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Abstract

Feature learning forms the cornerstone for tackling challenging learning problems in domains
such as speech, computer vision and natural language processing. In this paper, we consider
a novel class of matrix and tensor-valued features, which can be pre-trained using unlabeled
samples. We present efficient algorithms for extracting discriminative information, given these
pre-trained features and labeled samples for any related task. Our class of features are based on
higher-order score functions, which capture local variations in the probability density function
of the input. We establish a theoretical framework to characterize the nature of discrimina-
tive information that can be extracted from score-function features, when used in conjunction
with labeled samples. We employ efficient spectral decomposition algorithms (on matrices and
tensors) for extracting discriminative components. The advantage of employing tensor-valued
features is that we can extract richer discriminative information in the form of an overcomplete
representations. Thus, we present a novel framework for employing generative models of the
input for discriminative learning.

Keywords: Feature learning, pre-training, score function, spectral decomposition methods,
tensor methods.

1 Introduction

Having good features or representations of the input data is critical to achieving good performance in
challenging machine learning tasks in domains such as speech, computer vision and natural language
processing (Bengio et al., 2013). Traditionally, feature engineering relied on carefully hand-crafted
features, tailored towards a specific task: a laborious and a time-consuming process. Instead, the
recent trend has been to automatically learn good features through various frameworks such as deep
learning (Bengio et al., 2013), sparse coding (Raina et al., 2007), independent component analysis
(ICA) (Le et al., 2011), Fisher kernels (Jaakkola et al., 1999), and so on. These approaches are
unsupervised and can thus exploit the vast amounts of unlabeled samples, typically present in
these domains.

A good feature representation incorporates important prior knowledge about the input, typically
through a probabilistic model. In almost every conceivable scenario, the probabilistic model needs to
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incorporate latent variables to fit the input data. These latent factors can be important explanatory
variables for classification tasks associated with the input. Thus, incorporating generative models
of the input can hugely boost the performance of discriminative tasks.

Many approaches to feature learning focus on unsupervised learning, as described above. The
hypothesis behind employing unsupervised learning is that the input distribution is related to the
associative model between the input and the label of a given task, which is reasonable to expect in
most scenarios. When the distribution of the unlabeled samples, employed for feature learning, is
the same as the labeled ones, we have the framework of semi-supervised learning. A more general
framework, is the so-called self-taught learning, where the distribution of unlabeled samples is
different, but related to the labeled ones (Raina et al., 2007). Variants of these frameworks include
transfer learning, domain adaptation and multi-task learning (Bengio, 2011), and involve labeled
datasets for related tasks. These frameworks have been of extensive interest to the machine learning
community, mainly due to the scarcity of labeled samples for many challenging tasks. For instance,
in computer vision, we have a huge corpus of unlabeled images, but a more limited set of labeled
ones. In natural language processing, it is extremely laborious to annotate the text with syntactic
and semantic parses, but we have access to unlimited amounts of unlabeled text.

It has been postulated that humans mostly learn in an unsupervised manner (Raina et al.,
2007), gathering “common-sense” or “general-purpose” knowledge, without worrying about any
specific goals. Indeed, when faced with a specific task, humans can quickly and easily extract
relevant information from the accrued general-purpose knowledge. Can we design machines with
similar capabilities? Can we design algorithms which succinctly summarize information in unla-
beled samples as general-purpose features? When given a specific task, can we efficiently extract
relevant information from general-purpose features? Can we provide theoretical guarantees for such
algorithms? These are indeed challenging questions, and we provide some concrete answers in this
paper.

1.1 Summary of Results

In this paper, we consider a class of matrix and tensor-valued “general-purpose” features, pre-
trained using unlabeled samples. We assume that the labels are not present at the time of feature
learning. When presented with labeled samples, we leverage these pre-trained features to extract
discriminative information using efficient spectral decomposition algorithms. As a main contribu-
tion, we provide theoretical guarantees on the nature of discriminative information that can be
extracted with our approach.

We consider the class of features based on higher-order score functions of the input, which involve
higher-order derivatives of the probability density function (pdf). These functions capture “local
manifold structure” of the pdf. While the first-order score function is a vector (assuming a vector
input), the higher-order functions are matrices and tensors, and thus capture richer information
about the input distribution. Having access to these matrix and tensor-valued features allows to
extract better discriminative information, and we characterize its precise nature in this work.

Given score-function features and labeled samples, we extract discriminative information based
on the method of moments. We construct cross-moments involving the labels and the input score
features. Our main theoretical result is that these moments are equal to the expected derivatives
of the label, as a function of the input or some model parameters. In other words, these moments
capture variations of the label function, and are therefore informative for discriminative tasks.

We employ spectral decomposition algorithms to find succinct representations of the moment
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Unlabeled data: {xi}

General-purpose features:

Score functions Sm(x) := (−1)m
∇(m)p(x)

p(x)
,

where x ∼ p(·)

Form cross-moments: E [y · Sm(x)]
Labeled data:
{(xi, yi)}

Our result: obtaining derivatives of label function:

E [y · Sm(x)] = E

[

∇(m)G(x)
]

,

when E[y|x] := G(x)

Spectral/tensor method:

find uj ’s s.t. E
[

∇(m)G(x)
]

=
∑

j∈[k]

u⊗m
j

Extract discriminative features using uj ’s/
do model-based prediction with uj’s as parameters

Unsupervised estimation of
score functions

Using score functions to
extract discriminative features

in the supervised setting

Figure 1: Overview of the proposed framework of using the general-purpose features to generate
discriminative features through spectral methods.

matrices/tensors. These algorithms are fast and embarrassingly parallel. See (Anandkumar et al.,
2014a,b,c) for details, where we have developed and analyzed efficient tensor decomposition algo-
rithms (along with our collaborators). The advantage of the tensor methods is that they do not
suffer from spurious local optima, compared to typical non-convex problems such as expectation
maximization or backpropagation in neural networks. Moreover, we can construct overcomplete
representations for tensors, where the number of components in the representation can exceed
the data dimensionality. It has been argued that having overcomplete representations is crucial
to getting good classification performance (Coates et al., 2011). Thus, we can leverage the latest
advances in spectral methods for efficient extraction of discriminative information from moment
tensors.

In our framework, the label can be a scalar, a vector, a matrix or even a tensor, and it can
either be continuous or discrete. We can therefore handle a variety of regression and classification
settings such as multi-task, multi-class, and structured prediction problems. Thus we present a
unified and an efficient end-to-end framework for extracting discriminative information from pre-
trained features. An overview of the entire framework is presented in Figure 1.

We now provide some important observations below.
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Are the expected label function derivatives informative? Our analysis characterizes the
discriminative information we can extract from score function features. As described above, we
prove that the cross-moments between the label and the score function features are equal to the
expected derivative of the label as a function of the input or model parameters. But when are these
expected label derivatives informative? Indeed, in trivial cases, where the derivatives of the label
function vanish over the support of the input distribution, these moments carry no information.
However, such cases are pathological, since then, either there is no variation in the label function
or the input distribution is nearly degenerate. Another possibility is that a certain derivative
vanishes, when averaged over the input distribution, even though it is not zero everywhere. If
this is the case, then the next derivative cannot be averaged out to zero, and will thus carry
information about the variations of the label function. Thus, in practical scenarios, the cross-
moments contain useful discriminative information. In fact, for many discriminative models which
are challenging to learn, such as multi-layer neural networks and mixtures of classifiers, we establish
that these moments have an intimate relationship with the parameters of the discriminative model
in subsequent works (Sedghi and Anandkumar, 2014a,b). Spectral decomposition of the moments
provably recovers the model parameters. These are the first results for guaranteed learning of many
challenging discriminative latent variable models.

Contrasting with previous approaches: We now contrast our approach to previous ap-
proaches for incorporating generative models in discriminative tasks. Typically, these approaches
directly feed the pre-trained features to a classifier. For example, in the Fisher kernel framework,
the Fisher score features are fed to a kernel classifier (Jaakkola et al., 1999). The reasoning behind
this is that the features obtained from unsupervised learning have information about all the classes,
and the task of finding class-specific differences in the learnt representation is left to the classifier.
However, in practice, this may not be the case, and a common complaint is that these generative fea-
tures are not discriminative for the task at hand. Previous solutions have prescribed joint training
discriminative features using labeled samples, in conjunction with unlabeled samples (Mairal et al.,
2009; Maaten, 2011; Wang et al., 2013). However, the resulting optimization problems are complex
and expensive to run, may not converge to good solutions, and have to be re-trained for each new
task. We present an alternative approach to extract discriminative features using efficient spectral
decomposition algorithms on moment matrices and tensors. These methods are light weight and
fast, and we theoretically quantify the nature of discriminative features they can extract. These
discriminative features can then be fed into the classification pipeline. Thus, the advantage of our
approach is that we can quickly generate discriminative features for new classification tasks without
going through the laborious process of re-training for new features.

