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Resumo

Conectividade, mobilidade e análise de dados em tempo real são pré-requisitos para um novo
modelo de gestão inteligente da produção que facilita a comunicação entre máquinas, pessoas e
processos, e usa a tecnologia como motor principal.

Muitos trabalhos na literatura tratam a manutenção e a gestão da produção em abordagens sep-
aradas, mas existe uma correlação entre estas áreas, sendo que a manutenção e as suas políticas
têm como premissa garantir o bom funcionamento dos equipamentos de modo a evitar paragens
desnecessárias na linha de produção.

Com o advento da tecnologia há uma corrida das empresas para solucionar os seus problemas
recorrendo às tecnologias, visando a sua inserção nos conceitos tecnológicos, mais avançados,
tais como as indústrias 4.0 e 5.0, as quais têm como princípio a automatização dos processos.
Esta abordagem junta as tecnologias de sistema de informação, sendo possível fazer o acompan-
hamento do funcionamento dos equipamentos e ter a possibilidade de realizar o estudo de padrões
de comportamento dos dados que nos possam alertar para possíveis falhas.

A presente tese pretende prever a produção da pasta de papel indexada às bolsas de valores. A
previsão será feita por via das variáveis da produção da pasta de papel das prensas e das variáveis
da bolsa de valores suportadas em tecnologias de artificial intelligence (IA), tendo como objectivo
conseguir um planeamento eficaz. Para suportar a decisão de uma gestão da produção eficiente,
na presente tese foram desenvolvidos algoritmos, validados em dados de cinco prensas de pasta de
papel, bem como dados de outras fontes, tais como, de Produção de Aço e de Bolsas de Valores,
os quais se mostraram relevantes para a validação da robustez dos modelos.

A presente tese demonstrou a importância dos métodos de tratamento de dados e que os mesmos
têm uma grande relevância na entrada do modelo, visto que facilita o processo de treino e testes dos
modelos. As tecnologias escolhidas demonstraram uma boa eficiência e versatilidade na realização
da previsão dos valores das variáveis dos equipamentos, demonstrando ainda robustez e otimização
no processamento computacional.

A tese apresenta ainda propostas para futuros desenvolvimentos, designadamente na exploração
mais aprofundada destas tecnologias, de modo a que haja variáveis de mercado que possam calibrar
a produção através de previsões suportadas nestas mesmas variáveis.

Palavras-chave

Manutenção, Produção, Redes Neuronais Recorrentes, Análise de Dados, Previsão.
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Resumo alargado

Conectividade, mobilidade e análise de dados em tempo real são pré-requisitos para um novo
modelo de gestão inteligente da produção, que facilita a comunicação entre máquinas, pessoas e
processos, e usa a tecnologia como motor principal.

Actualmente vivemos na era digital, onde o principal foco é a digitalização das indústrias; um dos
seus pilares corresponde à sensorização e aquisição de dados, visando a implementação general-
izada da Manutenção, na vertente Preditiva, com o objetivo da maximização da Disponibilidade
operacional dos equipamentos. Muitos trabalhos disponíveis na literatura tratam a manutenção e
a gestão da produção em abordagens separadas; porém, existe uma correlação estreita entre estas
áreas, sendo que amanutenção e as suas políticas têm como premissa garantir o bom funcionamento
dos equipamentos, maximizando a sua disponibilidade, de modo a evitar paragens desnecessárias
da produção.

A globalização enfatiza cada vez mais a importância de prever diferentes fenómenos que podem
ocorrer e que têm implicações na competitividade dos mercados. Como resultado, as empresas
procuram soluções tecnológicas incluindo algoritmos de previsão, que lhes permitam antecipar
cenários e apoiar as decisões. Por outro lado, se estas previsões não forem bem-feitas, designada-
mente através de algoritmos de previsão, podem provocar uma falsa sensação de segurança e, por
consequência, podem induzir perdas económicas.

Com o advento da tecnologia há uma corrida das empresas para solucionar os seus problemas
recorrendo aos últimos avanços tecnológicos, visando a sua inserção nos conceitos tecnológicos
mais avançados, tais como as indústrias 4.0 e 5.0, as quais têm como princípio a automatização
dos processos. Esta abordagem é, em grande parte, suportada nas tecnologias de análise de dados,
sendo possível fazer o acompanhamento do funcionamento dos equipamentos e ter a possibilidade
de realizar o estudo de padrões de comportamento dos dados que possam alertar para possíveis
falhas.

Ao longo do tempo surgiram novos desenvolvimentos no âmbito daGestão deOperações, nomeada-
mente os que tornaram possível a compreensão e optimização dos sistemas de produção. O Japão,
devido à sua cultura multidisciplinar, foi o país onde as indústrias forammais bem-sucedidas na im-
plementação destes novos desenvolvimentos. As tecnologias de automação, em combinação com a
experiência humana, trazem vantagens significativas, levando a uma melhor resposta do mercado,
proporcionando valor acrescentado à indústria, e visando uma maior flexibilidade na resposta aos
desafios da economia. As tecnologias utilizadas para tal são suportadas em: IA; computação na
nuvem; Big Data; realidade aumentada; IoT; automação robótica; impressão 3D; e nanotecnolo-
gia. Estas tecnologias precisam da experiência humana para que as suas respostas tenham uma
validade robusta no âmbito do objectivo pretendido.

