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Abstract

Transmitter power efficiency is of fundamental importance in mobile communication.
This is particularly important in the emerging 5th Generation (5G) of mobile commu-
nications due to the even harder challenges posed by the Millimeter Wave (mmWave)
frequency range with propagation losses. Furthermore, the high level of hardware in-
tegration requires trade-offs between cost, size, current consumption and transmitter
power. The 5th generation of mobile communication uses massive multiple inputs mul-
tiple outputs (mMIMO) transceivers together with directional radio transmission using
a narrow beam to achieve high transmission gain to a specific user. This architecture
requires antenna arrays with many elements and active devices directly connected to
each element. With this configuration, challenges arise such as a limited area for active
devices, antenna crosstalk, mutual coupling between elements and high power consump-
tion.

The 5G signal’s modulation format is based on orthogonal frequency division multi-
plexing (OFDM) which has a high peak to average power ratio (PAPR). Furthermore,
5G mmWave supports bandwidths as large as 400 MHz, which may lead to severe mem-
ory effects in the power amplifiers (PAs). The high PAPR and large bandwidths together
with nonlinearity can have a huge impact on the error vector magnitude (EVM) and
the adjacent channel leakage ratio (ACLR) distortion.

The conventional way of mitigating distortion and correcting for nonlinearities in
PAs is through digital pre-distortion (DPD), where the PA’s nonlinearities are cap-
tured so that an inverse model can be applied in the digital baseband. The most
common DPD architectures rely on nonlinear behavioral models based on the Volterra
series, such as the memory polynomial model (MPM) or generalized memory polynomial
model (GMPM). These linearization methods have adequate performance but for wide
bandwidth and high nonlinearity cases, the computational complexity is extreme and
needs a huge number of coefficients. On the other hand, the hardware complexity of
the large antenna-array transmitters in the 5G system introduces additional limitations
for conventional DPD approaches.

Artificial neural networks (ANN) are well known to be able to learn any arbitrary
nonlinear function according to the universal approximation theorem. When comparing
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the ANN approach with the MPM approach, the MPM has inherent local approximating
properties in contrast to the global approximation capability of ANNs, when modeling
strongly nonlinear systems. In addition, when compared to classical models, the ANN
may adapt better to extrapolating beyond the zone exploited for parameter extraction.

This Ph.D. thesis mainly deals with defining specific design challenges for mmWave
active phased array (APA) architectures and proposing solutions and algorithms for
linearity enhancement of APAs based on ANN together with advanced over-the-air
(OTA) measurement techniques for verification of the proposed methods.



Resumé

I mobilkommunikation har senderens effektivitet fundamental betydning. Dette er især
vigtigt i den nye 5. generation (5G) af mobilkommunikation på grund af de endnu
sværere udfordringer, som Millimeter Wave (mmWave) frekvensområdet med udbre-
delsestab udgør. Desuden kræver det høje niveau af hardware integration afvejning
mellem omkostninger, størrelse, strømforbrug og sendeeffekt. Den 5. generation af mo-
bilkommunikation bruger ”massive multiple input multiple outputs” (mMIMO) sendere
og modtagere sammen med retningsbestemt radiotransmission ved hjælp af en smal
bølge for at opnå højere transmissionsforstærkning til en specifik bruger. Denne arkitek-
tur kræver antenne arrays med mange elementer og aktive enheder direkte forbundet til
hvert element. Med konfigurationen opstår udfordringer da der er et begrænset område
til aktive enheder, lækage mellem antennerne, gensidig kobling mellem elementer samt
højt strømforbrug.

Modulationsformatet af 5G signaler er baseret på ”ortogonal frequency division mul-
tiplxing” (OFDM), som har et højt spids til gennemsnit effektforhold (PAPR). Desuden
understøtter 5G mmWave høj båndbredde på op til 400 MHz, hvilket kan føre til såkaldte
"memory effect" i effektforstærkerne (PA’er). Den høje PAPR og store båndbredde gør
sammen med ulineariteten at det kan have markant indflydelse på forvrængning af det
ønskede signal (EVM) og kan generere forstyrrende signaler i nabokanaler (ACLR).

Den konventionelle måde at begrænse forvrængning og korrigere for ulineariteten i
PA’erne er gennem digital pre-distortion (DPD), hvor PA’s ulinearitet læres og en in-
vers model anvendes i det digitale base band. De mest almindelige DPD-arkitekturer er
afhængige af ulineære modeller baseret på Volterra-serien, såsom memory polynomial
model (MPM) eller generalized memory polynomial model (GMPM). Disse lineariser-
ings metoder giver tilstrækkelig forbedring, men i tilfælde af større båndbredde og høj
ulinearitet er beregningskompleksiteten ekstrem og kræver nogle gange et stort antal
koefficienter.

Kunstig intelligens neurale netværk (ANN) er velkendte for at kunne lære enhver
vilkårlig ulineær funktion ifølge den universelle justeringsteori. Når man sammenligner
ANN-tilgangen med MPM-tilgangen, har MPM naturlige lokal-minimum justerings
egenskaber i modsætning til ANNs globale justerings evne, når man modellerer stærke
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ulineære systemer. Derudover kan ANN sammenlignet med klassiske modeller tilpasse
sig bedre til at ekstrapolere udover den zone, der bruges til parameterekstraktion.

Denne PhD afhandling drejer sig hovedsageligt om at definere specifikke designudfor-
dringer for mmWave ”active phased array” (APA) arkitekturer og foreslår løsninger og
algoritmer til linearitetsforbedring af APA’er baseret på ANN sammen med avancerede
over-the-air (OTA) måleteknikker til verifikation af de foreslåede metoder.
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Introduction

1 Problem Statement
The motivation and research goals of this thesis are explained in this chapter.

1.1 Motivation
The 5th generation (5G) of mobile communication has introduced new services to fulfill
the requirements of the growing need for connectivity. The three main services are: en-
hanced Mobile Broadband (eMBB), massive Machine Type Communications (mMTC)
and Ultra-Reliable Low Latency Communications (URLLC) [1]. eMBB is an extension
of the 4G for providing high data throughput and enhancing coverage. mMTC introduce
the Internet of Things (IoT) technology, where a massive amount of devices are con-
nected to a network. These devices have very low power consumption and communicate
small streams of data. URLLC is used for Industry 4.0 applications [2] and operations
where low latency is required such as autonomous driving or remote surgeries [3, 4].
Fig. 1 illustrates a block diagram of these services.
This thesis tries to reveal the mechanism and solutions for nonlinear devices, which
are beyond the capacity of conventional methods. Some of the main challenges that
constitute the motivation for this work are:

• Hardware architecture

• High PAPR and ultra-wide bandwidth

• Over-the-air measurement and linearization

1.1.1 Hardware architecture

5G mobile communication has introduced frequency range 2 (FR2, five bands between
24.25 GHz and 43.5 GHz) among others to enhance the increasing demand for higher

3
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Fig. 1: Representation of hybrid beam-forming architecture.

data rate and coverage. In combination with the new frequency spectrum, new tech-
nologies such as massive multiple-input multiple-output (MIMO) have been introduced
which can achieve spatial multiplexing by using beam-forming technology based on a
large array of antennas [5]. The pure digital beam-forming architecture which was used
for some applications in 4G can not be efficient in massive MIMO due to cost and size
issues [6, 7]. Therefore hybrid beam-forming has been considered as an efficient solu-
tion. On the other hand, the implementation of conventional DPD requires a feedback
loop for each branch of the antenna array which is practically not feasible in massive
MIMO. Therefore, DPD applied on multiple transmitting branches which include one
PA per branch is more practical. The nonlinear behavior of each PA in the branch can
be different and it could be required to have different power levels for different branches.
So there is a trade-off between the achievable linearization quality and complexity of
the applied DPD. The beamforming structure arises additional new challenges such as
antenna cross-talk and mutual coupling between elements. Therefore the cancellation
of the linear crosstalk between the branches has been investigated heavily in academia
and industry [8–10].

1.1.2 High PAPR and ultra-wide bandwidth

The 5G modulation scheme is based on orthogonal frequency division multiplexing
(OFDM) which has a non-constant envelope and a high peak to average ratio (PAPR).
This profile helps the system to utilize the frequency band efficiently while operating



1. Problem Statement 5

at high power. One of the main challenges that need to be tackled while designing a
transmitter with a non-constant envelope (spectrally efficient) is to maintain the re-
quirements for linearity, e.g. below 12.5 % points EVM and below -28 dBc ACLR for
downlink 64-QAM baseband signal [11]. These requirements for the in-band and out-
of-band distortions need to be fulfilled while performing high efficiency in form of power
consumption. On the other hand, the high power efficiency requires that active devices
such as power amplifiers operate in the nonlinear region while maintaining the linear-
ity requirements. Furthermore, 5G has introduced ultra-wide bandwidths, up to 400
MHz. The high bandwidth results in additional amplitude to amplitude (AMAM) and
amplitude to phase (AMPM) gain distortions due to the memory effect. The conven-
tional DPD techniques can not easily handle these new challenges without increasing
the complexity.

1.1.3 Over-the-air measurement and linearization

The 5G mmWave transmitter structure based on beam steering uses a highly integrated
RF front-end which makes the conductive measurement and linearization techniques
non-feasible. Furthermore, the nonlinear distortion is beamformed in the same direction
as the intended signal [10, 12]. Assuming the same adjacent channel power ratio (ACPR)
in all directions, the maximum ACP will be in the direction where the most power is sent
which is the direction where the user is. Therefore in 5G mmWave, over-the-air (OTA)
measurement of nonlinear distortion in different spatial sectors is required. It means
that with a well-designed wireless network the linearity requirements for a multi-beam
configuration can be reduced compared to the single antenna concept [13]. Therefore
OTA measurement and linearization techniques is necessary for the 5G mmWave system
and providing the appropriate OTA setup for the design, test and verification of the
devices is an important topic.

1.2 Research Goals
The evolution of mobile technology toward enhanced 5G and 6G has imposed new
challenges i.e. ultra-wide bandwidth, high PAPR, active phased array with a large
number of elements and OTA linearization and verification. Industry and academia are
trying to suggest solutions for these challenges together with architectures that involve
improvements in form of cost, size and power efficiency. In this context the architecture
of the transmitter has a major impact since it is one of the most power-consuming
parts of the system. This Ph.D. project mainly deals with defining specific design
challenges for mmWave active phased array architectures and proposing solutions and
algorithms for linearity enhancement of active phased arrays together with advanced
OTA techniques for verification of the proposed methods. The scientific contributions
described in the following chapters include:
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1. Identification of the challenges and proposing solutions for OTA linearization of
mmWave active phased array (APA) transmitters.

2. A complexity analysis of different methods for linearization of the APA which
includes a comparison between the artificial neural networks (ANN) method and
the traditional memory polynomial (MPM) method.

3. An experimental comparison of state-of-the-art ANN-based DPD and MPM-based
DPD.

4. Assessment of the robustness of ANN-based DPD with respect to operating con-
dition such as the beam angle, signal bandwidth and power levels.

5. An investigation of the reduction of computational complexity using transfer learn-
ing neural network (TLNN) for systems with dynamically changing bandwidth.
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2 Challenges in 5G Transmitter Linearization
Traditionally power amplifiers face a never-ending linearity-efficiency trade-off. Fulfill-
ing the specifications required in 3GPP standardization requires linear operation while
linear operation implies efficiency degradation. Linearization techniques allow the PA
to operate in the nonlinear regions while fulfilling standardization requirements and
providing sufficient efficiency. Several efficient techniques for achieving these goals have
been used by the industry for years, such as Doherty PA, envelope tracking (ET) and
digital predistortion (DPD). By introducing new technologies such as MIMO and beam-
forming, implemented in 4G and 5G, the linearization technique not only involves a sin-
gle PA but linearization of an array of PAs connected directly to the small patches of an
active phased array antenna. This new structure requires additional linearization tech-
niques dependent on the topology of these systems. This chapter gives an overview and
explanation of these challenges together with a description of the topologies considered
for the modern transmitter system.

2.1 Beam-forming Architectures used in the Active Phased Ar-
rays

5G mobile communication system in the FR2 frequency range uses a beam-forming
architecture together with antenna arrays which have several elements to fulfill the
requirements of high gain. The passive antenna gain, as used for BS type 1-O, is
specified to 17 dBi [11]. These multi-element antenna arrays are often designed as
active phased arrays (APA), where the transmitter power amplifiers or the receiver low
noise amplifiers are directly connected to the antennas. Generally, there are three types
of beam-forming architectures for the APA:

2.1.1 Full digital beam-forming architecture

In this architecture each antenna element has its own RF chain, digital to analog con-
verter (DAC) and dedicated baseband section, illustrated in Fig. 2a. All the digital
processing including the adjustment of phase and amplitude of each antenna is done
in the baseband module and therefore there is no need for analog phase and amplitude
shifter circuits in RF domain. There are two main constraints in dedicating an RF chain
and a data converter to each antenna:

1. Space limitation: All devices in each chain (baseband and RF transceiver chips,
PA, LNA and filters) should be packed behind each antenna element and since
the elements are placed close to each other then there is a space limitation.

2. Power consumption: PAs and ADCs are power-hungry devices. A digital conver-
sion per stage leads to a large demand for digital signal processing (many parallel
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Fig. 2: (a): Full digital beam-forming architecture; (b): Analog beam-forming architecture

Giga samples per second data stream to be processed) which leads to excessive
power consumption.

2.1.2 Analog beam-forming architecture

Analog beam-forming, Fig. 2b, is the simplest MIMO approach and it is dedicated to
single-stream transmission. Analog beam-forming is implemented using a network of
digitally controlled phase shifters. In Fig. 2b the phase and amplitude shifters are
placed before the PAs but they could be placed in other positions in the RF chain.
The phase shifter weights are adaptively adjusted using digital signal processing with a
specific strategy to steer the beam and meet a given objective, for example, maximize
transmitted signal power to specific user. Phase shifters can be active or passive. Active
ones have problems with noise and linearity whereas passive ones have problems with
large size and large insertion loss [14].

2.1.3 Hybrid beam-forming

In the hybrid approach which is shown in Fig. 3, the digital precoder/combiner can
correct for lack of precision in the analog beam-forming, for example to cancel residual
multi-stream interference. This allows hybrid precoding to approach the execution of
the unlimited solutions [6, 7]. The optimization process is divided between analog and
digital domains. In scenarios with multiple users, for each user, the individual baseband
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modules can be allocated in order to increase the gain. Using more baseband modules
increases the complexity but at the same time, the steering capability of the system will
be advanced. So in hybrid beam-forming, there is a trade-off between complexity and
capacity [14].
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Fig. 3: Representation of hybrid beam-forming architecture.

2.2 Cross-talk in Active Phased Array
Crosstalk is used as a term that describes the unwanted coupling between signals in each
PA-antenna chain (branch) of the array. Crosstalk can be categorized into two types:
before PA (nonlinear crosstalk) and after PA (linear crosstalk) [15]. Generally, the power
amplifiers of the active phased array need to operate close to the saturation region to
provide high efficiency. The output impedance of the PA is not necessarily 50 ohm and
may need to be matched to an optimum load which is a compromise among output
power, linearity and efficiency requirements [16]. Since each PA is directly connected
to the antenna without any isolator in-between, then the antenna mismatch and the
mutual coupling between the antennas have a direct impact on the load impedance of
the PA [17]. Part of the radiated waves from the PA output will be reflected back
and also radiated to the other antenna elements. A block diagram of a generic active
antenna array is shown in Fig. 4. It includes L antenna elements where for the kth
branch, b2k and a2k represent the output and reflected signals from the antenna array,
and a1k and b1k are the incoming and the reflected signals from amplifier’s input.

The power injected into one antenna element of the array will be coupled back to
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Fig. 4: Block diagram of a generic active antenna array including L antenna elements.

other antenna elements and as a result to the outputs of other PAs because of the
electromagnetic coupling between the elements of the arrays. The steering angle and
the radiated power level define the magnitude of the coupling. As illustrated in figure
4, a2,k can be described as following multiplication of s-parameter vectors [18]:

a2k =
[
sk1 . . . skk . . . skL

]
·
[
b21 . . . b2k . . . b2L

]T
. (1)

Reflection coefficient, Γk, for the kth element of the array is described as:

Γk = a2k

b2k
=
∑L

i=1 Skib2i

b2k
, (2)

where the coefficients in the scattering matrix, Ski, which are set by the characteristics
of the antenna array, define the coupling between the k’th and i’th antennas. The ele-
ments in b2i vector are complex coefficients for the input to the antenna. The reflection
coefficient Γk, is a sum of the reflection from the k’th element and the coupling from all
other elements. This inter-element coupling among antennas is called load modulation
and has a major influence on the behavior of the active devices connected to the antenna
elements. The impact of this load modulation on the digital pre-distortion of the active
phased array is described in this thesis (papers A, B, C and E) through simulation and
verification.
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2.3 Feedback Receivers used for Training of DPD in Active
Phased Array

For digital predistortion there is a need for a feedback receiver (FBR) to measure the
nonlinear characteristic of the transmitter and use it for the training of the DPD. For an
active phased array where the transmitter consists of several parallel branches, defining
this feedback strategy is not straightforward. There are generally two methods for FBR
construction; conductive or over-the-air (OTA). For the conductive methods, there have
been several approaches proposed in recent years. Three major topologies proposed as
conductive approaches, shown in Fig. 5 are:

• Partial feedback receiver

• Beam-oriented feedback receiver

• Time-shared feedback receiver
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Fig. 5: Three major topologies proposed as conductive approaches; a: partial FBR, b: beam-oriented
FBR, c: time-shared FBR.

2.3.1 Partial feedback receiver

In this approach, illustrated in Fig. 5a, the response of a few branches are used for the
linearization of the whole array [19]. In this approach, the PAs in the array are assumed
to behave similarly.
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2.3.2 Beam-oriented feedback receivers

The beam-oriented approach, Fig. 5b is using a "virtual" main beam signal for lin-
earization [20–22] and suggests a combined and sampled output of individual branches.
Practically this approach emulates the channel by recovering its phase and amplitude.
The draw-back is that besides the need for a symmetrically combining network, the
FBR needs a separate path including phase shifter and control circuits which increase
the complexity. This complexity could be relaxed by using the receiver path in time-
division duplexing (TDD) system which is considered for the 5G FR2 system.

2.3.3 Time-shared feedback receiver

In this approach, Fig. 5c, instead of measuring the response of all PAs simultaneously,
the measurement of each PA is time-shared. This approach has been proposed in [21, 23]
and provides a model for each PA also while the response eventually is changed by the
steering angle. Again the requirement for an additional receiver can be relaxed in TDD
mode. This approach shows good linearity improvement but the need for the bulky
feedback circuits makes it impractical to be used in the highly integrated active phased
arrays structure.

2.3.4 Over-the-air single input single output feedback receiver

Due to issues with additional insertion losses and the limited possibility to access each
PA’s output in the array using conductive approaches, the OTA single input single
output (SISO) FBR model, Fig. 6, has been proposed in [10, 24–28].
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Fig. 6: Block diagram of equivalent SISO model for digital pre-distortion of hybrid beam-forming.

Generally OTA measurement and linearization has attracted a lot of interest in
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academia and industry and mostly driven by 5G system. Despite remarkable progress,
there are still challenges to be addressed such as antenna crosstalk, mutual coupling
among antennas and power level variation in RF chains. In [29] the authors propose
compensating for the potential differences among PAs. It allows linearization in all
directions with a single DPD, in contrast to linearizing the main beam only. However,
compensating for the mismatch requires analog circuits which introduce complexity and
delay for large arrays and the potential changes in the PAs’ behaviors due to crosstalk.
In [18], a SISO OTA model has been introduced and a state-of-the-art analysis regarding
linearization trade-offs in the OTA setup has been presented, which addresses most of the
above-mentioned challenges. In [9] the effect of crosstalk between antennas has been
analyzed by detailed simulation and measurements on a 4×4 active phased antenna
array. A major practical challenge is the placement of the observation antenna. This
could be the other user’s device or as proposed for a heterogeneous network for an
enhanced 5G system [30]. Besides the impact of multi-path and interference, since the
reference antenna is placed at a certain steering angle and the actual beam is steered
to a specific user then these two beams can interfere with each other. The observation
antenna can be implemented as part of the receiver section of the same device (i.e.
diversity receiver) which has been presented by [26]. This method uses an iterative
procedure to eliminate the uncorrelated components from the feedback signal. There
are some challenges related to this approach as it is practically a near-field measurement
and the coupling between the patches of the diversity part which are not close to the
transmitter patch could be very low. However, if the power level is high, the problem
of low coupling can be ignored. These kinds of approaches using some "unused" part of
the antenna construction during transmission is a promising approach and seem to be
investigated in more detail by industry and academia in the coming years. An overview
of the OTA linearization methods for 5G MIMO systems is introduced in [31]. In the
present Ph.D. work, the SISO setup, shown in Fig. 6, has been used.
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3 Measurement Techniques
This chapter explains the measurement setups and techniques used for the research
topics in this thesis.

3.1 Over-The-Air Measurement Setup
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Fig. 7: The block diagram of the measurement setup.

The block diagram in Fig. 7 illustrates the measurement setup used for several
investigations in this thesis. A 3GPP downlink OFDM modulated waveform with 64-
QAM sub-carrier modulation, sub-carrier spacing of 60 kHz, 1584 active sub-carriers
and peak to average power ratio (PAPR) of 11.6 dB has been generated using the R&S
SMBV100B Vector Signal Generator and centered at 3 GHz. Bandwidths are up to 100
MHz and with the sampling rate of up to 600 MHz. A continued wave signal of 12.5
GHz generated by the Agilent E3247C, frequency-doubled to 25 GHz by the MITEQ-
MAX2M200400, and used as the local oscillator (LO). Two active mixers, KTX321840
and KRX321840, are used for up-conversion to 28 GHz and down-conversion to 3 GHz.
The LO leakage is attenuated using a band-pass filter and a pre-amplifier is used for
delivering sufficient input power to the Anokiwave AWMF-0158 [32] active phased array
(APA). The APA integrates 16 branches of attenuators, phase shifters and PAs together
with 16 patch antennas in a 4×4 configuration. The over-the-air (OTA) modulated sig-
nal is captured using an observation antenna placed in the far-field. The received signal
after down-conversion to 3 GHz, is converted to baseband using the signal analyzer.
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For uploading the baseband I and Q samples to generator and capturing them by the
R&S FSW signal and spectrum analyzer, a host PC running in Matlab is used. The
main beam of the array is controlled by using the appropriate code-book and software
tools. The system is calibrated and all devices are in their highly linear region. The
only source of nonlinearity is related to the APA as the device-under-test. Fig. 8 shows
the measurement setup in laboratory.
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Fig. 8: The measurement setup.

3.2 OTA Measurement using Compact Antenna Test Range
For the 5G testing at mmWave frequencies, the compact antenna test range (CATR)
OTA measurement method has been identified as the best approach. The idea is that
during the radio transmission and reception measurements, the waves illuminated at
the receiver antenna are desired to be uniform plane waves. CARTs can generate nearly
planar waves at a shorter distance compared to the far-field requirements of the wave.
Fig. 9 illustrates such CART chamber [33]. The performance of the measurement in
CATR is limited by several parameters such as aperture blockage, direct radiation from
the source to the test antenna, diffractions from the edges of the reflector and feed
support, depolarization coupling between the two antennas and wall reflections [34].
However, the actual designed CATR chamber used for this work is specified for high
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accuracy measurements in the frequency range from 6 GHz to 40 GHz [33]. The block
diagram of the OTA measurement using the CATR chamber is shown in Fig. 10.

Fig. 9: Illustration of a CATR measurement chamber [33].
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3.3 Total Radiated Power Measurement
In the 5th generation frequency rang 2 transmitter specifications, 3GPP has defined the
adjacent channel leakage ratio (ACLR) specifications based on OTA measurement of
the total radiated power (TRP) of the transmitter. This means that the system does
not depend on the spatial direction of the ACLR but integrates the transmitted power
over the angular domains. For a beam steered transmitted signal, the worst case of
nonlinear distortion is in the directions where the intended users are positioned [13].
Therefore quantitative measurements in this work have been done to evaluate if using
main beam ACLR is a valid method for characterizing the linearization performance of a
beam steerable array. For doing this investigation TRP ACLR measurements have been
performed and compared with main-beam-only measurements. In [35] the estimated
TRP for a discrete set of measured directions is described as:

TRP = 1
4π

∫ 2π

ϕ=0

∫ π

θ=0
EIRP(ϕ, θ) · sinθ dθ dϕ (3)

For ∆θ = π
Ne

and ∆ϕ = 2π
Ma

then:

1
4π

· π

Ne
· 2π

Ma
= π

2NeMa
, (4)
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where the number of azimuth angles (ϕn) and elevation angles (θn) are defined as Na

and Me respectively. The estimated TRP can be calculated as:

TRPEstimate = π

2NeMa

Ne−1∑
n=0

Ma−1∑
m=0

EIRP(ϕn, θm) · sin θm (5)

The radiated power in each angular case as a sum over both linear polarizations is
defined as EIRP(ϕn, θm). The TRP-ACLR in linear scale is calculated as the total
radiated power of the adjacent channel divided by the total radiated power of the in-
band channel:

TRP-ACLR =
π

2NeMa

∑Ne−1
n=0

∑Ma−1
m=0 Padj.ch.(ϕn, θm) · sin θm

π
2NeMa

∑Ne−1
n=0

∑Ma−1
m=0 Pch.(ϕn, θm) · sin θm

=
∑Ne−1

n=0
∑Ma−1

m=0 Padj.ch.(ϕn, θm) · sin θm∑Ne−1
n=0

∑Ma−1
m=0 Pch.(ϕn, θm) · sin θm

(6)

The block diagram and lab setup for the measurements are shown in Fig. 10 and Fig.
11. The following procedure is applied for all specific azimuth angles, ϕ, and elevation
angels, θ:

• The APA is placed at the positioner and the coordinate system is aligned.

