135 research outputs found

    Compact Digital Predistortion for Multi-band and Wide-band RF Transmitters

    Get PDF
    This thesis is focusing on developing a compact digital predistortion (DPD) system which costs less DPD added power consumptions. It explores a new theory and techniques to relieve the requirement of the number of training samples and the sampling-rate of feedback ADCs in DPD systems. A new theory about the information carried by training samples is introduced. It connects the generalized error of the DPD estimation algorithm with the statistical properties of modulated signals. Secondly, based on the proposed theory, this work introduces a compressed sample selection method to reduce the number of training samples by only selecting the minimal samples which satisfy the foreknown probability information. The number of training samples and complex multiplication operations required for coefficients estimation can be reduced by more than ten times without additional calculation resource. Thirdly, based on the proposed theory, this thesis proves that theoretically a DPD system using memory polynomial based behavioural modes and least-square (LS) based algorithms can be performed with any sampling-rate of feedback samples. The principle, implementation and practical concerns of the undersampling DPD which uses lower sampling-rate ADC are then introduced. Finally, the observation bandwidth of DPD systems can be extended by the proposed multi-rate track-and-hold circuits with the associated algorithm. By addressing several parameters of ADC and corresponding DPD algorithm, multi-GHz observation bandwidth using only a 61.44MHz ADC is achieved, and demonstrated the satisfactory linearization performance of multi-band and continued wideband RF transmitter applications via extensive experimental tests

    Digital Signal Processing Techniques Applied to Radio over Fiber Systems

    Get PDF
    The dissertation aims to analyze different Radio over Fiber systems for the front-haul applications. Particularly, analog radio over fiber (A-RoF) are simplest and suffer from nonlinearities, therefore, mitigating such nonlinearities through digital predistortion are studied. In particular for the long haul A-RoF links, direct digital predistortion technique (DPDT) is proposed which can be applied to reduce the impairments of A-RoF systems due to the combined effects of frequency chirp of the laser source and chromatic dispersion of the optical channel. Then, indirect learning architecture (ILA) based structures namely memory polynomial (MP), generalized memory polynomial (GMP) and decomposed vector rotation (DVR) models are employed to perform adaptive digital predistortion with low complexities. Distributed feedback (DFB) laser and vertical capacity surface emitting lasers (VCSELs) in combination with single mode/multi-mode fibers have been linearized with different quadrature amplitude modulation (QAM) formats for single and multichannel cases. Finally, a feedback adaptive DPD compensation is proposed. Then, there is still a possibility to exploit the other realizations of RoF namely digital radio over fiber (D-RoF) system where signal is digitized and transmits the digitized bit streams via digital optical communication links. The proposed solution is robust and immune to nonlinearities up-to 70 km of link length. Lastly, in light of disadvantages coming from A-RoF and D-RoF, it is still possible to take only the advantages from both methods and implement a more recent form knows as Sigma Delta Radio over Fiber (S-DRoF) system. Second Order Sigma Delta Modulator and Multi-stAge-noise-SHaping (MASH) based Sigma Delta Modulator are proposed. The workbench has been evaluated for 20 MHz LTE signal with 256 QAM modulation. Finally, The 6x2 GSa/s sigma delta modulators are realized on FPGA to show a real time demonstration of S-DRoF system. The demonstration shows that S-DRoF is a competitive competitor for 5G sub-6GHz band applications