We now contrast our approach with previous moment-based approaches for discriminative learn-
ing, which consider moments between the label and raw input, e.g. (Karampatziakis and Mineiro,
2014). Such methods have no theoretical guarantees. In contrast, we construct cross-moments
between the label and the score function features. We show that using score function features is
crucial to mining discriminative information with provable guarantees.

Extension to self-taught learning: We have so far described our framework under the semi-
supervised setting, where the unlabeled and labeled samples have the same input distribution. We
can also handle the framework of self-taught learning, where the two distributions are related but
may not be the same. We prescribe some simple pre-processing to transfer the parameters and to
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re-estimate the score function features for the input of the labeled data set. Such parameter transfer
frameworks have been considered before, e.g. (Raina et al., 2007), except here we present a general
latent-variable framework and focus on transferring parameters for computing score functions, since
we require them for subsequent operations. Our framework can also be applied to scenarios where
we have different input sources with different distributions, but the classification task is the same,
and thus, the associative model between the label and the input is fixed. Consider for instance,
crowdsourcing applications, where the same task is presented to different groups of individuals. In
our approach, we can then construct different score function features for different input sources
and the different cross-moments provide information about the variations in the label function,
averaged over different input distributions. We can thus leverage the diversity of different input
sources for improved performance on common tasks. Thus, our approach is applicable in many
challenging practical scenarios.

1.2 Overview of our framework

In this section, we elaborate on the end-to-end framework presented in Figure 1.

Background: The problem of supervised learning consists of learning a predictor, given labeled
training samples {(xi, yi)} with input xi and corresponding label yi. Classical frameworks such as
SVMs are purely discriminative since they make no distributional assumptions. However, when
labeled data is limited and classification tasks are challenging, incorporating distributional infor-
mation can improve performance. In an associative model-based framework, we posit a conditional
distribution for the label given the input p(y|x). However, learning this model is challenging, since
maximum-likelihood estimation of p(y|x) is non-convex and NP-hard to solve in general, especially
if it involves hidden variables (e.g., associative mixtures, multi-layer neural networks). In addition,
incorporating a generative model for input x often leads to improved discriminative performance.

Label-function derivatives are discriminative: Our main focus in this work is to extract
useful information about p(y|x) without attempting to learn it in its entirety. In particular, we
extract information about the local variations of conditional distribution p(y|x), as the input x (or
some model parameter) is changed. For the classification setting, it suffices to consider1 E[y|x] :=
G(x). In this paper, we present mechanisms to estimate its expected higher order derivatives2

E[∇(m)
x G(x)], m ≥ 1, (1)

where ∇(m)
x denotes the m-th order derivative operator w.r.t. variable x. By having access to

expected derivatives of the label function G(x) in (1), we gain an understanding of how the label
y varies as we change the input x locally, which is valuable discriminative information.

Score functions yield label-function derivatives: One of the main contributions of this paper
is to obtain these expected derivatives in (1) using features denoted by Sm(x), for m ≥ 1 (learnt

1In the classification setting, powers of y, e.g., y2 contain no additional information, and hence, all the information
of the associative model is in E[y|x] := G(x). However, in the regression setting, we can compute additional functions,
e.g., E[∇(m)H(x)], where E[y2|x] := H(x). Our approach can also compute these derivatives.

2Note that since we are computing the expected derivatives, we also assume a distribution for the input x.
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from unlabeled samples) and the labeled data. In particular, we form the cross-moment between
the label y and the features Sm(x), and show that they yield the derivatives as3

E[y · Sm(x)] = E[∇(m)G(x)], when E[y|x] := G(x). (2)

We establish a simple form for features Sm(x), based on the derivatives of the probability density
function p(·) of the input x as

Sm(x) = (−1)m
∇(m)p(x)

p(x)
, when x ∼ p(·). (3)

In fact, we show that the feature Sm(x) defined above is a function of higher order score functions

∇(n)
x log p(x) with n ≤ m, and we derive an explicit relationship between them. This is basically

why we also call these features as (higher order) score functions. Note that the features Sm(x) can
be learnt using unlabeled samples, and we term them as general-purpose features since they can be
applied to any labeled dataset, once they are estimated. Note the features Sm(x) can be vectors,
matrices or tensors, depending on m, for multi-variate x. The choice of order m depends on the
particular setup: a higher m yields more information (in the form of higher order derivatives) but
requires more samples to compute the empirical moments accurately.

We then extend the framework to parametric setting, where we obtain derivatives E[∇(m)
θ G(x; θ)]

with respect to some model parameter θ when E[y|x; θ] := G(x; θ). These are obtained using
general-purpose features denoted by Sm(x; θ) which is a function of higher order Fisher score func-

tions ∇(n)
θ log p(x; θ) with n ≤ m. Note that by using the parametric framework we can now

incorporate discrete input x, while this is not possible with the previous framework.

Spectral decomposition of derivative matrices/tensors: Having obtained the derivatives
E[∇(m)G(x)] (which are matrices or tensors), we then find efficient representations using spec-
tral/tensor decomposition methods. In particular, we find vectors uj such that

E[∇(m)G(x)] =
∑

j∈[k]

m times
︷ ︸︸ ︷

uj ⊗ uj ⊗ · · · ⊗ uj , (4)

where ⊗ refers to the tensor product notation. Note that since the higher order derivative is a sym-
metric matrix/tensor, the decomposition is also symmetric. Thus, we decompose the matrix/tensor
at hand into sum of rank-1 components, and in the matrix case, this reduces to computing the SVD.
In the case of a tensor, the above decomposition is termed as CP decomposition (Kruskal, 1977).
In a series of works (Anandkumar et al., 2014a,b,c), we have presented efficient algorithms for
obtaining (4), and analyzed their performance in detail.

The matrix/tensor in hand is decomposed into a sum of k rank-1 components. Unlike matrices,
for tensors, the rank parameter k can be larger than the dimension. Therefore, the decomposition
problems falls in to two different regimes. One is the undercomplete regime: where k is less than
the dimension, and the overcomplete one, where it is not. The undercomplete regime leads to
dimensionality reduction, while the overcomplete regime results in richer representation.

Once we obtain components uj, we then have several options to perform further processing.
We can extract discriminative features such as σ(u⊤j x), using some non-linear function σ(·), as

3We drop subscript x in the derivative operator ∇
(m)
x saying ∇(m) when there is no ambiguity.
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performed in some of the earlier works, e.g., (Karampatziakis and Mineiro, 2014). Alternatively,
we can perform model-based prediction and incorporate uj’s as parameters of a discriminative
model. In a subsequent paper, we show that uj ’s correspond to significant parameters of many
challenging discriminative models such as multi-layer feedforward neural networks and mixture of
classifiers, under the realizable setting.

Extension to self-taught learning: The results presented so far assume the semi-supervised
setting, where the unlabeled samples {x̃i} used to estimate the score functions are drawn from the
same distributions as the input {xi} of the labeled samples {(xi, yi)}. We present simple mechanisms
to extend to the self-taught setting, where the distributions of {x̃i} and {xi} are related, but not the
same. We assume latent-variable models for x̃ and x, e.g., sparse coding, independent component
analysis (ICA), mixture models, restricted Boltzmann machine (RBM), and so on. We assume that
the conditional distributions p(x̃|h̃) and p(x|h), given the corresponding latent variables h̃ and h are
the same. This is reasonable since the unlabeled samples {x̃i} are usually “rich” enough to cover all
the elements. For example, in the sparse coding setting, we assume that all the dictionary elements
can be learnt through {x̃i}, which is assumed in a number of previous works, e.g (Raina et al., 2007;
Zhang et al., 2008). Under this assumption, estimating the score function for new samples {xi}
is relatively straightforward, since we can transfer the estimated conditional distribution p(x̃|h̃)
(using unlabeled samples {x̃i}) as the estimation of p(x|h), and we can re-estimate the marginal
distribution p(h) easily. Thus, the use of score functions allows for easy transfer of information
under the self-taught framework. The rest of the steps can proceed as before.

