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Abstract

The combination of quantum and classical computational resources towards more

effective algorithms is one of the most promising research directions in computer

science. In such a hybrid framework, existing quantum computers can be used to

their fullest extent and for practical applications.

Generative modeling is one of the applications that could benefit the most,

either by speeding up the underlying sampling methods or by unlocking more general

models. In this work, we design a number of hybrid generative models and validate

them on real hardware and datasets.

The quantum-assisted Boltzmann machine is trained to generate realistic arti-

ficial images on quantum annealers. Several challenges in state-of-the-art annealers

shall be overcome before one can assess their actual performance. We attack some

of the most pressing challenges such as the sparse qubit-to-qubit connectivity, the

unknown effective-temperature, and the noise on the control parameters. In order

to handle datasets of realistic size and complexity, we include latent variables and

obtain a more general model called the quantum-assisted Helmholtz machine.

In the context of gate-based computers, the quantum circuit Born machine is

trained to encode a target probability distribution in the wavefunction of a set of

qubits. We implement this model on a trapped ion computer using low-depth circuits

and native gates. We use the generative modeling performance on the canonical

Bars-and-Stripes dataset to design a benchmark for hybrid systems.

It is reasonable to expect that quantum data, i.e., datasets of wavefunctions, will

become available in the future. We derive a quantum generative adversarial network

that works with quantum data. Here, two circuits are optimized in tandem: one tries

to generate suitable quantum states, the other tries to distinguish between target

and generated states.





Impact Statement

Unsupervised learning can extract salient spatio-temporal features from unlabeled

data and is expected to become far more important than supervised learning in

the long term. Indeed, the majority of data being collected every day does not

come with task-specific informative labels (e.g., photos and videos uploaded to the

Internet, medical imaging, tweets, audio recordings, financial time series, and sensor

data in general), and labeling is an expensive process that requires human experts.

The field of unsupervised learning abounds with computationally hard problems.

This is an opportunity for quantum computation to demonstrate an advantage over

classical computation.

In this thesis we select one of the main unsupervised learning problem, namely

generative modeling, and approach it with the help of existing quantum computers.

We utilize two different architectures, quantum annealing and gate-based trapped

ion computers, and develop methods to overcome some of the severe challenges that

affect existing hardware. This is important if we aim at benchmarking quantum

computers on tasks of practical utility.

The models and the results presented in this thesis provide a starting point

for junior researchers working in this novel field at the intersection of quantum

computing and unsupervised learning. This work was carried out in a mixed aca-

demic/industrial setting. Researchers placed in either of these environments could

find the reading interesting and useful.

The material presented in this thesis resulted in five publications on recog-

nized peer-reviewed scientific journals. These provided the basis for further spin-off

projects and publications where the author was involved.
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Chapter 1

Introduction

With quantum computing technologies nearing the era of commercialisation and of

quantum supremacy [1], it is important to think of potential applications that might

benefit from these devices. Machine learning (ML) stands out as a powerful statis-

tical framework to attack problems where exact algorithms are hard to develop.

Examples of such problems include image recognition [2], speech recognition [3], au-

tonomous systems [4], medical applications [5], biology [6], artificial intelligence [7],

and many others. The development of quantum algorithms that can assist ML is an

ongoing effort that has attracted a lot of interest in the scientific community.

Research in this field has been focusing on classification [8], regression [9, 10, 11],

Gaussian models [12], vector quantization [13], principal component analysis [14]

and other methods that are routinely used by ML practitioners. We do not think

these approaches would be of practical use in near-term quantum computers. The

reasons that make these techniques so popular is their scalability and algorithmic

efficiency in tackling huge datasets. Therefore, even if polynomial and, in some

cases, exponential speedups are expected for these algorithms, reaching interesting

industrial scale applications would require fault-tolerant computers with millions

of qubits. This makes the aforementioned algorithms less likely to become killer

applications with devices in the range of 100-1000 noisy qubits.

As we elaborate in this Thesis, only a game changer might be able to make a

dent in speeding up ML tasks. Our strategy is to select a problem that is considered

hard by the ML community. We chose to focus on unsupervised generative modeling,

which we introduce now.

The majority of data being collected daily is unlabeled. Examples of unlabeled

data are photos and videos uploaded to the Internet, medical imaging, tweets, audio

recordings, financial time series, and sensor data in general. Labeling is the process
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of data augmentation with task-specific informative tags, an expensive process that

requires human experts. It is therefore important to design models and algorithms

capable of extracting information and structures from unlabeled data; that is the

focus of unsupervised learning.

But why is this important at all? The discovery of patterns is one of the central

aspects of science. Scientists do not always know a priori which patterns they

should look for and they need unsupervised tools to extract salient spatio-temporal

features from unlabeled data. Unsupervised techniques are designed to capture

the useful features of high-dimensional datasets, enforcing desirable properties such

as simplicity, sparsity [15], and therefore interpretability. As highlighted by ML

experts, it is expected that unsupervised learning will become far more important

than purely supervised learning in the long term [16].

Back in February 1988, Richard Feynman wrote on his blackboard: ‘What I

cannot create, I do not understand’ [17]. Since then this powerful dictum has been

reused and reinterpreted in the context of many fields throughout science. In the

context of unsupervised learning, it is often used to describe generative models,

algorithms that can generate realistic artificial examples of their environment and

therefore are likely to ‘understand’ such an environment. Generative models are

trained to approximate the joint probability distribution of a set of variables, given

a dataset of observations. The joint probability provides both a way to generate new

artificial data resembling the dataset, and a way to infer marginal and conditional

distributions of the variables. These possibilities make generative models extremely

useful in practice.

Generative models are often thought of as graphs where vertices represent ran-

dom variables, and edges represent the conditional dependence structure between

variables. Exact learning and inference in these graphs is intractable in all but the

most trivial topologies [18]. The bottleneck is in the computation of the partition

function, or normalisation constant, which is needed to compute exact expectation

values. Classically this is often approximated by variational methods which are fast,

but may lack precision [19]. To go beyond this, one often resorts to Markov chain

Monte Carlo (MCMC) methods that, however, may suffer from the slow-mixing

problem [20]. It is indeed difficult for the Markov chain to jump from one mode
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of the distribution to another when these are separated by low-density regions of

relevant size. MCMC is therefore hard to scale to large datasets.

We believe there is an opportunity here for quantum computers to assist sam-

pling and improve classical models. This topic is explored in Chapter 2 of this

Thesis, where we develop quantum-assisted models as well as techniques for an ex-

perimental validation of our hypothesis in near-term computers. We begin with a

presentation of quantum annealing as an algorithm for sampling. This is in con-

trast to the standard view where annealing is considered an algorithm for combi-

natorial optimisation [21, 22]. Inspired by this different point of view, we design

two generative models: the quantum-assisted Boltzmann machine (QABM) and

the quantum-assisted Helmholtz machine (QAHM). We provide clear experimental

evidence that quantum annealers can train these models robustly and can handle

real-world datasets. To this extent, we employ D-Wave processors hosted by NASA

Ames Research Center – the D-Wave 2X and the D-Wave 2000Q.

We emphasise that our objective is not to address the question of quantum

speedup in sampling applications analytically. Instead, we design tools to attack this

question empirically using near-term quantum annealers. Some of the challenges we

overcome are the limited qubit-to-qubit connectivity, the unknown effective temper-

ature, the intrinsic noise in the device, the uncertainty in the control parameters,

the handling of continuous variables, and the need to tackle large-scale datasets.

The results of Chapter 2 are based on the following peer-reviewed articles:

1. Benedetti, M., Realpe-Gómez, J., Biswas, R. and Perdomo-Ortiz, A., 2017.

Quantum-assisted learning of hardware-embedded probabilistic graphical mod-

els. Physical Review X, 7(4), p.041052.

2. Benedetti, M., Realpe-Gómez, J. and Perdomo-Ortiz, A., 2018. Quantum-

assisted Helmholtz machines: a quantum–classical deep learning framework

for industrial datasets in near-term devices. Quantum Science and Technology,

3(3), p.034007.

3. Perdomo-Ortiz, A., Benedetti, M., Realpe-Gómez, J. and Biswas, R., 2018.

Opportunities and challenges for quantum-assisted machine learning in near-

term quantum computers. Quantum Science and Technology, 3(3), p.030502.
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Potential impact across social and natural sciences, engineering, and more

Hypothesis: intractable sampling problems enhanced by quantum sampling

Deep
learning Others...Bayesian
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Figure 1.1: Sampling applications in machine learning as an opportunity for quantum
computers. Quantum computers have the potential to sample efficiently from
complex probability distributions. This task is a computationally intractable
step in many machine learning domains. A quantum advantage in these do-
mains could in turn have a significant impact on science and engineering.

We shall remark that, if quantum computers were shown to outperform clas-

sical computers in sampling, the advantages would not be restricted to generative

models. As illustrated in Figure 1.1, sampling is at the core of several leading-edge

domains such as Bayesian inference [23], deep learning [24], and probabilistic pro-

gramming [25]. With a quantum advantage in these domains, we would in turn

expect a strong impact across science and engineering.

Let us now discuss a different type of quantum advantage. Researchers at

Google demonstrated that quantum computers with as few as 50 qubits can attain

quantum supremacy, although in a task with no obvious applications [26]. A highly

relevant question then is whether quantum models exhibiting quantum supremacy

can provide a benefit on real-world applications when using near-term hardware.

To clarify, rather than assisting classical models as suggested before, one can design

models whose inner working is naturally described by quantum mechanics.

Recent work showed that quantum mechanics can provide more parsimonious

models of stochastic processes than classical models, as quantified by an entropic

measure of complexity [27, 28, 29]. Other work showed that a quantum generali-

sation of maximum likelihood learning can yield results that are more accurate on

some problems [30]. Quantum models could then substantially reduce the amount

of other type of computational resources, e.g., memory requirements, and could be
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substantially simpler than classical models as quantified by standard model compar-

ison techniques, e.g., the Akaike information criterion [31]. In a sense, this is a form

of quantum advantage.

Chapter 3 of the Thesis is dedicated to the design of quantum generative models

and the development of learning algorithms and heuristics for near-term computers.

We think that these are important steps towards the validation of the hypothesis

that quantum models can significantly outperform classical models.

But what kind of data can be handled by a quantum model? Datasets generated

in experiments with quantum systems are an obvious fit. More generally though, it is

possible to conceive inputs and outputs that are inherently quantum mechanical, i.e.,

already in superposition; these are often referred to as quantum data [32]. Quantum

data could originate remotely, for example, from quantum computers transmitting

over a quantum Internet [33]. Alternatively, quantum data can be prepared locally if

a recipe is available, e.g., if a suitable state-preparation circuit is known. Assuming

this preparation be efficient, one can extend the fields of supervised and unsupervised

learning to quantum datasets and perform interesting quantum information tasks.

To this extent, let us go back to our main focus, generative modeling, and gen-

eralise it. Recall that the aim is to approximate the joint probability distribution of

a set of variables from a dataset of observations. Conceptually, the generalisation is

straightforward: quantum generative models are algorithms trained to approximate

the density operator of a set of qubits, given a dataset of quantum states. It turns

out that this process of approximately reconstructing a density operator is well-

known to physicists under the name of quantum state tomography. Indeed, there

already exist proposals of generative models for tomography such as the quantum

principal component analysis [14], the quantum Boltzmann machine [34, 35], and

the probably approximately correct learning [36, 37].

In summary, ML provides a set of new tools to physicists and, conversely, quan-

tum mechanics provides a set of new tools to ML practitioners. This intersection

is one of the most promising avenues of science. Chapter 3 takes concrete steps to-

wards the validation of this hypothesis while working under the highly constrained

environment of existing quantum hardware. We begin with a review of parameter-

ized quantum circuits as a way to implement algorithms in near-term gate-based
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LEARNING

Stochastic gradient descent

Θt+1 = Θt + G [ P(s|Θt) ]

PREDICTIONS

F [ P(s|Θt) ]

HARD TO COMPUTE

Estimation assisted by sampling 
from quantum computer

DATA

s = {s1,…, sD}

Figure 1.2: Example of a hybrid quantum-classical system for machine learning. A dataset
s drives the learning of model parameters Θ from time t to t+1. The learning
algorithm requires the computation of a function G of the probability distri-
bution implemented by the model P (s|Θt). This computationally hard step
can be estimated from samples and assisted by a quantum computer. Making
predictions F out of the trained model is also hard and requires assistance of
a quantum computer.

computers. We discuss in detail the hybrid setting where a classical computer is

used for the tractable subroutines of the algorithm and a quantum computer is used

only for the intractable steps. Figure 1.2 illustrates this concept with an example.

We then design two generative models: the quantum circuit Born machine

(QCBM) and the quantum generative adversarial network (QGAN). We provide

evidence that low-depth circuits driven by data alone learn to approximate classical

probability distributions and prepare interesting quantum states. To this extent,

we employ a trapped ion computer hosted by University of Maryland, as well as

extensive in silico simulations. Based on the generative modeling performance, we

design a metric for benchmarking both quantum and classical parts of the system.

Theoretical work has shown that, under well-believed complexity arguments,

some classes of low-depth circuits cannot be simulated efficiently by classical means

(e.g., instantaneous quantum polynomial-time circuits) [38, 39]. This implies that

some classes of QCBMs and QGANs have strictly more expressive power than clas-

sical models [40, 41]. In part, this result justifies the work done in Chapter 3 of
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this Thesis; however, it does not necessarily imply a practical advantage for ML

applications. Once again, we opt for an empirical approach towards answering the

question of advantage in quantum models. The results of Chapter 3 are based on

the following peer-reviewed articles:

4. Benedetti, M., Garcia-Pintos, D., Perdomo, O., Leyton-Ortega, V., Nam, Y.

and Perdomo-Ortiz, A., 2019. A generative modeling approach for benchmark-

ing and training shallow quantum circuits. npj Quantum Information, 5(1),

p.45.

5. Benedetti, M., Grant, E., Wossnig, L. and Severini, S., 2019. Adversarial quan-

tum circuit learning for pure state approximation. New Journal of Physics,

21(4), p.043023.

6. Benedetti, M., Lloyd, E., Sack, S., and Fiorentini, M., 2019. Parameterized

quantum circuits as machine learning models. Quantum Science and Technol-

ogy, 4(4), p.043001.

Chapters 2 and 3 are meant to be self-contained and can be read in reverse order

if desired. We do assume familiarity with basic machine learning definitions and

methods (see Mehta et al. [42] for a physics-oriented introduction), and basic working

knowledge on quantum annealing (see Hauke et al. [43]) and quantum computing

(see Nielsen and Chuang [44], Chapter 2). We conclude the Thesis in Chapter 4

with a brief outlook of the field.

The author of this Thesis was also involved in several spin-off projects and

publications which are not included in this Thesis. For completeness, we list these

publications here:

• Serban, R., Wilson, M., Benedetti, M., Realpe-Gómez, J., Perdomo-Ortiz,

A., Petukhov, A. and Jayakumar, P., 2018. Quantum annealing for mobility

studies: go/no-go maps via quantum-assisted machine learning. Proceedings

of the 2018 Ground Vehicle Systems Engineering and Technology Symposium

(GVSETS)

• Grant, E., Benedetti, M., Cao, S., Hallam, A., Lockhart, J., Stojevic, V.,

Green, A.G. and Severini, S., 2018. Hierarchical quantum classifiers. npj

Quantum Information, 4(1), p.65.
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• Zhu, D., Linke, N.M., Benedetti, M., Landsman, K.A., Nguyen, N.H.,

Alderete, C.H., Perdomo-Ortiz, A., Korda, N., Garfoot, A., Brecque, C. and

Egan, L., 2019. Training of quantum circuits on a hybrid quantum computer.

Science advances, 5(10), p.eaaw9918.

• Grant, E., Wossnig, L., Ostaszewski, M. and Benedetti, M., 2019. An ini-

tialization strategy for addressing barren plateaus in parametrized quantum

circuits. arXiv preprint arXiv:1903.05076.

• Ostaszewski, M., Grant, E. and Benedetti, M., 2019. Quantum circuit struc-

ture learning. arXiv preprint arXiv:1905.09692.



Chapter 2

Annealing-based generative models

2.1 The framework

Generative models rely on a sampling engine that is used for both inference and

learning. Because of the intractability of traditional sampling techniques like the

Markov chain Monte Carlo (MCMC) method, finding good generative models is

among the hardest problems in machine learning [16, 24, 45, 46, 47].

Sampling goes beyond the original focus of the quantum annealing compu-

tational paradigm [22, 21, 48], which was to solve discrete optimisation prob-

lems [49, 50, 51, 52, 53, 54, 55, 56, 57, 58]. However, state-of-the-art quantum

annealers have a strong interaction with the environment leading to relatively fast

thermalisation and decoherence. Theory suggests that in these cases the relevant

quantum dynamics essentially freezes during annealing somewhere between the crit-

ical point associated with the minimum gap and the end of the annealing sched-

ule [59, 60]. Indeed, empirical results showed that under certain conditions quantum

annealers sample from a Gibbs distribution [61, 62, 63].

More formally, the dynamics of a quantum annealer is characterised by the

time-dependent Hamiltonian

H(τ) =−A(τ)
∑
i∈V

X̂i+B(τ)HP , (2.1)

where τ = t/ta is the ratio between time t and annealing time ta, and where A(τ)

and B(τ) are monotonic functions satisfying A(0)�B(0)≈ 0 and B(1)�A(1)≈ 0.

The first term in Eq. (2.1) corresponds to the transverse field in the x direction,

characterised by the Pauli operators X̂i for each qubit i in the set of qubits V. The
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second term in Eq. (2.1) corresponds to the problem-encoding Hamiltonian

HP =−
∑

(i,j)∈E
JijẐiẐj−

∑
i∈V

hiẐi, (2.2)

where Pauli operator Ẑi refers to the z direction for the i-th qubit, and where Jij and

hi are the control parameters. The expression above is defined on a graph G = (V,E)

where V is the set of qubits and E is the set of qubit-to-qubit interactions available

in hardware.

As discussed in Ref. [61], the dynamics of a quantum annealer is expected to

remain close to equilibrium until they slow down and deviate from equilibrium to

finally freeze out. If the time between the dynamical slow-down and the freeze-out

is small enough, the final state of the quantum annealer is expected to be close to

the Gibbs state

ρ= e−βQAH(τ∗)

Z
, (2.3)

corresponding to the Hamiltonian in Eq. (2.1) evaluated at τ = τ∗, also known as

the freeze-out time. Here, βQA is the inverse physical temperature of the quantum

annealer, and Z is the normalisation constant. The density in Eq. (2.3) is fully

specified by the effective parameters βJij , βhi, and βΓ, where β = βQAB(τ∗) is the

effective inverse temperature and Γ =A(τ∗)/B(τ∗) is the effective transverse field.

In the case where A(τ∗)�B(τ∗), the final state of the quantum annealer is close

to a classical Boltzmann distribution over a vector of binary variables z ∈ {−1,+1}N ,

P (z) = e−βE(z)

Z
, (2.4)

where

E(z) =−
∑

(i,j)∈E
Jijzizj−

∑
i∈V

hizi, (2.5)

is the energy function given by the eigenvalues ofHP . In other words, zi are eigenval-

ues of Ẑi. The intuition is that the dominant coupling of a qubit to the environment

is via the Ẑ operator (see the supplementary material of Refs. [64, 65]), and since
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A(τ∗)�B(τ∗) by assumption, the interaction with the bath lacks a strong X̂ com-

ponent capable of causing relaxation between the states of the computational basis.

In other words, the population dynamics is frozen. This suggests that, in principle,

the user could adjust the control parameters Jij and hi so that the device samples

from a desired Boltzmann distribution1.

Figure 2.1 shows an example where the binary distribution implemented by

a quantum annealer is used for the generative modeling of black-and-white hand-

written digits. Panel (a) shows the learning phase. Here, samples generated by

the quantum annealer are compared with samples from the dataset of digits. The

control parameters are then modified according to a learning rule in an iterative pro-

cess. Panel (b) shows the inference phase. The learned model is used to reconstruct

missing information in a corrupted image. To do this, we start by programming the

quantum annealer with the learned control parameters. Then, for those qubits that

represent known pixels, we set the control parameters to large values ±hmax of the

correct sign. These qubits are ‘clamped’ in the sense that with high probability they

are sampled to the known values of the corresponding pixels. Finally, we sample

from the annealer to infer the most likely values of the unknown pixels. Each sample

provides a reconstructed image. Yet why is quantum annealing expected to help in

the computational task of sampling from complex probability distributions?

Tunneling, the quantum effect at the core of annealing, is a powerful compu-

tational resource for keeping the system close to its ground state [65]. It is this

quantum resource, available before the freeze-out time, that might speed up the

thermalisation process and make sampling more efficient than classical MCMC. We

shall not, however, expect such a quantum advantage for all energy landscapes.

There will be instances that cannot be sampled efficiently by both classical and

quantum resources. Hence, the answer to this question depends on both the quan-

tum resources available and the complexity of the energy landscape. Generative

modeling and ML in general provide a variety of real-world instances to validate

this hypothesis.

In practice, however, there exist device-dependent limitations that complicate

1When A(τ∗) cannot be neglected, the quantum annealer samples from a quantum distribution.
This could enable the implementation of some classes of quantum models, for example, the quantum
Boltzmann machine [34, 66, 35, 30].
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Figure 2.1: Example of annealing-based generative models for binary images. (a) Learning
consists of adjusting control parameters so that the generated samples become
similar to those in the dataset. (b) Inference consists of using the learned
model to sample parts of a corrupted image and obtain a reconstruction.

the process just described. The most pressing ones are as follows [62, 63, 67, 68, 69]:

(i) the qubit-to-qubit interaction graph E in Eq. (2.2) is sparse;

(ii) the freeze-out time τ∗ and the effective inverse temperature β are unknown

and depend on the values of the control parameters Jij and hi;

(iii) the control parameters Jij and hi are noisy; and

(iv) the dynamical range of Jij and hi is finite.

Suitable strategies to tackle all of these limitations are needed before we can assess

whether quantum annealers can sample more efficiently than traditional techniques

on classical computers, or whether they can implement more effective models. As

an example, relatively simple techniques for the estimation of parameter-dependent

effective temperature were shown to enable the learning of some Boltzmann models

via quantum annealing [62, 63]. However, the need to estimate temperature at each

learning iteration implied a significant computational overhead.

In Section 2.2, we put forward an approach that mitigates all these limitations.

It consists of using available graph embedding techniques to effectively implement
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all pairwise interactions between variables in quantum hardware, hence improving

on limitation (i). This introduces a number of additional control parameters to be

adjusted. To this extent we first transform the dataset into another dataset with

higher and redundant resolution; then we learn all parameters by minimising a di-

vergence between this new dataset and the quantum annealer distribution. This

does not require estimation of the effective temperature, hence sidestepping limi-

tation (ii), and is robust to the noise in the control parameters, hence improving

on limitation (iii). More specifically, the learning algorithm has the potential to

correct for errors due to non-equilibrium deviations [61], systematic biases in the

parameters [70], and sampling biases which are common to state-of-the-art quan-

tum annealers [71]. Finally, available regularisation techniques are used to control

the magnitude of all parameters, hence improving on limitation (iv).

We will refer to this approach as the grey-box approach. This is because although

both the model and the learning algorithm rely on the assumption that the quantum

annealer is sampling from a Gibbs distribution, we do not expect this assumption to

be strictly valid for our approach to work well. This shall become clear in Section 2.2

where we use the grey-box approach to experimentally demonstrate a quantum-

assisted Boltzmann machine (QABM) for small binarized datasets.

The natural extension of this approach is to develop techniques that can handle

large realistic datasets. This would open up the possibility to use quantum-assisted

models in real-world domains and to benchmark them against extensively studied

classical models. In particular, this means tackling the following additional prob-

lems:

(v) the model could be augmented with hidden variables;

(vi) the variables in the dataset could be continuous or discrete, but the annealer

produces binary strings;

(vii) the number of variables in the dataset could be much larger than the number

of qubits in the annealer; and

(viii) the dataset could be made up of a large number of observations (i.e., data

vectors).
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To clarify problem (vi), in Appendix 5.1 we argue why a direct implementation

of stochastic continuous variables in state-of-the-art quantum annealers would be

challenging. Problems (vii) and (viii) are clear from their definition. We shall now

clarify problem (v).