    Transmitter Linearization for mm-Wave Communications Systems

    Get PDF
    There is an ever increasing need for enabling higher data rates in modern communication systems which brings new challenges in terms of the power consumption and nonlinearity of hardware components. These problems become prominent in power amplifiers (PAs) and can significantly degrade the performance of transmitters, and hence the overall communication system. Hence, it is of central importance to design efficient PAs with a linear operation region. This thesis proposes a methodology and a comprehensive framework to address this challenge. This is accomplished by application of predistortion to a mm-wave PA and an E-band IQ transmitter while investigating the trade-offs between linearity, efficiency and predistorter complexity using the proposed framework.In the first line of work, we have focused on a mm-wave PA. A PA has high efficiency at high input power at the expense of linearity, whereas it operates linearly for lower input power levels while sacrificing efficiency. To attain both linearity and efficiency, predistortion is often used to compensate for the PA nonlinearity. Yet, the trade-offs related to predistortion complexities are not fully understood. To address this challenge, we have used our proposed framework for evaluation of predistorters using modulated test signals and implemented it using digital predistortion and a mm-wave PA. This set-up enabled us to investigate the trade-offs between linearity, efficiency and predistorter complexity in a systematic manner. We have shown that to achieve similar linearity levels for different PA classes, predistorters with different complexities are needed and provided guidelines on the achievable limits in term linearity for a given predistorter complexity for different PA classes.In the second line of work, we have focused on linearization of an E-band transmitter using a baseband analog predistorter (APD) and under constraints given by a spectrum emission standard. In order to use the above proposed framework with these components, characterizations of the E-band transmitter and the APD are performed. In contrast to typical approaches in the literature, here joint mitigation of the PA and I/Q modulator impairments is used to model the transmitter. Using the developed models, optimal model parameters in terms of output power at the mask limit are determined. Using these as a starting point, we have iteratively optimized operating point of the APD and linearized the E-band transmitter. The experiments demonstrated that the analog predistorter can successfully increase the output power by 35% (1.3 dB) improvement while satisfying the spectrum emission mask

    Neural Network DPD for Aggrandizing SM-VCSEL-SSMF-Based Radio over Fiber Link Performance

    Get PDF
    This paper demonstrates an unprecedented novel neural network (NN)-based digital predistortion (DPD) solution to overcome the signal impairments and nonlinearities in Analog Optical fronthauls using radio over fiber (RoF) systems. DPD is realized with Volterra-based procedures that utilize indirect learning architecture (ILA) and direct learning architecture (DLA) that becomes quite complex. The proposed method using NNs evades issues associated with ILA and utilizes an NN to first model the RoF link and then trains an NN-based predistorter by backpropagating through the RoF NN model. Furthermore, the experimental evaluation is carried out for Long Term Evolution 20 MHz 256 quadraturre amplitude modulation (QAM) modulation signal using an 850 nm Single Mode VCSEL and Standard Single Mode Fiber to establish a comparison between the NN-based RoF link and Volterra-based Memory Polynomial and Generalized Memory Polynomial using ILA. The efficacy of the DPD is examined by reporting the Adjacent Channel Power Ratio and Error Vector Magnitude. The experimental findings imply that NN-DPD convincingly learns the RoF nonlinearities which may not suit a Volterra-based model, and hence may offer a favorable trade-off in terms of computational overhead and DPD performance

    Finding Structural Information of RF Power Amplifiers using an Orthogonal Non-Parametric Kernel Smoothing Estimator

    Full text link
    A non-parametric technique for modeling the behavior of power amplifiers is presented. The proposed technique relies on the principles of density estimation using the kernel method and is suited for use in power amplifier modeling. The proposed methodology transforms the input domain into an orthogonal memory domain. In this domain, non-parametric static functions are discovered using the kernel estimator. These orthogonal, non-parametric functions can be fitted with any desired mathematical structure, thus facilitating its implementation. Furthermore, due to the orthogonality, the non-parametric functions can be analyzed and discarded individually, which simplifies pruning basis functions and provides a tradeoff between complexity and performance. The results show that the methodology can be employed to model power amplifiers, therein yielding error performance similar to state-of-the-art parametric models. Furthermore, a parameter-efficient model structure with 6 coefficients was derived for a Doherty power amplifier, therein significantly reducing the deployment's computational complexity. Finally, the methodology can also be well exploited in digital linearization techniques.Comment: Matlab sample code (15 MB): https://dl.dropboxusercontent.com/u/106958743/SampleMatlabKernel.zi

