
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 2, FEBRUARY 2003 213

Feedback Can Reduce the Specification Complexity
of Motor Programs

Magnus B. Egerstedt, Member, IEEE,and Roger W. Brockett, Fellow, IEEE

Abstract—In this paper, we show that when it is possible to use
feedback in the specification of “motor programs,” the length of the
descriptions of the instruction sequences for carrying out a given
task can be reduced by a factor that reflects the richness of the
available feedback signals. The model on which this work is based
is that of a finite automaton, modified in such a way that instruction
processing is akin to the way in which difference or differential
equations “process” piecewise constant inputs. In terms of such
“free-running” automata, we show that when feedback is available
the length of the shortest description can be reduced by a factor
depending on the ratio of the size of the entire state space to the
size of the set of states for which feedback is locally effective.

Index Terms—Automata, complexity theory, feedback, motion
control.

I. INTRODUCTION

T HE many visible and successful applications of feedback
mechanisms at work testify to its effectiveness and over

the years a variety of arguments have been advanced showing
why, in particular settings, it is useful. The models commonly
used bring to the fore considerations of sensitivity, uncertainty,
etc. The existence of a variety of arguments should not be
thought of as weakening the strength of any particular one but
rather as a reflection of the multifaceted nature of feedback. Of
course it would be desirable if the various arguments advanced
for the use of feedback could be captured as special cases of an
overarching argument, and a common element is the explicit or
implied subdivision of the system into two parts, a forward path
whose performance can only be characterized loosely and a
feedback path whose behavior is known with greater certainty.
Specific formalizations which start from this point include the
following.

1) The Black argument for reducing the effect of drift in a
high-gain amplifier by the use of a relatively constant, but
low gain, feedback term [2].

2) The stochastic disturbance argument for using measure-
ments to reduce the effect of probabilistic uncertainty.
(See, for example, [8]).

Manuscript received May 15, 2001; revised June 18, 2002. Recommended
by Associate Editor A. Bemporad. This work was supported in part by the U.S.
Army Research Office under Grants DAAH 04 96 1 0445 and DAAG 55 97 1
0114, and by the National Science Foundation under Yale prime CCR 9980058
and the U.S. Army under Boston University prime GC169369 NGD.

M. B. Egerstedt is with the Electrical and Computer Engineering, Georgia
Institute of Technology, Atlanta, GA 30332 USA (e-mail: magnus@
ece.gatech.edu).

R. W. Brockett is with the Engineering and Applied Sciences, Harvard Uni-
versity, Cambridge, MA 02138 USA (e-mail: brockett@hrl.harvard.edu).

Digital Object Identifier 10.1109/TAC.2002.808466

3) The game theoretic argument in which a saddle point
condition is enforced by feedback. (control can be
thought of in this way).

To this list we now add a fourth item which we cast
in terms of the effect feedback has on reducing the com-
plexity of the implementation.

4) The complexity argument, proposed in this paper,
showing that feedback can shorten motor programs if
reliable sensory information is available.

In this paper, we consider the problem of describing a proce-
dure that will assure that a system (robot, machine tool, etc.) will
reach a certain goal state. We will give a quantitative analysis
showing that the availability of feedback can reduce the length
of the shortest description of such a procedure. In particular,
Theorem 4.1 shows that the length of the description can be re-
duced by a factor that depends on the ratio of the size of the en-
tire state space to the size of the set of states for which feedback
is locally effective. This idea is made concrete by saying that a
feedback control is locally effective if an observer-based feed-
back control can lead the system to the goal state without the
need to supplement it with open-loop commands. In some nat-
ural settings, this argument can be repeated iteratively, leading
to further reductions, as seen in Corollary 4.1.

We have found it necessary to use a few terms that are not (as
yet) standard in the field of automatic control. Two in particular
require clarification. The term “motor program” is taken from
the field of biological motor control, where it is a standard idea
referring to the mechanisms that support the definition and exe-
cution of commands that synchronize and coordinate the move-
ment of muscle groups. These motor programs are sometimes
described as being parameterized families, characterized by the
speed and extent of the movements. (See, for example, [12] and
[13]). From our point of view, a motor program is a symbolic
string of instructions that specifies a particular movement, as
suggested in [3], [4]. Second, rather than using differential equa-
tions as the starting point for our analysis we use a type of finite
state models that we refer to asfree-running, feedback automata
(or FRF-automata for short). As will be shown, such models
capture important aspects of time-invariant (but nonlinear) dif-
ferential equations while retaining the “finitely describable” as-
pects of automata. Briefly stated, a FRF-automaton is a finite
state machine that reads an input and then makes transitions re-
peatedly, using the same input value, until a particular output
condition is realized. By measuring the length of the shortest
description of an input sequences which accomplishes a given
task, we get a complexity measure that allows us to compare
open- and closed-loop control in a meaningful way.

0018-9286/03$17.00 © 2003 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/276803685?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

214 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 2, FEBRUARY 2003

II. THE MODEL

A. Notation

The symbols that we use as inputs will be drawn from a finite
set , called theinput alphabet, and finite strings of such input
symbols are calledwords. We use to denote the set of all
such words, including the empty one. We let denote an
element in , and use boldface to denote elements in

. If we define the associative operation of concatenation on
, the empty word serves as an identity under this operation.