• The main beam of the APA is adjusted to the direction of the observation antenna
(the reflector).

• The main and adjacent channels’ power are measured.

• The measurement is repeated for all ϕ and θ angles.

• The TRP-ACLR is now calculated according to (6).

For the applied TRP-ACLR measurement in this work, the steering angle of the APA
is set to 0 degrees. The position of APA has been adjusted by θ from 0 to 180 degrees
in steps of 10 degrees and for each step, the ϕ angle is changed from -90 degrees to 90
degrees in 20 degrees steps. For each angular setting, the TRP-ACLR is measured using
Eq. (6). This procedure determines the radiated power in the front hemisphere and it
is assumed that the radiated power in the back hemisphere is negligible.
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4 Behavioral Models for 5G Transmitters
State of the art power amplifier (PA) modeling can generally be divided into two major
groups, physical models and behavioral models [36]. They can be distinguished by the
type of data needed for their extraction. Making a physical model requires a nonlin-
ear model of the active device, a nonlinear model of the passive components and the
nonlinear equations relating to terminal voltages and currents. These models are then
applied to the circuit-level simulation and the accuracy of the results is limited by the
quality of the used device models and the accuracy of the simulator.
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Model identification Model identification 

Applying model and verification

Input Output

Capturing the complex baseband 

IQ input and output data 

DUT 
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Fig. 12: Procedure for behavioral model extraction; from measurements to model validation.

4.1 Behavioral Modeling Theory
The behavioral model considers PA as a black box and there is no need for a-priori
knowledge about the PA’s physical model, nor the circuit topology. The behavioral
model is based on experimentally measured input and output of the PA and with a lower
computational cost compared to the physical model. This approach is a appropriate
choice for system-level simulation and the design of an algorithm for linearization and
optimization. It is especially suitable for the cases where the nonlinear part is not a
single nonlinear device but a set of nonlinear devices integrated into the system such as
an active phased array which is the scope of work in this thesis. The behavioral model
extraction procedure is illustrated in Fig. 12 where the key steps from measurements
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to model validation are shown.
The relation between the input and output signals in discrete time can be modelled

by the classical approach of modelling. There are several structures to model and
emulate the memory effect of RF power amplifiers. Some of the most used models are
Hammerstein model [37], Wiener model [38], memory polynomial model, generalized
memory polynomial model, Volterra series model and artificial neural networks model.

4.2 Polynomial Models
4.2.1 Volterra series model

The block diagram of the Volterra series model is shown in Fig. 13.
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Fig. 13: The block diagram of the Volterra model.

This model is the classical approach of modelling the full behaviour of a nonlinear
device [39–41] and is represented by Eq. (7).

y[n] =
K∑

k=1

M−1∑
m1=0

· · ·
M−1∑
mk=0

hk[m1, . . . , mk]
k∏

j=1
x[n − mj ]

=
M−1∑
m1=0

h1[m1]x[n − m1]

+
M−1∑
m1=0

M−1∑
m2=0

h2[m1, m2]x[n − m1]x[n − m2]

+ . . .

+
M−1∑
m1=0

· · ·
M−1∑

mK=0
hK [m1, . . . , mK ]

K∏
j=1

x[n − mj ], (7)



4. Behavioral Models for 5G Transmitters 21

where K and M are the order of the nonlinearity and the memory depth respectively
and hk(m1, . . . , mk) are the parameters of the model, which are often referred to as
the "Volterra kernels" in literature. At each of the kth Volterra kernel, the nth sample
of the input signal x[n] is mixed with the M − 1 preceding samples. It means that
the kth kernel includes all possible combinations of k time shifts of the input signal,
which includes all types of memory effects. Therefore, the Volterra series is considered
the most complete model. The draw-back is that the computational complexity of the
model is very high [42].

4.2.2 Memory polynomial model

Memory polynomial model (MPM) has been widely used in the last decade for PA mod-
eling due to the easiness in parameters extraction [43–47]. The system representation
is illustrated in Fig. 14 and represented by following equation:

y[n] =
M∑

m=0

K∑
k=1

amkx[n − m] · |x[n − m]|k−1, (8)

where amk are the coefficients that modelings the PA.
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Fig. 14: The block diagram of the memory polynomial model.

As can be immediately seen from Fig. 14 the memory polynomial contains quite fewer
terms than the Volterra series, that is because the memory polynomial excludes cross-
terms.

4.2.3 Generalized memory polynomial model

For the cases with deep memory effect, the generalized memory polynomial model
(GMPM) is more suitable [48], block diagram of this model is shown in Fig. 15. The
model consists of three components: the regular MP, a backward MP term and a for-
ward MP term. The idea is that the last two additional terms can enhance the model
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with additional degrees of freedom and capabilities, defining a new structure able to
model memory effects situated around time constants that are located in a number of
past and future locations:

y[n] =
Ma∑

m=0

Ka∑
k=1

amkx[n − m] · |x[n − m]|k−1

+
Mb∑

m=0

Kb∑
k=2

P∑
p=0

amkpx[n − m] · |x[n − m − p]|k−1

+
Mc∑

m=0

Kc∑
k=2

Q∑
q=0

amkqx[n − m] · |x[n − m + q]|k−1, (9)

where Ma, Ka are the number of coefficients for the regular MP and Mb, Kb, P are the
number of coefficients related to the backward MP and Mc, Kc, Q are the number of
coefficients related to the forward MP.
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Fig. 15: The block diagram of the generalized memory polynomial model.

4.3 Artificial Neural Network Model
Challenges such as high bandwidth and high nonlinearity lead to huge complexity and
the explosion of MPM-based algorithms. With the increased complexity and conse-
quently increase of the number of unknown kernel coefficients in the model, the MPM
approach is less practical [49]. Artificial neural networks (ANNs) are well known to be
able to learn any arbitrary nonlinear function according to the universal approximation
theorem [50]. Inspiration of ANN origins from the behavior of neurons in the human
brain. By training these neurons the structure of data can be recognized or a complex
nonlinear function can be modeled. Fig. 16 illustrates the common block diagram of
such a model.
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ANN has a layered sequential computation structure that by training can recognize
patterns in data and predict outcomes. Between the input and output layers of an
ANN are the hidden layers. The first part of a hidden layer is the fully connected
(FC) layer, also known as a dense layer. An FC structure in a densely populated ANN
may increase requirements for hardware resources, but in many applications, the weight
of some interconnections can be set to zero without loss of accuracy, which results in
sparsely connected layers [51]. The sparse structure is out of the scope of this work.
As illustrated in Fig. 16, there are two common strictures of the network, Feedforward
networks (FNNs) and recurrent (or feedback) networks (RNNs). These networks can
be distinguished by the interconnection pattern or architecture [51]. The feedforward
network is considered for this work since it is the most used ANN and according to the
universal approximation theorem, it can approximate any nonlinear function with any
desired error [52].

4.3.1 Single-layer perceptron model

The fundamental building block of ANN is based on the single-layer perceptron (SLP)
model. Fig. 17 shows the block diagram of an SLP model. A parallel combination of
several SLP makes the architecture of a multi-layer perceptron (MLP) which presents
the general structure of the ANN. In SLP, xi is the input to the jth neuron from layer
k, and each xi is then multiplied by the weight wji and the results are added together.
A bias weight, bj , is added and the output of jth neuron is calculated by multiplying an
activation function, σ(.), as shown in Eq. (10).
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yj
(k)(n) = σ(k)

(
N∑

n=1
wjixi

(k−1) + bj
(k)

)
, (10)

where yi is the output from the jth neuron kth layer.
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Fig. 17: Block diagram of single layer preceptron (jth neuron at kth layer).

For linearization of a specific nonlinear circuit, different configurations for ANN ar-
chitecture, learning algorithm, or activation function could be used and there is not a
universal recipe. Mainly trial and error are often used for finding the optimum configu-
ration. However, knowing the physical behavior of the circuit and its impairments will
help in defining and optimizing the appropriate model for the circuit.

4.3.2 Architecture of artificial neural network

Generally an ANN is constructed by mapping an input function to an output function
and by choosing the proper structure and parameters of the ANN, then it is possible to
fit any arbitrary nonlinear functions using regression. For enabling the dynamic nonlin-
ear system identification, and solving the time series prediction, a time-delayed neural
network (TDNN) which includes tapped delay line has been introduced in [51, 53]. For
extracting the amplitude and phase information of the modulated signal, the input
IQ data should be represented either in complex-valued (CV) form or in real-valued
(RV). In the case of RV, a pair of the input and a pair of the output represent the
real and imaginary parts, and a weight and activation function is separately defined
for the real and imaginary parts. Several state-of-the-art linearization techniques based
on RVTDNNs have recently been introduced in the literature. In [54, 55], the authors
propose a solution for performance imperfections such as crosstalk, power amplifier
nonlinearities along with modulator imperfections like in-phase and quadrature (I/Q)
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Fig. 18: Multilayer RVTDNN neural network architecture.

imbalance and DC-offset for a wide bandwidth direct-conversion transmitter. Another
similar approach, where only the magnitude of the input signal encounters a nonlinear
operation, and the phase information is recovered with a linear weighting operation has
been introduced in [56]. The RVTDNN structure offers superior performance and easy
baseband implementation when used for inverse modeling of PAs with strong nonlin-
earities and memory effects [57]. Fig. 18 represents such a structure and has been used
for the investigations in this thesis. The structure of the ANN is based on real-valued
while the training data are complex-values, therefore the number of neurons at input
and output of the architecture are multiplied by two. The input and output data are
separated as yI [n − M ], yQ[n − M ], x̂I [n] and x̂Q[n] where n is the number of the I and
Q data used in the training. The memory effects are modeled by the delayed replica
up to the memory depth of M. The mathematical way of describing the function of the
dense layers is that each output of the kth layer, y(k)(n) is a weighted sum of all inputs,
x(k−1), multiplied by activation function:

y(k)(n) = σ(k)
(

Wx(k−1) + B
)

, (11)

where σ(k)(·) is the activation function, y(k) ∈ RL×1 are the output values of the M ’th
neuron, W ∈ RL×M are trainable coefficients, x(k−1) ∈ RM×1 are the outputs of the
previous layers and B ∈ RL×1 are trainable biases. Thus, M is the number of outputs of
the previous layer, and L is the number of inputs to the next layer. Eq. (11) describes
the operations in each dense layer. The optimization algorithm used in this work is the
adaptive moment estimator, Adam [58]. This algorithm is based on a gradient descent
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which gets more computationally efficient by using momentum and randomized batches
to avoid local minima. A batch is defined as the number of training samples used for
estimating the error gradient. The weights and biases of each FC layer are distinctive
and are optimized by back-propagation for improving the accuracy of predictions.

4.3.3 Activation function

The activation function makes the ANN able to fit arbitrary nonlinear functions. The
activation function used in this thesis is the rectified linear units (ReLU) [59]. This
function is considered to be less computationally expensive than hyperbolic tangent
(Tanh) [60] and Sigmoid [61] and involves simpler mathematical operations [62, 63].
The ReLU activation function is defined by:

σReLU(x) = max(0, x) (12)

According to Eq. (12), ReLU introduces nonlinearity by setting negative inputs to 0,
which also adds sparsity to the ANN and simplifies the computations [62].

4.3.4 Loss function

The difference between the predicted values and reference values is evaluated by using
the loss function. Different type of loss function has been used during the investigation
in this thesis such as Huber loss and mean square error (MSE) loss. Huber loss function
is defined as:

loss(x, x̂) = 1
B

B∑
i=1

εi, (13)

where B is the batch size and εi as a combined set of square and absolute errors:

εi =
{ 0.5(xi − x̂i)2, if |xi − x̂i| < δ,

δ|xi − x̂i| − 1
2 δ2, otherwise. (14)

where Huber loss function is defined by setting δ to 1. MSE loss function is defined as:

loss(x, x̂) = 1
B

B∑
i=1

(xi − x̂i)2. (15)

Huber loss function uses a kind of smooth loss function for regression tasks and therefor
it is robust against large errors [64].
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5 Digital Predistortion using Artificial Neural Net-
work

Digital predistortion (DPD) is a system-level linearizer used for extending the linear
range of PAs. However, the resulting power efficiency achieved with linearization tech-
niques applied to PAs operating close to the nonlinear region for the systems with high
peak to average ratio (PAPR) is limited. For improving the efficiency, the operation
condition of the PA can be forced to follow the signal’s envelope by using envelope track-
ing (ET) [65, 66]. Another approach is using switch-mode amplifying classes in Doherty
PAs [67]. High efficient switch-mode PAs are also used in linearization techniques using
nonlinear components (LINC). The idea of LINC is to convert the amplitude modula-
tion of the input signal into phase modulation so the efficient switch-mode PAs can be
used [68]. Considering the 5G system with wide bandwidth, beam steering and car-
rier aggregation, in highly efficient techniques such as ET, Doherty and LINC, DPD
facing challenges to compensate for both static nonlinearities and dynamic memory ef-
fects because of the increased number of parameters required in the DPD model. As a
consequence, the model identification and adaption process invoke high computational
complexity which may result to overfitting and unreliability [69]. ANN-based DPD
can offer robust solutions compared to conventional approaches due to their powerful
nonlinear mapping. Some comparison to the conventional approach based on use cases
such as highly nonlinear systems, beam-dependent load modulation and reduction of
computational complexity for bandwidth scaleable DPD has been introduced in this
work.

5.1 Digital Predistortion Theory
Digital predistortion (DPD) consists of identifying the behavioral model of the PA and
applying an inverse model of that to the input with a result of canceling distortion at
the PA’s output. The concept is illustrated in Fig. 19. The linearized output signal
is obtained by multiplying the predistorter to the input signal of the PA. It means
that once the relationship between input and output is known, then the coefficients
used for predistortion can be found using the behavioral model. Theoretically, these
coefficients which describe the characteristic of the PA need be calculated only once.
But the PA behavior will change by parameters such as temperature drift, aging, power
supply variations, etc. [70]. Therefore for an adaptive system, the coefficients for the
predistorter need to be updated frequently at a defined time interval.

5.2 DPD Identification Techniques
DPD identification is based on a set of input and output baseband measurements of the
device-under-test (DUT), which is performed by using a measurement setup based on
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Fig. 19: Representation of digital predistortion concept.

a network analyzer or signal generator and signal analyzer. The procedure is based on
criteria of minimization of an error defined by the previously chosen goal function. DPD
is implemented by continuously updating the model coefficients of the predistorted signal
in the feedback loop of the model. The model coefficients can be estimated either offline,
by using a set of input and output samples of the PA, or online in an adaptive real-time
measurement of the PA’s input and output [71, 72]. Generally, there are two learning
architectures for estimating the model coefficients, indirect learning architecture (ILA)
and direct learning architecture (DLA).

5.2.1 Indirect learning architecture

The most popular identification algorithm in DPD is the indirect learning architecture
(ILA) which has been implemented in many state-of-the-art applications [73–76]. Fig.
20 shows the block diagram of this architecture. In this architecture, the inverse behavior
of the PA is directly calculated and used as a predistorter and applied to the PA. This
is also called post-inverse, and can be performed either in an offline mode using least
squares (LS) optimizer [47] or can be performed in online mode in an adaptive way using
a least mean square (LMS) algorithm [77]. The most important advantages of IDL are
the simplicity and a low computational complexity [78]. However, there are two major
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problems with the IDL architecture. Firstly, in case of the noise in the measured PA
output, the predistorter may converge to a biased solution. Secondly, in case of high
saturation, the efficiency of the ILA is limited [79].
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Fig. 20: Block diagram representing indirect learning architecture.

5.2.2 Direct learning architecture

In the direct learning architecture (DLA), Fig. 21, a direct model of the PA is calcu-
lated, inverted and used as a predistorter. For the online adaptive mode scenarios, the
error produced in the PA output is minimized by using adaptive algorithms such as
LMS [72]. An issue with this approach is that the DPD identification, a direct model of
the PA, requires more iterations and consequently a higher computational complexity.
But compared to the ILA, the DLA can achieve higher accuracy [73]. In offline mode,
a set of the input and output of the PA together with the LS algorithm is used to
identify the predistorter. This approach used as a look-up table (LUT) based lineariza-
tion, can significantly reduce the computational time. However, for a system with high
complexity, this approach requires a large lookup table [80].
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Fig. 21: Block diagram representing direct learning architecture.
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5.3 Digital Predistortion using Artificial Neural Networks
Due to their strong adaptive nature and approximation capability, ANNs are very attrac-
tive for the behavioral modeling of PAs. Through the work in this thesis the real-value
time-delay neural networks (RVTDNN) model has been used due to its superior per-
formance and easy baseband implementation [54]. Fig. 22 illustrates the system-level
ANN-based DPD arcitecture.
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Fig. 22: The system-level ANN-based DPD concept.

ANN parameters are updated gradually for reducing the losses between the predicted
values and the reference input. The ANN learns the features of the training data as
a regression model which is generally used for the scenarios where the ANN needs to
learn the characteristic nonlinear distortions.
Python 3.8.4 on Visual Studio Code is used for obtaining all operations. Keras 2.3.0-tf,
version 2.2.0 is used for building and training the ANN.

5.3.1 Training and optimization procedure

For each power level, ANN is trained to reach the minimum mean square error (MSE)
level defined by the cost function while varying the number of the time-delays and with a
fixed number of neurons. Then the number of neurons is tuned for the best linearization
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performance. Finally, the number of the hidden layers has been tuned keeping the other
parameters unchanged. There is a trade-off between the number of delay lines, the
number of neurons and the number of hidden layers dependent on the target complexity
and linearization quality [81]. Fig. 23 shows a typical optimization result using four
hidden layers, where the optimal choice is a trade-off between the ACLR, the EVM and
the number of multiplications.
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Fig. 23: Optimization parameters for a general model; (a): The ACLR values; (b): The EVM values;
(c): The number of multiplications required to apply the corresponding ANN DPD model; (d): The
PSD result.

The measurements results of this experiment show that by keeping the number of
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time-delays to 4 and the number of neurons to 256, it is possible to achieve an ACLR
improvement of 13.1 dB and EVM improvement of 8.8 % while keeping the number of
multiplications as low as possible, i.e. 199 k. Fig. 23a, 23b and 23c show the out-of-
band distortion in form of ACLR, in-band distortion in form of EVM and complexity of
the experiment in form of the number of multiplications, respectively, for the optimized
model. Increasing the number of neurons to a higher number e.g. 480 will give negligible
improvement of ACLR and EVM while the number of the multiplications which set the
complexity level, will increase drastically to 696 k. The power spectral density (PSD)
plot in Fig. 23d shows the achieved out-of-band improvement in form of ACLR. The
detailed results can be found in "paper G" attached to this thesis.

5.4 Measurement Results
This section presents some measurement results that summarize some of the most im-
portant results obtained within this Ph.D. project. It gives a robustness assessment of
ANN-based DPD concerning beam angle, highly compressed active device and signal
bandwidth. For more detailed explanations please refer to the research papers attached
at the end of this thesis.

5.4.1 Beam-dependent load modulation

Due to mutual coupling and cross-talk between antennas of the APA, there could be a
distortion in form of beam-dependent load modulation at PAs outputs. The experimen-
tal results show that re-using the trained coefficients of one angle for other angles will
degrade the linearization performance. Fig. 24 shows the experimental results of the
impact of load modulation on DPD based on MPM and ANN linearization approaches.
In this experiment the trained model for 0 degrees has been used for the entire beam
steering range, i.e. -78 degrees to +78 degrees. ANN-based linearization shows only
slightly better performance compared to the MPM-based. For both models the best
performance is achieved when the steering angle is close to the training angle. The step
size of the angle for the re-training depends on the target linearity requirements and
the actual set-up. The detailed results can be found in papers B, C and E attached
to this thesis. In [82] a combined ANN digital predistortion method where the input
and output data of several steering angles are combined and used for training of the
predistorter has been proposed. The proposed ANN DPD provides consistently good
linearization for the entire range of steering angles considered. This approach does not
provide the same good performance compared to the case where a single-beam training
model is used at the trained angle. However, it demonstrates the strength of ANN
compared to MPM and it is worth investigating it further in future work.
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Fig. 24: Experimental result of the impact of load modulation (trained at 0 degree) [83].

5.4.2 Comparison between ANN and MPM digital predistortion for highly
nonlinear active phased array

A 100 MHz wide orthogonal frequency-division multiplexing (OFDM) signal with a
peak-to-average power ratio (PAPR) of 11.6 dB has been used as input to the APA in
this experiment. For the ANN parameters, one hidden layer, five time-delays and 100
neurons have been chosen. For MPM a nonlinearity order of 5 and memory depth of
8 has been chosen as optimal parameters. Both linearization models get almost the
same level of complexity in terms of the number of multiplications (1200 for the ANN
and 828 for the MPM) by using these configurations. The APA is driven into two
different nonlinear regions with the main-beam powers at 34 dBm and 31 dBm. Fig.
25 shows the experimental results for both models. The ANN approach gives a much
better linearization result compared to the MPM approach for the high nonlinearity
case whereas in the case of low nonlinearity they perform almost equally. A further
investigation based on the predistorter signal’s peak to average power ratio (PAPR) for
both models, shows that for the MPM case the PAPR of the pre-distorted signal reaches
extremely high values. On the contrary, the proposed ANN model does not contain in-
herently such an “explosion” effect for high non-linearities. The polynomial model has
inherent local approximating properties where the ANN can behave as global approxi-
mation which is a potential advantage when modeling strong nonlinear systems. These
results confirms that ANN principally works better than the classical MPM approach to
extrapolate beyond the utilized zone of parameter extraction [84]. The detailed results
of this experiment are in paper E attached to this thesis.
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Fig. 25: linearization results while the APA is driven in two different nonlinearity cases; (a): Main
beam power = +34 dBm; (b): Main beam power = +31 dBm [83].

5.4.3 Bandwidth-scalable DPD using transfer learning

5G mobile communication has introduced a very broad bandwidth, up to 400 MHz,
with a dynamic bandwidth change during transmission and reception. By increasing
the bandwidth the digital predistortion algorithm needs to increase the number of coef-
ficients used in the identification algorithm. For the ANN case, it means an increase in
the input dimensions of the model and number of layers and an increase in the number of
neurons [85]. Existing works show that an increase in the number of the tapped element
(memory depth) improves the performance [81]. Also in the same reference, it has been
shown that keeping the number of neurons unchanged and then increasing the num-
ber of the hidden layers from one to three will also improve the linearity performance.
Increasing the ANN parameters results in an increased training time and complexity.
The transfer learning neural network (TLNN) approach can apply knowledge learned
for linearization of the previous operating bandwidth into the new operating bandwidth
and reduce the training time and complexity. The study of TL is motivated by the fact
that one can intelligently apply knowledge learned previously to solve new problems
faster or with better solutions [86, 87]. In this concept, the knowledge obtained from a
trained model with a large dataset is used in a second model to obtain a faster learning
time while maintaining high performance. Fig. 26 shows a block diagram illustrating
the concept. The transfer learning approach has been used on bandwidth-scalable DPD
in one of the experiments of this work. Part of the trained model of 20 MHz bandwidth
has been frozen and reused for linearization of 100 MHz BW signal. Fig. 27 shows
power density measurement results before and after linearization using regular ANN
and TL-ANN. The detailed linearization results in terms of EVM and ACLR are listed
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in Table 1. The proposed TL-ANN can achieve similar linearization performance with
much lower computational complexity. By re-using the frozen sub-model it is possible
to reduce the number of hidden layers from 4 to one and the number of neurons from
256 to 16. This will result in the relaxation of the computational complexity in terms of
multiplications from 69120 to 224. The detailed results of this experiment are in paper
G attached to this thesis.
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Fig. 26: Block diagram illustrating the transfer learning concept.
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TLANN (TLNN with 1 hidden layer and 16 neurons is denoted as "TLNN-H1N16").
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Table 1: Number of multiplications comparison between regular ANN and proposed TL ANN for a
100 MHz bandwidth signal. *)The average of the left and the right sides ACLR.

Number of EVM ACLR *)
Multiplications (without/with DPD), (Improv.) (without/with DPD), (Improv.)

Regular ANN 69120 (10.3 % / 1.6 %), (8.7 %) (34.7 dBc / 43.7 dBc), (9 dB)
(256 Neurons, 4 hidden layers)

TL ANN 224 (10.3 % / 1.7 %), (8.6%) (34.7 dBc / 43.7 dBc), (9 dB)
(16 Neurons, 1 hidden layer)

6 Contribution Summary
This section presents the research contribution of the papers applied to the Part II of
this dissertation with a brief summary of motivations, contents and main results.

