1,674 research outputs found

    Real-Time Context-Aware Microservice Architecture for Predictive Analytics and Smart Decision-Making

    Get PDF
    The impressive evolution of the Internet of Things and the great amount of data flowing through the systems provide us with an inspiring scenario for Big Data analytics and advantageous real-time context-aware predictions and smart decision-making. However, this requires a scalable system for constant streaming processing, also provided with the ability of decision-making and action taking based on the performed predictions. This paper aims at proposing a scalable architecture to provide real-time context-aware actions based on predictive streaming processing of data as an evolution of a previously provided event-driven service-oriented architecture which already permitted the context-aware detection and notification of relevant data. For this purpose, we have defined and implemented a microservice-based architecture which provides real-time context-aware actions based on predictive streaming processing of data. As a result, our architecture has been enhanced twofold: on the one hand, the architecture has been supplied with reliable predictions through the use of predictive analytics and complex event processing techniques, which permit the notification of relevant context-aware information ahead of time. On the other, it has been refactored towards a microservice architecture pattern, highly improving its maintenance and evolution. The architecture performance has been evaluated with an air quality case study

    Real-Time Fault Detection and Diagnosis Using Intelligent Monitoring and Supervision Systems

    Get PDF
    In monitoring and supervision schemes, fault detection and diagnosis characterize high efficiency and quality production systems. To achieve such properties, these structures are based on techniques that allow detection and diagnosis of failures in real time. Detection signals faults and diagnostics provide the root cause and location. Fault detection is based on signal and process mathematical models, while fault diagnosis is focused on systems theory and process modeling. Monitoring and supervision complement each other in fault management, thus enabling normal and continuous operation. Its application avoids stopping productive processes by early detection of failures and by applying real-time actions to eliminate them, such as predictive and proactive maintenance based on process conditions. The integration of all these methodologies enables intelligent monitoring and supervision systems, enabling real-time fault detection and diagnosis. Their high performance is associated with statistical decision-making techniques, expert systems, artificial neural networks, fuzzy logic and computational procedures, making them efficient and fully autonomous in making decisions in the real-time operation of a production system

    Intelligent Prognostic Framework for Degradation Assessment and Remaining Useful Life Estimation of Photovoltaic Module

    Get PDF
    All industrial systems and machines are subjected to degradation processes, which can be related to the operating conditions. This degradation can cause unwanted stops at any time and major maintenance work sometimes. The accurate prediction of the remaining useful life (RUL) is an important challenge in condition-based maintenance. Prognostic activity allows estimating the RUL before failure occurs and triggering actions to mitigate faults in time when needed. In this study, a new smart prognostic method for photovoltaic module health degradation was developed based on two approaches to achieve more accurate predictions: online diagnosis and data-driven prognosis. This framework of forecasting integrates the strengths of real-time monitoring in the first approach and relevant vector machine in the second. The results show that the proposed method is plausible due to its good prediction of RUL and can be effectively applied to many systems for monitoring and prognostics

    Trends in condition monitoring of pitch bearings

    Get PDF
    The value of wind power generation for energy sustainability in the future is undeniable. Since operation and maintenance activities take a sizeable portion of the cost associated with offshore wind turbines operation, strategies are needed to decrease this cost. One strategy, condition monitoring (CM) of wind turbines, allows the extension of useful life for several parts, which has generated great interest in the industry. One critical part are the pitch bearings, by virtue of the time and logistics involved in their maintenance tasks. As the complex working conditions of pitch bearings entail the need for diverse and innovative monitoring techniques, the classical bearing analysis techniques are notsuitable. This paper provides a literature review of several condition monitoring techniques, organized as follows: first, arranged according to the nature of the signal such as vibration, acoustic emission and others; second, arranged by relevant authors in compliance with signal nature. While little research has been found, an outline is significant for further contributions to the literature.Postprint (published version