Thus, is thefree monoidgenerated by .
Now, consider the finite sets , where . We will,

throughout this paper, let denote the set ,
and let denote the set of mappings from to . Given a
subset . If then we let denote the set

for some . Finally, is the
cardinality of .

If we let be finite sets, and let , then we can
identify with a finite automaton(see, for example, [1],
[9], and [11]), whose operation is given by

If we add another finite set and a mapping to the
definition, we get anoutput automaton , where

and .
Given a word , where , we use

as shorthand for

and we let denote the word obtained by concatenatingwith
itself times, i.e., .

B. Free-Running, Feedback Automata

We now introduce a dynamical system called afree-running
automaton. The idea is to let such an automaton read an input
from a given alphabet, and then advance the state of the au-
tomaton repeatedly without reading any new inputs until an in-
terrupt is triggered.

Definition 2.1 (Free-Running Automaton):Let be fi-
nite sets, let , and let . Let furthermore

and be given. We say that
defines a free-running automaton with the un-

derstanding that input strings from cause and to evolve
according to the rule

A free-running automaton thus operates on a given input
symbol repeatedly until the interrupt is triggered, i.e., when

changes value from 0 to 1, and a new input pair is
read.1 Note the similarity between the triggered-based hybrid
systems defined in [4] and Definition 2.1, wheretakes on the
role as a counter that marks the progression along the input
string.

1Although not essential to the development in this paper, in Appendix A it is
shown that the language recognized by a free-running automaton can always be
recognized by a finite automaton as well.

Since we are interested in formalizing how feedback control
affects the evolution of the automata, we need to allow the input
sets to have additional structure, e.g., or . When
the input alphabet is a set of the form , with being a
subset of , we can interpret an input letter as providing
a pair , with being an open-loop signal and

being a feedback control law. Given this special
structure, transitions are generated according to the rule

If the input alphabet admits this structure, andtakes this
form, then we will say that a finite automaton admits
the structure of avariable feedback automaton,2 or feedback
automaton for short.

We now combine the ideas of free-running and feedback au-
tomata to get our primary object of study: thefree-running,
feedback automaton(FRF-automaton). It is a free-running au-
tomaton whose input alphabet admits the structure

, where is a finite set, , and .
Thus, the input to a FRF-automaton is a triple , where

(open-loop control), (closed-loop con-
trol), and (interrupt).

Definition 2.2 (Free-Running, Feedback Automaton):Let
be as in Definition 2.1 and let ,

where . We say that defines a
free-running, feedback automaton with the understanding that
input strings from cause and to evolve according to the
rule

The interpretation here is that the FRF-automaton operates on
the pair repeatedly, as a feedback automaton, until the
interrupt changes from 0 to 1, in which case a new input
triple is read.

Two observations about the FRF-automata can be made al-
ready at this point: Consider the FRF-automaton ,
where , and the finite automaton

. For every input sequence that drives
the finite automaton through the states , the same
sequence can be visited by the FRF-automaton by simply letting

, be

arbitrary

.

This input string simply leads the FRF-automaton along the
same path using the same open-loop instructions. Note, how-
ever, that by Definition 2.2, the FRF-automaton takes an addi-
tional step after has been reached. If is thought of as
a terminal state, , this can be remedied by letting

, , which will be implicitly assumed throughout this
paper.

2Our notion of a feedback automaton is quite different from that in [15]. There
the output is fed directly to the automaton as the next input. In contrast to this,
we let the feedback mappings be explicitly specified as inputs to the automaton.

EGERSTEDT AND BROCKETT: FEEDBACK CAN REDUCE THE SPECIFICATION COMPLEXITY OF MOTOR PROGRAMS 215

The other key observation is that if , ,
, then the sequence of states can be traversed by

the FRF-automaton using onlyoneinput provided that no state
appears twice in the sequence. The input that realizes
this is

arbitrary

if and only if .

This input leads the FRF-automaton along the same path, but
since each state is visited at most once, a state feedback policy
can achieve this in a straight forward manner.

This last observation indicates that the free-running property
of the FRF-automata implies that they can, in general, be guided
along a path using fewer instructions than the classical finite au-
tomata. However, since the input set to a finite automaton is the
finite set , while the input set to the corresponding FRF-au-
tomaton is of the form , where

, the input set has a higher cardinality in the latter of
these cases. Any reasonable measure of the complexity of a con-
trol procedure must take the size of the input space into account
since the number of bits required to code a word over a given
alphabet typically depends logarithmically on the size of the al-
phabet. (See, for example, [7]). This dependency is captured in
a natural way if we define the complexity of a control proce-
dure as the description length of the input sequence, i.e., as the
number of bits needed for specifying the strategy.

C. Specification Complexity

Definition 2.3 (Description Length):Consider a finite set .
We say that a word has description length

Definition 2.4 (Specification Complexity):Consider a FRF-
automaton, , with state–space and input set . Let be
the word of minimal description length over that drives the
automaton from to . We then say that the task of driving
between and has specification complexity

.

D. Example

As an example, we explore the applicability of the FRF-au-
tomaton model in the context of a particular travel direction gen-
erating program calledMapQuest[14]. This program generates
directions in “people readable form” for traveling by car be-
tween two addresses.

