
 

 
 

DEGREE PROGRAMME IN WIRELESS COMMUNICATIONS ENGINEERING 

 

 

 

 

 

 

 

 

MASTER’S THESIS 

 

DESIGN AND DEMOSTRATION OF DIGITAL 

PRE-DISTORTION USING SOFTWARE 

DEFINED RADIO  

 

 

 

 

 
 

 

 

 Author Muhammad Hasibul Islam 

 

 Supervisor Aarno Pärssinen 

 

 Second Examiner Markku Juntti 

 

 Technical Advisor Nuutti Tervo 

 

 

March 2019 



 

Islam Muhammad Hasibul (2019) Design and Demonstration of Digital         

Pre-distortion Using Software Defined Radio. University of Oulu, Degree 

Programme in Wireless Communications Engineering. Master’s Thesis, 57 p. 

 

ABSTRACT 

High data rates for large number of users set tight requirements for signal 

quality measured in terms of error vector magnitude (EVM). In radio 

transmitters, nonlinear distortion dominated by power amplifiers (PAs) often 

limits the achievable EVM. However, the linearity can be improved by 

linearization techniques. Digital pre-distortion (DPD) is one of these widely used 

linearization techniques for an effective distortion reduction over a wide 

bandwidth. In DPD, the nonlinearity of the transmitter is pre-compensated in 

the digital domain to achieve linear output. Moreover, DPD is used to enable 

PAs to operate in the power-efficient region with a decent linearity.  

As we are moving towards millimetre-wave frequencies to enable the 

wideband communications, the design of the DPD algorithm must be optimized 

in terms of performance and power consumption. Moreover, continuous 

development of wireless infrastructure motivates to make research on 

programmable and reconfigurable platforms in order to decrease the 

demonstration cost and time, especially for the demonstration purposes. This 

thesis illustrates and presents how software defined radio (SDR) platforms can 

be used to demonstrate DPD.  

Universal software defined peripheral (USRP) X300 is a commercial software 

defined radio (SDR) platform. The chosen model, X300, has two independent 

channels equipped with individual transceiver cards. SIMULINK is used to 

communicate with the device and the two channels of X300 are used as 

transmitter and receiver simultaneously in full-duplex mode. Hence, a single 

USRP device is acting as an operational transmitter and feedback receiver, 

simultaneously. The implemented USRP design consists of SIMULINK based 

transceiver design and lookup table based DPD in which the coefficients are 

calculated in MATLAB offline. An external PA, i.e. ZFL-2000+ together with a 

directional coupler and attenuator are connected between the TX/RX port and 

RX2 port to measure the nonlinearity. The nonlinearity transceiver is measured 

with and without the external PA. The experimental results show decent 

performance for linearization by using the USRP platform. However, the results 

differ widely due to the used USRP transceiver parameterization and PA 

operational point. The 16 QAM test signal with 500 kHz bandwidth is fed to the 

USRP transmit chain. As an example, the DPD algorithm improves the EVM 

from 7.6% to 2.1% and also the ACPR is reduced around 10 dB with the 16 

QAM input signal where approximately + 2.2 dBm input power applied to the 

external PA.  
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1. INTRODUCTION 

One of the challenges for the future wireless communication systems is to reduce the 

in-band distortion of a wireless transmitter to enable high spectral efficiency and 

high throughput. In addition, out-of-band emissions caused by the nonlinearity of the 

wireless transceiver induce unwanted interference to other users and systems, 

respectively. Traditionally, the wireless transmitter is designed in such a way that PA 

dominates the nonlinearity. The nonlinearity of a PA together with multicarrier 

modulation (MCM) signal having a high peak to average power ratio (PAPR) 

challenges for the future wireless communication system [1]. The next generation 

radios require better performance for faster application processing, i.e. baseband and 

also need power efficient RF devices to take care of wireless system physical signal 

transmission and reception. It also means higher demands of an adaptive algorithm to 

compensate the nonlinearity of the PA.  

Figure 1 illustrates the traditional trade-off between the PA linearity and 

efficiency. The output power increases linearly as a function of input power but it is 

compressed after a certain point due to nonlinearity [5]. In general, efficiency and 

linearity of a PAs are inversely proportional to each other. In other words, the most 

efficient operation is often achieved in the nonlinear region. Moreover, utilization of 

high PAPR waveforms such as orthogonal frequency division multiplexing (OFDM) 

makes the problem worst. In the antenna input and finally at the over-the-air receiver, 

nonlinearity is seen as increased out-of-band emissions and decreased signal to 

distortion ratio. In-band distortion is usually described by using modulation error rate 

or EVM whereas out-of-band distortion is described in terms of the adjacent channel 

power ratio (ACPR). 

 
Figure 1. Trade-off between linearity and efficiency of PA.  
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In order to drive the PA in the nonlinear region with high PAPR waveform, 

different PA linearization techniques such as feedback, feed-forward and DPD 

linearization techniques are utilized in many practical systems. While feedback 

techniques suffer from instability problems, feed-forward carries its own analog 

delay [3]. Therefore, DPD techniques are often chosen due to its reconfigurable 

nature and better linearization purpose. DPD is a commonly used linearization 

technique in cellular base stations due to its effective interference reduction and 

relatively wide bandwidth. The core idea of the DPD is to pre-compensate the 

nonlinearity of the PA by applying the inverse function of the nonlinearity to the 

input in order to achieve linear output.  To demonstrate the DPD algorithm, we chose 

commercial SDR platform, i.e. X300 USRP by National Instruments [44]. Here, the 

baseband part is presented in software, i.e. MATLAB and USRP operate as a RF and 

digital front end. This combination of the software and hardware helps to achieve 

rapid design and demonstration of the algorithm as a part of a digital communication 

system. 

The thesis is organized as follows. In chapter 2, the behaviour model of the PA 

and also different RF impairments of the PA nonlinearity is discussed briefly. The 

linearization techniques with the delay alignment and power normalization process 

also described. Chapter 3 represents the basic signal transmission process in the SDR 

platform, i.e. USRP X300 using MATLAB interface. The chapter 3 also discusses 

the behaviour of the demonstration platform and also shows the inherent nonlinearity 

of the platform itself, i.e. CBX daughterboard of the USRP. The demonstration of the 

DPD algorithm is discussed in chapter 4. The DPD performance is analyzed based on 

the experimental results. Finally, chapter 5 discuss about the effects of transceiver 

nonlinearity in the SDR platform and also presents possible future work.  
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2. POWER AMPLIFIER NONLINEARITY AND 

LINEARIZATION 

The PAs are often driven in the nonlinear region to achieve better efficiency with 

high PAPR. As a result, the nonlinearity causes phase as well as amplitude distortion. 

The linearization technique helps to recover the back-off by operating the PA close 

to the compression region with a decent linearity. The linearity of a practical system 

depends on the order of nonlinearity. So, the optimum approach should be proper PA 

behaviour modelling and also perfectly characterization of the PA nonlinearities for 

linearization. In this chapter, parameters to characterize PA nonlinearities and 

mathematical model for the linearization are presented.   

 

2.1. Nonlinearity of Power Amplifier 

In the RF transmitter, the purpose of PA is to produce the required transmit power to 

the antenna input with good efficiency. High power makes PA traditionally as the 

most power-hungry component of a wireless transmitter. When operating in high 

power region, few per cent efficiencies means that most of the power consumed by 

the transceiver is turned into heat which has to be conducted to the heat sink and 

cooled down by fans and large area. Hence, PA has usually the dominant role in the 

whole transceiver efficiency and power consumption. Figure 2 presents the 

traditional PA output power behaviour as a function of input power. When the PA 

input power is increased towards the saturation power, the output of the PA is 

compressed. The point where the output power differs 1 dB with respect to a linear 

value is known as 1 dB compression point [61]. 

 
Figure 2. Power amplifier nonlinearity. 
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2.1.1. AM/AM and AM/PM Distortion 

In the baseband side, transmit data is encoded in amplitude and phase. In order to 

operate PA in efficient region, we increased the input amplitude of the PA as a result 

the output power became saturated, which means PA operates in the nonlinear 

region. Actually, the output signal is compressed since it does not have now the 

linear gain. In this thesis, the amplitude to amplitude conversion (AM/AM) and 

amplitude to phase conversion (AM/PM) are characterized by using modulated 

signals even though traditionally single-tone test is used. AM/AM distortion 

describes the compression of the signal envelope as a function of the input signal 

amplitude. After that, the amplification may not take place over the whole signal 

cycle. In an ideal case, PA gain has constant phase over signal dynamic range. In a 

practical case, the phase of the gain changes with the input amplitude known as 

AM/PM distortion. Here, the resulting phase angle delay will be the difference 

between the fundamental frequency and the harmonic, during that time there are no 

phase change between the input and output signal at the fundamental frequency. The 

time delay increases with a frequency within the bandwidth of PA and also depends 

on the PA design [5]. 

 

2.1.2. Intermodulation Distortion 

Under the large signal condition, the PA operates in the nonlinear region which 

causes distortion in the output. The deviation from the linearity occurs additional 

frequencies components in the output signal known as intermodulation distortion 

(IMD). It is a cross product of two or more fundamental signals causing several 

unwanted frequency components to the output. Traditionally, the IMD is measured 

by the two-tone test. It is the standard way to characterize the nonlinearity. With the 

modulated wideband signal, similar IMD products can be seen as increased adjacent 

channel power.  

 

 
Figure 3. Harmonics and IMD products for two-tone input.  
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Figure 3 presents the harmonics and IMD products for a two-tone input signal. As it 

can be noticed from the figure, the second order intermodulation and harmonic 

distortion occur at frequencies f1+f2 and f1-f2, those filtered away in the transmitter. 

