1,078 research outputs found

    Contribution of Cystine-Glutamate Antiporters to the Psychotomimetic Effects of Phencyclidine

    Get PDF
    Altered glutamate signaling contributes to a myriad of neural disorders, including schizophrenia. While synaptic levels are intensely studied, nonvesicular release mechanisms, including cystine–glutamate exchange, maintain high steady-state glutamate levels in the extrasynaptic space. The existence of extrasynaptic receptors, including metabotropic group II glutamate receptors (mGluR), pose nonvesicular release mechanisms as unrecognized targets capable of contributing to pathological glutamate signaling. We tested the hypothesis that activation of cystine–glutamate antiporters using the cysteine prodrug N-acetylcysteine would blunt psychotomimetic effects in the rodent phencyclidine (PCP) model of schizophrenia. First, we demonstrate that PCP elevates extracellular glutamate in the prefrontal cortex, an effect that is blocked by N-acetylcysteine pretreatment. To determine the relevance of the above finding, we assessed social interaction and found that N-acetylcysteine reverses social withdrawal produced by repeated PCP. In a separate paradigm, acute PCP resulted in working memory deficits assessed using a discrete trial t-maze task, and this effect was also reversed by N-acetylcysteine pretreatment. The capacity of N-acetylcysteine to restore working memory was blocked by infusion of the cystine–glutamate antiporter inhibitor (S)-4-carboxyphenylglycine into the prefrontal cortex or systemic administration of the group II mGluR antagonist LY341495 indicating that the effects of N-acetylcysteine requires cystine–glutamate exchange and group II mGluR activation. Finally, protein levels from postmortem tissue obtained from schizophrenic patients revealed significant changes in the level of xCT, the active subunit for cystine–glutamate exchange, in the dorsolateral prefrontal cortex. These data advance cystine–glutamate antiporters as novel targets capable of reversing the psychotomimetic effects of PCP

    Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring

    Get PDF
    Over the last 2 decades, a large number of neurophysiological and neuroimaging studies of patients with schizophrenia have furnished in vivo evidence for dysconnectivity, ie, abnormal functional integration of brain processes. While the evidence for dysconnectivity in schizophrenia is strong, its etiology, pathophysiological mechanisms, and significance for clinical symptoms are unclear. First, dysconnectivity could result from aberrant wiring of connections during development, from aberrant synaptic plasticity, or from both. Second, it is not clear how schizophrenic symptoms can be understood mechanistically as a consequence of dysconnectivity. Third, if dysconnectivity is the primary pathophysiology, and not just an epiphenomenon, then it should provide a mechanistic explanation for known empirical facts about schizophrenia. This article addresses these 3 issues in the framework of the dysconnection hypothesis. This theory postulates that the core pathology in schizophrenia resides in aberrant N-methyl-D-aspartate receptor (NMDAR)–mediated synaptic plasticity due to abnormal regulation of NMDARs by neuromodulatory transmitters like dopamine, serotonin, or acetylcholine. We argue that this neurobiological mechanism can explain failures of self-monitoring, leading to a mechanistic explanation for first-rank symptoms as pathognomonic features of schizophrenia, and may provide a basis for future diagnostic classifications with physiologically defined patient subgroups. Finally, we test the explanatory power of our theory against a list of empirical facts about schizophrenia

    Is the acute NMDA receptor hypofunction a valid model of schizophrenia?

    Get PDF
    El pdf del artículo es la versión post-print.Several genetic, neurodevelopmental, and pharmacological animal models of schizophrenia have been established. This short review examines the validity of one of the most used pharmacological model of the illness, ie, the acute administration of N-methyl-D-aspartate (NMDA) receptor antagonists in rodents. In some cases, data on chronic or prenatal NMDA receptor antagonist exposure have been introduced for comparison. The face validity of acute NMDA receptor blockade is granted inasmuch as hyperlocomotion and stereotypies induced by phencyclidine, ketamine, and MK-801 are regarded as a surrogate for the positive symptoms of schizophrenia. In addition, the loss of parvalbumin-containing cells (which is one of the most compelling finding in postmortem schizophrenia brain) following NMDA receptor blockade adds construct validity to this model. However, the lack of changes in glutamic acid decarboxylase (GAD67) is at variance with human studies. It is possible that changes in GAD67 are more reflective of the neurodevelopmental condition of schizophrenia. Finally, the model also has predictive validity, in that its behavioral and transmitter activation in rodents are responsive to antipsychotic treatment. Overall, although not devoid of drawbacks, the acute administration of NMDA receptor antagonists can be considered as a good model of schizophrenia bearing a satisfactory degree of validity. © 2011 The Author.This work was supported by the Spanish Ministry of Health (Grant FIS PI070111), by the grant Proyecto Intramural Especial CSIC 201020E046, and by the Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM. XL-G and LJ-S are recipients of a postdoctoral fellowship from the Consejo Superior de Investigaciones Científicas (CSIC) and a predoctoral fellowship from the Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), respectively.Peer Reviewe