1.3 Related Work

Due to limitation of labeled samples in many domains such as computer vision and natural language
processing, the frameworks of domain adaptation, semi-supervised, transfer and multi-task learning
have been popular in domains such as NLP (Blitzer et al., 2006), computer vision (Quattoni et al.,
2007; Yang et al., 2007; Hoffman et al., 2013), and so on. We now list the various approaches below.

Non-probabilistic approaches: Semi-supervised learning has been extensively studied via
non-probabilistic approaches. Most works attempt to assign labels to the unlabeled samples,
e.g. (Ando and Zhang, 2005), either through bootstrapping (Yarowsky, 1995; Blum and Mitchell,
1998), or by learning good functional structures (Szummer and Jaakkola, 2002; Ando and Zhang,
2005). Related to semi-supervised learning is the problem of domain adaptation, where the source
domain has labeled datasets on which classifiers have been trained, e.g. (Ben-david et al., 2006;
Huang et al., 2006; Mansour et al., 2009; Blitzer et al., 2009; Ben-David et al., 2010; Gong et al.,
2013), and there may or may not be labeled samples in the target domain. The main difference is
that in this paper, we consider the source domain to have only unlabeled samples, and we pre-train
general-purpose features, which are not tied to any specific task.

A number of recent works have investigated transfer learning using deep neural networks,
e.g. (Bengio, 2011; Socher et al., 2013; Zeiler and Fergus, 2013; Sermanet et al., 2013; Donahue et al.,
2014; Yosinski et al., 2014) and obtain state-of-art performance on various tasks.

Probabilistic approaches (Fisher kernels): A number of works explore probabilistic ap-
proaches to semi-supervised and transfer learning, where they learn a generative model on the
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input and use the features from the model for discriminative tasks. Fisher kernels fall into this
category, where the Fisher score is pre-trained using unlabeled samples, and then used for discrim-
inative tasks through a kernel classifier (Jaakkola et al., 1999). Our paper proposes higher order
extensions of the Fisher score, which yield matrix and tensor score features, and we argue that they
are much more informative for discriminative learning, since they yield higher order derivatives
of the label function. Moreover, we provide a different mechanism to utilize the score features:
instead of directly feeding the score features to the classifier, we form cross-moments between the
score features and the labels, and extract discriminative features through spectral decomposition.
These discriminative features can then be used in the standard classification frameworks. This
allows us to overcome a common complaint that the pre-trained features, by themselves may not
be discriminative for a particular task. Instead there have been attempts to construct discrimi-
native features from generative models using labeled samples (Maaten, 2011; Mairal et al., 2009;
Wang et al., 2013). However, this is time-consuming since the discriminative features need to be
re-trained for every new task.

Probabilistic approaches (latent representations): A number of works learn latent rep-
resentations to obtain higher level features for classification tasks. Popular models include sparse
coding (Raina et al., 2007), independent component analysis (ICA) (Le et al., 2011), and restricted
Boltzmann machines (RBM) (Swersky et al., 2011). It has been argued that having overcomplete la-
tent representations, where the latent dimensionality exceeds the observed dimensionality, is crucial
to getting good classification performance (Coates et al., 2011). We also note here that the authors
and others have been involved in developing guaranteed and efficient algorithms for unsupervised
learning of latent representations such as mixture models, ICA (Anandkumar et al., 2014a,c), sparse
coding (Agarwal et al., 2014; Arora et al., 2014), and deep representations (Arora et al., 2013).
There have been various other probabilistic frameworks for information transfer. Raina et al. (2006)
consider learning priors over parameters in one domain and using it in the other domain in the
Bayesian setting. McCallum et al. (2006) argue that incorporating generative models for p(x|y) acts
as a regularizer and leads to improved performance.

Raina et al. (2007) introduce the framework of self-taught learning, where the distribution of
unlabeled samples is related but not the same as the input for labeled samples. They employ a
sparse coding model for the input, and assume that both the datasets share the same dictionary
elements, and only the distribution of the coefficients which combine the dictionary elements are
different. They learn the dictionary from the unlabeled samples, and then use it to decode the input
of the labeled samples. The decoded dictionary coefficients are the features which are fed into SVM
for classification. In this paper, we provide an alternative framework for learning features in a self-
taught framework by transferring parameters for score function estimation in the new domain.

Probabilistic approaches (score matching): We now review the score matching approaches
for learning probabilistic models. These methods estimate parameters using score matching criteria
rather than a likelihood-based one. Since we utilize score function features, it makes sense to
estimate parameters based on the score matching criterion. Hyvärinen (2005) introduce the criterion
of minimizing the Fisher divergence, which is the expected square loss between the model score
function and the data score function. Note that the score function ∇x log p(x) does not involve
the partition function, which is typically intractable to compute, and is thus tractable in scenarios
where the likelihood cannot be computed. Lyu (2009) further provide a nice theoretical result that
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the score matching criterion is more robust than maximum likelihood in the presence of noise.
Swersky et al. (2011) apply the score matching framework for learning RBMs, and extract features
for classification, which show superior performance compared to auto-encoders.

Probabilistic approaches (regularized auto-encoders): Another class of approaches for
feature learning are the class of regularized auto-encoders. An auto-encoder maps the input to a
code through an encoder function, and then maps back using a decoder function. The training
criterion is to minimize the reconstruction loss along with a regularization penalty. They have been
employed for pre-training neural networks. See (Bengio et al., 2013) for a review. Vincent (2011)
established that a special case of denoising auto-encoder reduces to a score matching criterion for
an appropriately chosen energy function. Alain and Bengio (2012) establish that the denoising
auto-encoders estimate the score function (of first and second order), in the limit as the noise
variance goes to zero. In this paper, we argue that the score function are the appropriate features
to learn for transferring information to various related tasks. Thus, we can employ auto-encoders
for estimating the score functions.

Stein’s identity: Our results establishing that the higher order score functions in (3) yield
derivatives of the label function in (2) is novel. The special case of the first derivative reduces
to Stein’s identity in statistics (Stein, 1986; Ley and Swan, 2013), which is essentially obtained
through integration by parts. We construct higher order score functions in a recursive manner, and
then show that it reduces to the simple form in (3).

Orthogonal polynomials: For the special case of Gaussian input x ∼ N (0, I), we show that the
score functions in (3) reduce to the familiar multivariate Hermite polynomials, which are orthogonal
polynomials for the Gaussian distribution (Grad, 1949; Holmquist, 1996). However, for general
distributions, the score functions need not be polynomials.

2 Problem Formulation

In this section, we first review different learning settings; in particular semi-supervised and self-
taught learning settings which we consider in this paper. Then, we state the main assumptions to
establish our theoretical guarantees.

2.1 Learning settings and assumptions

First, we describe different learning settings and clarify the differences between them by giving some
image classification examples, although the framework is general and applicable to other domains
as well.

Semi-supervised learning: In the semi-supervised setting, we have both labeled samples {(xi, yi)}
and unlabeled samples {x̃i} in the training set. For instance, consider a set of images containing
cats and dogs, where a fraction of them are labeled with the binary output yi specifying if the
image contains cat or dog. The main assumption is that the input in the labeled and unlabeled
datasets have the same distribution.
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Multi-task learning: In the multi-task setting, we have labeled samples {(xi, yi)} and {(xi, ỹi)}
where the same set of inputs xi are labeled for two different tasks. For instance, consider a set of
images containing cats, dogs, monkeys and humans where the first task is to label them as {human,
not human}, while the other task is to label them as {cat, not cat}.

Transfer learning: In transfer learning, we want to exploit the labeled information of one task
to perform other related tasks. This is also known as knowledge transfer since the goal is to
transfer the knowledge gained in analyzing one task to another. Concretely, we have access to
labeled samples {(xi, yi)} and {(x̃i, ỹi)} of two related tasks. For instance, imagine a set of images
{(xi, yi)} containing cats and dogs, another set of images {(x̃i, ỹi)} containing monkeys and humans,
each of them with the corresponding labels. The goal is to use the information in source labeled
data {(x̃i, ỹi)} for classifying new samples of target data xi.

Self-taught learning: In self-taught learning, we further assume that the related dataset {x̃i}
in the transfer learning setting does not have labels. Concretely, we have labeled samples of the
original task as {(xi, yi)}, and other unlabeled data {x̃i} from a related distribution. For instance,
consider a set of images {(xi, yi)} containing cats and dogs with labels, and assume we have lots of
unlabeled images {x̃i} which can be any type of images, say downloaded from internet.