Our first problem when interpreting the instructions provided
by this program is that of deciding how to split a given instruc-
tion into an open-loop and a closed-loop part. An instruction
such as 3 is, in fact, shorthand
for the composition of the instructions “Drive until you see a
sign indicating Quincy Street,” followed by the open-loop in-
struction “Turn right.” If we associate each intersection with
a state in a FRF-automaton, there are three open-loop instruc-
tions that can be read by the automaton, namely , ,
and . Hence, the finite set in the input alphabet

is

3All the examples in this section are taken directly fromMapQuest.

Now, the output associated with each state corresponds to the
observation of a street sign. Thus, it seems plausible to take the
output to be the set of streets in the town, state, or country of
interest. If we let the number of such signs be, then the de-
scription length of the instruction Turn RIGHT onto QUINCY
ST thus becomes ,
or, if we include the contribution from the interrupt in the cal-
culation, , since the interrupt is a mapping

.
What about the instruction

? When thinking about
the difference between open-loop and closed-loop control, a
sharp distinction is usually made between time and all other
variables. Functions of time are said to be open-loop, which is
standard in the control field, because time, or more precisely
time relative to some initial time, is assumed to be universally
available. However, in some situations it is also natural to think
that relative or even absolute positions might be available.
The same can be said for temperature, air pressure, humidity,
the Dow Jones average, and the conversion between the Yen
and the dollar. It can be useful to refine the model proposed
in this paper in such a way that an instruction is declared to
be open-loop relative to a list of such “universally” available
variables. In this way, we can extend the special status of time
to other variables.

If we have an odometer we can think of the instruction
above as an open-loop instruction by declaring the universally
available variables to include relative distance. This instruction
would then correspond to a series of commands
that direct the traveler through the encountered intersections,
followed by a turn command.

If we now formalize these observations, the FRF-automaton
that we use for interpreting and executing instructions from
MapQuest is , where

intersections

street signs

where

gives the next intersection encountered

An example of the type of instructions that MapQuest provides
is listed later.4 There, the instructions and the corresponding
inputs to the FRF-automaton are shown. Open-loop inputs are
described using values in , and the closed-loop
inputs are represented as mappings from street signs to the set.

1) Start out going SOUTH on OXFORD STR:.
2) Turn RIGHT onto BEACON ST: .
3) Turn LEFT onto BROADWAY: .
4) Turn RIGHT onto FULKERSON ST:

.
5) Turn LEFT onto MA-2A: .
6) Turn LEFT onto MELNEA CASS BLVD:

.
7) Turn RIGHT after 0.3 km: .

4The example describes how to drive from the Maxwell–Dworkin building at
Harvard University, Cambridge, MA, to the Applied Mathematics building at
Brown University, Providence, RI.

216 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 2, FEBRUARY 2003

8) Turn RIGHT onto FRONTAGE RD:
.

9) Take the I-93 ramp SOUTH: .
10) Stay on I-93 (22.7 km): .
11) Take I-95S exit: .
12) Stay on I-95 (49.7 km): .
13) Take BRANCH AVE exit: .
14) Keep LEFT in ramp: .
15) Turn RIGHT: .
16) Turn RIGHT onto NMAIN: .
17) Stay STRAIGHT: .
18) Turn LEFT onto OLNEY ST: .
19) Turn RIGHT onto HOPE ST: .
20) Turn RIGHT onto GEORGE ST: .
Thus the FRF-automaton model is rich enough to capture this

real-life use of open-loop and closed-loop instructions. We will
return to this example to illustrate points and to provide motiva-
tion later in this paper.

III. OBSERVERAUTOMATA

In this section, we elaborate further on the properties of the
FRF-automata. For the reminder of the paper, let the FRF-au-
tomaton be given by , where

, unless stated otherwise.

A. Observability

Consider the finite automaton . We define the
output sequence map as the string of
outputs

where , and ,
. Here,

denotes the concatenation of the lettersand from
the finite alphabet , and , where
is the set of words of length over .

What we want to do is to characterize when output feedback
is effective. We know that if we can construct an observer, i.e.,
reconstruct the state of the system, then feedback would be of
use. The state of the system can be reconstructed if, for some
given feedback policy, the output sequence map is injective in
its second argument, i.e., the system produces different output
strings for different initial states.

Definition 3.1 (Observability):A finite automaton
is observable if there exist a positive in-

teger and an output-to-input mapping that
satisfies

for all .5

We also need to define observer automata for recovering the
states of the original systems in order for observer-based, output
feedback to be useful:

5This definition of observability is somewhat different from the definitions
encountered in the literature on discrete event systems. (See, for example, [10].).
There, it is assumed that certain events can be detected, while others are non-
detectable. The state space is thus partitioned into one trivially observable and
one unobservable part.

Definition 3.2 (Observer Automaton):Consider the observ-
able finite automaton . Let be finite
sets, , , and .
Then, is said to be an observer to if there ex-
ists a such that

implies that the current state of can be uniquely determined
from the current state of , provided that sufficiently many it-
erations have been made. We say that the number of iterations
necessary for achieving this is the settling time of the observer.