Deep generative models, i.e., models with many layers of hidden variables, have

the ability to learn multi-modal distributions over high-dimensional datasets [72].

Each additional layer provides an increasingly abstract representation of the data

and improves the generalisation capability of the model [73].

More formally, a deep generative model implements a probability distribution

P (v) = ∑
uP (v|u)P (u), where v = {v1, . . . ,vN} are visible variables encoding the

data (e.g., pixels) and u = {u1, . . . ,uM} are unobserved, or hidden, variables that

serve to capture non-trivial correlations by encoding high-level features. To perform

both inference and learning on these models, we need to sample from the posterior

distribution P (u|v), and this is intractable in general. A standard approach consists

of introducing a distribution Q(u|v) to approximate the true posterior [19]. Such a

distribution should be chosen from a family that is both expressive and tractable.

The learning algorithm is then in charge of adjusting Q(u|v) to approximate P (u|v),

and adjusting P (v) to model the data.

Let us now introduce some deep architectures that extend the QABM and that

can work in synergy with quantum devices. In Figure 2.2, generative models are

represented as graphs of stochastic vertices. Edges can be directed and undirected,

respectively indicating conditional and joint distributions. We use the blue colour

for vertices that can be implemented by qubits on a quantum device, and we use

an edge marked at both ends to indicate a quantum interaction. Panel (a) shows

the quantum-assisted version of the Helmholtz machine [74, 75, 76] (QAHM), which

consists of two networks: a recognition network to do approximate inference on

hidden variables, and a generator network to generate artificial data. The recognition

network implements the aforementioned distribution Q(u|v) and performs bottom-

up sampling starting from visible variables v. This network may be entirely classical

or quantum-assisted. The generator network, instead, implements the distribution

P (u,v) and is used to perform top-down sampling starting from the deepest hidden

layer (e.g., u2 in Fig. 2.2). Here the deepest hidden layer is modeled by qubits and
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Figure 2.2: Deep architectures for quantum-assisted generative modeling: (a) quantum-
assisted Helmholtz machine (QAHM); (b) quantum-assisted deep belief
network (QADBN); and (c) quantum-assisted deep Boltzmann machine
(QADBM).

quantum interactions.

If the recognition and generator networks share the same quantum layer, we

obtain the quantum-assisted version of a deep belief network [73, 24] (QADBN), as

shown in Panel (b). Deep belief networks usually implement a bipartite undirected

graph in the deepest layer, but here we schematically show a more general structure

with lateral connections that could be implemented in quantum hardware.

Finally, if the recognition network is the exact inverse of the generator net-

work, we obtain the quantum-assisted version of a deep Boltzmann machine [77, 78]

(QADBM), which we show in Panel (c).

In other words, our proposal consists in using the quantum annealer to sample

the most abstract representation of the data, that is, the deepest layer of a deep

generative model. We expect quantum devices to have a higher impact at process-

ing this abstract representation, where the classically-tractable information has been

already trimmed by the classical deep learning architecture; this effectively tackles

problem (v) – the need for more expressive power through hidden variables. The

lower layers of the network are classical components (e.g., pre- and post-processing

stochastic functions) that effectively transform samples from the quantum annealer

to data vectors, and vice-versa. Hence, visible variables could be continuous vari-
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ables, discrete variables, or other objects, effectively solving problem (vi). Finally,

because the quantum device works on a low-dimensional binary representation of the

data, we are also able to handle datasets whose dimensionality is much larger than it

would be possible with state-of-the-art hardware – hence improving on problem (vii).

All three quantum-assisted deep architectures described above can be readily

implemented and tested on available quantum annealers. However, problem (viii) is

a practical caveat related to the fact that learning the large number of parameters

in a deep architecture may require large datasets [79]. For each data vector, we

then need to infer the corresponding value of hidden variables using the recognition

network, and that requires both QADBN and QADBM to sample from a quantum

device. This amount of work would be daunting for near-term quantum comput-

ers in the case of large datasets2. The more flexible framework of QAHM opens

up the possibility of using a completely classical recognition network, sidestepping

problem (viii) altogether.

2.2 The quantum-assisted Boltzmann machine
2.2.1 Model definition

Let us consider a dataset D = {s1, . . . ,sD}, where each data vector can be repre-

sented as an array of binary variables, i.e., sd = (sd1, . . . ,sdN ), with sdi ∈ {−1,+1},

for i= 1, . . . ,N . The Boltzmann machine [77] assumes that the correlations in the

dataset can be modeled by a Boltzmann probability distribution. That is

P (s) = e−βE(s)

Z
, (2.6)

where

E(s) =−
∑

(i,j)∈E
Jijsisj−

∑
i∈V

hisi, (2.7)

is the energy function. These Equations are identical to Eqs. (2.4) and (2.5) in

the previous Section, except for s which here represents the logical variables in the

generative tasks, and not qubits.

We would like to use a Boltzmann model where the interactions are described
2For example, the canonical MNIST dataset is composed of 60000 training vectors, hence we

would need to program the quantum device at least 60000 times.
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by a graph E with complete connectivity (i.e., all-to-all). As this is the most general

case, our derivations include any other graph topology with pairwise connectivity.

In the previous Section, we justified why quantum annealers are expected to

approximately sample from a Gibbs distribution. However, the sparse qubit-to-qubit

interaction graph of state-of-the-art quantum annealers strongly limits their capacity

to model complex data, as shown in previous simulations [69] and experiments [62].

The typical strategy to embed dense graphs in quantum hardware is to map each

logical variable to a several physical qubits forming a subgraph, therefore increasing

the effective connectivity. In other words, one replaces each vertex in graph Edense

with a connected component in graph Esparse so that graph Edense can be recovered

by contracting edges in Esparse. The problem of finding this map is called the minor-

embedding problem [80, 81].

Finding the optimal minor-embedding with respect to the number of qubits is

computationally intractable [82, 83]. Our algorithm, however, does not require an

optimal embedding. Instead, it requires any minor-embedding of the complete graph

into the interaction graph of the quantum annealer. In many practical scenarios,

this can be found efficiently by off-the-shelf heuristics [84]3.

Let us then assume we have a minor-embedding of the complete graph of the N

logical variables into the sparse graph of M physical qubits. We now use it to define

a map f from the data space to the qubit space. The map allows us to convert the

original dataset D = {s1, . . . ,sD} to an extended dataset D̃ = {z1, . . . ,zD}, where

zd = f(sd). Note that the number of vectors in the dataset is preserved, but the

dimension of each vector increases from N toM . Here, we choose a map that copies

the state of each logical variable, i.e.,

z
(k)
i = si, for k = 1, . . . ,Qi, (2.8)

where Qi is the number of qubits in subgraph i.

The generative task now turns into the problem of learning a model for the

extended dataset D̃. Let us define a new problem Hamiltonian over M =∑N
i=1Qi

3When possible one could also use known minor-embedding prescriptions. For example, the
schema in Ref. [81] embeds a complete graph of N variables into D-Wave’s Chimera graph using
M ∼O(N2) qubits.
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qubits,

H̃P =−1
2

N∑
i,j=1

Qi,Qj∑
k,l=1

J
(kl)
ij Ẑ

(k)
i Ẑ

(l)
j −

N∑
i=1

Qi∑
k=1

h
(k)
i Ẑ

(k)
i . (2.9)

where Ẑ(k)
i is the Pauli matrix in the z direction for qubit k of subgraph i, h(k)

i is

the field parameter for qubit k of subgraph i, and J
(kl)
ij is the coupling parameter

between qubit k of subgraph i and qubit l of subgraph j. When i= j, the coupling

specifies the interaction within the subgraph; when i 6= j, it specifies the interaction

among subgraphs. Note that J (kl)
ij = 0 if there is no available interaction between

the corresponding qubits in the quantum hardware. Variables z(k)
i encoding the

extended dataset are then interpreted as the eigenvalues of the Pauli operator Ẑ(k)
i .

Finally, we introduce a map g from qubit space to data space. Essentially, it

transforms samples generated by the quantum annealer into samples that resemble

the original dataset. Here, we choose a map that takes the majority vote of physical

variables, i.e.,

si = sign

 Qi∑
k=1

z
(k)
i

 . (2.10)

The rationale behind this choice is that an ideal learned model is expected to sample

the same value for all physical variables z(k)
i in a subgraph i, i.e., z(k)

i = z
(l)
i for

k, l = 1, . . . ,Qi. In this case, we could pick whichever z(k)
i as representative of the

logical variable si, and this choice would be equivalent to the choice in Eq. (2.10).

However, we expect Eq. (2.10) to be more robust to the different sources of noise

in quantum annealers as it exploits redundancy in the spirit of error-correction

codes [85, 86].

At this point, we notice that a number of auxiliary control parameters Jij and

hi have been introduced by the minor-embedding. We shall now discuss how to deal

with those. In optimisation, which is the original focus of quantum annealing, one

seeks the vector s∗ associated with the lowest energy in Eq. (2.7). In this case, the

value of all auxiliary parameters in Eq. (2.9) should be fine-tuned so that the ground

state of the original problem is preserved, and therefore still favoured in the physical

implementation of quantum annealing. This problem is known as the parameter-
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setting problem [80, 56, 55]. In sampling, the scenario is different because all the 2N

vectors are significant as well as their corresponding probabilities. Hence, one seeks

the value of auxiliary parameters that preserves the entire distribution defined in

Eq. (2.6).

Previous research [56] suggests a possible mechanism underlying the parameter-

setting problem. The authors investigated the Sherrington-Kirkpatrick model [87]

and found that the optimal choice of the auxiliary parameters could be obtained by

forcing both the spin glass and the subgraphs to cross the quantum critical point

together during the annealing. Roughly speaking, the quantum phase transition

happens when the energies associated with the problem-encoding system and the

transverse field are of the same order of magnitude. This implies that the optimal

auxiliary parameters are O(JSG
√
N), where N is the number of spins and JSG is the

typical value of the couplings, that is, the standard deviation (see Fig. 2 in Ref. [56]).

However, the intuition provided by this study does not necessarily apply to realistic

problems. In generative modeling, even when starting from a dense model, the

learning process could lead to a sparse model that is substantially different from

Sherrington-Kirkpatrick’s.

Our solution uses the extended dataset defined in Eq. (2.8) to simultaneously

address the parameter-setting problem and to guide the learning. Moreover, our

algorithm implicitly correct for noise and defects on the control parameters, problems

that are expected to affect any near-term quantum computer. This is achieved by

adjusting all parameters in Eq. (2.9) to minimise the “error” made by the annealer

in producing samples that resemble the dataset. In the next Section we discuss

our solution in detail; let us now recap the QABM using the example illustrated in

Figure 2.3.

In Panel (a), we define a complete graph for the logical variables, i.e., the four

pixels shown in Panel (c). Using a suitable heuristic, we embed the graph into the

quantum annealer in Panel (b). This introduces auxiliary variables and parameters.

In this example, the logical variable 1 (red vertex) is mapped to two qubits, 1A

and 1B, which are then connected by an auxiliary coupler JAB11 (red edge) to form

a subgraph. Variable 2 is mapped similarly. The remaining couplers (black edges)

represent interactions between different subgraphs. The embedding is also used to
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Figure 2.3: Example of a quantum-assisted Boltzmann machine. (a) Complete graph for
the logical variables, i.e., the four pixels in (c). An heuristic embeds the
graph into the interaction graph of the quantum annealer in (b) at the cost of
introducing auxiliary variables and parameters. The embedding is also used to
define an encoding f and a decoding g between the original data space in (c)
and the extended data space in (d). The learning algorithm adjusts all the
parameters tackling both the parameter-setting problem and the generative
task.

define encoding and decoding mappings f and g, respectively, that transform be-

tween data space in Panel (c) and qubit space in Panel (d). The learning algorithm,

which we describe next, adjusts all control parameters, hence automatically tackling

both the parameter-setting and the generative modeling problems.

2.2.2 Learning algorithm

The QABM can be trained by minimising a suitable measure of distinguishability

between mixed quantum state. Let ρD̃ be the diagonal density matrix whose diagonal

elements encode the distribution of the extended dataset D̃. Let ρ be the Gibbs

state in Eq. (2.3) approximately prepared by the quantum annealer. A particularly

convenient measure of distinguishability in our case is the quantum relative entropy

S
(
ρD̃

∥∥∥ρ)= tr
(
ρD̃ lnρD̃

)
− tr

(
ρD̃ lnρ

)
. (2.11)
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This quantity is non-negative, and it is zero if and only if ρ= ρD̃. The convenience

stems from the logarithm in the second term which cancels the exponential in the

definition of the Gibbs state.

We can now use gradient descent to minimise this quantity with respect to the

control parameters. The learning rule based on gradient descent is given by

J
(kl)
ij (t+ 1)←− J (kl)

ij (t)−η ∂S

∂J
(kl)
ij

, (2.12)

h
(k)
i (t+ 1)←− h(k)

i (t)−η ∂S

∂h
(k)
i

, (2.13)

where t indicates the iteration number and η > 0 is the learning rate. Calculating

the derivatives we obtain

− 1
β

∂S

∂J
(kl)
ij

=
〈
Ẑ

(k)
i Ẑ

(l)
j

〉
ρ
D̃

−
〈
Ẑ

(k)
i Ẑ

(l)
j

〉
ρ
, (2.14)

− 1
β

∂S

∂h
(k)
i

=
〈
Ẑ

(k)
i

〉
ρ
D̃

−
〈
Ẑ

(k)
i

〉
ρ
. (2.15)

Here, 〈·〉ρ
D̃
denotes the ensemble average with respect to the density matrix ρD̃ that

involves only the data – this term is commonly referred to as the positive phase4.

Similarly, 〈·〉ρ denotes the ensemble average with respect to the density matrix ρ

that exclusively involves the model – this term is usually called the negative phase.

We now discuss the learning rule in details. The Gibbs state approximately

implemented by the annealer is characterised by the variables βJ (kl)
ij and βh

(k)
i .

Since the effective inverse temperature β is unknown, we wrote it to the left-hand

side of Eqs. (2.14) and (2.15). Using the left-hand side as estimators for the partial

derivatives in Eqs. (2.12) and (2.13) we observe that the learning takes place at an

effective learning rate ηβ. Note that β may vary depending on the instance [62].

Our approach completely sidesteps the need to estimate it by absorbing it into a

varying learning rate.

Recall that if A(τ∗)� B(τ∗) in Eq. (2.1) during experiments, the annealer

samples from a classical probability distribution. In this case, the minimisation

4The positive phases for all the parameters can be pre-calculated at the beginning of learning.
This is a special case as there are no hidden variables in our model. In models with hidden variables
this term cannot be pre-computed.
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of the quantum relative entropy coincides with the maximisation of the classical

log-likelihood. However, the quantum relative entropy is more general and the cor-

responding learning rules work also when the effective transverse field cannot be

neglected. In fact, the transverse field could be treated as a further parameter to be

learned (see Ref. [34] for a similar result). Unfortunately, state-of-the-art quantum

annealers do not allow us to control the effective transverse field.

The exact computation of the statistics in the negative phase is a computa-

tional bottleneck due to the intractability of computing the normalisation constant

of the Gibbs state. For classical distributions on simple graphs, there exist fast [88]

approximations to the required statistics. For the complete graph considered here,

the estimation is usually carried out by MCMC methods [77, 89]. Instead, our learn-

ing algorithm is designed on the working assumption that samples from quantum

annealers are naturally described by Gibbs states. This assumption is reflected in

that the second moment between two variables influences only the update of the

coupling J
(kl)
ij between them. If such a second moment increases (decreases), so

does the corresponding coupling. This leaves open the possibility for the model

to effectively self-correct for relatively small deviations from equilibrium, persistent

biases, noise, and lack of precision, as long as the estimated gradient has a positive

projection in the right direction, in the spirit of simultaneous perturbation stochastic

approximation (SPSA) [90, 91, 68].

Equation (2.12) implies that couplings J (kl)
ii belonging to the same subgraph

increase at a varying rate proportional to 1−
〈
Ẑ

(k)
i Ẑ

(l)
i

〉
ρ
D̃

, which, in principle, leads

to infinite values in the long term. However, the rate of growth decreases as the

learning progresses since the samples generated by the annealer resemble the data

more and more. Learning rules based on standard gradient-descent tend to produce

large values for all the parameters as they push as much as possible towards a

distribution with all the mass concentrated on the data vector. This problem is

known as overfitting, and it is usually approached by regularisation. A possible

regularisation method consists of penalising large parameters by adding a suitable

term to Eq. (2.11). Another approach is to employ a stopping criterion based on some

measure of generalisation, or predictive capability, evaluated at each iteration on a

test dataset that was not used for learning. Under a proper choice of regularisation,
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the auxiliary parameters should not grow indefinitely anymore.

Finally, the learning rule can be interpreted as quantum entropy maximisation

under constraints on the first- and second-order moments [92, 93, 94]. In Ref. [95], a

maximum entropy approach was implemented on a quantum annealer in the context

of information decoding, which is a hard optimisation problem. In contrast, we use

a maximum entropy approach to learn a generative model, which is a hard machine

learning problem.

Regarding the complexity of the algorithm, a complete graph with N logical

variables has O(N2) parameters. The embedding of this into a sparse graph like

D-Wave’s Chimera graph requires O(N2) qubits [81]. However, the total number

of parameters is still O(N2). This occurs because when going from a dense graph

to a sparse graph the number of auxiliary parameters is a small constant factor,

e.g., each qubit in the Chimera graph interacts with six neighbours at most. In

our experiments, this factor turned out to be ≈ 3 (see Table 2.1) which is a rather

small computational overhead for learning the auxiliary parameters. This overhead

can be neglected since the main bottleneck of the generative problem is still in the

generation of samples which is at least as hard as any non-deterministic polynomial

time problem (NP-hard)[46, 96, 97].

2.2.3 Implementation

2.2.3.1 Device and embeddings

We run experiments on the D-Wave 2X quantum annealer produced by D-Wave

Systems and located at NASA Ames Research Center. D-Wave 2X processors are

equipped with 1152 qubits interacting according to a Chimera graph. The minor-

embedding schema in Ref. [81] can map a complete graph of 48 logical variables

into an Chimera graph of this size. However, only 1097 qubits are functional and

available in the D-Wave 2X hosted by NASA Ames Research Center. Due to this

further restrictions on the connectivity of the processor, we expect the size of the

largest graph that can be embedded to be reduced.

We resorted to the find_embedding heuristic [84] provided by the D-Wave

programming interface. For graphs of size 15, 42 and 46 we ran the heuristic 500

times and selected the best embedding found. Table 2.1 shows details for each of

the embeddings selected for our experiments.
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Logical
variables N

Logical
parameters N(N + 1)/2

Physical
variables O(N2)

Physical
parameters O(N2)

15 120 76 252
42 903 739 2644
46 1081 940 3389

Table 2.1: Main characteristics of the selected embeddings for complete graphs into the
Chimera interaction graph of the D-Wave 2X. The number of required physical
variables, i.e., qubits, is expected to scale as the square of the number of logical
variables. As explained in the text, the number of physical parameters, i.e.,
couplings and local fields, is also expected to scale as the square of the number
of logical variables. The overhead in terms of parameters, that is, the ratio
between the number of physical and logical parameters, is a small constant
factor of ≈ 3 in our case.

We judge the quality of an embedding not only by the total number of physical

variables (i.e., qubits) needed, but also by the maximum subgraph size for each

logical variable. For example, in the case of the 46-variable complete graph, we found

an embedding with 917 qubits and a maximum subgraph size of 34. We selected,

instead, an embedding with a larger number of qubits, 940, but with a considerably

smaller maximum subgraph size of 28. Figure 2.4 shows the selected 46-variable

embedding. Each logical variable is represented by qubits with the same label and

edges of the same colour. Black edges describe interactions among subgraphs and,

hence, among logical variables.

2.2.3.2 Datasets and pre-processing

We tested our ideas on the real OptDigits dataset [98], the synthetic Bars-and-

Stripes (BAS) dataset [99], and synthetic Ising instances based on the Sherrington-

Kirkpatrick model [87]. Table 2.2 summarises the characteristics of each dataset.

OptDigits is a real dataset of 8×8-pixel pictures of handwritten digits belonging

to classes ‘zero’ to ‘nine’. Using standard one-hot encoding for the class (i.e., cdi =−1

for i 6= j, cdj = +1, where j indexes the class for picture d), we would need to embed

a complete graph of 74 variables – 64 for the pixels and 10 for the class. We do not

expect to be able to embed graphs of this size in the D-Wave 2X. Therefore, we

removed the leftmost and rightmost columns as well as the bottom row from each

picture, reducing the size to 7× 6. We retained only pictures belonging to classes

‘one’, ‘two’, ‘three’ and ‘four’, reducing the requirements for one-hot encoding to

four variables. The selected classes account for 1545 pictures in the training set and

723 pictures in the test set, and they are in almost equal proportion in both sets.
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Figure 2.4: Minor-embedding of 46 logical variables into the Chimera interaction graph
of the D-Wave 2X. This solution utilises 940 out of 1097 physical variables,
that is, 86% of the available qubits. Subgraphs are characterised by the same
number and the same colour.
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Figure 2.5: Pre-processing of the OptDigits dataset. The 8× 8 pictures are cropped to
7×6 by removing columns from the left and the right, and by deleting a row
from the bottom. The 4-bit grey scale is thresholded at the midpoint and
binarized to {−1,+1}.

Finally, the original 4-bit grey scale of each pixel was thresholded at the midpoint

and binarized to {−1,+1} in order for the data to be represented by qubits in the

D-Wave 2X. The pre-processing steps are illustrated in Fig. 2.5. Some pictures from

the test set can be seen in Figure 2.6 (a).

Bars-and-Stripes (BAS) is a synthetic dataset ofN×M -pixel pictures generated

by setting the pixels of each row (or column) to either black (−1) or white (+1),

at random. A reason to use this synthetic dataset is that it can be adapted to

the number of available qubits in the D-Wave 2X. Having found an embedding for

the 42-variable complete graph, we generated a 7×6 BAS dataset consisting of 190

pictures of 42 binary variables each. Then, we randomly shuffled the pictures and

split the dataset into training and test sets of size 95 each. Figure 2.7 (a) shows

some pictures from the test set.

For the Ising synthetic datasets, we preferred to work with instances of small

size. We chose 10 random instances of the Sherrington-Kirkpatrick model with

N = 15 logical variables. Parameters Jij in Eq. (2.7) were sampled from a Gaussian

distribution with mean µ = 0 and standard deviation σ = ζ/
√
N , parameters hi

were set to 0. A spin-glass transition is expected when ζc = 1 in the thermodynamic

limit, although finite-size corrections may become relevant for this small size. In

order to obtain interesting instances, we chose ζ = 2 and verified that the overlap

distribution [100, 85] of each instance was indeed non-trivial. Moreover, we checked

the performance of closed-form solutions provided by the mean-field technique in

Ref. [101]. The method failed to produce (real-valued) solutions in 7 out of 10

instances, while it performed well in the remaining 3, adding further evidence that
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Dataset Synthetic Variables Training vectors Test vectors
OptDigits No 42 + 4 1545 723
BAS 7×6 Yes 42 95 95

Ising Yes 15 150 Not applicable

Table 2.2: Main characteristics of the datasets used in experiments.

Domain Hyper-parameter Value

device

annealing time 5µs
programming thermalisation 1µs

readout thermalisation 1µs
auto scale False

learning

learning rate 0.0025
L2 regularisation 10−5

momentum 0.5
random initialisation Unif(−10−6,+10−6)

Table 2.3: Hyper-parameters used in all the experiments unless otherwise stated.

our instances had non-trivial features in their energy landscape. Finally, for each

instance, we generated a training set of D = 150 samples by exact sampling from

the Boltzmann distribution in Eq. (2.6) with β = 1.

2.2.3.3 Choice of hyper-parameters

We distinguish two kinds of hyper-parameters: those affecting the device opera-

tion and those affecting the learning rule. Device hyper-parameters affect the time

needed to obtain samples from the D-Wave 2X. We set them to their corresponding

minimum values in order to obtain samples as fast as possible.

Learning hyper-parameters come from the inclusion of L2 regularisation and

momentum in Eqs. (2.12) and (2.13). These are standard techniques known to

improve over standard gradient descent in terms of generalisation and convergence.

We do not discuss these techniques further and refer to Ref. [89] for discussions about

implementation and best practices. For these hyper-parameters, we tried a small

grid of values and chose the value that would allow the quantum-assisted algorithm

to produce visually appealing samples.