A presente tese apresenta abordagens que permitem prever a produção da pasta de papel indexada
aomovimento das bolsas de valores, designadamente suportadas em tecnologias de IA, tendo como
objectivo conseguir um planeamento eficaz. Para suportar a decisão de uma gestão da produção
eficiente, no âmbito da presente tese foram desenvolvidos algoritmos, validados em dados de cinco
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prensas de uma indústria de pasta de papel, bem como de dados de outras fontes, tais como, de
Produção de Aço e de Bolsas de Valores, os quais se mostraram relevantes para a validação da
robustez do modelo.

O algoritmo de IA consegue realizar previsões multivariadas. Suportado no caso de estudo levado
a efeito conseguiu-se fazer um link das variáveis das prensas da pasta de papel às variáveis da pro-
dução da pasta de papel, atendendo a que asmesmas apresentam uma correlação significativamente
alta. Também se obtiveram correlações significativas entre as variáveis da produção da pasta de
papel com os valores da bolsa, nomeadamente na referida empresa. Estas correlações reforçam a
possibilidade de se conseguir implementar ummodelo dinâmico que possa fazer uma leitura destes
dados, tratá-los e usá-los como entrada do modelo preditivo, de modo a ter uma resposta de pre-
visão que passa desde o departamento de manutenção ao de produção, com o objectivo de fazer
um planeamento da manutenção em função da dinâmica do mercado.

A presente tese também demonstrou a importância dos métodos de tratamento de dados e que os
mesmos têm uma grande relevância na entrada do modelo preditivo, visto que facilita o processo
de treino e testes dos modelos. As tecnologias escolhidas apresentaram uma boa eficiência e ver-
satilidade na realização da previsão dos valores das variáveis dos equipamentos, demonstrando
ainda robustez e otimização no processamento computacional.

Para o tratamento de dados foi utilizada a bibliotecaPandas e outros recursos em linguegemPython
que permitem manipular os dados de maneira mais eficiente. Para além destes métodos, também
foram utilizados métodos clássicos de eliminação de outliers. Este tipo de tratamento de dados
foi muito importante na análise de correlação e autocorrelação das variáveis, atendendo a que o
mesmo permitiu demonstrar o quanto poderia ser possível esta relação entre as variáveis ou entre
si mesmas.

A tese apresenta ainda propostas para futuros desenvolvimentos, designadamente na exploração
mais aprofundada destas tecnologias, de modo a que haja variáveis de mercado que possam calibrar
a produção através de previsões suportadas nestas mesmas variáveis. Atendendo a que a tecnologia
tem vindo, cada vezmais, a ser aprimorada, tem-se como compromisso a sua aplicação nas políticas
de manutenção preditiva, visando contribuir positivamente para a produção.

O contributo pode dar-se também na optimização dos processos de treino e teste das Redes Neu-
ronais, uma vez que o mesmo afecta o tempo de processamento e a capacidade computacional.
Minimizar ao máximo o fenómeno das explosões de gradiente também se torna um grande de-
safio, uma vez que, para taxas de amostragens elevadas, este fenómeno torna-se mais presente no
processo de treino das Redes Neuronais.

O domínio da informação tornou-se um pilar na análise de padrões, quer na manutenção quer na
produção, uma vez que, através do seu suporte, é possível traçar novas metas na gestão das em-
presas, cumprindo com os desafios acima citados; torna-se claro que a maximização da Disponi-
bilidade dos Equipamentos e a racionalização dos stocks são objectivos exequíveis, tendo como
resultado empresas mais competitivas e a diminuição dos desperdícios.
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Abstract

Connectivity, mobility and real-time data analytics are the prerequisites for a new model of in-
telligent production management that facilitates communication between machines, people and
processes and uses technology as the main driver.

Manyworks in the literature treat maintenance and productionmanagement in separate approaches,
but there is a link between these areas, with maintenance and its actions aimed at ensuring the
smooth operation of equipment to avoid unnecessary downtime in production.

With the advent of technology, companies are rushing to solve their problems by resorting to tech-
nologies in order to fit into the most advanced technological concepts, such as industries 4.0 and
5.0, which are based on the principle of process automation. This approach brings together database
technologies, making it possible to monitor the operation of equipment and have the opportunity
to study patterns of data behavior that can alert us to possible failures.

The present thesis intends to forecast the pulp production indexed to the stock market value.The
forecast will be made by means of the pulp production variables of the presses and the stock ex-
change variables supported by artificial intelligence (AI) technologies, aiming to achieve an effec-
tive planning. To support the decision of efficient productionmanagement, in this thesis algorithms
were developed and validated with from five pulp presses, as well as data from other sources, such
as steel production and stock exchange, whichwere relevant to validate the robustness of themodel.

This thesis demonstrated the importance of data processing methods and that they have great rel-
evance in the model input since they facilitate the process of training and testing the models. The
chosen technologies demonstrated good efficiency and versatility in performing the prediction of
the values of the variables of the equipment, also demonstrating robustness and optimization in
computational processing. The thesis also presents proposals for future developments, namely
in further exploration of these technologies, so that there are market variables that can calibrate
production through forecasts supported on these same variables.