We now defend our choice of language by showing that
we can associate an observer automaton to any observable
automaton. The constructions are as follows: Let be the
positive integer in Definition 3.1, and let

where is any symbol distinguishable from the rest of the states
in .

Now, consider from Definition 3.1, and define
the mapping as follows: For any given

and , we let

where
. For every that does not satisfy

for some , we let be
assigned an arbitrary value. is thus to be thought of as a
mapping that reconstructs the current state of the original
automaton using the injective property of the output sequence
map, and evolving that state one step further using the feedback
policy .

Now, let be given by

if
otherwise

and we thus have . This is an important fact since we
have already seen that the cardinality of the input set appears in
the definition of the specification complexity. If we were to use
observer-based feedback control, the size of the output set of the
observer would affect the input set to the system. Our current
construction thus gives that .
However, it is not yet clear that this construction does in fact
produce an observer automaton since the evolution of the ob-
server automaton, i.e.,, is not yet specified.

Let , and let be given by the
equation shown at the bottom of the next page.

Given from Definition 3.1 we define
as if , and

if . If we apply this input, together with any , to both
the original automaton and the observer automaton it is straight
forward to check that the observer automaton has settling time

. We call this observer automaton thestandard observer au-
tomatonsince it simply uses steps to let the observer settle,
and then copies the operation of the original automaton by using
the injectivity of the output sequence map.

EGERSTEDT AND BROCKETT: FEEDBACK CAN REDUCE THE SPECIFICATION COMPLEXITY OF MOTOR PROGRAMS 217

B. Attractors

We now characterize the situations under which a desired,
final state is in fact reachable. To do so we derive conditions
under which a desired state can be reached using observer-based
feedback control. For this, we need the notion of an attractor. We
say that is aglobal attractorfor the difference equation

if, for all , it holds that

In other words, is a global attractor if it is reachable from
every point and the system remains at once it has
reached .6

Theorem 3.1 (Creating Global Attractors):Consider the fi-
nite automaton . If can be reached from every
initial state, and there is a such that ,
then there is a mapping such that

has as a global attractor.
Proof: Choose an arbitrary . Let denote a (not

necessarily unique) shortest input sequence that drives the au-
tomaton from to . Decompose as , where

and . Let the candidate for the controller that
makes a global attractor satisfy .

Now, let denote the state and repeat the argu-
ment until the automaton reaches. By letting the initial state
vary over all of , a control that drives the automaton between
an arbitrary initial state and is obtained. Furthermore, let

, which implies that is a global attractor.

This theorem is useful since it allows us to use state feedback
for driving FRF-automata to desired states, and we state this fact
as a corollary:

Corollary 3.1: Given the FRF-automaton ,
where , , and ,

. This automaton can reach any given state
using only one instruction if can be reached from any initial
state under the operation of the finite automaton .

Proof: Choose the input as

arbitrary
as in Theorem 3.1
if and only if .

This input drives the automaton to , and the corollary follows.

6This implies that ifx is a global attractor, then there exists a finite, positive
integerN such thatx = x , 8 p 2 .

Fig. 1. FRF-automaton together with an observer automaton.

We can now combine this result with the notion of observ-
ability in order to get a characterization of when observer-based
closed-loop control is useful.

Lemma 3.1 (Observers Make Single Instruction Goal
Achievement Possible):Let the observable finite automaton

be such that can be reached from any initial
state. Then, by using the standard observer automaton, it is pos-
sible to drive the state of the FRF-automaton ,
where , between any initial state
and using only one instruction.

Proof: Construct the standard observer automaton. (See
Fig. 1). Pick as in Definition 3.1, and choose the
input sequence to the FRF-automaton as

arbitrary
if
if
if and only if

where is defined in Theorem 3.1.
By using this input, the FRF-automaton traverses its states

until the observer has converged, i.e.,advances steps.
Then, it drives its state to as in Corollary 3.1, which con-
cludes the proof.

C. Observable Subsets

Recall that the specification complexity is proportional to the
logarithm of the cardinality of the input space. By using ob-
server-based feedback we see that this complexity that depends
directly on the size of output set associated with the observer
automaton. In the standard observer construction we saw that
this set had cardinality . In this section we
investigate if it is possible to reduce the size of this set by only
defining the observer locally, i.e., on a subset of the state space.

Definition 3.3 (Observable Subset):Consider the finite au-
tomaton . A subset such that

is said to be observable if there exist a positive

if
if
if
if .

218 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 2, FEBRUARY 2003

integer and a that satisfies the following
conditions:

• ,
;

• for all it follows that
, where ,

What this means is simply that a subset,, is an observable
subset to a given automaton if the state can be recovered on
without the state leaving .

In a manner analogous to the previously defined observer au-
tomata, we can now define observer automata on subsets as well.

Definition 3.4 (Subset-Observer Automaton):Consider the
finite automaton , where is an
observable subset. , where are finite sets,

, , and is a
subset-observer automaton toif there exists a
such that the following conditions hold:

gives that the current state incan be mapped uniquely to the
current state in after sufficiently many iterations. Also, for
all it holds that , where

, , and so on.
Lemma 3.2 (Subset-Observers Exist):Let be an

observable subset to the finite automaton .
Then, a subset-observer automaton to can al-
ways be constructed.