    Production Optimization Indexed to the Market Demand Through Neural Networks

    Get PDF
    Connectivity, mobility and real-time data analytics are the prerequisites for a new model of intelligent production management that facilitates communication between machines, people and processes and uses technology as the main driver. Many works in the literature treat maintenance and production management in separate approaches, but there is a link between these areas, with maintenance and its actions aimed at ensuring the smooth operation of equipment to avoid unnecessary downtime in production. With the advent of technology, companies are rushing to solve their problems by resorting to technologies in order to fit into the most advanced technological concepts, such as industries 4.0 and 5.0, which are based on the principle of process automation. This approach brings together database technologies, making it possible to monitor the operation of equipment and have the opportunity to study patterns of data behavior that can alert us to possible failures. The present thesis intends to forecast the pulp production indexed to the stock market value.The forecast will be made by means of the pulp production variables of the presses and the stock exchange variables supported by artificial intelligence (AI) technologies, aiming to achieve an effective planning. To support the decision of efficient production management, in this thesis algorithms were developed and validated with from five pulp presses, as well as data from other sources, such as steel production and stock exchange, which were relevant to validate the robustness of the model. This thesis demonstrated the importance of data processing methods and that they have great relevance in the model input since they facilitate the process of training and testing the models. The chosen technologies demonstrated good efficiency and versatility in performing the prediction of the values of the variables of the equipment, also demonstrating robustness and optimization in computational processing. The thesis also presents proposals for future developments, namely in further exploration of these technologies, so that there are market variables that can calibrate production through forecasts supported on these same variables.Conectividade, mobilidade e análise de dados em tempo real são pré-requisitos para um novo modelo de gestão inteligente da produção que facilita a comunicação entre máquinas, pessoas e processos, e usa a tecnologia como motor principal. Muitos trabalhos na literatura tratam a manutenção e a gestão da produção em abordagens separadas, mas existe uma correlação entre estas áreas, sendo que a manutenção e as suas políticas têm como premissa garantir o bom funcionamento dos equipamentos de modo a evitar paragens desnecessárias na linha de produção. Com o advento da tecnologia há uma corrida das empresas para solucionar os seus problemas recorrendo às tecnologias, visando a sua inserção nos conceitos tecnológicos, mais avançados, tais como as indústrias 4.0 e 5.0, as quais têm como princípio a automatização dos processos. Esta abordagem junta as tecnologias de sistema de informação, sendo possível fazer o acompanhamento do funcionamento dos equipamentos e ter a possibilidade de realizar o estudo de padrões de comportamento dos dados que nos possam alertar para possíveis falhas. A presente tese pretende prever a produção da pasta de papel indexada às bolsas de valores. A previsão será feita por via das variáveis da produção da pasta de papel das prensas e das variáveis da bolsa de valores suportadas em tecnologias de artificial intelligence (IA), tendo como objectivo conseguir um planeamento eficaz. Para suportar a decisão de uma gestão da produção eficiente, na presente tese foram desenvolvidos algoritmos, validados em dados de cinco prensas de pasta de papel, bem como dados de outras fontes, tais como, de Produção de Aço e de Bolsas de Valores, os quais se mostraram relevantes para a validação da robustez dos modelos. A presente tese demonstrou a importância dos métodos de tratamento de dados e que os mesmos têm uma grande relevância na entrada do modelo, visto que facilita o processo de treino e testes dos modelos. As tecnologias escolhidas demonstraram uma boa eficiência e versatilidade na realização da previsão dos valores das variáveis dos equipamentos, demonstrando ainda robustez e otimização no processamento computacional. A tese apresenta ainda propostas para futuros desenvolvimentos, designadamente na exploração mais aprofundada destas tecnologias, de modo a que haja variáveis de mercado que possam calibrar a produção através de previsões suportadas nestas mesmas variáveis

    Recent Advances in Anomaly Detection Methods Applied to Aviation

    Get PDF
    International audienceAnomaly detection is an active area of research with numerous methods and applications. This survey reviews the state-of-the-art of data-driven anomaly detection techniques and their application to the aviation domain. After a brief introduction to the main traditional data-driven methods for anomaly detection, we review the recent advances in the area of neural networks, deep learning and temporal-logic based learning. In particular, we cover unsupervised techniques applicable to time series data because of their relevance to the aviation domain, where the lack of labeled data is the most usual case, and the nature of flight trajectories and sensor data is sequential, or temporal. The advantages and disadvantages of each method are presented in terms of computational efficiency and detection efficacy. The second part of the survey explores the application of anomaly detection techniques to aviation and their contributions to the improvement of the safety and performance of flight operations and aviation systems. As far as we know, some of the presented methods have not yet found an application in the aviation domain. We review applications ranging from the identification of significant operational events in air traffic operations to the prediction of potential aviation system failures for predictive maintenance

    Review of prognostic problem in condition-based maintenance.

    No full text
    International audienceprognostic is nowadays recognized as a key feature in maintenance strategies as it should allow avoiding inopportune maintenance spending. Real prognostic systems are however scarce in industry. That can be explained from different aspects, on of them being the difficulty of choosing an efficient technology ; many approaches to support the prognostic process exist, whose applicability is highly dependent on industrial constraints. Thus, the general purpose of the paper is to explore the way of performing failure prognostics so that manager can act consequently. Diffent aspects of prognostic are discussed. The prognostic process is (re)defined and an overview of prognostic metrics is given. Following that, the "prognostic approaches" are described. The whole aims at giving an overview of the prognostic area, both from the academic and industrial points of views