Keywords

Maintenance, Production, Recurrent Neural Network, Data Analysis, Forecast.
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Chapter 1

Introduction

More and more studies prove the importance of having a more comprehensive view of the produc-
tion system, specially related withmaintenancemanagement, as it brings added value to production
systems. This chapter presents the link between maintenance management and production through
existing studies, as well as contextualizing the problem studied in this thesis.

1.1 Background

Market information converted into data is an ally in production management, as from patterns in
the data we can adjust the company’s capacity with respect to production periods. Due to short lead
times, production in small quantities, diversification of consumer needs, and irregular fluctuations
in demand, companies show an interest in improving their internal processes, in order to achieve
more flexible and anticipatory production [1, 2].

According to Mobley [3], the production capacity of a factory is limited in part by the availability
of production systems and their utilities.

The level of adaptation of a competitive company means prioritizing key decisions related to stru-
ctural and infrastructure investments, which are key to realizing its full operational potential as a
competitive player [4]. According to Riis et al. [5], capacity the production process of a factory
depends in part on the availability of production systems and their tools, and the main task of a
maintenance team is to ensure that all equipment and systems in the factory are compliant and in
good condition.

1.1.1 Data Processing

Modern processors, computers, and high-speed networks make it possible to collect, transmit, and
store large amounts of data in real time. Collecting and combining data from various sensors
provides an insightful look at the health of factories, industrial plants, and other facilities.

Information technologies such as Big Data, cloud computing, advanced computing and artificial
intelligence tools can be used to create, store and process large data sets.

With the advent of new technologies, it is possible to monitor machine failures by means of pre-
dictive models supported by artificial intelligence. With machine history in data it is possible to
perform an estimation of the next occurrence of faults with a reasonable degree of confidence.

Modern algorithms, data storage, and computing power make it possible, not only to analyze past
behavior but also to predict future behavior of industrial equipment with reasonable certainty [6,
7, 8].
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1.1.2 Maintenance

It is known that poor maintenance can lead to poor performance, causing breakdowns at inappro-
priate times and even poor performance. A plant manager does not want this to happen in his
production line. Therefore, it can be said that maintenance is a fundamental pillar for the smooth
running of the production line. The maintenance in a organization must ensure that all machinery,
equipment, and plant systems are always on-line and in good working order.

Maintenance and production services must work together to achieve a common goal, which is to
maximize the productivity of the plant [9]. Planning and maintenance play an extremely important
role in production, as they can contribute to higher production efficiency and product quality.

According to [3], the production capacity of a factory is delimited in part by the availability of
production systems and their utilities. The main role of the maintenance organization is to ensure
that all equipment and plant systems are always on-line and in a good condition.

Maintenance costs can range from 15% to 70% of production costs [10]. With advances in indus-
trial process technology, maintenance has also evolved and become more complex [10, 11]. This is
particularly due to production systems that have numerous interactions and dependencies between
components [12].

Predictive maintenance is designed to increase process efficiency and limit the optimal time win-
dow for maintenance work. With the help of sensory data and appropriate predictive algorithms, it
is possible to determine the condition of equipment and predict the optimal time for maintenance
intervention some time in advance, thus avoiding unnecessary costs and downtime due to lack of
maintenance.

1.1.2.1 Model Prediction

Traditional forecasting algorithms have relied more on time series models, such as exponential
smoothing [13] and seasonal autoregressive integrated moving average (SARIMA) [14, 15, 16].

Recently, however, artificial intelligence methods have become more popular. Artificial Intelli-
gence is impacting society, politics, business, and industry [17].

Deep architectures are needed to learn the types of difficult functions that high-level abstractions
can represent. Layer types, sizes, transfer functions, and other hyperparameters need to be thor-
oughly studied [18].

Modern time series and other data analysis techniques have been successfully applied to various
tasks, such as highway traffic analysis [19] and additive manufacturing [20]. Various approaches
have also been proposed in the field of predictive maintenance [21, 2].

1.2 Problem Description

The paper production market has gone through great social pressures in terms of sustainability,
and its production requires the consumption of abundant water, but, on the other hand, the pa-
per has the advantage of being biodegradable, which makes it a great partner in combating other
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Figure 1.1: European paper recycling [23].