6.1 Paper A
Linearization of Active Transmitter Arrays in Presence of Antenna Crosstalk
for 5G Systems
Feridoon Jalili, Martin H. Nielsen, Ming Shen, Ole K. Jensen, Jan H. Mikkelsen and
Gert F. Pedersen
Published in the 2019 IEEE Nordic Circuits and Systems Conference (NORCAS):
NORCHIP and International Symposium of System-on-Chip (SoC)

6.1.1 Motivation

The active phased arrays are constructed using several antennas together with a power
amplifier connected to each antenna. The distance between antennas in the array is
relatively short due to the limited area. This configuration makes linearization of each
single PA unrealistic since we do need space for adding a coupler to the output of each
PA. Furthermore, the individual PA’s behavior is influenced by antenna crosstalk and
the mutual coupling between antenna. A solution to this problem could be treating
the amplifiers and antennas as one system and linearizing the main beam signal at the
receiver rather than on each single power amplifier.

6.1.2 Paper content

For the measurements, an array of 4 antennas with one PA connected to each and the
receiver antenna spaced one meter from the transmitter has been used. The power
amplifiers are from CREE CGH400006P and as input signal, an LTE10 OFDM base
station downlink signal with a center frequency at 3.5 GHz has been used. For evaluating
the impact of mutual coupling a four elements antenna array having element spacing of
d = [0.1 0.2 0.3 0.4 0.5 0.6] wavelength, λ, has been carried out.
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6.1.3 Main results

The measurements show that the best results for EVM and ACLR are achieved with
0.5λ spacing. For investigating the coupling among antennas, the s-parameters for the
array with 4 antennas have been measured which show that the strongest coupling is
approximately -12 dB which explains why the variation in ACLR and EVM is not so
high. The complexity of pre-distortion used in this work is the time alignment. The
accurate time delay needed between input and output of the PA has been calculated by a
simulation. An 8 dB improvement of ACLR has been achieved by using the system level
linearization and without doing intensive s-parameter measurements needed in existing
work.

6.2 Paper B
Linearization Trade-offs in a 5G mmWave Active Phased Array OTA Setup
Feridoon Jalili, Felice F. Tafuri, Ole K. Jensen, Yunfeng Li, Ming Shen and Gert F.
Pedersen
Published in the IEEE Access Year: 2020 | Volume: 8 | Journal Article

6.2.1 Motivation

The 5G mmWave active phased array has normally several analog transmitter circuits
connected directly to the antennas. Understanding the key factors contributing to the
total nonlinearity of the whole array in such a complex system is not straightforward.
Firstly 5G systems are using the so-called hybrid beam-forming where the number of
analog RF chains is higher than the number of the baseband controllers. So a digital
control unit may not directly linearize the individual PA at each antenna branch. Sec-
ondly, due to the high level of integration, the placement of the feedback circuits at the
output of each PA is challenging. Thirdly, the feedback receiver needs to have very high
bandwidth, i.e. up to 5*400 MHz as well as a high-speed analog to digital converter.
With this complexity, having many feedback circuits is infeasible. Furthermore, using
multiple antennas introduces cross-talk which increases the complexity of the algorithm
for mitigating the impact. Finally, the typical implementation topology for mmWave is
to up-convert the existing sub-6 GHz system into mmWave frequency. The linearity of
these sub-6 GHz circuits has an impact on the overall system linearization.

6.2.2 Paper content

There is a trade-off between the optimal performance and the accepted complexity in
terms of cost and size. In this work, we analyze these trade-offs by doing the mea-
surement on state-of-the-art hardware devices together with the latest defined signal
constellation in 5G transmitters. We consider the whole system as a single input single
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output (SISO) system and use the conventional memory polynomial together with over-
the-air (OTA) measurements. Following topics on linearization of the active phased
array have been investigated:

i. impact of up-conversion from sub-6 GHz into mmWave
ii. impact of beam angle on linearization
iii. reusing trained coefficients in the backed-off region

6.2.3 Main results

Through simulation and measurement the following trade-offs have been identified:
i. a highly efficient active phased array needs to deliver the required maximum power

while it is in compression. Since the efficiency of the last chain in the transmitter has
high priority, so for getting the best efficiency for the whole system it is required to
either run the pre-stages in the linear region or use a separate linearization loop for
those circuits.

ii. due to load modulation which is a consequence of beamforming and crosstalk,
the trained beam needs to be updated with a new set of training after some degree shift
of the beam. For the actual setup, a new training after approximately ±15 degree shift
of the main beam is required.

iii. The linearized system is out-performing the backed-off system above the trained
output level, at the trained level and for the actual setup, 2 dB below the trained level.
For the highly backed-off scenarios using a trained coefficient is not useful.

6.3 Paper C
Antenna Array Inter-Element Coupling impact on Linearization of Active
Phased Array
Feridoon Jalili, Daniel E. Serup, Ondrej Franek, Ming Shen and Gert F. Pedersen
Published in the International Symposium on Networks, Computers and Communica-
tions (ISNCC) Year: 2021 | Conference Paper | Publisher: IEEE

6.3.1 Motivation

Due to the high level of integration in active phased array transmitters, the output
stages are directly coupled to antennas without any isolator in between. In this config-
uration, the load impedance of these stages is affected by the mismatch of the antenna
and crosstalk. Furthermore, the impedance at each antenna is not only related to the
reflections from its own antenna but also related to coupling from other antennas in the
array due to electromagnetic coupling among antennas. This coupling may vary during
beam steering. This kind of linear distortion is called load modulation and needs to be
considered during digital predistortion. Since a new training of the coefficients is costly,
it is desired to keep the trained coefficients as long as possible during beam steering.
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Load modulation limits this reuse of the coefficients. In this paper, the impact of the
load modulation on the linearization of the active phased array is investigated through
3D simulation of the radiation patterns and measurement.

6.3.2 Paper content

The antenna array used in measurement has been designed as a 4×4 planar patch
antenna on a low-loss Rogers RO4403 substrate. For simulation, the time domain solver
in CST MICROWAVE STUDIO® (MWS) was used with a hexahedral mesh and a
perfectly matched layer (PML) boundary condition. For investigation of the impact of
load modulation, the 4x4 patch antenna has been exited in both sequential mode, i.e.
all ports except the exited port are terminated, and simultaneous mode, i.e. all ports
are exited. By applying appropriate phase shifting, the beam is shifted at various angles
while exiting the ports. The combined polar and 3D far-field together with the reflection
for each port are simulated. The input and output data of a corresponding 4x4 active
phased array running at 28 GHz has been measured by placing an observation receiver
in the far-field and located at the main beam while varying the beam direction in both
horizontal and vertical steering angles. The DPD trained at θ = 0 degree has been
used for all steering angles to quantify the variation of ACLR and EVM as a result of
inter-element coupling among antennas. A 4x4 active phased array based on Anokiwave
AWMF-0158 hardware has been used as the device-under-test. For the experiment, a 3
GHz LTE10 signal, compliant with the 3GPP downlink orthogonal frequency-division
multiplexing (OFDM) modulation with a peak to average power ratio of 10.6 dB has
been up-converted to 28 GHz and used as input to the active array.

6.3.3 Main results

The reflections for specific ports during sequential excitation have been compared with
simultaneous mode excitation. The results show that the reflection coefficient gets 5.5
dB worse in simultaneous excitation when the steering angle is changed by 9 degrees at 28
GHz. This change in impedance results in degradation of the linearization performance.
Measurement results on the active array indicate this impact. For allowing only 0.5 dB
degradation, a new training after approximately 5 degrees shift of the main beam is
required which is a hard limit and requires several additional pieces of training during
a wide range of beam steering.

6.4 Paper D
Tuning of Deep Neural Networks for Over-The-Air Linearization of Highly
Nonlinear Wide-Band Active Phased Arrays
Feridoon Jalili, Felice F. Tafuri, Ole K. Jensen, Yunfeng Li, Qingyue Chen, Ming Shen
and Gert F. Pedersen
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Published in the International Symposium on Networks, Computers and Communica-
tions (ISNCC) Year: 2021 | Conference Paper | Publisher: IEEE

6.4.1 Motivation

Many state-of-the-art digital predistortions are successfully using artificial neural net-
works (ANN) for linearization of power amplifiers. For a system with wide bandwidth
and high nonlinearity, ANN may need multiple hidden layers and a significant number of
neurons to tackle the additional complexity raised by an active phased array transmit-
ter in 5G. However, an analysis of the complexity vs. performance trade-off intrinsic to
the usage of a high-complexity ANN model for linearization of the actual active phased
array devices is an interesting investigation. This work gives a guideline for minimizing
the computational cost of ANN implementation by tuning its major parameters.

6.4.2 Paper content

A 5G modulated signal at 28 GHz together with a 4x4 active phased array was used
for investigations. The bandwidth is 100 MHz and the sampling frequency is 600 MHz.
100 k IQ samples of input and output of the active array have been captured and 70%
of the data has randomly been used for training and the remaining 30% for testing. For
training, the proposed ANN is implemented using TensorFlow 1.14 through the Keras
API in Python 3.8.4. The number of delay lines at the input of the ANN, the number
of neurons in each layer and the number of hidden layers are set appropriately to avoid
underfitting and overfitting. For this purpose, the memory depth has been chosen to
a low number, and then the other parameters have been initialized to get the best
linearization parameters in terms of ACLR and EVM. The optimization is continued by
tuning the memory depth and keeping other parameters at their optimum level.

6.4.3 Main results

For each power level, the ANN is trained to reach a mean square error (MSE) of less
than 1E-6. The best performance is achieved by setting the memory depth to 14. With
this fixed number of delay lines, the number of neurons is tuned for best linearization
which shows that there is only a minor impact from the number of neurons if it is
at least 150. In the end, the number of hidden layers has been tuned keeping the
other parameters unchanged. The results show that the system reaches the optimum
linearization performance using 3 hidden layers.

6.5 Paper E
Highly Nonlinear and Wide-Band mmWave Active Array OTA Linearization
Using Neural Network
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Feridoon Jalili, Yufeng Zhang, Markko Hintsala, Qingyue Chen, Ming Shen and Gert
F. Pedersen
Published in the IET Microwaves, Antennas & Propagation | Year 2021 | Journal Article

6.5.1 Motivation

Active phased array (APA) transmitters together with multi-input multi-output (MIMO)
systems have been chosen for 5G mobile communication sytem operating at mmWave
in order to improve the system capacity and data rates. The traditional linearization
techniques based on the Volterra series model face new challenges such as:
i. highly integrated front-ends and a large number of PA’s do not allow placement of
feedback circuits for each branch.
ii. wide bandwidth.
iii. need for higher efficiency together with enhanced modulation scheme results in
driving the power amplifier into very high nonlinearity.
The challenges can in the worst case lead to huge complexity and explosion of the
Volterra-series model approach, which is commonly used in MPM. A DPD based on
MPM for such a highly complex system needs to increase the number of unknown kernel
coefficients in the model which is practical. In recent years several ANN architectures
have been proposed and applied to linearize highly nonlinear multi-PA devices-under-
test (DUTs) such as the active phased array. A comparison between ANN and MPM for
such a highly nonlinear and wide bandwidth scenario tested on state-of-the-art hardware
and OTA verification is an interesting topic.

6.5.2 Paper content

A SISO OTA modeling where the entire transmitter has been considered as a two-port
system together with an observation receiver in far-field is used in this work and the
linearization results of both ANN-based and MPM-based DPD techniques for lineariza-
tion of the antenna array have been given. For mitigating the memory effect due to
the wide bandwidth, two dynamic neural structures have been proposed in the litera-
ture; recurrent neural networks (RNNs) which utilize feed-forward and feedback signal
processing and real-valued time-delay neural network (RVTDNN). Due to superior per-
formance and easy baseband implementation, the RVTDNN has been chosen as the
ANN architecture in this work. For the high nonlinearity cases, the model needs a low
learning rate during training at the cost of the training time. In the present paper,
a so-called batch normalization (BN) layer is added to each hidden layer to increase
the learning rate. Furthermore, the proposed RVTDNN uses the rectified linear units
(ReLU) activation function, which is less computationally expensive than hyperbolic
tangent (Tanh) and Sigmoid because it involves simpler mathematical operations. To
make it comparable with conventional MPM, an ANN including only one hidden layer
together with a minimum number of neurons has been implemented. A RVTDNN using
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the ReLU activation function together with a total radiated power (TRP) measurement
of a real 5G test bench is the unique content of this work.

6.5.3 Main results

When using MPM-based models for linearization of a deeply saturated PA, the peaks of
the predistorted signal reach extremely high values and hence leading to a huge increase
in the predistorted signal’s peak to average power ratio (PAPR). The nonlinear kernel
of the NN does not contain inherently such an “explosion” effect for high non-linearities.
The proposed RVTDNN structure in this work is based on supervised learning which
means that while we train the ANN we are using low envelope fluctuations, i.e. the de-
sired I and Q at the output layer. This allows the ANN to learn what the characteristics
of a signal with low envelope fluctuations are.

6.6 Paper F
Complexity Analysis of Artificial Neural Networks Used for Active Phased
Array Linearization
Feridoon Jalili, Felice F. Tafuri, Kasper B. Olesen, Lauge F. Dyring, Jakob G. Brask,
Ming Shen and Gert F. Pedersen
Published in the 2022 IEEE MTT-S International Wireless Symposium (IWS) Year:
2022 | Conference Paper | Publisher: IEEE

6.6.1 Motivation

The new challenges introduced by the 5G mmWave active phased array have increased
the complexity of the conventional techniques such as the memory polynomial model
(MPM) used for digital predistortion. Rich experimental results are showing that the
artificial neural network (ANN) based DPD approach can be a good alternative for
addressing the new challenges. The complexity of digital preditortion can be defined
as the number of multiplications during the training of the predistorter. For the recent
proposed 5G multiple-input multiple-output (MIMO) transmitters architecture, the ca-
pability of ANN in comparison to MPM in terms of multiplication is still an open and
ongoing discussion.

6.6.2 Paper content

A predistorted signal modeling (PSM) has been designed for optimizing the number of
time delays and neurons for achieving the target linearity performance and afterward the
number of multiplications has been bench-marked. The real-valued time-delay neural
network (RVTDNN) has been used as the ANN structure. The applied MPM, which
is a deviation of the Hammerstein model and has been proven effective for removing
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nonlinearity and memory effects has been used for bench-marking. The comparison is
based on verification results of a highly nonlinear and wide-band 5G testbed measured
over-the-air (OTA) in a compact antenna test range (CATR) chamber. The APA device
is based on Amotech AAiPK428GC-A0404 which includes four Anokiwave AWMF-0158
transceivers. It integrates 16 branches of attenuators, phase shifters and PAs and 16
patch antennas in a 4×4 active phased array. A host PC is used for capturing and
uploading the IQ samples.

6.6.3 Main results

Although the DPD complexity-performance trade-off will naturally be correlated to the
device-under-test and to the MIMO architecture of the array, the methodology can be
used to identify the optimal complexity-performance trade-off when choosing the ANN
parameters. Increasing the number of time-delays or neurons will not necessarily result
in better linearity and there is not a direct relation between the number of multiplication
and optimum results for each test case. We are providing a method that allows system
engineers to choose an ANN complexity level per a given wanted linearity.

6.7 Paper G
Bandwidth Scalable Behavioral Modeling using Neural Network Based on
Transfer Learning
Feridoon Jalili, Felice F. Tafuri, Qingyue Chen, Ming Shen and Gert F. Pedersen
Submitted to the IEEE Access Year: 2022 | Volume: 8 | Journal Article

6.7.1 Motivation

One of the major differences between the introduced 5G mobile communication with
generations behind is the dynamic behavior of the parameters in the system, such as
sub-carrier spacing (SCS), modulation scheme, bandwidth, etc. The existing digital
predistortion algorithms need to be capable to cope with such dynamic behavior. Fur-
thermore, this dynamic behavior is together with the increasing complexity of the sys-
tem, for example increasing signal bandwidth which leads to strong nonlinearity and
memory effects and as a result to the increasing complexity and adaption time. For
such a dynamic system, the existing DPD methods need to update a huge amount
of coefficients rapidly which may make the method infeasible. Artificial neural net-
work (ANN) has been widely used in the modeling of nonlinear devices. In this work,
a cost-effective real-valued time-delayed neural network (RVTDNN) method has been
used in several scenarios. However, by increasing the bandwidth and nonlinearity, the
RVTDNN method needs to increase the input dimensions of the model and number
of layers, and a larger number of neurons which may make the model slow for a dy-
namic system. Transfer learning ANN approach which can intelligently apply knowledge
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learned previously to solve new problems faster appears to be a good solution for the
linearization of systems with dynamic bandwidth. This method allows the domains,
tasks, and distributions used in training and testing to be different.

6.7.2 Paper content

A single input single output (SISO) model where the entire transmitter has been consid-
ered as a two-port system has been used. The proposed TL-RVTDNN method consists
of three phases; offline learning using the source dataset, using a 20 MHz bandwidth
signal, identifying the transfer learning algorithm, and online application based on the
target dataset ie. the 100 MHz bandwidth signal. The first few layers of the network,
which are used for extracting the nonlinear characteristics of the active phased array in
20 MHz bandwidth, are frozen after executing offline training. For training, the input
and output datasets are divided as 70 % for training and 30 % for validation. The
weights and biases of the ANN are using the Huber loss function and Adam is used as
the optimization algorithm.

6.7.3 Main results

The optimum model of 20 MHz bandwidth is modified by removing the last fully con-
nected hidden layer. This model is frozen as a transferred pre-design model and used
to linearize the 100 MHz bandwidth signal. The frozen pre-defined model from 20 MHz
training and one fully connected fine-tuning hidden layer is used For TL-RVTDNN.
Four different sets of neurons are used for fine-tuning. The TL-RVTDNN linearization
can provide the same linearization result as the regular ANN by using only one hidden
layer and 16 Neurons. This means that the frozen layers based on 20 MHz bandwidth
already contain enough information to compensate for the nonlinearities of the 100 MHz
bandwidth signal. Since the time for calculating the coefficients of the incremental lay-
ers is reduced, this approach grants the ability to an adaptive re-identification of the
ANN model.
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7 Conclusion
The new generation of wireless communication systems operating at mmWaves, use
a new architecture based on the active phased array (APA) at the transceiver’s RF
front-end which requires integration of several power-hungry devices directly connected
to the antennas. This new architecture together with a high peak to average ratio
(PAPR) and wide bandwidth of the signal has introduced new challenges for enhancing
the power efficiency while mitigating distortions. Digital predistortion (DPD) has been
considered an effective technique to cope with the unwanted nonlinear distortion in the
past generations of mobile platforms. However, the number of parameters required for
predicting the nonlinearities in the DPD technique based on the existing Volterra-series-
based models such as the memory polynomial model (MPM) is growing exponentially
which increases the computational complexity and cost. In recent years artificial neural
networks (ANNs) are strongly showing their advantages in terms of reduction of compu-
tational complexity and enhancing the performance of the emerging 5G and 6G mobile
communication systems. This dissertation presents an overview of major linearization
challenges in 5G mmWave transmitters and proposes possible solutions based on OTA
measurements and ANN-based predistortion.
The implementation of a feedback receiver for training of the behavioral model of the
nonlinear devices for DPD is not straightforward and many types of research and in-
vestigations are ongoing for finding a proper hardware implementation. Defining the
mutual coupling among antennas using an S-parameter matrix and using it together
with the DPD algorithm is not feasible since an accurate S-parameter measurement on
a highly integrated architecture is not possible. Therefore an equivalent single-input
single-output (SISO) model has been used for measurements.
The performance and complexity of the proposed ANN architecture have been com-
pared with the existing MPM techniques together with detailed analyses, simulations
and measurements by using state-of-the-art 5G active phased array. OTA measure-
ments for capturing data and validation together with the required time alignment have
been defined step-by-step in several works. Since the distortion is also beam-formed
in a steerable transmission configuration, TRP measurement has been done by using a
compact antenna test range (CATR). In the case of transmitting with a highly nonlinear
ANN, the ANN-based linearization shows superior performance due to lower PAPR in
the predistorter.
Detailed analysis and definition for the proposed architecture of ANN including a pro-
posed input-output configuration have been given. The benefit of using different opti-
mization algorithms, choice of activation functions, loss functions and the influence of
hyper-parameters used in the model have been analyzed and verified on several setups
and presented in the published papers.
Furthermore, the enhanced ANN architecture using an algorithm based on transfer
learning has been analyzed and the advantage of that on the dynamical bandwidth
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changing 5G system has been investigated.
On the hardware configuration, the setup includes a state-of-the-art 4×4 active phased
array from Anokiewave together with 16 integrated patch antennas. The hardware setup
is using an up-converter and a down-converter between sub-6 GHz and mmWave which
is close to what is implemented in the latest available 5G mobile phones and gives an
indication of the issues and proposals related to this configuration.
The presented work is far from being exhaustive for all the aspects and mostly focuses on
research topics where the active phased array is studied from a system-level point of view.
All aspects of the pros and cons of using the SISO model for DPD are far from adequately
covered. A large privilege has been given to the modeling and characterization concepts
using artificial neural networks and to the practical implementation of the whole active
phased array transmitter using a measurement setup in the compact range chamber.

For future work
For most of the measurements in this work an intently controlled environment has been
used where the impact from hardware imperfections of the elements in the APA branches
and channel impact are kept ideal. A future work may include investigations of these
impacts.
The robustness of ANN-based DPD concerning input power level variation is also one
of the future directions for this research.
Due to the APA’s spectral regrowth, the sampling rate of the feedback receiver needs to
be several times the bandwidth of the transmitter signal for DPD identification. Taking
the signal bandwidth growth in 5G and 6G, leads to very wide bandwidth requirements
for the feedback receiver and increased hardware complexity. Using the transfer learning
ANN approach together with implementing DPD on a small portion of the transmitter’s
bandwidth and re-using that for the whole bandwidth may relax the feedback receiver’s
complexity.
The on-line adaptive DPD design is also a major investigation topic. There is a need
for a far-filed observation antenna for providing the OTA feedback signal for adaptive
on-line DPD. This observation antenna might be available from other user’s devices as
introduced for a heterogeneous networks in 5G and beyond. The implementation of
such a system is an interesting topic. The feedback signal could also be obtained from
the receiver antenna of the same phone or base station but the proper implementation
techniques are still under discussion. One promising proposal is to use the diversity
antenna. However, there may be an issue with low power-coupling between the trans-
mitter and the diversity antennas. Furthermore this approaches may need digital signal
processing for near-field to far-field transformation in antenna measurements and yet
there is no adequate information about the feasibility of this approach.
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Abstract
By increasing the number of antennas and power amplifiers connected to each in 5G
system, the linearization methods like digital pre-distortion (DPD) of each power ampli-
fier is inefficient due to antenna imperfections such as crosstalk. As a result of limited
area the distance between antennas in array can vary which leads to unwanted coupling
between antennas. A solution to this problem could be treating the amplifiers and an-
tennas as one system and linearizing the main beam signal at the receiver rather than
on each single power amplifier. In the work described in this paper, the whole system
including amplifiers, antennas and the receiver is treated as a 2-ports system and the
impacts of the above mentioned constraints are investigated.

1 Introduction
Due to growing demand for higher data rate, which needs extended bandwidth, new
mm-Wave frequency bands are introduced as enabling technology in 5G mobile system.
Together with the requirements of massive MIMO, highly integrated beam-steerable
active arrays consisting of a high number of PAs and antennas are considered as an
efficient solution [1]. The active array topology where the PAs are placed after the
phase shifters, and just before the antennas, gives several benefits such as reducing
the power handling of phase shifters, reducing the output power requirements for each
element and allowing small integrated devices to be used while connected to the antenna.
On the other hand active arrays place many challenges for the traditional linearization
methods used for PA efficiency:

• Antenna crosstalk

• Coupling vs distance between antennas

• Varying power levels at antenna branches due to side-lobe control requirements

In this paper, the linearization of power amplifiers in the presence of cross talk is
investigated. The task includes the characterization of the crosstalk and its impact on
the system linearity and DPD of PAs under effect of antenna crosstalk. The applied
DPD technique captures the combined non-linearity of the whole array including the
PAs and antenna elements. Specifically the particular focus is to reduce the system
complexity, while maintaining the linearization performance. The investigations in this
paper are done by combining measurements together with analyses in Matlab.

The paper is organized as follows: Section 1 is the introduction. Section 2 discusses
system theory and background. Measurement set-up of proposed system DPD and re-
sults have been provided in section 3. Finally, the conclusions of this work are presented
in section 7.
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2 System Theory and Background

2.1 Antenna crosstalk in arrays
A common beam-forming structure, the so-called "hybrid beam forming", is shown in
Fig. A.1. Each sub-array includes a DAC and a modulator. The number of antennas in
each sub-array is higher than the number of modulators in order to minimize the power
consumption since the DAC, the modulator and the preceding digital part are the most
power consuming elements [2]. Crosstalk as coupling from one branch to another of
transmitter in an active antenna array can be categorized in two types: before PA and
after PA.

2.1.1 Crosstalk before PA

This is mainly due to RF leakage through the common LO and coupling between dif-
ferent transmit paths because of the electromagnetic coupling [3].
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2.1.2 Crosstalk after PA

When no isolators are present at the PAs’ outputs, there is mutual coupling between
them via the antennas [4]. A sketch of this is shown in Fig. A.1 where a1k is the incoming
signal to the amplifier, b2k is the output from the amplifier and a2k is the reflected signal
form the antenna array at the kth branch.

