922 research outputs found

    Score Function Features for Discriminative Learning: Matrix and Tensor Framework

    Get PDF
    Feature learning forms the cornerstone for tackling challenging learning problems in domains such as speech, computer vision and natural language processing. In this paper, we consider a novel class of matrix and tensor-valued features, which can be pre-trained using unlabeled samples. We present efficient algorithms for extracting discriminative information, given these pre-trained features and labeled samples for any related task. Our class of features are based on higher-order score functions, which capture local variations in the probability density function of the input. We establish a theoretical framework to characterize the nature of discriminative information that can be extracted from score-function features, when used in conjunction with labeled samples. We employ efficient spectral decomposition algorithms (on matrices and tensors) for extracting discriminative components. The advantage of employing tensor-valued features is that we can extract richer discriminative information in the form of an overcomplete representations. Thus, we present a novel framework for employing generative models of the input for discriminative learning.Comment: 29 page

    Kernel Multivariate Analysis Framework for Supervised Subspace Learning: A Tutorial on Linear and Kernel Multivariate Methods

    Full text link
    Feature extraction and dimensionality reduction are important tasks in many fields of science dealing with signal processing and analysis. The relevance of these techniques is increasing as current sensory devices are developed with ever higher resolution, and problems involving multimodal data sources become more common. A plethora of feature extraction methods are available in the literature collectively grouped under the field of Multivariate Analysis (MVA). This paper provides a uniform treatment of several methods: Principal Component Analysis (PCA), Partial Least Squares (PLS), Canonical Correlation Analysis (CCA) and Orthonormalized PLS (OPLS), as well as their non-linear extensions derived by means of the theory of reproducing kernel Hilbert spaces. We also review their connections to other methods for classification and statistical dependence estimation, and introduce some recent developments to deal with the extreme cases of large-scale and low-sized problems. To illustrate the wide applicability of these methods in both classification and regression problems, we analyze their performance in a benchmark of publicly available data sets, and pay special attention to specific real applications involving audio processing for music genre prediction and hyperspectral satellite images for Earth and climate monitoring

    Expanded Parts Model for Semantic Description of Humans in Still Images

    Get PDF
    We introduce an Expanded Parts Model (EPM) for recognizing human attributes (e.g. young, short hair, wearing suit) and actions (e.g. running, jumping) in still images. An EPM is a collection of part templates which are learnt discriminatively to explain specific scale-space regions in the images (in human centric coordinates). This is in contrast to current models which consist of a relatively few (i.e. a mixture of) 'average' templates. EPM uses only a subset of the parts to score an image and scores the image sparsely in space, i.e. it ignores redundant and random background in an image. To learn our model, we propose an algorithm which automatically mines parts and learns corresponding discriminative templates together with their respective locations from a large number of candidate parts. We validate our method on three recent challenging datasets of human attributes and actions. We obtain convincing qualitative and state-of-the-art quantitative results on the three datasets.Comment: Accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI

    Sparse Transfer Learning for Interactive Video Search Reranking

    Get PDF
    Visual reranking is effective to improve the performance of the text-based video search. However, existing reranking algorithms can only achieve limited improvement because of the well-known semantic gap between low level visual features and high level semantic concepts. In this paper, we adopt interactive video search reranking to bridge the semantic gap by introducing user's labeling effort. We propose a novel dimension reduction tool, termed sparse transfer learning (STL), to effectively and efficiently encode user's labeling information. STL is particularly designed for interactive video search reranking. Technically, it a) considers the pair-wise discriminative information to maximally separate labeled query relevant samples from labeled query irrelevant ones, b) achieves a sparse representation for the subspace to encodes user's intention by applying the elastic net penalty, and c) propagates user's labeling information from labeled samples to unlabeled samples by using the data distribution knowledge. We conducted extensive experiments on the TRECVID 2005, 2006 and 2007 benchmark datasets and compared STL with popular dimension reduction algorithms. We report superior performance by using the proposed STL based interactive video search reranking.Comment: 17 page

    Guest Editorial Special Issue on Recent Advances in Theory, Methodology, and Applications of Imbalanced Learning

    Get PDF
    Imbalanced learning is a challenging task in machine learning, faced by practitioners, and intensively investigated by researchers from a wide range of communities. However, as pointed out in the book titled “ Imbalanced Learning: Foundations, Algorithms, and Applications ” and collectively authored by experts in the field, many if not most of the approaches to imbalanced learning are heuristic and ad hoc in nature, hence leaving many questions unanswered. To fill this gap, the aim of this Special Issue is to collect recent research works that focus on the theory, methodology, and applications of imbalanced learning. After carefully reviewing a large number of submissions, we selected 15 works to be included in this Special Issue. These works can be roughly categorized into three types: deep-learning-based methods (6), methods based on other machine-learning paradigms (7), and empirical comparative studies (2)
    • …
    corecore