    Predictive maintenance in hydropower plants : a case study of valves and servomotors

    Get PDF
    Digitalization has opened the opportunity for a fourth industrial revolution and the hydropower industry is taking charge of enabling digitalization in their operation. There are a lot of studies on predictive maintenance, however, there are, to our knowledge no studies on system-specific predictive maintenance for hydropower. To bridge this gap, the idea of system-specific, Machine Learning driven Predictive Maintenance is explored. Two systems are chosen as a use-case for this thesis: valves and servomotors. With the increasing amount of intermittent renewable energy resources entering the power system, the need for flexibility in the power grid is unequivocal. Valves and servomotors are key components of hydropower control and thus will play a pivotal role in securing flexibility to the grid. The first system assessed is the main valve. In order to make this analysis easily applicable, the data that is already being collected at Nore 1 hydropower plant is analyzed in order to assess the possibility of maintenance prediction from limited data. Unfortunately, this did not achieve the desired results for the data collected from the valve sensors. This is due to the fact that only one variable was measured, in this case, the opening and closing time-lag of the valve. However, this thesis presents a framework for data collection that allows the use of Machine Learning for predictive maintenance. Various sensors are suggested based on several published works on predictive maintenance. The second system assessed is the servomotor that controls the guiding vanes in a Francis turbine. Servomotors are key components of hydropower control. Due to the data not being collected by Statkraft at the time of the study, this data was provided by one of Statkrafts suppliers. By making use of the historical data of pressure as a function of the piston position, a boundary for where new values should be expected is computed by making use of One Class Support Vector Machine. Another embodiment of this case is presented where force is given as a function of piston position, which yielded better results. When new values are being measured, the data is presented as a bullet chart that visualizes the distance of new values compared to the boundary computed by the One Class Support Vector Machine. This tool could easily be applied to other servomotors which perform other tasks such as controlling water injection to a Pelton turbine or opening and closing of the valve, whether they are butterfly or ball valves. Suggestions for further data collection are presented in order to make use of more data for the use of Machine Learning in Predictive Maintenance.Digitalisering har ledet frem til en fjerde industriell revolusjon og vannkraft bransjen er i ferd med å digitalisere sin operasjon. Under literaturstudien er det ikke funnet noen publiseringer innen systemspesifikk maskinlæringsdrevet predikativ vedlikehold. I denne masteroppgaven blir muligheten for bruk av systemspesifikk, maskinlæringdrevet predikativ vedlikehold innen vannkraftverk utforsket for å vekke interesse innen dette feltet. To av vannkraftverkenes maskiner er brukt som eksempler og utforsket: ventiler og servomotor. Økende mengder uregulerbar strøm er introdusert i kraftnettet og behovet for fleksibilitet øker. Ventiler og servomotor er nøkkeldeler av vannkraftverk regulering og spiller en stor rolle i å sikre flexibilitet til strømnettet. Det første systemet som ble analysert er ventiler. For å gjøre analysen og resultatene enkelt anvendbare, blir data som allerede er innsamlet analysert for å utforske muligheten for predikativ vedlikehold med begrenset data. Analysene basert på data samlet inn fra sensorne montert på ventilene ble dessverre ikke konklusive. Det er utfordrende å forutsi fremtiden når man bare har en variabel å ta utgangspunkt i. Likevel presenteres det et prinsipielt rammeverk for innsamling av data som gjør det mulig å ta i bruk maskinlæring for predikativ vedlikehold. Ulike sensorer er foreslått, basert på relevant litteratur innen ventiler og maskinlæring drevet predikativ vedlikehold. Det andre systemet analysert under studien er servomotorer som styrer vannet i en Francis turbin ved å regulere vinklingen til skovlene. Dataen innsamlet om servomotoren er en god indikator på tilstanden til servomotoren. Ettersom dataen var ikke samlet inn av Statkraft da studien ble utført, ble dataen hentet fra en av Statkraft sine leverandører. En One Class Support Vector Machine ble brukt for å beregne foventet verdi av differansetrykk over stempelkamrene, som funksjon av stempel posisjon. En kulegraf som viser avstanden mellom grensen og nye verdier er visualisert. En annen metode er også presentert hvor man regner ut kraft på begge sider av stempelkamrene gjennom trykk for å vise kraft som funksjon av stempel posisjon. Dette ga bedre valideringsresultater i forventet differansekraft over tempelkamrene. Verktøyet kan enkelt bli anvendt til andre servomotorer som styrer vannmengden i en Pelton turbin eller åpning og lukking av ventilene, uavhengig av om det er spjeld- eller kuleventiler. Forslag til videre data innsamling er presentert for å ta i bruk maskinlæring for predikativ vedlikehold.StatkraftsubmittedVersionM-M
    corecore