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Feedback Can Reduce the Specification Complexity
of Motor Programs

Magnus B. EgerstedMember, IEEEand Roger W. BrocketfFellow, IEEE

Abstract—In this paper, we show that when it is possible touse ~ 3) The game theoretic argument in which a saddle point
feedback in the specification of “motor programs,” the length of the condition is enforced by feedbackid({, control can be
descriptions of the instruction sequences for carrying out a given thought of in this way).
task can be reduced by a factor that reflects the richness of the L . .
available feedback signals. The model on which this work is based . To this list we now add a fourth item Wh'Fh we cast
is that of a finite automaton, modified in such away that instruction in terms of the effect feedback has on reducing the com-
processing is akin to the way in which difference or differential plexity of the implementation.
equations “process” piecewise constant inputs. In terms of such  4) The complexity argument, proposed in this paper,

“free-running” automata, we show that when feedback is available : ;
the length of the shortest description can be reduced by a factor shpwmg that fegdback gan .shortgn motor programs if
reliable sensory information is available.

depending on the ratio of the size of the entire state space to the

size of the set of states for which feedback is locally effective. In this paper, we consider the problem of describing a proce-
Index Terms—Automata, complexity theory, feedback, motion dure that will assure thatasystem_(ropot, machln.e tqol, etc.)w!ll
control. reach a certain goal state. We will give a quantitative analysis

showing that the availability of feedback can reduce the length
of the shortest description of such a procedure. In particular,
Theorem 4.1 shows that the length of the description can be re-
HE many visible and successful applications of feedbackiced by a factor that depends on the ratio of the size of the en-
mechanisms at work testify to its effectiveness and ovtire state space to the size of the set of states for which feedback
the years a variety of arguments have been advanced showinigcally effective. This idea is made concrete by saying that a
why, in particular settings, it is useful. The models commonligedback control is locally effective if an observer-based feed-
used bring to the fore considerations of sensitivity, uncertainyack control can lead the system to the goal state without the
etc. The existence of a variety of arguments should not beed to supplement it with open-loop commands. In some nat-
thought of as weakening the strength of any particular one biral settings, this argument can be repeated iteratively, leading
rather as a reflection of the multifaceted nature of feedback. ©ffurther reductions, as seen in Corollary 4.1.
course it would be desirable if the various arguments advancedVe have found it necessary to use a few terms that are not (as
for the use of feedback could be captured as special cases oyei) standard in the field of automatic control. Two in particular
overarching argument, and a common element is the explicitrequire clarification. The term “motor program” is taken from
implied subdivision of the system into two parts, a forward pathe field of biological motor control, where it is a standard idea
whose performance can only be characterized loosely andeferring to the mechanisms that support the definition and exe-
feedback path whose behavior is known with greater certaingytion of commands that synchronize and coordinate the move-
Specific formalizations which start from this point include thenent of muscle groups. These motor programs are sometimes
following. described as being parameterized families, characterized by the

1) The Black argument for reducing the effect of drift in £Peed and extent of the movements. (See, for example, [12] and
high-gain amplifier by the use of a relatively constant, bu:3])- From our point of view, a motor program is a symbolic
low gain, feedback term [2]. string of instructions that specifies a particular movement, as

2) The stochastic disturbance argument for using measuggggested in [3], [4]. Second, rather than using differential equa-
ments to reduce the effect of probabilistic uncertaint§ions as the starting point for our analysis we use a type of finite
(See, for example, [8]). state models that we refer tofase-running, feedback automata

(or FRF-automata for short). As will be shown, such models

) . . glopture important aspects of time-invariant (but nonlinear) dif-
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II. THE MODEL Since we are interested in formalizing how feedback control
affects the evolution of the automata, we need to allow the input
_ ) ~sets to have additional structure, e4.x B or {0,1}¥. When
The symbols that we use as inputs will be drawn from a finiige input alphabet is a set of the foimx K, with K being a
setS, called thenput alphabetand finite strings of such input g ,pset of Y *V we can interpret an input letter as providing
symbols are calledvords We useS™* to denote the set of all 5 pair (v, k), with v € V being an open-loop signal and :
such words, including the empty one. We de€ S denote an 'y v _, v peing a feedback control law. Given this special
element inS, and use boldface € S* to denote elements in sty cture, transitions are generated according to the rule
S*. If we define the associative operation of concatenation on

S*, the empty word serves as an identity under this operation. 6(z, (v, k) = 6(z, k(vy(x),)).
Thus,S* is thefree monoidgenerated bys.

Now, consider the finite set$, T', U, whereT C S. We will, If the input alphabeiV admits this structure, angitakes this
throughout this paper, 16f\T denote the sefs € S|s ¢ T}, form, then we will say that a finite automat¢x’, I, 6) admits
and letSY denote the set of mappings frofhto S. Given a the structure of avariable feedback automat@nor feedback
subsetW C U. If ¢ € SU then we letp(W) denote the set automaton for short.
{s € S|s = ¢(w) for somew € W}. Finally, card(S) is the We now combine the ideas of free-running and feedback au-
cardinality of S. tomata to get our primary object of study: tfree-running,

If we let X, V' be finite sets, and let € X¥X*V, then we can feedback automatofFRF-automaton). It is a free-running au-
identify (X, V, 6) with afinite automator{see, for example, [1], tomaton whose input alphabet admits the structire: V' x

A. Notation

[9], and [11]), whose operation is given by K x T, whereV is afinite setK ¢ V¥*V and7 c {0,1}Y.
Thus, the input to a FRF-automaton is a triplex, 7), where
Thi1 = 6(zk, vk)- v € V (open-loop control)s : Y x V — V (closed-loop con-

trol), andr : Y — {0, 1} (interrupt).

Definition 2.2 (Free-Running, Feedback Automatohkpt
X, Y. V.T,6,vbeasinDefinition2.1andlef =V x K x T,
where K C VY*V. We say that(X,X,Y,é,v) defines a
free-running, feedback automaton with the understanding that
input strings fromx* causer and! to evolve according to the

S(6(--- (6(m,v1),v2) ..., Up—1),Vp) rule

and we lew? denote the word obtained by concatenatirvgith Try1 =6(zr, k1, (Y(w1),01,.))  yr = Y(w1)
itself p — 1 times, i.e.p? = v---v.

If we add another finite set” and a mappingy € Y~ to the
definition, we get aroutputautomaton(X,Y,V,6,~), where
Trp1 = 6(zr, vx) @ndyg = ().