Odd order such as third order nonlinearity causes IMD which occurs at frequencies 

2f1-f2 and 2f2-f1 close to the signal band causes distortion to the desired signal. Third 

order IMD is proportional to the cube of the input signal and second order IMD is 

proportional to the square of the input signal [6]. Third, fifth and higher order IMD 

products are responsible for the distortion of the output power which cannot be fully 

removed by analog filtering from the PA output. Here, figure 4 shows the intercept 

and 1 dB compression points. As seen in figure 4, the increased slope of output 

power and third order intermodulation product intersects at a certain point known as 

third-order intercept point which is impossible to achieve since output powers are 

saturated below this level. If we decrease the input power by 1 dB than all third order 

products level is decreased by 3 dB [7]. Thus, the intercept point is an important 

figure of merit to evaluate the distortion level of PA at a given operating point. 

 

 
Figure 4. Intercept and 1 dB compression point.  
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2.1.3. Spectral Regrowth and ACPR 

Modulated signals are suffering from the spectral regrowth at a given input power of 

the PA. Spectral regrowth is a nonlinear phenomenon that can be observed in the 

frequency domain. Due to the mixing products between the individual frequency 

components, the spectral content observed at the PA output becomes broader by the 

odd order nonlinearities which increase the adjacent channel interference (ACI) [8]. 

The leakage in the adjacent channel power (ACP) mainly occurs due to IMD 

products.  

The IMD results to an adjacent channel power ratio (ACPR) which is the ratio 

between the main channel power and total power integrated over the adjacent 

channel band. In other words, the power ratio between the adjacent channel and the 

reference channel is known as ACPR. We can calculate ACPR for both adjacent 

channels as, 

 

ACPR  =  10log |
∫ 𝑆(𝑓)𝑑𝑓
main

∫ 𝑆(𝑓)𝑑𝑓 + ∫ 𝑆(𝑓)𝑑𝑓
adjrightadjleft

|                           (1) 

 

where 𝑆(𝑓) is the power spectral density (PSD) of the output power and the term 𝑎𝑑𝑗 
represents either the upper channel or the lower channel [9]. Figure 5 shows the 

spectral regrowth at a given input power. The upper ACPR is the power from the 

assigned channel which is leaked into the channel above. And lower ACPR is the 

power from the assigned channel which is leaked into the channel below [56,59]. As 

we can see from the figure, a small transition band between the main channel and 

adjacent channel are reserved in order to reduce the inter symbol interference (ISI). 

This is because of roll off of the pulse shaping filter. Note that, roll-off factor (β) is 

responsible for specifying the bandwidth (β/2T), where T is the symbol period. 

 
Figure 5. Spectrum regrowth. 
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2.1.4. Error Vector Magnitude 

In a practical system, it is important to know the in-band performance of a 

transmitter or receiver which can be evaluated by the EVM. Increasing the 

modulation order tightens the EVM requirement for a fixed bit error rate (BER) 

specification. In order to obtain better power efficiency, the PA should be operated as 

close as possible to the saturation region which creates a distorted output signal due 

to the nonlinearity. This nonlinear distortion produces in-band interference that 

occurs in the deviation of phase and amplitude of the modulated vector signal. EVM 

is a figure of merit for modulation accuracy that illustrates the phase and amplitude 

distortions as well as noise and quality of the system. Figure 6 presents the EVM 

between the reference symbol vectors and measured symbol vector. If we notice the 

measured symbol which is not in the actual position, the phase and magnitude are 

shifted from their reference point. The angle between the reference symbol vectors 

and measured symbol vectors known as a phase error. The difference between the 

reference symbols and the measured symbols known as EVM [10]. And the 

increased magnitude concerning reference symbol vectors called as magnitude error.  

 
Figure 6. Error vector magnitude. 

 

The EVM is characterized as RMS value [11] as  

 

EVMRMS =  |

1

𝑁
 ∑ |𝑆ideal,𝑟 − 𝑆means,𝑟|

2𝑁
𝑟=1

1

𝑁
∑ |𝑆ideal,𝑟|

2𝑁
𝑟=1

|

2

                                                 (2) 

where 𝑁 is the number of constellation points, 𝑆means,𝑟 is the normalized 

constellation point for the 𝑟𝑡ℎ measured symbol and 𝑆ideal,𝑟 is the ideal normalized 

constellation point for the 𝑟𝑡ℎ symbol.  
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2.1.5. Memory Effect 

Memory effect of the PA means that the output is not only dependent on the current 

input sample, but also previous input samples [5]. The PA output depends on the 

previous input value due to the delay caused by the thermal and electrical effects in 

the PA circuitry [13]. If the PA is considered as memoryless then third order 

intermodulation only depends on the input amplitude, but in reality it also depends 

on the spacing of different tone. Now, we can say that any non-constant distortion 

behaviour at different tone spacing is called memory effect [14].       

Memory means that the device remembers the value of a signal for a certain time. 

In the frequency domain, this means the frequency response is not flat. Nonlinear 

device can have linear and nonlinear memory in the input side and output side and 

even also in the feedback such as Wiener, Hammerstein, Wiener-Hammerstein 

model which has memory dependent coupling from PA output to input. The non-

ideal fundamental frequency response is caused by the linear memory effect whereas 

the nonlinear memory effect depends on the trapping effects, impedance matching 

and also bias circuit design [15, 45]. 

There are two types of memory effects, electrothermal memory effects and 

electrical memory effects. The main reason for electrical memory is impedance 

variation at DC, fundamental and harmonic bands at the envelope frequency or 

different modulation frequencies [16]. The variations of the impedance occur from 

the bias network of the transistors which generates unwanted signals with the same 

frequencies as an IMD product [17, 60]. The voltage waveforms of the different 

nodes at the envelope frequency are affected by node impedances. The transistor 

changes its properties at different temperature due to the electrothermal memory 

effects. The power dissipation of the PA is determined by the thermal impedance of 

the transistors. It occurs due to the temperature change with respect to the frequency 

which acts as a low pass filter. The thermal temperature changes on the envelope 

frequency might effect on gain, capacitance and output conductance of the PA [14].   

 

2.1.6. Power Back-off  

In the transceiver, back-off is required in order to allow a varying envelope 

waveform to have a full signal swing at the output. In general, back-off is defined as 

a back off of current operation point from the saturation or a compression point, 

depending on the definition. For linear operation, back off should be more than the 

PAPR of the waveform. In the back-off mode, we simply reduce the input power of 

the PA such that PA becomes more linear. This means that the maximum input 

power level of the PA must be restricted such as the output signal stays close to the 

weakly nonlinear region. Back-off reduces the output power level of the PA typically 

6-8 dB to improve the PA linearity. However, there is a trade-off between power 

efficiency and linearity. While the back-off of the PA is decreased, the efficiency 

level will increase. In the digital modulation, we expected that the back-off is around 

6 dB from the 1 dB compression point [16]. The PA output back-off (OBO) can be 

defined as 

OBO = −10 log10

𝑃t,ave

𝑃sat
                                                      (3) 
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where 𝑃t,ave is the average transmit power and 𝑃sat is the PA saturation point. 

Moreover, the back-off depends on the crest factor of the modulated signal which 

means the PAPR of the modulated signal. The back-off can be mitigated by reducing 

the PAPR of the baseband signal through clipping, filtering and crest factor reduction 

(CFR).  

 

2.2. Behavioural Modelling of Nonlinearity 

The mathematical model of the input-to-output relation of a certain device can be 

represented by a behavioural model [7]. In this case, the system level behaviour of a 

PA can be modelled as a “black boxˮ.  For example, we have no knowledge of the 

internal structure and characteristic of a device for the output responses, but we can 

still characterize its input-output relation by measurement based model. Therefore, 

we can estimate the behaviour of the parameters by observing the measured output. 

In such a way, we can mathematically model the nonlinearity and memory effects of 

the PAs. Pre-distortion model for PA is crucial in order to predict the nonlinearity of 

the PA. The behaviour of the PA is modelled as a black box and the inverse function 

of this block box function would be the pre-distortion model. The behaviour models 

of the PA can be roughly classified as a memoryless model, a model with linear 

memory and models with nonlinear memory [57]. Simplified memoryless 

nonlinearity of a PA can be modelled as a Taylor polynomial as  

 

    𝑉out(𝑡) = 𝛼1 𝑉in(𝑡) + 𝛼2𝑉in
2(𝑡) + 𝛼3𝑉in

3(𝑡) + ⋯+ 𝛼𝑝𝑉in
𝑝(𝑡)                     (4) 

where,  𝑉out(𝑡) is the output signal, 𝑉in(𝑡) is the input signal with different time 

index t and 𝛼1 is the linear gain coefficient and 𝛼2, 𝛼3, 𝛼4, … . . , 𝛼p are the 

coefficients for different order of nonlinearity. Even order IMD products do not 

affect on a fundamental signal. However, odd order intermodulation distortion (IMD) 

products induce the gain compression as a result output signals are distorted [19].  
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2.2.1. Memoryless Models  

When the instantaneous output of the PA only depends on the instantaneous input, 

the model is considered to be memoryless. The memoryless model can be 

characterized by the AM/AM and AM/PM of a particular PA which represents the 

output power or amplitude and phase as a function of input power or amplitude. In 

this method, raw measurement data are used to fit a complex-valued polynomial to 

model AM/AM and AM/PM distortion. In the memoryless model, the AM/AM 

distortion function tries to model the saturated output power due to the gain 

compression. And AM/PM distortion function tries to model the phase dependency 

of the output as a function of input amplitude [20]. If coefficients of the memoryless 

model are real values, AM/PM conversion is zero. On the other hand, the complex 

coefficient of the memoryless model yielding nonzero AM/PM distortion indicating 

the quasi-memoryless nonlinearity [21]. The memoryless model defined as 

 

  𝑦out(𝑛) =   ∑  𝑎𝑝𝑥𝑝(𝑛)                                                        (5)

𝑃

𝑝=1

   

where  𝑦out(𝑛) is the output signal, 𝑥𝑝(𝑛) is the input signal with different order of 

the polynomial function denotes as 𝑝, and the coefficient  𝑎𝑝 determine the distortion 

of the PA. 