The relationship between a2k and the output signal b2k is determined by the char-
acteristics of the antenna array’s s-parameters. The system model of the multi-antenna
transmitter could therefore be split into a crosstalk and mismatch model. This model
could also be used together with the DPD that holds the model for the PA, to linearize
it [5].

A major problem with this approach is that the s-parameters for the antennas must
be known and that the method needs feedback from each amplifier which is a problem
if several amplifiers are used.

2.2 On-line system linearization
A novel solution to the above mentioned concerns could be to treat amplifiers and
antennas as a single system and then do the DPD estimation for the main beam at
the receiver side as depicted in Fig. A.2. In order to make this configuration to work,
the transmitter has to send a pilot sequence which is known to own receiver. Then the
receiver can obtain the coefficients for the DPD algorithm and feed those back to the
transmitter. Calculation of the linearization coefficients can either be done as traditional
memory polynomial or Deep Neural Network (DNN). On-line system linearization can
also be used in satellite communication as post distortion analysis for power efficiency
[6, 7] done in ground-station receiver. The benefit with the last approach is that it
includes also the channel response.
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3 Measurements

3.1 Measurement setup
Figure A.3 shows the measurement setup in lab which is consisting of an array of 4
antennas with one PA connected to each and the receiver antenna spaced one meter
from the transmitter. Power amplifier of type CREE CGH400006P [8] is used for the
measurements.

Fig. A.3: Measurement setup.

The gate voltage for the amplifier is adjusted to Vg = - 2.798 V resulting in a
quiescent drain current of Id = 100 mA. Fig. A.4 shows the gain response of the PA
with 1 dB input compression point at 22 dBm and gain of about 8 dB. The signal
generator generates an input signal that is a 10 MHz LTE signal with a center frequency
at 3.5 GHz and peak to average power of 9.8 dB. A pre-amplifier at the output of the
generator provides the necessary gain in order to get an average power of 22 dBm at
each PA input.
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Fig. A.4: Amplifier gain response.

3.2 Single PA linearization vs system level linearization
This section demonstrates how much mutual coupling and crosstalk between anten-
nas influence the non-linear distortion, which can not be compensated accurately by
conventional single PA linearization.

Fig. A.5: PDS for single PA DPD vs system DPD.

Measurement results are shown in Fig. A.5. In the first set of measurements each PA
is linearized using a standard DPD on a single PA without connection to antenna. Then
these standard DPD’s coefficients are applied to the system including antenna and the
measurement is done at receiver antenna. The result is called "Single PA DPD". In the
second set of measurement the linearization is done based on the combined beam-form
signals of all four power amplifiers at receiver antenna. The result is called "SYS DPD".
As shown in Fig. A.5, the normalized Power Spectral Density (PSD) of adjacent channel
gets approximately 2 dB lower with the proposed model in Fig. A.2 compare to "single
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PA" model.

3.3 Impact of coupling between antennas
For investigating the impact of correlation between antennas on DPD, a set of measure-
ments with varying space between the four transmitter antennas, d = [0.1 0.2 0.3 0.4
0.5 0.6] times wavelength (λ), has been carried out. The same quiescent drain current
(100 mA) has been applied to each amplifier. Measurements with and without DPD for
each spacing has been carried out and for each set of measurements the Amplitude to
Amplitude (AM/AM) distortion, normalized PSD and Adjacent Channel Power Ratio
(ACPR) are measured. Fig. A.6 shows that as a result of coupling between antenna the
gain of array is reduced by 4 dB comparing 0.5λ distance between antennas with 0.1λ.
Figures A.7 and A.8 showing an improvement of PSD and an ACPR of approximately
6 dB by doing the proposed system DPD.

Fig. A.6: AM/AM with same drain current but different spacing between antennas.

However, the ACPR difference when going from 0.1λ to 0.5λ is only app. 1 dB.
An explanation could be that in the worst case spacing ( 0.1λ) the coupling between
antennas is not so high. For investigating the coupling rate between antennas, the s-
parameters for the array with 4 antenna has been measured. The strongest coupling is
approximately -12dB as it is shown in Fig. A.9. This means that in the actual setup
the worst case coupling is still not significant and could not have major influence in
linearization. Further investigation with stronger coupling between antennas needs to
be carried out.

3.4 Impact of power variation of each branch on DPD
First set of measurements are conducted by keeping the quiescent current at all four
amplifiers constant at 100 mA. This measurement is called "Same Current". A second
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Fig. A.7: PSD with same Drain current but different distance between antennas, using system DPD.

Fig. A.8: ACPR with same drain current versus distance between antennas.

set of measurements, called "Same Volt", are applied by keeping the quiescent gate
voltage of amplifiers constant at -2.7 V which results in different drain current in PAs
and consequently different output powers. For each set of measurements the AM/AM
and normalized PSD are measured. Measurement results are shown in Fig. A.10 and
Fig. A.11.

The results show that if the amplifiers with antennas are treated as a whole, then
the DPD algorithm is able to improve the normalized PSD of the adjacent channel on
the received beam regardless of power variation on each branch.

4 Conclusion
In this paper a DPD technique for linearizing of the antenna array in presence of
crosstalk has been presented. By using the actual technique on system level it is pos-
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Fig. A.9: Measured S21 with four antennas.

Fig. A.10: AM/AM with same drain current vs same gate voltage.

sible to reduce the adjacent channel power by about 8dB without doing any intensive
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Fig. A.11: Power Spectral Density with same drain current vs same gate voltage.

S-parameter measurements needed in existing work. Additionally it has been shown
that with the system level DPD it is possible to improve the overall power spectral den-
sity although the array’s chains have different power levels. So treating the amplifiers
and antennas as one system and linearizing the main beam signal at the receiver rather
than on each single power amplifier works and individual DPD is not needed. The com-
plexity of pre-distortion used in this work is the time alignment. To determine the time
alignment needed between input and output of PA, a simulation must be done. The
time alignment is then made into a phase shift between the two input signals. The dif-
ference in the phase from input signal to output signal needs be calculated and used for
the rest of the simulations. The presented system level linearization technique needs be
proven in other scenarios such as multi path environment and varying distance between
transmitter and receiver antennas. In order to use the presented system level DPD in
practice, it is required a reverse link to pass the DPD coefficients, and synchronization
of the training sequence. Main difficulty is that the receiver bandwidth must be large
enough to cover the adjacent channels.
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Abstract
The new generation of 5G mobile communication systems is using millimeter wave
(mmWave) active phased arrays (APA) which have up to hundreds of individual analog
transmitter and receiver chains and antennas. For these highly integrated systems lin-
earization of each analog path is very challenging. Therefore a single input single output
(SISO) system in combination with over the air (OTA) measurement is considered as
an efficient approach for linearization. However, the knowledge about the dependency
of the total SISO nonlinearity on the contributions from different blocks in the antenna
array, as well as the linearization trade-offs is still missing.

In this paper, an overview of the possible linearization trade-offs in an OTA setup
with a mmWave APA is provided. The linearization technique is applied to a 4x4 active
phased array containing up-conversion of a sub 6 GHz LTE10 signal to an RF frequency
of 28 GHz. Through measurements, the effects on adjacent channel power ratio (ACPR)
and error vector magnitude (EVM) have been investigated for the following scenarios: i.
impact from the up-converter, ii. impact of the steering angle due to antenna crosstalk
and iii. a linearity comparison between a linearized and a backed-off system.

1 Introduction
For modern communication systems, high power efficiency is required while maintaining
linear operation to meet stringent spectral requirements. For the 5th generation of mo-
bile communication and inter-satellite communication highly integrated beam-steerable
active arrays consisting of a large number of PAs and antennas are considered as an
efficient solution to fulfill the new requirements [1].

Microwave power amplifiers can achieve a higher efficiency in terms of transmitted
power vs. supplied power if driven as close as possible to the saturation point [2].
Unfortunately the more the PA approaches saturation, the more it behaves nonlinearly
and it does not fulfill the linearity requirements dictated by the mobile communication
standard. Therefore a linearity and efficiency trade-off arises which RF engineers have
to deal with if they want to have the PA working with a reasonable efficiency. Back-off
strategies can be used to avoid nonlinear effects: the dynamic range of the amplifier’s
input signal is shifted down to a lower power level so that the amplifier’s output is
not severely distorted by the nonlinear behavior. A solution to avoid the drastically
low power efficiency in PAs using back-off is the recourse to a linearization technique.
Different existing linearization methods are able to reduce the nonlinear distortions
while keeping the PA as efficient as possible [3]. Digital pre-distortion (DPD) has been
widely used for improvement of transmitter efficiency but generally on a single power
amplifier and single antenna [4]. The new generation of active arrays considered for 5G
mobile communication, is using a set of highly integrated active arrays, as illustrated in
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Fig.B.1. The active array topology where the PAs are placed after the phase shifters, and
just before the antennas, gives several benefits such as power dissipation in and required
power handling capability of the phase shifters, reducing the output power requirements
for each element and allowing small integrated devices to be used while connected to
the antennas. However, the increased complexity in the active phased array also makes
it difficult to have a comprehensive understanding of the key factors contributing to
the total nonlinearity of the whole array. Lacking this knowledge significantly limits
the potential of the SISO linearization technique. The challenges responsible for the
situation are as follows:
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1. 5G systems are using the so-called hybrid beam-forming (Fig. B.1) where the
number of analog RF chains is higher than the number of digital receivers (for
current consumption reductions). In such case a direct digital control of each
analog RF chain is not possible and the system may not directly know the output
of each amplifier. So an alternative linearization method is needed.

2. The high level of integration and large number of analog chains make the placement
of feedback circuits for each branch, which is used for single antenna DPD, very
challenging.
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3. The signal bandwidth is rapidly increasing and it will place enormous demands
on bandwidth of the analog feedback receiver used for linearization as well as
sampling rate of the analog to digital converters. The feedback receiver should
have a wider bandwidth than a standard receiver in order to record the distortion
side-bands.

4. Using multiple transmitters and multiple antennas introduces crosstalk at PA’s
inputs and outputs. For mitigating the impact of these crosstalks the complexity
of the algorithm is expected to increase [5] and avoiding a complexity explosion
of the algorithm is another challenge.

In this paper insight into the linearization mechanisms in a 5G millimeter wave (mmWave)
active phased array (APA) over the air (OTA) setup is provided through measurements.
It is shown that the DPD model based on the signal captured by a single observation
receiver in the far-field is able to linearize a set of PAs in an active array. The measure-
ment set-up in this work includes an up-conversion from sub-6 GHz to mmWave which
is also the general approach used by 5G manufactures in order to reuse the existing
technology for mmWave. The trade-off analysis in this paper treats the following cases:

• Impact of up-conversion from sub-6 GHz into mmWave on linearization of APA.

• Impact of steering angle on trained beam in boresight.

• Comparison between a linearized SISO and a backed-off system.

This paper is organized as follows: Section 1 is the introduction. Section 2 presents
active array linearization topologies in state-of-the-art solutions. Section 3 presents
crosstalk mitigation methods. Section 4 describes linearization of an active phased
array. Measurement results of a 4x4 array as a two-port system are provided in section 5.
Finally, the conclusion of this work is presented in section 7.

2 Active Array Linearization topologies, state-of-the-
art solutions

A simple and most cost effective solution is to observe only the output of a single PA
and assume that all PAs are similar which is presented in [6] and [7]. The drawback of
this approach is a reduced performance.

An alternative scheme is to use an observation receiver per PA and linearize according
to some averaging principle [8]. This approach is an expensive approach and requires
as many observation receivers as PAs.

Another method presented in [9], [10] and [11], suggesting that the output of individ-
ual branches be combined and sampled for linearization in order to include the actual
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performance of each PA branch. Same approach has been suggested by [12] and [13],
where they combine all branches and establish a "virtual" and "rotated" main beam.
The authors show that by linearizing with a rotated observation signal, the distortion
in the direction of the main beam is minimized. The method of combining the outputs
requires a feedback signal from each PA output. Although this method demonstrates
significant linearity improvement, it still needs bulky feedback circuits which may be
impractical when using highly integrated active arrays in 5G mmWave.

Recently researches have presented the idea of SISO modelling where the entire
transmitter has been considered as a two port system as illustrated in Fig. B.1. We
have presented a DPD technique for linearization of the antenna array in presence of
crosstalk [14], using only one external observation antenna for observing the combined
signal in the far field. A similar approach has been introduced by [15] and [16]. In
practice, this can be implemented as part of the receiver section of the same device
(i.e. diversity receiver) which has been presented by [17]. This kind of adaptive on-line
OTA-DPD based on the diversity feedback uses an iterative procedure to eliminate the
uncorrelated components from the feedback signal for accurate DPD. The concept has
been verified by measurements with good results for small scale arrays but for large scale
arrays only simulation results are available. The adaptive on-line DPD is a promising
approach and needs to be investigated in more detail by industry and academia in the
next years. Nevertheless, investigation of replacing the feedback antenna with a far-field
observation receiver in order to analyse the impact of load modulation due to crosstalk
is an important topic for the linearization approach and has been investigated in [18].

3 Crosstalk mitigation, state-of-the-art solutions
The topologies described in 2 explain mainly how the response of the amplifiers is
measured for DPD implementation and describe the trade-off of the systems in terms
of efficiency, cost and size. The discussion about criteria by which the DPD algorithm
is optimized in order to mitigate the crosstalk is another important topic. Crosstalk
as coupling from one branch to another, in transmitters in an active antenna array
can be categorized as two types: before PA and after PA. This is mainly due to RF
leakage through the common local oscillator or coupling between different transmit
paths because of the electromagnetic coupling, respectively [19].

When no isolators are present at the PAs’ outputs then the PAs get a direct impact
from antenna mismatch and the mutual coupling between the antennas [20]. For most
practical configurations, mutual coupling is difficult to predict analytically but must
be taken into account because of its significant contribution [21]. As a consequence
of antenna mismatch and mutual coupling at the PA to antenna interface, signals will
travel in both directions and the RF behavior of the PA must be described by a dual
input dual output behavioral model. Fig. B.2 shows an RF beam former including L
antenna elements where a1k is the incoming signal to the amplifier, b2k is the output
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from the amplifier and a2k is the reflected signal from the antenna array at the k’th
branch.
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Fig. B.2: Conceptual illustration of mutual coupling and reflection coefficients of system model.

Since the array elements are electromagnetically coupled, the waves fed to the an-
tennas are also coupled back to the output ports of the PAs. This effect creates an
apparent variable load at the output of each PA, depending on the operation of the
transmitter [22]. Then the effective reflection coefficient (Γk) for the k’th element is
given by: 

a21
· · ·
a2k

· · ·
a2L

 =


s11 · · · s1k · · · s1L

· · · · · · · · · · · · · · ·
sk1 · · · skk · · · skL

· · · · · · · · · · · · · · ·
sL1 · · · sLk · · · sLL

 .


b21
· · ·
b2k

· · ·
b2L

 (B.1)

a2k =
[
sk1 · · · skk · · · skL

]
.


b21
· · ·
b2k

· · ·
b2L

 (B.2)

Γk = a2k

b2k
=
∑L

i=1 Skib2i

b2k

(B.3)



76 Paper B.

Where elements in the b2 vector are the complex coefficients describing the input to
the antenna and elements in the Sk vector are the complex coefficients describing the
relationship between a2k and the output signal b2k and determined by the characteristics
of the antenna array. Since (Γk) is not only dependent on the reflection from the k’th
element but also on the coupling from other elements in the array, then the output
impedance of the k’th element is changing and as a result the linear and nonlinear
behavior of it, the so-called load modulation.

Furthermore, the behavior of each PA cannot be fully described solely as a function
of its input, it will change according to the coupled signal. The input signal a1k is
ideally a phase shifted version of the input signal a1. But due to gain variation of the
phase shifters over phase shift setting and impact of the reflected signal b1k, each PA
can be driven at a different input levels for different steering angles [22].

To account for both the load modulation and steering angle dependency for each
PA in the array, the dual-input PA model has been introduced in [23] and [24] where
both signals, a1k and a2k are included in the nonlinear function. These works demon-
strated good results by applying DPD to the beam forming array. However, the method
requires that the s-parameters for the antenna are known and it needs feedback from
each antenna. The high number of PAs and the compact size of modules makes this
approach very challenging.

We have in [14] presented a system level SISO DPD technique for linearization of
the antenna array in presence of crosstalk and similar work has been presented in [15].
The reported measurement results are limited to implementations at sub-6 GHz and
small array sizes, and challenges specific to DPD when applied to mmWave arrays still
remain.

As mentioned in section 1, a general approach used by 5G manufactures is to use
frequency up-conversion from sub-6 GHz. As illustrated in Fig. B.2 the input signal to
the APA, a1, is ideally a frequency up-converted part of the sub-6 GHz signal a′

1. But
in reality there would be mismatch on output and input of the frequency up-conversion
block due to reflected signals, b1 and b′

1, as well as distortion in the up-conversion mixer
and pre-amplifier. Including the impact of these blocks to the system model makes the
DPD algorithm more complex. In this work the impact of these blocks to the applied
DPD is evaluated through measurements.

4 Linearization of Active Phased Array
In this section the linearization method using the radiated far-field signal of an active
array at a single observation receiver is described. The assumption is that the non-
linearity of the PA is the main source of distortion and not the crosstalk. Equation
(B.4) represents the applied memory polynomial model (MPM) which is a deviation of
the Hammerstein model and has been proven effective for removing nonlinearity and
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memory effect [25]:

y (n) =
K∑

k=1

M∑
m=0

akmx (n − m) |x (n − m)|k−1 (B.4)

Where akm is the 2-D array of filters and power series coefficients of the amplifier,
K is nonlinearity order of the memory polynomial and M is the highest memory depth.

Since the akm coefficients are linear weighting of nonlinear signals then these coeffi-
cients can be found using the least-square type algorithm. The easiest way to formulate
such an algorithm is to first collect the coefficients in a J x 1 vector denoted ω, where J
is the total number of coefficients. Then the model output can be expressed using the
following equation written in vector form.

ỹ = Pω (B.5)

where:

• ỹ is a N x 1 vector representing an estimate of the amplifier actual output.

• P is a N x J matrix where N is the number of samples and J is equal to M times
K .

• ω is a vector with J x 1 coefficients.

The inverse of this model used for pre-distortion is then:

x̃ = Rw (B.6)

where R is defined similarly to P now with y(n − m) replacing x(n − m) in equation
(B.4). The input is now estimated from the output samples and the estimation error
can be calculated as:

e = x − x̃ (B.7)

The best estimate for getting akm coefficients is to use a least square solution which
minimizes the squared error:

w = (RHR)−1RHx (B.8)

In this work the parameter extraction was performed using the Moore-Penrose
pseudo-inverse because this technique provides a more robust solution to the system
and avoids instability in parameter extraction due to the eventually high condition
number of the model matrix [3].
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5 Measurement Results of 4x4 Array as two-ports
system

x2

.  .

.  .

.

.
.
.

Frequency 
Multiplier

1:2 
Div

BP Filter Pre-Amp

4X4 Active Phased Array
Antenna 

Probe

Att.

Up
conv.
Mixer

Down
conv.
Mixer

1:2 
Div

Signal
Analyzer 1

CW
Generator

Vector 
Generator

12.5GHz 25GHz

28GHz

3GHz

3GHz 28GHz

LAN

LAN

Signal
Analyzer 2

Far field distanceAtt.

Att.

Att.

Fig. B.3: Block diagram of OTA SISO memory polynomial model based digital pre-distortion for the
28 GHz active phased array.

5.1 Measurement setup
The block diagram of the measurement setup for the 4x4 array is shown in Fig. B.3
and the actual measurement set-up is illustrated in Fig. B.4. The input source for the
measurements is a 3 GHz LTE10 signal, compliant with the 3GPP downlink orthogonal
frequency-division multiplexing (OFDM) modulation with a peak to average power ratio
of 10.6 dB from the signal generator. For up-conversion, an unmodulated signal of 12.5
GHz has been frequency doubled to 25 GHz and fed into a power divider in order to be
used as local oscillator (LO) signal for both up-conversion and down-conversion. A 28
GHz band-pass filter is used to select the up-converted modulated signal and suppress
the LO leakage and image frequency signals. In order to avoid any nonlinearity in
the multiplier and up-converter, the signal levels in these stages are kept in the linear
operating ranges of these devices according to their specifications and then amplified
by a pre-amplifier in order to reach the level necessary for driving the active array into
compression. The pre-amplifier has a gain of 30 dB and at output levels above 8 dBm
(including cable loss), it deteriorates the linearity of the signal which is shown in the
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measurement result in next section. The 28 GHz signal is fed to an AMOTECH A0404
which includes four Anokiwave AWMF-0158 [26]. This device integrates 16 branches of
attenuators and phase shifters plus PAs and 16 patch antennas in a 4x4 active phased
array.

The diameter of the active array antenna is approximately 4 cm which at 28 GHz
results in to a far-field distance of:

2D2

λ
= 30.5 cm (B.9)

Where D is the diameter of the antenna and λ is the wavelength. The main beam signal
is captured by the observation horn antenna placed 44 cm away which is well above the
far-field distance of the device.

Problems with reflections from the surroundings are not observed since the distance
between the active array and the horn antenna is short, so the reflected signal from the
rack and the set-up are much weaker than the desired signal. Furthermore the active
array and horn antenna have very good directivity so reflections are expected to be well
attenuated. Therefore measurement without an anechoic chamber is expected to be no
issue.

The captured signal is split into two branches in order to both be analysed with the
signal analyzer for monitoring the actual adjacent channel power ratio (ACPR) at 28
GHz and be down-converted to a 3 GHz signal and captured by another signal analyser
for getting access to I and Q data. The input power from the signal generator is adjusted
in order to get an root mean square (RMS) level up to 8 dBm into AWMF-0158 which
according to [26] drives the PAs into compression.

The steps of the experiment are:

1. I and Q data of the modulated signal from the vector signal generator were ac-
quired using a sample rate of 100 MHz at the signal analyzer and recorded by a
computer.

2. The recorded I and Q data are loaded into the vector signal generator, generating
a modulated signal at 3 GHz which is then up-converted to 28 GHz. The active
array is excited using this modulated signal and the output, y (n), is captured at
the observation point by the receiver antenna probe. This signal is then down-
converted and acquired by the signal analyzer and the I and Q data recorded into
the computer.

3. The input and the recorded output signals are up-sampled to a finer resolution,
time-aligned using cross-correlation, down-sampled and then used for the predis-
torter identification.

4. The pre-distorted signal is now generated by the memory polynomial with a mem-
ory depth of M = 8 and a linearity order of N = 5 using recorded x (n) and y (n).
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5. Once the predistorter is identified, the signal is uploaded to the vector signal gen-
erator and again applied to the APA. The corresponding output signal is recorded
and the power spectral density (PSD) and error vector magnitude (EVM) are
calculated based on the recorded I and Q samples.

6. Output power and ACPR of the 28 GHz signal are directly measured by the signal
analyzer.

From IF Vector Generator

APA (AMOTECH A0404)

Ant
Probe

44 CM

LO CW
Generator

APA
Control tool

Modulator &
De-modulator Pre-Amp

Ferquency
Multiplier

To IF Signal Analyzer

Fig. B.4: OTA SISO measurement setup of the 4x4 active phased array; using up-conversion from 3
GHz to 28 GHz.

5.2 Measurement results
The measurement has been done in 3 cases: APA input at 6 dBm, 8 dBm and 10
dBm respectively. According to the APA data sheet it has a 1 dB compression point
at around 8 dBm input. Table B.1 shows the EVM and ACPR measurement results
with and without DPD for these 3 cases. The best result is achieved in case 2 where
ACPR and EVM are improved by respectively 7 dB and 2.3 % using the applied DPD.
As expected the linearity improvement for case 1 with 6 dBm input is not as good as
case 2 because the APA is not enough in compression. Fig. B.5 and Fig. B.6 show
the measurement results of PSD and amplitude to amplitude (AMAM) distortion gain
for these 3 cases. The small linearity improvement in case 3 could be explained due to
nonlinearity of pre-APA blocks.
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Table B.1: EVM and ACPR measurement results without and with DPD.

EVM[%] ACPR[dB]
Measurements (wo/w) Lower(wo/w) Upper(wo/w)

case 1 6.21/5.10 -40.03/-43.84 -40.11/-43.53
case 2 6.21/3.96 -38.27/-45.19 -38.08/-44.94
case 3 7.20/5.84 -36.60/-42.48 -36.69/-41.87

(a) (b)

(c)

Fig. B.5: Measured power Spectral density with and without pre-distortion: (a) case 1 with input
power of 6 dBm; (b) case 2 with input power of 8 dBm; (c) case 3 with input power of 10 dBm.



82 Paper B.

(a) (b)

(c)

Fig. B.6: Measured AM-AM distortion gain with and without pre-distortion: (a) case 1 with input
power of 6 dBm ; (b) case 2 with input power of 8 dBm; (c) case 3 with input power of 10 dBm.

5.3 Impact of up-conversion from sub-6 GHz into mmWave on
linearization of APA

The linearity of the up-conversion blocks are expected to have an impact on SISO DPD
since the nonlinearity could partly be from a pre-APA block if it is in compression.