Given a wordv € V*, wherev = vy - - - v, We uses(z,v)
as shorthand for

logr =le + 71, (yr)-

B. Free-Running, Feedback Automata The interpretation here is that the FRF-automaton operates on

We now introduce a dynamical system callefie-running the pair (v, ) repeatedly, as a feedback automaton, until the
automaton The idea is to let such an automaton read an inpigterruptr(y) changes from 0 to 1, in which case a new input
from a given alphabet, and then advance the state of the @iple is read.
tomaton repeatedly without reading any new inputs until an in- Two observations about the FRF-automata can be made al-
terrupt is triggered. ready at this point: Consider the FRF-automatany, %2, 6, v),

Definition 2.1 (Free-Running Automaton)-et X, Y, V befi- whereX> = Vv x V¥*V x {0,1}Y, and the finite automaton
nite sets, le? C {0,1}"", and letU = V x 7. Let furthermore (X, V, ). For every input sequenae, - - - w, € V* that drives
6: X xV — Xandy : X — Y be given. We say that the finite automaton through the states ..., =, 1, the same

(X,U,Y,6,~) defines a free-running automaton with the unsequence can be visited by the FRF-automaton by simply letting
derstanding that input strings frob* causer and! to evolve (v, x;,7;),i = 1,...,s be

according to the rule

v; arbitrary
Trt1 =6(Tk,v1,) Yk = ¥(@k) ki(y(z),v) =w; VeeX,veV
leyr =l + 71, (yg)- mi(y) =1 Vyey.

A free-running automaton thus operates on a given inpuhis input string simply leads the FRF-automaton along the
symbolv repeatedly until the interrupt is triggered, i.e., whesame path using the same open-loop instructions. Note, how-
7(y) changes value from 0 to 1, and a new input gair7’) is  ever, that by Definition 2.2, the FRF-automaton takes an addi-
read! Note the similarity between the triggered-based hybriibnal step after:;; has been reached.4f, is thought of as
systems defined in [4] and Definition 2.1, whértakes on the a terminal states, this can be remedied by lettidgz s, v) =
role as a counter that marks the progression along the inpyt vV v € V, which will be implicitly assumed throughout this
string. paper.

1Although not essential to the development in this paper, in Appendix A it is 20ur notion of a feedback automaton is quite different from that in [15]. There

shown that the language recognized by a free-running automaton can alwaytheeoutput is fed directly to the automaton as the next input. In contrast to this,
recognized by a finite automaton as well. we let the feedback mappings be explicitly specified as inputs to the automaton.
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The other key observation is thatif = X, vy(z) = z,Vz € Now, the output associated with each state corresponds to the
X, then the sequence of states. . ., ;1 can be traversed by observation of a street sign. Thus, it seems plausible to take the
the FRF-automaton using onbneinput provided that no state outputY” to be the set of streets in the town, state, or country of
appears twice in the sequence. The infuts, 7) that realizes interest. If we let the number of such signs Ne then the de-

this is scription length of the instruction Turn RIGHT onto QUINCY
v arbitrary ST thus become®g,(card(V )card(K)) = logy(3 - 33V),
K(ri,u)=w;, YueV i=1,...s or, if we include the contribution from the interrupt in the cal-
m(z) =1 ifand only if z = z,1. culation,log,(3 - 33N . 2V), since the interrupt is a mapping

This input leads the FRF-automaton along the same path, butY — {0,1}.

since each state is visited at most once, a state feedback policy/at about the instructionDrive for 11.6 km and
can achieve this in a straight forward manner. take the exit heading NORTH? When thinking about

This last observation indicates that the free-running propeff}¢ difference between open-loop and closed-loop control, a
rp distinction is usually made between time and all other

of the FRF-automata implies that they can, in general, be gui X \ X ; T
along a path using fewer instructions than the classical finite (" 1ables. Functions of time are said to be open-loop, which is
tomata. However, since the input set to a finite automaton is th@ndard in the control field, because time, or more precisely
finite setV, while the input set to the corresponding FRF-adiMe relative to some initial time, is assumed to be universally
tomaton is of the form/ x K x 7, whereK c VY*V_T ¢ available. However, in some situations it is also natural to think
{0,1}Y, the input set has a higher cardinality in the latter dhat relative or even absolute positions _might be availat_nlt_a.
these cases. Any reasonable measure of the complexity of a cbif¢ Same can be said for temperature, air pressure, humidity,
trol procedure must take the size of the input space into accotf#t Dow Jones average, and the conversion between the Yen
since the number of bits required to code a word over a givéfd the dollar. It can be useful to refine the model proposed
alphabet typically depends logarithmically on the size of the 4t this paper in such a way that an instruction is declared to
phabet. (See, for example, [7]). This dependency is captured’f OPen-loop relative to a list of such “universally” available

a natural way if we define the Comp|exity of a control proce\larlables. In this way, we can extend the SpeCIal status of time

dure as the description length of the input sequence, i.e., as@@ther variables.

number Of b|ts needed for Specifying the Strategy' If we ha.Ve an Odometer we can th|nk Of the instruction
above as an open-loop instruction by declaring the universally
C. Specification Complexity available variables to include relative distance. This instruction

would then correspond to a series ®raight commands
that direct the traveler through the encountered intersections,
followed by a turn command.
L(s,S) = [s|logy(card(S)). If we now formalize these observations, the FRF-automaton
Definition 2.4 (Specification Complexity)Consider a FRF- that we use for interpreting and executing instructions from
automaton,A, with state—spac& and input sef.. Let o be MapQuestigX,Y, ¥, ,v), where
the word of minimal description length ove&r that drives the

Definition 2.3 (Description Length)Consider a finite sef.
We say that a word € S* has description length

automaton fromx, to z ;. We then say that the task of driviny X ={intersection$

betweenz, andz s has specification complexity( A, zo, z ) = Y ={street signy

L(o,%). S =V x V¥ x {0,1}Y, whereV = {L, R, S}
D. Example 0 : X x V —Xgives the next intersection encountered

As an example, we explore the applicability of the FRF-au- 7 X =Y.

tomaton model in the context of a particular travel direction gen, example of the type of instructions that MapQuest provides

erating program callelapQues{14]. This program generatesis listed latet There, the instructions and the corresponding

directions in “people readable form” for traveling by car bei'nputs to the FRF-automaton are shown. Open-loop inputs are
tween two addresses.