Finally, the parameter range allowed by D-Wave 2X is J (kl)
ij ∈ [−1,+1] and

h
(k)
i ∈ [−2,+2]. We initialised all the parameters uniformly at random to rather

small values in order to break the symmetry.

All the experiments were performed using the hyper-parameters shown in Ta-

ble 2.3 unless otherwise stated.
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2.2.4 Results

2.2.4.1 Reconstruction of pictures

The first task is meant to verify that the QABM is able to learn the joint probability

distribution of the variables given a dataset. One way to do this is to check whether

the model reconstructs corrupted pictures during learning.

To reconstruct a picture we first need to enforce the value of known pixels to

their corresponding subgraphs, as previously illustrated in Fig. 2.1 (b). A strong

local field ±hmax can be used to ‘clamp’ a qubit, that is, to constrain it to the desired

value. Note that in quantum annealing a clamped variable behaves somewhat differ-

ently from its classical counterpart. Although the strong local field can substantially

bias towards the desired value, the qubit remains a dynamical variable. In classical

computation, a clamped variable is completely frozen. After sampling from the an-

nealer, we assigned values to each corrupted pixel using the majority vote mapping

in Eq. (2.10). To further mitigate the noise associated with this, we generated mul-

tiple reconstructions, 100 for each corrupted picture, and took a second majority

vote over them. We believe this approach is very robust as we did not observe any

mismatch between the clamped pixels and the corresponding reconstructions.

We chose to stop the learning algorithm as soon as any of the parameters went

outside the dynamical range of the D-Wave 2X. Since the auxiliary parameters in a

subgraph always increase, we expect these to be the first to get out of range.

In the first experiment, we used the QABM to model the 42 pixels of OptDigits

without using the class information. A sample of the dataset is shown in Fig. 2.6 (a).

Since the training set contains a relatively large number of data vectors, we opted

for a minibatch learning approach [89], where 200 data vectors were used at each

iteration to compute the positive phase of the gradient. The negative phase is

computed on 200 samples from the D-Wave 2X. We trained for 6000 iterations,

after which an auxiliary parameter went outside the dynamical range of the device.
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Figure 2.6: Reconstruction of OptDigits. (a) 36 pictures from the test set, with each pixel being either dark blue (+1) or white (−1). (b) A uniform
salt-and-pepper noise shown in red corrupts each picture. (c)-(f) Reconstructions obtained after 1, 10, 1000, and 6000 learning iterations.
A light blue pixel indicates a tie of the majority vote. Visually, we can verify that the model has learned to reconstruct digits.

Figure 2.7: Reconstruction of Bars-and-Stripes. (a) 36 pictures from the test set, with each pixel being either dark blue (+1) or white (−1). (b) A
5× 4 block of noise shown in red corrupts each picture. The remaining pixels contain enough information to reconstruct the pictures.
(c)-(f) Reconstructions obtained after 1, 10, 1000, and 3850 learning iterations. The average number of mistaken pixels is 50% in (c),
18.6% in (d), 2.95% in (e), and finally 0.65% in (f).
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To evaluate the model, we added a 50% uniformly distributed ‘salt-and-pepper’

noise (Fig. 2.6 (b), red pixels) to each picture in the test set and used the model to

reconstruct it. It is not always possible to recover the exact original picture, and

several reconstructions could be considered correct. Hence, we do not compute any

error measure – we visually inspect the reconstructions instead. Figures 2.6 (c)-(f)

show reconstructions obtained by models learned after 1, 100, 1000, and 6000 itera-

tions, respectively. We observe that qualitatively good reconstructions are available

since the early stages. However, the large degree of corruption in the original image

gives rise to thicker reconstructions (Fig. 2.6 (f), third row, fourth column), thinner

reconstructions (Fig. 2.6 (e), fourth row, second column), change of digit ‘three’ to

‘one’ (Fig. 2.6 (e), third row, fifth column), and other interesting phenomena.

We performed a similar test on BAS 7× 6, a sample of which is shown in

Fig. 2.7 (a). In this case we pre-computed the positive phase using all 96 training

data vectors. Then, we ran the learning algorithm, and for each iteration, we com-

puted the negative phase out of 96 samples obtained from the D-Wave 2X. The

learning stopped at iteration 3850, after which an auxiliary parameter went outside

the dynamical range of the device.

To evaluate the model, we blacked-out a 5× 4 block (Fig. 2.7 (b), red pixels

corresponding to 47.6% of the image) from each of the 96 test pictures and used

the model to reconstruct it. We can observe from Fig. 2.7 (e) that reconstructed

pictures are qualitatively similar to the original ones. For this dataset, it makes

sense to report an error measure since the known pixels contain enough information

for the exact recovery of the original picture. As a quantitative estimate of the

quality, we computed the average number of mistaken pixels per reconstruction.

After one iteration (Fig. 2.7 (c)), we obtained a rate of 10.45 mistakes out of 20

corrupted pixels, corresponding to about 50% performance as expected. The number

of mistakes decreased to 3.73 (18.6%) after 100 iterations (Fig. 2.7 (d)), 0.59 (2.95%)

after 1000 (Fig. 2.7 (f)), and finally 0.13 (0.65%) at the end of learning (Fig. 2.7 (e)).

The latter result corresponds to almost perfect reconstruction. By definition, the

test set is never used in the learning rule. Hence, these results provide evidence that

the joint probability distribution of the pixels has been correctly modeled, and we

can rule out a simple memorisation of the patterns.
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2.2.4.2 Generation and classification of pictures

To investigate the generative and classification capabilities of the model, we intro-

duced the one-hot encoding of 4 classes for a total of 46 logical variables. We trained

this larger model on the OptDigits dataset, also including the classes.

For classification of a test picture, we clamped all the pixels s and sampled the

four class variables c ∈ {−1,+1}4. We classified the picture as c∗ = argmaxcP (c|s),

where the probabilities are estimated using 100 samples.

After 6000 learning iterations, this simple procedure led to an accuracy of 90%

on the test set. This is a significant result, given that a random guess achieves

approximately 25% accuracy.

For the generative task, we clamped the class variable and sampled the pixels

instead. Figure 2.8 shows samples obtained from the QABM along with human-

generated pictures from the test set. Columns indicate digits ‘one’ to ‘four’. Rows

correspond to either human-generated pictures taken from the test set or machine-

generated pictures. The Reader is invited to guess which is which. The solution is

given in a footnote 5. Machine-generated pictures are remarkably similar, though

not identical, to those drawn by humans. Notice that human-generated digits may

be ambiguous because of a variety of calligraphy styles encoded in low-resolution

pictures. This ambiguity has been captured by the model.

2.2.4.3 Learning of an Ising model

We now compare models where the learning rule relies on quantum annealing (QA),

simulated thermal annealing (SA) [102], and exact gradient. For this experiment,

we use the synthetic Ising datasets of 15 logical variables.

This task is similar in spirit to the inverse Ising problem [103, 104, 101]. Differ-

ently from what is usually done in the literature, we do not quantify the quality of

the model using the quadratic error of the parameters. This follows three reasons.

First, the QABM has a larger number of parameters than the Ising model from

which the datasets are generated, and a direct comparison is not straightforward.

5We have not performed the standard Turing test, where each pair of figures is shown in isolation.
Ours is, in principle, a harder test for the machine as the redundancy of having all human- and
machine-generated images together enhances the probability of the human spotting differences.
This is compensated by the low resolution of the images, which might hint at an easier test for the
machine, if shown one by one, given the distortion of the images. Solution: Blocks (a)-(d) show
machine-generated pictures while blocks (e)-(h) show human-generated pictures.
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Figure 2.8: Visual Turing test. (a)-(h) The Reader is invited to distinguish between
human-generated pictures and machine-generated pictures. Columns identify
classes ‘one’ to ‘four’. Rows identify the source, either ‘human’ or ‘machine’.
The solution is given in a footnote.

Second, we do not have access to the effective parameters implemented in the quan-

tum annealer, unless we estimate the effective temperature, and that can introduce

errors. Third, to our knowledge, there is no connection between generic distances in

parameter space, as measured by the quadratic error, and distances in probability

space, which are those having an actual operational meaning. For instance, it is

known that, close to a critical point, a slight variation in the parameters can lead

to drastically different probability distributions [105].

Our evaluation strategy exploits the fact that we have full knowledge of the true

distribution Q(s) that generated the data. At each learning iteration, we obtain a

set S = {s1, . . . ,sL} of L samples from the QABM distribution P (s) and evaluate

the average log-likelihood that these were generated by Q(s),

Λav(S) = 1
L

L∑
`=1

logQ
(
s`
)

(2.16)

where, for simplicity, we chose L = D = 150. Note that Λav(S) is not expected to

be maximised by the generated samples, but rather to match the value Λav(D) of

the original dataset. We shall stress that Eq. (2.16) requires full knowledge of the

distribution that generated the data. This is unfeasible for real datasets since the

whole point of learning a model is precisely that we do not know the true underlying

distribution.
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Figure 2.9: Mean and one standard deviation of the generalisation proxy Λav for 10 random
instances and for different learning algorithms. An algorithm is considered
successful if it matches the proxy of the training set (green band). (a) The
15-variable logical model trained with exact gradient (blue band) matches
faster than the 76-qubit physical model trained with simulated annealing (red
squares) when the same learning rate is used. This suggests that the larger
number of parameters does not help the physical model. However, (b) quantum
annealing on the physical graph (QA) matches even faster than exact gradient
on the logical graph (Exact) when the same learning rates are used.

In this set of experiments, we performed 500 learning iterations and did not use

gradient descent enhancements, such as momentum and regularisation, in order to

simplify the quantitative analysis.

First, we verified whether the larger number of parameters in the physical graph

provides a practical advantage. While exact gradient calculations are feasible for the

15-variable logical graph, they are unfeasible for the corresponding 76-qubit physical

graph considered here (see embedding details in Table 2.1). We opted for a version

of SA where each sample follows its own independent linear schedule, therefore

avoiding the problem of auto-correlation among samples. We used a linear schedule

β(t) = t/tmax for the inverse temperature and performed a preliminary study in

order to set the optimal number of Monte Carlo spin flips per sample, tmax. We

incrementally increased this number and observed the learning performance via the

proxy Λav. We chose tmax = 15200 Monte Carlo spin flips, as multiples of this

number did not result in improved learning speed nor in better values of Λav. We

expect this to be equivalent to learning by exact gradient, within the 500 learning

iterations considered here.

Figure 2.9 shows mean and 1 standard deviation of the performance indicator for
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the 10 synthetic datasets considered here. Panel (a) shows that SA on the physical

graph (red squares) results in slower learning than exact gradient on the logical

graph (blue band) when the same learning rate η = 0.0025 is used. That is, even

though both methods approach the optimal Λav of the dataset (green band), the

larger number of parameters in the physical graph does not provide an advantage.

Interestingly, Panel (b) shows that QA on the physical graph (red circles) does

outperform exact gradient. This is an indication of the varying effective learning

rate previously discussed in Section 2.2.2. Indeed, by increasing the learning rate of

the exact gradient method to η = 0.01 (orange band), we were able to outperform

QA. In turn, however, QA outperformed exact gradient if the same larger learning

rate were used (purple triangles).

Because of the interplay between effective temperature and learning rate, the

experiments presented here cannot confirm nor rule out the presence of quantum

effects. Indeed, the fast initial learning could also be caused by a non-vanishing

transverse field at the freeze-out time.

2.2.5 Discussion

Whether quantum annealers can improve algorithms that rely on sampling and pro-

vide more effective models are important open questions. State-of-the-art quantum

annealers face several challenges that need to be overcome before we can address

these questions from an experimental perspective. Besides the problem of tempera-

ture estimation, some of the most pressing challenges are the sparse qubit-to-qubit

interaction graph, the low precision and limited range of the control parameters,

and the different sources of noise.

By combining minor-embedding techniques and a data-driven setting of param-

eters, we improve the robustness and the complexity of machine learning models that

can be assisted by quantum annealers. By requiring only partial information about

the distribution from which the quantum annealer is sampling (i.e., the grey-box

approach), we avoid the need for estimating temperature during learning and po-

tentially mitigate the different sources of noise on the device. The resulting model is

a quantum-assisted Boltzmann machine (QABM) with all pairwise interactions and

no hidden variables. We validated the QABM qualitatively on the reconstruction,

classification and generation of pictures, and quantitatively by computing a proxy
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for the generalisation ability.

An advantage of our approach is that the learning rules are agnostic to the

embedding, which can therefore be obtained by either heuristic algorithms [84] or by

known recipes [81, 106]. The learning rules can also be extended to other proposed

quantum annealing architectures. For example, the Lechner-Hauke-Zoller schema

(LHZ) [107] implements a complete graph of logical variables using physical qubits

on a square-lattice geometry and requiring four-body interactions. In this case, the

learning rules would rely on gradients similar to those in Eqs. (2.14) and (2.15), and

with the inclusion of some quartic terms. Our QABM generative model would not

face any additional challenge in this architecture. The question of whether the LHZ

schema provides any advantage for generative modeling shall be addressed in future

work.

From a more fundamental perspective, several key questions remain open.

When and why does quantum annealing outperform classical Monte Carlo meth-

ods? When and why does quantum annealing provide more effective models? Our

results show that the quantum-assisted model learns faster than the classical one

during the initial stage, under the same setting of hyper-parameters. Given that

an instance-dependent effective temperature can imply a varying learning rate, this

faster learning is probably due to the quantum-assisted algorithm automatically ad-

justing its learning rate. It is important to investigate if such a learning schedule is

optimal and, if so, whether it can be simulated classically. Yet, we cannot discard

that non-trivial quantum effects played a role in our experiments; indeed, if the

quantum annealer were sampling at fixed transverse field, our learning rules would

still be valid.

In summary, we provided experimental evidence that quantum annealers can

be used for complex machine learning tasks. The most important open question

is whether there is a quantum advantage. Years of experience in benchmarking

quantum annealing for combinatorial optimisation [108, 109, 58] suggests that the

answer may not be straightforward. A benchmarking study for machine learning

could follow well-established guidelines used in optimisation (see Ref. [110]), but the

iterative nature of learning makes the task far more time-consuming. First, almost

all the hyper-parameters (e.g., learning rate, annealing time, number of samples per
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iteration, etc.) should be optimised. Second, the study should be carried out on

several datasets and for different system sizes in order to obtain acceptable statis-

tics. If such a daunting study were to be performed, our QABM generative model

would be an appealing choice, as the objective function in Eq. (2.11) is convex in the

parameter space. This means that the performance of our algorithm mostly depends

on the quality of the samples produced by the quantum annealer. This is in con-

trast with non-convex problems where the learning algorithm can find sub-optimal

solutions even if samples are of the highest quality.

2.3 The quantum-assisted Helmholtz machine
2.3.1 Model definition and learning algorithm

In the previous Section we introduced the QABM generative model. Natural ex-

tensions of the QABM are the inclusion of latent variables, also known as hidden

variables, and the support for continuous variables. Hidden variables are needed,

for example, if data vectors require constraints that cannot be enforced by pairwise

interactions alone [77]. Continuous variables are needed for a correct modeling of

real datasets. In this Section we propose the quantum-assisted Helmholtz machine

(QAHM), a generative model that implements these extensions.

Let us consider a dataset S = {v1, . . . ,vD} described by the empirical distri-

bution QS(v). We seek a generative model P (v) =∑
uP (u,v), where u is a set

of binary hidden variables. We can write P (u,v) = P (v|u)PQC(u) and consider a

prior distribution PQC(u) = 〈u|ρ|u〉 sampled by a quantum computer in the com-

putational basis {|u〉}u.

Let us focus on distributions implemented by quantum annealers. Using our

framework, the prior corresponds to the diagonal elements of a Gibbs distribution

ρ= e−βH/Z, where H is the Hamiltonian, β is the inverse temperature and Z is the

normalisation constant. Recall that we can implement Hamiltonians with pairwise

interactions of the type

H=−
∑

(i,j)∈E
JijẐiẐj−

∑
i∈V

hiẐi−Γ
∑
i∈V

X̂i (2.17)

where Ẑi and X̂i denote Pauli operators in the z and x direction, respectively, Jij
and hi are control parameters, Γ is the residual transverse field, V is the set of qubits
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and E is the set of qubit-to-qubit interactions.

The conditional distribution P (v|u) stochastically translates samples from the

quantum computer into samples on the domain of the data. Hence, v could be a

vector of continuous variables, binary variables, or other objects. This is a significant

advantage over the QABM where the visible variables are directly mapped to qubits.

Ideally, an unsupervised learning algorithm would maximise the average log-

likelihood of the data

L=
∑
v

QS(v) lnP (v). (2.18)

However, the learning of a Helmholtz machine [75] is based on the lower bound

∑
v

QS(v) lnP (v)≥
∑
v,u

QS(v)Q(u|v) ln P (u,v)
Q(u|v) , (2.19)

where Q(u|v) is an auxiliary recognition network that approximates the intractable

true posterior P (u|v) 6. It is easy to see that the bound in Eq. (2.19) is tight for

Q(u|v) = P (u|v).

The term ln 〈u|ρ|u〉 arising from lnP (u,v) in Eq. (2.19) is intractable due to the

projection of the Gibbs state on the computational basis states |u〉. A bound for this

term was derived in Ref. [34] using the Golden-Thompson inequality. Instead, we

use a simpler bound based on Jensen’s inequality (see Appendix 5.2 for a derivation)

ln 〈u|ρ|u〉 ≥ 〈u|lnρ|u〉 . (2.20)

Combining Eqs. (2.19) and (2.20), we get the tractable lower bound

G(θG,θQC) =
∑
v,u

QS(v)Q(u|v)
(

lnP (v|u) + 〈u|lnρ|u〉
)
, (2.21)

where θG and θQC denote the parameters of generator network P (v|u) and Gibbs

state ρ, respectively. Part of the learning algorithm consists in maximising this

bound with respect to the parameters. In Eq. (2.21) we neglected terms that do not

depend on either θG or θQC , as they vanish when computing the gradient of G.

6The name Helmholtz machine comes from the minimisation of the non-equilibrium Helmholtz
free energy which is contained in Eq. (2.19).
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As mentioned before, the recognition network Q(u|v) has to closely approx-

imate the true posterior P (u|v) throughout learning. Unfortunately, the max-

imisation of the lower bound in Eq. (2.19) with respect to the parameters of the

recognition network is often intractable. The wake-sleep algorithm [74] attempts to

bring Q(u|v) close to P (u|v) by minimising a more tractable function, that is, the

Kullback-Leibler (KL) divergence

DKL (P (u|v)||Q(u|v)) =
∑
u

P (u|v) ln P (u|v)
Q(u|v) , (2.22)

averaged over the marginal P (v) to take into account the relevance of each config-

uration v. In other words, wake-sleep maximises the function

R(θR) =
∑
u,v

P (u,v) lnQ(u|v), (2.23)

where θR denotes the parameters of the recognition network Q(u|v). In Eq. (2.23)

we neglected terms that do not depend on θR, as they vanish when computing the

gradient of R.

The generator and recognition networks can be written as deep learning archi-

tectures

P (v|u) =
∑

u1,...,uL

P0(v|u1)P1(u1|u2) · · ·PL(uL|u), (2.24)

Q(u|v) =
∑

u1,...,uL

QL(u|uL) · · ·Q1(u2|u1)Q0(u1|v), (2.25)

in terms of L additional sets of hidden variables u1, . . . ,uL that connect the variables

v ≡ u0 in the visible layer with u≡ uL+1 in the last hidden layer. Note that here

we use superscripts to index the layers. Using factorised layers of binary variables

u`i ∈ {−1,+1} (e.g., see architectures in Fig. 2.2), we have

P`(u`|u`+1) =
∏
i

π(u`i |u`+1;A`,a`), (2.26)

Q`(u`|u`−1) =
∏
i

π(u`i |u`−1;B`, b`), (2.27)
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where

π(ui|u′;C,c) =
[
1 +e

−2ui
(∑

j
Ciju

′
j+ci

)]−1

. (2.28)

In practice, all expectation values in Eqs. (2.21) and (2.23) are estimated from

samples. The sampling process is carried out as follows; a configuration of hidden

variables can be sampled from the annealer and propagated top-down through the

generator network P to obtain an artificial data vector. Conversely, a data vector

can be propagated bottom-up through the recognition network Q to obtain a con-

figuration of hidden variables. However, in order to sidestep the need to sample

from a quantum device for each data vector, here we employ a classical recognition

network Q. To the best of our knowledge, this bottleneck is intrinsic in all the other

quantum-assisted models with hidden variables (e.g., see the QADBN and QADBM

in Fig. 2.2, or see Ref. [111] for another such proposals).

Let us now discuss the learning rules based on standard gradient ascent. The

updates have structure θ(t+1)←− θ(t) +η∇θF , where θ stands for the parameters

being updated, η is the learning rate, ∇θ is the differential operator, and F stands

for either G or R, accordingly.

Since lnρ=−βH− lnZ, for the parameters θQC = (Jij ,hi) of the Gibbs distri-

bution we have

− 1
β

∂G
∂Jij

= 〈uiuj〉Q−〈uiuj〉ρ , (2.29)

− 1
β

∂G
∂hi

= 〈ui〉Q−〈ui〉ρ , (2.30)

where 〈·〉Q denotes expectation values with respect to Q(u) =∑
vQ(u|v)QS(v) and

〈·〉ρ denotes those with respect to PQC(u) = 〈u|ρ|u〉. Here we used the property

Ẑi |ui〉= ui |ui〉. The partial derivatives for the generator network are

∂G
∂A`ij

= 〈u`iu`+1
j 〉Q−〈u

`
i〉P 〈u`+1

j 〉Q, (2.31)

∂G
∂a`i

= 〈u`i〉Q−〈u`i〉P , (2.32)
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and similarly for the recognition network

∂R
∂B`

ij

= 〈u`iu`−1
j 〉P −〈u

`
i〉Q〈u`−1

j 〉P , (2.33)

∂R
∂b`i

= 〈u`i〉P −〈u`i〉Q. (2.34)

We now briefly discuss some alternatives and improvements that can be found

in the literature of deep generative models. A generalisation of the wake-sleep algo-

rithm, called reweighted wake-sleep, was introduced in Ref. [112]. The authors used

Q as a proposal distribution for importance sampling of P , and obtained a better

gradient estimator by reducing bias and variance. Another approach was introduced

in Ref. [113] in the context of deep Boltzmann machines. Samples from Q were used

as starting points for a set of mean-field equations; the mean-field solutions provided

a closer approximation to the expectation values required for the gradient. Finally,

there exists a contrastive version of the wake-sleep algorithm that was introduced in

Ref. [73] to train deep belief networks with undirected edges. In contrastive wake-

sleep, samples from Q are used to seed a Gibbs sampler for the deepest layer of P ,

aiding thermalisation.

These techniques require full knowledge of the parameters implemented in quan-

tum hardware. Recall from Section 2.1 that this may not be available in noisy

quantum computers and without error correction. Using techniques developed in

Section 2.2, we now show that the standard wake-sleep algorithm can be used to

train Helmholtz machines assisted by noisy quantum annealers.

2.3.2 Implementation

We demonstrate the QAHM using a D-Wave 2000Q quantum annealer hosted by

the NASA Ames Research Center. The annealer implements a noisy version of the

programmed Hamiltonian in Eq. (2.17) defined on a sparse graph of qubit-to-qubit

interactions. In particular, the device is designed to exploits quantum tunneling to

sample low-energy states at transverse field Γ ≈ 0. As previously discussed, non-

trivial non-equilibrium effects may make samples deviate from the corresponding

classical Gibbs distribution. This scenario requires some engineering of the QAHM

similar to that of the QABM. We would like to stress that the algorithm can be
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carried out on other quantum annealing architectures [107, 58], and on more gen-

eral gate-based quantum computers. Implementations in these architectures may

require further, or fewer, engineering steps, and could allow more general quantum

distributions.

As done in Section 2.2, we use a grey-box approach so that we can update the

parameters of the quantum annealer without the need to estimate deviations from

the Gibbs distribution. Recall that this approach relies on the assumption that,

despite the deviations, the estimated gradients have a positive projection in the

direction of the true gradient. Because of a varying unknown inverse temperature β,

the learning rate at which parameters are updated varies too. This should not pose

a problem as long as we schedule the learning rate to decrease, which is a general

condition for convergence of stochastic optimisation algorithms [114].