non-biodegradable materials [22]. This reuse presents a significant growth, as shown in Figure
1.1. With the reduction in the use and production of some materials that have a considerable en-
vironmental impact, such as plastic, many of these materials have been replaced by paper, which
directly affects its production.
The strategies that support the production system of manufacturing industries are push and pull.
Push’s premise is to strictly monitor the growth of orders for the manufactured product in order
to reduce the stocks of finished products, while pull’s premise is to produce and then sell what,
in fact, is widely used in industries until today. This rigorous monitoring of product requirement
trends by the market is a great challenge.
With the advent of information technology, many industries have given more importance to in-
formation management in production chains, as this information has had great relevance in the
answers to problems that arise during the production period. With historical data, it is possible to
draw some conclusions from issues that would be impossible without it. This conclusion can be
from the simplest to the most complex.
The information allows maintenance employees to have the most optimized intervention manage-
ment possible, which makes it possible to strictly comply with the Total Productive Maintenance
(TPM) concept of zero failure. This maintenance management can also be adjusted according to
the industry’s production flow while anticipating this flow, which leads us to implement predictive
maintenance, as it allows us to carry out this premise.
There aremanymathematical tools that allow us to perform forecasts with a very relevant precision,
but for that the data must be processed, in order to eliminate possible mistakes in the forecasts
and, consequently, to have a model adjusted to the forecast in a useful time. This processing
starts right from the understanding of the variables and the relationship among them. From these
studies, relevant conclusions can be drawn in order to optimize the time and computational capacity
required to grant the model that best fits the respective predictions. Production lines often have
to deal with a diverse set of issues. Different production lines consist of different problems that
require numerous data and approaches [24].
Although machine learning has proven to be an effective tool for analyzing complex relationships
and problems, it is still not clear which problems on production lines can be effectively solved
with the help of machine learning approaches. Furthermore, the production line is a very broad
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concept and different industries have various production line configurations to deal with different
issues during production. For example, some production lines can generate a large amount of data,
in which case machine learning techniques can provide remarkable solutions; however, a similar
solution may not be effectively applied to other production lines due to limited data [24].

1.3 Research Motivation

Industrial management aims to adopt measures that can bring a great balance between the process
and decision-making. Based on this, many studies have been focused on finding optimization tools
that can support short and long term decision making.

A long time ago, the information system did not present a robustness that nowadays is possible to
achieve in several industries. This evolution was only possible thanks to the work that has been
developed with the main focus on solving problems that cause losses in various industrial sectors.
Having organized and accessible information is sharing the problem, which makes possible several
solutions, which are only added benefits.

One of the biggest challenges for managing equipment maintenance is deciding which factors
should be prioritized in upcoming interventions. Based on this, availability is a term that has
great relevance in evaluating the effectiveness of any industrial plant, most of which are repairable
systems [25].

With the help of preventive maintenance, it is necessary to predict the Remaining Useful Lifetime,
which is difficult to measure in practice. However, preventive service can proactively reduce the
number of breakdowns in production lines. Machine learning performance in the area of preventive
service can be improved with data growth and new algorithms.

With the advent of computer technology, it was become possible to digitise data that explain the
behaviour of real-world problems. The transformation into predictive mathematical algorithms
was possible.

By combining the skills of different scientific fields, namely computer science, electrical engineer-
ing, mechanics and industrial management, it was possible to optimise problem solving.

1.4 Outline and Scope of Research

This PhD research used ten datasets, the first and second dataset is from the sensors installed on
the pulp paper press machine. The first dataset has 1445760 sample size, with a one-per-minute
sample rate. The second dataset has a 399745 sample size, with a five-per-minute sample rate.

The third, forth, and fifth of this dataset was obtained in internet site, the third is Steel Produc-
tion in the world, the fourth is the Producer Price Index by Commodity, and the fifth is the Wold
population.

The others datasets were obtained on the internet, these datasets were used to support the prediction
of the first dataset, through variables correlation existence.
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The data have constant sampling rates over a period of time, so they were treated as time series.
These series were studied to get an idea of their seasonal behaviour and to obtain more information
about their patterns; correlation and autocorrelation studies were also carried out.

This is reinforced with the idea that with databases and data processing tools it is possible to im-
prove the asset monitoring system using the portfolios provided by the asset management system.
This perspective, it is possible to automate the maintenance system by applying the concept that
emerged in 1999, whose main objective is to make objects autonomous and intelligent enough that
they do not need human intervention, this concept is supported by the IoT [26].

Industry 4.0 and IoT are gaining popularity [27, 28] as it makes industrial production a more fle-
xible system, more adaptable to personalization and more traceable [29].

Industry 5.0 will complement Industry 4.0, which is based on three pillars aiming to humanize the
use of AI [30]. Industry 5.0 is a value-based production paradigm and a revolution that emphasizes
the importance of research and innovation to support industry placement. Worker well-being is at
the heart of production processes [31].

Industry 5.0 research is still in its infancy, but is being officially promoted by the European Com-
mission through an official document published in 2021 [32].

The circular economy and process engineering play an increasingly important role in recovering
valuable components from highly fragmented material flows that leave users’ warehouses after
highly fluctuating periods of use [33].

These statements illustrate the need for a robust production process that is able to adapt to the
market.

1.5 Research Questions

In this work, the following research questions (RQS) were answered:

• Research question 1: How Production can be optimized based on physical asset maximiza-
tion availability?

• Research question 2: Which methods should be used in time series data analysis for pre-
dictive maintenance purposes?

• Research question 3: Which is the best algorithm, LSTM vs GRU to Predict the Condition
of a Pulp Paper Press?

• Research question 4: What are the Pre-Processing Methods that improve GRU model in
Prediction of Paper Pulp Press condition?

• Research question 5: How to do the prediction indexed to stock market?
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1.6 Contributions of the work to the state of the art

The results obtained in the present work demonstrate the applicability of recurrent neural networks
(i.e., GRUs) in predicting future behavior in the paper press industry. The same GRU architecture
showed good results learning data from two different industrial pulp presses.

Data pre-processing can play a very important role in improving the predictions. In the present
work, filtering out discrepant data and smoothing using a LOWESS filter reduced theMAPE errors
for all variables.