. . . : . . gescribed using values Wi = {L, R, S}, and the closed-loop
Our first problem when interpreting the instructions provide ; .
Inputs are represented as mappings from street signs to ftie set

by this program is that of deciding how to split a given instruc- X
tion into an open-loop and a closed-loop part. An instruction 1) Startout going SOUTH on OXFORD STR.
2) Turn RIGHT onto BEACON STBEACON — R.

such asTurn RIGHT onto QUINCY ST is, in fact, shorthand _
for the composition of the instructions “Drive until you see a 3) Turmn LEFT onto BROADWAYBROADWAY — L.
4) Turn RIGHT onto FULKERSON ST:

sign indicating Quincy Street,” followed by the open-loop in-
struction “Turn right.” If we associate each intersection with FULKERSON — R. _
a state in a FRF-automaton, there are three open-loop instruc-2) Turn LEFT onto MA-2A:MA —2A — L. _
tions that can be read by the automaton, narhelt, Right, 6) Tun LEFT onto MELNEA CASS BLVD:
and Straight. Hence, the finite set” in the input alphabet MELNEA — L.
Y- VxKxTis 7) Turn RIGHT after 0.3 kmS, R .

V={L,R,S}. 4The example describes how to drive from the Maxwell-Dworkin building at

Harvard University, Cambridge, MA, to the Applied Mathematics building at
3All the examples in this section are taken directly friapQuest Brown University, Providence, RI.
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8) Turn RIGHT onto FRONTAGE RDFRONTAGE — Definition 3.2 (Observer Automaton)Consider the observ-

R. able finite automatod = (X,Y,V,6,~). Let Z, O be finite

9) Take the 1-93 ramp SOUTH?. setsQ =VxVOYV g: ZxYxQ— Z,andh : ZxY — O.
10) Stay on 1-93 (22.7 km)S, S, S, S. Then,(Z,0,Q, g, h) is said to be an observer thif there ex-
11) Take I-95S exitl — 955 — R. ists aw = (v,w) € Q such that
12) Stay on 1-95 (49.7 km)s, S, S, S, S, S, S.
13) Take BRANCH AVE exitBRANCH — R. Try1 =0(wg, w0k, v))  yr =V(wk)
14) Keep LEFT in rampL' Zk+1 :.Q(Zk7yk7w(0k7lv)) Ok = h(Zk,:ljk)
15) Turn RIGHT:R.
16) Turn RIGHT onto NMAIN:NMAIN — R. implies that the current state &f can be uniquely determined
17) Stay STRAIGHT:S. from the current state of, provided that sufficiently many it-
18) Turn LEFT onto OLNEY STOLNEY — L. erations have been made. We say that the number of iterations
19) Turn RIGHT onto HOPE STHOPE — R. necessary for achieving this is the settling time of the observer.
20) Turn RIGHT onto GEORGE STREORGE — R. We now defend our choice of language by showing that

Thus the FRF-automaton model is rich enough to capture thj§ can associate an observer automaton to any observable
real-life use of open-loop and closed-loop instructions. We wiiutomaton. The constructions are as follows: gt be the
return to this example to illustrate points and to provide motiv&0sitive integer in Definition 3.1, and let

tion later in this paper. Z=1{eJUYUY2U---UYPorml UX

lll. OBSERVERAUTOMATA wheree is any symbol distinguishable from the rest of the states

In this section, we elaborate further on the properties of tie Z- _ o _
FRF-automata. For the reminder of the paper, let the FRF-auNOW, considetw,y; : Y — V from Definition 3.1, and define
tomaton be given byX, Y, X, 6, v), whereX = V x V¥YxV x  the mappingg : Y7+ x V' — X as follows: For any given

{0,1}Y, unless stated otherwise. x1 € X andv € V, we let
A. Observability E(O(Povs: 1, Wobs ), v) = 6(p,,,,v)

Consider the finite automatanX, Y, V, 6,v). We define the where z,,,. = 6(xp,,.—1, Wobs (V(Zp,,.=1)))s- - -T2 =
output sequence map : Z+ x X x V¥ — Y* asthe string of §(x1, wops(v(21))). For everyy € YP-»- that does not satisfy
outputs Y = O(pobs, T, weps) for somez € X, we let=(y,v) be

assigned an arbitrary valu& is thus to be thought of as a
Op, z,w) = y(w1) - v(w2) -~ y(xp) mapping that reconstructs the current state of the original
where w : v R V. and _ -, automaton using the injective property of the output sequence

map, and evolving that state one step further using the feedback
policy wops-
Now, leth : Z x Y — O be given by

22 = 61, w(Y(21))),.. ., 2 = 6(@p_1,w(1(z,_1))). Here,
y1 - y2 denotes the concatenation of the lettgrsandys from
the finite alphabet’, andO(p, z,w) € Y? C Y*, whereY?
is the set of words of length overY'. h(z,y) = {y if z¢ X
What we want to do is to characterize when output feedback ’ z otherwise

is effective. We know that if we can construct an observer, i.y, 4 \we thus hav® = Y U X. Thisis an important fact since we
reconstruct the state of the system, then feedback would bg,g{e giready seen that the cardinality of the input set appears in
use. The state of the system can be reconstructed if, for SOfjg yefinition of the specification complexity. If we were to use
given feedback policy, the output sequence map is injective diserver-hased feedback control, the size of the output set of the
its second argument, i.e., the system produces different OUtBYkeryer would affect the input set to the system. Our current
strings for different initial states. - construction thus gives thatrd(O) = card(X) + card(Y).