 

2.2.2. Nonlinear Models with Linear Memory  

The memoryless PA model [54,15] deals with the frequency independent cases 

where the input signal bandwidth is much less than the bandwidth of the amplifier. 

Hence, the frequency response of the memoryless PA model is flat. However, PA 

exhibits the frequency dependent behaviour which can be considered as a frequency 

selective channel. The output signal of the PA depends on the previous input values 

due to delay induces by the thermal and electrical memory effects in the PA circuitry. 

In the test bench, the frequency dependent PA model or memory based nonlinear 

model will be verified. In the previous section, the quasi memoryless model as 

introduced where the short term memory is used to describe the phase distortion by 

the complex nonlinear coefficient. In this section, we will illustrate the memory 

based nonlinear models in the literature to characterise the PA nonlinearity. 

Nonlinear models with linear memory are models that consist of an input filter that is 

cascaded with a memoryless nonlinearity or vice versa for a nonlinear PA or pre-

distortion. Figure 7(a) presents two box model consider as Wiener model that 

comprised of a linear filter followed by a memoryless static nonlinearity.  

 

𝑦(𝑛) = ∑ 𝑎𝑝

𝑃

𝑝=1

[∑ ℎ𝑚𝑢(𝑛 − 𝑚)

𝑀

𝑚=0

] ∑|ℎ𝑚 𝑢(𝑛 − 𝑚)|𝑝−1

𝑀

𝑚=0

                  (6) 

where P is the nonlinear order and M  is the memory depth, 𝑢(𝑛) intermediate 

signals and ℎ𝑚 and 𝑎𝑝 are the model parameters. 
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(a) Weiner Model. 

 

 
(b) Hammerstein Model. 

Figure 7. Nonlinear model with linear memory.  

 

Figure 7(b) presents two box model called as Hammerstein model that consists of a 

static nonlinearity followed by a linear filter or linear time-invariant (LTI) system. In 

this two-box model input filter is cascaded with a memoryless nonlinearity or vice 

versa for a nonlinear PA or pre-distortion. Here, the static nonlinearity box 

characterises the AM/AM and AM/PM distortion and the filter box consider as a 

frequency response of the nonlinear device [22, 53]. The complex Hammerstein 

model is given by  

 

𝑦(𝑛) = ∑ ℎ𝑚 [∑ 𝑎𝑝𝑢(𝑛 − 𝑚)|𝑢(𝑛 − 𝑚)|𝑝−1

𝑃

𝑝=1

]                      (7)

𝑀

𝑚=0

 

 

2.2.3. Nonlinear Models with Nonlinear Memory  

Accurate behavioural models are necessary for the nonlinear memory effects. The 

Volterra model has been used extensively to model the nonlinearity of the PA which 

includes the memory effects. The complexity to determine the model parameters is 

quite high and consists of large number of parameters. Therefore, a simplified 

Volterra based model is known memory polynomial (MP) model [41, 15]. The 

polynomial (MP) model form for the PA can be formulated as  

 

𝑦MP(𝑛) = ∑ ∑ 𝑎𝑘𝑘𝑘𝑥(𝑛 − 𝑚)|𝑥(𝑛 − 𝑚)|𝑘                                (8)

𝑀−1

𝑚=0

𝐾−1

𝑘=0

 

where 𝑎𝑘𝑘𝑘 are the PA polynomial coefficients, n is the time index, M is the memory 

depth and K is the degree of the PA nonlinearity. The linearization performance 

depends on the methods used to calculate the coefficient. However, it will also add 

computational complexity if the number of the parameter such as memory depth and 

the degree of the PA increase exponentially.  
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2.3. Linearization Techniques  

The aim of any linearization technique is to compensate the nonlinearity by shaping 

the input or output waveform of the PA. The linearization can be categorized into 

circuit level and system level techniques, respectively. Circuit-level techniques are 

for example harmonic termination and injection, transconductance gain 

compensation for field effect transistor (FET) amplifier, active biasing for dynamic 

power supply. It reduces the power consumption and finally the thermal 

compensation approaches. The circuit-level linearization techniques are very suitable 

especially for user terminal equipment due to their low power consumption. On the 

other hand, system-level approaches are roughly divided into digital and analog 

techniques. Some analog techniques are feed-forward, feedback, analog                

pre-distortion, envelope elimination, and also restoration and linear amplification 

with nonlinear components (LINC) [26]. Also, digital implementations of the system 

level techniques often require a significant amount of DSP power which is not 

available in a battery operated the device. Moreover, circuit level linearization can be 

used together with system level techniques. The system-level approaches are suitable 

for the base station transmitters due to the high amount of available processing 

capacity for DSP and high power consumption of PA. In this section, we focused 

mainly on the system level linearization.   

 

2.3.1. Feedback Linearization 

In the feedback linearization, a feedback loop is used to sample the PA output in 

order to separate the nonlinear content from it and add a scaled and phase inverted 

version of it to the input. This is done in order to pre-compensate the linearity to 

achieve linear output. The principle of this operation is to separate the error signal 

from the output by comparing the input signal. After that, the output signal is fed 

back to the input of the PA with opposite phase [27]. Figure 8 shows a feedback 

linearization technique where a comparator is used to calculate the error signal 𝑉𝑒(𝑡) 

from the input signal 𝑉𝑖(𝑡) and the signal 𝑉𝑟(𝑡) from the feedback path. After that, 

the error signal is fed to the PA to achieve a linear output.  

 
Figure 8. Feedback linearization [27]. 
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The delay between the input and output signal makes feedback linearization very 

sensitive for stability problems. Several methods of the feedback linearization 

techniques are used as linear the output such as Cartesian feedback and envelope 

feedback. In Cartesian feedback, the linearization uses a separate loop for in-phase 

(I) and quadrature (Q) components. Hence, the error is computed separately for the 

in-phase and quadrature components. The slow variation of the input signal mitigates 

the delay between the input and output to increase the stability. In envelope feedback 

linearization [50], the envelope of the signal is detected and modified. Figure 9 

presents a block chart of the envelope feedback linearization system. The comparison 

of the generated signal and envelope detector fed to gain controller through a low 

pass filter to remove the nonlinearity of the PA.  

 

 
Figure 9. Envelope feedback linearization [50]. 

 

2.3.2. Feedforward Linearization  

In the feedforward linearization, the distorted output is post compensated by adding a 

phase inverted version of the nonlinear content to the PA output. The block diagram 

of the feedforward linearization technique given in Figure 10. In this technique, the 

input is divided into signal cancellation and error cancellation loops. The distortion 

caused by the PA is estimated by the signal cancellation loop. At first, the input 

signal is separated by the directional coupler 𝐶1 into two paths where the first one fed 

to the PA and the second one enters to delay circuit. The attenuator 𝐿𝐶 and the delay 

circuit ensure that the signal should be synchronized and same power level in the 

directional coupler 𝐶3 which yields to error signal 𝑒(𝑡) of the PA. Finally, the error 

signal 𝑒(𝑡) and the output signal are fed to the error cancellation loop to remove the 

distortion. However, the error signal 𝑒(𝑡) passes through the attenuator to scale and 

tune the phase before amplification to the desired power level. In the end, upper and 

lower branch signals are fed to the directional coupler 𝐶4 in order to remove the error 

signal and generate the distortionless signal 𝑧(𝑡) [15]. 
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  Figure 10. Feedforward linearization [15]. 

 

2.3.3. Digital Pre-distortion  

In digital pre-distortion, the input signal is directly fed through a block called the pre-

distorter which is a nonlinear system to counteract with the PA’s nonlinearity. The 

pre-distorter block works as an inverse function of the PA is cascaded with the PA to 

make the output of the two blocks linear [58]. Figure 11 shows the basic principle of 

DPD linearization system. In the figure, we illustrate the DPD linearization system in 

the frequency domain where input signal 𝑥(𝑛) feds to the pre-distorter to induce 

𝑢(𝑛) in order to make linear PA output 𝑦(𝑛). 

 

 
Figure 11. Digital pre-distortion linearization system. 
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The major challenge in the DPD linearization is to find the inverse function of a 

nonlinear system. The PA characteristics are changed for temperature variations, 

power supply voltage and also for aging. In general, DPD should be updated 

constantly as the power, temperature, together with several other environmental 

conditions are changing over time. The DPD model is usually valid over the time the 

environment and operation parameters such as power remains constant. However, 

periodical tracking of the dynamic PA behaviour and adapting the pre-distortion 

function requires real time processing was not possible in this thesis with 

SIMULINK based control software.  

Moreover, DPD cannot as such remove the back-off totally, but it enables the PA 

to operate closer to the compression (smaller back-off) with good linearity. 

Therefore, back-off is still required even DPD was used in order to enable decent 

signal swing at the output. So all in all, DPD does not avoid the back-off totally, we 

still need CFR in order to have the varying envelope in the PA output. But, DPD can 

linearize the PA in back-off conditions close to the PAPR of the waveform. 

