2,194 research outputs found

    Crossing Boundaries: Tapestry Within the Context of the 21st Century

    Get PDF
    International audienceGraphical model processing is a central problem in artificial intelligence. The optimization of the combined cost of a network of local cost functions federates a variety of famous problems including CSP, SAT and Max-SAT but also optimization in stochastic variants such as Markov Random Fields and Bayesian networks. Exact solving methods for these problems typically include branch and bound and local inference-based bounds.In this paper we are interested in understanding when and how dynamic programming based optimization can be used to efficiently enforce soft local consistencies on Global Cost Functions, defined as parameterized families of cost functions of unbounded arity. Enforcing local consistencies in cost function networks is performed by applying so-called Equivalence Preserving Transformations (EPTs) to the cost functions. These EPTs may transform global cost functions and make them intractable to optimize.We identify as tractable projection-safe those global cost functions whose optimization is and remains tractable after applying the EPTs used for enforcing arc consistency. We also provide new classes of cost functions that are tractable projection-safe thanks to dynamic programming.We show that dynamic programming can either be directly used inside filtering algorithms, defining polynomially DAG-filterable cost functions, or emulated by arc consistency filtering on a Berge-acyclic network of bounded-arity cost functions, defining Berge-acyclic network-decomposable cost functions. We give examples of such cost functions and we provide a systematic way to define decompositions from existing decomposable global constraints.These two approaches to enforcing consistency in global cost functions are then embedded in a solver for extensive experiments that confirm the feasibility and efficiency of our proposal

    Inference via low-dimensional couplings

    Full text link
    We investigate the low-dimensional structure of deterministic transformations between random variables, i.e., transport maps between probability measures. In the context of statistics and machine learning, these transformations can be used to couple a tractable "reference" measure (e.g., a standard Gaussian) with a target measure of interest. Direct simulation from the desired measure can then be achieved by pushing forward reference samples through the map. Yet characterizing such a map---e.g., representing and evaluating it---grows challenging in high dimensions. The central contribution of this paper is to establish a link between the Markov properties of the target measure and the existence of low-dimensional couplings, induced by transport maps that are sparse and/or decomposable. Our analysis not only facilitates the construction of transformations in high-dimensional settings, but also suggests new inference methodologies for continuous non-Gaussian graphical models. For instance, in the context of nonlinear state-space models, we describe new variational algorithms for filtering, smoothing, and sequential parameter inference. These algorithms can be understood as the natural generalization---to the non-Gaussian case---of the square-root Rauch-Tung-Striebel Gaussian smoother.Comment: 78 pages, 25 figure

    Distributed Adaptive Learning with Multiple Kernels in Diffusion Networks

    Full text link
    We propose an adaptive scheme for distributed learning of nonlinear functions by a network of nodes. The proposed algorithm consists of a local adaptation stage utilizing multiple kernels with projections onto hyperslabs and a diffusion stage to achieve consensus on the estimates over the whole network. Multiple kernels are incorporated to enhance the approximation of functions with several high and low frequency components common in practical scenarios. We provide a thorough convergence analysis of the proposed scheme based on the metric of the Cartesian product of multiple reproducing kernel Hilbert spaces. To this end, we introduce a modified consensus matrix considering this specific metric and prove its equivalence to the ordinary consensus matrix. Besides, the use of hyperslabs enables a significant reduction of the computational demand with only a minor loss in the performance. Numerical evaluations with synthetic and real data are conducted showing the efficacy of the proposed algorithm compared to the state of the art schemes.Comment: Double-column 15 pages, 10 figures, submitted to IEEE Trans. Signal Processin

    Markov models for fMRI correlation structure: is brain functional connectivity small world, or decomposable into networks?

    Get PDF
    Correlations in the signal observed via functional Magnetic Resonance Imaging (fMRI), are expected to reveal the interactions in the underlying neural populations through hemodynamic response. In particular, they highlight distributed set of mutually correlated regions that correspond to brain networks related to different cognitive functions. Yet graph-theoretical studies of neural connections give a different picture: that of a highly integrated system with small-world properties: local clustering but with short pathways across the complete structure. We examine the conditional independence properties of the fMRI signal, i.e. its Markov structure, to find realistic assumptions on the connectivity structure that are required to explain the observed functional connectivity. In particular we seek a decomposition of the Markov structure into segregated functional networks using decomposable graphs: a set of strongly-connected and partially overlapping cliques. We introduce a new method to efficiently extract such cliques on a large, strongly-connected graph. We compare methods learning different graph structures from functional connectivity by testing the goodness of fit of the model they learn on new data. We find that summarizing the structure as strongly-connected networks can give a good description only for very large and overlapping networks. These results highlight that Markov models are good tools to identify the structure of brain connectivity from fMRI signals, but for this purpose they must reflect the small-world properties of the underlying neural systems

    Unsupervised learning of human motion

    Get PDF
    An unsupervised learning algorithm that can obtain a probabilistic model of an object composed of a collection of parts (a moving human body in our examples) automatically from unlabeled training data is presented. The training data include both useful "foreground" features as well as features that arise from irrelevant background clutter - the correspondence between parts and detected features is unknown. The joint probability density function of the parts is represented by a mixture of decomposable triangulated graphs which allow for fast detection. To learn the model structure as well as model parameters, an EM-like algorithm is developed where the labeling of the data (part assignments) is treated as hidden variables. The unsupervised learning technique is not limited to decomposable triangulated graphs. The efficiency and effectiveness of our algorithm is demonstrated by applying it to generate models of human motion automatically from unlabeled image sequences, and testing the learned models on a variety of sequences
    corecore