We now consider a complete graph describing the prior distribution PQC(u)

over the hidden variables in the deepest layer. This connectivity is not available

in hardware, so we map each variable to a subgraph of physical qubits. This way,

the additional physical interactions between qubits can effectively encode long-range

interactions. Once again this expansion needs not be globally optimal, and can be

found efficiently using minor-embedding heuristic techniques. The new dynamics is

approximately described by the Hamiltonian

H̃=−1
2

N∑
i,j=1

Qi,Qj∑
k,l=1

J
(kl)
ij Ẑ

(k)
i Ẑ

(l)
j −

N∑
i=1

Qi∑
k=1

h
(k)
i Ẑ

(k)
i −Γ

N∑
i=1

Qi∑
k=1

X̂
(k)
i , (2.35)

where N is the number of hidden variables in the deepest layer, which equals the

number of subgraphs realised in hardware, Qi is the number of qubits in subgraph

i, h(k)
i is the local field for qubit k of subgraph i, and J (kl)

ij is the coupling between

qubit k of subgraph i and qubit l of subgraph j. Recall that the couplings serve

to model both the consistency within subgraphs, when i = j, and the correlation

among subgraphs, when i 6= j. A factor of 1
2 is required to avoid double counting.

The partial derivatives required to learn the control parameters are similar to those

in Eqs. (2.29) and (2.30), except that here we use physical variables z(k)
i such that

Ẑ
(k)
i

∣∣∣z(k)
i

〉
= z

(k)
i

∣∣∣z(k)
i

〉
, instead of using logical variables ui.

The model is then equipped with two functions that map back and forth between
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logical and qubit spaces. Similarly to the QABM we use a copy and a majority vote

mappings

z
(k)
i = f(u, i) = ui (for k = 1, . . . ,Qi), (2.36)

ui = g(z, i) = sign

 Qi∑
k=1

z
(k)
i

 . (2.37)

These mappings can be thought of as non-trainable edges in the recognition and

generator networks, respectively. To see why, consider a QAHM with one visible v

and two hidden layers u1 and u2, like the one shown in Figs. 2.10 (a) and (b). In

the recognition network, the hidden variables u2 get copied into higher-dimensional

vectors z (copies are shown with the same colour). We can easily sample from

the recognition network using a bottom-up pass that does not involve the quantum

device. In the generator network instead, the quantum device is used to sample z

from a Gibbs distribution. Samples are mapped back to the hidden variables u2 using

the majority vote over subgraphs (subgraphs are shown with the same colour). Then,

a top-down pass is used to sample the visible variables v. Hence, every directed and

undirected edge in Fig. 2.10 can be trained, except for the grey-coloured directed

edges corresponding to the fixed mappings in Eqs. (2.36) and (2.37).

Now, because we do not have complete knowledge of the parameters imple-

mented by the annealer, we cannot use techniques such as importance sampling that

have been used to improve the wake-sleep algorithm and obtain state-of-the-art re-

sults (see Section 2.3.1 for a brief summary). We shall stress that this limitation is

specific to our case-study and may not be present in fault-tolerant quantum com-

puters.

Improved and faster learning can also be obtained by initialising the approxi-

mate posterior Q(u|v) close to true posterior P (u|v) when v is sampled from the

dataset. This initialisation, also called pre-training, is often carried out by some

greedy approximate algorithm [73, 113]. In principle, we could use pre-training to

initialise all the trainable edges of our model in Fig. 2.10. We decided not to carry

out pre-training in our small scale experiment as it could initialise the model to an

almost-optimal configuration, hence hiding any contribution of the quantum device.



2.3. The quantum-assisted Helmholtz machine 67

Visible layer v

Higher resolution 
representation z

Hidden layer u1

Hidden layer u2

(a)
Recognition network

Real data

D
-W

av
e 

2
0

0
0

Q
q

u
an

tu
m

 a
n

n
ea

le
r

(b)
Generator network

Artificial data

Figure 2.10: Experimental implementation of the QAHM on the D-Wave 2000Q quantum
annealer for the sub-sampled MNIST dataset. The visible layer consists of
256 continuous variables v that encode the 16 × 16 grey-scale pixels, plus 10
binary variables that encode the class. There are two hidden layers, u1 and
u2, with 120 and 60 binary variables, respectively. The variables u2 are effec-
tively connected all-to-all through an embedding into 1644 qubits, z, of the
quantum annealer. The recognition network (a) is entirely classical to avoid
calling the quantum device for each of the 7291 images in the dataset. The
generator network (b) samples the deepest layer from the quantum annealer.
The correspondence between recognition and generator networks is enforced
by two mappings, here represented by grey-coloured edges.
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For the reasons outlined above, we acknowledge that the standard wake-sleep

algorithm may be slow and sub-optimal (this is further discussed in Section 2.3.4).

The wake-sleep algorithm for Helmholtz machines on quantum annealers is sum-

marised in Algorithm 1.

Algorithm 1 Wake-sleep algorithm for quantum-assisted Helmholtz machines on
quantum annealers
Require: an heuristic to embed in hardware a complete graph corresponding to

the deepest hidden layer, mappings f(u, i) and g(z, i) from hidden variables to
qubits and back

1: for number of learning iterations do

2: sample (vd,ud,zd) where (vd,ud)∼Q(u|v)QS(v) and zdi = f(ud, i)

3: sample (vk,uk,zk) where zk ∼ 〈z|ρ|z〉, uki = g(zk, i) and vk ∼ P (v|uk)

4: estimate ∇θG and ∇θR from samples

5: update θ(t+1)
G = θ

(t)
G +η∇θG

6: update θ(t+1)
R = θ

(t)
R +η∇θR

7: decrease η

8: end for

2.3.3 Results

We tested our ideas on a sub-sampled version of the MNIST handwritten digits

dataset [115]. Our training set consists of 7291 images of 16×16 grey-scale pixels,

and a categorical variable indicating the corresponding class, ‘zero’ to ‘nine’. First,

we rescaled pixels to take real-values in [−1,+1]. Second, we used a one-hot encoding

for the class (i.e., cdi =−1 for i 6= j, cdj = +1 where j indexes the class for image d)

obtaining 10 binary variables. The visible layer was connected to a first hidden layer

of 120 binary variables which, in turn, was connected to a second hidden layer of

60 binary variables. We used D-Wave heuristics [84] to embed a complete graph of

60 variables in the D-Wave 2000Q. This resulted in a graph of 1644 qubits in total,

where the largest subgraph had 43 qubits and the smallest subgraph had 18 qubits.

The mappings in Eqs. (2.36) and (2.37) were set up accordingly.

Figure 2.10 shows the model composed of two networks and a quantum annealer

implementing a prior over the second hidden layer u2. To implement the continuous

variables v in the generator network, we used a deterministic layer of hyperbolic tan-
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gents vi = tanh
(∑

jA
0
iju

1
j +a0

)
which is compatible with our rescaling of the pixels

in the interval [−1,1]. Alternatively, one could use stochastic Gaussian variables

and a different, compatible, rescaling. The final model is an engineered version of

the model shown in Fig. 2.2 (a).

We ran the wake-sleep algorithm for 500 iterations with a learning rate of

η = 0.005 for all the gradient updates. Subsequently, we trained for other 500 itera-

tions by linearly decreasing the learning rate down to η = 0.0005. At each learning

iteration, we inferred hidden configurations from the recognition network for all the

data vectors in the training set, and sampled 1000 artificial data vectors from the

generator network. These two sets are used to compute gradients as in Algorithm 1.

D-Wave hyper-parameters such as annealing time, programming thermalisation

and readout thermalisation were set to their corresponding minimum values in order

to obtain samples as fast as possible. Of particular importance, the annealing time

determines how fast the quantum system evolves towards the programmed Hamil-

tonian in Eq. (2.35). The use of the minimum annealing time is a well established

practice due to extensive benchmarking by the combinatorial optimisation commu-

nity. We are not aware of similar systematic studies in the context of sampling,

although we expect annealing time to have a significant impact on the form of the

distribution. Because the grey-box approach considered here does not require knowl-

edge of the exact form of the distribution, we chose the minimum annealing time of

5µs.

Figure 2.11 (a) shows samples from the generator network after learning. For

each of those, Panel (b) shows the image in the training set that is closest in Eu-

clidean distance. We can see that the artificial data generated by the model is not

merely a copy of the training set. The generated data presents variations and, in

some cases, novelty, reflecting the generalisation capabilities of the model. Although

these preliminary results cannot compete with state-of-the-art generative models,

the generated data often resemble digits written by humans. Indeed, the problem

of generating blurry artificial images affects many other approaches and only the

recent development of generative adversarial networks [116] has led to much sharper

artificial images.

Finally, Fig. 2.10 (c) shows some artificial samples along with their most prob-
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(a)

(b)

(c)

Figure 2.11: (a) Artificial images obtained from the learned generator network. (b) Images
in the training set that are closest in Euclidean distance to the artificial
ones in (a). This shows that the artificial images are not merely copies of
the training images. (c) Additional artificial images along with their most
probable class according to the model. Visually, the quantum-assisted model
seems to correlate class and pixels most of the time.

able class according to the model. Visually, the model seems to correlate class and

pixels most of the time. The process can be easily generalised to perform classifica-

tion, where test images are provided through the recognition network and the most

likely class is inferred through the generator network.

2.3.4 Discussion

We demonstrated how currently available quantum devices can be used in real-

world modeling applications on datasets with higher dimensionality than apparently

possible, and on variables which are not binary, e.g., modeling of grey-scale pictures

of 16× 16 pixels. In our case study, we used a noisy quantum annealer to learn a

prior distribution for the latent variables, also known as hidden variables, of a deep
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generative model.

Here, we summarise some of the advantages and challenges with the current im-

plementation of the quantum-assisted Helmholtz machine (QAHM), and we propose

some generalisations for future work.

Advantages of the QAHM:

• A classical recognition network is used to perform approximate inference.

There is no need to sample from a quantum device for each data vector and

for each learning iteration.

• The quantum device is employed in the deepest layers of a generator network.

The lowest layers stochastically transform the information from qubits to data

vectors, and back. Data vectors can be discrete, continuous, or of a more

general type.

• The quantum device models an abstract representation whose dimensionality

is expected to be much smaller than that of the data. This enables the handling

of datasets of relevant size, a significant step towards real-world applications.

Challenges and why our experiments are sub-optimal:

• The sleep phase of the wake-sleep algorithm optimises the wrong cost func-

tion [74]. Solutions found in the literature [76, 78] require full knowledge of

the model’s parameters which is not available under the grey-box approach

employed here.

• The recognition network has to be expressive enough to closely approximate

the true posterior. As pointed out in the original work on Helmholtz ma-

chines [74], factorised distributions are not able to model complex posteriors

because of non-trivial effects such as explaining away. Studies shown that

better likelihoods are obtained when the recognition network is equipped with

more complex hidden layers (e.g., autoregressive or NADE) [76]. However, we

expect the problem to be much more dramatic when using quantum distribu-

tions in the generative network as done here. This may require the introduction

of a quantum distribution in the recognition network as well.
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Potential generalisations:

• The mappings in Eqs. (2.36) and (2.37), used here to translate information

from and to quantum hardware, can be relaxed into trainable stochastic func-

tions. In this case, variables z in the recognition network and u2 in the gen-

erator network become stochastic Bernoulli variables. Indeed, the expected

value of a Bernoulli variable ui ∈ {−1,+1}, conditioned on the configura-

tion u′ of the previous layer, is described by the hyperbolic tangent function

E [ui|u′] = tanh
(
ci+

∑
jCiju

′
j

)
. When Cij � 1 and ci = 0, this function im-

plements a majority vote of the variables in the previous layer. The copy

mapping can be thought of as a majority vote over a single qubit in the pre-

vious layer. Hence, by learning all the parameters ci and Cij one obtains a

generalised version of the QAHM implemented here. While this generalisation

requires fitting additional parameters, it has the potential to discover better

minor-embeddings than those found via heuristics.

• The QAHM allows to use quantum devices in both the recognition and the

generator networks (see Fig. 2.2 (a)). The motivation for using the quantum

device only in the generator network is to drastically reduce the number of

calls to the device. It is an open question whether using the quantum device

in the recognition network can enhance the generative model.



Chapter 3

Gate-based generative models

3.1 The framework

Developments in material science, hardware manufacturing, and disciplines such

as error-correction and compilation, have brought us one step closer to the era of

large-scale, fault-tolerant, universal quantum computation. However, the process

is incremental and may take years; existing gate-based quantum hardware imple-

ments few physical qubits and can perform short sequences of gates before sources

of noise take over. In such a setting, much anticipated algorithms such as Shor’s

are way out of reach. Yet it has been argued that noisy intermediate-scale quan-

tum (NISQ) devices may find useful applications and commercialisation in the next

few years [117, 1]. As prototypes of quantum computers are made available to re-

searchers for experimentation, algorithmic development is indeed adapting to the

pace at which quantum hardware is developed.

Parameterized quantum circuits (PQCs) offer a concrete way to implement

algorithms and demonstrate quantum supremacy in the NISQ era. PQCs are typ-

ically composed of fixed gates, e.g., controlled NOTs, and adjustable gates, e.g.,

qubit rotations. Even at low circuit depth, some classes of PQCs are capable of

generating highly non-trivial outputs. For example, under well-believed complexity-

theoretic assumptions, the class of PQCs called instantaneous quantum polynomial-

time (IQP) cannot be efficiently simulated by classical resources (see Lund et al. [38]

and Harrow and Montanaro [39] for accessible reviews of quantum supremacy pro-

posals). The demonstration of quantum supremacy is an important milestone in the

development of quantum computers. In practice, however, we would like to obtain

a quantum advantage over classical computing while attacking real-world problems.

The main approach taken by the community consists of formalising problems
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of interest as variational optimisation problems and use a combination of quantum

and classical hardware to find approximate solutions. The intuition is that by out-

sourcing parts of the algorithm to classical hardware, we significantly reduce the

burden on the quantum hardware. In particular, we reduce the required coherence

time, circuit depth, and number of qubits, therefore allowing the NISQ hardware to

focus entirely on the computationally hard part of the problem.

This hybrid algorithmic approach turned out to be successful in attacking

scaled-down problems in chemistry, combinatorial optimisation and machine learn-

ing. For example, the variational quantum eigensolver (VQE) [118] has been used

for searching the ground state of the electronic Hamiltonian of molecules [119, 120].

Similarly, the quantum approximate optimisation algorithm (QAOA) [121] has been

used to find approximate solutions of classical Ising models [122] and clustering

problems formulated as MaxCut [123].

The high-level approach is illustrated in Figure 3.1 and is made of three main

components: the human, the classical computer, and the quantum computer. The

human interprets the problem information and selects an initial model to represent

it. The available data is pre-processed on a classical computer to determine a set

of parameters for the PQC. The quantum hardware prepares a quantum state as

prescribed by the PQC and performs measurements. Measurement outcomes are

post-processed by the classical computer to generate a forecast. To improve the

forecast, the classical computer implements a learning algorithm that updates the

set of parameters. The overall algorithm is run in a closed loop between the classical

and quantum devices which comprise the hybrid system. The human supervises the

process and uses forecasts towards the goal.

To the best of our knowledge, the earliest hybrid systems were proposed for

the task of learning quantum algorithms. In 2008, Bang et al. [124] described a

method where a classical computer controls the unitary operation implemented by a

quantum device. Each execution of the quantum device is deemed as either a ‘suc-

cess’ or ‘failure’, and the classical learning algorithm adjusts the unitary operation

towards its target. Starting from a dataset of input-output pairs their simulated

system learned an equivalent of Deutsch’s algorithm for finding whether a function

is constant or balanced. In the same year, Gammelmark and Mølmer [125] described
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Figure 3.1: High-level depiction of hybrid algorithms used for machine learning. The role
of the human is to use the problem information to setup the model, assess
the learning progress, and use the forecasts. Within the hybrid system the
quantum computer prepares quantum states according to a set of parameters.
Using the measurement outcomes, the classical learning algorithm adjusts the
set of parameters in order to minimise an objective function. The parameters,
now defining a new quantum circuit, are fed back to the quantum hardware in
a closed loop.

a more general approach where the parameters of the quantum system are quan-

tized as well. In their simulations they successfully learned Grover’s and Shor’s

algorithms.

These early proposals attacked problems that are well known within the quan-

tum computing community, but much less known among machine learning re-

searchers. More recently though, the hybrid approach based on PQCs has been

shown to perform well on machine learning tasks such as classification, regression,

and generative modeling, and has been applied to both classical and quantum data

of small scale. In Appendix 5.3 we report the machine learning experimental demon-

strations that have been carried out to date. This success is in part due to some

similarities between PQCs and celebrated classical models such as kernel methods

and artificial neural networks [126, 127].

Let us now briefly recall what unsupervised generative modeling is about. It is
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a machine learning task where the goal is to model an unknown probability distri-

bution and generate artificial data accordingly. More formally, the task is to learn

a model distribution qθ that is close to a target distribution p. The closeness is

defined in terms of a divergence D on the statistical manifold, and learning consists

of minimising this divergence. For a parameterized model

θ∗ = argmin
θ
D(p,qθ). (3.1)

Since the target probability distribution is unknown, it is approximated using a

dataset D = {v(i)}Ni=1 which we have access to and whose data vectors v(i) are

distributed according to the target distribution p. As an example, each data vector

could be a natural image taken from the Internet.

The probabilistic nature of quantum mechanics suggests that a model distri-

bution can be encoded in the wave function of a quantum system [128, 129]. Our

proposal, the quantum circuit Born machine (QCBM), uses a PQC to prepare such

a wave function. This model will be the focus of Section 3.2, but let us briefly see

how it works.

We assume our computer to be a closed quantum system1. With n qubits, the

state is described by a unit vector in a complex inner product vector space C2n .

The computation always starts with an easy to prepare state of the computational

basis, for example the product state |0〉⊗n. A unitary operator Uθ parameterized by

a vector θ is applied to the initial state producing a new state Uθ |0〉⊗n. The value of

an observable quantity can be measured and physical observables are described by

Hermitian operators. Let M =∑
iλiPi be the Hermitian operator of interest, where

λi is the i-th eigenvalue and Pi is the projector on the corresponding eigenspace.

The Born rule states that the outcome of the measurement corresponds to one of the

eigenvalues and follows probability distribution p(λi) = tr
(
PiUθ |0〉〈0|U †θ

)
. Plugging

this in the definition of expectation values we obtain

〈M〉=
∑
i

λip(λi) = tr
(
MUθ |0〉〈0|U †θ

)
. (3.2)

1While this is not strictly true in real hardware, machine learning has the potential to cope
with some types of noise and deviations from the ideal system. Similar arguments were made in
Chapter 2 for quantum annealers. The difference is that there we exploited the open character of
the quantum system, here we don’t.
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which can be estimated from repeated measurements2 on copies of the state Uθ |0〉⊗n.

Now, let us focus on the set of expectation values {〈Mv〉}v where Mv = |v〉〈v|

are projectors for the bitstrings. Clearly, these define a generative model for the

bitstrings

qθ(v) = tr
(
MvUθ |0〉〈0|U

†
θ

)
. (3.3)

Here, learning consists of matching the statistics generated by the circuit and those

found in the dataset, carrying out the optimisation problem in Eq. (3.1).

Previous implementations of Born machines [130, 129, 131, 132] often relied

on the construction of tensor networks and their efficient manipulation through

specialised classical hardware such as graphical-processing units. Our work differs

in that Born’s rule is naturally implemented by a quantum circuit and executed on

a NISQ hardware.

From the application point of view, we suggest the use of QCBMs as a bench-

marking tool for hybrid systems. Quantum volume [133, 122] has been proposed as

an architecture-neutral metric based on the task of approximating specific classes

of random circuits. This is very general and it is indeed useful for estimating the

computational power of a quantum computer. We propose the qBAS score, a com-

plementary metric based on the generative modeling performance on a canonical

synthetic dataset which is easy to generate, visualise, and validate for sizes up to

hundreds of qubits. Implementing a low-depth circuit that can uniformly sample

such data is ‘hard’ in the sense that it requires large amounts of entanglement. Any

miscalibration or environmental noise will therefore affect this single performance

number. The score enables comparison between different devices or across different

generations of the same device. As the score depends also on classical resources,

hyper-parameters, and design choices, we expect it to be a good choice for the as-

sessment of the hybrid system as a whole.

Now, it is important to realise that one does not have access to the wave func-

tion generated by the circuit. Thus, the characterisation of qθ in Eq. (3.3) may

be intractable for all but the smallest circuits. QCBMs belong to the class of im-

2The number of repetitions required for the estimation is determined by the desired precision as
well as by the variance Var(M) =

〈
M2〉−〈M〉2. We won’t discuss estimation methods here.
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Figure 3.2: Illustration of the adversarial method for generative modeling. The generator
produces artificial samples and the discriminator tries to distinguish between
the artificial and the real samples. The network is trained until the artificial
samples are indistinguishable from the training samples. The target data, the
generator, and the discriminator can all be made quantum or classical.

plicit models, models where it is easy to obtain a sample v ∼ qθ, but it is hard to

estimate the likelihood of a sample qθ(v). The machine learning community has

become increasingly interested in implicit models because of their generality, ex-

pressive power, and success in practice [134]. However, this poses a challenge to the

design of suitable loss functions.

Differentiable loss functions are often hard to design when one does not have

access to the likelihood. Non-differentiable loss functions are often hard to optimise;

one may resort to gradient-free methods, but these are likely to struggle as the

number of parameters becomes large. Employing adversarial methods from deep

learning [116] we can potentially overcome these limitations. Figure 3.2 (a) shows

the intuition; the adversarial method introduces a discriminative model whose task

is to distinguish between true data coming from the dataset and artificial data

coming from the generative model. This creates a ‘game’ where the two players,

i.e., the models, compete. The intuition is that if a generator is able to confuse

a perfect discriminator, then it means it can generate realistic artificial examples,

hence solving the generative problem. The advantage is that both models are trained

at the same time, with the discriminator providing a differentiable loss function for

the generator.

Recently, Lloyd and Weedbrook [135] put forward the theoretical framework of

the quantum generative adversarial network (QGAN) and suggested variants where
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target data, generator and discriminator are either classical or quantum. In Sec-

tion 3.3 we introduce QGANs for the case where all components are quantum me-

chanical, hence enabling the generative modeling of quantum data. In this case,

the discriminator aims at implementing the measurement for optimal distinguisha-

bility between target and generator states. In turn, the generator minimises the

distinguishability3.

We simulate this ‘game’ in silico by coupling two PQCs and optimising them

in tandem. We analyse how the depths of generator and discriminator impact the

generative performance and we design a heuristic for stopping the learning algorithm,

which is a non-trivial problem even in classical adversarial methods.

3.2 The quantum circuit Born machine
3.2.1 Model definition and learning algorithm

In this Section, we describe the QABM model and the learning framework in general.

Let us consider a dataset D =
{
x(d)

}D
d=1

which is a collection of D indepen-

dent and identically distributed random vectors. The underlying probabilities are

unknown and the objective is to learn a model for such distribution. For simplic-

ity, we restrict our attention to N -dimensional binary vectors x(d) ∈ {−1,+1}N ,

e.g., black-and-white images. This gives an intuitive one-to-one mapping between

observation vectors and the computational basis of an N -qubit quantum system,

that is x↔ |x〉= |x1x2 · · ·xN 〉. Note that standard binary encodings can be used to

implement integer, categorical, and approximate continuous variables.

A quantum circuit model with fixed depth and gate layout, parameterized by

a vector θ, prepares a wave function |ψ(θ)〉 from which probabilities are obtained

according to Born’s rule Pθ(x) = |〈x|ψ(θ)〉|2. Following a standard approach from

generative machine learning [24], we can minimise the Kullback-Leibler (KL) di-

vergence [137] DKL[PD|Pθ] from the circuit distribution in the computational ba-

sis Pθ to the target distribution PD. Minimisation of this quantity is directly re-

lated to the minimisation of a well known cost function: the negative log-likelihood

C(θ) =− 1
D

∑D
d=1 ln

(
Pθ(x(d))

)
. However, there is a caveat; as probabilities are esti-

mated from frequencies of a finite number of measurements, low-amplitude states
3The discrimination of quantum states was among the first problems ever considered in quantum

information theory, more precisely, by Helstrom [136] in 1969. The novelty of the adversarial method
is in using the discriminator’s performance to provide a learning signal for the generator.
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could lead to incorrect assignments. For example, an estimate Pθ(x(d)) = 0 for some

x(d) in the dataset would trigger the logarithm of zero and lead to infinite cost. To

avoid singularities in the cost function, we use a simple variant

Cnll(θ) =− 1
D

D∑
d=1

ln
(
max(ε,Pθ(x(d)))

)
, (3.4)

where ε > 0 is a hyper-parameter to be set before the learning process begins4. Note

that the number of measurements needed to obtain an unbiased estimate of the

relevant probabilities may not scale favourably with the number of qubits N . For

this reason, in Section 3.2.3.4 we explore alternative cost functions.