 

2.3.3.1. Static DPD Implementation 

In general, the DPD should be designed to be adaptive for varying operation 

conditions. However, for the demonstration purpose, we can fix the conditions to the 

chosen ones such that the nonlinearity becomes more static. Static DPD cannot 

follow the changes in the data but if the static DPD coefficients are calculated over 

long enough set of samples, the average results are sufficient for the demonstration 

purpose. Static DPD can be implemented as a look-up-table (LUT). LUT is a table in 

the memory which contains the static pre-distortion coefficients to a certain operation 

point. LUT is valid only to the operation point to which it is trained. There are also 

many approaches, for example, one may have multidimensional LUT where the 

coefficients are trained for different operation points. 

For static DPD, often the simple model is better because it is more stable. If you 

have the high number of coefficients, the rarest ones are usually the ones which 

change with the environment etc. However, with less coefficients they have less 

meaning, although performance can be reduced compared with the more complex 

models. The adaptive pre-distortion uses feedback techniques to make a robust 

solution due to the random change of the PA characteristics. Even in the LUT 

approach, the parameters and the coefficient can be determined by the adaptive 

algorithm, i.e. the least square (LS) method. There are two different adaptive DPD 

architectures; one is direct learning architecture and other is indirect learning 

architecture.  
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2.3.3.2. Direct Learning Architecture 

In the direct learning architecture [51], the PA characteristics are initially defined, 

then the inverse of the PA model is computed by a static or iterative method. This 

architecture is applicable for the memoryless PA whereas the PA function inversion 

might be complicated for the memory dependent PA model. The difference between 

the input and normalized output is the error signal which is used to update the 

coefficients of the pre-distorter. The complexity of the model derivation comes from 

the number of coefficients. In general, more coefficients mean that more data is 

required for training, i.e. to fit the polynomial to the available data. Figure 12 shows 

the direct learning architecture where the input signal 𝑥[𝑛]  is fed to the pre-distorter 

block then the pre-distorted signal 𝑧[𝑛] drive the PA. The difference between the 

input and the output from the PA is error signal 𝑒[𝑛]. Finally, the parameters of the 

pre-distorter are updated by minimizing the error signal. 

 
Figure 12. Direct learning architecture [51]. 

 

2.3.3.3. Indirect Learning Architecture 

In the indirect learning architecture, the post-inverse of the PA is first identified by 

interchanging the input and output signals. Hence, in indirect learning the system 

does not learn the PA behaviour but it models directly the inverse of it.  However, 

this architecture suffers from low input power when the linearity is already high, i.e. 

under large back-off range due to the interchanging of the input and output signal 

during calculation of the post-inverse.  Hence, the limits for the operation of the PA 

up to a particular input power level which is far below the saturation point [15].  

Figure 13 shows the direct learning architecture where the input signal 𝑥[𝑛]  is fed to 

the pre-distorter then the pre-distorted signal 𝑧[𝑛] drive the PA. Next, the normalized 

output from the PA 𝑦[𝑛] is fed to the pre-distorter model, resulting in pre-distorter 

model estimates 𝑧̂[𝑛 ]. The difference between the pre-distorter model estimate 𝑧̂[𝑛] 
and the pre-distorted signal 𝑧[𝑛] is the error signal. Finally, the parameters of the 

pre-distorter are updated by minimizing the error signal [17].  
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Figure 13. Indirect learning architecture. 

 

2.3.3.4. Closed Loop Adaptive Digital Pre-distortion  

In figure 14, a block chart of adaptive closed loop DPD architecture is shown. In this 

architecture, the pre-distorter is inside of the feedback adaptation loop which is used 

to update the pre-distorter parameters. Adaptive algorithm is used to update the pre-

distorter parameters where the error signal is calculated by the input and output 

signals of the PA. In this system, the convergence is achieved in the subsequent loop 

by minimising the distortion signal. When compared with the direct and indirect 

learning architecture, the closed loop estimation is less sensitive to noisy feedback 

observation [15, 52]. 

 
                  Figure 14. Closed loop adaptive digital pre-distortion. 
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2.4.  Coefficient Extraction for Static DPD  

There are a number of estimation algorithms for estimating the model coefficients 

that apply a linear weighting of the nonlinear signals such as the coefficient of the 

memory polynomial pre-distorter presented in equation (13). Figure 15 illustrates the 

graphical presentation of coefficient derivation and demonstration process [23]. The 

top path represents the PA behaviour model in which the nonlinearity of the PA is 

presented by the nonlinear function 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) and linear gain 𝐺.  

 

 
Figure 15. Block diagram for coefficient derivation. 

The mathematical representation of a memory polynomial (MP) of the PA nonlinear 

function 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) can be formulated as 

 

𝑦MP(𝑛) = ∑ ∑ 𝑎km𝑥(𝑛 − 𝑚)|𝑥(𝑛 − 𝑚)|𝑘                                (9)

𝑀−1

𝑚=0

𝐾−1

𝑘=0

 

where, 𝑦𝑀𝑃 is a memory polynomial of the PA output, 𝑎𝑘𝑘𝑘 are the PA polynomial 

coefficients, n is the time index, M is the memory depth and K is the degree of the 

PA nonlinearity. The input samples 𝑥(𝑛) are collected in a column vector 𝑁 × 1, 

where 𝑁 is a total number of signal samples. The PA polynomial coefficients 𝑎𝑘𝑘𝑘 

are collected in a column vector 𝑗 × 1, where 𝑗 is a number of polynomial 

coefficients. And the input samples 𝑥(𝑛) are collected in a column vector 𝑁 × 1 are 

organise the input sample vector in such a way that each PA polynomial coefficients 

𝑑𝑘𝑘𝑘 is associated with the input samples 𝑥(𝑛) as in equation (12). For example, the 

PA polynomial coefficients 𝑑31 is associated with 𝑥(𝑛 − 𝑚)|𝑥(𝑛 − 𝑚)|2, where the 

degree of the PA nonlinearity k = 3 and memory depth  m = 1 respectively [24].  

   

𝑋km(𝑛) =  𝑥(𝑛 − 𝑚)|𝑥(𝑛 − 𝑚)|𝑘−1                                  (10) 

Now, 𝑋km is assembling into 𝑁 × j  matrix. The process for generating the inverse of 

the MP model is represented at the bottom of figure 15. The process is divided into a 

inverse non-linear function 𝑓−1(𝑥1, 𝑥2, … , 𝑥𝑛) multiplied with the inverse of the 

linear gain 
1

𝐺
. The mathematical expression of the inverse nonlinear function fitted to 

the measured output data 𝑓−1(𝑥1, 𝑥2, … , 𝑥𝑛)   can be written as 
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𝑥MP(𝑛) = ∑ ∑ 𝑑km𝑦(𝑛 − 𝑚)|𝑦(𝑛 − 𝑚)|𝑘                                (11) 

𝑀−1

𝑚=0

𝐾−1

𝑘=0

 

where 𝑦(𝑛) is the 𝑛𝑡ℎ measured sample in the PA output. In order to solve the PA 

polynomial coefficients 𝑑km are collected in a column vector 𝑗 × 1, where 𝑗 is the 

total number of coefficient represents the equation (18) as a linear equation 

 

[

𝑥𝑛
𝑥𝑛+1

⋮
𝑥𝑛+𝑝

] =

[
 
 
 

𝑦(𝑛)

𝑦(𝑛 + 1)
⋮

𝑦(𝑛 + 𝑝)

  

𝑦(𝑛 − 1)

𝑦(𝑛 + 1 − 1)
⋮

 𝑦(𝑛 − 1 + 𝑝)

 

……
⋮
…

 

𝑦(𝑛 − 𝑀 + 1)|𝑦(𝑛 − 𝑀 + 1)|𝐾−1

𝑦(𝑛 − 𝑀 + 2)|𝑦(𝑛 − 𝑀 + 2)|𝐾−1

⋮
𝑦(𝑛 − 𝑀 + 1 + 𝑝)|𝑦(𝑛 − 𝑀 + 1 + 𝑝)|𝐾−1]

 
 
 
[

𝑑00

𝑑01

⋮
𝑑K−1,M−1

]    

𝑥̂ = 𝑌𝑑                                                                             (12) 

where 𝑝 denotes the number of measurement samples which is typically greater than 

the products of 𝐾 × 𝑀. Now, the input samples are being estimated from the output 

samples 𝑌 of the PA which multiply with the PA polynomial coefficients 𝑑. The 

estimation error 𝑒(𝑛) is written as 𝑒(𝑛) =  𝑥(𝑛) − 𝑥̂(𝑛). After assembling the 

observation matrix with known input and output samples, the polynomial coefficients 

𝑑̂km of the inverse PA model can be formulated by the least square (LS) solution as  

 

𝑑̂km = (𝑌𝐻𝑌)−1𝑌𝐻𝑋                                                         (13) 

where, 𝑌𝐻 is the conjugate transpose of the matrix 𝑌. This PA polynomial 

coefficients derivation process is applied over samples which decrease the storage 

requirements [25]. The LS solution consumed some memory due to increased 

amount of samples. In general, LS solution in closed form is not practical for DPD 

since it requires calculation of a inverse for relatively large matrix. Usually, iterative 

adaptive algorithms are used to approximate the least squares solution in practice. 

However, for our purpose, simple static LS solution provides decent performance in 

order to make demonstration about the DPD process. 
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2.5. Delay Alignment and Power Normalization 

In the pre-distortion scheme, the delay between the input and output exist because of 

the analog and digital circuitries and physical distance between the transmitter and 

observation receiver. The modelling approaches of the pre-distorter are based on the 

input and output signal. Hence, proper synchronization is required to align the input 

and output samples correctly for the comparison. If the delay between the waveform 

is not compensated, the modelling becomes inaccurate due to the delay induces 

dispersion in the AM/AM and AM/PM characteristics of the PA. In our 

demonstration, the simple correlation-based method is used for delay alignment. The 

cross-correlation between the input and output can be calculated as  

 

R(𝑛) = ∑ 𝑧(𝑛) 𝑧pa
∗ (𝑛 + 𝑚)                                              (14) 

𝑁−1

𝑛=0

 

where 𝑧 and 𝑧pa are the input and output, 𝑁 is the length of the sequences, 𝑚 is the 

delay variable and  the correlation 𝑅(𝑛) reaches maximum value if  𝑚 corresponds to 

delay. However, the accurate time delay between the input and output is not possible 

to align by finding the exact value of delay due to the resolution. The performance of 

the pre-distorter model is not significantly affected, when the delay is underestimated 

up to one sampling period [14, 21].  

