625 research outputs found

    Distribution network reconfiguration considering DGs using a hybrid CS-GWO algorithm for power loss minimization and voltage profile enhancement

    Get PDF
    This paper presents an implementation of the hybrid Cuckoo search and Grey wolf (CS-GWO) optimization algorithm for solving the problem of distribution network reconfiguration (DNR) and optimal location and sizing of distributed generations (DGs) simultaneously in radial distribution systems (RDSs). This algorithm is being used significantly to minimize the system power loss, voltage deviation at load buses and improve the voltage profile. When solving the high-dimensional datasets optimization problem using the GWO algorithm, it simply falls into an optimum local region. To enhance and strengthen the GWO algorithm searchability, CS algorithm is integrated to update the best three candidate solutions. This hybrid CS-GWO algorithm has a more substantial search capability to simultaneously find optimal candidate solutions for problem. Furthermore, to validate the effectiveness and performances of the proposed hybrid CS-GWO algorithm is being tested and evaluated for standard IEEE 33-bus and 69-bus RDSs by considering different scenarios

    Improved Gravitational Search Algorithm For Optimal Placement And Sizing Of Distributed Generation For Power Quality Enhancement

    Get PDF
    Distributed generation (DG) is one of the foremost elements in distribution planning. DG units play a significant role in distribution system stability and to enhance its power quality. Numerous benefits can be attained by the integration of DG unit in distribution networks, such as power loss reduction and improvement in voltage profiles and power quality. Such advantages can be accomplished and elevated if the DG units in the systems are optimally located and sized. Inappropriate placement and sizing of DG units would lead to negative impacts such as further loss in the system original power and system realibility. Meanwhile, power quality issues such as harmonic distortion and voltage dip have gained interest especially in power system researches. Therefore, this study deals with inverter-based DG with renewable source, which is the photovoltaicbased distributed generation (PVDG). In this research, a method for determining the optimal sizing and location of single and multiple PVDG in distribution systems is presented. A multi-objective function is formed to minimize total real losses and average voltage deviation, voltage total harmonic distortion and voltage dip magnitude. In this study, three-phase fault has been generated and injected to all the bus in the distribution systems for the voltage dips assessment. The optimization problem is generated using a weighted sum method. In order to obtain the best compromise solution, a novel heuristic algorithm based on improved gravitational search algorithm (IGSA) is proposed as an optimization technique. IGSA has the ability to search for the best solutions and it executes faster. The IGSA performances has then been compared with other heuristic algorithm such as particle swarm optimization (PSO) and GSA. The load flow algorithms from MATPOWER, harmonic load flow and method of fault position has been integrated in MATLAB environment to solve the multi-objective function. Single and multiple PVDG installation cases have been examined and compared to cases without PVDG. A comparison of the performances has also been made using optimization techniques when PVDG units are fixed at critical buses. The optimization techniques have been tested on two radial distribution systems, which are IEEE 33-bus and IEEE-69 bus with several scenarios and case studies. The overall results show that IGSA outperforms PSO and GSA in obtaining the best fitness value and has the fastest average computational time

    A Hybrid k-Means Cuckoo Search Algorithm Applied to the Counterfort Retaining Walls Problem