After estimating the cost, we update the parameter vector θ to further minimise

the cost. This can in principle be done by any suitable classical optimiser. Here we

use a gradient-free algorithm called particle swarm optimisation (PSO) [139, 140]

as previously done in the VQE [141]. The algorithm iterates for a fixed number of

steps, or until a local minimum is reached and the cost does not decrease.

We choose the layout of the QCBM to be of the following form. Let us consider

circuits parameterized by single-qubit rotations {θ(l,k)
i } and two-qubit entangling

rotations {θ(l)
ij }. The subscripts denote qubits involved in the operation, l denotes

the layer number and k ∈{1,2,3} denotes the rotation identifier. The latter is needed

as we decompose an arbitrary single-qubit rotation into three simpler rotations (in

the next Section we discuss some potential simplifications depending on the set of

gates available in hardware). Inspired by the gates readily available in trapped ion

quantum computers, we use alternating layers of arbitrary single-qubit gates (odd

layers) and Mølmer-Sørensen XX entangling gates [142, 143, 144, 145] (even layers)

as our model. All parameters are initialised at random.

It is important to note that in our model the number of parameters is fixed

and is independent of the size D of the dataset. This means we can obtain a good

approximation to the target distribution only if the model is flexible enough to cap-

ture its complexity. Increasing the number of layers or changing the topology of the

entangling layer alter this flexibility, potentially improving the quality of the ap-

4This hyper-parameter can be interpreted as the pseudocount for a Laplace smoothing, with the
only difference being that we do not renormalise the probabilities. Laplace developed the smoothing
technique when estimating the chance that the sun will rise tomorrow [138].
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Figure 3.3: Data-driven quantum circuit learning. The training data is interpreted as
representative of an unknown probability distribution. The generative task is
to model such a distribution. The 2N amplitudes of an N -qubit quantum state
prepared by the computer are used to capture the correlations observed in the
dataset. Learning consists of updating the parameters θ of a quantum circuit
Born machine (QCBM) to minimise the mismatch between the data and the
measurement outcomes.

proximation. However, we anticipate that such flexible models are more challenging

to optimise because of their larger number of parameters. Principled ways to choose

the circuit layout and to regularise its parameters could significantly help in such a

case.

As summarised in Figure 3.3, the learning algorithm iteratively adjusts all

the parameters to minimise the value of the cost function. At any iteration

the cost is approximated using both samples from the dataset and measure-

ment outcomes from the quantum computer. We refer to this approach as the

data-driven quantum circuit learning (DDQCL).

3.2.2 Implementation

In the trapped ion computer at University of Maryland we can perform arbitrary

single-qubit rotations and Mølmer-Sørensen XX entangling gates involving any two
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qubits [146]. We used only these gates hence avoiding the need of further compi-

lation. For the simulations in silico we implemented the same constraints dictated

by the trapped ion experimental setting, but we assumed perfect gate fidelities and

error-free measurements. This was implemented using the QuTiP2 [147] Python

library.

In the trapped ion setting, the use of Rz single-qubit rotations is very convenient

because it is implemented as a change of frame of reference. In other words, these

are ‘virtual’ gates that have no cost in terms of execution time and fidelity. There-

fore, we allow for arbitrary single-qubit operations relying on the decomposition

U
(l)
i =Rz(θ(l,3)

i )Rx(θ(l,2)
i )Rz(θ(l,1)

i ), where l is the layer number, i is the qubit index,

and θ(l,k)
i ∈ [−π,+π] are Euler angles. The rotations are then expressed as exponen-

tials of Pauli operators Rz(θ(l,·)
i ) = exp

(
− i

2θ
(l,·)
i σzi

)
and Rx(θ(l,·)

i ) = exp
(
− i

2θ
(l,·)
i σxi

)
.

We execute circuits always starting from the |0 · · ·0〉 state. Since the first set of

Rz rotations has no effect, we do not include it. When an odd number of layers is

used, a similar exception occurs in the last layer. There, the last set of Rz rotations

would only add a phase that becomes irrelevant when taking the amplitude squared

required for the Born machine. In other words, we can slightly reduce the number of

parameters without changing the expressive power of the circuit. Every other layer of

arbitrary single-qubit operations would in general require 3N parameters, whereN is

the number of qubits. By using an alternative decomposition, namely U =RxRzRx,

we could apply commutation rules with XX gates and obtain a reduction to 2N

parameters in all odd layers. We decided not to do this because there is no effective

reduction of the number of parameters for experiments up to L= 5 layers considered

here.

For the entangling gates we use the notation U (l)
ij =XX(θ(l)

ij ), which in exponen-

tial form reads as XX(θ(l)
ij ) = exp

(
− i

2θ
(l)
ij σ

x
i σ

x
j

)
. Recalling that states that differ by

a global phase are indistinguishable, a direct computation shows that the adjustable

parameters can be taken as θ(l)
ij ∈ [−π,+π]. Also, there is no need to choose an order

for these gates within an entangling layer as they commute with one another.

The number of parameters per entangling layer depends on the chosen connec-

tivity topology. The top right Panel of Figure 3.7 shows a graphical representa-

tion of these topologies for the case of N = 4 qubits: all is a complete graph with
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N(N −1)/2 parameters, chain is a one-dimensional nearest neighbour graph with

N −1 parameters, and star is a star-shaped graph with N −1 parameters.

Once the number of layers and topology of entangling gates is fixed, the quantum

circuits described above provide a template. By adjusting its parameters we explore

a (small) subset of the unitaries that are in principle allowed in the Hilbert space.

The variational approach aims at finding the optimal parameters by minimising a

cost function. Here we employ the cost function in Eq. (3.4) with ε= 10−8.

We use a global-best particle swarm optimisation algorithm [140] implemented

in the PySwarms [148] Python library. The ‘position’ of a particle corresponds to a

candidate solution, that is, a point θ in parameter space defining a quantum circuit.

The ‘velocity’ of a particle is a vector determining how to update the position.

Both position and velocity are initialised at random and change at each iteration

according to the swarm dynamics. There are three hyper-parameters controlling

the swarm dynamics: a cognition coefficient c1, a social coefficient c2 and an inertia

coefficient w. After testing a grid of values, we found that a constant value of 0.5

for all three hyper-parameters works well for our purpose. To avoid large jumps

in parameter space, we further restricted position updates in each dimension to a

maximum magnitude of π.

We used a number of particles which is twice the number of parameters to

optimise. That is, more complex QCBMs are optimised by a larger number of

particles. Finally to estimate the cost function for each particle, we always used the

outcomes of 1000 measurements in the computational basis and 1000 data vectors

sampled exactly from the target distribution.

3.2.3 Results

3.2.3.1 GHZ state preparation

To test the capabilities of DDQCL, we started with the preparation of Greenberger-

Horne-Zeilinger (GHZ) states, also known as ‘cat states’ [149]. Besides their im-

portance in quantum information, the choice is motivated by their simple descrip-

tion and by the availability of many studies about their preparation (see, e.g.,

Refs. [150, 37, 151]).

From the DDQCL perspective, we explored whether it is possible to learn any of

the known recipes for GHZ state preparation starting only from classical data. The
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Figure 3.4: Data-driven preparation of GHZ-like states. The left (right) Panel shows a
recipe obtained for even (odd) number of qubits. DDQCL brought all param-
eters very close to π

2 even though it was not constrained to do so. A human
expert rounded the parameters to some precision discovering these circuits.
Rx stands for the single-qubit rotation about the x axis. GMS stands for a
global Mølmer-Sørensen gate acting on all the N = 2n (N = 2n+ 1) qubits and
is equivalent to the application of local XX gates to all N(N −1)/2 pairs of
qubits.

target data consisted of samples from a distribution corresponding to the two desired

computational basis states: P0 = 0.5 for the state |0 . . .0〉 and P1 = 0.5 for the state

|1 . . .1〉. This distribution, which we call the zero-temperature ferromagnet, could be

easily prepared as a mixed state. However, our study relies on pure states prepared

by the QCBM; then, the only way to reproduce the zero-temperature ferromagnet

is by implementing a unitary transformation that prepares a GHZ-like state. By

GHZ-like state we mean a state that differs from the GHZ state only by a relative

phase.

Using a layer of single-qubit rotations followed by an entangling layer with the

all-to-all topology, DDQCL was indeed able to yield many degenerate preparations

of GHZ-like states. In particular, we ran particle swarm optimisation on 25 random

initialisations for 3, 4, 5 and 6-qubit instances. A human expert inspected the best

set of parameters found for each size and, after rounding the parameters to some

precision, spotted a clear pattern. Instances of 3 and 5 qubits yielded a recipe,

while instances of 4 and 6 qubit yielded a different recipe. The recipes so obtained

are summarised in Figure 3.4 and were verified for larger number of qubits, both

even and odd. It turns out that DDQCL successfully reproduced a known recipe for

trapped ion quantum computers [150] which, to the best of our knowledge, corre-

sponds to the most compact and efficient GHZ state preparation using XX gates.

Another commonly used recipe consists of cascading entangling gates and alterna-

tions of single-qubit rotations [151]. DDQCL produced approximate recipes of this

kind in some tests when using an entangling layer with chain topology.
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Note that in DDQCL all the parameters are learned independently and not

constrained to be the same. Yet the learning algorithm unveiled that for this dataset

all parameters need to converge to the same value, as shown in Figure 3.4. This is not

necessarily the case for other datasets. We also note that the simulations assumed

noiseless hardware, making the analysis of parameters easier for the human expert.

It would be much more difficult to analyse parameters found with noisy hardware, as

DDQCL can learn to compensate certain types of noise, e.g., systematic parameter

offsets, in non-trivial ways. The upside is that learning can be successful even in the

presence of such noise.

Finally, one can obtain more general solutions to this problem by allowing

DDQCL to prepare mixed states. For example, consider a circuit acting on both

the main qubit register and an additional ancilla register. By tracing out the ancilla

register, e.g., ignoring it during measurement, the main register can implement a

mixed state and can be trained to simulate a zero-temperature ferromagnet. Another

example which does not resort to an ancilla register is to use decoherence as a

mechanism to prepare mixed states that explain the data.

3.2.3.2 Coherent thermal states

Thermal states play an important role in statistical physics, quantum information,

and machine learning. Using DDQCL, we trained QCBMs with a number of layers

L ∈ {1,2,3} and all-to-all topology to prepare thermal states starting from data.

A thermal dataset in N dimensions is obtained by exact sampling realisations of

x ∈ {−1,+1}N from the Boltzmann distribution

P (x) = Z−1 exp
(
T−1

(∑
ij

Jijxixj +
∑
i

hixi
))
, (3.5)

where Z is the normalisation constant, T is the temperature, and Jij and hi are

random coefficients. We sampled these coefficients from a Gaussian distribution with

zero mean and
√
N standard deviation as in the Sherrington-Kirkpatrick model [87].

By decreasing the temperature T of the target distribution, we can increase the

difficulty of the learning task. This will be evident later from the numerical results,

but let us first informally justify the claim with examples. When the temperature

is high, say infinite, the Boltzmann distribution corresponds to the uniform distri-
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bution over all possible binary vectors. This can be easily modeled by a single-layer

QCBM (e.g., a layer of Hadamard gates). When the temperature is low, say zero,

the distribution is uniform over the degenerate ground states. Depending on the

degeneracy, the QCBM model may require large quantities of entanglement and

therefore the learning of many layers. For the Sherrington-Kirkpatrick model we

also know that in the limit of large system size a phase transition is expected at

Tc ≈ 1. Although this is not true for small-sized systems, we take this value as a

reference temperature and consider temperature T ∈ {2Tc,Tc,Tc/1.5}.

For each setting of the temperature and circuit depth, we generated 25 synthetic

instances, obtained the corresponding thermal datasets, and executed DDQCL. In

order to plot a learning curve indicating the performance of the algorithm, we stored

the KL divergence of the QCBM from the target at each iteration. Results on the 25

instances allowed us to use bootstrapping techniques and obtain error bars for the

learning curve. In particular, from the 25 learning curves, we sampled 10,000 sets

of size 25 with replacement and computed the median learning curve for each set.

From the distribution of 10,000 medians, we computed the median and the error

bars from the 5-th and 95-th percentiles as the lower and upper limits, respectively,

accounting for a 90% confidence interval.

Figure 3.5 shows the bootstrapped median and the 90% confidence interval for

the KL divergence on instances of N = 5 qubits. Deeper QCBMs, such as L = 3

(purple pentagons), consistently outperformed L= 2 (red circles) and L= 1 (yellow

triangles). This became more evident as we went from the easy learning task with

T = 2Tc in Panel (a) to the hard learning task with T = Tc/1.5 in Panel (c).

To assess how well DDQCL performs on the generative task, we compared it to

the inverse Bethe approximation [101] (see also Eqs. (3.21) and (3.22) in Ref. [152]).

This is a classical closed-form approach widely used in statistical physics to infer

the parameters of an Ising model when given a dataset of observations. As shown in

Figure 3.5, the inverse Bethe approximation (green bar) performed extremely well

in the easy task (a), matched DDQCL with L= 3 in the intermediate task (b), and

underperformed on the difficult task (c). The latter observation comes from the

fact that the median performance of the inverse Bethe approximation has very large

confidence intervals. Results for instances of larger size were consistent; in Figure 3.6
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(a) T = 2 TC (b) T = TC (c) T = TC /1.5

Figure 3.5: Data-driven preparation of coherent thermal states for N = 5 qubits. We re-
port the bootstrapped median KL divergence and 90% confidence interval of 25
instances. (a) With T > Tc, the learning task is easy and low-depth QCBMs
such as L = 1 (yellow triangles) and L = 2 (red circles) perform very well.
(b) With T ≈ Tc, a gap in performance between QCBMs of different depth
becomes evident. (c) With T < Tc, the learning task is hard and the deeper
QCBM L= 3 (purple pentagons) outperforms. The inverse Bethe approxima-
tion (green band) produces a classical model which is excellent for the easy
task in (a), matches the best quantum model in (b), and underperforms on
the hard task in (c).

Figure 3.6: Data-driven preparation of coherent thermal states for N = 6 qubits. The
results are consistent with those shown in Figure 3.5. For the low-temperature
case in (c), the inverse Bethe approximation converged only in 7 out of 25
instances. No median value was extracted in this case and we reported a KL
divergence of 2.0 as a reference.

we show the results for N = 6 qubits.

We emphasise that this result is not a form of quantum supremacy as the two

methods are fundamentally different. DDQCL prepares a quantum state without

the assumption of an underlying Boltzmann distribution, while the inverse Bethe

approximation infers the parameters with such assumption. The error in the inverse

Bethe approximation is expected to go to zero with system size, and only above

the reference temperature Tc. Thus, it is not surprising that this classical method

underperformed in Figures 3.5 (c) and 3.6 (c).
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Figure 3.7: BAS dataset and mappings of pixels to qubits. The left Panel shows patterns
that belong to BAS(2,2) while the central Panel shows undesired patterns.
The right Panel shows a possible mapping of the 4 pixels to N = 4 qubits
and some of the qubit-to-qubit connectivity topologies that can be natively
implemented by trapped ion quantum computers: chain, star, and all.

3.2.3.3 The qBAS score and its application to benchmarking

Bars-and-Stripes (BAS) [99] is a synthetic dataset of images that has been widely

used to study unsupervised generative models. BAS(n,m) consists of n×m pixel

pictures obtained by setting each row (or column) to either black (−1) or white

(+1), at random. Such images can be efficiently produced and visualised.

The total number of images is obtained as follows. First we count the number

of single stripes, double stripes, etc., that can fit into the n rows. This number is

the sum of binomial coefficients ∑n
k=0

(n
k

)
= 2n. The same expression holds for the

number of bars that can be placed in the m columns, that is 2m. Note that empty

(all-white) and full (all-black) patterns are counted in both the bars and the stripes.

Therefore, we obtain the total count for the BAS patterns by subtracting the two

extra patterns from this double count

NBAS(n,m) = 2n+ 2m−2. (3.6)

The probability distribution so generated is 1/NBAS(n,m) for each pattern be-

longing to BAS(n,m), and zero for any other pattern. The top left Panel of Fig-

ure 3.7 shows patterns belonging to BAS(2,2), while the top central Panel shows

the remaining patterns.

Now, we would like to design a task-specific figure of merit to assess the perfor-

mance of the components of the hybrid system. It shall take into account quantum

resources such as the circuit depth, the gate fidelities, and any other architectural

aspects, such as the qubit-to-qubit connectivity and the native set of single- and

two-qubit gates. Moreover, it shall take into account classical resources such as the
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choice of cost function, the optimiser, and the hyper-parameters. As we show next,

DDQCL can train a circuit to prepare a quantum state that encodes the BAS prob-

ability distribution; in turns, this can be used to compute a figure of merit which

we call the qBAS(n,m) score.

The qBAS(n,m) score is an instantiation of the F1 score widely used in the

context of information retrieval. The F1 score is defined as the harmonic mean of

the precision p and the recall r, i.e., F1 = 2pr/(p+r). The precision p indicates the

ability to retrieve patterns which belong to the dataset 5. In our context this is the

number of measurement outcomes that belong to the BAS(n,m) dataset, divided by

the total number of measurements Nreads. The recall r is the capacity of the model

to retrieve the whole set patterns belonging to the dataset. In our case, if we denote

the number of distinct measured patterns as d(Nreads), then r= d(Nreads)/NBAS(n,m).

To score high (F1 ≈ 1.0), both high precision (p≈ 1.0) and high recall (r ≈ 1.0) are

required.

The F1 score is a useful measure for the quality of information retrieval and

classification algorithms, but for our purposes it has a caveat: the dependence of

r on the total number of measurements. As an example, consider a model that

generates only BAS patterns, i.e., its precision is 1.0, but with highly heterogeneous

distribution. If some of the BAS patterns have infinitesimally small probability, we

can still push the recall to 1.0 by taking a large number of measurementsNreads→∞.

This is not desirable since our purpose is to evaluate circuits on the task of uniformly

sampling all the patterns from BAS(n,m).

To define a unique score which is sensitive to deviations, let us first assume a

model that perfectly matches the target distribution PBAS(n,m) = 1/NBAS(n,m). Un-

der this assumption the expected number of samples needed to obtain a value of

r= 1.0 can be estimated using the famous coupon collector’s problem. Then, we can

setNreads to be equal to the expected number of samples that need to be drawn to col-

lect all the NBAS(n,m) patterns (‘coupons’). That is, Nreads =NBAS(n,m)HNBAS(n,m) ,

where Hk is the k-th harmonic number. In Table 3.1 we provide pre-computed val-

ues of Nreads for different values of n and m up to 100 qubits. Clearly, the number

of readouts required to determine qBAS(n,m) are within experimental capabilities

5The meaning and usage of precision in the field of information retrieval differs from the definition
of precision in other branches of science and statistics.
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(n,m) Nqubits NBAS(n,m) Nreads
(2,2) 4 6 15
(2,3) 6 10 30
(3,3) 9 14 46
(4,4) 16 30 120
(7,7) 49 254 1554
(8,8) 64 510 3475
(10,10) 100 2046 16780

Table 3.1: Experimental requirements for the qBAS(n,m) score on quantum computers
with up to 100 qubits. As described in the main text, Nreads is the number of
readouts required for every estimation of the qBAS score.

of current NISQ devices.

For statistical robustness, we recommend as a good practice to perform R rep-

etitions of the Nreads measurements leading to R independent estimates of the re-

call (each denoted as ri). For the precision p, instead, all the samples should be

used to robustly estimate this quantity. Using this value of p one can compute R

independent values of the qBAS(n,m) score from each of the ri. These are subse-

quently bootstrapped to obtain a more robust average for the final reported value

of qBAS(n,m).

We note that a more general performance indicator is the KL divergence

DKL[PBAS(n,m)|Pθ]. However, this would scale worse than the qBAS(n,m) score.

As n×m becomes large, it is expected that the KL divergence is frequently unde-

fined. This is true when measurements yield distributions such that Pθ(x(d)) = 0

for any of the x(d) in BAS(n,m). In all these cases, the qBAS score can still be

computed and the number of measurements Nreads remains relatively small to be

practical for intermediate size n×m6.

But why do we expect the BAS distribution to be a good target for assessing

the hybrid system? For the purposes of benchmarking and measuring the power of

NISQ devices with DDQCL, it is insufficient to have a classically easy-to-generate

target dataset; we also require such a dataset to be challenging to encode in a

quantum state. Because of the importance of entanglement in quantum informa-

tion processing, we considered the entanglement entropy averaged over all two-qubit

6The number of patterns in BAS(n,m) is dominated by max(2n,2m). For a processor with q
qubits we can choose n=m= b√qc. Approximating the harmonic number as Hk = lnk+γ, where
γ ≈ 0.577 is the Euler-Mascheroni constant, we obtain Nreads ∼O(2b

√
qc). For a system of say

q = 400 qubits we can estimate the score using a number of measurements of the order of a million.
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Figure 3.8: Data-driven preparation of BAS(2,2). We report the bootstrapped median
KL divergence and 90% confidence interval. The left Panel shows results for
low-depth QCBMs with different topologies. The non-entangling QCBM L= 1
(green crosses) severely underperforms. A significant improvement is obtained
with L= 2 where, however, the choice of topology becomes a key factor: chain
(purple squares) performs slightly better than star (red stars) even though
they have the same number of parameters; all-to-all (orange circles) has more
expressive power and significantly outperforms all the others. The right Panel
extends this analysis to deeper QCBMs with L= 4. All the topologies achieve
a lower median KL divergence and a smaller confidence intervals.

subsets [153] as a proxy measure of a specific quantum state’s usefulness for bench-

marking purposes.

We start by noting that the four-qubit GHZ state, whose rich entangled nature

makes it ideal for studying decoherence and decay of quantum information [150, 151],

has entanglement entropy SGHZ = 1. Now consider states that encode BAS(2,2) in

the computational basis. In Appendix 5.4 we show that the minimum value of entan-

glement entropy that any such state must have is SBAS(2,2) ≈ 1.25163. Furthermore,

we show that the maximum value that a quantum representation of BAS(2,2) can

have is SBAS(2,2) ≈ 1.79248, which happens to be the maximum entanglement en-

tropy known for any four-qubit state [153].

Let us now see the qBAS(2,2) score in action. We decided to use it to compare

the entangling topologies sketched in the top right Panel of Figure 3.7, and to

compare circuits with different number of layers. The process consists of two steps;

first, DDQCL is used to encode BAS(2,2) in the wave function of a quantum state.

Second, the best circuits, i.e., those achieving the lowest value for the cost function,
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Figure 3.9: Comparison between simulated circuits and experimental implementations in
the trapped ion quantum computer hosted by University of Maryland. These
histograms are for the best circuits for BAS(2,2) obtained by DDQCL under
three different setting: (a) all-to-all with L= 2 layers, (b) star with L= 4, and
(c) star with L= 2. The theoretical state obtained in (a) is close to optimal and
has a remarkable entanglement entropy averaged over all two-qubit subsets of
SBAS(2,2) = 1.69989. Circuit diagrams for (a-c) are shown in Appendix 5.5.

are compared using the qBAS(2,2) score.

Figure 3.8 shows the bootstrapped median of the KL divergence and 90% con-

fidence interval over 25 random initialisations of DDQCL in silico. Note that the

bootstrapping was performed as in Section 3.2.3.2. The all-to-all topology (orange

circles) always outperforms sparse topologies (red stars and purple squares). How-

ever, deeper QCBMs do not always provide significant improvements, as it is the

case for all-to-all L= 4 (dark green circles) versus all-to-all L= 2 (orange circles). A

possible explanation is that, when going from two to four layers, we approximately

double the number of parameters, and particle swarm optimisation struggles to find

enhanced local optima. Another plausible explanation is that for this small dataset,

the all-to-all QCBMs with L= 2 are already close to optimal performance (this can

be seen from the histogram in Figure 3.9 (a)).