Definition ~ 3.1 (Observability):A  finite  automaton o ever, it is not yet clear that this construction does in fact
(X,Y,V,6,7) is observable if there exist a positive in- qice an observer automaton since the evolution of the ob-
tegerpo,s and an output-to-input mapping,;.; : ¥ — V' that  gerver automaton, i.ey, is not yet specified.
satisfies Letzg = e,and letg : Z x Y x Q — Z be given by the

O(Pobss 15 Wobs) Z O(Dobss T2, Wobs) equation shown at the bottom of the next page.
forall 2y, 25 € X, 1 # 795 Givenwgs : Y — V from Deflnl'qon 3.1 we definens :
! ’ . : . XV — V aswups(0,v) = weps(0) if 0 € Y, andw,ps (y(0))

We also need to define observer automata for recovering tI % € X. Ifwe apply this input, together with anye V/, to both
states of the original systems in order for observer-based, OU'{%Uet origilnal automaton and tr;e observer automator’l it is straight
feedback to be useful forward to check that the observer automaton has settling time

5This definition of observability is somewhat different from the definitiong,s. WWe call this observer automaton ttandard observer au-

encountered in the literature on discrete event systems. (See, for example, [{fnatonsince it simply usep,;, steps to let the observer settle
There, it is assumed that certain events can be detected, while others are nons 008 !

i th ies th ion of the original by usi
detectable. The state space is thus partitioned into one trivially observable Qﬂmd.t 'en copies the operation of the original automaton by using
one unobservable part. the injectivity of the output sequence map.
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B. Attractors a ( )
. . . . . Tk4+1 = O\Zk, K1, Ok, Ul
We now characterize the situations under which a desire vk = v(zk) ¢ *

final state is in fact reachable. To do so we derive conditio heos = Wif7y(0r) =0 Yk
;i ) . ‘ k+1 I, + 1 otherwise

under which a desired state can be reached using observer-bi

feedback control. For this, we need the notion of an attractor. \

say thatr € X is aglobal attractorfor the difference equation (AN

Tht1 = )\(:Ek) if, for all zp € X, it holds that 2k41 = 9(2k, Yk, K1, (08, 1, )

o+1 = h(2k, Yk)

lim x, = . _J ifm,(ox) =0
hooo  F f bet1 = Ik + 1 'otherwise

Ok

In other words,z; is a global attractor if it is reachable from
every pointz € X and the system remains @ once it has Fig.1. FRF-automaton together with an observer automaton.
reachedr .6

Theorem 3.1 (Creating Global AttractorsjConsider the fi- e can now combine this result with the notion of observ-

hite automatort X, V, 6). If z; € X can be reached from everyajity in order to get a characterization of when observer-based
initial state, and there is & € V' such thath(zs,vs) = z¢, closed-loop control is useful.

then there is a mappinga..r : X — V' such that Lemma 3.1 (Observers Make Single Instruction Goal
) ‘ ‘ Achievement Possible).et the observable finite automaton
Tht1 = 8(0k, Warer (vk)) (X,Y,V,6,v) be such that:; can be reached from any initial

state. Then, by using the standard observer automaton, it is pos-
sible to drive the state of the FRF-automafdn, Y, Xo, 6,7),
whereXop = V' x VOxV x {0,1}9, between any initial state

hasz; as a global attractor.

Proof: Choose an arbitrary; € X. Letv; denote a (not
necessarily unique) shortest input sequence that drives the au d:rf using only one instruction.
tomaton from; to z:;. Decomposar; asv; = v; - ¥1, where Proof: Construct the standard observer automaton. (See
v1 € V andv; € V*. Let the candidate for the controller thatFi . i . o

. g.1). Pickwyys : Y — V as in Definition 3.1, and choose the
makesz; a global attractor satisfyas, (1) = v1. input sequence to the FRF-automaton as

Now, let 2z, denote the staté(x;,v1) and repeat the argu-
ment until the automaton reaches. By letting the initial state = arbitrary
vary over all ofX, a control that drives the automaton between k(0,v) = weps(0), foeY
an arbitrary initial state and is obtained. Furthermore, let (0,v) = Warr(0), foe X
war(z§) = vy, Which implies thatr; is a global attractor. 0)=1 if and only ifo = z¢
[

This theorem is useful since it allows us to use state feedbal
for driving FRF-automata to desired states, and we state this fac
as a corollary:

Corollary 3.1: Given the FRF-automatofX,Y, X, v
whereX = V x V¥*V x {0,1}Y,Y = X, andvy(z) = =,
Vz € X. This automaton can reach any given stajec X
using only one instruction if ; can be reached from any initial

S

N =

(
erewqqt-(x) is defined in Theorem 3.1.
y using this input, the FRF-automaton traverses its states
ntl the observer has converged, i.e.advanceg,.;s steps.
) Then, it drives its state te; as in Corollary 3.1, which con-
" cludes the proof. |

C. Observable Subsets

state under the operation of the finite automatan Vv, 6). Recall that the specification complexity is proportional to the
Proof: Choose the inputv, s, 7) as logarithm of the cardinality of the input space. By using ob-
server-based feedback we see that this complexity that depends
v arbitrary directly on the size of output set associated with the observer
k(x ,w) wattr(x) asin Theorem3.¥z € X,w eV automaton. In the standard observer construction we saw that
T(z) = if and only if z = . this set had cardinalityard(X') + card(Y"). In this section we

investigate if it is possible to reduce the size of this set by only
This input drives the automaton:tg, and the corollary follows. gefining the observer locally, i.e., on a subset of the state space.
= Definition 3.3 (Observable SubsetConsider the finite au-

6This implies that ifv s is a global attractor, then there exists a finite, posmvéomaton(X Y. V.6, '7) A SUbsetX C X such thaty( )

integerNV such thateny 4, = 5,V p € ZT. v(X\X,) = 0 is said to be observable if there exist a positive
Yk if zp = ¢
2k Yk if 2, €YY, g <pops — 1
2kt1 = 9(2ks Yo Wi (A28, Yr), Vi) = Z(zk - Yk, wi(h(ze, yr), i) if 2z € YPobs—1 o

5(Zk7’l/k) if 2z, € X.
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integerp,ys and aw,ps : Y — V that satisfies the following
conditions:

° O(pobsvfljhwobs) # O(pob57$27wobs); \V/117171132 S
Xg,flll ;é o, T

o for all z; € X, it follows thatz, € X, ¢ = (@)
L...,pobs, Where mzy = (21, wops(v(21))),