    Full text link
    [EN] The counterfort retaining wall is one of the most frequent structures used in civil engineering. In this structure, optimization of cost and CO2 emissions are important. The first is relevant in the competitiveness and efficiency of the company, the second in environmental impact. From the point of view of computational complexity, the problem is challenging due to the large number of possible combinations in the solution space. In this article, a k-means cuckoo search hybrid algorithm is proposed where the cuckoo search metaheuristic is used as an optimization mechanism in continuous spaces and the unsupervised k-means learning technique to discretize the solutions. A random operator is designed to determine the contribution of the k-means operator in the optimization process. The best values, the averages, and the interquartile ranges of the obtained distributions are compared. The hybrid algorithm was later compared to a version of harmony search that also solved the problem. The results show that the k-mean operator contributes significantly to the quality of the solutions and that our algorithm is highly competitive, surpassing the results obtained by harmony search.The first author was supported by the Grant CONICYT/FONDECYT/INICIACION/11180056, the other two authors were supported by the Spanish Ministry of Economy and Competitiveness, along with FEDER funding (Project: BIA2017-85098-R).García, J.; Yepes, V.; Martí Albiñana, JV. (2020). A Hybrid k-Means Cuckoo Search Algorithm Applied to the Counterfort Retaining Walls Problem. Mathematics. 8(4):1-22. https://doi.org/10.3390/math8040555S12284García, J., Altimiras, F., Peña, A., Astorga, G., & Peredo, O. (2018). A Binary Cuckoo Search Big Data Algorithm Applied to Large-Scale Crew Scheduling Problems. Complexity, 2018, 1-15. doi:10.1155/2018/8395193García, J., Moraga, P., Valenzuela, M., Crawford, B., Soto, R., Pinto, H., … Astorga, G. (2019). A Db-Scan Binarization Algorithm Applied to Matrix Covering Problems. Computational Intelligence and Neuroscience, 2019, 1-16. doi:10.1155/2019/3238574Al-Madi, N., Faris, H., & Mirjalili, S. (2019). Binary multi-verse optimization algorithm for global optimization and discrete problems. International Journal of Machine Learning and Cybernetics, 10(12), 3445-3465. doi:10.1007/s13042-019-00931-8Kim, M., & Chae, J. (2019). Monarch Butterfly Optimization for Facility Layout Design Based on a Single Loop Material Handling Path. Mathematics, 7(2), 154. doi:10.3390/math7020154García, J., Crawford, B., Soto, R., & Astorga, G. (2019). A clustering algorithm applied to the binarization of Swarm intelligence continuous metaheuristics. Swarm and Evolutionary Computation, 44, 646-664. doi:10.1016/j.swevo.2018.08.006García, J., Lalla-Ruiz, E., Voß, S., & Droguett, E. L. (2020). Enhancing a machine learning binarization framework by perturbation operators: analysis on the multidimensional knapsack problem. International Journal of Machine Learning and Cybernetics, 11(9), 1951-1970. doi:10.1007/s13042-020-01085-8García, J., Moraga, P., Valenzuela, M., & Pinto, H. (2020). A db-Scan Hybrid Algorithm: An Application to the Multidimensional Knapsack Problem. Mathematics, 8(4), 507. doi:10.3390/math8040507Saeheaw, T., & Charoenchai, N. (2018). A comparative study among different parallel hybrid artificial intelligent approaches to solve the capacitated vehicle routing problem. International Journal of Bio-Inspired Computation, 11(3), 171. doi:10.1504/ijbic.2018.091704Valdez, F., Castillo, O., Jain, A., & Jana, D. K. (2019). Nature-Inspired Optimization Algorithms for Neuro-Fuzzy Models in Real-World Control and Robotics Applications. Computational Intelligence and Neuroscience, 2019, 1-2. doi:10.1155/2019/9128451Penadés-Plà, V., García-Segura, T., & Yepes, V. (2020). Robust Design Optimization for Low-Cost Concrete Box-Girder Bridge. Mathematics, 8(3), 398. doi:10.3390/math8030398García-Segura, T., Yepes, V., Frangopol, D. M., & Yang, D. Y. (2017). Lifetime reliability-based optimization of post-tensioned box-girder bridges. Engineering Structures, 145, 381-391. doi:10.1016/j.engstruct.2017.05.013Yepes, V., Martí, J. V., & García, J. (2020). Black Hole Algorithm for Sustainable Design of Counterfort Retaining Walls. Sustainability, 12(7), 2767. doi:10.3390/su12072767Marti-Vargas, J. R., Ferri, F. J., & Yepes, V. (2013). Prediction of the transfer length of prestressing strands with neural networks. Computers and Concrete, 12(2), 187-209. doi:10.12989/cac.2013.12.2.187Fu, W., Tan, J., Zhang, X., Chen, T., & Wang, K. (2019). Blind Parameter Identification of MAR Model and Mutation Hybrid GWO-SCA Optimized SVM for Fault Diagnosis of Rotating Machinery. Complexity, 2019, 1-17. doi:10.1155/2019/3264969Sierra, L. A., Yepes, V., García-Segura, T., & Pellicer, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Journal of Cleaner Production, 176, 521-534. doi:10.1016/j.jclepro.2017.12.140Crawford, B., Soto, R., Astorga, G., García, J., Castro, C., & Paredes, F. (2017). Putting Continuous Metaheuristics to Work in Binary Search Spaces. Complexity, 2017, 1-19. doi:10.1155/2017/8404231Hatamlou, A. (2013). Black hole: A new heuristic optimization approach for data clustering. Information Sciences, 222, 175-184. doi:10.1016/j.ins.2012.08.023Pan, W.