    Design and demonstration of digital pre-distortion using software defined radio

    Get PDF
    Abstract. High data rates for large number of users set tight requirements for signal quality measured in terms of error vector magnitude (EVM). In radio transmitters, nonlinear distortion dominated by power amplifiers (PAs) often limits the achievable EVM. However, the linearity can be improved by linearization techniques. Digital pre-distortion (DPD) is one of these widely used linearization techniques for an effective distortion reduction over a wide bandwidth. In DPD, the nonlinearity of the transmitter is pre-compensated in the digital domain to achieve linear output. Moreover, DPD is used to enable PAs to operate in the power-efficient region with a decent linearity. As we are moving towards millimetre-wave frequencies to enable the wideband communications, the design of the DPD algorithm must be optimized in terms of performance and power consumption. Moreover, continuous development of wireless infrastructure motivates to make research on programmable and reconfigurable platforms in order to decrease the demonstration cost and time, especially for the demonstration purposes. This thesis illustrates and presents how software defined radio (SDR) platforms can be used to demonstrate DPD. Universal software defined peripheral (USRP) X300 is a commercial software defined radio (SDR) platform. The chosen model, X300, has two independent channels equipped with individual transceiver cards. SIMULINK is used to communicate with the device and the two channels of X300 are used as transmitter and receiver simultaneously in full-duplex mode. Hence, a single USRP device is acting as an operational transmitter and feedback receiver, simultaneously. The implemented USRP design consists of SIMULINK based transceiver design and lookup table based DPD in which the coefficients are calculated in MATLAB offline. An external PA, i.e. ZFL-2000+ together with a directional coupler and attenuator are connected between the TX/RX port and RX2 port to measure the nonlinearity. The nonlinearity transceiver is measured with and without the external PA. The experimental results show decent performance for linearization by using the USRP platform. However, the results differ widely due to the used USRP transceiver parameterization and PA operational point. The 16 QAM test signal with 500 kHz bandwidth is fed to the USRP transmit chain. As an example, the DPD algorithm improves the EVM from 7.6% to 2.1% and also the ACPR is reduced around 10 dB with the 16 QAM input signal where approximately + 2.2 dBm input power applied to the external PA

    Communication Subsystems for Emerging Wireless Technologies

    Get PDF
    The paper describes a multi-disciplinary design of modern communication systems. The design starts with the analysis of a system in order to define requirements on its individual components. The design exploits proper models of communication channels to adapt the systems to expected transmission conditions. Input filtering of signals both in the frequency domain and in the spatial domain is ensured by a properly designed antenna. Further signal processing (amplification and further filtering) is done by electronics circuits. Finally, signal processing techniques are applied to yield information about current properties of frequency spectrum and to distribute the transmission over free subcarrier channels

    Digital predistortion of RF amplifiers using baseband injection for mobile broadband communications

    Get PDF
    Radio frequency (RF) power amplifiers (PAs) represent the most challenging design parts of wireless transmitters. In order to be more energy efficient, PAs should operate in nonlinear region where they produce distortion that significantly degrades the quality of signal at transmitter’s output. With the aim of reducing this distortion and improve signal quality, digital predistortion (DPD) techniques are widely used. This work focuses on improving the performances of DPDs in modern, next-generation wireless transmitters. A new adaptive DPD based on an iterative injection approach is developed and experimentally verified using a 4G signal. The signal performances at transmitter output are notably improved, while the proposed DPD does not require large digital signal processing memory resources and computational complexity. Moreover, the injection-based DPD theory is extended to be applicable in concurrent dual-band wireless transmitters. A cross-modulation problem specific to concurrent dual-band transmitters is investigated in detail and novel DPD based on simultaneous injection of intermodulation and cross-modulation distortion products is proposed. In order to mitigate distortion compensation limit phenomena and memory effects in highly nonlinear RF PAs, this DPD is further extended and complete generalised DPD system for concurrent dual-band transmitters is developed. It is clearly proved in experiments that the proposed predistorter remarkably improves the in-band and out-of-band performances of both signals. Furthermore, it does not depend on frequency separation between frequency bands and has significantly lower complexity in comparison with previously reported concurrent dual-band DPDs

    Multiple lookup table predistortion for adaptive modulation

    Get PDF
    This paper presents a multiple LUT digital adaptive predistorter based on a Hammerstein model that uses the return channel to feed back information from the receiver, concretely the bit error rate (BER), in order to train and later adapt the specific LUT gains that permit always operating at the best back-off level. This new predistorter architecture is aimed at coping with modern communication standards that use adaptive modulation (such as IEEE 802.11 or IEEE 802.16) and therefore continuously searching the best linear amplification to maximize power efficiency at the time that a certain quality of service (BER) in reception is guaranteed. Simulations provided will show the advantages of this multi-LUT configuration, where in front of different channel conditions, linear and efficient amplification (minimum back-off) is achieved at the time that a certain level of BER at reception is ensured. Index terms – Lookup tables (LUT), digital adaptive predistortion, Hammerstein models, adaptive modulation systems, peak to average power ratio (PAPR), bit error rate (BER).Peer Reviewe

    Digital Predistorion of 5G Millimeter-Wave Active Phased Arrays using Artificial Neural Networks

    Get PDF
    • 

    corecore