In this paper, we focus on semi-supervised and self-taught learning settings, and other related
learning frameworks mentioned above are also treated in these two settings, i.e. we consider first
training score function features from input, without using labels, and then use the labels in con-
junction with score function features.

We first give general assumptions we use in both semi-supervised and self-taught settings. Then,
we state additional assumptions for the self-taught learning framework.

Probabilistic input x: We assume a generative model on input x where it is randomly drawn
from some continuous distribution p(x) satisfying mild regularity condition4. It is known that incor-
porating such generative assumption on x usually results in better performance on discriminative
tasks.

Probabilistic output y: We further assume a probabilistic model on output (label) y where it
is randomly drawn according to some distribution p(y|x) given input x, satisfying mild regularity
conditions5. In our framework, the output (label) can be scalar, vector, matrix or even tensor,
and it can be continuous or discrete, and we can handle a variety of regression and classification
settings such as multi-class, multi-label, and structured prediction problems.

Assumptions under the self-taught learning framework: We now state the assumptions
that tie the distribution of unlabeled samples with labeled ones. We consider latent-variable mod-
els for x̃ and x, e.g., sparse coding, independent component analysis, mixture models, restricted
Boltzmann machine, and so on. We assume that the conditional distributions p(x̃|h̃) and p(x|h),
given the corresponding latent variables h̃ and h, are the same. This is reasonable since the unla-
beled samples {x̃i} are usually “rich” enough to cover all the elements. For example, in the sparse

4The exact form of regularity conditions are provided in Theorem 6.
5The exact form of regularity conditions are provided in Theorem 6.
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coding setting, we assume that all the dictionary elements can be learnt through {x̃i}, which is
assumed in a number of previous works, e.g (Raina et al., 2007; Zhang et al., 2008). In particular,
in the image classification task mentioned earlier, consider a set of images {xi} containing cats and
dogs, and assume we also have lots of unlabeled images {x̃i}, which can be any type of images, say
downloaded from internet. Under the sparse coding model, the observed images are the result of a
sparse combination of dictionary elements. The coefficients for combining the dictionary elements
correspond to hidden variables h and h̃ for the two datasets. It is reasonable to expect that the two
datasets share the same dictionary elements, i.e., once the coefficients are fixed, it is reasonable to
assume that the conditional probability of drawing the observed pixels in images is the same for
both labeled images (including only cats and dogs) and unlabeled images (including all random im-
ages). But the marginal probability of the coefficients, denoted by p(h) and p(h̃), will be different,
since they represent two different data sets. In Section 5.4, we show that this assumption leads to
simple mechanisms to transfer knowledge about the score function to the new dataset.

2.2 A snapshot of our approach

We now succinctly explain our general framework and state how the above assumptions are involved
in our setting. In general, semi-supervised learning considers access to both labeled and unlabeled
samples in the training data set. When the labeled data is limited and the learning task mostly
relies on the unlabeled data (which is the case in many applications), the task is more challenging,
and assuming distributional assumptions as above can improve the performance of learning task.

Note that maximum likelihood estimation of p(y|x) is non-convex and NP-hard in general, and
our goal in this work is to extract useful information from p(y|x) without entirely recovering it.
We extract information about the local variations of conditional distribution p(y|x), when input x
is changed. In particular, for the classification task, we extract useful information from derivatives
(including local variation information) of the first order conditional moment of output y given input
x denoted as 6

E[y|x] := G(x).

More concretely, we provide mechanisms to compute E[∇(m)
x G(x)], where ∇(m)

x denotes the m-th
order derivative operator w.r.t. variable x. We usually limit to a small m, e.g., m = 3.

Note that in computing E[∇(m)
x G(x)], we also apply the expectation over input x, and thus, the

generative model of x comes into the picture. This derivative is a vector/matrix/tensor, depend-
ing on m. Finally, we decompose this derivative matrix/tensor to rank-1 components to obtain
discriminative features.

Now the main question is how to estimate the derivatives E[∇(m)G(x)]. One of our main
contributions in this work is to show that the score functions yield such label-function derivatives.
For m = 1, it is known that the (first order) score function yields the derivative as

−E[y · ∇ log p(x)] = E[∇G(x)], when E[y|x] := G(x),

where −∇ log p(x) is the (usual first order) score function. More generally, we introduce (m-th

6In the classification setting, powers of y, e.g., y2 contain no additional information, and hence, all the information
of the associative model is in the first order conditional moment E[y|x] := G(x). However, in the regression setting, we
can involve higher order conditional moments, e.g., E[y2|x] := H(x). Our approach can also compute the derivatives
of these higher order conditional moments.
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order) score functions denoted by Sm(x) which also yield the desired derivatives as

E[y · Sm(x)] = E[∇(m)G(x)].

The estimation of score functions Sm(x) is performed in an unsupervised manner using unlabeled
samples {xi}; see Section 5 for the details.

Computing cross-moment between label y and score function Sm(x): After estimating
the score function, we form the cross moment E[y ·Sm(x)] between labels y and (higher order) score
functions Sm(x) using labeled data. Here, we assume that we can compute the exact form of these
moments. Perturbation analysis of the computed empirical moment depends on the setting of the
probabilistic models on input x and output y which is the investigation direction in the subsequent
works applying the proposed framework in this paper to specific learning tasks.

3 Score Functions Yield Label Function Derivatives: Informal Re-

sults

In this section, we provide one of our main contributions in this paper, which is showing that higher
order score functions yield differential operators. Here, we present informal statements of the main
result, along with with detailed discussions, while the formal lemmas and theorems are stated in
Section 6.

3.1 First order score functions

We first review the existing results on score functions and their properties as yielding first order
differential operators. The score function is the derivative of the logarithm of density function.
The derivative is w.r.t. either variable x or the parameters of the distribution. The latter one is
usually called Fisher score in the literature. We provide the properties of score functions as yielding
differential operators in both cases.

Stein identity: We start with Stein’s identity (or Stein’s lemma) which is the building block
of our work. The original version of Stein’s lemma is for the Gaussian distribution. For a stan-
dard random Gaussian vector x ∼ N (0, Idx), it states that for all functions7 G(x) satisfying mild
regularity conditions, we have (Stein, 1972)

E[G(x)⊗ x] = E[∇xG(x)], (5)

where ⊗ denotes the tensor product (note that if G(x) is a vector (or a scalar), the notation G(x)⊗x
is equivalent to G(x)x⊤), and ∇x denotes the usual gradient operator w.r.t. variable x. For details
on tensor and gradient notations, see Section 6.1.

The above result for the Gaussian distribution can be generalized to other random distributions
as follows. For a random vector x ∈ R

dx , let p(x) and ∇x log p(x) respectively denote the joint
density function and the corresponding score function. Then, under some mild regularity conditions,
for all functions G(x), we have

E[G(x)⊗∇x log p(x)] = −E[∇xG(x)]. (6)

7We consider general tensor valued functions G(x) : Rdx →
⊗r

R
dy . For details on tensor notation, see Section 6.1.
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See Lemma 4 for a formal statement of this result including description of regularity condi-
tions. Note that for the Gaussian random vector x ∼ N (0, Idx) with joint density function
p(x) = 1

(
√
2π)

dx
e−‖x‖2/2, the score function is ∇x log p(x) = −x, and the above equality reduces

to the special case in (5).

Parametric Stein identity: A parametric approach to Stein’s lemma is introduced in (Ley and Swan,
2013), which we review here. We first define some notations. Let Θ denote the set of parameters
such that for θ ∈ Θ, p(x; θ) be a valid θ-parametric probability density function. In addition,
consider any θ0 ∈ Θ for which specific regularity conditions for a class of functions G(x; θ) hold
over a neighborhood of θ0. See Definition 2 for a detailed description of the regularity conditions,
which basically allows us to change the order of derivative w.r.t. to θ and integration on x. We are
now ready to state the informal parametric Stein’s identity as follows.

For a random vector x ∈ R
dx , let p(x; θ) and ∇θ log p(x; θ) respectively denote the joint θ-

parametric density function and the corresponding parametric score function. Then, for all func-
tions G(x; θ) satisfying the above (mild) regularity conditions, we have

E[G(x; θ)⊗∇θ log p(x; θ)] = −E[∇θG(x; θ)] at θ = θ0. (7)

See Theorem 5 for a formal statement of this result including description of regularity conditions.

