research

Versatile Control System for Automated Single-Molecule Optical Tweezers Investigations

Abstract

We present a versatile control system to automate single-molecule biophysics experiments. This method combines low-level controls into various functional, user-configurable modules, which can be scripted in a domain-specific instruction language. The ease with which the high-level parameters can be changed accelerates the development of a durable experiment for the perishable single-molecule samples. Once the experimental parameters are tuned, the control system can be used to repeatedly manipulate other single molecules in the same way, which is necessary to accumulate the statistics needed to report results from single-molecule studies. This system has been implemented for an optical tweezers instrument for single-molecule manipulations, with real-time point-by-point feedback at a loop rate of 10-20 kHz

    Similar works