The results show that it is possible to forecast future behavior of industrial paper pulp presses up to
30 days in advance with good degree of certainty. That can be a good opportunity for optimizing
maintenance decisions, downtime and costs.

The case study it was possible to validate the importance of data treatment and the great relevance
that data can have in a forecast of a single variable since these models allow us to extract informa-
tion from the other variables in order to have a forecast with high accuracy.

The proposed data processing methods have so far been little explored for these types of applica-
tions. They have shown to be of great importance in making the training and testing process of the
models more optimized and not only.

Training an encoder-decoder architecture model, consisting of a recurrent GRU neural network
with the futures exchange data, becomes a contribution since our study shows this feasibility of
the same.

1.7 Thesis Structure

The thesis continues as follows. Chapter 2 reviews, evaluates the relevant literature and summa-
rizes and methods used in other studies applicable to our production management study. Chapter
3, discusses the methodology of data analysis and processing, the assumptions and the conceptual
framework of our forecasting model. Chapter 4, presents different tests for tuning the hyperame-
ters of each proposed forecasting model, focusing on predictive maintenance for the pulp press. In
Chapter 5, they are the tests whose aim is to use the models and architecture created in the previous
line and test them with production data and include external variables of the company that have an
impact on the fitting of the models.

In Chapter 6 several discussions were presents on the results that each model presents in relation
to the prediction data - these discussions are organised chronologically. Chapter 7 finally provides
general observations and implications of our study, key findings, and suggestions for potential
future research.
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Chapter 2

State of the Art

Optimization is important because it allows us to find solutions to problems with few resources.
Once the computational resources have been used to solve the prediction problem, optimization of
the algorithm is required so that this task can be solved with computational resources. In this chap-
ter, we show a review comparing the production optimization and plant availability approaches to
understand how these two approaches work towards the same goal of maximizing the production
capacity.

2.1 Production

Operations management involves the systematic management and control of the process that trans-
forms resources (input) into finished goods or services for customers (output), as is shown in Figure
2.1 [34]. This basic model applies equally to manufacturing and service organizations, as well as
to the private and nonprofit sectors.
Operations management is an emerging field, in production processes, i.e., undesirable interrup-
tions that can affect the flow of production in real time [35].
A production cycle begins with a new system which is assumed to be in a state under control,
producing items of excellent quality [36].

Figure 2.1: Operation management circuit.

This combination of human-machine knowledge allows the crossing of operators’ knowledge with
problem-solving algorithms, namely that of forecasting, making it possible to predict future failures
[37].
Understanding a company’s customer base for a particular set of products is critical to a com-
pany’s decision on the required production process. Many authors suggest strategies for product
positioning [38, 39, 27].
The closed-loop process planning and scheduling approach in Figure 2.2 uses dynamic feedback
from the production schedule and information about the current availability of resources to generate
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process plans. In short, the planning phase communicates to the scheduling process the current
availability of machines on the shop floor [40].

Figure 2.2: Closed-Loop Process Planning and Scheduling approach [37].

According to Tsang [41], a way to visualize the maintenance system based on equipment con-
dition, operational load, maintenance actions (strategies), and business goals is affected by both
operational load and maintenance actions.

The operational load depends on the production plans and decisions, which, in turn affect the com-
mercial needs andmarket consideration. Therefore, maintenance planningmust support production
planning, such as maintenance decisions, legacy equipment reliability, and market and commercial
requirements. It is shown in Figure 2.3.

For years, the relationship between production and maintenance was considered an antagonism in
management decision-making. This situation has not changed because the scaling requirements of
each role are not aligned [42]. Conflicts can lead to dissatisfaction in demand for production due
to interruptions caused by preventive maintenance (PM) [9].
Availability is the most important term used to evaluate the effectiveness of an industrial facility.
The steady-state availability of a plant for a given period of time is defined as the percentage of
time that the plant is performing its properly designed production [25].

The degree of adaptation of a competitive organization implies priorities in its primary decisions
regarding structural and infrastructural investments, which are key to promoting the full potential
of its operations as a competitive weapon. Figure 2.4 illustrates a graphical model of the commonly

Figure 2.3: Production structure, and its surroundings Tsang [41].
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Figure 2.4: Production structure [43].

used operational strategy [43].

Figure 2.5 illustrates the internal and external factors that make up the production planning en-
vironment. In general, the external environment is outside the direct control of the production
planner but, in some companies the demand for the product can be monitored. As for the internal
factor, there are failures that can occur during the production period of a good. If there is a good
maintenance strategy, it can facilitate resolution because there is a possibility that operators will
do a lot of the maintenance since they are more familiar with their machines [44].
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Figure 2.5: Factors required in the production planning system [44]
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As machines become more complex, operators less skilled who maintain them may not recognize
potential problems until the machine output is detrimentally affected. This will result in less ope-
rator participation in preventive maintenance and a reduction in the early detection of problems.
Bojanowski [45] presents the following rough distribution of factors causing machine failures:

• Failures caused by lack of awareness (caused by lack of inspection) of impending machine
failure: 50%;

• Failures caused by lack of machine servicing at proper intervals: 20%;

• Failures caused by bad fit, use of substandard materials or accident: 15%;

• Failures due to normal wear: 15%.