Contrasting the above Stein identities: We provide Stein’s identity and the parametric form
in (6) and (7), respectively. The two identities mainly differ in taking the derivative w.r.t. either
the variable x or the parameter θ. We now provide an example assuming the mean vector as the
parameter of the distribution to elaborate the parametric result and contrast it with the original
version, where we also see how the two forms are closely related in this case.

Consider the random Gaussian vector x ∈ R
d with mean parameter µ and known identity

covariance matrix. Hence,

p(x;µ) =
1

(√
2π
)d

e−(x−µ)⊤(x−µ)/2

denotes the corresponding joint parametric density function with mean parameter θ = µ. Thus,
the parametric score function is ∇µ log p(x;µ) = x− µ and applying parametric Stein’s identity in
(7) to functions of the form G(x;µ) = G0(x− µ) leads to

E[G0(x− µ0)⊗ (x− µ0)] = −E[∇µG0(x− µ)|µ=µ0 ].

Setting µ0 = 0, this identity is the same as the original Stein’s identity in (5) since ∇µG0(x−µ) =
−∇xG0(x− µ).

Note that this relation is true for any distribution and not just Gaussian, i.e., for the joint
parametric density function p(x;µ) with mean parameter µ, we have the Stein identities from (6)
and (7) respectively as

E[G0(x− µ0)⊗∇x log p(x;µ)] = −E[∇xG0(x− µ0)],

E[G0(x− µ)⊗∇µ log p(x;µ)] = −E[∇µG0(x− µ)] at µ = µ0,

which are the same since ∇µG0(x− µ) = −∇xG0(x− µ) and ∇x log p(x;µ) = −∇µ log p(x;µ).
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3.2 Higher order score functions

The first order score functions and their properties as yielding differential operators are reviewed
in the previous section. Such differential property is called the Stein’s identity. In this section, we
generalize such differential properties to higher orders by introducing higher order score functions
as matrices and tensors.

3.2.1 Our contribution: higher order extensions to Stein’s identities

Let p(x) denote the joint probability density function of random vector x ∈ R
d. We denote Sm(x)

as the m-th order score function, which we establish is given by 8

Sm(x) = (−1)m
∇(m)

x p(x)

p(x)
, (8)

where ∇(m)
x denotes the m-th order derivative operator w.r.t. variable x. Note that the first order

score function S1(x) = −∇x log p(x) is the same as the score function in (6). Furthermore, we show
that Sm(x) is equivalently constructed from the recursive formula

Sm(x) = −Sm−1(x)⊗∇x log p(x)−∇xSm−1(x), (9)

with S0(x) = 1. Here ⊗ denotes the tensor product; for details on tensor notation, see Section 6.1.

Thus, Sm(x) is related to higher order score functions ∇(n)
x log p(x) with n ≤ m, which is the

reason we also call Sm(x)’s as higher order score functions. These functions Sm(x) enable us
to generalize the Stein’s identity in (6) to higher order derivatives, i.e., they yield higher order
differential operators.

Theorem 1 (Higher order differential operators, informal statement). For random vector x, let
p(x) and Sm(x) respectively denote the joint density function and the corresponding m-th order
score function in (8). Then, under some mild regularity conditions, for all functions G(x), we have

E [G(x)⊗ Sm(x)] = E

[

∇(m)
x G(x)

]

,

where ∇(m)
x denotes the m-th order derivative operator w.r.t. variable x.

See Theorem 6 for a formal statement of this result including description of regularity conditions.

Comparison with orthogonal polynomials: In the case of standard multivariate Gaussian
distribution as x ∼ N (0, Id), the score functions defined in (8) turn out to be multivariate Hermite
polynomials (Grad, 1949; Holmquist, 1996) Hm(x) defined as

Hm(x) := (−1)m
∇(m)

x p(x)

p(x)
, p(x) =

1
(√

2π
)d

e−‖x‖2/2.

8Since Sm(x) is related to m-th order derivative of the function p(x) with input vector x, it represents a tensor of
order m, i.e., Sm ∈

⊗m
R

d. For details on tensor notation, see Section 6.1.
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It is also worth mentioning that the Hermite polynomials satisfy the orthogonality property as (Holmquist,
1996, Theorem 5.1)

E [Hm(x)⊗Hm′(x)] =

{
m!I⊗m, m = m′,
0, otherwise,

where the expectation is over the standard multivariate Gaussian distribution. The applica-
tion of higher order Hermite polynomials as yielding differential operators has been known be-
fore (Goldstein and Reinert, 2005, equation (37)), but applications have mostly involved scalar
variable x ∈ R.

Thus, the proposed higher order score functions Sm(x) in (8) coincides with the orthogonal
Hermite polynomials Hm(x) in case of multivariate Gaussian distribution. However, this is not
necessarily the case for other distributions; for instance, it is convenient to see that the Laguerre
polynomials which are orthogonal w.r.t. Gamma distribution are different from the score functions
proposed in (8), although the Laguerre polynomials have a differential operator interpretation too;
see Goldstein and Reinert (2005) for the details. Note that the proposed score functions need not
be polynomial functions in general.

3.2.2 Parametric higher order Stein identities

In this section, we provide the generalization of first order parametric differential property in (7) to
higher orders. In order to do this, we introduce the parametric form of higher order score functions
in (8). Let Sm(x; θ) be the m-th order parametric score function given by

Sm(x; θ) = (−1)m
∇(m)

θ p(x; θ)

p(x; θ)
. (10)

Similar to the previous section, we can construct Sm(x; θ) as a function of higher order Fisher score

functions ∇(n)
θ log p(x; θ), n ≤ m, as

Sm(x; θ) := −Sm−1(x; θ)⊗∇θ log p(x; θ)−∇θSm−1(x; θ), (11)

with S0(x; θ) = 1.
Note that the first order parametric score function S1(x; θ) = −∇θ log p(x; θ) is the same as

Fisher score function exploited in (7). These higher order score functions enable us to generalize
the parametric Stein’s identity in (7) to higher orders as follows.

Theorem 2 (Higher order parametric differential operators, informal statement). For random
vector x ∈ R

dx, let p(x; θ) and Sm(x; θ) respectively denote the joint θ-parametric density function
and the corresponding m-th order score function in (10). Then, for all functions G(x; θ) satisfying
the regularity conditions, we have

E[G(x; θ)⊗ Sm(x; θ)] = E[∇(m)
θ G(x; θ)] at θ = θ0.

See Theorem 7 for a formal statement of this result including description of regularity conditions.
The advantage of this parametric form is it can be applied to both discrete and continuous

random variables.
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Algorithm 1 Tensor decomposition via tensor power iteration (Anandkumar et al., 2014b)

Require: 1) Rank-k tensor T =
∑

j∈[k] uj ⊗ uj ⊗ uj ∈ R
d×d×d, 2) L initialization vectors û

(1)
τ ,

τ ∈ [L], 3) number of iterations N .
for τ = 1 to L do

for t = 1 to N do
Tensor power updates (see (15) for the definition of the multilinear form):

û(t+1)
τ =

T
(

I, û
(t)
τ , û

(t)
τ

)

∥
∥
∥T
(

I, û
(t)
τ , û

(t)
τ

)∥
∥
∥

, (13)

end for
end for
return the cluster centers of set

{

û
(N+1)
τ : τ ∈ [L]

}

(by Procedure 2) as estimates uj .

4 Spectral Decomposition Algorithm

As part of the framework we introduced in Figure 1, we need a spectral/tensor method to decompose
the higher order derivative tensor E[∇(m)G(x)] to its rank-1 components denoted by uj. Let us
first consider the case that the derivative tensor is a matrix 9. Then the problem of decomposing
this matrix to the rank-1 components reduces to the usual Principle Component Analysis (PCA),
where the rank-1 directions are the eigenvectors of the matrix.

More generally, we can form higher order derivatives (m > 2) of the label function G(x) and
extract more information from their decomposition. The higher order derivatives are represented as
tensors which can be seen as multi-dimensional arrays. There exist different tensor decomposition
frameworks, but the most popular one is the CP decomposition where a (symmetric) rank-k tensor
T ∈ R

d×d×d is written as the sum of k rank-1 tensors 10

T =
∑

j∈[k]
uj ⊗ uj ⊗ uj, uj ∈ R

d. (12)

Here notation ⊗ represents the tensor (outer) product; see Section 6.1 for a detailed discussion on
the tensor notations.