Proof: Let , be given by the standard observer au-
tomaton. Let , and let

if
otherwise.

Furthermore, let be defined by the
equation shown at the bottom of the page, where the mapping

is defined in the standard observer automaton.
If we now use if ,

if , and if , then
a repetition of the argument in the derivation of the standard
observer automaton shows that it is in fact a subset-observer
automaton, with settling time .

It should be noted that the subset-observer’s output set has a
lower cardinality than the standard observer automaton as long
as

This observation will be used in Section IV where the main com-
plexity theorems are presented. Since the cardinality of the input

(a)

(b)

Fig. 2. (a)X is ballistically reachable fromx. (b) x is control-invariantly
reachable inX .

set depends on the size of the domain of the feedback mapping,
a smaller domain can be expected to reduce the specification
complexity. Thus, by using open-loop control on , and
using observer-based feedback on, we can expect a decrease
in specification complexity. In order to make this observation
quantitative, we introduce the notions of ballistic reachability
and control-invariant reachability: A set is ballistically
reachable from if there exists a such that
for some . What this means is that is ballistically
reachable from if it is possible to drive the state of the au-
tomaton from to using one open-loop input repeatedly
until the trajectory reaches . Furthermore, is ballistically
reachable from if there exists a such that for all

it holds that for some . An
element is said to becontrol-invariantly reach-
able in if it can be reached from all states in without the
trajectory leaving . These concepts are illustrated in Fig. 2.

Lemma 3.3 (One Instruction Suffices When Using Subset-Ob-
servers): Let be an observable subset to the finite automaton

, and let . If is ballistically
reachable from , and is control-invariantly reachable in ,
then there exists a FRF-automaton that can reach

from using only one instruction.
Proof: Construct the subset-observer from Lemma 3.2

and let be an open-loop control that drives the
automaton from to . (The existence of such a control fol-
lows since is ballistically reachable from). Let the input
to the FRF-automaton,

be given by

if
if
if
if and only if .

if
if and
if
if
if

EGERSTEDT AND BROCKETT: FEEDBACK CAN REDUCE THE SPECIFICATION COMPLEXITY OF MOTOR PROGRAMS 219

In other words, , and the previous
input drives the state of the automaton fromto using the
open-loop input . It then executes the observer-based motion
from Lemma 3.1 on the subset .

D. Example, Continued

Thus far, we have produced an FRF-automaton that captures
important aspects of the way travel directions are given and
processed when driving between different locations. Given a
list of streets that we can expect to encounter during a partic-
ular journey, we can now construct a subset-observer for re-
ducing the size of the input alphabet by only considering rel-
evant streets. By those we understand the streets encountered
during the trip where a left or right turn is called for. The obser-
vations corresponding to all other streets are, as in Lemma 3.2,
denoted by the single symbolin the subset-observer. The new
input alphabet thus becomes , where

relevant streets. In the example in Section II-D,
(with) becomes

OXFORD BEACON BROADWAY FULKERSON

MA-2A MELNEA FRONTAGE I-93 I-95 BRANCH

MAIN OLNEY HOPE GEORGE

As illustrated in Fig. 3, single instructions suffice for driving
the automaton to a desired state if an input can be constructed
that generates a ballistic, open-loop movement that traverses a
large part of the state–space, followed by an observer-based,
closed-loop movement. It is interesting to investigate whether
the instructions provided by MapQuest have a similar structure.
We examine this in a probabilistic setting, and for this we need
to estimate the number of bits of information that comes from
the open-loop and the closed-loop part, respectively. To this end,
it seems reasonable to adopt the “choice complexity” model. In
this model, the number of bits associated with the open-loop
command “turn left” is , since , and the
number of bits associated with the observation of the street sign
for Quincy street is , where is as defined above.
A statement like in the previous
example would then have a ratio between the “closed-loop bits”
and the total number of bits as . We
denote this ratio by .

We now let denote the distance traveled from the starting
address, and let denote the distance remaining to travel to the
final address. We can then defineas

and store each instruction as the data pair . We consider
an instruction to be closed-loop if and open-loop if

, thus generating a threshold based partition of the
instructions into two types.

We will now generate some statistical results based on an
analysis of a sample of the directions when driving between the
Maxwell–Dworkin building at Harvard University to 20 other
universities around the U.S. For this, we fit empirical proba-
bility densities to the two sets of instruction types, i.e., to the set
of open-loop and closed-loop instructions respectively, as func-
tions of . After extracting and classifying the data from the

Fig. 3. Observer-based, single instruction, goal-finding procedure in Lemma
3.3. The dotted line is the open-loop part of the evolution, the dashed line defines
the part where the observer is converging, and the solid line is the last part of
the evolution.

Fig. 4. Fitted Gaussian densities associated with the closed-loop(r � 0:5)
and the open-loop(r < 0:5) instructions are shown as functions of the
distance to the closest endpoint of the trip.

20 travel directions (totaling 724 instructions) we choose to fit
Gaussian probability densities to these two collections of data
points

open-loop

closed-loop

as seen in Fig. 4. In that figure, the sample means and covari-
ances were found to be

where the subscripts and denote open-loop and closed-
loop, respectively.

