimal number of links needs to be re-marked. In Section 4.5.2, we showed how
to derive such transformation sequences using the anticipation loop synthesis algorithm.
This approach can be used to conduct TC transitions from a source TC mechanism to a
target TC mechanism as well. From the viewpoint of virtual topology consumer mech-
anisms (e.g., the routing algorithm), it is desirable to perform TC transitions gradually.
This means that that a source TC mechanism topology should fade into the target TC
mechanism topology. A TC multi-mechanism has to communicate to consumer mecha-
nisms which links are about to vanish from the virtual topology (e.g., using a property
that encodes the time to live of a link).

Besides the temporal coexistence, we can also investigate the regional coexistence of
TC mechanisms. Let’s imagine that the network is partitioned into geographic or logic
regions (e.g., according to different mobility patterns or applications) and that each re-
gion shall be able to use a different TC mechanism (e.g., determined using Coala [271]).
Then, a crucial question is how the behavior of motes at the border of two regions shall
be specified. For example, the constraints of border motes can be a conjunction (in
case of the inactive-link constraint) or disjunction (in case of the active-link constraint)
of the graph constraints of the adjacent regions. Investigating questions regarding the
consistency-preserving composition of graph constraints in regionalized networks is a
worthwhile future line of research.

modeling message transfer Our approach focuses on the correctness of the de-
veloped TC algorithm based on the local view of a mote. Hereby, we neglect the interac-
tion among the local views of motes. A further line of research focuses on extending our
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approach to incorporate message exchange. The first step is to extend the specification
with means to describe possible message types as well as operations for sending and re-
ceiving messages. Regarding message transfer, we need to specify in how far messages
are transferred reliably. An important question here is how to model the probability
of message loss if reliable communication cannot be ensured. This could be achieved
using probabilistic GT as discussed earlier. Another important aspect is the notion of
parallelism and sequentiality of events. This means that we have to specify whether
distinct events may occur at the same point in time (true concurrency) or always with
a guaranteed intermediate time (parallelism). Finally, as usual in distributed systems,
causality constraints are important to verify whether a distributed TC algorithm always
leads to a stable state. These considerations already indicate that an extension of our
approach from a localized to a distributed view produces a huge number of exciting
new research questions.
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