To investigate the pre-APA blocks nonlinearity, the ACPR of the system after the
up-conversion mixer and after the pre-amplifier are measured and the PSD plots are
shown in Fig. B.7 and Fig. B.8 respectively and in tables B.2 and B.3 the EVM and
ACPR results are listed.

The results indicate that the signal is linear after the up-conversion mixer but the
pre-amplifier is running into high compression in case 3, and as a consequence the ACPR
is increased. The applied DPD is not capable to mitigate the nonlinearity caused by
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Fig. B.7: Measured ACPR at the up-conversion Mixer out: case 1 (black) corresponds to 6 dBm at
the APA input; case 2 (green) corresponds to 8 dBm at the APA input; case 3 (magenta) corresponds
to 10 dBm at the APA input.

Table B.2: EVM and ACPR measurement results at the up-conversion Mixer’s output.

EVM[%] ACPR[dB]
Measurements Lower Upper

case 1 0.89 -46.06 -46.35
case 2 0.89 -46.68 -47.01
case 3 0.89 -47.01 -47.50

pre-amplifier in case 3 properly. One reason could be a time delay between pre-amplifier
and APA which needs further investigations.

5.4 Impact of beam angle
In section 3 the impact of mutual coupling between the antennas at PAs’ outputs has
been discussed and it was mentioned that the impedance presented at the output of
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Fig. B.8: Measured ACPR at the pre-amplifier out: case 1 (black) corresponds to 6 dBm at the APA
input; case 2 (green) corresponds to 8 dBm at the APA input; case 3 (magenta) corresponds to 10 dBm
at the APA input.

Table B.3: EVM and ACPR measurement results at the pre-amplifier output.

EVM[%] ACPR[dB]
Measurements Lower Upper

case 1 0.89 -42.23 -42.29
case 2 0.90 -40.51 -40.52
case 3 0.89 -38.50 -38.60

each PA depends on the mutual coupling between antennas. In this section this impact
is proven through measurements. The procedure is as follow: the placement of the
observation receiver antenna has been kept fixed at maximum received signal (θ = 0
degree). The DPD has been trained and the pre-distorted input has been detected at
this position. Then while using this pre-distorted input, the main beam of the APA
has been shifted from θ = -78 to +78 degrees in approximately 5 degrees step using
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Fig. B.9: Impact of beam angle on linearization, (a) horizontal beam steering, and (b) vertical beam
steering.

the code-book and software tools of AMOTECH A0404. The measurement is done
for both horizontal and vertical steering angles of the main beam. The measurement
result is shown in Fig. B.9. The magnitude of the beam captured by the fixed antenna
probe is varying by changing the beam direction as expected. Fig. B.9b shows the
magnitude and ACPR on the left side are worse than on the right side. This is due to
the asymmetrical structure of the actual AMOTECH A0404 device where the placement
of the connector has an influence on the beam and is not a general issue.

However a single trained DPD is not sufficient for maintaining a low ACPR in a
wide range of steering angles. To maintain an ACPR level below 41 dBc across the
steering angle, a new training after approximately ±15 degree shift of the main beam is
required. This can be explained as the effect of mutual coupling of the highly integrated
antennas in the array and due to variation in input levels because of gain variation of
phase shifters. Fig. B.9 also shows that there is a symmetry of the array and the trained
DPD at +θ can be used for a steering angle of -θ which reduces the number of training
steps required for linearization across the entire steering range.

5.5 Comparison between linearized SISO and backed-off system
In order to minimize the complexity it is desired to keep the trained pre-distorted signal
as input for a range of output powers if possible. At the same time it is desired that
the linearized system has not degraded performance compared to a backed-off system
around the back-off point. To investigate this, the trained pre-distorted signals in case
1 and case 2 of section 5 have been reused for a set of output powers of ±6 dB and the
resulting ACPRs are compared with the case without pre-distortion. As it is shown in
Fig. B.10, the linearity compared to a backed-off system, is always better for output
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powers above the trained point and down to 2 dB below this point.

6 Conclusion
In this paper the SISO OTA linearization trade-offs of a 4x4 active array running at 28
GHz, modulated with an LTE10 DL OFDM signal have been investigated. The results
indicate:

i. there is a trade-off between the complexity of the applied DPD algorithm and
the linearity of the pre-APA blocks under test. Increasing the gain of these pre-APA
blocks, which can affect their linearity, will limit the capability of a less complex DPD
algorithm. With the applied OTA DPD, up to 7dB improvement of ACPR and 2.3 %
improvement of EVM are achieved with minimum complexity of the algorithm.

ii. the linearized beam is sensitive to beam angle. The trained beam cannot be
reused for beam angles above a certain limit which could be explained due to mutual
coupling and crosstalk between antennas and due to variation in input levels. A new
trained beam is required in order to avoid ACPR degradation when changing beam
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steering angle. In this investigation, for maintaining the ACPR level across the steering
angle, a new training after approximately ±15 degree shift of the main beam is required.

iii. near the back-off region, reusing a set of trained coefficients, the linearized system
is out-performing the backed-off system from above the trained output level and down
to a certain level below that. The achieved result in this work is 2dB below the trained
level.

Future work based on the presented SISO OTA technique may include complexity
analysis of the DPD algorithm in the case of distorted pre-APA blocks and the impact
of channel properties on the SISO OTA linearization.
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Abstract
When moving to high integration scenarios in the mmWave active phased array (APA),
the isolation between the array and the power amplifiers (PAs) is often removed. Since
the array elements are electromagnetically coupled, the waves fed to the antennas are
also driving the output ports of the PAs. This effect creates a possible variable load at
the output of each PA, depending on steering angle and radiated power at each element
in the array. In this system, the behavior of each PA cannot be fully described solely as a
function of its input, as it will change according to the coupled signal. In this paper the
inter-element coupling of a 4x4 planar patch antenna array and the resulting variation
in output impedance of the PA connected to each patch is simulated by using computer
simulation tool (CST). The impact of the inter-element coupling has been verified on
linearization procedure of the active array.

1 Introduction
For radio links, high power and linear operation are required to achieve high data-
rates while maintaining spectral efficiency and low current consumption. To fulfill the
latest requirements for high data rate in the 5th generation of mobile and satellite
communication, integrated steerable active phased array is a preferred solution [1].

In order to improve the efficiency of the active array, PA needs to operate as close
to saturation region as possible. For achieving optimum output power and efficiency,
output impedance of the the PA is not necessarily 50 ohm but needs be matched to
optimum impedance [2]. In active array each PA is directly connected to an antenna
without any isolator in between. Therefore the PAs’ outputs impedance get a direct
impact from antenna mismatch and the mutual coupling between the antennas [3]. The
mismatch and mutual coupling between antenna elements of an array are not easy to
foresee by mathematical model but still need to be considered due to their significant
impact [4].

As a consequence the waves presents at PA output will travel in both directions and
between the antenna elements. Fig. C.1 shows block diagram of a generic antenna array
including L antenna elements where a1k is the incoming signal to the amplifier, b1k is
the reflected signal from PA input, b2k is the output from the amplifier, and a2k is the
reflected signal from the antenna array at the k’th branch.

There is electromagnetic coupling between the elements of active arrays. Therefore
the power injected to one element of the array will be coupled back to other elements
and consequently to other PAs outputs. The magnitude of the coupling is dependent
on the steering angle and the radiated power level. As illustrated in figure C.1, for the
k’th element of the array the effective reflection coefficient, (Γk), is defined as:
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Fig. C.1: Conceptual illustration of mutual coupling and reflection coefficients of antenna array in-
cluding PAs.

Γk = a2k

b2k
=
∑L

i=1 Zkib2i

b2k

(C.1)

Where the coupling between the k’th and i’th antennas are defined by the coefficients
in scattering matrix, Zki, which are set by the characteristics of the antenna array.
The elements in b2i vector are complex coefficients for the the input to the antenna.
Linearity of the active device connected to the k’th element of the antenna is related
to the reflection coefficient Γk. This parameter is not only dependent on the reflection
from the k’th elemnts but also dependent on the coupling from all other elements which
is defined as load modulation. The impact of this load modulation on the digital pre-
distortion of the active phased array is described in this paper through simulation and
verification.

This paper is organized as follows: Section 1 is the introduction. Section 2 is about
the numerical modeling of the antenna array with CST Studio. Section 3 explains
the simulation results. Section 4 describes the mutual coupling impact on digital pre-
distortion and finally, the conclusion of this work is presented in section 5.
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2 Numerical modeling of the antenna array with CST
Studio

A 4x4 planar patch antenna array is designed for this simulation. By placing 16 ex-
citation pins and by appropriately phasing of the 16 feeds, a linear polarization with
different steering angle can be generated. The substrate is a low-loss Rogers RO4403
with a thickness of 0.406 mm. The 3D geometry and design parameters of the substrate
are shown in Fig. C.2

An optimization of the patch dimensions and feed position was performed to improve
the return loss of each patch to be approximately -25 dB at 28 GHz with sequential
excitation. The time domain solver in CST MICROWAVE STUDIO® (MWS) was used
with a Hexahedral mesh and a perfect matched layer (PML) boundary condition for the
simulation.

(a) (b)

Fig. C.2: 4x4 planar patch antenna array: (a) Geometry; (b) PCB design parameters.

3 Simulation results

3.1 Sequential excitation
In the first step the 4x4 patch antenna is driven sequential i.e. one port is exited and
all other ports are terminated with 50-ohm impedance. The S-parameters for port 1
with sequential excitation is shown in Fig. C.3 as an example. All other ports behaves
almost similar to port 1.
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Fig. C.3: Sequential S-parameters of each patch while the other 15 patches are terminated with
matched impedance.

3.2 Simultaneous excitation
While exiting all ports, the steering angle is shifted horizontally in step of 3 degrees
step, ie. 0, ±3, ±6, ±9, ±12 and ±15 degrees by adding appropriate phase shift to
the excitation signal to each patch. The combined polar and 3D far-field results with
steering angle of 0 degree and 9 degree are illustrated in Fig. C.4 and Fig. C.5 as
examples.

(a) (b)

Fig. C.4: Far-field simulation results with steering angle = 0 degree: (a) Polar; (b) 3D.
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(a) (b)

Fig. C.5: Far-field simulation results with steering angle = 9 degree: (a) Polar; (b) 3D.

The resulting F-parameters for each patch while all patches are simultaneously exited
is illustrated in Fig. C.6. The S-parameters for e.g. patch number one of the array is
calculated by simulation tool as following:

S1 = b1

a1
=
∑16

i=1 S1iai

a1
(C.2)

where a1 is the exited signal into antenna and b1 is the reflected signal from the
antenna array. This is equivalent to the reflection coefficient in (3). As it is shown
in Fig. C.6 for the case of 0 degree beam steering at 28 GHz frequency, taking patch
number 13 as worst performed, the reflection coefficient is -8 dB, where it changes to
-2.5 dB in case of 9 degree beam steering. This change of 5.5 dB varies the PA’s output
impedance and obviously impacts into the calibration and linearization procedure for
whole array.

4 Mutual coupling impact on digital pre-distortion
In section 1 the impact of mutual coupling between the antennas at PAs’ outputs has
been discussed and there is shown that the impedance presented at the output of each PA
depends on the mutual coupling between antennas. In order to improve the efficiency
of transmitter, normally the PA is driven to compression which on the other hand
results into increase of 3rd order inter-modulation which is magnified by adjacent channel
leakage ratio (ACLR). Digital pre-distortion is often used as a method to keep the
magnitude of ACLR as low as possible while driving PA into compression. In [5], [6]
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(a)

(b)

Fig. C.6: S-parameter results for each patch, all ports simultaneously exited. (a) Steering angle = 0
degree; (b) Steering angle = 9 degree.

and [7] an investigation for improving ACLR by using digital pre-distortion of the main
beam has been demonstrated.
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4.1 Measurement setup
Fig. C.7 illustrates the block diagram of the measurement setup for the 4×4 active
phased array (APA) and the actual measurement setup is in Fig. C.8. The intermediate
frequency (IF) signal is a 3 GHz LTE10, compliant with the 3GPP downlink orthogonal
frequency-division multiplexing (OFDM) modulation. It has a peak to average power
ratio (PAPR) of 10.6 dB. An unmodulated signal of 12.5 GHz has been frequency-
doubled to 25 GHz and fed into a power divider to be used as a local oscillator (LO)
signal for both up-conversion and down-conversion. The 28 GHz bandpass filtered
signal is linearly amplified by a pre-amplifier and drives the APA (AAiPK428GC-A0404)
into compression. The APA includes four Anokiwave AWMF-0158 which includes four
Anokiwave AWMF-0158 [8]. This device integrates 16 branches of attenuators and
phase shifters plus PAs and 16 patch antennas in a 4×4 array. The main beam signal is
captured by an observation horn antenna and then down-converted to IF, collected by a
spectrum analyzer and converted to a baseband signal. The baseband signal is processed
by MATLAB. The training and testing of the proposed method are implemented using
TensorFlow 1.14 via the Keras API in Python 3.7.6.

.
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Fig. C.7: The block diagram of the measurement setup for the 4x4 array. The far field distance is 48
cm.

4.2 Measurements procedure
The steps of the measurements are:

• A vector signal generator is used to sample the 10 MHz bandwidth signal with a
sampling rate of 100 MHz and 1E5 samples of I and Q data are recorded.
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Fig. C.8: Measurement set-up.

• The vector signal generator uses these recorded I and Q data to generate a mod-
ulated signal at 3 GHz. After up-conversion by external mixer to 28GHz, the
signal is fed to the active phased array and received by observation antenna. A
down-conversion mixer is used for converting the 28 GHz signal to a 3 GHz signal,
which is sampled by a vector signal analyzer and converted to the baseband I and
Q data.

• After time-alignment by cross-correlation, the recorded input and output I and Q
data are used in memory polynomial model.

• The memory polynomial model uses a nonlinearity order of 8 and a memory depth
of 8 for generating the pre-distorted signal.

• A modulated 28 GHz RF signal based on the pre-distorted I and Q data is gener-
ated and inserted to the active array.
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Fig. C.9: AAiPK428GC-A0404 [9] evaluation board used for measurements.

• Output power and ACLR of the 28 GHz signal are measured by the signal analyzer
to quantify the linearization performance.

4.3 Measurements results
Each element of the antenna array is exited by a phase shifter and a PA. The main beam
of the array has been shifted from θ = -78 to +78 degrees in approximately 5 degrees
step using the code-book and software tools of AMOTECH AAiPK428GC-A0404 (using
AWMF-0158 [8]). The used evaluation board for test is shown in Fig. C.9.

An observation receiver is placed in far-field to capture the steered beam. The
placement of the observation receiver antenna has been kept fixed at maximum received
signal at θ = 0 degree at X-Y coordinate system. The measurement is done for both
horizontal and vertical steering angles of the main beam. The measurement result is
shown in Fig. C.10. The magnitude of the beam captured by the fixed antenna probe
is varying by changing the beam direction as expected. However due to load mismatch
while changing steering angle, the ACLR varies significantly.

During linearization of the active array, it is desired to keep the coefficients of the
trained digital pre-distorted signal unchanged as long as possible since a new training is
costly due to power consumption. However this experiment shows that a single trained
DPD is not sufficient for maintaining a low ACLR in a wide range of steering angles. To
avoid an ACLR improvement be degraded by more than 1dB across the steering angle,
a new training after approximately ±28 degree shift of the main beam is required. For
allowing only 0.5 dB degradation, a new training after approximately 5 degrees shift
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Fig. C.10: Impact of beam angle on linearization.

of the main beam is required which is a hard limit and requires many several training
during beam steering.This can be explained as the effect of mutual coupling of the
highly integrated antennas in the array as the simulation results in section 3 also has
indicated.

5 Conclusion
This paper shows a methodology for modeling the active phased array and the behavior
of the steering beam when there is no isolation between the PAs and the patches of
a active antenna array. Simulation results showing a clear change of the reflection
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coefficient of each patch antenna of the active array due to the mutual coupling among
the antenna elements. This variation of input impedance of each element of antenna
array results into change in output power and efficiency of the PAs since these parameters
are mainly determined by the output impedance conditions. Simulation results in this
paper shows that it is possible to magnify the input impedance of each patch of the array
while all elements are exited simultaneously and it is possible to predict the behavior
with strongly correlated signals.

The simulated effect has been validated by measurement on 4x4 active phased array.
The mutual coupling affects, among others, the linearization of active array using digital
pre-distortion. Since the load impedance of each PA is changing by the steering angle
and because the pre-distortion algorithm cannot predict the loading condition then it
affects the performance of the algorithm. This is illustrated in section 3 where a new
training after approximately ±28 degree shift of the main beam is required.
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In this paper, we demonstrate how a deep neural network (DNN) can be used to
compensate for nonlinearities and distortion effects introduced by the latest technology
of 5G transmitters. A linearization approach based on neural networks can successfully
cope with the challenges introduced not only by the high nonlinearity, wide bandwidth,
and high frequency but also with challenges due to inter-PA crosstalk and load modula-
tion. The device-under-test used in this experiment, is a state-of-the-art 5G 4×4 active
phased array (APA) operating in highly nonlinear regions at 28 GHz with a 100 MHz
wide 3GPP base station signal and with OTA measured signals used for training. Using
the proposed DNN based linearization technique, an improvement of 11 % in error vec-
tor magnitude (EVM) and 10 dB suppresion in adjacent channel leakage ratio (ACLR)
are achieved which demonstrates the promising potential of this technique for emerging
broadband communication systems such as 5G/6G and low earth orbit (LEO) satellite
networks.

1 Introduction
The next generation of 5G new radio (NR) and satellite communications use multi-input
multi-output (MIMO) systems together with active phased array (APA) transmitters
in order to fulfill the capacity and data rate requirements. Due to limited space, lack of
sufficient isolation between power amplifiers and antennas, large number of the active
devices and high peak-to-average-ratio of 5G transmitter signals, the nonlinearity of the
APAs is going to be a major challenge. On the other hand there is a huge demand for
high efficiency and low power consumption which do not allow a power back-off of the
active devices, so operation in highly compressed mode is desired despite the impact of
non-linearities. To overcome the nonlinearity challenge which is not easily handled by
the conventional linearization techniques, deep neural networks (DNN) appear to be a
good solution due to their ability to learn any arbitrary nonlinear function according to
the universal approximation theorem [1].

Artificial neural networks (ANN) were successfully used in the state-of-the-art to
model single-input single-output (SISO) power amplifiers (PAs) [2]. The usage of an
ANN architecture with multiple hidden layers, which is a system typically addressed as
DNN, is here proposed to tackle the additional complexity of modern APAs. For example
in [3] a DNN was used for mitigating imperfection such as imbalance of the in-phase and
quadrature signal as well as DC offset correction for a wide band active phased array
transmitter. Another approach where only the magnitudes of input signals are processed
by nonlinear operations, and the phase information is recovered with linear weighting
operations is introduced in [4]. The issue of mutual coupling effects at the output
of PAs in a active phased array during beam steering, the so-called load modulation,
has been analyzed and a DNN based solution for mitigating the imperfections has been
introduced in [5] and the performance has been compared with the conventional memory
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Fig. D.1: Proposed active array transmitter with DNN based linearization.

polynomial model method.
However, the state-of-the art still did not propose an analysis of the complexity vs.

performance trade-off intrinsic of the usage of a high-complexity model such a DNN
for modeling and linearization of modern APAs. This paper presents such an analysis
based on measurements from a cutting edge device-under-test. The paper shows clearly
the impact of the number of the DNN hidden layers and number of neurons in the
linearization performance and we presents guidelines to optimize the complexity of the
DNN to minimize the computational cost of its implementation. The proposed active
array with DNN based linearization is shown in Fig. D.1.

This paper is organized as follows: Section 2 presents the linearization technique.
Section 3 explains the measurement and tuning procedure and finally, the conclusion of
this work is presented in section 7.

2 Linearization Technique

2.1 Deep Neural Network Model
The DNN model is not a linear-in-parameter (LIP) model. Consequently, the parameters
have to be identified by a nonlinear training process. As illustrated in Fig. D.2, if i(t)
and o(t), are presenting the complex equivalent base-band input and output signals of
the APA, then the objective of training the DNN is to find the inverse of the nonlinearity
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APA

G.h(t)
i(t) o(t)

DNN

z(t) = h-1(t)

i(t)
z(t)

APA

G.h(t)
i(t).h-1(t) G.i(t)

(a) 

(b)

Fig. D.2: Linearization technique based on a deep neural network: (a) Configuration for model
training, where G is constant gain and h(t) is the nonlinear function; (b) Configuration of applying
trained DNN for pre-distortion.

function [6], h(t), in (D.1):

o(t) = G · h(t) · i(t). (D.1)

Step by step the DNN learns the nonlinearity function by calculating the weights during
training. This procedure continues until the difference between the output and the
estimated output is below a defined threshold value. In the end of training the inverse
nonlinearity function, z(t), is an optimal estimation of h−1(t). When the pre-distorted
signal, i(t) · h−1(t), is used as the input to the APA then ideally the output will be
G · i(t) which represents the linearized output.

2.2 Training Procedure
The architecture of the proposed DNN is illustrated in Fig. D.3. A feed-forward fully
connected (FC) structure with a variable number of dense layers, hidden layers and
neurons is constructed. The optimum number of each block is determined by iterative
steps with target of achieving the best performance. The input data, iI [n] and iQ[n]
and output data, oI [n − M ] and oQ[n − M ], used for training the DNN, are separated
into in-phase and quadrature data where n is the total number of samples and M is the
memory depth. The relation between input and output data of each fully connected



110 Paper D.

layer is [3]:

o(j) = W(j) · i(j) + B(j), (D.2)

where j is the j-th FC layer. For an input layer of K neurons and output of L neurons
then W(j) is an L × K matrix, i(j) is a K × 1 vector, and Bj is an L × 1 vector.
Equation (D.2) describes the function of each dense layer defined as (a) in Fig. D.3.
Using back-propagation, the characteristic weights and biases of each FC layer are then
optimized. The adaptive moment estimator (Adam) algorithm is used for optimization.
Using gradient descent algorithm in this optimizer makes it computationally efficient
through using momentum and randomized batches to avoid local minima [7].
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Fig. D.3: The proposed neural network architecture including dense layer (a), batch normalization
layer (b) and activation layer (c). Variable parameters include memory depth M , number of hidden
layers and neurons in each hidden layer.

3 Measurement and Tuning Procedure

3.1 Over-The-Air Setup
The block diagram of the setup used for capturing the IQ input and output data is
shown in Fig. D.4 and the actual laboratory set-up is illustrated in Fig. D.5.

The Amotech AAiPK428GC-A0404 [8], which includes four Anokiwave AWMF-
0158 [9], integrates 16 branches of attenuators, phase shifters and PAs and 16 patch
antennas in a 4x4 active phased array. A host PC is used for capturing and up-loading
the IQ samples. The setup includes up- and down-conversion from sub 6 GHz to 28
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Fig. D.4: The block diagram of the measurement setup for the 4×4 array.

GHz and pre-amplification stages. All components are calibrated to run in their linear
operating regions except the APA which is running in the highly nonlinear region and
its nonlinearity is the main impairment factor. For controlling the main beam of the
array the code-book and software tools of Amotech have been used.

3.2 Parameter Tuning
A 100 MHz bandwidth 5G 3GPP downlink OFDM modulated signal at 28 GHz fre-
quency is used as input to the APA. Both input and output signals at base band level
are captured with sampling frequency of 600 MHz. For parameter tuning, 100k IQ
samples of input and output of the active array are used, where 70% of the data was
randomly chosen for training and the remaining 30% for testing. The training and val-
idation of the proposed technique are implemented using TensorFlow 1.14 through the
Keras API in Python 3.8.4 environment. Table D.1 shows how the DNN is configured
and which parameters are tuned in which ranges. The memory depth, the number of
neurons in each layer and the number of hidden layers should be set appropriately. If
these numbers are too small, then the DNN cannot get the right features for the nonlin-
earity model and there is a risk of underfitting. The same is valid if these numbers are
too large which results in overfitting. To avoid this, the memory depth has been chosen
to a small number, and then the other parameters have been initialized to get the best
linearization parameters in terms of ACLR and EVM. Using the input and output data
for each power level, we train the DNN to reach the minimum MSE of less than 1E-6
as shown in Fig. D.6. The optimization is continued by tuning the memory depth and
keeping other parameters unchanged. Fig. D.7a shows the ACLR and EVM results
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for different numbers of memory depths. The best performance is achieved by setting
memory depth to 14. The experiment clearly indicates that, for the highly nonlinear use
case, using an optimal DNN memory depth value had significant impact on the in-band
distortion (EVM) linearization performance. Increasing the memory depth above the
optimal value did not provide any benefit.

Having the memory depth optimized to 14, the number of neurons is tuned for best
linearization which shows that there is a minor impact from the number of neurons if it is
at least 150. In the end the number of hidden layers is tuned and, as shown in Fig. D.7b,
a hidden layer number above 3 cannot improve the linearization performance. Since the
additional improvement due to the number of hidden layers going from 1 to 3 is very
small, then for achieving faster tuning and for reducing the number of multiplications
in a real application, 1 hidden layer is chosen.
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Table D.1: Configurations and Training for optimizing Memory depth.