We now turn our attention to Bayes’ decision rule as a mean
of probabilistically classifying the instructions as open-loop or
closed-loop based on the variable. The reason for doing this
is that we wish to get some feeling for when open-loop and
closed-loop instructions are most likely to be used. This result is
then to be used as guidance when we produce instructions with
short description lengths.

If we let denote a probability distribution and
denote a probability density, we can classify an instruction
as open-loop or closed-loop using Bayes’ decision rule, i.e.,
by choosing the classification with the greatest conditional

220 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 2, FEBRUARY 2003

Fig. 5. Conditional probabilities that indicate how likely it is that a given
instruction is closed-loop or open-loop are shown. We have assumed (supported
by the empirical data) that the probabilities are symmetrical around the start
and goal point. From the figure it can be seen that Bayes’ decision boundary is
located atd = 38:5 km.

probability , where
open-loopclosed-loop. The priors are

closed-loop
total number of closed-loop instructions

total number of instructions

open-loop
total number of open-loop instructions

total number of instructions

and the probability densities open-loop and
closed-loop are given in Fig. 5. The conditional

probabilities are plotted in Fig. 5, and it can be seen that the
Bayes’ decision boundary occurs at km. What this
means is that close to the goal and to the starting point, closed-
loop instructions are more likely, while open-loop instructions
are likely far away from those points. In Section IV, we derive
a suite of complexity theorems that capture this effect in a
natural way, based on Lemma 3.3.

IV. I NSTRUCTIONSWHICH LEAD TO THE GOAL

The reason for studying the situation in Lemma 3.3 is that it
captures the idea that it is possible to successfully combine un-
certain feed-forward control and high-precision feedback con-
trol on different parts of the state–space. Since the size of the
input set is dependent on the size of the output space of the ob-
server automaton when feedback is used, the description lengths
of the inputs should be reduced if we only use feedback where
it is locally effective, i.e., on reduced parts of the state–space.

However, in order to compare purely open-loop control, i.e.,
control when no observations are made, with a situation where
sensory information is available we must be able to generate
open-loop motions on the FRF-automata. It is clear that the input

sequence , where
, achieves

this. However, this word has length, and it is drawn from the
input alphabet , and thus the de-
scription length is . But, this is
clearly not a very meaningful result. Instead we can restrict
the input alphabet to be , which
has cardinality . The description length of is now

, relative to the smaller input
set , which is the description length we should expect in the
purely open-loop case. (We do not want the complexity to de-
pend on since we do not rely on the outputs for speci-
fying the evolution of the automaton).

Now, consider a connected, classical, finite automaton
. We recall that thebackward eccentricityof a state,
, is the minimum number of instructions necessary for

driving the automaton from any other state to. (See, for ex-
ample, [6]). We define theradiusof to be

Consider the FRF-automaton. If we let

then we directly get that

where is the FRF-automaton .

A. Main Theorem

The previous definitions enable us to state the following the-
orem.

Theorem 4.1 (Main Theorem):Assume that .
Suppose that , where is an observable subset for
the finite automaton . Assume that
and . If is ballistically reachable
from , and is control-invariantly reachable in , then
there exists a FRF-automaton such
that

Proof: The proof is found by investigating the size of the
input alphabet necessary for generating the input in Lemma 3.3.
We can let , and let the input,

, be given by

arbitrary
if
if
if
if and only if .

The size of the input space is thus

EGERSTEDT AND BROCKETT: FEEDBACK CAN REDUCE THE SPECIFICATION COMPLEXITY OF MOTOR PROGRAMS 221

The description length is, thus, given by

Now, since , the the-
orem follows.

B. Chained Version of the Main Theorem

Goals are seldom final goals. More often they tend to be in-
termediate goals in a grander scheme. This is for instance the
case when mobile robots are navigating using landmarks. The
theory that we have developed so far does not acknowledge this
fact, and in this subsection we modify it so that we can take into
account the situation where a number of goal states are visited
by the automaton.

It is clear that the premises on which the previous theorem
is based are too restrictive to capture thechainedstructure that
intermediary goals give rise to. Instead, we need to extend the
trajectories from the main theorem (Theorem 4.2) through a
chain of goals states. This can be achieved by assuming that
we work with an automaton where subset-observers can be de-
signed around different states, i.e., the intermediate goals. We
also assume that the sets on which the observers are defined
are ballistically reachable from each other. We could then use
open-loop control for driving the system between these sets on
the parts of the state space where the lack of sensory informa-
tion prevents effective use of feedback. We compliment this with
feedback controllers on the subsets where subset-observers can
be constructed, as seen in Fig. 6. For the sake of completeness,
we explicitly state the chained extension of the main theorem as
a corollary.