In order to estimate the pre-distorter with good accuracy, the output has to be 

normalized by the small signal gain in order to align the power between the           

pre-distorter and the amplifier. However, pre-distorter often changes the power 

amplifier input power in order to achieve a certain back-off level at the output. For 

fair comparison of the DPD performance against the case without DPD, the objective 

is to keep the output power at the same level with and without DPD. The power 

alignment between the pre-distorter and the PA can be possible with small signal 

gain if the PA weakly nonlinearity. However, when the PA is highly nonlinear, the 

gain normalization depends on the average input power and also the shape of PA 

nonlinearity [30].      
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3. WIRELESS TRANCEIVER ON USRP PLATFORM 

Software defined radios (SDRs) offer an easily reconfigurable platform for initial 

prototyping of different things in the wireless communication academia and industry. 

Earlier, traditional hardware radios were impossible to update according to demand 

after manufacturing. SDR is a flexible and adaptive communication link for our 

future communication. Therefore, the communication system can be easily modified 

to meet the requirements to make a prototyping for different applications. SDR is a 

concept of getting the code as close to the antenna as possible which turns the radio 

hardware by simply changing the code [31,32]. For demonstration purposes, SDR 

platforms offer different levels of prototyping all the way from RF to the FPGA 

design on the board. In this chapter, we explain USRP transceiver design for DPD 

demonstration in the SDR platform using Ettus’s USRP. 

Block chart of a general SDR platform is shown in Figure 16. The structure of the 

platform is divided into three parts. The right side block represents the RF front end 

of the hardware which serves as an interface to the analog RF domain. In the middle 

block, the hardware part is implemented to form the interface between the digital 

samples and the analog samples. However, the samples by the field programmable 

gate array (FPGA) are transferred to the host via Ethernet. The left side block shows 

the baseband signal processing system which is fully designed by the software. Note 

that, we used MATLAB as a control interface. We can also use another platform 

such as GNU Radio. 

 

 
Figure 16. SDR communication system.  
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3.1. Universal Software Radio Peripheral  

The USRP is an open source SDR design platform developed by Ettus Research 

LLC. It basically contains an RF frontend which has complex electric circuitry for 

upconverting the IF signal to a RF signal, a digital-to-analog converter (DAC) is 

responsible for converting digital samples to analog signal, a PA is used to amplify 

the analog signal for the over air transmission via an antenna. In the USRP receiver, 

the signal is first amplified by low noise amplifier (LNA) and downconverted from 

RF to IF or analog baseband. Analog-to-digital converter (ADC) converts the signal 

to digital domain samples.  And FPGA processes the digital samples with the speed 

of the master’s clock rate.  

 
Figure 17. X300 USRP with two CBX-120 daughterboard. 

 

The X300 USRP with CBX-120 daughterboard is shown in Figure 17. Here, the 

host computer uses SIMULINK and MATLAB to process the baseband signals 

which are passed to the daughterboard of the USRP through SDRu communication 

interface. The transmitter and receiver chain of the daughterboard are operated 

autonomously. In the transmit chain, DAC converts the baseband samples to an 

analog signal. The analog signal from DAC is directly passed to the receiver chain 

via wired SMA connector which is connected between the transmit SMA port known 

as TX/RX and receiver SMA port known as RX2 of the CBX-120 daughterboard. In 

the receiver side, processing is done in reverse order. The sampling rate was used to 

calculate by the constant ADC rate divided by the decimation rate which is selected 

by the users [33, 43]. 
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 In this thesis, two different RF daughterboard, i.e. CBX-120 and WBX-120 were 

used in the same radio, i.e. USRP X300. The X300 USRP with CBX daughterboard 

were suffering hardware problem in the RX chain. There was a strong LO leakage 

coming from that RX chain which had a random impact for our results and caused 

several problems for the data processing. Therefore, the test bench reconfigured by 

using WBX boards this time instead of CBX. In section 3.2.4 and 3.3.1, we evaluate 

the transmit and receive chain which is configured by using CBX daughterboard. 

Due to strong LO leakage CBX daughterboard, we reconfigured X300 USRP by 

using WBX daughterboards instead of CBX from section 3.4. In order to avoid 

synchronization issues, we use the daughterboards in FDD mode on the same radio 

where the interface can stream in the TX/RX and RX2 directions at the specified 

rates simultaneously. However, some interfaces such as USB 3.0 does not provide 

separate data paths for transmit and receive chain. In the test bench, we use a gigabit 

Ethernet connection which is capable of operating in the full duplex mode with a 

sample rate 200 MS/s for the X300 USRP [34].  

The X300 USRP motherboard is used to generate a reference clock to the 

daughterboard in order to generate LO signals. This oscillator is used to modulate the 

TX samples from the baseband into the operating TX frequency and the signal from 

the operating RF frequency to the baseband frequency. The daughterboard can filter 

the received signal to avoid the aliasing effect from ADC. However, there are few 

daughterboards known as basicTX and basicRX that provide a direct RF connection 

to the motherboard and there are no filtering or frequency conversion options [35]. 

The requested output frequency and sample are obtained by processing the digital 

sample values with digital down converters (DDC) where digital samples from the 

ADC are decimated to the desired baseband frequency to create I-Q data. This 

decimation is performed when the sampling rate 𝑓𝑠 divided by the decimation factor. 

The digital upconverter (DUC) also works in the same way but in reverse order 

where the sampling rate 𝑓𝑠 multiply by the interpolation factor [36].   
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3.2. USRP Daughterboard Performance 

The selection of most appropriate RF daughterboards in order to use in the USRP is 

mainly based on the application requirements, frequency range, bandwidth and 

number of channels. The possibility to utilize the full bandwidth in the USRP often 

depends on the daughterboards and also the resolution of the data transferred through 

the host interface. The daughterboards using reference clock for the USRP which can 

be used for the multiple input and multiple output (MIMO) application by 

performing the simple clock alignments.  However, phase alignment between the RF 

chains is not available in all daughterboards. The BasicRx, BasicTx, LFRX and 

LFTX daughterboards do not include the LO that contribute to phase ambiguity 

between the RF channels. The SBX daughterboards use phased locked loop (PLL) 

which have resynchronization option to align the LOs by the timed serial peripheral 

interface (SPI) commands. On the other hand, all other daughterboards required 

channel to channel phase calibrations after each PLL retune [47]. The table 1 shows 

the USRP daughterboard properties for different USRP daughterboards.   

 

Table 1: USRP daughterboard properties [47]. 

Daughterboard Frequency Range Bandwidth Area of Application 

WBX-120 50 MHz - 2.2 GHz 120 MHz GPS,GSM, VHF, TV 

Broadcast, Amateur Radio 

SBX-120 400 MHz -4.4 GHz 120 MHz GPS, GSM, WiMAX, Radar 

CBX-120 1.2 GHz - 6 GHz 120 MHz GPS, WiMAX 

UBX-160 10 MHz - 6 GHz 160 MHz GPS, GSM, WiMAX, VHF, 

Radar, Amateur Radio 

 

3.3. USRP Transmitter 

The 16 QAM signal is transmitted from the USRP transmitter to receiver through a 

wired channel. The transmitter divided into two-part, one is SIMULINK model of 

the transmitter with SDRu transmitter interface and other is the USRP hardware. In 

the baseband transmitter SIMULINK model, a random binary data sequence is 

continuously generated data frames. After that, the 16 QAM modulator block 

conveys source information by changing the phase of the carrier signal. Next, the 

pulse shaper is used to generate the data bits. Then, the signal is oversampled and 

pulse shaped in order to reduce the spectral regrowth of the digital processing. 

Finally, the SDRu transmitter block establishes a link between baseband transmitter 

SIMULINK to USRP hardware. Figure 18 shows a SIMULINK test bench. The test 

bench is a combination of SIMULINK based signal processing and the USRP 

interface. At a certain operating point, the signal power of the waveform after root 

raised cosine transmit (RRC) filter is -8.59 dBm. After passing the gain blocks the 

signal power level is -23.59 dBm which reduce the power level around -15 dB. It 

means that we can control input power level in the transmit chain by using the gain 

block in the MATLAB. Note that, we set 30 dB to transmit gain in the SDRu 

communication block (usually in the daughterboards of USRP) to obtain a better 

signal.    
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Figure 18. 16 QAM transmitter SIMULINK test bench. 

 

3.3.1. Digital Modulation 

A random binary data sequence is generated with a sample time 2 𝑢𝑠 to set the 

generator to produce bits at a sample rate of 500 kbps. The samples per symbol are 

four that make output 4 bit per symbols to pass 16 QAM modulator.  In order to set 

up a communication system with varying envelope waveform, a 16 QAM 

modulation scheme is chosen. 16 QAM is a digital modulation scheme where the 

sample conveys the source information by changing the phase of the carrier signal. 

The information is conveyed by mapping binary data bits to symbols where the 

modulation scheme defines the method of the mapping bits to symbols. A high 

interpolation or decimation rate can generate fewer samples. The sampling rate and 

RF bandwidth related by interpolation or decimation factor. The sampling rate was 

used to calculate by the constant ADC rate divided by the decimation rate which is 

selected by the users. Here, the sample time is the inverse of the sample rate of the 

system which must be followed by the Nyquist theorem.   