2.1.1 Push and Pull System

Push and Pull are business terms that were originated in logistics and supply chain management,
[46, 47], but are also used in marketing [48, 49] and the hotel distribution business.
Venkatesh et al. [50] described push and pull as operational paradigms. In a push system, the
preceding machine produces parts without waiting for a request from a later machine. On the other
hand, in a pull system, the preceding machine only receives products after the request of each
machine.
According to De Toni et al. [51], to apply push-pull classification to manufacturing systems, they
must be considered three subsystems: the manufacturing priority, material selection, and move-
ment subsystems; and the production planning subsystem.
Demand forecasts form the basis of all managerial decisions in logistics and supply chain ma-
nagement. Regardless of a push or pull type of a supply chain system, demand forecasting is the
starting point for all planning activities and execution processes.
Pull production eliminates the waste created by more traditional push production systems, where
material is moved from upstream to the next downstream operation as it becomes available. This is
a product-out philosophy of production and results in over-production and/or delivery delays [52].
Storage and logistics systems are classified as push or pull systems (Figure 2.6).
Consider the push process executed to forecast customer demand, purchasing, production, trans-
port, activities and operational actions. All of them require demand forecasting as data input; the
same applies to the pull process - required activities and inventory are planned, customer demand
data should be a starting point [53].
Pull production brings all these methods together, and they entirely revolutionize production man-
agement.
Team [52] made a study on production management, namely the pull system and the optimal se-
quence to establish pull systems in a factory. In a nutshell, Figure 2.7 shows the relationship
between the whole lean production structure and the various methods.
The fact that machine bottlenecks are unknown and machine loads are rarely updated makes pro-
duction planning very unreliable. Nothing is more important than having prior knowledge of
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what is happening with the machine. The performance of push-pull information flow systems
is considered to be related to high quality levels, small setups and small batches, i.e., the con-
ditions usually associated with a Just In Time (JIT), continuous improvement program [55].

Bonney et al. [56] demonstrated in their study the different results of the push-pull system. Assum-
ing that the batch size is the same and orders are issued on a per order basis, the push-pull infor-
mation system will perform better, which can be measured by rejected demand when no backlog
occurs or average waiting time when demand is backlogged. A related finding is that push systems
sometimes require lower inventory levels to achieve equivalent performance.

2.1.2 Production Just In Time

The growing interest in JIT management systems has led many companies to keep a close eye
on their Work In Progress (WIP) inventory levels. Effort to reduce WIP inventory is becoming
commonplace. The reduction in WIP inventory leads to a reduction in buffer inventory between
workstations and makes equipment failures more severe than ever [57].
According to Rosenblatt and Lee [58], when the production process is subject to a random process
deterioration it shifts the system from an in-control state to an out-of-control state.
Production management often view maintenance in the context of hours or days out of service and
fails to realize the strategic importance of incorporating maintenance planning in the implementa-
tion of JIT manufacturing. Management for the maintenance function, on the other hand, attempts
to impose constraints on production that it deems necessary to achieve complete equipment relia-
bility. Thus, an issue that should be decided by the organization’s strategic management often is
settled at the operational level as a test of political clout [42].
Random failures of production cells are one of the main disturbances that production systems often
suffer from. This disruption reduces the plant’s effective capacity and results in higher operating
costs, especially with JIT production [59].
In order to get the best out of expensivemanufacturing processes, to meet the quality challenge, and
to ensure the success of new management system strategies, such as the JIT approach, equipment
must be maintained in good operating condition. This environment shifts the focus to maintenance
and the need for effective maintenance policies [60].
According to Martin [61], costs associated with maintenance generally consist of the cost associ-
atedwithmaintenance labor, the cost of requiredmaterial and spare parts, and the cost of production
downtime when breakdowns occur.
Xie et al. [62] verified increased inventory and production costs related to frequent plan adjust-
ments.

During the last decades, several production control and maintenance policies have been proposed
in order to improve manufacturing system performance. Kimemia and Gershwin [63], and Akella
et al. [64] have considered the production control problem for systems prone to failures.

In order to meet future demands with high level of uncertainty and to ensure the economic success
of production systems, cost-effective and reliable production and maintenance planning is neces-
sary [65].
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Extensive existing literature shows that implementing preventive maintenance strategies in unre-
liable production facilities can effectively extend machine life and reduce operating costs [66].
According to Jonsson [67] the need to shift the focus of maintenance policy from traditionally
focusing on short-term issues (resource consumption, costs, etc.) to long-term goals (competitive-
ness, sustainability and strategy). Figure 2.8 shows the goals and plans that emphasize on quality
improvement, prevention and manufacturing capabilities.

Company-wide integration 
of maintenance

Long-term planning of 
maintenance

Production system
Prevention
Quality improvement
Manufacturing capabilities 

Figure 2.8: The links between integration and planning of maintenance and prevention, quality
improvement and manufacturing capabilities [67].

Demand forecasting is especially important in businesses that involve mass production. As this
requires a long lead time, a lot of forward planning has to be done. In addition, potential future
demand must be estimated to avoid overproduction and underproduction.