Corollary 4.1: (Chained Version of the Main Theorem) As-
sume that . Let the sets be disjoint, ob-
servable subsets with cardinality less than or equal to, where

, . Let
be control-invariantly reachable in and let

be ballistically reachable from . Assume that there exists in-
termediary goals such that
is control-invariantly reachable in and is ballistically
reachable from . Then there exists a FRF-automaton

such that

Proof: In order to prove this corollary, we need to con-
struct an observer that makes it possible to reachusing as
few instructions as possible. In fact, we will show that one in-

Fig. 6. Chained version of the main theorem. The dashed lines correspond
to open-loop trajectories, while feedback is used for generating the solid-line
trajectories.

struction is enough, and for this we set the state space of the
observer to be

where is the largest of all the positive integers asso-
ciated with each observable subset . The idea
here is to let denote the state of the system when open-loop
paths are followed between the different subsets; elements in

are to be used when the observer automaton is settling in
a particular subset, and a copy of the state of the original au-
tomaton should be used once the observer has settled. With this
in mind, we let the outputs of the observer automaton bewhen
the observer is settling, and let it beduring the ballistic mo-
tions between the different subsets. We also assign the value
when the observer has settled on those subsets, i.e.,

if
otherwise.

Our output from the observer automaton, thus, becomes

In order to get an evolution of the observer automaton that is
consistent with these choices, we let the transitions be generated
as follows: is given by the equation
shown at the bottom of the page.

If we let , for some arbitrary ,
we can use as the input to the FRF-automaton,
where

if
if
if
if and only if .

if
if and
if and
if ,
if
if .

222 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 2, FEBRUARY 2003

Here, is the open-loop control that drives the automaton from
to , is the feedback control that makes the observer

converge on , and is the feedback control that drives the
automaton to without the trajectory leaving . It is straight
forward to check that by using this input, the FRF-automaton

drives from any initial state to .
The size of the input space is thus

and, hence

One conclusion to be drawn from Corollary 4.1 is that the
increase in the description length caused by the summation over
many intermediate goals, can be counter-acted by choosing
smaller feedback sets. In the mobile robot case, this would
corresponding to using many easily detectable, local landmarks
as a basis for the navigation system.7

V. CONCLUSION

In this paper, we formulate and solve some problems in-
volving the search for short descriptions of control procedures.
In particular, we investigate the difference in the description
lengths of the inputs when controlling dynamical systems with
and without reference to sensory information.

We show that when feedback can be used in the description of
motor programs, the length of the descriptions can be reduced
by a factor that reflects the richness of the available feedback
signals. In the domain of task descriptions, where the objective
can be stated in terms of reaching a goal state, feedback reduces
the description length of the motor programs that execute the
task. In particular, we show in Theorem 4.1 that the reduction
depends on the ratio between the size of the entire state space
and the size of the set of states for which feedback is locally
effective. This argument is furthermore used iteratively, leading
to further reductions, as seen in Corollary 4.1.

To search for short descriptions of control procedures is an
age old problem but the expression of it in a precise language
seems to be new. There are many possible applications, and for
instance in teleoperated robotics, the control signals are trans-
mitted over communication channels in which the presence of
channel noise makes it preferable to transmit instructions that
are as short as possible. A related problem arises in the area of
minimum attention control, where an attention functional is de-
fined as a measure of the control variability. (See, for example,

7This result is furthermore consistent with the statistical data recorded in the
MapQuest example, in the special case where two observable subsets aroundx

andx were used. In this case, the ballistic motions that drive the automaton
between these two subsets correspond to the long open-loop motions along the
highways connecting different cities.

[5]). The problem then becomes that of minimizing the cost
functional under the additional constraint that the servomech-
anism should perform in a satisfactory way. It can also be argued
that this way of imposing complexity measures on control pro-
cedures has implications for decentralized or embedded control
strategies, where the idea is to minimize the communication be-
tween different control modules at the same time as sufficient
information must be available in order for the overall system to
meet its specifications. Apart from the complexity theorems de-
rived in this paper, a key contribution is thus the model in itself,
which allows us to measure the specification complexity of dif-
ferent control procedures.

APPENDIX

LANGUAGES RECOGNIZED BY FREE-RUNNING,
FEEDBACK AUTOMATA

From Definition 2.2, we see that the variables defining the
state of a FRF-automaton areand , where takes on values
in a finite set, whereastakes on values in the nonnegative in-
tegers. There is noa priori limit on the size of because there
is noa priori limit on the length of the input string. Thus, one
could ask if the introduction of this infinity affects the languages
recognizable by FRF-automata.

We say that a FRF-automaton recognizes the language
if all strings in drive the automaton from the initial state
to a distinct final state . To characterize the language rec-

ognized by a given FRF-automaton, we need to introduce the
concept ofscope. Given . We say that has
scope if the FRF-automaton, initialized at ,
maximally advances the statesteps without advancing.

Lemma 5.1:Consider the FRF-automaton .
Let and . If there is a periodic orbit of

without the interrupt triggering, then is infinite. If
there are no such periodic orbits, then .

Proof: If the state is advanced more than
steps then, by the Pigeon Hole Principle (see, for example, [11]),
the same state must have been visited twice. Since the control
input is kept constant, a periodic orbit must have been encoun-
tered. Hence, the scope is infinite. If, on the other hand, no pe-
riodic orbit is encountered, then no state is visited more than
once, which implies that .

Essentially, what this means is that the only way a given
can have infinite scope is if it makes the FRF-automaton cycle
through an interrupt-free orbit.

Theorem 5.1:If is recognized by the FRF-au-
tomaton , with , then
is also recognized by some finite automaton.