   

3.3.2. RRC Pulse Shaping Filter 

The root raised cosine transmit (RRC) filter interpolates the data frames in the 

SIMULINK transmitter model. The RRC filter is also known as a pulse shaper that is 

used to transmit digital signal with constrained bandwidth to reduce the intersymbol 

interference (ISI). The role of the pulse shaping filter is to limit the bandwidth of the 

signal such that it meets the applicable spectral mask by filtering out spectral 

components. However, the roll-off factor (β) is also indirectly responsible for 

specifying the bandwidth (β/2T) of the filter, where T is the symbol period. Hence, 

pulse shaping slightly increases the channel bandwidth of the signal to reduce power 

at the adjacent channel bands. Here, each sample entering to the RRC filter becomes 

16 samples at the output. For example, 4 samples per frame fed to RRC filter 

4×4=16 samples at the output. We calculate the time required to transmit a single 

frame of data which is the product of frame size and sample time. Figure 19 (a) and 

19 (b) shows the frequency and time domain representation of a pulse shaping filter, 

respectively. We notice that if we increase the roll-off factor, the power at the 

adjacent channels decreases. On the other hand, reducing the roll-off factor increases 

the signal bandwidth. 

BB input 
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(a) Frequency domain 

 

 
     (b) Time domain 

Figure 19. Pulse shaping filter. 
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3.3.3. Interface of Commercial USRP 

The Ettus provides the necessary support to interface with a USRP hardware driver 

(UHD) of the USRP. This is a C++ interfacing library which makes the switching 

between real and complex samples, set the operating frequencies, amplification sends 

and receives the samples from the buffer of the device. The UHD contains own 

internal buffer of the Ethernet connections which operates the data streams. There are 

different ways to access the USRP. SIMULINK provides a graphical user interface 

(GUI) for controlling the USRP platform. The USRP transmitter can be accessed 

through SDRu transmitter bock that can set up a link between the baseband 

SIMULINK transmitter model and USRP hardware digital and RF front end via 

Ethernet subnetwork.  

Initially, we install a communication system toolbox in the MATLAB to establish 

connectivity. After download and install the supported package, we can verify the 

connectivity by typing ʽfindsdru’ in the MATLAB command window. In order to 

establish a successful connection, the IP address of the USRP is required to be 

recognized by the host computer and one should be able to ping it from the 

computer. The USRP should be configured to the centre frequency of the 

transmission which should be in the range 1.2 GHz to 6 GHz for CBX-120 

daughterboard. Note that, ʽLO Offset’ should be fixed properly to remove of 

harmonics generated by the USRP that would interface the actual signal. The UHD 

software used self-calibration to minimize the LO offset. In the typical use-case, the 

user specifies the centre frequency for the signal chain. The RF front end will tune as 

close to the centre frequency. On the other hand, the DSP will account tuning error 

between the target frequency and the actual frequency. We can also move the DC 

component out of our band-of-interest by using UHD software advance tuning. The 

advance tuning can be done by passing the desired LO offset to the 

'uhd::tune_request_t' object. The object uses integer-N tuning instead of the default 

fractional tuning in the specific daughterboard for better spur performance [63, 64]. 

In the test bench, we use SMA cable between the transmitter and receiver SMA 

ports. As high transmit power might damage the receiver, we placed 40 dB attenuator 

to keep the received signal under the damage level. The maximum achievable 

transmit power is from 12 dBm to 22 dBm over the frequency range of 1.2 GHz to 6 

GHz while the maximum input power to the CBX  is -15 dBm. The receiver gain 

control parameters and linearity are explained and discussed later in the following 

chapters. The specification of WBX and CBX daughterboards shown in table 2.  

 

Table 2: WBX and CBX daughterboard specification for X300 USRP [37, 38].  

Parameter CBX WBX 

Frequency 1.2 GHz ~ 6 GHz 50 MHz ~ 2.2 GHz 

Master Clock Rate 200 MHz 200 MHz 

Maximum Input Power -15 dBm -15 dBm 

Transmitter Gain 31.5 dB 0 ~ 25 dB 

Receiver Gain 31.5 dB         0 ~ 31.5 dB 

Maximum Tx Power 12 ~ 22 dBm 12 ~ 18 dBm 

Bandwidth 40 ~ 120 MHz 40 ~ 120 MHz 

 

 

http://files.ettus.com/manual/structuhd_1_1tune__request__t.html
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3.3.4. Evaluation of Transmit Chain 

A SIMULINK based test bench combined with a signal analyzer (Rohde & Schwarz 

SMIQ06B) was used to evaluate the nonlinearity of the transmit chain of the USRP. 

The test bench for the measurement is shown in Figure 20. Here, SIMULINK model 

in host computer operates as a baseband, X300 USRP with CBX daughterboard as 

RF front end. The spectrum analyzer which is feedback the measurement data to the 

host computer using standard commands for programmable instruments (SCPI) 

commands form the MATLAB scripts through the general purpose interface bus 

(GPIB) device. The motherboard of the X300 USRP is configured with two CBX 

daughterboards for this test bench. The CBX daughterboards allow full duplex 

operation modes if the transmit port connected to TX/RX port and receiver port is set 

to RX2. However, this test bench only configures for the transmit chain. In order to 

analyze the measurement data, the GPIB interface is established between the host 

computer to a spectrum analyzer. Here, 10 MHz reference clock is connected 

between the spectrum analyzer and the USRP in order to avoid frequency error [49].  

 

 
Figure 20. Block diagram of transmit chain. 

 

In the test bench, the gain of GVA-84+ monolithic internal PA of the CBX 

daughterboard is around 22 dB at 1.3 GHz centre frequency. The output power of the 

1 dB compression point, saturation point and also third order interception point of the 

GVA-84+ monolithic internal PA are around 20 dBm, 22.3 dBm and 36 dBm 

respectively at the same centre frequency [39].  
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The spectrums measured at the PA output with different input power levels are 

plotted to figure 21. As expected, more power is spread to the adjacent channels as 

the input power of the PA is increased. The reference signals power in a particular 

operating point form the MATLAB is -23.59 dBm and the transmit gain on the CBX 

daughterboard is 30 dB. Therefore, the signal power level we can assume around       

-23.59 + 30 = 6.41 dBm. There might be 3 dB cable losses in the test bench. The 

input power level in the PA is around 3.4 dBm. By using the spectrum analyser 

which actually feedback the measurement data to the host computer, we calculate the 

output power of the PA is 16.13 dBm. In this circumstance, PA has the gain around       

13-16 dB depending on loss in the system. 

 
Figure 21. PSD of transmit chain. 

 

Figure 22 illustrates the power sweep of the USRP transmitter. Here, the RMS 

input power sweep in order to measure the RMS output power of the modulated 

signal. As power is increased, the gain is reduced. The gain in the transmitter is 

around 10 dB. The 1dB output compression point is approximately 25 dBm. In order 

to overcome the nonlinearities of the PA, digital pre-distortion is applied later on in 

the thesis. 
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Figure 22. Power sweep of the USRP transmitter. 

Figure 23 presents the main channel, upper adjacent channel and lower adjacent 

channel powers as a function of the PA input power, respectively. The adjacent 

channel power integrated over -587.5 KHz to +587.5 KHz frequency range. Different 

operation regions can be detected from the figure, i.e. 1x and 3x. In the 1x region 

where the adjacent channel power has appropriately the same slope as the main 

channel, the noise is dominating in adjacent channels and hence the nonlinearity is 

not seen or cannot be measured. When increasing the power more, first adjacent 

channel power starts to rise above the noise floor. In this 3x region, the slope of the 

ACP is approximately 3x the slope of the channel power. Due to the third order 

nonlinearity the 3x slope is different. 

 
Figure 23. Upper, lower and main channel power for different input power. 
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3.4. USRP Receiver  

The purpose of the SIMULINK receiver model is to receive the transmitted signal 

with the USRP hardware interface. It consists of two subsystems one is SDRu 

receiver interface subsystem and another one is the enabling hold subsystems. The 

SDRu receiver interface subsystem is responsible for tunning the centre frequency, 

receiver gain and also for the downconversion. The downconversion should be 

matched with the SDRu transmitter hardware interface block in order to transmit and 

receive the data with same I-Q sample rate. In the figure 24, SDRu receiver block 

established a link between the receiver SIMULINK design and USRP hardware via 

Ethernet. This block also controls the transmit data from the radio using the USRP 

hardware driver (UHD). In the SDRu receiver block, there are two output ports. One 

is referred to as data which is responsible for receiving data from the radio while the 

other one is the data length port that provides a column vector signal with a fixed 

length. Finally, the enabling hold subsystem processes the received data.   

The enabling hold subsystem is required in order to sample the received 

waveform at the correct time instant. Figure 25 shows the timing diagram of digital 

data with the strobe. In the timing diagram, we notice that the input samples are 

passed through input to output if the strobe is high. Otherwise, it holds the previous 

value that value until the strobe signal is decreased. The strobe is an enable signal for 

the time error detection which is derived from decrementing module-1 counter [40]. 

The data on the adjacent parallel lines is sent by using the strobe signal.  

 
Figure 24. 16-QAM receiver SIMULINK model. 