Figure 3.9 shows histograms from in silico simulations (pink bars) and from

experiments in the trapped ion quantum computer (green bars). These histograms

are for the best circuits obtained by DDQCL under three different setting: (a) all-to-

all with L= 2 layers, (b) star with L= 4, and (c) star with L= 2. Circuit diagrams

for (a-c) are shown in Appendix 5.5. Note that the theoretical state obtained in Panel

(a) is close to optimal and attains a remarkable entanglement entropy of SBAS(2,2) =

1.69989; this is further evidence that DDQCL is capable of handling quantum states

that are rich in entanglement. Now, although visually the experiments seem to match

the theory, it is difficult to quantify the quality of the solutions and benchmark the

experimental results against the theoretical ones. That is where the qBAS score

comes into play.
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Figure 3.10: qBAS(2,2) score for three different circuit settings. We report the boot-
strapped mean and 95% confidence interval for simulations (green bars) and
experiments on the trapped ion quantum computer hosted by University of
Maryland (pink bars).

In order to calculate a robust qBAS score we used the following bootstrapping

technique. The score was computed 25 times from batches of Nreads = 15 samples.

From the 25 repetitions, we sampled 10,000 sets of size 25 with replacement and

computed the mean for each. From the distribution of 10,000 means, we computed

the mean and the error bars from two standard deviations, accounting for a 95%

confidence interval. Figure 3.10 shows the bootstrapped mean qBAS(2,2) score and

95% confidence interval for simulations (green bars) and experiments on the trapped

ion quantum computer (pink bars). Clearly, the score is sensitive to the depth of the

circuit as shown by the performance improvement of L= 4 compared to L= 2 in the

star topology. Note that the theoretical improvement for using L= 4 is larger than

that observed experimentally in the trapped ion quantum computer. This is because

the quantum computer accumulated errors while executing the deeper circuit. The

score is also sensitive to the choice of topology as shown by the drop in performance

of star compared to all-to-all when the same number of layers L= 2 is used.

Although we compared circuits implemented on the same trapped ion hardware,

the score may be used to compare different device generations or even completely

different architectures (e.g., superconductor-based versus atomic-based). Similarly,

one may use the score to compare classical resources of the hybrid system (e.g.,

different optimisers).
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3.2.3.4 Comparison of cost functions

In realistic machine learning scenarios, we typically do not have access to the target

distribution, nor to the output state of QCBM. Hence, we need to compare the two

distributions at the level of histograms created from a finite number of samples and

measurements. Here we compare three cost functions via simulations.

First, recall that the clipped negative log-likelihood is defined as

Cnll(θ) =− 1
D

D∑
d=1

ln
(
max(ε,Pθ(x(d)))

)
, (3.7)

where probabilities are estimated from samples and ε > 0 is a small number that

avoids an infinite cost when Pθ(x(d)) = 0. We chose to use ε= 10−8.

Second, let us define the earth mover’s distance [154] as

Cemd(θ) = min
F
〈d(x,y)〉F , (3.8)

where F (x,y) is a joint probability distribution such that ∑yF (x,y) = PD(x) and∑
xF (x,y) = Pθ(y). That is, the marginals correspond to the data and QCBM

distributions, respectively. Intuitively, this is the minimum cost of turning one

histogram into the other where the metric d(x,y) specifies the cost of transporting a

single unit from x to y. We chose d(x,y) to be the Hamming distance between strings

x∈ {−1,+1}N and y∈ {−1,+1}N . Since we normalise histograms to sum up to one,

the Earth Mover’s Distance is equivalent to the 1-st Wasserstein distance [155]. In

our simulations, we use the PyEMD Python library for fast computation of the earth

moving distance [156].

Third, let us define the moment matching as

Cmm(θ) = 1
N

N∑
i

(〈xi〉PD −〈xi〉Pθ
)2 + 2

N(N −1)

N∑
i>j

(〈xixj〉PD −〈xixj〉Pθ
)2 , (3.9)

where the expectation values PD and Pθ are taken with respect to data and QCBM

distributions, respectively. This cost function can be generalised to include moments

beyond the second as well as using different positive exponents for the error.

We compared the cost functions on the task of learning thermal states of size

N = 5, with L = 3 layers and all topology. Figure 3.11 shows the bootstrapped
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Figure 3.11: Comparison of cost functions. We report the bootstrapped median KL di-
vergence and 90% confidence interval. Both moment matching (Cmm) and
earth mover’s distance (Cemd) closely track the clipped negative log-likelihood
(Cnll).

median KL divergence and 90% confidence interval on 25 realisations for 100 learning

iterations. The fact that Cnll (red diamonds) outperforms other cost functions does

not come as a surprise; minimisation of the negative log-likelihood is directly related

to minimisation of the KL divergence. However, we expect the performance of

DDQCL based on this cost function to degrade quickly as the size of the problem

increases. In realistic applications, the relevant probabilities in Eq. (3.7), i.e., those

associated with the data, are a vanishing fraction of the 2N probabilities. Moreover,

QCBM probabilities need to be estimated from a finite number of measurements.

The earth mover’s distance Cemd (green pentagons) performs well, but it suffers

from similar scalability issues. Fast algorithms for the computation of this distance

may struggle when the number of bins in the histogram increases exponentially as

in our case. However, it is reassuring to see that alternative cost functions with no

relation to the KL divergence can still produce satisfactory results.

Surprisingly, the moment matching Cmm (purple crosses) closely tracks the other

cost functions while retaining computational efficiency. In fact, even though a large

number of samples may be needed to obtain low-variance estimates for the moments,

only O(N2) terms are estimated at each iteration. We expect this cost function to

be a good heuristic for DDQCL on large systems.
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3.2.4 Discussion

Data is an essential ingredient of any machine learning task. We presented a data-

driven quantum circuit learning algorithm for generative modeling of classical data

and for benchmarking of hybrid systems.

First, we learned a GHZ state preparation recipe for a trapped ion quantum

computer. Minimal intervention of a human expert allowed to generalise the recipe

to any number of qubits. This is not an example of compilation, but rather an illus-

tration of how simple probability distributions can guide the synthesis of interesting

quantum states. Depending on the circuit structure, the noise in the system, and

other factors, the algorithm could lead to a different solution to the same generative

tasks. The message here is that ‘there is more than one way to skin a cat (state)’.

Second, we trained QCBMs to prepare approximations of thermal states. This

illustrates the power of Born machines [128] to approximate Boltzmann machines [77]

when the dataset requires thermal-like features.

Finally, tapping into the real power of near-term quantum devices we designed

the qBAS score, a task-specific performance metric based on a canonical dataset

called Bars-and-Stripes. This dataset is easy to prepare, visualise and validate clas-

sically. On the other hand, modeling Bars-and-Stripes requires significant quantum

resources in the form of entanglement. Errors in the device and any other sub-

optimal setting affect the qBAS score making it an appealing choice for (i) compar-

ing devices across generations, (ii) comparing different architectures, (iii) selecting

the best classical optimiser, and (iv) selecting the best hyper-parameters. All these

components must be indeed optimised if we aim for a successful implementation of

hybrid systems as the number of qubits increases. The qBAS score can be estimated

in all NISQ computers available to date.

It is left to future work to demonstrate realistic machine learning using more

powerful quantum circuit Born machines (QCBMs). At a finite and fixed low circuit

depth, the power of the generative model can be enhanced by including ancilla

qubits, in analogy to the role of hidden units in probabilistic graphical models.

Layer-wise pre-training of the quantum circuit inspired by deep learning [73, 24]

could initialise the larger number of parameters to near-optimal locations in the

cost landscape. Finally, the method could be generalised to learn quantum data. In
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the next Section we import promising ideas from deep learning, namely adversarial

methods, and take a step in this direction.

3.3 The quantum generative adversarial network
3.3.1 Model definition

In this Section, we start from information theoretic arguments and derive an adver-

sarial algorithm that learns to generate approximations to quantum data.

Let us consider the problem of generating a pure state ρg close to an unknown

pure target state ρt, where closeness is measured with respect to some distance

metric to be chosen7. Hereby we use subscripts g and t to label ‘generated’ and

‘target’ states, respectively. The unknown target state is provided a finite number

of times by a channel. If we were able to learn the state preparation procedure,

then we could generate as many ‘copies’ as we want and use these in a subsequent

application. We now describe a game between two players whose outcome is an

approximate state preparation for the target state.

Borrowing language from the literature of adversarial machine learning, the two

players are called the generator and the discriminator. The task of the generator

is to prepare a quantum state and fool the other player into thinking that it is the

true target state. Thus, the generator is a unitary transformation G applied to some

known initial state, say |0〉, so that ρg =G |0〉〈0|G†. We will discuss the generator’s

strategy later.

The discriminator has the task of distinguishing between the target state and

the generated state. It is presented with the mixture ρmix = P (t)ρt+P (g)ρg, where

P (t) and P (g) are prior probabilities summing to one. Note that in practice the dis-

criminator sees one input at a time rather than the mixture of density matrices, but

we can treat the uncertainty in the input state using this picture. The discriminator

performs a positive operator-valued measurement (POVM) {Eb} on the input, so

that ∑bEb = I. According to Born’s rule, measurement outcome b is observed with

probability P (b) = tr[Ebρmix]. The outcome is then fed to a decision rule, a function

that estimates which of the two states was provided in input.

A straightforward application of Bayes’ theorem suggests that the decision
7Our derivations are valid for mixed states in general, hence the use of density operators. How-

ever, to simplify the simulations and the discussion we focus here on the specific case of pure states,
density operators of rank 1.
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rule should select the label for which the posterior probability is maximal, i.e.,

argmaxx∈{g,t}P (x|b). This rule is called the Bayes’ decision function and is optimal

in the sense that, given an optimal POVM, any other decision function has a larger

probability of error [157]. Recalling that maxx∈{g,t}P (x|b) is the probability of the

correct decision using the Bayes decision function, we can formulate the probability

of error as

Perr({Eb}) =
∑
b

P (b)(1− max
x∈{g,t}

P (x|b))

=
∑
b

P (b) min
x∈{g,t}

P (x|b)

=
∑
b

min
x∈{g,t}

P (x|b)P (b)

=
∑
b

min
x∈{g,t}

P (b|x)P (x)

=
∑
b

min
x∈{g,t}

tr[Ebρx]P (x).

(3.10)

We observe that the choice of POVM plays a key role here, hence, the discriminator

should try to find the best possible one. We can write the objective function for the

discriminator in variational form as

P ∗err = min
{Eb}

Perr({Eb}), (3.11)

where the minimisation is over all possible POVM elements, and the number of

POVM elements is unconstrained.

It was Helstrom who carefully designed a POVM achieving the smallest prob-

ability of error when a single sample of ρmix is provided [136]. He showed that

the optimal discriminator comprises two elements, E0 and E1, which are diagonal

in a basis that diagonalises Γ = P (t)ρt−P (g)ρg. When the outcome 0 is observed,

the state is labeled as ‘target’, when the outcome 1 is observed the state is labeled

as ‘generated’. This would be the discriminator’s optimal strategy as it minimises

the probability of error in Eq. (3.11). Unfortunately, designing such a measurement

would require knowledge of the target state beforehand, contradicting the purpose of

the game. Yet we now know that the optimal POVM comprises only two elements.
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Using this information, and plugging Eq. (3.10) in Eq. (3.11), we obtain [157]

P ∗err = min
{E0,E1}

(
P (1|t)P (t) +P (0|g)P (g)

)
= min
{E0,E1}

(
tr[E1ρt]P (t) + tr[E0ρg]P (g)

)
= min

E0

(
tr[(I−E0)ρt]P (t) + tr[E0ρg]P (g)

)
= min

E0

(
− tr[E0ρt]P (t) + tr[E0ρg]P (g)

)
+P (t),

(3.12)

where we used E1 = I−E0 from the definition of POVM.

We now return to the generator and outline its strategy. Assuming the discrim-

inator be optimal, the generator achieves success by maximising the probability of

error P ∗err with respect to the generated state ρg. The result is a zero-sum game

similar to that of generative adversarial networks [116] and described by

max
ρg

min
E0

(
− tr[E0ρt]P (t) + tr[E0ρg]P (g)

)
=min

ρg
max
E0

(
tr[E0ρt]P (t)− tr[E0ρg]P (g)

)
,

(3.13)

where we dropped the constant terms. Now suppose that the game is carried out

in turns. On the one hand, the discriminator is after an unknown Helstrom mea-

surement which changes over time as the generator plays. On the other hand, the

generator tries to approximate an unknown target state exploiting the learning signal

provided by the discriminator.

Note that when P (t) = P (g) = 1
2 , the probability of error in Eq. (3.11) is related

to the trace distance between quantum states [44]

D(ρt,ρg) = 1
2‖ρt−ρg‖

= max
{Eb}

1
2
∑
b

∣∣tr[Eb(ρt−ρg)]∣∣. (3.14)

This is clearer from the variational definition in the second line. Hence, by playing

the minimax game above with equal prior probabilities, we are implicitly minimising

the trace distance between target and generated state.

Ideally, we would use the trace distance to analyse the learning progress and

to design a stopping criterion for the algorithm. For pure states, the trace distance
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can be estimated using the well-known SWAP test. In practice, implementing a

coherent SWAP test on a NISQ computer may be highly non-trivial. We discuss this

in Appendix 5.7 where we require a fault-tolerant quantum computer. Furthermore,

recall that our derivation is valid also for mixed states; in this case, there is no

known simple way to estimate the trace distance and one shall resort to some bound.

Since our main interest is in NISQ implementations, and since we need to analyse

the learning progress and design a stopping criterion, we put forward a heuristic

argument in Section 3.3.2.3.

3.3.2 Implementation

3.3.2.1 Near-term implementation on NISQ computers

We now discuss how the game could be played in practice using noisy quantum

computers and no error correction.

First, we assume the ability to efficiently provide the unknown target state as

an input. For example, the target state could come from an external channel and be

loaded in the quantum computer’s register with no significant overhead – the source

could be the output of another quantum computer, while the channel could be a

quantum Internet [33].

Second, the generator’s unitary transformation shall be implemented by a pa-

rameterized quantum circuit applied to a known initial state. Note that target and

generated states have the same number of qubits and they are never input together,

but rather as a mixture with probabilities P (t) and P (g), respectively, i.e., randomly

selected with a certain prior probability. Hence they can be prepared in the same

quantum register.

Third, resorting to Neumark’s dilation theorem [158], the discriminator’s

POVM shall be realised as a unitary transformation followed by a projective mea-

surement on an extended system. Such extended system consists of the quantum

register shared by the target and generated states, plus an ancilla register initialised

to a known state. Notice that the number of basis states for the ancillary system

needs to match the number of POVM elements. Because here we specifically re-

quire two POVM elements, the ancillary system consists of just one ancilla qubit.

The unitary transformation on this extended system is also implemented by a pa-

rameterized quantum circuit. The measurement is described by projectors on the
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state space of the ancilla and the two possible outcomes, 0 and 1, are respectively

associated with labels ‘target’ and ‘generated’.

Depending on the type of gates, depth, and qubit-to-qubit connectivity, we

explore (small) regions of the Hilbert space with the generator circuit, and (small)

regions of the cone of positive operators with the discriminator circuit.

Let us see a more concrete example. Assume that the unknown n-qubit target

state ρt = |ψt〉〈ψt| can be prepared in the main registerM. We construct a generator

circuit G=GL · · ·G1 where each gate is either fixed, e.g., a Controlled NOT, or

parameterized. Parameterized gates are often of the form Gl(θl) = exp(−iθlHl/2)

where θl is a real-valued parameters and Hl ∈ {X,Y,Z,I}⊗n is a tensor product of

n Pauli matrices. The generator acts on the initial state |0〉⊗n and can prepare

ρg =G |0〉〈0|G† in the main registerM.

Similarly, we construct a discriminator circuitD =DK · · ·D1 acting non-trivially

on both main registerM and ancilla qubit A. Each gates is either fixed or param-

eterized as Dk(φk) = exp(−iφkHk/2), where φk is real-valued and Hk is a tensor

product of n+ 1 Pauli matrices. We measure the ancilla qubit using projectors

Eb = I⊗n⊗|b〉〈b| with b ∈ {0,1}.

Collecting parameters for generator and discriminator into vectors θ and φ,

respectively, the minimax game in Eq. (3.13) can be written as minθmaxφV (θ,φ)

with value function

V (θ,φ) =P (t)tr
[
E0D

(
|ψt〉〈ψt|⊗ |0〉〈0|

)
D†
]
−

P (g)tr
[
E0D

(
G |0〉〈0|G†⊗|0〉〈0|

)
D†
]
.

(3.15)

Each player optimises the value function in turn. This optimisation can in principle

be done via different approaches (e.g., gradient-free, first-, second-order methods,

etc.) depending on the computational resources available. Here we discuss a simple

method of alternated optimisation by gradient descent/ascent

θ(t+1) = argmin
θ
V (θ,φ(t))

φ(t+1) = argmax
φ

V (θ(t+1),φ),
(3.16)

starting from randomly initialised parameters θ(0) and φ(0).



102 Chapter 3. Gate-based generative models

To start with, we need to compute the partial derivatives of the value function.

The favourable properties of the tensor products of Pauli matrices appearing in

our gate definitions allow us to compute the analytical gradient [159, 160, 161] (see

Appendix 5.6 for discussion about circuit learning). For the generator, the partial

derivatives read

∂V

∂θl
=−P (g)

2
{

tr
[
E0D

(
Gl+ |0〉〈0|G†l+⊗|0〉〈0|

)
D†
]
−

tr
[
E0D

(
Gl− |0〉〈0|G†l−⊗|0〉〈0|

)
D†
]}
,

(3.17)

where

Gl± =GL · · ·Gl+1Gl(θl± π
2 )Gl−1 · · ·G1. (3.18)

Note that Gl± can be interpreted as two new circuits, each one differing from G

by an offset of ±π
2 to parameter θl. Hence, for each parameter l, we are required

to execute the circuit compositions DGl+ and DGl− on initial state |0〉⊗n+1 and

measure the ancilla qubit. Because these auxiliary circuits have the same depth

as the original circuit, estimation of the gradient is efficient. Interestingly, up to

a scale factor of π
2 , the analytical gradient is equal to the central finite difference

approximation carried out at π (see Eq. (5.10) in Appendix 5.6).

Similarly, the partial derivatives for the discriminator read

∂V

∂φk
=P (t)

2
{

tr
[
E0Dk+

(
|ψt〉〈ψt|⊗ |0〉〈0|

)
D†k+

]
−

tr
[
E0Dk−

(
|ψt〉〈ψt|⊗ |0〉〈0|

)
D†k−

]}
−

P (g)
2
{

tr
[
E0Dk+

(
G |0〉〈0|G†⊗|0〉〈0|

)
D†k+

]
−

tr
[
E0Dk−

(
G |0〉〈0|G†⊗|0〉〈0|

)
D†k−

]}
,

(3.19)

where

Dk± =DK · · ·Dk+1Dk(φk± π
2 )Dk−1 · · ·D1. (3.20)

In this case, for each parameter k we are required to execute four auxiliary circuit

compositions: Dk+ and Dk− on target state |ψt〉⊗ |0〉, while Dk+G and Dk−G on
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initial state |0〉⊗n+1.

Finally, all parameters are updated by gradient descent/ascent

θ
(t+1)
l ←− θ(t)

l − ε
∂V

∂θl

∣∣∣
θ=θ(t),φ=φ(t)

φ
(t+1)
k ←− φ(t)

k +η
∂V

∂φk

∣∣∣
θ=θ(t+1),φ=φ(t)

,

(3.21)

where ε and η are hyper-parameters determining the step sizes. Here we rely on the

fine-tuning of these, as opposed to Newton’s method which makes use of the Hessian

matrix to determine step sizes for all parameters. Other researchers [162] designed

circuits to estimate the analytical gradient and the Hessian matrix. Such approach

requires the ability to execute complex controlled operations and is expected to

require fault-tolerant computers. Our approach is in line with others [160, 163]

requiring much simpler circuits which are suitable for NISQ computers.

As we discuss next, accelerated gradient techniques developed by the deep learn-

ing community can further improve our method.

3.3.2.2 Optimisation by resilient backpropagation

The problem of minimising the trace distance in Eq. (3.14) directly over the set of

density matrices is convex [44]. In our approach, however, we deal with a potentially

non-convex problem due to the optimisation of exponentiated parameters and hence

the introduction of sine and cosine functions. In other words, we minimise the trace

distance ‘indirectly’.

A recent paper [164] suggested that the error surface of circuit learning problems

is challenging for gradient-based methods due to the existence of barren plateaus. In

particular, the region where the gradient is close to zero does not correspond to local

minima of interest, but rather to an exponentially large plateau of states that have

exponentially small deviations in error from that of the totally mixed state. The

derivation of the above result is for a specific class of random circuits; in practice,

however, we prefer to deal with highly structured circuits [165, 166].

Here we argue that the existence of plateaus does not necessarily pose a problem

for the learning of quantum circuits, provided that the sign of the gradient can be

resolved. To validate this claim we refer to the classical literature and argue that

similar problems have traditionally occurred also in neural networks and allow for
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efficient solutions.

The standard gradient-based updates are of the form

w
(t+1)
i ←− w(t)

i − ε
∂

∂wi
E(t), (3.22)

where w(t)
i is the i-th parameter at time t, ε is the step size, E(t) is the error function

to be minimized and its superscript indicates evaluation at w=w(t). If the step size

is too small, the derivatives are also scaled to be too small resulting in a long time to

convergence. If the step size is too large, it can lead to oscillatory behaviour of the

updates or even to divergence. One of the early approaches to counter this behaviour

was the introduction of a ‘momentum’ term, which takes into account the previous

steps when calculating the current update. The learning rules for gradient-descent

with momentum (GDM) read

∆(t)
i ←−−ε

∂

∂wi
E(t) +µ∆(t−1)

i

w
(t+1)
i ←− w(t)

i + ∆(t)
i ,

(3.23)

where µ is a momentum hyper-parameter. Momentum produces some resilience

to plateaus in the error surface, but can lose this resilience when the plateaus are

characterised by having very small or zero gradient.

A family of optimisers known as resilient backpropagation algorithms

(Rprop) [167] is particularly well suited for problems where the error surface is

characterised by large plateaus with small gradient. Rprop algorithms adapt the

step size for each parameter based on the agreement between the sign of its current

and previous partial derivatives. If the signs of the two derivatives agree, then the

step size for that parameter is increased multiplicatively. This allows the optimiser

to traverse large areas of small gradient with an increasing speed. If the signs

disagree, it means that the last update for that parameter was large enough to

jump over a local minima. To fix this, the parameter is reverted to its previous

value and the step size is decreased multiplicatively. Rprop is therefore resilient to

gradients with very small magnitude as long as the sign of the partial derivatives

can be determined.

We use a variant known as iRprop− [168] which does not revert a parameter
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to its previous values when the signs of the partial derivatives disagree. Instead, it

sets the current partial derivative to zero so that the parameter is not updated, but

its step size is still reduced. The hyper-parameters and pseudocode for iRprop− are

described in Algorithm 2.

Algorithm 2 iRprop− [168]

Require: error function E, initial parameters w(0)
i , initial step size ∆init, minimum

allowed step size ∆min, maximum allowed step size ∆max, step size decrease
factor η−, and step size increase factor η+

Ensure: ∆(−1)
i := ∆init and ∂

∂wi
E(−1) := 0 for all i

1: repeat

2: for each i do

3: if ∂
∂wi

E(t−1) ∂
∂wi

E(t) > 0 then

4: ∆(t)
i := min{η+∆(t−1)

i , ∆max}

5: else if ∂
∂wi

E(t−1) ∂
∂wi

E(t) < 0 then

6: ∆(t)
i := max{η−∆(t−1)

i , ∆min}

7: ∂
∂wi

E(t) := 0

8: else

9: ∆(t)
i := ∆(t−1)

i

10: end if

11: wi
(t+1) := wi

(t)− sign
(

∂
∂wi

E(t)
)

∆(t)
i

12: end for

13: until convergence

Despite the resilience of Rprop, if the magnitude of the gradient in a given

direction is so small that the sign cannot be determined, then the algorithm will not

take a step in that direction. Furthermore, the noise coming from the finite number

of samples could cause the sign to flip at each iteration. This would quickly make

the step size very small and the optimiser could get stuck on a barren plateau.