What this means is simply that a subsgt,, is an observable
subset to a given automaton if the state can be recovereg,on
without the state leaving,,.
In a manner analogous to the previously defined observer au-
tomata, we can now define observer automata on subsets as well. ®)
Definition 3.4 (Subset-Observer Automator§onsider the Fig. 2. (a_)X} is ballistically reachable from:. (b) = is control-invariantly
finite automatond = (X,Y,V,6,v), whereX, c X is an 'cachapleint..
observable subsetZ, 0,Q,g,h), whereZ, O are finite sets,
Q=VxVOYV ¢:ZxYxQ— Z,andh: ZxY — Oisa setdepends on the size of the domain of the feedback mapping,
subset-observer automatonddf there exists a = (v, w) € @ @ smaller domain can be expected to reduce the specification
such that the following conditions hold: complexity. Thus, by using open-loop control af\ X, and
using observer-based feedback’op we can expect a decrease
i1 =0(zk, w(or,v)) ik = (k) in specification complexity. In order to make this observation
241 =9(2k, Y, w(0k,v)) 0k = h(zk, yr) guantitative, we introduce the notions of ballistic reachability
gives that the current state ifican be mapped uniquely to theand control-invariant reachability: A s&t; C X isballistically
current state inX after sufficiently many iterations. Also, for reachable fromx if there exists @ € V such that(z, v?) € X,
all 7, € X, it holds thatz, € X,, ¢ = 1,...,Pobs, Where for someq € Z+. What this means is that is ballistically
Ty = 6(x1,w(o1,v)), 23 = §(z2, w(02,v)), and so on. reachable from: if it is possible to drive the state of the au-
Lemma 3.2 (Subset-Observers Existet X, ¢ X be an tomaton fromz to X, using one open-loop input repeatedly
observable subset to the finite automaton= (X,Y,V,6,7). until the trajectory reachek,. FurthermoreX; is ballistically
Then, a subset-observer automat@nO, 2, g, h) to A can al- reachable fronX; C X if there exists @ € V' such that for all

ways be constructed. x € X, it holds thats(z, v?(*)) € X, for someg(z) € Z*. An
Proof: Let Z, Q be given by the standard observer awelementr € X, C X is said to becontrol-invariantly reach-
tomaton. LetD = {e} U~(X,) U X,, and let able in X if it can be reached from all states i\, without the

trajectory leavingX ;. These concepts are illustrated in Fig. 2.
Lemma 3.3 (One Instruction Suffices When Using Subset-Ob-
_ servers): Let X ; be an observable subset to the finite automaton
Furthermore, ley(zx. yx, wi(h(zk, yr), vr)) be defined by the (y y v s +) andletro ¢ X, 75 € X;.If X is ballistically
equation shown at the bottom of the page, where the mappi@chable from,, ands s is control-invariantly reachable i ;,

z, otherwise.

Wz y) = {y if 2 ¢ X U {e}

=(-) is defined in the standard observer automaton. then there exists a FRF-automatof Y, ', 6, v) that can reach
_ Ifwe now usewobf(@ v) = vif 0= e, Wops(0,0) = Wops(0) 4, from x, using only one instruction.
if 0 € ¥(Xy), andwops(0,v) = wobs(y(0)) if 0 € X, then Proof: Construct the subset-observer from Lemma 3.2

a repetition of the argument in the derivation of the standagghqg |etv,; € V be an open-loop control that drives the
observer automaton shows that it is in fact a subset-obserygfomaton from, to X . (The existence of such a control fol-

automaton, with settling timg.. B Jows sinceX; is ballistically reachable fron,). Let the input
It should be noted that the subset-observer's output set hag ghe FRF-automatom, = (v, x,7), v €V, 5: O x V =V,

lower cardinality than the standard observer automaton as long o —, {0, 1} be given by

as
V = Vol
card(X,) < card(X) — 1. K(0,v) = v, ifo=e
k(0,v) = Wwaps(0), if 0 € v(Xy)
This observation will be used in Section IV where the main com- k(0,v) = Waur(0), ifoe€ Xy
plexity theorems are presented. Since the cardinality of the input 7(0) = 1, if and only if o = .

e if yr & 7(Xg)
Yk if 2z, = e andyy, € v(X,)
(Zk,yk./U}k(h(Zk,yk)-/Uk)) = Zk " Yk if 2k € V(Xg)q7 q < Pobs — 1

E(zk - Yr wi(h(zr, yi), vk)) i 2z € y(X)Pors—1
5(Zk7’l}k) if 2z, € Xg
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In other wordsY.’ = {v,} x VO x {0,1}?, and the previous
input drives the state of the automaton fregito X ; using the
open-loop inpub,,;. It then executes the observer-based motion
from Lemma 3.1 on the subsat;. |

D. Example, Continued

Thus far, we have produced an FRF-automaton that captures
important aspects of the way travel directions are given and
processed when driving between different locations. Given a o _ o _
list of streets that we can expect to encounter during a part@:fhe Sﬁ?ﬁéﬁ;??fﬁé’ ;,ZZ’EE&%%Z’%??&S g%ﬂ?ﬁr?,%t?é%%ﬁﬁ I:rr:eLgerz?ir;s
ular journey, we can now construct a subset-observer for g8z part where the observer is converging, and the solid line is the last part of
ducing the size of the input alphabet by only considering rehe evolution.
evant streets. By those we understand the streets encountered
during the trip where a left or right turn is called for. The obser- 002
vations corresponding to all other streets are, as in Lemma 3.2,
denoted by the single symbeoin the subset-observer. The new
input alphabet thus becom&% = V x V° x {0,1}9, where
O = {e,relevant streeifs In the example in Section 1I-D) ootef
(with card(O) = 15) becomes ootz}

{e, OXFORD, BEACON, BROADWAY , FULKERSON
MA-2A, MELNEA, FRONTAGE 1-93, I-95, BRANCH
MAIN , OLNEY, HOPE GEORGE.

Gaussian Estimates

0.018

0.016 p(d | closed-loop)

p(d | open-loop)

Probability
-
g 8 =

§

As illustrated in Fig. 3, single instructions suffice for driving
the automaton to a desired state if an input can be constructed
that generates a ballistic, open-loop movement that traverses a T L .
large part of the state-space, followed by an observer-based, dkm)

clos_ed-loop movem_ent' It is interesting to '”Ve§“93te Whethﬁﬁ. 4. Fitted Gaussian densities associated with the closed-topp> 0.5)

the instructions provided by MapQuest have a similar structuggd the open-loogr.; < 0.5) instructions are shown as functions of the
We examine this in a probabilistic setting, and for this we neéétance to the closest endpoint of the trip.

to estimate the number of bits of information that comes from

the open-loop and the closed-loop part, respectively. To this e@@, travel directions (totaling 724 instructions) we choose to fit
it seems reasonable to adopt the “choice complexity” model. Gaussian probability densities to these two collections of data
this model, the number of bits associated with the open-loppints
command “turn left” islog,(3), sinceV = {L, R, S}, and the

0.002|

number of bits associated with the observation of the street sign p(d|open-loop = 5 e~ (A= to)*/(2051)

for Quincy streetidog, (card(0)), whereO is as defined above. 71m"’