 

 

 
 

Figure 25. Timing diagram of digital data with strobe. 
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The USRP transmitter and receiver are suffering from frequency offset and 

synchronization errors. Therefore, synchronization is required to be done before 

successful data capture. Also, frequency offset occurs when a difference exists 

between the transmitter and receiver oscillator frequencies. During the operation 

system must follow a known phase relationship between the transmitter and receiver 

in order to align the sample time and clock. The PLL causes the phase ambiguities 

for the interpolation and decimation. Therefore, calibration is needed to compensate 

for the phase offset and make proper synchronization. Most of the RF 

daughterboards uses a fractional-N synthesizer [2,47]. This fractional-N synthesizer 

introduces a random phase offset in each return which is used to generate the local 

oscillator (LO) signals. In order to align the phase between the RF channels, the 

phase offset caused by the passive components is needed to be measured and 

compensated between the RF frontends. The daughterboard such as CBX and WBX 

does not have resynchronization feature which resets a fixed offset after each time 

turn on the USRP power. Hence, the offset in terms of delay and phase varies in each 

round when configuring with the USRP from SIMULINK. 

Third option for USRP X300 daughterboard is called SBX [41] has features which 

would enable the proper, fixed and stable synchronization. SBX board would be 

most suitable for linearization demonstration. As SBX boards were not available 

during the thesis working period, WBX and CBX daughterboards where used 

instead. SBX has a PLL which integrates a voltage control oscillator (VCO) having 

resynchronization feature in order to fix the phase. The VCO actually lock the phase 

of the generated frequency with respect to the reference frequency. This SBX 

daughterboard is not required to be calibrated after each retune, but it is necessary to 

calibrate it periodically. So far SBX daughterboard would be an ideal option for 

example for phased array applications within the limited frequency range. Some 

other available daughterboards such as BasicRX/TX and LFRX/TX daughterboard 

has phase errors due to the absence of LO signals [33].      

 

3.4.1. Evaluation of Receiver Chain 

In this test bench, Rohde & Schwarz SMIQ06B signal generator is used to generate 

an arbitrary waveform which has own sampling clock, RRC filter and modulation 

settings. The centre frequency applied to the signal generator and the USRP receiver 

is 1.3 GHz, respectively. Attenuation around 40 dB connected between the TX port 

of the signal generator and the RX port of the USRP. The signal generator generates 

an arbitrary waveform to the receiver chain of the USRP daughterboard. Finally, the 

samples are stored to MATLAB workspace. Figure 26 shows the block diagram of 

the receiver chain.  

 
Figure 26. Block diagram of receiver chain. 
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Before moving on to the linearization demonstrations, it is important to make sure 

that the receiver chain is linear enough. In other words, the receiver chain should be 

linear or should not induce any kind of nonlinearity which would have an impact on 

the linearization performance. On the other hand, the received signal should have 

enough signal to noise ratio (SNR) in order to characterize the nonlinear behavior. 

The PSDs measured in different RX power levels are shown in Figure 27. We 

noticed that there are no significant impact of in-band and out-band distortion on the 

PSD at different RX power levels with the measured input powers. For efficient DPD 

demonstration, the receiver gain of the USRP is more than 10 dB (above noise floor) 

in order to get a better signal in the output. The AM/AM characteristics of the 

receiver chain in figure 28. During the measurement, we did not measure the data up 

to the 1 dB compression point which is one of the measurement errors.  

 
Figure 27. PSD of receiver chain. 

 
Figure 28. AM/AM of receiver chain. 
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3.5. System Performance Analysis of Transmitter Test Bench  

 

Several factors may impact the performance analysis of a transmit system when 

designing an efficient high-speed transmitter. The feasibility of any given system 

requires a proper top-level system performance. An analysis helps to understand the 

trade-off between various factors of the system cost and the level of reliability [42]. 

In this thesis work, the X300 USRP with WBX daughterboard used in this thesis in 

order to guarantee correct operation point for the measurement receiver and 

transmitter. Figure 29 shows the PA test bench with a measurement receiver.  

 

 
Figure 29. PA test bench with measurement receiver. 

 

The 16 QAM test signal with -24.7 dBm input power is fed to the USRP transmit 

chain. The transmitter gain for the WBX daughterboard is 30 dB. Therefore, the 

transmit port power or input power for the external PA is around 2.2 dBm. Here, we 

approximated 3 dB cable and connectors losses. The maximum output power of the 

external PA is around 16 dB at the 1.3 GHz centre frequency [20]. The attenuation 

between the output of the PA and RX port of USRP is 50 dB. Finally, the received 

signal power approximately -29.8 dBm. The receiver gain was set to zero in order to 

capture the transmitter power. Table 3 illustrates the link budget for X300 USRP 

with WBX daughterboard.  

 

Table 3: Link budget calculation. 

Element Value 

Test signal power at input (DAC output) -24.7 dBm 

Transmitter gain (WBX Daughterboard) +30 dB 

PA input signal power + 5.3 dBm 

External PA gain (at 1.3 GHz) 15 dB 

Attenuation +50 dB 

Cable and connectors loss 3 dB 

Receive signal power -29.8 dBm 
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4. DIGITAL PRE-DISTORTION USRP PLATFORM 

The demonstration of the DPD is performed in the SDR platform, i.e. USRP X300 

where WBX daughterboard is used as a RF front end. Chapter 3 already mentions 

that the WBX daughterboard contains two different antenna ports. The TX/RX port 

can be used in full duplex mode while RX2 port works only in the receiver model. 

With two WBX boards used in two channels of the USRP X300 motherboard, we 

can use one WBX daughterboard as the transmitter while the other one is used as 

measurement receiver. Hence, the same USRP platform can work on both modes 

simultaneously and hence the DPD can be demonstrated in a single USRP device.  

By demonstrating the DPD by just one physical USRP device, we can simplify the 

synchronization and potentially achieve more accurate results. However, WBX cards 

are still suffering from non-fixed phase reference which means that we needed to 

align the symbols, i.e. synchronization in after each set of samples transmitted from 

SIMULINK to the USRP based link back to SIMULINK. The software part of the 

demonstration is developed on SIMULINK by using SDRu communication blocks to 

interface between USRP and the software. This chapter presents the measurement 

setup of the DPD scheme in order to create the nonlinear model of the PA and 

measure the performance of the DPD. In the first phase, an overview of the test 

bench is presented. Later on in the chapter, the DPD performance is analyzed based 

on the experimental results. 

4.1. Test Bench  

A block chart of the DPD demonstration platform is illustrated in figure 30. The 

DPD demonstration platform consists of a host computer and USRP X300 connected 

via an Ethernet cable. Spectrum analyzer is used only to observe the signal spectrum 

during the operation, but not to sample any signal for the feedback used for DPD. 

The USRPs WBX daughterboards are configured to work as RX and TX. An 

external PA (ZFL-2000+) is used in TX. The specifications of the PA [20] are given 

in Table 5. The PA output is divided to a spectrum analyzer and to an external 

attenuator which is routed to the measurement receiver operating in the same USRP 

as the TX. The spectrum analyzer is used to verify the measurement results and 

observe the results in real time. The models of the used measurement equipment are 

given in Table 4. 

 
Figure 30. Digital pre-distortion scheme. 
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Table 4: Measurement instruments.  

Instruments  Model  

Signal Generator Rohde & Schwarz SMIQ06B 

Signal Analyzer Rohde & Schwarz FSIQ7 

SDR Ettus X300 

DSP Ettus WBX 

GPIB NI (GPIB-USB-HS) 

GPIB Connector IEEE-488 

Interfacing  MATLAB R2017b 

 

Table 5: Power amplifier electrical specification [20].  

Model No ZFL-2000+ 

Frequency (MHz) 10 MHz to 2000 MHz 

Gain (dB) 20 dB 

Maximum Output Power (dBm) +16 dBm 

Maximum Input Power (dBm) +5 dBm 

DC Voltage 15 V 

DC Current 120 mA 

 

4.2. Measurement Results 

In this section, we present the measurement results of the DPD performance on the 

USRP platform. The 16 QAM input waveform generated from the SIMULINK 

which is pulse shaped by the RRC pulse shaping filter (roll-off factor of 0.35). The 

symbol rate of the input waveform is 500 kHz and 4-times oversampling is used in 

pulse shaping as well as in the measurement receiver. In the transmitter and receiver 

chain of the USRP daughterboard, we applied 1.3 MHz carrier frequency and also 4 

MHz local offset. The static DPD model used to extract the coefficient for the      

pre-distorter parameters for the DPD. Figure 31 shows the SIMULINK model of the 

transceiver with the DPD for the measurement.  

 

 
Figure 31: SIMULINK model of transceiver with DPD for measurement. 

 

 

 

 

Interface Interface 
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4.2.1. Deriving DPD Coefficient  

To linearize the output of the PA, we consider static DPD design which was 

explained in chapter 2. In the static DPD model, we consider the memory depth 

(𝑀 = 3) and degree of a polynomial (𝐾 = 3) which produces 𝐾 × 𝑀 = 9 complex 

coefficients to provide decent linearization performance. The training length is 2000 

to calculate the DPD coefficient offline. Figure 32 shows the amplitude of DPD 

coefficients with respect to memory depth and polynomial order. If we increase 

memory depth then the linearization will be better. In our test setup, the used 

bandwidth was relatively narrow and hence significant memory effects were not 

present.  

 
Figure 32. Amplitude of DPD coefficients. 

 

Figure 33 shows the amplitude of the impulse response extracted for each order of 

nonlinearity. Impulse response with several nonzero taps indicates memory of the 

system. In the figure, the profile of the coefficients over the memory window for 

different orders of the nonlinearity is similar. This indicates that most of the memory 

content does not depend on the nonlinearity. Hence, such the system could be 

modelled e.g. by Hammerstein type of model (Chapter 2) where the nonlinearity is 

static and followed by a linear filter which models the memory. 
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Figure 33. Order of nonlinearity of DPD coefficients. 