Optimizer Adam
Activation function ReLU

Cost function MSE
Accelerator BN

Hidden layers 1 to 10
Neurons 50 to 600
Epoch 50

Batch size 100
Initial learning rate 0.1

Minimum loss 10−6

Training data 70%
Validation data 30%
Memory Depth 1 to 23

Sampling frequency 600 MHz
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Fig. D.6: Model loss vs. number of training / validation epochs.

3.3 DNN linearization results based on tuned parameters
Fig. D.8 shows the linearization results in terms of power spectral density (PSD),
amplitude to amplitude (AM-AM) and amplitude to phase (AM-PM) distortions for
the active phased array. Training data and validation data are based on the best tuning



114 Paper D.

(a)

(b)

Fig. D.7: Results of tuning of the DNN parameters: (a) tuning of the memory depth; (b) tuning of
the number of hidden layers.

parameters. Beside the good improvement of ACLR, Fig. D.8a, the proposed DNN
effectively improves the memory effect of the system as illustrated in Fig. D.8b and
Fig. D.8c. According to our experiments, the DNN optimization procedure was best
performed by fixing the optimal memory depth first and the optimal number of neurons
and layers afterwards.
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Fig. D.8: Linearization result using the tuned parameters values, memory depth = 14, neurons = 150
and hidden layer = 1: (a) Power spectral density (PSD); (b) AM-AM distortion; (c) AM-PM distortion.

4 Conclusion
This paper demonstrated the feasibility of applying a deep neural network (DNN) based
technique for the digital pre-distortion of a highly nonlinear active phased array (APA).
The experiments were carried out using a state-of-the-art 4×4 APA transmitter together
with a 100 MHz wide band 3GPP OFDM base-station signal as input.

The authors proposed an optimization procedure to minimize the DNN number of
coefficients and computational cost while obtaining the best linearization performance.
The proposed procedure allowed to find the optimal values to be used for the DNN
memory depth, number of layers and number of neurons.
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The proposed DNN linearization technique applied on a highly nonlinear 4×4 active
phased array showed an improvement of EVM and ACLR of 11 % and 10 dB, respec-
tively, which exhibit the promising potential of this technique for future broad-band
communication systems.
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1. Introduction 119

Abstract
This paper proposes a neural network (NN) based over-the-air (OTA) linearization
technique for a highly nonlinear and wide-band mmWave active phased array (APA)
transmitter and compares it with the conventional memory polynomial model (MPM)
based technique. The proposed NN effectively learns the distinctive nonlinear distor-
tions, which may not easily fit to existing MPM solutions, and can therefore successfully
cope with the challenges introduced by the high nonlinearity and wide bandwidth. The
proposed technique has been evaluated using a state-of-the-art 4x4 APA operating in
highly nonlinear regions at 28 GHz with a 100 MHz wide 3GPP base-station signal as
input. Experimental results show the predistortion signal generated by the NN exhibits
peak to average power ratio (PAPR) much lower than the one generated by MPM and
consequently superior linearization performance in terms of adjacent channel leakage
ratio (ACLR) and error vector magnitude (EVM) for high nonlinearity cases. Using
the proposed NN-based linearization technique, an improvement of 5 dB ACLR and 7 %
points in EVM are achieved, which demonstrates the promising potential of this tech-
nique for emerging broadband communication systems such as 5G/6G and low earth
orbit (LEO) satellite networks. [1]

1 Introduction
Recent wireless communication systems operating at mmWave are using active phased
array (APA) transmitters together with multi-input multi-output (MIMO) systems to
improve the system capacity and data rates of the wireless networks. The traditional
linearization techniques like digital predistortion (DPD) which are mainly based on the
memory polynomial model (MPM) are facing new challenges [2] such as:

• Highly integrated front-ends and a large number of PA’s do not allow placement of
feedback circuits for each branch so a single input single output (SISO) over-the-air
(OTA) model is needed.

• mmWave frequencies and wide-band linearization must be handled.

• The increasing desire for high power efficiency requires linearization of power-
efficient but highly nonlinear APAs.

Several solutions using a SISO model and modified DPD algorithms for lineariza-
tion have been proposed to combat the above challenges [3–7]. A SISO modeling where
the entire transmitter has been considered as a two-port system has been presented
in [8–11] using an observation receiver in far-field together with using a MPM-based
DPD technique for linearization of the antenna array in presence of crosstalk. In [12],
the potential mismatches between PAs have been compensated, so that they all exhibit
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the very same behavior. By doing so, it is possible to provide linearization in all di-
rections with a single DPD, in contrast to linearizing the main beam only. However,
compensating the mismatch requires analog circuits which introduces complexity and
delay for large arrays and the potential changes in the PAs’ behaviors due to crosstalk.
In the present work, the reference signal for DPD learning was obtained through mea-
surements from a far-field test receiver placed on the main beam direction and the focus
is on the challenges related to high bandwidth and high nonlinearity.
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Fig. E.1: Concept illustration of the digital predistortion for APA based on the equivalent SISO model
using NN.

For the cases where enhanced power efficiency is required such as Doherty PAs and
envelope-tracking based transmitters, the amplifier exhibits different behavior for dif-
ferent power levels. A piecewise model based on a region partition algorithm that takes
the actual nonlinear characteristics of the device into account was proposed in [11],
which gives significantly better linearization than the general memory polynomial mod-
els. However, memory modeling capabilities may be compromised in piecewise models
as the different sub-models operate independently, whereas memory effects may involve
samples belonging to different sub-regions. A new piecewise model for PAs based on
the mixture of experts (ME) approach, which builds on a probabilistic model that al-
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lows the different sub-models to cooperate has been presented in [13]. It demonstrates
a model which outperforms previous piecewise modeling methods. The ME approach
is a promising technique and is a highly valid approach to be compared with the NN
approach in future work. The challenges as high bandwidth and high nonlinearity lead
to huge complexity and explosion of MPM-based algorithms. The Volterra series model
approach, which is commonly used in MPM approaches, is preferable if the order of the
nonlinearity is not too high (e.g. third or possibly fifth order) [14]. With very high non-
linearity order, the MPM approach is not practical because of the increased complexity
and consequent increase of the number of unknown kernel coefficients in the model [15].
Neural networks (NNs) are well known to be able to learn any arbitrary nonlinear
function according to the universal approximation theorem [16]. Several state-of-the-
art linearization techniques based on NN have recently been introduced. A solution
for performance imperfections such as crosstalk, power amplifier (PA) non-linearities
along with modulator imperfections like in-phase and quadrature (I/Q) imbalance and
DC-offset for a wide-band direct-conversion transmitter has been recently introduced
in [17, 18]. A similar approach, where only the magnitude of input signal undergoes
a nonlinear operation, and the phase information is recovered with a linear weighting
operation has been introduced in [19].

For wideband signals, in particular, the memory effects have significant impact
[20, 21]. To take care of memory effects, two dynamic neural structures have been
proposed in the NN literature [1]. In the first structure, recurrent neural networks
(RNNs), utilizes feed-forward and feedback signal processing. In another structure, a
real-valued time-delay neural network (RVTDNN), combines I/Q processing with input
time-delay lines to handle memory effects, whereas RNN uses output-to-input time-
delay lines. Reference [22] indicates that RVTDNNs offer superior performance and
easy baseband implementation when used for inverse modeling of PAs with strong non-
linearities and memory effects. For the high nonlinearity cases, the model needs a low
learning rate during training at the cost of the training time. In the present paper, we
are using the so-called batch normalization (BN) together with the hidden layer in order
to use a higher learning rate and reduce the training time. Furthermore, the proposed
RVTDNN uses the rectified linear units (ReLU) activation function, which is less com-
putationally expensive than hyperbolic tangent (Tanh) and Sigmoid because it involves
simpler mathematical operations [23]. We are proposing a NN using only one hidden
layer and a minimum number of neurons to make it comparable with conventional MPM.
The proposed RVTDNN is applied to linearize highly nonlinear multi-PA devices-under-
test (DUTs) such as the active phased array. We are using the proposed NN model for a
5G DUT that includes complex interactions between the PAs in the array, such as load-
modulation. Measurements quantifying this impact are included in section 6. Finally,
for the first time, to the best knowledge of the authors, a pre-distortion scheme based
on the RVTDNN was validated using a real 5G test-bed environment with a minimum
number of neurons and layers together with the ReLU activation function to keep the
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cost and size of the device during implementation as low as possible.
Fig. E.1 illustrates the digital predistortion concept for the APA based on the equiva-

lent SISO model using the proposed neural network. The mapping relationship between
the order of memory depth, the number of hidden layers and the number of neurons to
the corresponding required linearity have been analysed. The optimum levels for the
parameters in each block have been identified, verified through measurements, and then
the performance and the complexity are compared with the applied MPM based DPD
using the same laboratory setup.

This paper is organized as follows: Section 1 is the introduction. Section 2 describes
the MPM based approach. Section 2 is about the NN linearization technique. Section 3
explains the NN training and parameter tuning, section 5 is an investigation of com-
plexity and section 6 is about the measurement results. A discussion on comparison
between measurements results of MPM and NN approaches is included in section 7 and
finally, the conclusion of this work is presented in section 7.

2 MPM based approach
The classical approach to modeling the full behaviour of a nonlinear device is by the
Volterra series, Eq. (E.1), which describes the relation between the output and input
signals in discrete time:

y[n] =
K∑

k=1

M−1∑
m1=0

· · ·
M−1∑
mk=0

hk[m1, . . . , mk]
k∏

j=1
x[n − mj ]

=
M−1∑
m1=0

h1[m1]x[n − m1]

+
M−1∑
m1=0

M−1∑
m2=0

h2[m1, m2]x[n − m1]x[n − m2]

+ . . .

+
M−1∑
m1=0

· · ·
M−1∑

mK=0
hK [m1, . . . , mK ]

K∏
j=1

x[n − mj ], (E.1)

where K is the order of the nonlinearity, M is the memory depth and hk(m1, . . . , mk)
are the parameters of the model, which are often referred to as the "Volterra kernels" in
literature. The nth sample of the input signal x[n] is mixed with the M − 1 preceding
samples at each of the kth Volterra kernel. In other words, the kth kernel includes all
possible combinations of k time shifts of the input signal, which includes all types of
memory effects. For this reason the Volterra series is considered as the most complete
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model, but the computational complexity of the model is very high [24]. A much less
complex model is the MPM which is widely used for linearization. Eq. (B.4) represents
the applied MPM which is a deviation of the Hammerstein model and has been proven
effective for removing nonlinearity and memory effect [25]:

y (n) =
K∑

k=1

M∑
m=0

akmx (n − m) |x (n − m)|k−1
, (E.2)

where akm is the 2-D array of filters and power series coefficients of the active device,
K is the nonlinearity order of the memory polynomial model and M is the highest
memory depth. akm coefficients are the linear weighting of nonlinear signals and these
coefficients are calculated by using the least-squares type algorithm. The generalized
memory polynomial, which combines the memory polynomial with cross terms between
the signal and lagging and/or leading exponentiated envelope terms is presented in [25].
This model shows a slightly improved linearization effect but on the cost of complexity
which needs to be compared with a more complex neural network model i.e. long short-
term memory (LSTM) neural network techniques [26]. In this work, we introduce the
comparison between a MPM model based on Eq. (E.2) and a simple neural network
model to relax the overall complexity.

In [9], we have provided a detailed insight into the linearization mechanisms for an
APA based on the MPM model. A similar approach has been used for constructing
the predistorted signals for the different nonlinearity cases of the APA in actual work.
The same captured input and output I and Q samples are used for both MPM and NN
techniques.

3 NN Linearization Technique

3.1 NN Model
The SISO model where the entire transmitter has been considered as a two-port system
has been described in [9]. This model uses only one external antenna for observing
the combined signal in the far field. Similarly in the present work, the entire OTA
beam-forming set-up is considered as a SISO model with the APA as the main source
of nonlinearity. The NN is used as an inverse system for such a model and it is trained
using the measured input and output data. Once the training is completed the inverse
model is used as predistorter for the SISO model, as seen in Fig. E.2. If the output and
the input of the SISO model are set to the I and Q training data, y(t), and true values,
x(t), respectively, then the NN needs to be trained to capture the nonlinearity of the
model by generating the inverse of the nonlinearity function, h(t), given in Eq. (E.3):

y(t) = G · h(t) · x(t), (E.3)



124 Paper E.

where G is the constant gain.
The aim of the training is to calculate the weights such that the NN gradually learns

the nonlinearity of the SISO model during the training procedure. When the cost is
under the specified threshold or no longer converges, then the training step is finished.

After training, the functionality of the NN, denoted as u(t) in Fig. E.2, is an optimal
estimation of h−1(t). Ideally using the predistorted signal, x(t) · h−1(t), as input to the
SISO model, the output will be a linearized function defined as G · x(t).

x(t)
u(t) G.h(t)

x(t).h-1(t) G.x(t)

a)

G.h(t)
x(t) y(t)

DNN

u(t) = h-1(t)

b)

c)

Fig. E.2: Linearization technique based on a neural network. a) Beam-forming behavioral SISO model;
b) NN based on equivalent SISO model where G is constant gain and h(t) is the nonlinear function; c)
Applying trained NN in predistortion and linearization.

3.2 NN Training
The proposed NN shown in Fig. E.3 uses a feedforward fully connected (FC) struc-
ture. Based on the interconnection pattern or architecture, we can distinguish between
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feedforward networks (FNNs) and recurrent (or feedback) networks (RNNs) [27]. The
feedforward network is considered since it is the most used NN and according to the
universal approximation theorem, it can approximate any nonlinear function with any
desired error [28]. A FC structure in a densely populated NN may increase requirements
for hardware resources, but in many applications, the weight of some interconnections
can be set to zero without loss of accuracy, which results in sparsely connected lay-
ers [27]. The sparse structure is out of the scope of this work. The input and output
data are separated as yI [n − M ], yQ[n − M ], x̂I [n] and x̂Q[n] where n is the number of
the I and Q data used in the training. The wide-band memory effects are modeled by
the delayed replica up to memory depth of M. The weights, W(i), and biases, B(i) for
the vector expressing the relation between input and output of each FC layer is defined
as:

y(i) = W(i) · x(i) + B(i), (E.4)

where i is the i-th FC layer. For an input layer of L neurons and output of P neurons
then x(i) is a L × 1 vector, W(i) is a P × L matrix and Bi is a P × 1 vector. Each dense
layer which is defined as (a) in Fig. E.3, can be described using Eq. (E.4). The weights
and biases of each FC layer are distinctive and are optimized by back-propagation. The
optimization algorithm used in this work is the adaptive moment estimator (Adam) [29].
It is based on a gradient descent algorithm that gets more computationally efficient by
using momentum and randomized batches to avoid local minima. The batch size is the
number of training samples used for estimating the error gradient. A batch size, e.g. 50,
means that 50 samples of the training samples are used for estimating the error gradient
before the weights are updated. Another parameter, called training epoch, shows how
many passes have been done through the training samples with a randomly selected
group of batches. The training procedure is summarized in Table E.1.

Table E.1: Algorithm used for NN training.

Algorithm 1 NN Training process
i: Generate n samples of IQ data of x[n] and y[n]
ii: Update weights and biases given by (E.4) using 70 % of n samples
iii: Continue updating until finding the optimum u(t) = h−1(t)
iv: Validate the model using 30 % of n samples
v: If the cost function of validation is ok, then freeze the model
vi: Construct the predistorted signal, x(t) ∗ h−1(t)
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Fig. E.3: Structure of the neural network architecture proposed in this paper. The hidden layer
consists of two dense layers which are batch normalization layer and ReLU layer.

3.3 Accelerating NN Training
For the models used in high nonlinearity cases, the training needs a low learning rate
which on the other hand increases the training time. Therefore in each hidden layer,
there is also an accelerator, the so-called BN layer, shown as block (b) in Fig. E.3. The
BN layer allows using much higher learning rates which will accelerate the training and
reduce the time cost significantly [30].

The BN layer normalizes the mean and variance of the outputs of the dense layer to
0 and 1 and introduces a new mean and variance. The output of the BN layer, ŷ(i) is
expressed by:

ŷ(i) = γ
y(i) − E[y(i)]√

Var[y(i)] + ϵ
+ β, (E.5)

where γ and β are the new learnable mean and variance parameters and ϵ is a constant
parameter to prevent the equation be infinite and is set to 0.001.

3.4 Activation Function
For the NN to be able to fit an arbitrary nonlinear function, the nonlinearity is intro-
duced in the form of an activation function which is shown as block (c) in Fig. D.3.
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Both Tanh and ReLU are evaluated as activation functions in this work, where ReLU
has been chosen as the activation function due to its performance which is described
in section 4. ReLU introduces a nonlinearity by deactivating negative inputs, adding
sparsity to the model, and accelerating convergence [31]. ReLU is defined as:

fReLU(u) = max(0, u), (E.6)

where u is the input to the activation function. In this way the output of a hidden layer
can be expressed as Eq. (E.7):

x(i+1) = max
(
0, ŷ(i)

)
, (E.7)

where x(i+1) is the input of the next FC layer. With the sequential structure, the
inputs of the subsequent hidden layer can be described in terms of the current hidden
layer. This procedure which goes from the first layer to the last layer is called forward
propagation.

3.5 Cost Function
There are different ways, based on the type of the problem, to evaluate the difference
between the real output and the estimated output, the so-called cost function. In this
work the effects of two kinds of cost functions, Huber cost and mean square error (MSE)
cost have been investigated. In the Huber cost function, instead of minimizing the cost
function, |xi − x̂i|, the smooth cost function, L1, is used for regression because it is
robust against gross errors [32]. The smooth L1 cost function is defined as,

L1(x, x̂) = 1
B

B∑
i=1

εi, (E.8)

where B is the batch size and εi is defined as a combination of the squared error and
absolute error,

εi =
{ 0.5(xi − x̂i)2, if |xi − x̂i| < 1,

|xi − x̂i| − 0.5, otherwise. (E.9)

The corresponding MSE cost function is defined as:

MSE(x, x̂) = 1
B

B∑
i=1

(xi − x̂i)2. (E.10)

4 NN Training and Parameter Tuning
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4.1 Training Process
The concept of the proposed application is illustrated in Fig. D.1 and the configuration
of the designed NN is shown in Fig. D.3. As shown in Fig. D.1, the parameters of
the NN are updated step by step by reducing the losses between outputs of the NN
(i.e., predicted values) and the reference inputs. The NN can gradually learn features
hidden in training data for classification or regression missions. Generally, if the NN
is trained as a classifier, the cross-entropy function is a commonly used cost function.
For linearization of active circuits where the NN needs to learn the distinctive nonlinear
distortions, it is trained as the regression model.

Considering the memory effect of the active array, the memory depth, M, has a direct
impact on the number of neurons in the input layer. So there is a trade-off between the
size of M and the linearization performance. Since the output training data and the
reference input data are complex values (I and Q), the number of neurons of the input
layer and output layer is set to 2 · M and 2, respectively.

Adjacent channel leakage ratio (ACLR) and error vector magnitude (EVM) are used
as metrics for choosing the desired parameter values in each training step. The ACLR
describes the power of the leakage in the adjacent channel compared to the in-band
channel power and is defined as:

ACLRdB = 10 log10

(
Padj

Pin-band

)
, (E.11)

where Padj and Pin-band are the powers of the adjacent channel and the main channel,
respectively. In this way, the signal integrity can be directly assessed in the frequency
domain. The left side ACLR is used for evaluation through the experiments in this
paper. Since ACLR only measures distributed power in different channels, another
metric for in-band signal quality, EVM, in terms of percentage, is calculated as:

EVM% =

√
P (in-band)error

P (in-band)ref
· 100%, (E.12)

where P (in-band)error and P (in-band)ref are the powers of the error vector and ideal
signal vector in I and Q plane, respectively.

All operations are realized using Python 3.8.4 on Visual Studio Code. The NN is
built and trained using Keras 2.3.0-tf, and the version of Tensorflow is 2.2.0.

4.2 Parameter Tuning
For parameter tuning, 100k I and Q samples of input and output of the active array are
captured, where 70% of the data was randomly chosen for training and the remaining
30% for testing.
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The memory depth, the number of neurons in each layer and the number of hidden
layers should be set appropriately. If these numbers are too small, then NN cannot
get the right features for the nonlinearity model and there is a risk of underfitting, the
same is valid if these numbers are too large which results in overfitting. To avoid this,
the memory depth has been chosen to a low number, and then the other parameters
have been initialized to get the best linearization parameter in terms of ACLR and
EVM. For achieving faster tuning and for reducing the number of multiplications in a
real application, 1 hidden layer is chosen. The optimization was continued by tuning
the memory depth and keeping other parameters unchanged. Table E.2 shows how the
NN is configured together with the ACLR and EVM results for the different number of
memory depths. The best performance is achieved by setting memory depth to 5.

Table E.2: Configurations and Training for optimizing Memory depth.

Optimizer Adam
Activation function ReLU

Cost function Huber
Accelerator BN

Hidden layers 1
Neurons 100
Epoch 50

Batch size 100
Initial learning rate 0.1

Minimum cost 1E−6
Training Data 70%

Validation data 30%
Memory Depth 3 4 5 6 7

ACLR improvement 6.2 dB 6.3 dB 6.5 dB 6.2 dB 5.5 dB
EVM improvement 7.4% 8% 8% 8.1% 8%

Having memory depth fixed to 5, then other optimization parameters as activation
function, cost function, batch size and the number of epochs have been tuned. The
results are listed in Table E.3 and based on those parameters, the ReLU and the MSE
are chosen for the activation function and the cost function, respectively. Further eval-
uation on the number of epochs shows that approximately 25 epochs are enough for the
algorithm to reach its minimum cost of 1E -6 and the cost function will not improve
further as shown in Fig. E.4.

4.3 NN simulation results
Fig. E.5 shows the simulation results of power spectral density (PSD), amplitude to
amplitude (AM-AM) and amplitude to phase (AM-PM) distortions for the active array
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Table E.3: NN parameter optimization. Parameters include activation function, cost
function, batch size and epochs size.

Memory depth = 5
Parameter optimization*

Activation Cost Batch size Epochs ACLR improvement
ReLU MSE 100 50 7.03 dB
ReLU Huber 100 50 6.50 dB
ReLU MSE 20 50 6.04 dB
Tanh Huber 100 50 5.52 dB
ReLU MSE 1000 500 3.03 dB
ReLU MSE 1000 50 1.84 dB

*: Sorted based on decreasing ACLR improvement.
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output. The parameters used for simulation are based on the best tuning parameters
from Table B.2.

Several sets of predistorted signals have been trained based on the final model and
have been used for characterizing the efficiency of the model versus the level of nonlin-
earity in the active array. These results are discussed in the next section.
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Fig. E.5: Simulated linearization results with and without NN predistortion: (a) Power spectral
density; (b) AM-AM distortion; (c) AM-PM distortion.

5 Complexity Analysis

5.1 MP Predistortion
Eq. (B.4) models the behavior of the PA, which means the APA output can be estimated
from the inputs. For predistortion, the inverse model is needed, which means the input
should be estimated based on the output which is implemented by switching the input
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and outputs:

x[n] =
M∑

m=0

K∑
k=1

amky[n − m] · |y[n − m]|k−1, (E.13)

where x[n] is the estimated input to the APA. This can be written as a vector-vector
product on the form:

x = rw, (E.14)

where

r = [y[n − 0] · |y[n − 0]|1−1 · · · y[n − M ] · |y[n − M ]|K−1] (E.15)

Since the absolute value, | · |, requires 3 multiplications the complexity of finding r is
thus:

Cr,complex = (M + 1) · (0 + 3 + 4 + 5 + · · · + k + 1)

=
K+1∑
i=3

i · (M + 1) (E.16)

The complexity of the vector-vector product x[n] = rw is simply:

CMul,MP,complex,vector = (M + 1)K, (E.17)
CAdd,MP,complex,vector = (M + 1)K − 1. (E.18)

where CMul,MP,complex,vector is the number of complex multiplications and CAdd,MP,complex,vector
is the number of complex additions. The total number of complex multiplications be-
comes:

CMul,MP,complex,total = (M + 1)K +
K+1∑
i=3

i · (M + 1). (E.19)

A complex multiplication takes four real multiplications and two real additions and
a complex addition involves two real additions. This means the total complexity of the
MPM predistortion in real operations is:

CMul,MP = 4 · [(M + 1)K +
K+1∑
i=3

i · (M + 1)]. (E.20)

CAdd,MP = 2 · ([(M + 1)K +
K+1∑
i=3

i · (M + 1)] + [(M + 1)K − 1]). (E.21)
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5.2 NN Predistortion
The complexity analysis is made with a starting point in Eq. (E.4) with L as the number
of outputs of the previous layer, and P as the number of inputs to the next layer. If
only fully connected layers with equal amounts of neurons are considered, the problem
can be further reduced as P = L. Between each fully connected layer, there are P 2

multiplications and P 2 additions. The number of operations between the input layer
and the first hidden layer is 2MP multiplications and additions, where M is the memory
depth. Between the last hidden layer and the output layer, there are 2P multiplications
and additions. Thus, the total amount of multiplications and additions is:

CMul,NN = CAdd,NN = 2MP + (J − 1)P 2 + 2P, (E.22)

where J is the number of hidden layers. Eq. E.22 shows that complexity scales quadrat-
ically with the number of neurons if there is more than one hidden layer. The complexity
grows linearly with the number of neurons if only a single hidden layer is used. According
to the universal approximation theorem, a single hidden layer can be used for arbitrary
function approximation, so for applications where low complexity is required, a single
hidden layer may be desirable.