One possible modification is an ‘explorative’ version of Rprop that explores

areas with zero or very small gradient at the beginning of training, but still converges

at the end of training. First, any zero or small gradient at the very beginning of

training could be replaced by a positive gradient to ensure an initial direction is



106 Chapter 3. Gate-based generative models

always defined. Second, one could use large step sizes and decrease them during

training to allow for convergence to a minima. Finally, the explorative Rprop could

remember the sign of the last suitably large gradient and take a step in that direction

whenever the current gradient is zero. This way, when the optimiser encounters a

plateau, it would traverse the plateau from the same direction it entered. We leave

the investigation of an explorative Rprop algorithm to future work.

3.3.2.3 Heuristic for the stopping criterion

Evaluating the performance of generative models is often intractable and can be

done only via application-dependent heuristics [169, 170]. This is also the case for

our model as the value function in Eq. (3.15) does not provide information about the

generator’s performance, unless the discriminator is optimal. Unfortunately, we do

not always have access to an optimal discriminator (more on this in Appendix 5.7).

We now describe an efficient method that can be used to assess the learning in the

quantum setting. In turn, this can be used to define a stopping criterion for the

algorithm.

We begin recalling that the discriminator makes use of projective measurements

on an ancilla register A to effectively implement a POVM. Should the ancilla reg-

ister be maximally entangled with the main registerM, its reduced density matrix

would correspond to that of a maximally mixed state 1
2I. Performing projective

measurements on the maximally mixed state would then result in uniform random

outcomes and decisions.

Ideally, the discriminator would encode all relevant information in the ancilla

register and then remove all the correlations with the main register, obtaining a

product state ρd = ρMd ⊗ρAd . Hereby we use subscript d to indicate the state output

by the discriminator circuit. This scenario is similar in spirit to the uncomputation

technique used in many quantum algorithms [171].

The bipartite entanglement entropy (BEE) is a measure that can be used to

quantify how much entanglement there is between two partitions

S(ρAd ) =−tr
[
ρAd lnρAd

]
=−tr

[
ρMd lnρMd

]
= S(ρMd ), (3.24)

where ρAd = trM[ρd] and ρMd = trA[ρd] are reduced density matrices obtained by
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tracing out one of the partitions, i.e., by ignoring one of the registers. Computing

the BEE is intractable in general, but here we can exploit its symmetry and estimate

it on the smallest partition, i.e., the ancilla register A. Because this register consists

of a single qubit, BEE reduces to

S(ρAd ) =−1 +‖r‖
2 ln

(1 +‖r‖
2

)
− 1−‖r‖

2 ln
(1−‖r‖

2

)
, (3.25)

where r ∈ IR3 is the vector of coordinates on the Bloch sphere such that ρAd =
1
2(I+σ ·r), ‖r‖ ≤ 1, and σ = (σx,σy,σz). The three components of the Bloch vector

can be estimated using tomography techniques for a single qubit, for which we refer

to the excellent review in Ref. [172].

There exist a wide range of methods that can be used depending on the desired

accuracy, the prior knowledge, and the available computational resources. In this

work we consider the scaled direct inversion (SDI) [172] method, where each entry of

the Bloch vector is estimated independently by measuring the corresponding Pauli

operator. This is motivated by the fact that 〈σi〉 = tr
[
σiρ
A
d

]
= eir where ei is the

Cartesian unit vector in the i direction and i ∈ {x,y,z}. These measurements can

be done in all existing gate-based quantum computers we are aware of by applying

a suitable rotation followed by a measurement in the computational basis.

We can write a temporary Bloch vector r̂0 =
(
〈̂σx〉, 〈̂σy〉, 〈̂σz〉

)
where all expec-

tations are estimated from samples. Due to finite sampling error, there is non-zero

probability that the vector lies outside the unite sphere, although inside the unit

cube. These cases correspond to non-physical states and SDI corrects them by find-

ing the valid state with minimum distance over all Schatten p-distances. As it turns

out, this is simply the rescaled vector [172]

r̂ =


r̂0 if ‖r̂0‖ ≤ 1

r̂0/‖r̂0‖ otherwise.
(3.26)

This procedure allows us to efficiently estimate the BEE in Eq. (3.25). Equipped

with this information, we can now design an heuristic for the stopping criterion.

The reasoning is as follows. Provided that the discriminator circuit is non-

trivial, random initialisation of its parameters will likely generate entanglement be-
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tween main and ancilla registers. In other words, S(ρAd ) is expected to be large

at the beginning. As the learning algorithm iterates, the discriminator gets more

accurate at distinguishing states – this requires the ancilla qubit to depart from the

totally mixed state and S(ρAd ) to decrease. This is when the learning signal for the

generator is stronger, allowing the generated state to get closer to the target. As

the two become less and less distinguishable with enough iterations, the discrimina-

tor needs to increase correlations between ancilla’s bases and relevant factors in the

main register. That is, we expect to observe an increase of entanglement between

the two registers, hence an increase in S(ρAd ). The performance of the discriminator

would then saturate as S(ρAd ) converges to its upper bound of ln(2). We propose to

detect this convergence and use it as a stopping criterion.

3.3.3 Results

In this Section, we show that the adversarial method can be used to approximate

entangled target states.

In realistic scenarios, the target state would come from an external channel or be

prepared in the quantum computer’s register with no significant overhead. For the

simulations we mock this scenario using circuits to prepare the target states. That

is, we have ρt = T |0〉〈0|T † where T is an unknown circuit. We setup a generator

circuit G and a discriminator circuit D, and the composition of these circuits is

shown in Figure 3.12, left Panel. We shall stress that neither the generator nor the

discriminator are allowed to ‘see’ the inner workings of T at any time.

Figure 3.12, right Panel, shows the layer that we used as a building block for

our circuits. It has m−1 general two-qubit gates where m is the number of qubits.

Note that each general two-qubit gate can be efficiently implemented with three

CNOT gates and 15 parameterized single-qubit rotations as shown in Ref. [173].

We are interested in studying the performance of the algorithm as we change

the complexity of the circuits. The complexity of our circuits is determined by the

number of layers – we denote this number as c(·) so that, for example, a generator

circuit G made of 2 layers has complexity c(G) = 2.

All parameters were initialised uniformly at random in [−π,+π]. We chose

P (t) = P (g) = 1
2 so that the discriminator is given target and generated states with

equal probability. All expected values required to compute gradients were estimated
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Figure 3.12: The left Panel illustrate a quantum generative adversarial network (QGAN).
The target state is prepared by an unknown circuit T , which the generator
circuit G learns to approximate. The discriminator circuit D takes n-qubit
states in input and learns to label them as ‘target’ or ‘generated’ via the
binary outcome of a projective measurement on an ancilla qubit. Neither G
or D are allowed to ‘see’ the inner workings of T at any time. The learning
signal for the generator comes solely from the probability of error of the
discriminator. Right Panel: layer used as a building block for all the circuits
in our simulations. For an m-qubit circuit the layer consists of a ladder of
m−1 general two-qubit gates.

from 100 measurements on the ancilla qubit. Unless stated otherwise, optimisation

was performed using iRprop−. We used an initial step size ∆init = 1.5π×10−3,

a minimum allowed step size ∆min = π×10−6, and a maximum allowed step size

∆max = 6π×10−3.

Figure 3.13 shows learning curves for simulations on four qubits. The green

downward triangles represent mean and one standard deviation of the trace dis-

tance between target and generated state, computed on 10 repetitions. In the left

Panel, the number of layers are c(T ) = c(G) = 2 and c(D) = 1. We observe that

the complexity of the discriminator is not sufficient to provide a learning signal for

the generator, and the final approximation is indeed not satisfactory. In the central

Panel, c(T ) = c(D) = 2 and c(G) = 1. The generator is less complex than the target

state, but it manages to produce a meaningful approximation in average. In the

right Panel, c(T ) = c(G) = c(D) = 2. The complexity of all circuits is optimal, and

the generator learns an indistinguishable approximation of the target state.

The trace distance reported here could have been approximately computed us-

ing the SWAP test (see Appendix 5.7). However, since we assumed a near-term

implementation, we cannot reliably execute the SWAP test. In Section 3.3.2.3 we

designed an efficient heuristic to keep track of learning. To test the idea, we per-
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Figure 3.13: Learning curves for simulations on four-qubit target states. We report mean
and one standard deviation computed on 10 repetitions. Titles relate the
complexities of target c(T ), generator c(G), and discriminator c(D) circuits.
Green downward triangles indicate the trace distance between target T and
generator G, with zero indicating an optimal approximation. In the left
Panel, the discriminator D is too simple to provide a learning signal for G.
In the central Panel, G is simple but can produce a meaningful approximation
of T . In the right Panel, all circuits are complex enough and by iteration 200
we learn an indistinguishable approximation to the target state. The trace
distance cannot be always computed. The bipartite entanglement entropy
(BEE) of the ancilla qubit (blue upward triangles) can be used as an efficient
proxy to assess the learning progress. As learning progresses, the ancilla qubit
gets closer to the mixed state where S(ρAd ) = ln(2) ≈ 0.69 (grey horizontal
line). The convergence of BEE can be used as a stopping criterion for the
algorithm.

formed additional 100 measurements on the ancilla qubit for each observable σx, σy,

and σz. The outcomes were used to estimate the BEE using the SDI method. In

Figure 3.13 the blue upwards triangles represent mean and one standard deviation

of the BEE, computed on 10 repetitions. The left Panel shows that when the depth

of the discriminator circuit is too low, BEE oscillates with no clear pattern. The

central and right Panels show that, when using a favourable setting, the initial BEE

drops significantly towards zero. This is when the generator begins to learn the

target state. Note that, as the algorithm iterates, the ancilla qubit tends towards

the maximally mixed state where S(ρAd ) = ln(2)≈ 0.69 (grey horizontal line). In

this regime, the discriminator predicts the labels with probability equal to the prior

P (t) = P (g) = 1
2 .

The convergence of BEE can be used as a stopping criterion for the algorithm.

The central and right Panels in Figure 3.13 show that BEE converged after approx-

imately 150 iterations. Stopping the simulation at that point we obtained excellent

results in average. We now show some simulated tomographic reconstructions for
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Figure 3.14: Absolute value of tomographic reconstructions for a four-qubit target state.
Here we have a target state prepared by a random circuit of c(T ) = 2 layers, a
generator with c(G) = 1 and a discriminator with c(D) = 2. The right Panel
shows the absolute value of the entries of the target density matrix. The
initial generated state shown in the left Panel is at trace distance 0.991 from
the target. Following our heuristic, we stopped the algorithm at iteration
150 where BEE converged. The final state, shown in the central Panel, is at
trace distance 0.6 from the target. The generator managed to capture the
main mode of the density matrix, that is, the sharp peak coloured in red.

two cases to support the claim.

First, let us examine the case where the generator is under-parameterized. Fig-

ure 3.14, right Panel, shows the absolute value of the entries of the density matrix

for a four-qubit target state. The randomly initialised generator produced the state

shown in the left Panel which is at 0.991 trace distance from the target. By stopping

the algorithm at iteration 150, we generated the state shown in the central Panel

whose trace distance is 0.6. The generator managed to capture the main mode of

the density matrix, that is, the sharp peak visible on the right.

Second, let us examine the case where the generator is sufficiently parame-

terized. Figure 3.15, right Panel, shows the target state. The generator initially

produced the state shown in the left Panel which is at trace distance 0.951 from

the target. By stopping the adversarial algorithm at iteration 150, we generated the

state shown in the central Panel whose trace distance is 0.121. Visually, the target

and final states are indistinguishable.

But how do the complexities of generator and discriminator affect the outcome?

To verify this, we run the adversarial learning on six-qubit target states of c(T ) =

3 layers, and varied c(G) and c(D). After 600 training iterations, we computed

the mean trace distance across five repetitions. As illustrated by the heat-map in

Figure 3.16, increasing the complexity always resulted in a better approximation to

the target state.
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Figure 3.15: Absolute values of tomographic reconstructions for a four-qubit target state.
The setting is similar to that of Figure 3.14, but this time the generator is
a circuit with c(G) = 2 layers. The randomly initialised generator produces
the state shown in the left Panel, which is at trace distance 0.951 from the
target. Following our heuristic, we stopped the algorithm at iteration 150
where BEE converged. The final state, shown in the central Panel, is at
trace distance 0.121 from the target. Visually, the target and final states are
indistinguishable.
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Figure 3.16: Quality of the approximation against complexity of circuits for simulations
on six-qubit target states. The heat-map shows mean trace distance of five
repetitions of the algorithm, computed at iteration 600. All standard devia-
tions were < 0.1 (not shown). The targets were produced by random circuits
of c(T ) = 3 layers. Increasing the complexity of discriminator c(D) ∈ {2,3,4}
and generator c(G) ∈ {2,3,4} resulted in better approximations to the target
state in all cases.
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Figure 3.17: Learning curves for different optimisers in simulations on six-qubit target
states. The lines represent mean and one standard deviation of the trace
distance computed on five repetitions. All circuits had the same number of
layers, c(T ) = c(G) = c(D) = 3. iRprop− resulted in better performance than
gradient descent with momentum (GDM) when using two different step sizes.
Increasing the step size further in GDM resulted in unstable performance (not
shown).

In our final test, we compared optimisation algorithms on six-qubit target states.

We ran GDM and iRprop− for 600 iterations. Figure 3.17 shows mean and one stan-

dard deviation across five repetitions. iRprop− (blue downward triangles) outper-

formed GDM both with step size ε= 0.01 (green circles) and ε= 0.001 (red upward

triangles). This is because despite the small magnitude of the gradients when consid-

ering targets of six qubits, we were able to estimate their sign and take relevant steps

in the correct direction. This is a significant advantage of resilient backpropagation

algorithms.

3.3.4 Discussion

In this work we proposed a quantum generative adversarial network (QGAN) that

can approximately generate and discriminate pure quantum states. We used in-

formation theoretic arguments to formalise the problem as a minimax game. The

discriminator circuit maximises the value function in order to better distinguish be-

tween the target and generated states. This can be thought of as learning to perform

the Helstrom measurement [136]. In turn, the generator circuit minimises the value

function in order to deceive the discriminator. This can be thought of as minimising

the trace distance of the generated state to the target state. The desired outcome
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of this game is to obtain the best approximation to the target state for a given

generator circuit.

Our near-term implementation has the advantage that it requires few qubits

and avoids the SWAP test. A possible long-term implementation discussed in Ap-

pendix 5.7 can make use of the actual Helstrom measurement when the target is

pure, potentially speeding up the learning process.

Previous work on quantum circuit learning raised the concern of barren plateaus

in the error surface [164]. We showed numerically that a class of optimisers called

resilient backpropagation [167] achieves high performance for the problem at hand,

while gradient descent with momentum performs relatively poorly. These resilient

optimisers require only the temporal behaviour of the sign of the gradient, and not

the magnitude, to perform an update step. In our simulations of up to seven qubits

we were able to correctly ascertain the sign of the gradient frequently enough for

the optimiser to converge to a good solution. For regions of the error surface where

the sign of the gradient cannot be reliably determined, we suggested an alternative

optimisation method that could traverse such regions. We will explore this idea in

future work.

In general it is not clear how to assess the model quality in generative adversar-

ial networks, nor how to find a stopping criterion for the algorithm. For example, in

the classical setting of computer vision, it is often the case that artificial samples are

visually evaluated by humans, e.g., the Turing test, or by a proxy neural network,

e.g., the Inception Score [170]. The quantum setting does not allow for these ap-

proaches in a straightforward manner. We therefore designed an efficient heuristic

based on an estimate of the entanglement entropy of a single qubit, and numerically

showed that convergence of this quantity indicates saturation of the performance.

We proposed to use this as a stopping criterion.

We tested the quality of the approximation as a function of the complexity of

the circuits. Our results indicate that investing more resources in the generator and

discriminator circuits leads to noticeable improvements. An interesting avenue for

future work is the study of different circuit layouts and parameter initialisations. If

prior information about the target state is available, or can be efficiently extracted,

one could encode it in the generator circuit by using a suitable ansatz. For example,



3.4. Subsequent developments 115

in Ref. [163] the authors use the Chow-Liu tree to place CNOT gates such that

they capture most of the mutual information among variables. Similarly, structured

layouts could be used for the discriminator circuit such as hierarchical [165] and

universal topologies [166]. These choices could reduce the number of parameters to

learn and simplify the error surface.

Other machine learning proposals for state approximation require quantum re-

sources that go far beyond those currently available. For example, the quantum

principal component analysis [14] requires universal fault-tolerant hardware in order

to implement the necessary SWAP operations. As another example, the gate-based

quantum Boltzmann machine [34, 35] requires the preparation of highly non-trivial

thermal states. In comparison, our method works well for approximating pure target

states and can find application in quantum state tomography on NISQ computers.

Clearly, a thorough numerical benchmark is needed to compare the scalability of

these methods.

We conclude with an important remark. In this work, we relied on the varia-

tional definition of Bayesian probability of error, which assumes the availability of

a single copy of the quantum state to discriminate. By assuming the availability of

multiple copies, which is in practice the case, one can derive more general adversar-

ial methods based on complex information theoretical quantities. These could be

variational definitions of the quantum Chernoff bound [174], the Umegaki relative

information, and other measures of distinguishability [157].

3.4 Subsequent developments
Several work has been released after the publication of the material presented in

this Chapter. This indicates the importance of the models proposed here and, in

general, is an indicator of how fast the field is growing.

In the context of the QCBM model presented in Section 3.2, Zhu et al. [175]

implemented the whole learning process on four qubits of a trapped ion computer and

experimentally demonstrated convergence of the model to the target distribution.

Liu and Wang [163] proposed the use of an alternative cost function that can

be optimised using gradient-descent. Such a cost function is the maximum mean

discrepancy [176] D(p,qθ) = ‖∑v p(v)φ(v)−∑v qθ(v)φ(v)‖2, where φ is a function

to be evaluated classically, and where expectations are estimated from samples.
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Interestingly, their approach allows for gradient-based learning even for discrete

data v ∈ {0,1}n, which is often not possible in classical generative models. In their

simulations they successfully train QCBMs for the Bars-and-Stripes dataset and for

discretised Gaussian distributions. Hamilton et al. [177] implemented this schema

on the IBM Q20 Tokyo computer, and examined how statistical and hardware noise

affect convergence. They found that the generative performance of state-of-the-art

hardware is usually significantly worse than that of the numerical simulations.

Leyton-Ortega et al. [178] performed a complementary experimental study on

the Rigetti 16Q-Aspen computer. They argued that due to the many components

involved in hybrid systems (e.g., choice for the entangling layers, optimisers, post-

processing strategy, etc.), their performance ultimately depends on the ability to

correctly set hyper-parameters. Research on automated hyper-parameter setting

will therefore be key to the success of QCBMs.

From the theoretical point of view, Du et al. [40] showed that QCBMs have

strictly more expressive power than classical models such as deep Boltzmann ma-

chines, when only a polynomial number of parameters are allowed. Coyle et al. [41]

showed that some QCBMs cannot be efficiently simulated by classical means in

the worst case, and that this holds for all the circuit families encountered during

training.

One key aspect of generative models is their ability to perform inference. This

is the ability to ‘clamp’ some variables to known values and estimate values for other

variables by sampling from the conditional probability. For example, inpainting, the

process of reconstructing lost portions of images and videos, can be done by infer-

ring missing values from a suitable generative model. Low et al. [179] used Grover’s

algorithm to perform inference on quantum circuits and obtain a quadratic speedup

over naïve methods, although the overall complexity remained exponential. Zeng et

al. [180] equipped the QCBM with this method, although this required amplitude

amplification and estimation methods that may be beyond NISQ hardware capa-

bilities. It is an open question how to perform inference on QCBMs in the near

term.

In the context of the QGAN model presented in Section 3.3, some authors

explored classical-quantum combinations for target, generator and discriminator.
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Both Situ et al. [181] and Zeng et al. [180] used a quantum circuit generator and a

classical neural network discriminator. They successfully reproduced the statistics

of some discrete target distributions. Romero and Aspuru-Guzik [182] extended

this approach to continuous target distributions using a suitable post-processing

function.

Zoufal et al. [183] proposed a QGAN that approximately encodes 2n-

dimensional data vectors into the wave function of n qubits. While the best known

generic method has exponential complexity, their QGAN uses a polynomial number

of gates. If both the cost of training and the required precision are kept low, this

method has the potential to facilitate algorithms that use this kind of encoding.

Hu et al. [184] experimentally demonstrated a QGAN on a single custom su-

perconducting qubit.

In summary, this novel field has not been restricted to theory and simulation

– a series of experimental demonstrations on scaled-down problems have been per-

formed. In Appendix 5.3 we summarise the relevant demonstrations. The Reader

interested in experimental setups is invited to delve into the references therein. In

parallel, the software side has been moving at a fast pace (see Fingerhuth et al. [185]

for a review of general quantum computing software). There now exist several plat-

forms for hybrid algorithms which are specifically dedicated to ML. This enables

experimentation at a much higher rate than previously possible, a scenario reminis-

cent of the deep learning developments a decade ago.





Chapter 4

Outlook

In this Thesis, we studied four generative models, namely QABM, QAHM, QCBM

and QGAN. Towards the end of each respective Section, we analysed the pros and

cons of these models and suggested research directions for future work. In this

Chapter, we take a step back and give a brief outlook of the field.

Existing implementations of quantum machine learning, either annealing- or

gate-based, are not able to compete with state-of-the-art classical algorithms. For

example, no demonstration to date was able to challenge the performance of convo-

lutional networks in computer vision. We believe the lack of results on large-scale

real problems is one of the reasons why the machine learning community has not

shown much interest in quantum computing to date. Physicists, on the other hand,

have been increasingly relying on machine learning for models and calculations.

We believe that the hybrid quantum-classical framework is an opportunity to

bring physicists and machine learning scientists together, as significant contributions

are pressingly needed from both sides. More precisely, hybrid systems provide a

framework for the incremental development of hardware and algorithms. In the

near term, algorithms shall rely heavily on classical resources. As quantum hardware

improves, those classical resources shall gradually be replaced by quantum resources

in order to deliver the longed-for quantum advantage.

In the meantime, researchers have been progressing with the theory of quan-

tum supremacy. For example, it has been shown that sampling from the probability

distribution implemented by some classes of non-universal random circuits is a clas-

sically intractable task in the average case. As we have pointed out in this Thesis,

generative modeling is also an intractable task that requires sampling from complex

probability distributions. Is there an interesting link between quantum supremacy

and generative modeling that has been overlooked? If so, could generative modeling
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be a natural application for quantum computers once quantum supremacy has been

established?

We do not know. Indeed, it is important to distinguish between supremacy and

advantage. Quantum supremacy is expected to be the next important milestone in

the history of quantum computing, but such a demonstration may come with no clear

practical utility. Quantum advantage is more ambitious as it requires outperforming

classical computers on a real-world problem.

Optimisation is a ubiquitous task and is an obvious choice for the demonstration

of advantage. Recent work has begun to explore the question of whether existing

supremacy proposals lend themselves to improved optimisation algorithms. An af-

firmative answer would imply practical utility of near-term quantum computers if

some key hardware requirements can also be met.

Sampling is another prevalent tasks and is an ideal candidate for such a demon-

stration. If quantum computers were shown to outperform classical computers on

sampling, the advantage would impact leading-edge domains such as Bayesian in-

ference, deep learning, and probabilistic programming. In turn, we would expect a

strong impact across science and engineering.

An even more natural task for the demonstration is the simulation of quantum

mechanical systems, for example those of interest to chemists. For quantum systems

that exhibit complex behaviour, a classical model cannot learn to reproduce the

statistics unless it uses exponentially scaling resources. Quantum models will deliver

a clear advantage for this tasks, provided that we can efficiently handle quantum

datasets and learn these models.