We now state a tensor decomposition algorithm for computing decomposition forms in (12). The
Algorithm 1 is considered by Anandkumar et al. (2014b) where the generalization to higher order
tensors can be similarly introduced. The main step in (13) performs power iteration 11; see (15) for
the multilinear form definition. After running the algorithm for all different initialization vectors,
the clustering process from Anandkumar et al. (2014b) ensures that the best converged vectors are
returned as the estimates of true components uj. Detailed analysis of the tensor decomposition
algorithm and its convergence properties are provided by Anandkumar et al. (2014b). We briefly
summarize the initialization and convergence guarantees of the algorithm below.

9For instance, it happens when the label function y is a scalar, and m = 2 for vector input x. Then, E[∇(2)G(x)]
is a matrix (second order tensor).

10The decomposition for an asymmetric tensor is similarly defined as T =
∑

j∈[k] uj ⊗ vj ⊗ wj , uj , vj , wj ∈ R
d.

11This is the generalization of matrix power iteration to 3rd order tensors.
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Procedure 2 Clustering process (Anandkumar et al., 2014b)

Require: Tensor T ∈ R
d×d×d, set S :=

{

û
(N+1)
τ : τ ∈ [L]

}

, parameter ν.

while S is not empty do
Choose u ∈ S which maximizes |T (u, u, u)|.
Do N more iterations of power updates in (13) starting from u.
Let the output of iterations denoted by ũ be the center of a cluster.
Remove all the u ∈ S with |〈u, ũ〉| > ν/2.

end while
return the cluster centers.

Initialization: Since tensor decomposition is a non-convex problem, different initialization lead
to different solutions. Anandkumar et al. (2014b) introduce two initialization methods for the above
algorithm. One is random initialization and the other is a SVD-based technique, where the con-
vergence analysis is provided for the latter one.

Convergence guarantees: Tensor power iteration is one of the key algorithms for decomposing
rank-k tensor T in (12) into its rank-1 components uj’s. Zhang and Golub (2001) provide the con-
vergence analysis of tensor power iteration in the orthogonal setting where the tensor components
uj ’s are orthogonal to each other, and Anandkumar et al. (2014a) analyze the robustness of this
algorithm to noise.

Note that the rank-k tensor decomposition can still be unique even if the rank-1 components
are not orthogonal (unlike the matrix case). Anandkumar et al. (2014b) provide local and global
convergence guarantees for Algorithm 1 in the non-orthogonal and overcomplete, (where the ten-
sor rank k is larger than the dimension d) settings. The main assumption in their analysis is
the incoherence property which imposes soft-orthogonality conditions on the components uj ’s;
see Anandkumar et al. (2014b) for details.

Whitening (orthogonalization): In the non-orthogonal and undercomplete (where the tensor
rank k is smaller than the dimension d), instead of direct application of tensor power iteration
for tensor decomposition as in Algorithm 1, we first orthogonalize the tensor and then apply the
tensor power iteration, which requires different perturbation analysis; see for instance Song et al.
(2013). In the orthogonalization step also known as whitening, the tensor modes are multiplied by
whitening matrix such that the resulting tensor has an orthogonal decomposition.

5 Unsupervised Estimation of Score Functions

In this section, we discuss further on the score function and its estimation. First, we discuss the form
of score function for exponential family, and for models with latent variables. Next, we review the
frameworks which estimate the score function and discuss the connection with auto-encoders. Note
that these frameworks can be also extended to learning score functions of a nonlinear transformation
of the data.
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5.1 Score function for exponential family

The score function expression proposed in Equation (8) can be further simplified when the random
vector x belongs to the exponential family distributions where we have p(x; θ) ∝ exp(−E(x; θ)).
Here, E(x; θ) is known as the energy function. Then, we have

Sm(x) = (−1)m
∑

α1,...,αt

∇(α1)
x E(x, θ)⊗∇(α2)

x E(x, θ)⊗ · · · ⊗ ∇(αt)
x E(x, θ),

where {αi ∈ Z
+, i ∈ [t] :

t∑

i=1

αi = m}.

Thus, in case of the exponential family, the higher order score functions are compositions of the
derivatives of the energy function.

5.2 Score function for Latent Variable Models

For a latent variable model p(x, h; θ), let h denote the vector of latent variables and x the vector of
observed ones. It is well known that the (first order) Fisher score function of x is the marginalized
of the joint Fisher score (Tsuda et al., 2002)

∇θ log p(x; θ̂) =
∑

h

p(h|x; θ̂)∇θ log p(x, h; θ̂).

Given this marginalized form, Tsuda et al. (2002) also show that Fisher kernel is a special case of
marginalized kernels (where the joint kernel over both observed and latent variables is marginalized
over the posterior distribution).

For the special case of Gaussian mixtures, we can simplify the above general form in the following
manner. Let x = Ah + z, where z has multivariate standard normal distribution for simplicity.
In this case, the score function ∇x log p(x) is equal to x − AE[h|x], where E[h|x] is the posterior
estimation of the mean. This means that the mean vectors are weighted with posterior estimation
of the mean, i.e., centering based on contribution of each mixture. Note that if h were observed, we
would be centering based on the mean of that component. But since h is hidden, we center based
on the posterior distribution of h.

The higher order score functions can be readily calculated as

Sm = (−1)m
∑

h∇(m)p(x, h)
∑

h p(x, h)
.

5.3 Efficient Estimation of the Score Function

There are various efficient methods for computing the score function. In deep learning, the frame-
work of auto-encoders attempts to find encoding and decoding functions which minimize the recon-
struction error under noise (the so-called denoising auto-encoders or DAE). This is an unsupervised
framework involving only unlabeled samples. Alain and Bengio (2012) argue that the DAE approx-
imately learns the score function of the input, as the noise variance goes to zero. Moreover, they
also describe ways to estimate the second order score function.
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Score matching: The framework of score matching is popular for parameter estimation in prob-
abilistic models (Hyvärinen, 2005; Swersky et al., 2011), where the criterion is to fit parameters
is based on matching the data score function. We now review the score matching framework and
analysis in Lyu (2009). Let 12 p(x) denote the pdf of x, and the goal is to find a parametric prob-
abilistic model qθ(x) with model parameter θ that best matches p(x). Lyu (2009) formulate the
score matching framework introduced by (Hyvärinen, 2005) as minimizing the Fisher divergence
between two distributions p(x) and qθ(x), defined as

DF (p‖qθ) :=
∫

x
p(x)

∥
∥
∥
∥

∇xp(x)

p(x)
− ∇xqθ(x)

qθ(x)

∥
∥
∥
∥

2

dx.

Note that ∇xp(x)
p(x) = ∇x log p(x) is the first order score function (up to sign). Lyu (2009) also show

that the Fisher divergence can be equivalently written as

DF (p‖qθ) =
∫

x
p(x)

(

‖∇ log p(x)‖2 + ‖∇ log qθ(x)‖2 + 2△ log qθ(x)
)

.

where△ denotes the Laplacian operator △ :=
∑

i∈[d]
∂2

∂x2
i

. Then, they also provide a nice interpreta-

tion of Fisher divergence relating that to the usual KL (Kulback-Leibler) divergence DKL(p‖qθ) :=
∫

x p(x) log
p(x)
qθ(x)

dx in the sense of robustness to Gaussian noise as follows. Note that this also gives

the relation between score matching and maximum-likelihood (ML) estimation since ML is achieved
by minimizing the KL-divergence.

Lemma 3 (Lyu 2009). Let y = x +
√
tw, for t ≥ 0 and w a zero-mean white Gaussian vector.

Denote p̃t(y) and q̃t(y) as the densities of y when x has distribution p(x) and q(x), respectively.
Then, under some mild regularity conditions13, we have

d

dt
DKL(p̃t(y)‖q̃t(y)) = −1

2
DF (p̃t(y)‖q̃t(y)).

This provides us the interpretation that score matching (by minimizing Fisher divergence
DF (p‖qθ)) looks for stability, where the optimal parameter θ leads to least changes in the KL
divergence between the two models when a small amount of noise is added to the training data.

The above framework can be extended to matching the higher order score functions Sm(x)
introduced in this paper, where the derivative is replaced by the m-th order derivative leading to
minimizing 14

DL(p‖qθ) =
∫

x
p(x)

∥
∥
∥
∥
∥

∇(m)
x p(x)

p(x)
− ∇(m)

x qθ(x)

qθ(x)

∥
∥
∥
∥
∥

2

dx.