5.3 Complexity Comparison
For the MPM the predistorted signals based on Eq. (B.4) with various nonlinearity
orders, K, and memory depths, M, have been constructed and evaluated in the lab and
the optimal values of K = 5 and M = 8 have been chosen. The NN is trained to reach the
minimum MSE of approximately 1E-6 as an example shown in Fig. E.4. By sweeping
the NN parameters, 1 hidden layer and 100 neurons and a memory depth of 5 have
been chosen. Table E.4 shows the computational effort in term of multiplications and
additions based on Eq. (E.20), Eq. (E.21) and Eq. (E.22). Although the number of
multiplications is higher in the case of NN compare to MPM, the absolute number is
still very low and besides NN has superior linearization performance which is shown in
section 6.

Table E.4: Computational effort in term of multiplications and additions for
MPM and NN.

K M Layer Neurons Multiplications Additions
MPM 5 8 - - 828 502
NN - 5 1 100 1200 1200

6 Measurement Results
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Fig. E.6: The block diagram of the measurement setup for the 4x4 array.
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Fig. E.7: (a): Measurement setup in Lab; (b): AAiPK428GC-A0404 evaluation board used for mea-
surements [33].

6.1 OTA Measurement Setup
The block diagram of the measurement setup is shown in Fig. E.6 and the actual
laboratory measurement set-up is illustrated in Fig. 11.

The R&S SMBV100B Vector Signal Generator and its arbitrary waveform generator
function generate the TX input IF signal, centered at 3 GHz, which is a 100 MHz
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Fig. E.8: Measured OTA spectra with NN and MPM based linearization at different main beam
power: (a) Very high nonlinearity case (main beam power = +34 dBm); (b) High nonlinearity case
(main beam power = +33 dBm); (c) Medium nonlinearity case (main beam power = +32 dBm); (d)
Low nonlinearity case (main beam power = +31 dBm).

bandwidth 5G NR signal. It is a 3GPP downlink OFDM modulated waveform with 64-
QAM sub-carrier modulation, sub-carrier spacing of 60 kHz and 1584 active sub-carriers.
With an oversampling factor of 6, the sample rate of the transmitter and receiver signals
is 600 MHz. The peak to average power ratio (PAPR) of the input signal, after capturing
and loading to the generator, is 11.6 dB. For up-conversion and down-conversion, an un-
modulated signal of 12.5 GHz has been generated by an Agilent E3247C and frequency-
doubled to 25 GHz using a MITEQ-MAX2M200400 and fed into a power divider to be
used as a local oscillator (LO) signal. Two active mixers, KTX321840 and KRX321840,
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operating in their highly linear region, are utilized for up converting the IF signal to
the 28-GHz carrier frequency and for down-converting the signal back to IF. A 28 GHz
band-pass filter is used to select the up-converted modulated signal and suppress the
LO leakage and image frequency signals. The Ducommum APH-26063325 is used as a
pre-amplifier. The pre-amplifier is a high power device and while operating more than
10 dB below its compression point, the output is linear and the power is sufficient to
drive the 4× 4 APA, AAiPK428GC-A0404 [33], close to its saturated region. The APA
includes four Anokiwave AWMF-0158 [34], integrates 16 branches of attenuators, phase
shifters, PAs and 16 patch antennas in a 4×4 active phased array. The APA is designed
for a typical main beam power of +33 dBm.

The diagonal length of the active array antenna is approximately 4 cm which at 28
GHz results in a far-field distance of:

2D2

λ
= 30.5 cm, (E.23)

where D is the diagonal length of the antenna and λ is the wavelength. The main beam
signal is captured by the observation horn antenna placed 55 cm away which is well
above the far-field distance of the device.

After down-conversion to IF, the signal is captured by the R&S FSW Signal and
Spectrum Analyzer and converted to base-band. A host PC running in Matlab and
using the R&S ARB Toolbox is used for capturing and uploading the I and Q samples.
The measurement setup is power calibrated in order to keep all other components in
their linear operating regions and the only source of nonlinearity is related to the active
phased array. For controlling the main beam of the array the code-book and software
tools from Amotech [33] have been used. For MPM, 4 predistorted signals, one for each
power level, have been constructed based on a memory depth of 8 and nonlinearity order
of 5. For NN, four corresponding predistorted signals based on the parameters in Table
B.2 have been constructed and used as the input to the APA for the measurements.

6.2 OTA Measurement Results
In this section, we present the experimental results of using the NN-based DPD and
compare that with MPM-based DPD. In both cases, we do the measurements on four
different power levels where the APA is driven into compression. The radiated power
has been adjusted to get the ACLR slightly worse than the limit for systems operating
at FR2 which is -28 dBc [35]. The main beam power of the APA is the sum of the
transmitter power and gain of the antenna array:

Pmain-beamAPA = PTXAPA + GAntAPA , (E.24)

and is measured as the power at the observation horn antenna placed 55 cm away,
adding the propagation loss and subtracting the gain of the observation horn antenna.
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The predistorted signals are fed as input to the APA and the corresponding ACLRs
and EVMs are measured for each case and each technique.

The APA is driven in four different linearity cases with main beam power to be
34 dBm, 33 dBm, 32 dBm and 31 dBm for very high, high, medium and low power
cases, respectively. Due to the limited output power of the 4x4 APA, we are not able
to increase the main beam power further due to risk of damage to the device. However,
with the main beam power of 34 dBm, the device is in the saturated region and the
ACLR is approximately 2 dB worse than the 3GPP limit and suitable for our analysis.
Measured OTA spectra with NN and MPM-based linearization for four different cases
are shown in Fig. E.8 and the ACLR and EVM improvements are illustrated in Fig. E.9.
Here we can see that for higher nonlinearities, the NN is performing better than MPM.
In the case of low nonlinearity then MPM performance is equal or slightly better, but it
is worth pointing out that linearization is less meaningful for relatively linear and less
power-efficient operations. The results demonstrate that the proposed NN is capable of
effectively learning the distinctive highly nonlinear distortions, which may not easily fit
to existing MPM solutions.

(a) (b)

Fig. E.9: Comparison of NN vs. MPM: (a) ACLR comparison; (b) EVM comparison.

6.3 ACLR and Total Radiated Power (TRP)
Even though an existing reference claims the distortion is beam-formed in the same
direction as the intended signal with a multi-antenna transmitter in the single-user
case [5], quantitative results are desired to evaluate if using main beam ACLR is a valid
method for characterizing the linearization performance of a beam steerable array. For
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evaluating this, we performed a TRP ACLR measurement and compared the results
with main beam direction measurements. The TRP is defined from the integration
of signal power over the angular domains. The estimated TRP for a discrete set of
measured directions is defined as [35]:

TRPEstimate = π

2NM

N−1∑
n=0

M−1∑
m=0

EIRP(ϕn, θm) · sin θm, (E.25)

where N and M are the number of azimuth angles, ϕn, and elevation angles, θn, respec-
tively and EIRP(ϕn, θm) is the radiated power in each angular case as a sum of both
linear polarizations. The TRP-ACLR in linear scale is calculated as total radiated power
of the adjacent channel divided by the total radiated power of the in-band channel:

TRP-ACLR =
π

2NM

∑N−1
n=0

∑M−1
m=0 Padj.ch.(ϕn, θm) · sin θm

π
2NM

∑N−1
n=0

∑M−1
m=0 Pch.(ϕn, θm) · sin θm

=
∑N−1

n=0
∑M−1

m=0 Padj.ch.(ϕn, θm) · sin θm∑N−1
n=0

∑M−1
m=0 Pch.(ϕn, θm) · sin θm

(E.26)

The block diagram and lab-setup for the measurements are shown in Fig. E.10 and
E.11. The following procedure is applied for all specific angles θ and ϕ:

1. Place the APA at the positioner and align the coordinate system.

2. Align the beam of the APA to the desired beam steering angle.

3. Measure the main channel power and adjacent channel power using a spectrum
analyzer.

4. Repeat steps 1-3 for all directions in the TRP measurement grid.

5. Calculate TRP-ACLR according to (E.26).

The steering angle of the APA is set to 0 degrees. The position of the APA is changed
by θ from 0 to 180 degrees in steps of 10 degrees and for each step, the ϕ angle is
changed from -90 degrees to 90 degrees in 20-degree steps. The in-band channel power
and the ACLR power for each angular position have been measured and the TRP-
ACLR level has been calculated according to (E.26) to be -35.0 dBc. For the same
set-up, the main-beam-only level of ACLR is measured to be -33.3 dBc. In our work,
we assume the main beam pointing is maintained in communication. Moreover, since
the measured difference is less than 2 dB, the main beam ACLR is chosen as the metric
for experimental validation in this work.
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6.4 ACLR and Beam Directions
Due to interactions between the PAs in the array, the linearized beam is sensitive to
steering angle, so the impact of beam steering needs to be quantified. A single trained
DPD is not sufficient for maintaining a low distortion in a wide range of steering angles.
To maintain a low level of distortion across the steering angle, a new training after
some degrees shift (based on the actual setup) of the main beam is required [9]. The
same investigation has been done in [4] with the same conclusion. Furthermore, remark-
able results in [36] show that the NN is capable of modeling the correlation between
the nonlinear distortion characteristics among different beams. This allows providing
consistently good linearization regardless of the beamforming direction, thus avoiding
the necessity of executing continuous digital predistortion parameter learning. In this
paper, we have quantified the load modulation impact by measuring on an over-the-air
test setup in a compact antenna test range (CATR). Fig. E.10 shows the setup used for
measuring the APA output over the air in the CATR.
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Fig. E.10: Block diagram of the measurement setup for measuring APA in compact antenna test
range.

In this experiment, seventeen different values of the steering angle θ were used in
the range of -78 to +78 degrees with a step of approximately 8 degrees. The following
procedure is applied firstly to capture the nonlinear data for all angles and secondly the
linearized data for all angles. For all specific angles θ1 to θ17 following steps are used:

1. Adjust the steering angle to θi according to code-book and software tools.

2. Adjust the mechanical angle accordingly.

3. Measure input/output data for each steering angle.
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Fig. E.11: TRP measurement setup using compact antenna test range.

4. Make the MPM and the NN pre-distorters based on pre-distortion coefficients
obtained from measurements of 0 degree steering angle.

5. Use the pre-distorter as input and repeat steps 1-3.
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Fig. E.12: Measured ACLR performance of MPM and NN based DPD vs. steering angle using the
OTA setup in compact antenna test range.



6. Measurement Results 141

The results are shown in Fig. E.12, as measured for the same power level corresponding
to the highly nonlinear use case depicted in Fig. E.8b. The ACLR of the APA without
linearization is varying with the steering angle due to changes in radiation patterns
and because of load modulation. Furthermore, the ACLR improvement rate for the
linearized signals is varying with steering angle also as a result of load modulation.

6.5 Time Domain Comparison of NN and MPM Predistortion
Signals
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Fig. E.13: Time domain representation of predistorted signal: (a) MPM low nonlinearity case; (b)
NN low nonlinearity case; (c) MPM high nonlinearity case; (b) NN high nonlinearity case.

In this section, we compare the predistorted signals of the NN and MPM DPD to
understand better what the NN does differently. A possible explanation for this can
be found by inspecting the signals in the time domain. Fig. E.13 shows the complex
envelope of the reference input signal, the nonlinear signal, the predistorted signal and
response after predistortion for the two power levels, 31 dBm and 34 dBm indicated as
low and high linearity cases respectively. The gain is normalized to 0 dB for comparison.

The predistorted signal, as expected, has extra gain to counteract the decreasing
nonlinear gain at the points where the nonlinear signal is in compression, which is illus-
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trated as the high peaks in the time domain. As a consequence when the predistorted
signal is applied, the response of the predistorted signal should ideally end up on top of
the reference signal. This is exactly what happens in Fig. E.13a and b, where there is
almost no difference between the reference input signal and the measured response after
predistortion. The case of high nonlinearities can be seen in Fig. E.13c and d, where
the difference between the reference input signal and the response after predistortion
can now be easily observed. It is clearly seen from E.13c, that the MPM technique
overcompensates the compression. When comparing the NN approach with the poly-
nomial one the polynomials have inherent local approximating properties in contrast
to the global approximation capability of NNs when modeling strongly nonlinear sys-
tems. Therefore NN may adapt better to extrapolating beyond the zone exploited for
parameter extraction [37].

Although this effect is still under investigation, we see clearly the impact of the pre-
distorted signal’s PAPR on overall linearization and as a consequence, the shortcoming
of the conventional and less complex MPM for linearizing highly nonlinear 5G modu-
lated signals whereas a less complex NN based technique can do the job satisfactorily.

7 Discussion
The phenomenon of difference in the PAPR in MPM vs NN DPD was observed for all
measurements where the output power of the APA in our setup is above +32 dBm.
During experiments, we kept the PAPR of the input signal as defined in 3GPP i.e. 11.3
dB without providing any clipping and filtering method to reduce the PAPR. The root
cause of the difference between MPM and NN approaches can be explained as:

1. The MPM nonlinearity kernel is a polynomial. For high nonlinearities high or-
der polynomials are necessary. In our MPM we used a nonlinearity order equal
to 5 and a memory depth of 8. When trying to linearize a highly compressed,
deeply saturated PA characteristic, such a high order polynomial nonlinear func-
tion, quickly explodes at the upper side of the input amplitude range, thus causing
the peaks of the predistorted signal to reach extremely high values, and hence lead-
ing to a huge increase in the predistorted signal PAPR compared to the PAPR of
the original input modulated signal.

2. The nonlinear kernel of the NN does not contain inherently such an “explosion”
effect for high amplitudes. It is important to keep in mind that the proposed
RVTDNN structure is based on supervised learning. While we train the NN we
are actually using low envelope fluctuations, i.e. the desired I and Q at the output
layer in Fig. E.3, which allows the NN to learn the characteristics for a signal
with low envelope fluctuations. This is also related to the fact that long-term
memory is built into the RVTDNN through supervised learning. This kind of
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long-term memory can be used to simulate the slow dynamic changes of nonlinear
characteristics of the PA over time, mentioned in [1].

8 Conclusion
This paper presents how a neural network (NN) based linearization technique behaves
on the digital predistortion (DPD) of a highly nonlinear active phased array (APA) using
a wideband 3GPP 5G mmWave base-station transmitter signal and compares it to the
used memory polynomial model (MPM) technique. The proposed design is implemented
in a state-of-the-art 4×4 APA and a setup using up- and down-conversion from sub 6
GHz to 28 GHz and having high nonlinearity of the active phased array as the main
impairment factor. The NN is built and trained using a Python simulation environment.
The performance of the optimal NN predistorter was assessed with measurement results
and compared to the MPM-based DPD technique. Measurement results on the proposed
NN technique show that in the case of very high nonlinearity with an adjacent channel
leakage ratio (ACLR) of -26 dBc, the predistortion signal generated by the NN exhibits
peak to average power ratio (PAPR) much lower than the one generated by MPM and
consequently is still capable to linearize the APA where it is not possible for the actual
MPM technique. The proposed NN-based DPD technique applied on a highly nonlinear
APA with an ACLR of -28 dBc shows an improvement of error vector magnitude (EVM)
of 7.2 % points and ACLR of 4.7 dB. For the same set-up, an MPM-based DPD can only
achieve an improvement of EVM and ACLR of 4.4 % points and 2.8 dB respectively. In
the future, we may include an investigation of the robustness of NN-based linearization
due to the steering angle and the impact of channel properties for the high nonlinearity
cases.
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Abstract
This paper describes a complexity analysis of an artificial neural network (ANN) which
allows illustrating the trade-offs in choosing model parameters of digital predistorters
for multiple power levels of a transmitter system and can be used for applications such
as look-up table based digital predistortion. The ANN architecture is based on real-value
time-delayed neural networks (RVTDNNs). In this work, the authors are providing
an analysis that includes the number of neurons and the number of time-delay lines
versus linearization quality, in the form of minimum in-band and out-of-band distortions.
For each case, the implementation complexity in form of the number of multiplications
and additions has been quantified and the optimum model has been compared with a
traditional memory polynomial model (MPM) by measurements. We demonstrate the
performance of the ANN method by using a 28 GHz, 100 MHz bandwidth, 3GPP base-
station over-the-air (OTA) setup. For the measurement, a sub 6 GHz signal is up-
converted to an RF frequency of 28 GHz and used in a state-of-the-art 4×4 steerable
active phased array (APA) transmitter.

1 Introduction
Active phased array (APA) transmitters including multiple antennas operating at mmWave
frequencies, which are used in the recent wireless communication systems, are facing new
challenges in forms of high bandwidth, high nonlinearity and mutual coupling between
antennas. Digital predistortion (DPD) techniques based on conventional techniques
such as the memory polynomial model (MPM) can not easily handle these new chal-
lenges without increasing the complexity. Rich experimental results are showing that
the artificial neural network (ANN) based DPD approach requires fewer parameters
when compared to MPM based approach, whose number of coefficients increases ex-
ponentially with the number of antennas [1]. However, an indication of how the ANN
architecture compares with the classical MPM based DPD approach in terms of com-
plexity, specifically for the recent proposed 5G multiple-input multiple-output (MIMO)
transmitters architecture with wide bandwidth and high nonlinearity, is still an open
question.

In this paper, we focus on the complexity of the ANN network for DPD in terms of
the number of multiplications, and consequently implementation cost. For doing this,
the number of multiplications, which is related to the number of neurons at each hidden
layer and the depth of the delay line, have been bench-marked. Fig. F.1 illustrates the
proposed ANN-based linearization technique. We define the mapping relationship be-
tween the order of time-delays, the number of hidden layers and the number of neurons
to the corresponding required linearity. We developed a predistorted signal modeling
(PSM) tool for finding the required number of hidden layers, time-delays and neurons
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Fig. F.1: Proposed active array transmitter with ANN based linearization.

for achieving a target linearity performance. We afterward evaluate the optimal con-
figuration found by PSM during measurements. Finally, to the best of the authors’
knowledge, the first time a complexity analysis which considers the number of multi-
plications between ANN and conventional MPM has been introduced using a highly
nonlinear and wide-band 5G test-bed measured over-the-air (OTA).

2 The proposed ANN Model
For wideband signals, in particular, the memory effects have a significant impact. There
are generally two dynamic neural structures for taking care of memory effects [2]. The
first structure, recurrent neural networks (RNNs), utilizes feed-forward and feedback
signal processing and uses output-to-input time-delays lines. In another structure, a
time-delay neural network (TDNN), combines I/Q processing with input time-delay
lines to handle memory effects. To extract amplitude and phase information from mod-
ulated complex waveforms, ANNs need to consider operating with either complex-valued
(CV) input signals, weights and activation outputs, or real-valued (RV) double-inputs
double-outputs (and real weights and activation outputs), i.e. in the form of multiple
I and Q components. CV operation leads to heavy calculations and a longer training
phase [3] and therefore we have chosen the RV concept in our model. The real-valued
time-delay neural networks (RVTDNNs) offer superior performance and easy baseband
implementation when used for inverse modeling of PAs with strong nonlinearities and
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memory effects [1].

2.1 Implementation of the proposed ANN
Fig. F.2 shows the proposed ANN model based on RVFTDNN used in this work where
a different number of memory taps can be assessed and the same taps configuration is
employed between input and feedback signals regardless of the physics to be modeled
[4, 5]. The model has been implemented using the Tensorflow Keras package in Python.
The proposed ANN has a fully-connected structure which is characterized by the input-
output relationship between the hidden layers [6]:

y(k) = f
(

Wx(k−1) + B
)

, (F.1)

where f is the activation function, y(k) ∈ RP ×1 are the output values of the k’th
layer, W ∈ RP ×Q are trainable coefficients, x(k−1) ∈ RQ×1 are the outputs of the
previous layers and B ∈ RP ×1 are trainable biases. Thus, Q is the number of outputs
of the previous layer, and P is the number of inputs to the next layer. The activation
function, denoted as f in Fig. F.2 is what makes the ANN able to fit arbitrary nonlinear
functions. It uses the ReLU activation function, which is a computationally efficient
nonlinear function and which is piecewise linear [7]. The ReLU activation function is
defined by:

σReLU(x) = max(0, x) (F.2)

ReLU activation function introduces nonlinearity by setting negative inputs to 0, which
also adds sparsity to the ANN and can simplify the computations.

2.2 Complexity analysis of the proposed ANN
The complexity analysis is made with a starting point in Eq. F.1. Assuming only fully
connected layers with equal amounts of neurons are considered, the problem can be fur-
ther reduced as P = Q. Between each fully connected layer, there are P 2 multiplications
and P 2 additions. The number of operations between the input layer and the first hid-
den layer is 2MP multiplications and additions, where M is the number of time-delays.
Between the last hidden layer and the output layer, there are 2P multiplications and
additions. Thus, the total amount of multiplications and additions is:

Cm,DNN = Ca,DNN = 2MP + (J − 1)P 2 + 2P, (F.3)

where J is the number of hidden layers.
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Fig. F.2: The proposed artificial neural networks model.

3 Complexity analysis of MPM
The applied MPM, which is a deviation of the Hammerstein model and has been proven
effective for removing nonlinearity and memory effects, is represented in Eq. F.4 [8]:

x[n] =
M∑

m=0

K∑
k=1

amky[n − m] · |y[n − m]|k−1, (F.4)

where x[n] is the estimated input to the PA, and amk are the coefficients that describe
the relationship between the output and input of the PA, given for all combinations of
memory depth and nonlinearity orders. This technique for inverting the PAs nonlinear
response by directly modeling the inverse model is called postdistortion, as the model
is directly made with the input/output relationship of a known data set from the APA.
The validity of this technique is given in [8]. A detailed insight into the linearization
mechanisms for an APA based on the MPM model is provided in [9]. Based on a direct
implementation of Eq. F.4 the total amount of real multiplications, Cm,MPM, can be
defined as:

Cm,MPM = 4[(M + 1)K +
K+1∑
i=3

i · (M + 1)], (F.5)
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4 OTA Measurement Setup
The setup of the OTA measurement in compact antenna test range (CATR) chamber
is shown Fig. F.3.
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Fig. F.3: Measurement setup using compact antenna test range chamber.

The APA device is based on Amotech AAiPK428GC-A0404 which includes four
Anokiwave AWMF-0158 transceivers [10]. It integrates 16 branches of attenuators,
phase shifters and PAs and 16 patch antennas in a 4×4 active phased array. A host PC
is used for capturing and uploading the IQ samples. The measurement setup is power
calibrated in order to keep all other components in their linear operating regions and
the only source of nonlinearity is related to the active phased array. For controlling the
main beam of the array the code-book and software tools of Amotech have been used.

5 Optimization of the ANN Parameters
In order to reduce the complexity of the ANN, the minimum number of time-delays and
neurons need to be identified while the desired linearization levels in terms of adjacent
channel leakage ratio (ACLR) and error vector magnitude (EVM) are maintained. It
is chosen to restrict the DNN to a single hidden layer to reduce the complexity, as the
complexity is squared on the number of hidden layers (Eq. F.3). 100 k I/Q samples of
the input and output signals are captured, time-aligned, and used to train a number
of ANN predistorters. The dynamic range of the time-delays is from 3 to 17, and the
range of neurons is from 40 to 480. The optimization results are assessed by training
the network to use 70 % of the I/Q data for the training and 30 % for the validation.
Fig. F.4 shows the optimization results, where the optimal choice is a trade-off between
the ACLR and the number of multiplications. By keeping the number of time-delays
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to 5 and the number of neurons to 80, it is possible to achieve an average left / right
sides ACLR of −36.8 dBc corresponding to 960 multiplications. Increasing the number
of time-delays to 15 will increase the number of the multiplications to 2560, without
further improvement of ACLR.

Fig. F.4: The ACLR values obtained by varying ANN parameters.

6 Measurement Results
In this section, we present the experimental results of using the ANN-based DPD and
compare that with MPM-based DPD. In both cases, the predistorted signals from the
ANN and the MPM models are fed as input to the APA, and the corresponding ACLRs
and EVMs are measured for each case and each technique. For the MPM, a nonlinearity
order of 5 and memory depth of 8 has been chosen as the optimum model parameters
based on results in [9]. For ANN, based on the optimization results in Section 5, time-
delays of 5 and neurons-number of 80 have been chosen. The measured OTA spectra
are shown in Fig. F.5, which indicate comparable results between these two techniques.
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Fig. F.5: Measured OTA spectra, ANN-based vs. MPM-based linearization.