A statement likeTurn LEFT onto BROADWAY in the previous p(d|closed-loop =———— e~ (d=ite0)?/(252)

example would then have a ratio between the “closed-loop bits” V2o

and the total number of bits &sz,(15)/ log,(3-15) ~ 0.7. We as seen in Fig. 4. In that figure, the sample means and covari-
denote this ratio by.;. ances were found to be

We now letd; denote the distance traveled from the starting
address, and let; denote the distance remaining to travel to the
final address. We can then defiieas

d = min{d,, dy} where the su_bscriptsl and ¢l denote open-loop and closed-
loop, respectively.

and store each instruction as the data pair.;). We consider ~ We now turn our attention to Bayes’ decision rule as a mean
an instruction to be closed-loopif; > 0.5 and open-loop if of probabilistically classifying the instructions as open-loop or
ro < 0.5, thus generating a threshold based patrtition of tredosed-loop based on the varialleThe reason for doing this
instructions into two types. is that we wish to get some feeling for when open-loop and

We will now generate some statistical results based on alesed-loop instructions are most likely to be used. This resultis
analysis of a sample of the directions when driving between ttteen to be used as guidance when we produce instructions with
Maxwell-Dworkin building at Harvard University to 20 othershort description lengths.
universities around the U.S. For this, we fit empirical proba- If we let P(-) denote a probability distribution ang(-)
bility densities to the two sets of instruction types, i.e., to the séénote a probability density, we can classify an instruction
of open-loop and closed-loop instructions respectively, as furees open-loop or closed-loop using Bayes’ decision rule, i.e.,
tions of d. After extracting and classifying the data from thdoy choosing the classification with the greatest conditional

fior =38.96,; = 32.1
lALcl 210.7661 =23.0
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Instruction Classification

e sequencar,; = (v1,Kol,Tol) -+ - (Vgs Kol, Tot) € X*, Where

Kot(v,y) = vVu € V, y € Y, 7,(y) = 1 Vy € Y achieves
this. However, this word has length and it is drawn from the
input alphabet: = V x V¥*V x {0,1}Y, and thus the de-
scription length isC(o,;,X) = qlog,(card(X)). But, this is
clearly not a very meaningful result. Instead we can restrict
the input alphabet to b&,; = V x {ku} x {7.1}, which
has cardinalitycard(V'). The description length of,; is now
L(oor,X01) = qlogy(card(V)), relative to the smaller input
setYl,;, which is the description length we should expect in the
purely open-loop case. (We do not want the complexity to de-
pend oncard(Y") since we do not rely on the outputs for speci-
fying the evolution of the automaton).
Now, consider a connected, classical, finite automatos
T T e e e e e e e e (X,V,6). We recall that thévackward eccentricityf a state,
distance [km] ecc(A, x), is the minimum number of instructions necessary for

Fig. 5. Conditional probabilities that indicate how likely it is that a givendm/lrlg the aUtomaFon from _any other statemto(See, for ex
instruction is closed-loop or open-loop are shown. We have assumed (suppoftéaPl€, [6]). We define theadiusof A to be
by the empirical data) that the probabilities are symmetrical around the start . .

and goal point. From the figure it can be seen that Bayes’ decision boundary is radius(A4) = min ecc(4, z).
located atl = 38.5 km. zeX

P(open-loop | d)

Probability

o
~
T

P(closed-loop | d)

Consider the FRF-automatoh If we let
probability P(w|d) = p(d|w)P(w)/p(d), wherew € Q = C(A,z) = max C(A, 0, )
{open-loopclosed-loop. The priors are zo€X

P(closed-loop then we directly get that

__ total number of closed-loop instructions C(Aoi, ) =ecc(A, x) logy(card(V))
290 total number of instructions >radius(A4) logy (card(V))
794 T 0.401 whereA,, is the FRF-automatofX, Y, ¥,;,6,7).
P(open-loop )
_total number of open-loop instructions A. Main Theorem
B total number of instructions The previous definitions enable us to state the following the-
_ B4 599 orem.
24 Theorem 4.1 (Main Theorem)Assume thatard(V) > 2.

and Suppose that; € Xy, whereX; is an observable subset for
p(d|closed-loop are given in Fig. 5. The conditional e finite automatoni. Assume thatard(y(.X;)) < card(Xy)
probabilities are plotted in Fig. 5, and it can be seen that tA847(Xy) N v(X\Xy) = 0. If X is ballistically reachable
Bayes’ decision boundary occurs dit= 38.5 km. What this 10MX\X s, andz; is control-invariantly reachable ifiy, then
means is that close to the goal and to the starting point, closdigre exists a FRF-automatotyzr = (X,Y,3',6,7) such
loop instructions are more likely, while open-loop instructiond1at

are likely far away from those points. In Section IV, we derive C(Apgrp,zy) _ 4card(Xy)

a suite of complexity theorems that capture this effect in a C(Ag,z¢) < radius(A4)

natural way, based on Lemma 3.3.

and the probability densities p(d|open-loop

Proof: The proof is found by investigating the size of the

) o ) We can letY = {v,} x VO x {0,1}?, and let the input,
The reason for studying the situation in Lemma 3.3 is that jt _ (v, %, 7), be given by

captures the idea that it is possible to successfully combine un-

certain feed-forward control and high-precision feedback con- v= grb|trary

trol on different parts of the state—space. Since the size of the k(0,0) = Vo, ifo=e

input set is dependent on the size of the output space of the ob- (0, ) = wobs(0), !f 0 € 7(Xy)

server automaton when feedback is used, the description lengths k(0,v) = Warer(0), o€ Xy

of the inputs should be reduced if we only use feedback where 7(0) = 1, ifand only ifo = .

it is locally effective, i.e., on reduced parts of the state—spaceThe size of the input space is thus

However, in order to compare purely open-loop control, i.e., A(SY) = (2eard (V7)) (L +eard(¥(X ) +card (X))
control when no observations are made, with a situation where card(X) =(2card(V)) .
sensory information is available we must be able to generate <(2card(V))>erd(n)
open-loop motions on the FRF-automata. Itis clear that the input Scard(V)4“ar‘i(Xf).
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The description lengtif (o, ') is, thus, given by

4card(Xs) logy (card(V)).

Now, sinceC(Ay;,z¢) > radius(A)log,(card(V)), the the- ) \

orem follows. m o \ 7 -
o~ - \\\ .