Note that ∇(m)
x p(x)
p(x) is exactly the m-th order score function Sm(x) up to sign.

12For the sake of notation simplicity, we also refer to p(x) and qθ(x) as p and qθ respectively, i.e., dropping the
dependence on x.

13See Lyu (2009) for the details of regularity conditions
14Subscript notation L is from Lyu (2009) where the Fisher divergence is generalized to any linear operator, e.g.,

higher order derivatives in our case.
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In addition, Swersky et al. (2011) analyze the score matching for latent energy-based models
with the joint distribution p(x, h; θ) = 1

Z(θ) exp(−Eθ(x, h)), and provide the closed-form estimation

for the parameters. Finally, Sasaki et al. (2014) point out that the score function can be estimated
efficiently through non-parametric methods without the need to estimate the density function. In
fact, the solution is closed form, and the hyper-parameters (such as the kernel bandwidth and the
regularization parameter) can be tuned easily through cross validation.

Estimation of the score function for φ(x): In some applications we need to compute the
score function of a nonlinear mapping of the input, i.e., for some function φ(x). This can be done
by first estimating the joint density function of transformed variable and then computing its score

function. Let t = φ(x) and Dt(i, j) :=
[
∂xi

∂tj

]

. Then, we know

pφ(x)(t1, . . . , tr) = px(φ
−1
1 (t), . . . , φ−1

r (t)) · |det(Dt)|,

and the score function is defined as

Sm(t) = (−1)m
∇(m)

t pφ(x)(t)

pφ(x)(t)
.

5.4 Score function estimation in self-taught setting

Now we discuss score function computation in the self-taught setting. Recall that in the self-
taught setting, the distribution of unlabeled samples {x̃i} is different from the input of the labeled
samples {xi}. In Section 2, we assume that the conditional distributions p(x̃|h̃) and p(x|h), given
the corresponding latent variables h̃ and h, are the same and give justifications for this assumption.

Under this assumption, estimating the score function for new samples {xi} is relatively straight-
forward, since we can transfer the estimated conditional distribution p(x̃|h̃) (using unlabeled sam-
ples {x̃i}) as the estimate for p(x|h), and we can re-estimate the marginal distribution p(h) easily.
Thus, the use of score functions allows for easy transfer of information under the self-taught frame-
work with latent-variable modeling.

More concretely, for the estimation of higher order score function Sm(x), we need to estimate
the joint probability density function of x denoted by p(x). We have

p(x) =
∑

h

p(h)p(x|h) =
∑

h

p(h)p(x̃|h),

where we also used the above assumption that the conditional distribution of target data x given
hidden variables can be substituted by the conditional distribution of unlabeled data x̃ given hid-
den variables. Note that p(x̃|h) can be estimated using unlabeled data {x̃i}. The unsupervised
estimation of p(x̃|h) can be done in different ways, e.g., using spectral methods, score matching
and so on.

6 Formal Statement of the Results

In this section, we provide formal statement of the theorems characterizing the differential properties
of the score functions. Before that, we propose an overview of notations mostly including tensor
preliminaries.
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6.1 Notations and tensor preliminaries

Let [n] denote the set {1, 2, . . . , n}.

Tensor: A real r-th order tensor T ∈ ⊗r
i=1R

di is a member of the outer product of Euclidean
spaces R

di , i ∈ [r]. For convenience, we restrict to the case where d1 = d2 = · · · = dr = d, and
simply write T ∈⊗r

R
d. As is the case for vectors (where r = 1) and matrices (where r = 2), we

may identify a r-th order tensor with the r-way array of real numbers [Ti1,i2,...,ir : i1, i2, . . . , ir ∈ [d]],
where Ti1,i2,...,ir is the (i1, i2, . . . , ir)-th coordinate of T with respect to a canonical basis. For
convenience, we limit to third order tensors (r = 3) in our analysis, while the results for higher
order tensors are also provided.

Tensor as multilinear form: We view a tensor T ∈ R
d×d×d as a multilinear form. Consider

matrices Ml ∈ R
d×dl , l ∈ {1, 2, 3}. Then tensor T (M1,M2,M3) ∈ R

d1 ⊗ R
d2 ⊗ R

d3 is defined as

T (M1,M2,M3)i1,i2,i3 :=
∑

j1,j2,j3∈[d]
Tj1,j2,j3 ·M1(j1, i1) ·M2(j2, i2) ·M3(j3, i3). (14)

In particular, for vectors u, v, w ∈ R
d, we have 15

T (I, v, w) =
∑

j,l∈[d]
vjwlT (:, j, l) ∈ R

d, (15)

which is a multilinear combination of the tensor mode-1 fibers. Similarly T (u, v, w) ∈ R is a
multilinear combination of the tensor entries, and T (I, I, w) ∈ R

d×d is a linear combination of the
tensor slices.

CP decomposition and tensor rank: A 3rd order tensor T ∈ R
d×d×d is said to be rank-1 if it

can be written in the form

T = w · a⊗ b⊗ c ⇔ T (i, j, l) = w · a(i) · b(j) · c(l), (16)

where notation ⊗ represents the tensor (outer) product, and a ∈ R
d, b ∈ R

d, c ∈ R
d are unit vectors

(without loss of generality). A tensor T ∈ R
d×d×d is said to have a CP rank k ≥ 1 if it can be

written as the sum of k rank-1 tensors

T =
∑

i∈[k]
wiai ⊗ bi ⊗ ci, wi ∈ R, ai, bi, ci ∈ R

d. (17)

Derivative of tensor-valued functions: Consider function F (x) ∈ ⊗r
R
d as a tensor-valued

function with vector input x ∈ R
d. The gradient of F (x) w.r.t. variable x is defined as a higher

order tensor ∇xF (x) ∈⊗r+1
R
d such that

∇xF (x)i1,...,ir,j :=
∂F (x)i1,...,ir

∂xj
. (18)

In addition, the m-th order derivative is denoted by ∇(m)
x F (x) ∈⊗r+m

R
d.

Finally, the transposition of a tensor with respect to a permutation matrix is defined as follows.

15Compare with the matrix case where for M ∈ R
d×d, we have M(I, u) = Mu :=

∑
j∈[d] ujM(:, j) ∈ R

d.
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Definition 1 (Tensor transposition). Consider tensor A ∈ ⊗r
R
d and permutation vector π =

[π1, π2, . . . , πr] ∈ R
r as a permutation of index vector 1 : r. Then, the π-transpose of A denoted by

A〈π〉 is defined such that it satisfies

A〈π〉(jπ1 , . . . , jπr) = A(j1, . . . , jr).

In other words, the i-th mode of tensor A〈π〉 corresponds to the πi-th mode of tensor A.

6.2 Stein identity

The following lemma states Stein’s identity saying how first order score functions yield differential
properties.

Lemma 4 (Stein’s lemma (Stein et al., 2004)). Let x ∈ R
dx be a random vector with joint density

function p(x). Suppose the score function ∇x log p(x) exists. Consider any continuously differen-
tiable tensor function G(x) : Rdx → ⊗r

R
dy such that all the entries of p(x) · G(x) go to zero on

the boundaries of support of p(x). Then, we have

E[G(x)⊗∇x log p(x)] = −E[∇xG(x)],

Note that it is also assumed that the above expectations exist (in the sense that the corresponding
integrals exist).

The proof follows integration by parts; the result for the scalar x and scalar-output functions
g(x) is provided in Stein et al. (2004).

6.3 Parametric Stein identity

We first recall and expand some parametric notations mentioned earlier. Let Θ denote the set of
parameters such that for θ ∈ Θ, p(x; θ) be a valid θ-parametric probability density function. For
θ0 ∈ Θ, let P(Rdx , θ0) be the collection of θ-parametric probability density functions on R

dx for
which there exists a bounded neighborhood Θ0 ⊂ Θ of θ0 and an integrable function l : Rdx → R

+

such that p(x; θ) ≤ l(x) over R
dx for all θ ∈ Θ0. Given θ0 ∈ Θ and p ∈ P(Rdx , θ0), we write

x ∼ p(·; θ0) to denote the joint density function of x.
The following regularity conditions is defined along the lines of (Ley and Swan, 2013, Definition

2.1).