7 Conclusion
This paper presents a complexity analysis of a proposed real-value time-delay neural
networks (RVTDNNs) used for digital predistortion (DPD) of a 5G active phased array
transmitter. The complexity analysis can be used for applications such as look-up
table based DPD. We introduced an optimization procedure to achieve the desired
linearity with a minimum number of multiplications. The achieved linearity is compared
with the conventional memory polynomial model (MPM) in terms of complexity. In
our opinion, the DPD complexity-performance trade-off is correlated to the hardware
we are using and to the multiple-input multiple-output (MIMO) nature of our APA.
However, the methodology can be used by System Engineers to assess the optimal
complexity-performance trade-off to be used when designing their DPD. The strength
of the ANN model is its ability to provide the target linearity performance without
necessarily increasing the complexity in the forms of the number of neurons, hidden
layers and time-delays. A future work based on the proposed RVTDNN model may use
transfer-learning approach for further reduction of complexity and training time.
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Abstract
This paper proposes a transfer learning neural network (TLNN) approach for digital
pre-distortion (DPD) of mm-Wave active phased arrays (APA) operated under variable
signal bandwidth regimes. Compared with the conventional ANN method, the proposed
approach can achieve similar linearization performance with much lower computational
complexity by transferring part of a trained model from one bandwidth to another band-
width. In the recently introduced 5G, the increased signal bandwidth triggers considerable
memory effects in the APA. Moreover, dealing with different signal bandwidths typically
requires a time-consuming recalculation of the predistorter parameters. In this paper,
the authors propose to have those challenges solved by using a DPD model based on the
transfer learning method. The proposed approach was validated with over-the-air (OTA)
measurements on an APA excited with signals of varying bandwidth, namely from 20
MHz to 100 MHz. Experimental results show a significant reduction in the training time
while ensuring good linearization performance. With the applied TLNN DPD, 8.5 dB
improvement of adjacent channel leakage ratio (ACLR) and 8.6 % points improvement
of error vector magnitude (EVM) is achieved. Under the variable bandwidth regime, the
complexity of the DPD model in terms of the number of multiplications is reduced from
199168 to 160. The proposed TLNN DPD proved to be robust concerning variation in
the bandwidth of the APA excitation signal.

1 Introduction
Active phased array (APA) transmitters including multiple antennas operating at mmWave
frequencies, which are used in the recent wireless communication systems, are facing new
challenges in forms of high bandwidth, high nonlinearity and mutual coupling between
antennas together with dynamic change of the bandwidth. Digital predistortion (DPD)
techniques based on conventional methods can not easily handle these new challenges
without increasing the computational complexity. Together with the wide bandwidth,
5G has introduced a dynamic bandwidth selection which requires the mobile transmit-
ter to quickly adapt to different operating conditions. Dynamic bandwidth selection
together with the impact from the transmission channel makes the need for reusing
the adjusted parameters defined for calibration, linearization, etc. highly important [1].
The transmission quality of the communication system is to a high degree dependent
on how well it can dynamically change the bandwidth and power level with minimum
cost in terms of speed and cost. The state-of-the-art (SoA) DPD systems deployed
by the industry have excellent performance for relatively steady conditions where the
bandwidth and power are not rapidly changed. For the cases with a rapid change of
transmission parameters and environment, the existing DPD methods need to update a
huge amount of coefficients which potentially can make the system complex and slow.
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Fig. G.1: TLNN-based linearization model.

Artificial neural networks (ANN) have been widely used in the modeling of nonlinear
devices because of its good approximation ability to nonlinear functions [2]. For wide
bandwidth signals, in particular, the memory effects have a significant impact. There
are generally two dynamic neural network structures for taking care of memory ef-
fects [3]. The first structure, recurrent neural networks (RNNs), utilizes feed-forward
and feedback signal processing and uses output-to-input time-delays lines. In another
structure, a time-delay neural network (TDNN), combines I/Q processing with input
time-delay lines to handle memory effects. In order to extract amplitude and phase in-
formation from modulated complex wave-forms, ANNs need to consider operating with
either complex-valued (CV) input signals, weights and activation outputs, or real-valued
(RV) double-inputs double-outputs (and real weights and activation outputs), i.e. in
the form of multiple I and Q components. CV operation leads to heavy calculations
and a longer training phase [4] and therefore the proposed model in this work uses the
RV concept. The real-valued time-delay neural networks (RVTDNNs) offer superior
performance and easy baseband implementation when used for inverse modeling of PAs
with strong nonlinearities and memory effects [5].
However, by increasing the bandwidth and nonlinearity, the RVTDNN requires a higher
input dimension, i.e. larger number of IQ data, and more hidden layers which make
the model slow. Several works based on transfer learning have been introduced to cope
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with these challenges [5, 6]. The study of transfer learning is motivated by the fact
that one can intelligently apply knowledge learned previously to solve new problems
faster or with better solutions [7]. A similar problem also lies in the way of other
dense ANN networks with several layers and neurons used in image recognition [8] and
channel estimation [9, 10]. In these works, the transfer learning techniques grant the
models the ability of rapid image recognition and channel estimation by leveraging prior
knowledge. Inspired by these works, this paper investigates applying transfer learning
DPD for bandwidth-scalable active phased arrays. Fig. G.1 shows the block diagram of
the actual transfer learning neural network (TLNN) linearization technique. Part of the
narrow bandwidth model from the previous training has been transferred and combined
with the fine-tuning layers to make the new model for the wide bandwidth.

This paper is organized as follows: Section 1 is the introduction. Section 2 presents
the proposed linearization method. The measurement setup is in section 3.1. The
optimization of the pre-designed model and the reference model is described in section 5.
Section 5 is about transfer learning implementation. Bandwidth-scalable predistortion
results are shown in section 6 and finally, the conclusion of this work is presented in
section 7.

2 Proposed TLNN Linearization Method
This section describes the selected model for linearization, the data structure and ar-
chitecture of the model together with a complexity analysis of the proposed neural
network.

2.1 SISO model for TLNN-based linearization
Several modified DPD algorithms have been introduced to combat the challenges raised
by the recently introduced hardware configuration for 5G mmWave transmitter based
on the active phased array [11–13]. A single input single output (SISO) model where
the entire transmitter has been considered as a two-port system has been presented
using an observation receiver in far-field In [14–16]. An MPM-based DPD technique
based on this SISO model has been used for the linearization of the antenna array in
presence of crosstalk. It has been shown that the trained DPD is able to mitigate the
impact of cross-talk at PAs outputs, which is also called load modulation, in a limited
range of steering angle. The step size for reusing the trained model is dependent on the
target specification of linearity and the amount of coupling among the branches of the
active phased array which again is dependent on the size of the array and the distance
between the patches [17]. The potential mismatches between PAs can be compensated
so that they all exhibit the very same behavior which is presented in [18]. In this
way, linearization in all directions can be achieved with a single DPD, in contrast to
linearizing the main beam only. However, this approach requiring analog circuits for
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compensating the mismatch in each branch which may introduce high complexity and
delay for large arrays and the potential changes in the PAs’ behaviors due to crosstalk. In
the present work, based on the SISO model, the reference signal for DPD identification
is obtained through far-field measurements of an observation antenna placed at the
main beam direction, Fig. D.1, and the focus here is on the challenges related to high
bandwidth and dynamic bandwidth behaviour.

2.2 Data structure of the model
The data structure of the exploited TLNN is shown in Fig. G.2, where yI(n) and yQ(n)
are the I/Q components of input to the ANN and x̂I(n) and x̂Q(n) are the I/Q compo-
nents of the output of the network. The data format of the source and target datasets
is the same, and the inputs and outputs are represented as:

Yn =[yI(n), yI(n − 1), ..., yI(n − M),
yQ(n), yQ(n − 1), ..., yQ(n − M)]

(G.1)

and
Xn = [x̂I(n), x̂Q(n)] , (G.2)

where M denotes the number of delay lines at the input of the network. The procedure
for training is as follows: a set of source datasets, e.g. measured IQ samples of a 5G
signal with 20 MHz channel bandwidth, are used for offline training. Part of the network
is then used as a transfer learning model for the target dataset, which is a 5G signal
that can have the same or different channel bandwidth. As illustrated in Fig. G.2, the
first k layers of the model, FCk, are used for extracting the nonlinear characteristics
of the APA in low bandwidth cases and are frozen after executing offline training. The
output of the frozen layers, Tn, is written as:

Tn = ffrozen (Xn) . (G.3)

Here, ffrozen(.) indicates the function representing the frozen layer. The block diagram
in Fig. G.2 represents a generic implementation of the TL concept.

2.3 Transfer learning DPD architecture
The proposed DPD architecture used in this work is based on RVTDNN, where an
arbitrary number of memory taps can be assessed [5]. The same taps configuration
is employed between input and feedback signals regardless of the physics to be mod-
eled. The proposed architecture has a fully-connected structure and the input-output
relationship between the hidden layers is defined as [19–21]:

y(j) = f
(

Wx(j−1) + B
)

, (G.4)
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Fig. G.2: The proposed TLNN model based on RVTDNN. The transferred pre-design model is the
frozen model from the previous training and is combined with the fine-tuning layers to make the new
model.

where j is the j-th fully connected layer and f(.) is the activation function and y(j) is
a P × 1 vector representing the output values of the j-th layer, W is a P × Q matrix
representing the trainable coefficients, x(j−1) is a Q × 1 vector representing the outputs
of the previous layers and B is a P × 1 vector representing the trainable biases. Thus,
the number of outputs of the previous layer is defined by Q, and the number of inputs to
the next layer is defined as P . By using the activation function, denoted as f in Fig. G.2,
any arbitrary nonlinear functions can be fitted. The proposed RVTDNN architecture
uses the rectified linear units (ReLU) activation function, which is less computation-
ally expensive than hyperbolic tangent (Tanh) and Sigmoid because it involves simpler
mathematical operations [22, 23]. The ReLU activation function is defined as:

σReLU(x) = max(0, x) (G.5)

The ReLU activation function introduces nonlinearity by setting negative inputs to 0,
which also adds sparsity to the ANN and can simplify the computations. The fine-
tuning layers denoted by z, where z = N − k, are defined as transferred layers (TL).
The output of the i-th fine-tuning layers, (TL)i, is written as:

(TL)i = f1
(
wT

i · (TL)i−1 + bi

)
, i = 1, 2, ..., z (G.6)

where wT
i and bi are the weights and biases of the i-th transfer layer and the final

output, Y ′
n is defined as:

Y ′
n = f2(wT

out · (TL)z + bout), (G.7)

where wT
out and bout denote the weights and biases of the output layer and (TL)z is

the output of z-th transfer layer. f1(.) and f2(.) are the activation functions which can
be chosen differently. In the presented work, both activation functions are of the ReLu
type. The experimental dataset is divided into a training set and a validation set at 70%
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and 30%, respectively. The weights and biases of the network are learned by choice of
an appropriate loss function. The two most used loss functions for regression tasks are
mean square error (MSE) loss and Huber loss. The Huber loss is a robust loss function
used for a wide range of regression tasks [24] and it is used for the presented work. The
Huber loss function behaves quadratic for small residuals and linearly for large residuals
and is defined as [25]:

Lδ(Y ′
n, Yn) =

{ 1
2 (Y ′

n − Yn)2
for |Y ′

n − Yn| ≤ δ
δ |Y ′

n − Yn| − 1
2 δ2 otherwise

, (G.8)

where δ, set to 1, is the parameter of Huber loss. Y ′
n and Yn denote the observation and

prediction values, respectively. Through backward propagation and using the Adam
optimization algorithm, the local minimum is approached. The measured data are
collected and uploaded by using MATLAB. The ANN is built and trained using the
Keras 2.3.0-tf package in Python.

2.4 Complexity of the proposed ANN
The complexity analysis is made with a starting point in Eq. G.4, assuming only
fully connected layers with equal amounts of neurons and P = Q. Between each fully
connected layer, there are P 2 multiplications. The number of operations between the
input layer and the first hidden layer is 2MP multiplications, where M is the number
of time delays and P is the number of neurons. There are 2P multiplications between
the last hidden layer and the output layer. The total amount of multiplications are:

Cm,ANN = Ca,ANN = 2MP + (J − 1)P 2 + 2P, (G.9)

where the number of hidden layers is defined by J .

3 OTA Measurements Setup
The block diagram of the OTA measurements setup using a compact antenna test range
(CATR) is shown in Fig. G.3 and the actual laboratory setup is in Fig. G.4. The 5G
signal generator and it’s arbitrary waveform generator function generates the interme-
diate frequency (IF) signal for transmitter input. It is centered at 3 GHz and generates
an up to 100 MHz bandwidth 5G NR signal. The modulation format for the 100 MHz
bandwidth is 3GPP downlink OFDM 64-QAM, sub-carrier spacing of 30 kHz and 3168
active sub-carriers. With 3 sub-carrier in each resource block (RB), it ends up to 1056
RB. The sample rate of the transmitter and receiver signals is 400 MHz which gives an
oversampling rate of 4. The peak to average power ratio (PAPR) of the input signal, af-
ter capturing and loading to the generator, is 11.6 dB. A 12.5 GHz continued-wave signal
of 12.5 GHz has been generated by the local oscillator (LO) generator and multiplied to
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25 GHz. This LO signal is used for up-converting of the 3 GHz modulated IF signal to
28 GHz and down-converted it back to 3 GHz. For up-converting the IF signal to the 28
GHz carrier frequency and for down-converting the signal back to IF, two active mixers
operating in their highly linear region are utilized. For selecting the up-converted mod-
ulated signal and suppressing the LO leakage and image frequency signals, a 28 GHz
band-pass filter is used. The pre-amplifier is a high-power device operating more than
10 dB below its compression point. The output signal from the pre-amplifier is highly
linear and the signal power is sufficient to drive the 4×4 APA, Amotech AAiPK428GC-
A0404 [26], close to its saturated region. The APA device includes four Anokiwave
AWMF-0158 transceivers [27] and integrates 16 branches of attenuators, phase shifters
and PAs and 16 patch antennas in a 4×4 active phased array. A host PC is used for
capturing and uploading the IQ samples. The measurement setup is power calibrated
to keep all other components in their linear operating regions and the only source of
nonlinearity is related to the active phased array. For controlling the main beam of the
array the code-book and software tools of Amotech have been used.
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4 ANN Optimization Results
The ANN optimization methodology presented in [28] was used in this paper. The
methodology is applied to an ANN model trained using two signal bandwidth values,
namely 20 MHz and 100 MHz. When moving from the classical ANN model to the
proposed TLNN approach, part of the optimized 20 MHz model will be frozen and used
as the pre-design model for TLNN. The results from ANN optimization of 100 MHz
bandwidth are used as the benchmark to compare with the results obtained using TLNN.
This chapter includes the ANN optimization procedure and verification results carried
out for an RF signal bandwidth of 20 MHz. The target of the ANN optimization is to
minimize the number of time-delays and the number of neurons while the desired levels
of linearization in terms of the adjacent channel leakage ratio (ACLR) and the error
vector magnitude (EVM) are maintained. 100 k I/Q samples of the input and output
signals are captured, time-aligned and used to train several ANN predistorters. There
are four fully connected hidden layers in the model based on the results obtained in [28]
where a number above four couldn’t improve the linearization performance anymore.
The time-delays parameter is swept from 3 to 20 and the neurons are swept from 40
to 480. The optimization results are assessed by constructing the network to use 70 %
of the I/Q data for training and 30 % for validation. Fig. G.5 shows ANN parameter
optimization results of linearization of the narrow-bandwidth signal, where the optimal
choice is a trade-off between the ACLR, the EVM and the number of multiplications.
By keeping the number of time delays to 4 and the number of neurons to 256, it is
possible to achieve an ACLR improvement of 13.1 dB, as shown in Fig. G.5a, and EVM
improvement of 8.8 % points, Fig. G.5b, while keeping the number of multiplications
as low as possible, i.e. app. 199 k, Fig. G.5c. Increasing the number of neurons to
higher than 256 will lead to ACLR incremental improvements below 0.4 dB and EVM
incremental improvements below 0.2 % points, which we consider negligible for the sake
of our optimization procedure as shown in Fig. G.5a-b. There is a clear indication
from Fig. G.5c that in a dense network, with several hidden layers, the number of
multiplications will increase drastically by the number of neurons. This is in agreement
with Equation (G.9) where the number of multiplications increases approximately as
the square of the number of neurons when the number of the hidden layers exceed one.
So it is important to keep as low as possible the number of neurons for a dense network
with several layers, for achieving a lower training time and computational complexity.
The spectral power density (PSD) result is in Fig. G.6a which shows the achieved out-
of-band improvement obtained by deploying the proposed optimized ANN-based DPD.
Fig. G.6b and Fig. G.6c show the in-band AM/AM and AM/PM gain distortions which
are related to EVM. These results are perfectly aligned with the expected performance
based on based on the proposed optimization procedure, whose results are summarized
in Fig. G.5.



5. Transfer learning implementation 169

(a) (b)

(c)

Fig. G.5: ANN parameter optimization results of linearization of the narrow bandwidth signal. (a):
The ACLR (average left/right levels) improvements [dB], (b): The EVM improvements [%], (c): The
number of required multiplications for each case.

5 Transfer learning implementation
For implementing the transfer learning algorithm, the part of the model of 20 MHz
bandwidth is copied and used as a transferred pre-design model for linearization of the
100 MHz bandwidth signal. This is done by freezing three hidden layers from the trained
model of 20 MHz bandwidth. The frozen layers are then combined with the fine-tuning
layers to build the model for 100 MHz bandwidth. The implemented architecture of
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Fig. G.6: ANN-based results for 20 MHz BW using 256 neurons and 4 time delays. (a): The AM/AM
gain distortion, (b): The AM/PM gain distortion, (c): The power spectral density.

the TLNN is in shown Fig. G.7. Table G.1 summarizes the implementation procedure
used for the proposed method. Table G.2 shows network configuration parameters for
regular ANN and TLNN. By using the transfer learning approach, the number of hidden
layers is reduced from four to one and the number of neurons is reduced from 256 to 16.
Furthermore, the model from one bandwidth is transferred to another bandwidth which
means the transferred pre-designed model already includes most of the knowledge of the
nonlinear behavioral model of APA.
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Fig. G.7: The implemented architecture of the TLNN. The transferred pre-design model is the frozen
model from the previous training and is combined with the fine-tuning layers to make the new model.

Table G.1: Algorithm used for TLNN training.

Algorithm 1 Training of Regular ANN
i: Generate n samples of IQ data of x[n] and y[n] with 20 MHz BW
ii: Update weights and biases given by Eq. (G.4) using 70 % of n samples
iii: Continue updating until the minimum cost level is reached
iv: Validate the model using 30 % of n samples
v: If the cost function of validation is ok, then freeze the model
vi: Save the first k layers of the ANN as pre-designed model
vii: Repeat steps i-vi by using 100 MHz BW and save it as reference model

Algorithm 2 Training of TLNN
i: Generate l samples of IQ data of x[l] and y[l] of 100 MHz BW
ii: combine the pre-design model with the fine-tuning model
iii: Update weights and biases by using 70 % of l samples
iv: Continue updating until the minimum cost level is reached
v: Validate the model using 30 % of l samples
vi: If the cost function of validation is ok, exit the loop
vii: Update network coefficients

Table G.2: Network configuration parameters for Regular ANN and TLNN.

Model Regular ANN TLNN
Maximum Epochs 500 200

Minimum Batch Size 500 200
Optimizer Adam Adam

Loss Function Huber loss Huber loss
Activation Function Relu Relu
Initial Learning Rate 0.01 0.01
Early Stop Patience 20 epochs 20 epochs

Minimum Learning Rate 10-6 10-6

Number of delay lines 4 4
Number of hidden layers 4 1

Number of Neurons 256 (each hidden layer) 16

6 Bandwidth-Scalable Predistortion Results
First, the model for the reference 100 MHz bandwidth based on regular ANN, has
been optimized using the same procedure as described in section 4. This model is
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(a) (b)

(c)

Fig. G.8: Regular ANN vs. TL-ANN for 100 MHz BW. (a): The AM/AM gain distortion, (b): The
AM/PM gain distortion, (c) Power spectral density (e.g. TLNN-H1N16, means TLNN with 1 hidden
layer and 16 neurons).

Table G.3: Performance comparison between regular ANN and the proposed TLNN for 100 MHz
bandwidth signal.
*) ACLR is based on the average of the left and the right sides.

Number of EVM ACLR *)
Multiplications (without/with DPD), (Improve.) (without/with DPD), (Improve.)

Regular ANN 199168 (10.3/1.6 %), (8.7 %) (34.7/43.7 dBc), (9 dB)
(256 Neurons, 4 hidden layers)

TLNN 1280 (10.3/1.8 %), (8.5 %) (34.7/43.2 dBc), (8.5 dB)
(128 Neurons, 1 hidden layer)

TLNN 640 (10.3/1.8 %), (8.5 %) (34.7/43 dBc), (8.3 dB)
(64 Neurons, 1 hidden layer)

TLNN 320 (10.3/1.7 %), (8.6 %) (34.7/43.1 dBc), (8.4 dB)
(32 Neurons, 1 hidden layer)

TLNN 160 (10.3/1.7 %), (8.6 %) (34.7/43.7 dBc), (8.5 dB)
(16 Neurons, 1 hidden layer)

constructed by using four hidden layers with 256 neurons in each. Linearization results
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of this approach are used for bench-marking of the TLNN-based linearization of the 100
MHz bandwidth. For TLNN, the frozen pre-defined model from 20 MHz training and
one fully connected fine-tuning hidden layer are used. This model has been verified with
four different sets of neurons, 128, 64, 32 and 16 in the fine-tuning layer. The results
for each set of neurons are bench-marked with the regular ANN which has four fully
connected layers and 256 neurons in each. The structures of the input and output layers
of the networks are the same for both regular and TLNN. The number of multiplications
based on Equation (G.9) for regular ANN and TLNN are given as:

Cm,ANN = 2 ∗ 4 ∗ 256 + (4 − 1) ∗ 2562 + 2 ∗ 256
= 199168, (G.10)

and for TLNN with 1 hidden layer and 16 neurons it will results to:

Cm,TNN = 2 ∗ 4 ∗ 16 + 2 ∗ 16
= 160 (G.11)

6.1 Discussion
A comparison of the verification results in terms of AM/AM and AM/PM distortion
gains and power spectral density (PSD) are illustrated in Fig. G.8. The TLNN lineariza-
tion can provide the same level of linearity as the regular ANN. Detailed performance
comparisons between regular ANN and the proposed TL ANN are in Table G.3. These
results show that it is possible to achieve the same linearization performance compared
to regular ANN, i.e. an EVM improvement of 8.6 % points and ACLR improvement of
9 dB, by using TLNN. Hence the proposed approach proves to be robust versus signal
bandwidth and can be used as a bandwidth-scalable linearization technique. On the
other hand, TLNN allows reducing the number of the hidden layers (through re-using
the frozen model) and the number of neurons which results in relaxation of the com-
putational complexity in terms of the number of multiplications. The outcomes of the
performed linearization experiments can be summarized as follows:

1. By using the SoA conventional RVTDNN approach for linearization of the actual
APA, we need an ANN DPD of 256 neurons, 4 hidden layers for 20 MHz signal lin-
earization, and another ANN DPD of 256 neurons, 4 hidden layers multiplications
for 100 MHz signal linearization.

2. TLNN approach, instead can reuse the model calculated for 20 MHz and need
only additional 16 neurons and one layer for 100 MHz signal linearization.

3. For an adaptive DPD, the time to calculate the incremental layers in TLNN is
reduced and grants the models the ability to be adaptively re-identified.
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4. A clear advantage delivered by the proposed is in terms of the LUT (look-Up
Table) size necessary to implement the DPD. Instead of storing two completely
different sets of ANN DPD parameters (SoA approach), one for the narrow band-
width use case and the other for the wide bandwidth use case, system engineers
will need to store much fewer parameters for linearizing the wide bandwidth use
case, because they can reuse most of the ones calculated for the narrow bandwidth.

7 Conclusion
This paper presented a bandwidth-scalable over-the-air digital predistortion (DPD) of
an active phased array transmitter based on a transfer learning neural network (TLNN)
method. The proposed methodology allows reducing the hardware implementation com-
plexity in terms of the number of multiplications while ensuring the same linearization
performance as a regular ANN. In the proposed method, part of the model is fixed
as a pre-designed model, and then an incremental model component was trained and
deployed for fine-tuning the remaining adaptation layers to build the final model. This
paper demonstrated how such TL technique could be used to implement a bandwidth
scalable digital predistorter. The ANN layers identified for one signal bandwidth were
reused and enhanced with an incremental neuron layer to allow the ANN predistorter to
successfully linearize input signals with wider bandwidths. The proposed linearization
technique was validated with measurements on a state-of-the-art 4×4 APA and a setup
using up- and down-conversion from sub-6 GHz to 28 GHz for verification. Experimental
results showed that our optimized ANN-based DPD could linearize a 20 MHz 5G signal
with an EVM improvement of 8.8 % points and an ACLR improvement of 13.3 dB. It
was also demonstrated, that by using TL, the same ANN DPD can be reused to linearize
a 5G signal with a much wider bandwidth, namely 100 MHz. To do so, only an addi-
tional layer of 16 neurons was added on top of the reused ANN DPD. Such an approach
allowed us to obtain an EVM improvement of 8.6 % points and an ACLR improvement
of 8.5 dB. The proposed approach required only 160 additional multiplications to lin-
earize the new signal bandwidth, compared to the 199168 multiplications necessary if
one would use another fully trained ANN predistorter. The reduced complexity allows
to bring down the cost of the implementation using digital hardware. Further research
is being conducted to make the proposed bandwidth-scalable DPD fully robust concern-
ing the signal bandwidth and other transmitter operating conditions. Our future goal
is to enhance the TL methodology to obtain a universal set of parameter that can be
fully reused to linearize multiple signal bandwidths. Such a result would allow lowering
further the complexity and cost of the DPD implementation on digital hardware.
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