 

4.2.2. Example of AM/AM and AM/PM Characteristics of the PA and DPD 

In the DPD linearization technique, the inverse nonlinearity of the PA is cascaded 

with the PA in the transmit chain such that the output of the PA gives a linear output. 

In other words, the input signal is fed to the pre-distorter before the PA. Figure 34 

presents the AM/AM characteristic of the PA output with and without pre-distortion. 

The maximum values of all the curves in the figure are normalized to one to illustrate 

the behaviour. The blue curve shows that the PA is suffering from compression 

without DPD. The green curve is the output of the DPD which is observed to have an 

expansive shape. The shape is having an inverse form compared with the raw PA 

response without DPD. The red curve shows the output of the linearized PA. Finally, 

DPD achieved the required linear output response from the PA as we expected, i.e. 

blue curve. Hence, the pre-distorted signal of the PA is cascaded with the output 

response of PA to make a linear output response. 

 
Figure 34. AM/AM response of PA with and without DPD. 
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Figure 35 shows the AM/PM characteristic of the PA output with and without   

pre-distortion. The input power fed to the external PA is around +2.2 dBm. Without 

linearization, the AM/PM is spread especially with lower input values. The spreading 

of the low amplitude values in phase does not have a significant impact on the 

system level performance due to the fact that those values do not contain significant 

information of an oversampled signal. However, the spreading of the phase can be 

considered to be an indicator of some memory present in the system.  The DPD is 

able to narrow the spreading of the phase over the input amplitude. Hence, also 

AM/PM is linearized by the DPD. Very low amplitude values of the input signal do 

not have a significant impact on the signal quality as they are anyway below the 

noise level of the signal. 

 
Figure 35. AM/PM response of PA with and without DPD. 
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4.2.3. Example of Measured Spectral Regrowth 

The PSD measured at the input and output of the PA is shown in the figure 36. Also 

the spectrum with DPD is plotted to obtain the observed ACPR improvement. The 

spectrum is plotted in MATLAB based on the measured values by USRP. Hence, the 

level of PA output PSD is lower than the PA input PSD due to attenuator used in the 

feedback branch. We also observe that the output of the PA is suffering from spectral 

regrowth. Here, the ACPR is increased due to the nonlinearity. However, the spectral 

regrowth is suppressed due to the pre-distorted input in the PA. Finally, the 

demonstrated static DPD scheme is reducing ACPR about 10 dB in the chosen 

operation point. ACPR illustrates the ratio of the main channel concerning the ACP. 

The channel offset between the main channel and the adjacent channel is 87.5 kHz. 

The channel offset is half of the roll-off and bandwidth multiplication. As we seen in 

the figure, the green PSD curve shows the reference signal is fed to the PA. The red 

PSD curve shows spectral regrowth due to out-of-band distortion. Finally, the blue 

PSD curve is the output of the DPD which reduce the ACP. 

 

 
Figure 36. Power spectrum density. 
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4.2.4. Example of EVM 

Figure 37 presents the EVM for the received symbols with and without DPD 

respectively. As we have seen in the figure, the constellation points are slightly 

compressed in the edges. The frequency responses of the device are presented 

mostly. In this example, the difference between the received and transmitted symbols 

divides by the average value of the input signal presents EVM. Before normalizing 

the receiver signal, received symbols has to be derotated so that they are aligned in 

the constellation [12]. The reference input 16 QAM signal from the MATLAB with  

-24.7 dBm input power feds to the USRP which achieves an EVM approximately 

2.1%  with DPD. However, at the same power level, EVM is 7.6%  without DPD.  

The input power of the PA is around 2.2 dBm. The external PA has the gain of 

approximately 15 dB. Hence, EVM improvement achieved using memory dependent 

DPD, where memory dependency is able to also replace the traditional equalization 

in this case. Note that, at this operating power the transmitter gain for the USRP is 

30 dB, and the receiver gain for the USRP is kept as zero.    

   

 
Figure 37. 16 QAM signal with 𝑃𝑜𝑢𝑡 ≈ 17.2 dBm power for EVM. 
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4.2.5. Power Dependent DPD Performance 

In this thesis work, the performance of the DPD is analyzed by driving the PA in 

different power levels. The measured ACPR with respect to different output is shown 

in figure 38. It can be observed that without DPD the ACPR is increased 

proportionally to the output power. However, after applying the DPD, ACPR reduce 

that means out-band distortion due to the interference of the adjacent channel is 

decreased.  

 
Figure 38. ACPR with respect to PA output power with and without DPD. 
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EVM as a function of PA output power with and without DPD is shown in     

figure 39. As we seen in the figure the DPD reduces the in-band distortion. It seems 

that the window where DPD is working correctly is very limited due to different RX 

gain RX daughterboard. This is because of the error in the Rx gain control. During 

the measurement, receiver gain for the RX daughterboard is zero. Therefore, the 

DPD is working very limited region. We can solve this problem by increasing the 

receiver gain of the RX daughterboard. In other words, Rx should have been 

configured to have more gain such that the signal to noise ratio of the received signal 

would be enough for DPD coefficient calculation. Hence, a proper automatic gain 

control (AGC) should be implemented to the receiver to achieve wider window for 

good operation.  

 
Figure 39. EVM with respect to PA output power with and without DPD. 
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ACPR as such is a relative measurement and does not always describe the amount 

of actual interference of the adjacent channels. An ACP measurement helps to radiate 

limited power into an adjacent channel [48]. In practice, the ACP is interference to 

other users and systems despite of the channel power level. Hence, ACP can be also 

measured as absolute power. In the final step, we observe the ACP with respect to 

output power to measure the nonlinearity of the device. It indicates the amount of 

spectrum regrowth occurring in the adjacent channel for the existing system. ACP 

measurement defines the ratio between upper or lower channel powers to main 

channel power across the bandwidth. Figure 40 shows the ACP with respect to 

output power with and without DPD. 

 
Figure 40. ACP with respect to PA output power with and without DPD. 
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5. CONCLUSIONS AND FUTURE WORK 

This thesis explored the USRP X300 as a demonstration platform for DPD 

experiments. The USRP radio is a strong and efficient prototyping platform with low 

cost which is a combination of software and hardware system. By using the SDR 

platform, we examined the inherent nonlinearity of the PA. For efficient operation, 

we try to operate the PA in the nonlinear region. Therefore, the nonlinearity 

increased the out-of-band emissions and also decreased the signal to distortion ratio. 

In many practical systems, different linearization techniques propose that operate the 

PA in the saturation region. As a result, signal level is confined in the linear region.        

DPD is a common linearization technique where the nonlinearity of the transmit 

chain is pre-compensated in the digital domain to achieve linear output. Moreover, 

DPD is used to enable power amplifiers to operate in the power-efficient region with 

a decent distortion performance. Initially, we calculate the coefficient for 

characterising the nonlinearity of the PA from the behavioural model. The 

performance results between the theoretical and simulation are quite different due to 

the behavioural model is unable to capture the true behaviour of the PA. The reason 

behind the performance degradation is that the source of nonlinearities and memory 

effect not only induce from PA but also the ADC and DAC of the USRP 

daughterboard are also responsible for the total system.  

The interfacing between the SIMULINK design and RF measurement setup is 

another major obstacle. In the SIMULINK model, each sample of the I-Q data is 

processed on a sample-by-sample basis. However, the I-Q sample from the TX port 

of the USRP to the external PA and spectrum analyser which capture output signal 

from the external PA both required hundreds of thousands of samples in a file to be 

uploaded at a time. This problem can be mitigated by using buffer during 

transmitting the I-Q data which creates a synchronization problem between the 

SIMULINK model and the instrumental test bench setup. However, the transmitter 

and receiver do not follow the frequency and reference time accurately. Therefore, 

synchronization was required to perform before data decoding correctly. The 

frequency offset occurs when a difference exists between the transmitter and receiver 

oscillator frequencies. To avoid such situation we set up the test bench in full duplex 

mode. The selection of the RF daughterboard is based on the application 

requirements and also the frequency range. The daughterboard such as CBX and 

WBX do not have resynchronization feature which resets a fixed offset after each 

retunes. On the other hand, SBX would be also good for our linearization purpose 

because of the phased arrays application.      

Static, look-up-table based DPD in applied in SIMULINK and the signal is fed 

through USRP device which acts as a wireless transmitter. The performance of the 

static LUT-based DPD is evaluated in terms of ACPR and EVM measured at the PA 

output. To establish a robust SDR platform, MATLAB based simulations using DPD 

algorithm as well as RF test bench using commercial PA is includes in the RF front 

end. As we used relatively narrow bandwidth, the memory effects were not present. 

This indicates that the memory content does not depend on the nonlinearity. By using 

the DPD in a static model, the ACPR was reduced about 10 dB which remove the 

out-of-band distortion and also EVM approximately 2.1%. In order to increase the 

operating region, we have to set the AGC properly. The conclusion to draw from this 

thesis that USRP might be one good option for demonstrating different algorithm on 

the real hardware.  
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During the measurement, only one type of PA behavioural model was used. It 

would have been interesting to further investigate the DPD with different models and 

different PA devices. Also, different types of input waveforms could have been 

studied from single carrier waveforms all the way for OFDM based LTE waveforms. 

However, this thesis shows that USRP platforms can be used for DPD 

demonstration. Furthermore, with better control interface such as GNU Radio, the 

interfacing with USRP would have enabled also adaptive DPD implementation in the 

FPGA of the USRP itself. Because we selected MATLAB as the control interface, 

such real-time processing capability was not able to be demonstrated without 

implementation of new MATLAB interfacing drivers which would have been too 

vast task for this thesis. The future work will include the demonstration of a DPD 

system on the real hardware platforms such as ASIC, FPGA and also the complexity 

study for the different PA behavioural model.    
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