31,990 research outputs found

    Feedback can reduce the specification complexity of motor programs

    Get PDF

    Computational tasks in robotics and factory automation

    Get PDF
    The design of Manufacturing Planning and Control Systems (MPCSs) — systems that negotiate with Customers and Suppliers to exchange products in return for money in order to generate profit, is discussed.\ud \ud The computational task of MPCS components are systematically specified as a starting point for the development of computational engines, as computer systems and programs, that execute the specified computation. Key issues are the overwhelming complexity and frequently changing application of MPCSs

    Momentum Control with Hierarchical Inverse Dynamics on a Torque-Controlled Humanoid

    Full text link
    Hierarchical inverse dynamics based on cascades of quadratic programs have been proposed for the control of legged robots. They have important benefits but to the best of our knowledge have never been implemented on a torque controlled humanoid where model inaccuracies, sensor noise and real-time computation requirements can be problematic. Using a reformulation of existing algorithms, we propose a simplification of the problem that allows to achieve real-time control. Momentum-based control is integrated in the task hierarchy and a LQR design approach is used to compute the desired associated closed-loop behavior and improve performance. Extensive experiments on various balancing and tracking tasks show very robust performance in the face of unknown disturbances, even when the humanoid is standing on one foot. Our results demonstrate that hierarchical inverse dynamics together with momentum control can be efficiently used for feedback control under real robot conditions.Comment: 21 pages, 11 figures, 4 tables in Autonomous Robots (2015

    NASA/MSFC Large Stretch Press Study

    Get PDF
    The purpose of this study was to: A. assess and document the advantages/disadvantages of a government agency investment in a large stretch form press on the order of 5000 tons capacity (per jaw); B. develop a procurement specification for the press; and C. provide trade study data that will permit an optimum site location. Tasks were separated into four major elements: cost study, user survey, site selection, and press design/procurement specification

    Inertial gyroscope system application considerations

    Get PDF
    Criteria for designing inertial gyroscope system

    Complex coordination of cell plasticity by a PGC-1α-controlled transcriptional network in skeletal muscle

    Get PDF
    Skeletal muscle cells exhibit an enormous plastic capacity in order to adapt to external stimuli. Even though our overall understanding of the molecular mechanisms that underlie phenotypic changes in skeletal muscle cells remains poor, several factors involved in the regulation and coordination of relevant transcriptional programs have been identified in recent years. For example, the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) is a central regulatory nexus in the adaptation of muscle to endurance training. Intriguingly, PGC-1α integrates numerous signaling pathways and translates their activity into various transcriptional programs. This selectivity is in part controlled by differential expression of PGC-1α variants and post-translational modifications of the PGC-1α protein. PGC-1α-controlled activation of transcriptional networks subsequently enables a spatio-temporal specification and hence allows a complex coordination of changes in metabolic and contractile properties, protein synthesis and degradation rates and other features of trained muscle. In this review, we discuss recent advances in our understanding of PGC-1α-regulated skeletal muscle cell plasticity in health and disease

    Post-Westgate SWAT : C4ISTAR Architectural Framework for Autonomous Network Integrated Multifaceted Warfighting Solutions Version 1.0 : A Peer-Reviewed Monograph

    Full text link
    Police SWAT teams and Military Special Forces face mounting pressure and challenges from adversaries that can only be resolved by way of ever more sophisticated inputs into tactical operations. Lethal Autonomy provides constrained military/security forces with a viable option, but only if implementation has got proper empirically supported foundations. Autonomous weapon systems can be designed and developed to conduct ground, air and naval operations. This monograph offers some insights into the challenges of developing legal, reliable and ethical forms of autonomous weapons, that address the gap between Police or Law Enforcement and Military operations that is growing exponentially small. National adversaries are today in many instances hybrid threats, that manifest criminal and military traits, these often require deployment of hybrid-capability autonomous weapons imbued with the capability to taken on both Military and/or Security objectives. The Westgate Terrorist Attack of 21st September 2013 in the Westlands suburb of Nairobi, Kenya is a very clear manifestation of the hybrid combat scenario that required military response and police investigations against a fighting cell of the Somalia based globally networked Al Shabaab terrorist group.Comment: 52 pages, 6 Figures, over 40 references, reviewed by a reade

    Versatile Control System for Automated Single-Molecule Optical Tweezers Investigations

    Get PDF
    We present a versatile control system to automate single-molecule biophysics experiments. This method combines low-level controls into various functional, user-configurable modules, which can be scripted in a domain-specific instruction language. The ease with which the high-level parameters can be changed accelerates the development of a durable experiment for the perishable single-molecule samples. Once the experimental parameters are tuned, the control system can be used to repeatedly manipulate other single molecules in the same way, which is necessary to accumulate the statistics needed to report results from single-molecule studies. This system has been implemented for an optical tweezers instrument for single-molecule manipulations, with real-time point-by-point feedback at a loop rate of 10-20 kHz
    corecore