-T. (2012). A new Fruit Fly Optimization Algorithm: Taking the financial distress model as an example. Knowledge-Based Systems, 26, 69-74. doi:10.1016/j.knosys.2011.07.001Rashedi, E., Nezamabadi-pour, H., & Saryazdi, S. (2009). GSA: A Gravitational Search Algorithm. Information Sciences, 179(13), 2232-2248. doi:10.1016/j.ins.2009.03.004Calvet, L., Armas, J. de, Masip, D., & Juan, A. A. (2017). Learnheuristics: hybridizing metaheuristics with machine learning for optimization with dynamic inputs. Open Mathematics, 15(1), 261-280. doi:10.1515/math-2017-0029Talbi, E.-G. (2015). Combining metaheuristics with mathematical programming, constraint programming and machine learning. Annals of Operations Research, 240(1), 171-215. doi:10.1007/s10479-015-2034-yJuan, A. A., Faulin, J., Grasman, S. E., Rabe, M., & Figueira, G. (2015). A review of simheuristics: Extending metaheuristics to deal with stochastic combinatorial optimization problems. Operations Research Perspectives, 2, 62-72. doi:10.1016/j.orp.2015.03.001Chou, J.-S., & Nguyen, T.-K. (2018). Forward Forecast of Stock Price Using Sliding-Window Metaheuristic-Optimized Machine-Learning Regression. IEEE Transactions on Industrial Informatics, 14(7), 3132-3142. doi:10.1109/tii.2018.2794389Sayed, G. I., Tharwat, A., & Hassanien, A. E. (2018). Chaotic dragonfly algorithm: an improved metaheuristic algorithm for feature selection. Applied Intelligence, 49(1), 188-205. doi:10.1007/s10489-018-1261-8De León, A. D., Lalla-Ruiz, E., Melián-Batista, B., & Marcos Moreno-Vega, J. (2017). A Machine Learning-based system for berth scheduling at bulk terminals. Expert Systems with Applications, 87, 170-182. doi:10.1016/j.eswa.2017.06.010García, J., Crawford, B., Soto, R., Castro, C., & Paredes, F. (2017). A k-means binarization framework applied to multidimensional knapsack problem. Applied Intelligence, 48(2), 357-380. doi:10.1007/s10489-017-0972-6Molina-Moreno, F., Martí, J. V., & Yepes, V. (2017). Carbon embodied optimization for buttressed earth-retaining walls: Implications for low-carbon conceptual designs. Journal of Cleaner Production, 164, 872-884. doi:10.1016/j.jclepro.2017.06.246Asta, S., Özcan, E., & Curtois, T. (2016). A tensor based hyper-heuristic for nurse rostering. Knowledge-Based Systems, 98, 185-199. doi:10.1016/j.knosys.2016.01.031Martin, S., Ouelhadj, D., Beullens, P., Ozcan, E., Juan, A. A., & Burke, E. K. (2016). A multi-agent based cooperative approach to scheduling and routing. European Journal of Operational Research, 254(1), 169-178. doi:10.1016/j.ejor.2016.02.045Ghazali, R., Deris, M. M., Nawi, N. M., & Abawajy, J. H. (Eds.). (2018). Recent Advances on Soft Computing and Data Mining. Advances in Intelligent Systems and Computing. doi:10.1007/978-3-319-72550-5Veček, N., Mernik, M., Filipič, B., & Črepinšek, M. (2016). Parameter tuning with Chess Rating System (CRS-Tuning) for meta-heuristic algorithms. Information Sciences, 372, 446-469. doi:10.1016/j.ins.2016.08.066Ries, J., & Beullens, P. (2015). A semi-automated design of instance-based fuzzy parameter tuning for metaheuristics based on decision tree induction. Journal of the Operational Research Society, 66(5), 782-793. doi:10.1057/jors.2014.46Yalcinoz, T., & Altun, H. (2001). Power economic dispatch using a hybrid genetic algorithm. IEEE Power Engineering Review, 21(3), 59-60. doi:10.1109/39.911360Kaur, H., Virmani, J., Kriti, & Thakur, S. (2019). A genetic algorithm-based metaheuristic approach to customize a computer-aided classification system for enhanced screen film mammograms. U-Healthcare Monitoring Systems, 217-259. doi:10.1016/b978-0-12-815370-3.00010-4Faris, H., Hassonah, M. A., Al-Zoubi, A. M., Mirjalili, S., & Aljarah, I. (2017). A multi-verse optimizer approach for feature selection and optimizing SVM parameters based on a robust system architecture. Neural Computing and Applications, 30(8), 2355-2369. doi:10.1007/s00521-016-2818-2Faris, H., Aljarah, I., & Mirjalili, S. (2017). Improved monarch butterfly optimization for unconstrained global search and neural network training. Applied Intelligence, 48(2), 445-464. doi:10.1007/s10489-017-0967-3Chou, J.