B. Chained Version of the Main Theorem To \

Goals are seldom final goals. More often they tend to be in-
termediate goals in a grander scheme. This is for instance the
case when mobile robots are navigating using landmarks. The
theory thgt W? have deYeIOped SO ff_ir 9'095 not aCknO\Medg? ‘i%s 6. Chained version of the main theorem. The dashed lines correspond
fact, and in this subsection we modify it so that we can take int®open-loop trajectories, while feedback is used for generating the solid-line
account the situation where a number of goal states are visit@gctories.
by the automaton.

It is clear that the premises on which the previous theore$ffuction is enough, and for this we set the state space of the
is based are too restrictive to capture thainedstructure that observer to be
intc_ermediary goals give r.ise to. Instead, we need to extend the Z={e1,...,e,}UY U---UYPr="lU X
trajectories from the main theorem (Theorem 4.2) through a
chain of goals states. This can be achieved by assuming tHA€rep.ss is the largest of all the positive integers,,, asso-
we work with an automaton where subset-observers can be gigted with each observable subsgt : = 1,...,n. The idea
signed around different states, i.e., the intermediate goals. WW&f€ is to let; denote the state of the system when open-loop
also assume that the sets on which the observers are defid@ths are followed between the different subsets; elements in
are ballistically reachable from each other. We could then u¥¢ are to be used when the observer automaton is settling in
open-loop control for driving the system between these sets ddparticular subset, and a copy of the state of the original au-
the parts of the state space where the lack of sensory inforrﬁanaton should be used once the observer has settled. With this
tion prevents effective use of feedback. We compliment this with mind, we let the outputs of the observer automatop isben
feedback controllers on the subsets where subset-observerstBgrpbserver is settling, and let it beduring the ballistic mo-
be constructed, as seen in Fig. 6. For the sake of completené§8s between the different subsets. We also assign the value
we explicitly state the chained extension of the main theorem'§en the observer has settled on those subsets, i.e.,
a corollary. L _Jy, fzgXU{er,...,en}

Corollary 4.1: (Chained Version of the Main Theorem) As- (2,y) = { z, otherwise.
sumethatard(V') > 2. Letthe sets(y, . .., X,, be disjoint, ob-
servable subsets with cardinality less than or equél,terhere
’Y(XL) N ’Y(X\XJ = w! ’Y(XJ n ’Y(XJ) = @./ [ # J Let 0= {617"'7671} UPY(XI) U.-. U’Y(Xn) UXI U UXn-
z¢ € X, be control-invariantly reachable iX,, and let.X;
be ballistically reachable from,. Assume that there exists in-
termediary goals:;; € X;, ¢ = 1,...,n — 1 such thatz;
is control-invariantly reachable iX; and X, is ballistically
reachable fromx;. Then there exists a FRF-automatbpryr =
(X,Y,¥',4,v) such that

Our output from the observer automaton, thus, becomes

In order to get an evolution of the observer automaton that is
consistent with these choices, we let the transitions be generated
as follows:g(zx, yr, wi (h(zk, Y ), vr)) iS given by the equation
shown at the bottom of the page.

Ifwelety = {0} xV? x{0,1}9, for some arbitrary € V,
we can user = (v, ,7) as the input to the FRF-automaton,

C(AFRF7:Ef) < 4nC where
C(Ay,z7) ~ radius(A)’ v =1 _
k(0,v) = Vo1, if o=e¢e;
Proof: In order to prove this corollary, we need to con- k(0,V) = Waps, (0), if 0 € v(X;)

struct an observer that makes it possible to reaghising as k(0,v) = Wattr, (0), o€ X;

few instructions as possible. In fact, we will show that one in- 7(0) =1, if and only ifo = .
€; if Zp = Tp—-1
€; if 2z, =¢; andyk € ’Y(XL)
Yk if 2z, =¢; andyk € ’Y(XL)
Zk " Yk if 2z € Y9, q < pobs, —

Z(zk - vk, wi(h(zr, yr ), vx))  if 21, € YPorsi 71
6(Zk,vk) if z;, € X;.
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Herew,, isthe open-loop control that drives the automaton frofs]). The problem then becomes that of minimizing the cost
z; 10 X1, weps, IS the feedback control that makes the observéunctional under the additional constraint that the servomech-
converge orX;, andw,, is the feedback control that drives theanism should perform in a satisfactory way. It can also be argued
automaton ta:; without the trajectory leaving;. Itis straight that this way of imposing complexity measures on control pro-
forward to check that by using this input, the FRF-automataedures has implications for decentralized or embedded control

(X,Y,¥',6,7) drives from any initial state to;. B strategies, where the idea is to minimize the communication be-
The size of the input space is thus tween different control modules at the same time as sufficient
information must be available in order for the overall system to

card(X') =(2card V))Z;’Zl(lﬂard(v(‘\l))+card(X7)) meet its specifications. Apart from the complexity theorems de-

rived in this paper, a key contribution is thus the model in itself,

(
Y_I_l 2card(Xz) X L i ) R
5(2card(v))z“ which allows us to measure the specification complexity of dif-

<card(V)2im eard(X0) ferent control procedures.
<card(V)in¢
APPENDIX
LANGUAGES RECOGNIZED BY FREERUNNING,
and, hence
FEEDBACK AUTOMATA
C(Arpp.oy)  _ 4nC From Definition 2.2, we see that the variables defining the
C(Aor,my) ~ radius(4) state of a FRF-automaton areand/, wherer takes on values

. . in a finite set, whereaktakes on values in the nonnegative in-
One conclusion to be drawn from Corollary 4.1 is that the . S .
. . L . teeqers. There is na priori limit on the size ofl because there
increase in the description length caused by the summation oVi PR : :
. . is noa priori limit on the length of the input string. Thus, one

many intermediate goals, can be counter-acted by choosin : . . S

. . Id ask if the introduction of this infinity affects the languages
smaller feedback sets. In the mobile robot case, this wou :

rEcogmzable by FRF-automata.