    Role of N-methyl-D-aspartate receptors in action-based predictive coding deficits in schizophrenia

    Full text link
    Published in final edited form as:Biol Psychiatry. 2017 March 15; 81(6): 514–524. doi:10.1016/j.biopsych.2016.06.019.BACKGROUND: Recent theoretical models of schizophrenia posit that dysfunction of the neural mechanisms subserving predictive coding contributes to symptoms and cognitive deficits, and this dysfunction is further posited to result from N-methyl-D-aspartate glutamate receptor (NMDAR) hypofunction. Previously, by examining auditory cortical responses to self-generated speech sounds, we demonstrated that predictive coding during vocalization is disrupted in schizophrenia. To test the hypothesized contribution of NMDAR hypofunction to this disruption, we examined the effects of the NMDAR antagonist, ketamine, on predictive coding during vocalization in healthy volunteers and compared them with the effects of schizophrenia. METHODS: In two separate studies, the N1 component of the event-related potential elicited by speech sounds during vocalization (talk) and passive playback (listen) were compared to assess the degree of N1 suppression during vocalization, a putative measure of auditory predictive coding. In the crossover study, 31 healthy volunteers completed two randomly ordered test days, a saline day and a ketamine day. Event-related potentials during the talk/listen task were obtained before infusion and during infusion on both days, and N1 amplitudes were compared across days. In the case-control study, N1 amplitudes from 34 schizophrenia patients and 33 healthy control volunteers were compared. RESULTS: N1 suppression to self-produced vocalizations was significantly and similarly diminished by ketamine (Cohen’s d = 1.14) and schizophrenia (Cohen’s d = .85). CONCLUSIONS: Disruption of NMDARs causes dysfunction in predictive coding during vocalization in a manner similar to the dysfunction observed in schizophrenia patients, consistent with the theorized contribution of NMDAR hypofunction to predictive coding deficits in schizophrenia.This work was supported by AstraZeneca for an investigator-initiated study (DHM) and the National Institute of Mental Health Grant Nos. R01 MH-58262 (to JMF) and T32 MH089920 (to NSK). JHK was supported by the Yale Center for Clinical Investigation Grant No. UL1RR024139 and the US National Institute on Alcohol Abuse and Alcoholism Grant No. P50AA012879. (AstraZeneca for an investigator-initiated study (DHM); R01 MH-58262 - National Institute of Mental Health; T32 MH089920 - National Institute of Mental Health; UL1RR024139 - Yale Center for Clinical Investigation; P50AA012879 - US National Institute on Alcohol Abuse and Alcoholism)Accepted manuscrip

    Negative Correlation between Brain Glutathione Level and Negative Symptoms in Schizophrenia: A 3T 1H-MRS Study

    Get PDF
    BACKGROUND: Glutathione (GSH), a major intracellular antioxidant, plays a role in NMDA receptor-mediated neurotransmission, which is involved in the pathophysiology of schizophrenia. In the present study, we aimed to investigate whether GSH levels are altered in the posterior medial frontal cortex of schizophrenic patients. Furthermore, we examined correlations between GSH levels and clinical variables in patients. METHODS AND FINDINGS: Twenty schizophrenia patients and 16 age- and gender-matched normal controls were enrolled to examine the levels of GSH in the posterior medial frontal cortex by using 3T SIGNA EXCITE (1)H-MRS with the spectral editing technique, MEGA-PRESS. Clinical variables of patients were assessed by the Global Assessment of Functioning (GAF), Scale for the Assessment of Negative Symptoms (SANS), Brief Psychiatric Rating Scale (BPRS), Drug-Induced Extra-Pyramidal Symptoms Scale (DIEPSS), and five cognitive performance tests (Word Fluency Test, Stroop Test, Trail Making Test, Wisconsin Card Sorting Test and Digit Span Distractibility Test). Levels of GSH in the posterior medial frontal cortex of schizophrenic patients were not different from those of normal controls. However, we found a significant negative correlation between GSH levels and the severity of negative symptoms (SANS total score and negative symptom subscore on BPRS) in patients. There were no correlations between brain GSH levels and scores on any cognitive performance test except Trail Making Test part A. CONCLUSION: These results suggest that GSH levels in the posterior medial frontal cortex may be related to negative symptoms in schizophrenic patients. Therefore, agents that increase GSH levels in the brain could be potential therapeutic drugs for negative symptoms in schizophrenia