-S., & Thedja, J. P. P. (2016). Metaheuristic optimization within machine learning-based classification system for early warnings related to geotechnical problems. Automation in Construction, 68, 65-80. doi:10.1016/j.autcon.2016.03.015Pham, A.-D., Hoang, N.-D., & Nguyen, Q.-T. (2016). Predicting Compressive Strength of High-Performance Concrete Using Metaheuristic-Optimized Least Squares Support Vector Regression. Journal of Computing in Civil Engineering, 30(3), 06015002. doi:10.1061/(asce)cp.1943-5487.0000506Göçken, M., Özçalıcı, M., Boru, A., & Dosdoğru, A. T. (2016). Integrating metaheuristics and Artificial Neural Networks for improved stock price prediction. Expert Systems with Applications, 44, 320-331. doi:10.1016/j.eswa.2015.09.029Chou, J.-S., & Pham, A.-D. (2017). Nature-inspired metaheuristic optimization in least squares support vector regression for obtaining bridge scour information. Information Sciences, 399, 64-80. doi:10.1016/j.ins.2017.02.051Kuo, R. J., Lin, T. C., Zulvia, F. E., & Tsai, C. Y. (2018). A hybrid metaheuristic and kernel intuitionistic fuzzy c-means algorithm for cluster analysis. Applied Soft Computing, 67, 299-308. doi:10.1016/j.asoc.2018.02.039Singh Mann, P., & Singh, S. (2017). Energy efficient clustering protocol based on improved metaheuristic in wireless sensor networks. Journal of Network and Computer Applications, 83, 40-52. doi:10.1016/j.jnca.2017.01.031Rosa, R. de A., Machado, A. M., Ribeiro, G. M., & Mauri, G. R. (2016). A mathematical model and a Clustering Search metaheuristic for planning the helicopter transportation of employees to the production platforms of oil and gas. Computers & Industrial Engineering, 101, 303-312. doi:10.1016/j.cie.2016.09.006Faris, H., Mirjalili, S., & Aljarah, I. (2019). Automatic selection of hidden neurons and weights in neural networks using grey wolf optimizer based on a hybrid encoding scheme. International Journal of Machine Learning and Cybernetics, 10(10), 2901-2920. doi:10.1007/s13042-018-00913-2De Rosa, G. H., Papa, J. P., & Yang, X.-S. (2017). Handling dropout probability estimation in convolution neural networks using meta-heuristics. Soft Computing, 22(18), 6147-6156. doi:10.1007/s00500-017-2678-4Rere, L. M. R., Fanany, M. I., & Arymurthy, A. M. (2016). Metaheuristic Algorithms for Convolution Neural Network. Computational Intelligence and Neuroscience, 2016, 1-13. doi:10.1155/2016/1537325Jothi, R., Mohanty, S. K., & Ojha, A. (2017). DK-means: a deterministic K-means clustering algorithm for gene expression analysis. Pattern Analysis and Applications, 22(2), 649-667. doi:10.1007/s10044-017-0673-0García, J., Pope, C., & Altimiras, F. (2017). A Distributed K-Means Segmentation Algorithm Applied to Lobesia botrana Recognition. Complexity, 2017, 1-14. doi:10.1155/2017/5137317Arunkumar, N., Mohammed, M. A., Abd Ghani, M. K., Ibrahim, D. A., Abdulhay, E., Ramirez-Gonzalez, G., & de Albuquerque, V. H. C. (2018). K-Means clustering and neural network for object detecting and identifying abnormality of brain tumor. Soft Computing, 23(19), 9083-9096. doi:10.1007/s00500-018-3618-7Abdel-Basset, M., Wang, G.-G., Sangaiah, A. K., & Rushdy, E. (2017). Krill herd algorithm based on cuckoo search for solving engineering optimization problems. Multimedia Tools and Applications, 78(4), 3861-3884. doi:10.1007/s11042-017-4803-xChi, R., Su, Y., Zhang, D., Chi, X., & Zhang, H. (2017). A hybridization of cuckoo search and particle swarm optimization for solving optimization problems. Neural Computing and Applications, 31(S1), 653-670. doi:10.1007/s00521-017-3012-xLi, J., Xiao, D., Lei, H., Zhang, T., & Tian, T. (2020). Using Cuckoo Search Algorithm with Q-Learning and Genetic Operation to Solve the Problem of Logistics Distribution Center Location. Mathematics, 8(2), 149. doi:10.3390/math8020149Pan, J.-S., Song, P.-C., Chu, S.-C., & Peng, Y.-J. (2020). Improved Compact Cuckoo Search Algorithm Applied to Location of Drone Logistics Hub. Mathematics, 8(3), 333. doi:10.3390/math8030333Yepes, V., Alcala, J., Perea, C., & González-Vidosa, F. (2008). A parametric study of optimum earth-retaining walls by simulated annealing. Engineering Structures, 30(3), 821-830. doi:10.1016/j.engstruct.2007.05.023Molina-Moreno, F., García-Segura, T., Martí, J. V., & Yepes, V. (2017). Optimization of buttressed earth-retaining walls using hybrid harmony search algorithms. Engineering Structures, 134, 205-216. doi:10.1016/j.engstruct.2016.12.04