Definition 2. Let θ0 be an interior point of Θ and p ∈ P(Rdx , θ0). Define Sθ := {x ∈ R
dx |p(x; θ) >

0} as the support of p(·, θ). We define the class G(p, θ0) as the collection of functions G : Rdx×Θ →
⊗r

R
dy such that there exits Θ0 some neighborhood of θ0 where the following conditions are satisfied:

1. There exists a constant cg ∈ R (not depending on θ) such that
∫
G(x; θ)i1,...,irp(x; θ)dx = cg

for all θ ∈ Θ0. Note that the equality is entry-wise.

2. For all x ∈ Sθ the mapping θ → G(·; θ)p(·; θ) is differentiable in the sense of distributions over
Θ0, and in addition the order of derivative w.r.t. θ and integration over x can be changed.

Finally, we state the parametric characterization of Stein’s lemma as follows which is the result
of Ley and Swan (2013, Theorem 2.1) generalized to tensor-output functions.
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Theorem 5 (Parametric Stein characterization). Let x ∈ R
dx be a random vector with joint θ-

parametric density function p(x; θ). If the parametric score function ∇θ log p(x; θ) exists, then for
all G(x; θ) ∈ G(p; θ0) defined in Definition 2, we have

E[G(x; θ)⊗∇θ log p(x; θ)] = −E[∇θG(x; θ)] at θ = θ0.

See Appendix A for the proof. The above result also holds for discrete random vectors;
see Ley and Swan (2013, Section 2.4) for the details.

6.4 Higher order Stein identities

We first provide the formal definition of higher order Score functions Sm(x), and then their differ-
ential properties are stated.

Definition 3 (Higher order score functions). Let p(x) denote the joint probability density function
of random vector x ∈ R

d. We denote Sm(x) ∈ ⊗m
R
d as the m-th order score function which is

defined based on the recursive differential relation

Sm(x) := −Sm−1(x)⊗∇x log p(x)−∇xSm−1(x), (19)

with S0(x) = 1.

By induction on m we can prove that the above definition is equivalent to (see the proof in the
appendix)

Sm(x) = (−1)m
∇(m)

x p(x)

p(x)
. (20)

Note that the first order score function S1(x) = −∇x log p(x) is the same as score function in Stein’s
lemma; see Lemma 4. These higher order score functions enable us to generalize the Stein’s identity
in Lemma 4 to higher orders as follows.

Theorem 6 (Yielding higher order differential operators). Let x ∈ R
dx be a random vector with

joint density function p(x). Suppose the m-th order score function Sm(x) defined in (19) exists.
Consider any continuously differentiable tensor function G(x) : Rdx →⊗r

R
dy satisfying the regu-

larity condition such that all the entries of ∇(i)
x G(x) ⊗ Sm−i−1(x)⊗ p(x), i ∈ {0, 1, . . . ,m− 1}, go

to zero on the boundaries of support of p(x). Then, we have

E [G(x)⊗ Sm(x)] = E

[

∇(m)
x G(x)

]

.

The result can be proved by iteratively applying the recursion formula of score functions in (19)
and Stein’s identity in Lemma 4, see Appendix A for the details.

6.5 Parametric higher order Stein identities

Let 16 Sm(x; θ) ∈ ⊗m
R
|θ| be the m-th order parametric score function which is defined based on

the recursive differential relation

Sm(x; θ) := −Sm−1(x; θ)⊗∇θ log p(x; θ)−∇θSm−1(x; θ), (21)

16Here, |θ| denote the dimension of parameter θ.
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with S0(x; θ) = 1. By induction on m we can prove that the above definition is equivalent to

Sm(x; θ) = (−1)m
∇(m)

θ p(x; θ)

p(x; θ)
.

Theorem 7 (Yielding higher order parametric differential operators). Let x ∈ R
dx be a random

vector with joint θ-parametric density function p(x; θ). If the m-th order parametric score function
Sm(x; θ) defined in (21) exists, then for all G(x; θ) ∈ G(p; θ0) defined in Definition 2, we have

E[G(x; θ)⊗ Sm(x; θ)] = E[∇(m)
θ G(x; θ)] at θ = θ0.
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Appendix

A Proof of Theorems

Proof of Theorem 5: Let us denote by ∇θh(θ0) the derivative of function h(θ) w.r.t. θ evaluated
at point θ0. We have
∫

∇θ

(
G(x; θ0)p(x; θ0)

)
dx =

∫

∇θG(x; θ0) · p(x; θ0)dx+

∫

G(x; θ0)⊗∇θp(x; θ0)dx

=

∫

∇θG(x; θ0) · p(x; θ0)dx+

∫

G(x; θ0)⊗∇θ log p(x; θ0) · p(x; θ0)dx

= E[∇θG(x; θ0)] + E[G(x; θ0)⊗∇θ log p(x; θ0)],

where the first step is concluded from product rule. On the other hand, we have
∫

∇θ

(
G(x; θ0)p(x; θ0)

)
dx = ∇θ

∫

G(x; θ0)p(x; θ0)dx = ∇θcg = 0,

where the second and first regularity conditions are respectively exploited in the above steps.
Combining the above two inequalities, the result is proved. �

Proof of Theorem 6: The proof is done by iteratively applying the recursion formula of score
functions in (19) and Stein’s identity in Lemma 4. First, we provide the first order analysis as
follows:

E [G(x) ⊗ Sm(x)]
(e1)
= − E [G(x) ⊗ Sm−1(x)⊗∇x log p(x)]− E [G(x) ⊗∇xSm−1(x)]

(e2)
= E [∇x (G(x)⊗ Sm−1(x))]− E [G(x) ⊗∇xSm−1(x)]

(e3)
= E [∇xG(x) ⊗ Sm−1(x)]

〈π〉 + E [G(x) ⊗∇xSm−1(x)]− E [G(x)⊗∇xSm−1(x)]

= E [∇xG(x) ⊗ Sm−1(x)]
〈π〉 ,
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where recursion formula (19) is used in equality (e1), equality (e2) is concluded by applying Stein’s
identity in Lemma 4 for which we also used the regularity condition that all the entries of G(x)⊗
Sm−1(x)⊗p(x) go to zero on the boundaries of support of p(x). Finally, the product rule in Lemma 8
is exploited in (e3) with appropriate permutation vector π to put the differentiating variable in the
last mode of the resulting tensor.

By iteratively applying above steps, the result is proved. Note that the permutation in the final

step does not affect on the tensor ∇(m)
x G(x) which is symmetric along the involved modes in the

permutation. �

A.1 Auxiliary lemmas

Lemma 8 (Product rule for gradient). Consider F (x) and G(x) as tensor-valued functions

F (x) : Rn →
p1⊗

R
n,

G(x) : Rn →
p2⊗

R
n.

Then, we have
∇(F (x)⊗G(x)) = (∇F (x)⊗G(x))〈π〉 + F ⊗∇G(x),

for permutation vector π = [1, 2, . . . , p1, p1 + 2, p1 + 3, . . . , p1 + p2 + 1, p1 + 1].

Proof: The lemma is basically the product rule for derivative with the additional transposition
applied to the first term. The necessity for transposition is argued as follows.

Note that for tensor-valued function F (x), the gradient ∇F (x) is defined in (18) such that
the last mode of the gradient tensor ∇F (x) corresponds to the entries of derivation argument or
variable x. This is immediate to see that the transposition applied to first term ∇F (x) ⊗G(x) is
required to comply with this convention. This transposition enforced by the specified permutation
vector π puts the last mode of ∇F (x) (mode number p1 + 1) to the last mode of whole tensor
∇F (x) ⊗ G(x). Note that such transposition is not required for the other term F ⊗ ∇G(x) since
the last mode of ∇G(x) is already the last mode of F ⊗∇G(x) as well. �

We also prove the explicit form of score functions in (20) as follows.

Sm(x) = (−1)m
∇(m)

x p(x)

p(x)
.

Proof of explicit score function form in (20): The result is proved by induction. It is easy
to verify that the basis of induction holds for m = 0, 1. Now we argue the inductive step assuming
that the result holds for m − 1 and showing that it also holds for m. Substituting the induction
assumption in the recursive form of Sm(x) defined in (19), we have

Sm(x) = (−1)m
∇(m−1)

x p(x)

p(x)
⊗∇x log p(x) + (−1)m∇x

(

∇(m−1)
x p(x)

p(x)

)

= (−1)m
∇(m−1)

x p(x)⊗∇xp(x)

p(x)2
+ (−1)m

p(x)∇(m)
x p(x)−∇(m−1)

x p(x)⊗∇xp(x)

p(x)2

= (−1)m
∇(m)

x p(x)

p(x)
,

where the quotient rule for derivative is used in the second equality. �
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