A careful analysis of the three domains within the context of existing hardware

could significantly bring forward the demonstration of quantum advantage. In this

Thesis, we took the sampling route and we experimented with two very different

architectures: quantum annealers, which we treated as open quantum systems, and

trapped ions, which we treated as closed quantum systems. There exist other inter-

esting architectures, for example photonic computers based on continuous observ-

ables. In general there is no consensus on what architecture will be able to deliver

the quantum advantage and scale well. Ultimately, we shall consider combining the

strengths of each architecture towards solving large-scale real problem.
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Appendices

5.1 Approximating continuous stochastic variables in

quantum annealers

Quantum information does not have to be encoded into binary observables, it could

also be encoded into continuous observables [186]. There has been work on quantum

machine learning that follows the latter direction [187, 188]. However, most available

quantum computers do work with qubits nicely resembling the world of classical

computation. Here we show how naïve approaches to encoding continuous variables

in quantum annealers are likely to fail.

Consider the task of approximating a simple univariate Gaussian distribution.

If we were able to do that, we could control the mean µ and the variance σ2, and

sample accordingly. While this is a trivial task in classical computers, it serves as

an example to show the challenge of implementing continuous variables in quantum

annealers. One way to approach the problem is to approximate the stochastic con-

tinuous variable x with the weighted sum of a large number of stochastic binary

variables. For example, the energy function could include a term x=∑
iwizi, where

wi is a programmable weight in the annealer and zi is the eigenvalue of the Ẑi Pauli

operator for qubit i. Binary expansions commonly used in classical computers can

be though of as a special case where weights increase or decrease exponentially with

the precision (i.e., number of qubits used for the encoding). Such an expansion

would not be practical for state-of-the-art devices as it requires high-precision pa-

rameters that are not available because of noise, bias, and finite control precision.

The more general weighted-sum encoding above may introduce degeneracy, but this

is not a problem in the machine learning setting considered here as long as the re-

sults approximate the desired continuous probability distribution. Moreover, in the



122 Chapter 5. Appendices

machine learning setting we could learn all the parameters, including the weights

wi.

Now, consider approximating the Gaussian probability over x in the annealer.

We define an energy function encoding the eigenvalues of the Hamiltonian in

Eq. (2.17) with zero transverse field

E(s) = 1
2σ2

(∑
i

wizi−µ
)2

= 1
2σ2

(∑
i 6=j

wiwjzizj +
∑
i

w2
i +µ2−2µ

∑
i

wizi
)

=
∑
i 6=j

Jijzizj +
∑
i

hizi+C

(5.1)

where Jij = wiwj/2σ2 are couplings, hi =−µwi/σ2 are local fields, and we collected

the constant terms in C. The result is a fully connected graph that must be natively

implemented in hardware. That is, if we want N -bits of precision, we are required to

have an N -clique in the hardware interaction graph. To see why, assume one of the

interactions is not available in hardware, that is Jij = 0. From the definition of Jij
above, we see that either wi = 0 or wj = 0. Take wi = 0 and notice that Jik = 0 for

each k, or in words, qubit i is disconnected from the interaction graph. Then, qubit

i is useless for the purpose of approximating the desired continuous variable. As

an example, the chimera interaction graph used in the D-Wave 2000Q has a largest

clique of size 2. Hence, the best naïve encoding has 2 bits of precision, and they

are clearly not enough to approximate and have control over any desired Gaussian

distribution.

While in this specific instance a simple solution is possible through the central-

limit theorem, and more elaborated approaches may also be possible, this discussion

suggests that the direct implementation of stochastic continuous variables may be

challenging in more general setups that go beyond the univariate Gaussian case.

5.2 Derivation of the bound for Gibbs distributions

We require a tractable bound for ln〈u|ρ|u〉 in order to train the QAHM when a

Gibbs distribution is used in the generator network. First, write the density matrix
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in terms of eigenvectors |i〉 and eigenvalues Ei of the Hamiltonian

ρ=
∑
i

e−Ei

Z
|i〉〈i|, (5.2)

where Z = ∑
i e
−Ei is the normalisation constant. Then, plug this expansion into

the intractable expression and use Jensen’s inequality

ln〈u|ρ|u〉= ln〈u|
∑
i

e−Ei

Z
|i〉〈i|u〉

= ln
∑
i

|〈i|u〉|2 e
−Ei

Z

≥
∑
i

|〈i|u〉|2 ln e
−Ei

Z

= 〈u|
∑
i

ln e
−Ei

Z
|i〉〈i|u〉

= 〈u| lnρ|u〉,

(5.3)

where |〈i|u〉|2 are probabilities and sum up to 1.

5.3 Experimental demonstrations to date
In Table 5.1 we provide an overview of parameterized quantum circuits for machine

learning that have been demonstrated experimentally on actual quantum hardware.

The tested models were: perceptron, probably approximately correct (PAC),

oracle, quantum autoencoder (QAE), quantum approximate optimisation algo-

rithm (QAOA), quantum circuit Born machine (QCBM), quantum kernel estimator

(QKE), quantum generative adversarial network (QGAN), and variational quantum

model (VQM).

The tested learning algorithms were gradient-based and gradient-free. N/A

indicates that a learning algorithm was either not required or not used. For example,

in some cases the learning process was simulated classically and the learned model

was then deployed on quantum hardware.

Finally, the tested hardware architectures were: superconducting (S), trapped

ion (T), and photonic (P).
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Reference Task Model Learning algorithm Qubits Computer
Schuld et al. [189] Classification QKE N/A 4 IBM Q5 Yorktown (S)
Grant et al. [165] Classification VQM N/A 4 IBM Q5 Tenerife (S)
Havlíček et al. [190] Classification QKE, VQM Gradient-based 2 IBM Q5 Yorktown (S)
Tacchino et al. [191] Classification Perceptron Gradient-based 3 IBM Q5 Tenerife (S)
Benedetti et al. [192] Generative QCBM N/A 4 Custom (T)
Hamilton et al. [177] Generative QCBM Gradient-based 4 IBM Q20 Tokyo (S)
Zhu et al. [175] Generative QCBM Gradient-free 4 Custom (T)
Leyton-Ortega et al. [178] Generative QCBM Gradient-based, gradient-free 4 Rigetti 16Q-Aspen (S)
Coyle et al. [41] Generative QCBM Gradient-based 4 Rigetti 16Q-Aspen (S)
Hu et al. [184] State learning QGAN Gradient-based 1 Custom (S)
Zoufal et al. [183] State learning QGAN Gradient-based 3 IBM Q20 Poughkeepsie (S)
Rocchetto et al. [37] State learning PAC N/A 6 Custom (P)
Otterbach et al. [123] Clustering QAOA Gradient-free 19 Rigetti 19Q-Acorn (S)
Ding et al. [193] Compression QAE Gradient-free 3 Rigetti 8Q-Agave (S)
Ristè et al. [194] Parity with noise Oracle N/A 5 IBM Q5 Yorktown (S)

Table 5.1: Overview of parameterized quantum circuit models for machine learning that have been demonstrated experimentally on actual quantum
hardware.
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5.4 Entanglement entropy of BAS(2,2)

The measure of entanglement entropy used in this work is the average von Neumann

entropy over all 2-qubit subsets [153]. Consider a 4-qubit pure state ρ= |ψ〉〈ψ| and

label the four qubits as A, B, C, and D. Then, the entropy can be computed as

Sψ =−1
3
[
tr(ρAB log2 ρAB)+

tr(ρAC log2 ρAC)+

tr(ρAD log2 ρAD)
]
,

(5.4)

where ρXY is the reduced density matrix for the subset XY . As an example, the

4-qubit GHZ has an entanglement entropy of SGHZ = 1. Now consider a pure state

encoding the uniform probability distribution over the BAS(2,2) dataset in the com-

putational basis

|BAS(2,2)〉= 1√
6

(
eiu1 |0000〉+eiu2 |0011〉+eiu3 |0101〉+

eiu4 |1010〉+eiu5 |1100〉+ |1111〉
)
.

(5.5)

A direct computation shows that the entropy of this state is

SBAS(2,2) =−1
9

[
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(5.6)

Defining new variables v1 = u2−u3−u4 +u5 and v2 = u1−u3−u4, the expression

above reduces to
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SBAS(2,2) =−1
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log2
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4
))

− log2(31104)
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(5.7)

In Fig. 5.1 we graphically show the entropy SBAS(2,2) as a function of the new

variables v1 and v2. Such a function has extrema

minSBAS(2,2) = 1
3 log2

(27
2

)
≈ 1.25163,

maxSBAS(2,2) = 1
2 log2(12)≈ 1.79248.

(5.8)

For the minimum value, v1 = v2 = 0, which can be obtained setting u1 = · · ·= u5 = 0.

For the maximum value, v1 = 4π/3 and v2 = 2π/3, which can be obtained setting

u1 = u2 = u3 = 0 and u4 = −u5 = 2π/3. Interestingly, the maximum of SBAS(2,2)

happens to coincide with the maximum entanglement entropy known for any 4-qubit

state [153].
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Figure 5.1: Entanglement entropy SBAS(2,2) as a function of variables v1 and v2. Points
in the domain represent states that encode the BAS(2,2) dataset in the com-
putational basis. The maximum entropy (black dots) attained is 1.79248.

5.5 Best circuits found for BAS(2,2)
In Fig. 5.2 we show circuit diagrams for the analytical solution and for the best

circuits found by DDQCL under three different qubit-to-qubit connectivity topolo-

gies. The all-to-all circuit with L = 2 layers shown in Panel (a) can achieve zero

KL divergence for BAS(2,2) by setting α = π−1 arctan
(
2−1/2

)
and all single-qubit

rotations to zero. DDQCL found an almost optimal solution with α = 0.2 and two

non-zero Rz rotations. Note that these Rz gates act as the identity on the |0000〉

state. Panel (b) shows the star circuit with L= 4. Panel (c) shows the star circuit

with L = 2. Circuits (a-c) were simulated in silico and executed on trapped ion

hardware. The results were then used to generate the histograms in Fig. 3.9 and to

compute the qBAS scores in Fig. 3.10.
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hapter
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ppendices

(a)

|0〉 Rx(+.00π) Rz(+.00π) XX XX XX

|0〉 Rx(+.00π) Rz(+.50π) +.50π XX XX

|0〉 Rx(+.00π) Rz(+.25π) −απ −απ XX

|0〉 Rx(+.00π) Rz(+.00π) +απ −απ −.50π

(b)

|0〉 Rx(+.15π) Rz(−.01π) XX XX XX Rz(−.63π) Rx(−.42π) Rz(+.26π) XX XX XX

|0〉 Rx(+.30π) Rz(+.31π) +.48π Rz(+.01π) Rx(+.21π) Rz(+.77π) −.01π

|0〉 Rx(+.61π) Rz(+.24π) −.76π Rz(+.95π) Rx(−.62π) Rz(+.99π) +.51π

|0〉 Rx(−.31π) Rz(−.99π) −.13π Rz(+.65π) Rx(−.56π) Rz(+.74π) −.46π

(c)

|0〉 Rx(+.11π) Rz(−.02π) XX XX XX

|0〉 Rx(−.88π) Rz(+.28π) −.48π

|0〉 Rx(+.20π) Rz(−.48π) −.32π

|0〉 Rx(−.23π) Rz(−.15π) −.32π

Figure 5.2: Circuits found for the BAS(2,2) under three different qubit-to-qubit connectivity topologies.
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5.6 A brief review of circuit learning

Just like classical models, parameterized quantum circuits (PQCs) are trained to

perform data-driven tasks. Their learning algorithms can be categorised as either

gradient-based or gradient-free. We discuss these two types of algorithms and how

they can be applied to optimise the parameters of a circuit Uθ.

The task of learning an arbitrary function from data is mathematically ex-

pressed as the minimisation of a loss function L(θ), also known as the objective

function, with respect to the parameter vector θ. One way to achieve this is by

performing an iterative method called gradient descent (GD). In GD, parameters

are updated towards the direction of steepest descent of the loss function

θ←− θ−η∇θL, (5.9)

where ∇θL is the gradient vector and η is the learning rate – a hyperparameter

controlling the size of the update. This procedure is iterated and, assuming suitable

conditions, converges to a local minimum of the loss function.

The required partial derivatives can be calculated numerically using a finite

difference scheme
∂L

∂θj
≈ L(θ+ ∆ej)−L(θ−∆ej)

2∆ , (5.10)

where ∆ is a (small) hyperparameter and ej is the Cartesian unit vector in the j

direction. Note that in order to estimate the gradient vector ∇θL, this approach

evaluates the loss function twice for each parameter.

Alternatively, Spall’s simultaneous perturbation stochastic approximation

(SPSA) [195, 90] computes an approximate gradient vector with just two evalu-

ations of the loss function as

∂L

∂θj
≈ L(θ+ c∆)−L(θ− c∆)

2c∆j
, (5.11)

where ∆ is a random perturbation vector and c is a (small) hyperparameter.

There are cases when finite difference methods are ill-conditioned and unstable

due to truncation and round-off errors. This is one of the reasons why ML relies

on the analytical gradient when possible, and it is often calculated with automatic
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differentiation schemes [196]. The analytical gradient can also be estimated for

PQCs, although the equations depend on the choice of parameterization for the

gates. For our discussion, we consider circuits UJ :1 = UJ · · ·U1, where trainable

gates are of the from Uj = exp
(
− i

2θjPj
)
, and where Pj ∈ {I,Z,X,Y }⊗n is a tensor

product of n Pauli matrices. Arguably, this is the most common parameterization

found in the literature.

Using this, Li et al. [159] proposed a way to efficiently compute analytical

gradients in the context of quantum optimal control. Mitarai et al. [160] brought this

method into the context of supervised learning. Recall that the PQC’s output is a set

of expectation values 〈Mk〉θ. Using the chain rule we can write the derivative ∂L
∂θj

as a

function of the derivatives of the expectation values ∂〈Mk〉θ
∂θj

. Each of these quantities

can be estimated on quantum hardware using the so called ‘parameter shift rule’

∂ 〈Mk〉θ
∂θj

=
〈Mk〉θ+π

2 ej
−〈Mk〉θ−π2 ej
2 , (5.12)

where subscripts θ± π
2ej indicate the shifted parameter vector to use for the eval-

uation (see Schuld et al. [161] for a detailed derivation). Note that this estimation

can be performed by executing two circuits.

An alternative method can estimate the partial derivative with a single circuit,

but at the cost of adding an ancilla qubit. A simple derivation using the gate

parameterization introduced above (e.g., see Farhi and Neven [127]) shows that the

partial derivative can be written as

∂ 〈Mk〉θ
∂θj

= Im
(
tr
(
MkUJ :j+1Pj Uj:1 |0〉〈0|U

†
J :1

))
. (5.13)

This can be thought of as an indirect measurement and can be evaluated using

the Hadamard test shown in Fig. 5.3. This method can be generalised to com-

pute higher order derivatives, as presented for example by Dallaire-Demers and

Killoran [162], and with alternative gate parameterizations, as done for example by

Schuld et al. [197].

We shall note that despite the apparent simplicity of the circuit in Fig. 5.3,

the actual implementation of Hadamard tests may be challenging due to non-trivial

controlled gates. Coherence must be guaranteed in order for quantum interference
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|0〉 H H 〈Z〉= ∂
∂θj
〈Mk〉θ

|0〉⊗n U1:j −iPj Uj+1:J Mk

Figure 5.3: The Hadamard test can be used to estimate the partial derivative of an expec-
tation 〈Mk〉θ with respect to the parameter θj . Here we show a simple case
where gates are of the form Uj = exp

(
− i

2θjPj
)
and where both Pj and Mk

are tensor products of Pauli matrices. It can be shown that measurements of
the Z Pauli observable on the ancilla qubit yield Eq. (5.13), the desired partial
derivative. Hadamard tests can be designed to estimate higher order deriva-
tives and to work with different measurements and gate parameterizations.

to produce the desired result. Mitarai and Fujii [198] proposed a method for re-

placing a class of indirect measurements with direct ones. Instead of an interference

circuit one can execute, in some cases, multiple simpler circuits that are suitable for

implementations on NISQ computers. The ‘parameters shift rule’ in Eq. (5.12) is

nothing but the direct version of the measurement in Eq. (5.13).

Compared to finite difference and SPSA, the analytical gradient has the ad-

vantage of providing an unbiased estimator. Additionally, Harrow and Napp [199]

found evidence that training PQCs using the analytical gradient outperforms any

finite difference method. This is done by showing that for n qubits and precision ε,

the query cost of an oracle for convex optimisation in the vicinity of the optimum

scales as O(n2

ε ) for the analytical gradient, whereas finite difference needs at least

Ω(n3

ε2 ) calls to the oracle. In practice though, it is found that SPSA performs well in

small-scale noisy experimental settings (e.g. see Kandala et al. [120] and Havlíček

et al. [190]).

Particular attention should be given to the problems of exploding and vanish-

ing gradients which are well-known to the machine learning community. Classical

models, in particular recurrent neural networks, are often constrained to perform

unitary operations so that their gradients cannot explode (see Wisdom et al. [200]

for an example). PQCs naturally implement unitary operations and therefore avoid

the exploding gradient problem altogether. On the other hand, McClean et al. [164]

showed that random circuits of reasonable depth lead to an optimisation landscape

with exponentially large plateaus of vanishing gradients with an exponentially de-

caying variance. This can be understood as a consequence of Levy’s lemma [201]

which states that a random variable that depends on many independent variables
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is essentially constant. The learning algorithm is thus unable to estimate the gra-

dient and may perform a random walk in parameter space. While this limits the

effectiveness of PQCs initialised at random, the use of highly structured circuits

could alleviate the problem (e.g., see Grant et al. [202] for a structured initialisation

strategy).

We shall stress here that in hybrid systems parameter updates are performed

classically. This implies that some of the most successful deep learning algorithms

can be readily used for training PQC models. For the case of gradient-based op-

timisation, heuristics such as stochastic gradient descent [203], resilient backpropa-

gation [167], and adaptive momentum estimation (Adam) [204], have already been

applied with success. These were designed to deal with issues of practical impor-

tance such as large datasets, large noise in gradient estimates, and the need to find

adaptive learning rates in Eq. (5.9). In practice, these choices can reduce the time

for successful training from days to hours.

There are cases where gradient-based optimisation may be challenging. For

example, in a noisy experimental setting the loss function may be highly non-smooth

and not suitable for GD. As another example, the objective function may be itself

unknown and therefore should be treated as a black-box. In these cases, circuit

learning can be carried out by gradient-free methods. A well-known method of this

type is particle swarm optimisation (PSO) [205]. Here the system is initialised with a

number of random solutions called particles, each one moving through solution space

with a certain velocity. The trajectory of each particle is adjusted according to its

own experience and that of other particles so that they converge to a local minima.

Another popular method is Bayesian optimisation (BO) [206]. BO uses evaluations

of the objective function to construct a model of the function itself. Subsequent

evaluations can be chosen either to improve the model or to find a minima.

Zhu et al. [175] compared BO and PSO for training a generative model on

a trapped ion quantum computer. While BO outperformed PSO in their setting,

they found that the large number of parameters challenges both optimisers. They

showed that an ideal simulated system is not significantly faster than the experimen-

tal system, indicating that the actual bottleneck is the classical optimiser. Leyton-

Ortega et al. [178] learned a generative model on a superconducting quantum com-
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puter and compared the gradient-free methods of zeroth-order optimisation package

(ZOOpt) [207] and stochastic hill-climbing (SHC), with GD using Adam. They

found that on average ZOOpt achieves the lowest loss on their hardware. They

argued that the main optimisation challenge is to overcome the variance of the loss

function which is due to random parameter initialisation, hardware noise, and finite

number of measurements.

Genetic algorithms [208] are another large class of gradient-free optimisation

algorithms. At each step, candidate solutions are evolved using biology-inspired

operations such as recombination, mutation, and natural selection. When used to

train PQCs, genetic algorithms define a set of allowed gates and the maximum

number to be employed. Lamata et al. [209] suggested the use of genetic algorithms

to train a PQC model for compression using a universal set of single- and two-qubit

gates. Ding et al. [193] validated the idea experimentally by deploying a pre-trained

PQC model on a superconducting computer and found that using a subsequent

genetic algorithms improves its fidelity.

To conclude, we note that optimisation algorithms should be tailored for PQCs if

we want to achieve better scalability. Very recent work has been approaching circuit

learning from this perspective (e.g., see Ostaszewski et al. [210] and Nakanishi et

al. [211]).

5.7 An optimal discriminator circuit

Let us briefly recall the quantum generative adversarial network. We have two

circuits, the generator and the discriminator, and a target state. The target state

ρt is prepared with probability P (t), while the generated state ρg is prepared with

probability P (g). The discriminator has to successfully distinguish each state or,

in other words, he must find the measurement that minimises the probability of

labelling error.

Helstrom [136] observed that the optimal POVM that distinguishes two states

has the following particular form; let E0 and E1 be the POVM elements attaining

the minimum in

P ∗err = min
{E0,E1}

tr[E1ρt]P (t) + tr[E0ρg]P (g), (5.14)
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then both elements are diagonal in a basis that also diagonalizes the Hermitian

operator

Γ = P (t)ρt−P (g)ρg. (5.15)

As pointed out in Ref. [157], in this basis one can construct E0 by specifying its

diagonal elements λj according to the rule

λj = 1 when γj < 0

λj = 0 when γj ≥ 0,
(5.16)

where γj are the diagonal elements of Γ. The operator E1 is then obtained via the

relationship I −E0. Hence we can construct the optimal measurement operator if

we have access to the operator Γ, and provided that we can diagonalize it.

For pure states ρt = |ψt〉〈ψt| and ρg = |ψg〉〈ψg|, we observe that tr[Γρg] =

P (t)|〈ψg|ψt〉|2−P (g) and tr[Γρt] = P (t)−P (g)|〈ψg|ψt〉|2. Under the assumption

of equal prior probabilities of 1
2 , Eq. (5.14) is minimised when the overlap of the two

states is maximised. Since the prior probabilities are hyper-parameters, we can set

them to 1
2 and use the SWAP test [212] to compute the overlap. This procedure ef-

fectively implements an optimal discriminator for pure states and provides a strong

learning signal to the generator1.

Figure 5.4 shows the standard circuit for the SWAP test. Note that this bears

several disadvantages compared to our adversarial method. In order to perform the

SWAP test, we need to access both ρt and ρg simultaneously. This also requires the

use of two registers for a total of 2n+1 qubits, which is significantly more than the

n+ 1 qubits required in the near-term adversarial method.

The standard circuit for the SWAP test requires the ability to perform non-

trivial controlled gates in a fault-tolerant way. A potential solution is to find a

low-depth circuit for the SWAP test. In Ref. [213] the authors implemented such

via supervised circuit learning. As pointed out in their work, this requires (a) an

order of 22n training examples for states of n qubits, and (b) each training example

1To the best of our knowledge, if ρt and ρg are mixed states, there is no simple way to find
the Helstrom measurement in Eq. (5.15), nor to compute the error probability in Eq. (5.14). The
SWAP test can still be used to obtain useful bounds (see Nielsen and Chuang [44], Chapter 9).



5.8. Software used 135

|0〉 H H 〈Z〉= |〈ψt|ψg〉|2

|ψg〉
SWAP

|ψt〉

Figure 5.4: The standard circuit for the SWAP test. Measurements of the Z Pauli observ-
able on the ancilla qubit yield the overlap between two pure states in input.

be given by the actual overlap between two states, requiring a circuit which gives

the answer to the problem we are trying to solve. We believe that their approach is

not suitable for our task.

One could alternatively consider the possibility of implementing a discriminator

via distance measurements based on random projections, i.e., Johnson-Lindenstrauss

transformations [214]. This would require a reduced amount of resources and could

be adapted for the adversarial method. As an example, we could apply a quantum

channel to coherently reduce the dimensionality of the input state and then apply

the state discrimination procedure in the lower-dimensional space. However, in

Ref. [215] the authors proved that such an operation cannot be performed by a

quantum channel. One way to think about this is that the Johnson-Lindenstrauss

transformation is a projection onto a small random subspace, and that is equivalent

to a projective measurement. As the subspace is exponentially smaller than the

initial Hilbert space, the probability that this projection preserves the distances is

very small.

5.8 Software used
This Thesis was typeset using LATEX and BibTEX, and was written on Overleaf. Cir-

cuits were drawn with Quantikz [216] and all plots were made in matplotlib [217].

Simulations involved many software packages, most notably scikit-learn [218],

PySwarms [148], QuTiP2 [147], and GNU Parallel [219]. The quantum annealers

hosted by NASA Ames Research Center and the trapped ion computer hosted by

University of Maryland were accessed via their corresponding Application Program-

ming Interfaces.

https://www.overleaf.com
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