    New Approaches in Cognitive Radios using Evolutionary Algorithms

    Get PDF
    Cognitive radio has claimed a promising technology to exploit the spectrum in an ad hoc network. Due many techniques have become a topic of discussion on cognitive radios, the aim of this paper was developed a contemporary survey of evolutionary algorithms in Cognitive Radio. According to the art state, this work had been collected the essential contributions of cognitive radios with the particularity of base they research in evolutionary algorithms. The main idea was classified the evolutionary algorithms and showed their fundamental approaches. Moreover, this research will be exposed some of the current issues in cognitive radios and how the evolutionary algorithms will have been contributed. Therefore, current technologies have matters presented in optimization, learning, and classification over cognitive radios where evolutionary algorithms can be presented big approaches. With a more comprehensive and systematic understanding of evolutionary algorithms in cognitive radios, more research in this direction may be motivated and refined

    A Genetic Algorithm Approach to Optimal Sizing and Placement of Distributed Generation on Nigerian Radial Feeders

    Get PDF
    Mitigating power loss and voltage profile problems on radial distribution networks has been a major challenge to distribution system operators. While deployment of distributed generation, as compensators, has made a suitable solution option, optimum placement and sizing of the compensators has been a concern and it has thus been receiving great attention. Meta-heuristic algorithms have been found efficacious in this respect, yet the use of the algorithms in addressing problems of radial feeders is still comparatively low in Nigeria where analytical and numerical programming methods are common. Hence; the use of genetic algorithm to site and size distributed generator for real-time power loss reduction and voltage profile improvement on the Nigerian secondary distribution networks is presented. Backward-forward sweep load flow analysis, together with loss sensitivity factor, is deployed to identify the buses suitable for the installation of the distributed generation, while the algorithm is employed in estimating the optimum size. This approach is tested on the standard IEEE 15-bus system and validated using a Nigerian 11 kV feeder. The result obtained on the IEEE test system shows 183 kW loss using the compensator, as compared to 436 kW loss without the compensator; while on the Nigerian network the loss with the compensator was 4.99 kW, in comparison with no-compensation loss of 10.47kW. By the approach of this study, real power loss on the Nigerian feeder decreased by 52.3% together with energy cost reduction from N658,789.12 to N314,227.38. Likewise the minimum bus voltage magnitude and the voltage stability index of the network are improved to acceptable limits. This approach is therefore recommended as capable of strengthening the performance of the Nigerian radial distribution system

    New Hybrid Non-Dominated Sorting Differential Evolutionary Algorithm

    Full text link
    This paper presents a new multi objective optimization algorithm with the aim of complete coverage, faster global convergence and higher solution quality. In this technique, the high-speed characteristic of particle swarm optimization (PSO) is combined with non-dominated differential evolutionary (NSDE) and an efficient multi objective optimization algorithm is created. This method posses high convergence characteristic in quite less execution times. Generating fewer populations to find the Pareto front also makes the proposed algorithm use less memory. For the purpose of performance evaluation, the algorithm is verified with four benchmarking functions on its global optimal search ability and compared with two recognized algorithm to assess its diversity. The capability of the suggested algorithm in solving practical engineering problems such as power system protection is also studied and the results are discussed in detail

    New Hybrid Non-Dominated Sorting Differential Evolutionary Algorithm

    Get PDF
    This paper presents a new multi objective optimization algorithm with the aim of complete coverage, faster global convergence and higher solution quality. In this technique, the high-speed characteristic of particle swarm optimization (PSO) is combined with non-dominated differential evolutionary (NSDE) and an efficient multi objective optimization algorithm is created. This method posses high convergence characteristic in quite less execution times. Generating fewer populations to find the Pareto front also makes the proposed algorithm use less memory. For the purpose of performance evaluation, the algorithm is verified with four benchmarking functions on its global optimal search ability and compared with two recognized algorithm to assess its diversity. The capability of the suggested algorithm in solving practical engineering problems such as power system protection is also studied and the results are discussed in detail
    • …
    corecore