    The NMDA receptor GluN2C subunit controls cortical excitatoryinhibitory balance, neuronal oscillations and cognitive function

    Get PDF
    Despite strong evidence for NMDA receptor (NMDAR) hypofunction as an underlying factor for cognitive disorders, the precise roles of various NMDAR subtypes remains unknown. The GluN2Ccontaining NMDARs exhibit unique biophysical properties and expression pattern, and lower expression of GluN2C subunit has been reported in postmortem brains from schizophrenia patients. We found that loss of GluN2C subunit leads to a shift in cortical excitatory-inhibitory balance towards greater inhibition. Specifically, pyramidal neurons in the medial prefrontal cortex (mPFC) of GluN2C knockout mice have reduced mEPSC frequency and dendritic spine density and a contrasting higher frequency of mIPSCs. In addition a greater number of perisomatic GAD67 puncta was observed suggesting a potential increase in parvalbumin interneuron inputs. At a network level the GluN2C knockout mice were found to have a more robust increase in power of oscillations in response to NMDAR blocker MK- 801. Furthermore, GluN2C heterozygous and knockout mice exhibited abnormalities in cognition and sensorimotor gating. Our results demonstrate that loss of GluN2C subunit leads to cortical excitatoryinhibitory imbalance and abnormal neuronal oscillations associated with neurodevelopmental disorders

    Pharmacological Models of Psychosis-Amphetamine and Ketamine

    Get PDF

    A review of the models of schizophrenia: and a putative novel, more unified model

    Get PDF
    Schizophrenia is a debilitating disease state which causes immense pain to sufferers and to their families. Although some proximate causes of symptoms of the disease have been identified, no ultimate cause has been uncovered which can explain all of the symptoms. This paper presents a novel theory of the ultimate cause of some forms of chronic schizophrenia with the potential to explain many (if not all) symptomologies associated with the disease. In addition to its explanatory power, this putative model may also give rise to new early diagnostic tools and treatments for schizophrenia. After the model is fully explained, suggestions for further research to confirm this model\u27s validity are put forth

    Using transcranial direct-current stimulation (tDCS) to understand cognitive processing

    Full text link
    Noninvasive brain stimulation methods are becoming increasingly common tools in the kit of the cognitive scientist. In particular, transcranial direct-current stimulation (tDCS) is showing great promise as a tool to causally manipulate the brain and understand how information is processed. The popularity of this method of brain stimulation is based on the fact that it is safe, inexpensive, its effects are long lasting, and you can increase the likelihood that neurons will fire near one electrode and decrease the likelihood that neurons will fire near another. However, this method of manipulating the brain to draw causal inferences is not without complication. Because tDCS methods continue to be refined and are not yet standardized, there are reports in the literature that show some striking inconsistencies. Primary among the complications of the technique is that the tDCS method uses two or more electrodes to pass current and all of these electrodes will have effects on the tissue underneath them. In this tutorial, we will share what we have learned about using tDCS to manipulate how the brain perceives, attends, remembers, and responds to information from our environment. Our goal is to provide a starting point for new users of tDCS and spur discussion of the standardization of methods to enhance replicability.The authors declare that they had no conflicts of interest with respect to their authorship or the publication of this article. This work was supported by grants from the National Institutes of Health (R01-EY019882, R01-EY025272, P30-EY08126, F31-MH102042, and T32-EY007135). (R01-EY019882 - National Institutes of Health; R01-EY025272 - National Institutes of Health; P30-EY08126 - National Institutes of Health; F31-MH102042 - National Institutes of Health; T32-EY007135 - National Institutes of Health)Accepted manuscrip
    corecore