Proof: Let , where is the language
recognized by the FRF-automaton. Let denote
the state reached after applying repeatedly times, e.g.,

EGERSTEDT AND BROCKETT: FEEDBACK CAN REDUCE THE SPECIFICATION COMPLEXITY OF MOTOR PROGRAMS 223

Assume that all the input symbols in the input string have
finite scope with respect to the recursively defined initial states.
Label these initial states as

...

Since is recognized by the FRF-automaton we must have that
.

Now, define the finite automaton , with
initial state and

where are as previously defined.
By repeating this argument for all such that the fi-

nite scope assumption holds, the resulting finite automaton rec-
ognizes every finite scope word . However, if the as-
sumption is false, i.e., there is a such that the finite
scope assumption does not hold, then there is afor some

, such that the scope is infinite when starting
from the initial state . Then, by Lemma 5.1, the FRF-au-
tomaton has encountered an interrupt-free periodic orbit. Ifis
not on this orbit then is not recognized by the FRF-automaton,
which is a contradiction. If, on the other hand, is on the orbit
then the orbit is, in fact, only consisting of one point since

. Hence is recognized by the FRF-au-
tomaton. The finite automaton can thus be redefined to interpret
inputs according to the following rules:

...

and, as before

which concludes the proof.

REFERENCES

[1] M. Arbib, Ed., Algebraic Theory of Machines, Languages, and Semi-
groups. New York: Academic, 1968.

[2] H. S. Black, “Stabilized feedback amplifiers,”The Bell System Technical
Journal, pp. 1–18, Jan. 1934.

[3] R. W. Brockett, “On the computer control of movement,” inProc. 1988
IEEE Conf. Robotics Automation, New York, Apr. 1988, pp. 534–540.

[4] , “Hybrid models for motion control systems,” inPerspectives in
Control, H. Trentelman and J. Willems, Eds. Boston, MA: Birkhauser,
1993, pp. 29–54.

[5] , “Minimum attention control,” inProc. IEEE Conf. Decision Con-
trol, 1997, pp. 2628–2632.

[6] F. Buckley and F. Harary,Distance in Graphs. Reading, MA: Addison-
Wesley, 1990.

[7] T. M. Cover and J. A. Thomas,Elements of Information Theory. New
York: Wiley, 1991.

[8] W. Fleming and P. L. Lions, “Stochastic Differential Systems, Stochastic
Control Theory and Applications,” inThe IMA Volumes in Mathematics
and Its Applications. New York: Springer-Verlag, 1987, vol. 10.

[9] A. Ginzburg, “Algebraic theory of automata,” inACM Monograph Se-
ries. New York: Academic, 1968.

[10] Y. Ho, Ed.,Discrete Event Dynamic Systems. New York: IEEE Press,
1992.

[11] J. E. Hopcroft, R. Motwani, and J. D. Ullman,Introduction to Automata
Theory, Languages, and Computation, 2 ed. Reading, MA: Addison-
Wesley, 2000.

[12] M. Itô, The Cerebellum and Neural Control. New York: Raven, 1984.
[13] S. E. Kels,Human Motor Behavior. Hillsdale, NJ: Lawrence Erlbaum,

1982.
[14] MapQuest [Online]. Available: http://www.mapquest.com/
[15] D. Wäjten, “Feedback automata and their languages,”Inform. Pro-

cessing Lett., vol. 21, pp. 83–86, 1985.

Magnus B. Egerstedt (S’99–M’00) was born in
Stockholm, Sweden, in 1971. He received the B.A.
degree in philosophy from Stockholm University,
Stockholm, Sweden, and the M.S. degree in en-
gineering physics and the Ph.D. degree in applied
mathematics from the Royal Institute of Technology,
Stockholm, Sweden, in 1996 and 2000, respectively.

He is currently an Assistant Professor in Electrical
and Computer Engineering at the Georgia Institute of
Technology, Atlanta. He spent 2000–2001 as a Post-
doctoral Fellow in the Division of Engineering and

Applied Science at Harvard University, Cambridge, MA. His research interests
include optimal control as well as modeling and analysis of hybrid and dis-
crete-event systems, with emphasis on motion planning and control of mobile
robots.

Roger W. Brockett (S’62–M’63–SM’73–F’74) re-
ceived the B.S., M.S., and Ph.D. degrees from Case
Western Reserve University, Cleveland, OH, in 1960,
1962, and 1964, respectively.

He is the An Wang Professor of Electrical En-
gineering and Computer Science in the Division of
Applied Science at Harvard University, Cambridge,
MA. He taught for six years in the Electrical
Engineering Department at the Massachusetts
Institute Technology, Cambridge, before joining
Harvard in 1969. He has contributed extensively

to the theory of automatic control with work on stability, nonlinear control,
feedback linearization, system identification, nonlinear estimation, pole
placement, hybrid systems, and robotics. More recently, his work has involved
problems arising in the study of intelligent machines. Areas of particular
interest include the problem of motion control, and the investigation of new
computational paradigms appropriate for control in the high data rate, sensory
rich environments that characterize vision guided systems.

Dr. Brockett has been recognized by the American Automatic Control
Council and by the IEEE through their Richard Bellman Award and the Control
System Science and Engineering Award, and has received the Reid Prize
from the Society of Industrial and Applied Mathematics. He has served on a
variety of National Research Council Panels and is a Member of the National
Academy of Engineering.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