conesponing o sing mar sl detecae, oallanaall LS e avomaton ecoizes e angiage
>* if all strings in L drive the automaton from the initial state
zo to a distinct final state ;. To characterize the language rec-
ognized by a given FRF-automaton, we need to introduce the
In this paper, we formulate and solve some problems igencept okcope Givenz, € X. We say that = (v, x,7) has
volving the search for short descriptions of control proceduressopescope(o, z,,) = r if the FRF-automaton, initialized at,,
In particular, we investigate the difference in the descriptiamaximally advances the statesteps without advancing
lengths of the inputs when controlling dynamical systems with Lemma 5.1: Consider the FRF-automatoiX,Y, Y, 8, ).
and without reference to sensory information. Letz € X ando = (v, k,7) € X. If there is a periodic orbit of
We show that when feedback can be used in the description of
motor programs, the length of the descriptions can be reduced
by a factor that reflects the richness of the available feedback
signals. In the domain of task descriptions, where the objective
can be stated in terms of reaching a goal state, feedback red¢édout the interrupt triggering, therscope(o, z) is infinite. If
the description length of the motor programs that execute tHere are no such periodic orbits, thewpe(o, x) < card(X).
task. In particular, we show in Theorem 4.1 that the reduction Proof: If the state is advanced more thaard(X) — 1
depends on the ratio between the size of the entire state spd€®s then, by the Pigeon Hole Principle (see, for example, [11]),
and the size of the set of states for which feedback is locaffye same state must have been visited twice. Since the control
effective. This argument is furthermore used iteratively, leadidgPut is kept constant, a periodic orbit must have been encoun-
to further reductions, as seen in Corollary 4.1. tered. Hence, the scope is infinite. If, on the other hand, no pe-
To search for short descriptions of control procedures is ﬂﬁdlc orbit is enCOUntered, then no state is visited more than
age old problem but the expression of it in a precise languag@ce, which implies thatcope (o, z) < card(X). u
seems to be new. There are many possible applications, and fdessentially, what this means is that the only way a giwen
instance in teleoperated robotics, the control signals are traf8h have infinite scope is if it makes the FRF-automaton cycle
mitted over communication channels in which the presencetfough an interrupt-free orbit.
channel noise makes it preferable to transmit instructions thatfheorem 5.1:1f L C X* is recognized by the FRF-au-
are as short as possible. A related problem arises in the arefegfaton(X,Y, %, 6,v), with 6(z,v) = x5, Vo € V, thenL
minimum attention control, where an attention functional is déS &lS0 recognized by some finite automaton.

fined as a measure of the control variability. (See, for example, Proof: Leto = o1---0y, € L, wherel is the language
recognized by the FRF-automaton. Ll&t:, o*) € X denote
This result is furthermore consistent with the statistical data recorded in tf§e state reached after applyifg ) repeatediy: times, e.g.,
MapQuest example, in the special case where two observable subsetsaround
andz; were used. In this case, the ballistic motions that drive the automaton

between these two subsets correspond to the long open-loop motions along
highways connecting different cities. EE«T 02) =0 (5 (37» K(y(z), U)) ; K(’Y(‘S(l’: K(y(z),v))), U)) .

V. CONCLUSION

Tk+1 = 6($k7’9(ykvv))7 Lo =T
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Assume that all the input symbols in the input string have [4] ——, “Hybrid models for motion control systems,” Perspectives in

finite scope with respect to the recursively defined initial states. fgggor')vg*gegf'ma” and J. Willems, Eds.  Boston, MA: Birkhauser,

Label these initial states as [5] —, “Minimum attention control,” irProc. IEEE Conf. Decision Con-
~ trol, 1997, pp. 2628—2632.
xg =Zg [6] F.Buckleyand F. Hararpistance in Graphs Reading, MA: Addison-
R .o _scope(o1,53) Wesley, 1990. _
Ty =0 Zg,0q [7] T. M. Cover and J. A. Thomaglements of Information Theary New

Y York: Wiley, 1991.
75 = (57(17 Ugcope(az’ml )) [8] W.FlemingandP. L. Lions, “Stochastic Differential Systems, Stochastic
) Control Theory and Applications,” ilthe IMA Volumes in Mathematics
and Its Applications New York: Springer-Verlag, 1987, vol. 10.
[9] A. Ginzburg, “Algebraic theory of automata,” kCM Monograph Se-

7o —s5 (70 scope(oq,,Eg_ ) ries. New York: Academic, 1968.
gy =0\ Tqy-1,940 : [10] Y. Ho, Ed.,Discrete Event Dynamic SystemsNew York: IEEE Press,
1992.

Sincel is recognized by the FRF-automaton we must have thegt1] J. E. Hopcroft, R. Motwani, and J. D. Ullmalmiroduction to Automata

~o Theory, Languages, and Computati@ed. Reading, MA: Addison-

T, = Tf.

q ) o - ) Wesley, 2000.

Now, define the finite automatod = (X,Y, %, ¢, ), with [12] M. 1td, The Cerebellum and Neural Control New York: Raven, 1984.

initial statez, and [13] S.E.KelsHuman Motor Behavior Hillsdale, NJ: Lawrence Erlbaum,
1982.
5(”-7 ] ) _ ~o =0 -1 [14] MapQuest [Online]. Available: http://www.mapquest.com/
Ti0i41) = Tiy1, 1 =Ys- -5 G0 [15] D. Wajten, “Feedback automata and their languagesisrm. Pro-
. ) cessing Letf.vol. 21, pp. 83—86, 1985.

wherez?, i = 0,..., g, are as previously defined.

By repeating this argument for all € L such that the fi-
nite scope assumption holds, the resulting finite automaton rec-
ognizes every finite scope woidl € L. However, if the as-
sumption is false, i.e., there is@a € L such that the finite
scope assumption does not hold, then there é5 for some
j € {1,...,q-,}, such that the scope is infinite when startin
from the initial statez?_;. Then, by Lemma 5.1, the FRF-au-
tomaton has encountered an interrupt-free periodic orhit. i§ ;
not on this orbit thewr is not recognized by the FRF-automaton ﬁ -
which is a cqn_tra_diction. If, on the_ot_her hand, is on the _orbit . e e e 220
then the orbitis, in fact, only COQSIStIng Of one po{mf} since Applied Science at Harvard University, Cambridge, MA. His rgsearch ?nterests
8(zy,v) = z¢, Yv € V. Henceo is recognized by the FRF-au-include optimal control as well as modeling and analysis of hybrid and dis-
tomaton. The finite automaton can thus be redefined to interpgeate-event systems, with emphasis on motion planning and control of mobile
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inputs according to the following rules: robots.
JNZ’S =Ty
~ ~ min{scope(oy,Z] ),card(X)}
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and, as before

which concludes the proof. [ |
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