2.1.3 Forecasting Production

Matsumoto and Komatsu [68] proposed forecasting methods for production planning at a food
company. The method used demonstrates its simplicity and accessibility due to its low cost and
ease of use. Due to these characteristics, this method can be used by small and medium-sized
companies, where it is not possible to make large investments in planning their operations.
The energy production, distribution and consumption had been an important role for researchers
during decades, as can be seen in valuable works in the field of forecasting energy consumption
[69, 70].
Coarse modelling is used to develop a three stage electric energy load forecasting model to predict
the yearly, weekly, hourly electric energy demand [71].
For example, for tourism,[72] applied Autoregressive Moving Average (ARMA)-based models to
forecast the number of visitors to countries showed that the forecast numbers had an average error
of less than 10 % (in terms of mean absolute percentage error (MAPE)).
The difficulty of forecasting demand has prompted companies to focus on improving supply chains
[73, 74]. This is one of the success factors in the shortest time-to-market for brands like H&M and
Zara.
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According to Mir et al. [75] these forecasting methods on different time horizons show that time
series modeling methods have been widely used for medium and long-term forecasting. AI-based
techniques are still widely used in the literature for this purpose.

2.2 Optimization

Research in the field of optimization of maintenance is a priority [76], and there has also been a
great trend in the field of optimization based on the simulation of maintenance [77, 78, 79]. This
proves that research in maintenance optimization started decades ago.

An optimization process is required to determine optimal capabilities and operational strategy [2].
Traditional optimization for production processes usually involves simultaneous flowchart selec-
tion, as well as the corresponding operating conditions [80]. Preventive maintenance (PM) plan-
ning and production scheduling are among the most important problems in the manufacturing in-
dustries. The researchers began to investigate the problem of integrated optimization of PM and
production programming with a single goal [81].
Cua et al. [82] say that optimization techniques seek the best solution for each problem (maximum
or minimum measurable quantities in their definition domains); it is necessary tools in many areas
of engineering, such as:

• Operational research - optimisation of technical and economic systems, stock control, pro-
duction planning, etc.;

• Process control - system identification, optimal control, adaptive control, predictive control,
state estimates, etc.

In the production process, optimization is not just about the first interaction. As an example study,
Monostori et al. [83] describe each looping to optimize its production system to achievement goals
for a predefined period, as is shown in Figure 2.9. The same study also states that the more simu-
lations performed with improved parameters and conflicting with the actual situation on the shop
floor, the better the model fits.

With strong competition resulting from global pressure, the dynamics experienced by the industry
increases the critical need to economically optimise production. Achieving the latter is tantamount
to shooting at a moving target.

In a global way if we reduce the problems of maintenance management we can reduce cost in
production, and if in a way we can optimize production indexed to the market to predict possible
variations in the market in pulled production it is possible to reach a precise adjustment in the
realization of maintenance in the production lines. Unfortunately, only a few contributions address
the problems under a view in the Optimization of production indexed to the market to date, there
are three associated studies found in Scopus [85, 86, 87].

Figure 2.10 shows the results of papers in the individual areas, these are results from the ”Web of
Science” website.
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Figure 2.9: Architecture of a cyber-physical production control [84].

Figure 2.10: Documents, by research area, in the Web of Science database.

15



Wang et al. [88] assume that an optimization process is required to determine optimal capabili-
ties and operational strategies. Great contribution to dynamic optimization by combining process
simulators with meta-heuristic techniques to simultaneously optimize process flow diagrams with
corresponding operating conditions [89].
Operations management is used for strategic and tactical applications, i.e., in the following ar-
eas: master planning; forecasting; positioning; scheduling; capacity planning; layout; process and
product design; quality control; mission design; inventory control; maintenance and reliability
[90].
In the industrial area, it is also possible to carry out an adaptation of the mathematic optimization
model to solve complex problems.
Dorigo et al. [91] present an overview of recent work on ant algorithms, i.e., algorithms for discrete
optimization that were inspired by the observation of ant colony forage behaviour and presenting
the ant colony optimization metaheuristic.
Nocedal and Wright [92] noted that understanding the capabilities and limitations of optimization
algorithms can lead to a better understanding of what they mean in different applications, and
point the way for future research on algorithms and software to improve and extend them. In
order to include the optimization of the digital industry, certain requirements must be met, such
as: robustness of the database and reliability of the data/schema. According to Dekker [76], the
maintenance optimization model has several applications, generally covering four aspects:

1. A description of a technical system (its function and importance);

2. A model for the deterioration of the system over time and possible consequences for the
system;

3. A description of the information available on the system and the actions available to man-
agement;

4. An objective function and an optimization technique that helps to find the best balance.

These maintenance optimization models produce different results. First, policies can be evaluated
and compared in terms of the characteristics of cost-effectiveness and reliability.
Wang [93] presents an extensive review of maintenance optimization policies. Maintenance opti-
mization studies prior to 2002 mainly considered time-based maintenance configurations.
Syan and Ramsoobag [94] state that modernmaintenance optimization decisions are complex prob-
lems that need to satisfy multiple and conflicting criteria. With the increase in applications and
recent advances in Multi-Criteria Optimization (MCO) approaches, a review is needed to group
and categorize these advances in the field of maintenance.
Jonge and Scarf [95] say that optimization applied to maintenance comprises the development and
analysis of mathematical models that aim to improve or optimize maintenance policies. A study
on the substantial developments in the field of maintenance optimization is fully demonstrated in
[93].
In order to validate the effectiveness of decision models, Bousdekis et al. [96] prove that an event-
driven proactive decision model is possible for joint predictive maintenance and optimization of
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the spare parts inventory, which addresses the ”Detect” ”prevent-decide-act” model phase that can
be incorporated into an Event Oriented Architecture (EOA) for processing time within the frame-
work of the concept of electronic maintenance.
The techniques presented in Mobley [97], there are five non-invasive techniques used for the man-
agement of predictive maintenance, such as monitoring vibrations, monitoring process parameters,
thermography, tribology and visual inspection. Predictive techniques can vary, as mentioned in
[98]: lubricant analysis; vibration analysis; thermography; penetrating liquids; radiography; ultra-
sound; corrosion control; etc.
Zhou et al. [99] refer some drawbacks saying that the ideal maintenance policy is, in fact, a
monotony, in which the limits decrease monotonously with the age of the system; but, other stu-
dies expose some solutions, like Zhao et al. [100], that propose a predictive maintenance policy
based on process data, demonstrating that, when compared to traditional preventive maintenance
strategies, their strategy has adaptability and effectiveness to the deterioration of the system.

2.3 Maintenance Management

Maintenance consists of a series of actions that help to ensure that a tangible asset functions prop-
erly, such as maintaining a paper drying press. There are four types of maintenance policy, which
are shown in Figure 2.11.

Maintenance

Reactive Maintenance Preventive Maintenance

Corrective Prospective Predeterminate Proactive Predictive

Figure 2.11: Maintenance types [43].

Tsang [41] and Farinha [101] it emphasize that maintenance literally means ”the work of keeping
something in good shape” and states that maintenance should be done to prevent equipment or
components from failing or to repair normal degradation of equipment when it comes to keeping
it in good working order.
Due to the lack of reliability of time-based maintenance methods, industrial processes should use
”online” monitoring not only when the equipment is obsolete, but also throughout the life of the
equipment to identify the onset of equipment degradation and failure [102].

Jacobs and Chase [44] refer that the costs shown in Figure 2.12 must be considered. Costs can be
divided into three broad categories: acquisition costs, ownership costs, and post-ownership costs.
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Figure 2.12: Total Cost Ownership [44].

Our study starts from the goal of reducing the costs, namely ownership costs, with the main benefit
being the maintenance policy.

Tsang [41] emphasizes the maintenance as a necessary expense that fits within the operating budget
and a common item on the list of industry cost reduction programs. Reactive Maintenance - is a
maintenance strategy applied when an asset (i.e., a device or component of a system) fails. There
are failures that are not very serious, have less impact on the system, and do not cause much
damage, so they can be fixed after they occur [103].

Preventive maintenance is a maintenance strategy that is regularly applied to assets to minimize
or reduce the likelihood of failure. In this strategy, equipment is inspected regularly and replaced
as needed. This applies when the equipment is still in service to reduce the likelihood of failure
[104].

PredictiveMaintenance - as the name implies, is a maintenance strategy that predicts the likelihood
of system or equipment failure. After a failure prediction, equipment can be replaced or repaired,
and proper planning can be done before the equipment fails [105].

Proactive Maintenance - is a maintenance strategy that usually targets the root cause of a failure
and simply avoids the possibility of failure. It is the exact opposite of reactive maintenance. It is
performed before a fault occurs [106].

Maintenance plays a key role in reliability, availability, product quality, risk reduction, greater
equipment efficiency and safety [107]. Machines’ failure should be predicted with accuracy. Pre-
dictive maintenance allows the maintenance recurrence to be as low as possible to prevent un-
planned reactive maintenance [108].
The main objective of maintenance planning is no different from the objective of any planning ac-
tivity, i.e., planning allows decisions to be made early so that decision makers can consider several
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possible options and make the best decision. A maintenance management plan allows for align-
ment of CorrectiveMaintenance (CM) and PM capacity requirements. While scheduling corrective
maintenance is difficult at best, increasing PM can reduce the need for CM and thus increase the
amount of maintenance work that can be scheduled. CM increases the number of decisions made
early enough to consider options, resulting in more economical decisions and lower costs [109].
Kershaw and Robertson [110] refer that predictive maintenance works by regularly monitoring the
condition of components rather than replacing them, which means better data, increases plant pro-
ductivity, and prevents catastrophic failures. Chang et al. [111] for example, explore maintenance
optimization and introduces a method that incorporates real-time information about production
conditions and machine failures. According to Carnero [112] predictive maintenance can increase
safety, quality, and availability in industrial plants.

The graph shown in Figure 2.13 illustrates that continuous investments in preventive maintenance
reduce failure costs and, as a consequence, a decrease in the total maintenance cost, in which
preventive maintenance costs are added to the failure costs. However, the graph also shows that,
from the ideal point of investment in preventive maintenance, more investments bring few benefits
to reduce the cost of failures increasing the total cost, which is what the maintenance policy takes
into account.

Optimum

Total Cost

Cost of PM

Failure Cost

Costs

Maintenance Level

Figure 2.13: Operations strategy model.

Currently, the companies constantly seek maximum production. To this end, actions are taken to
reduce the overall costs of the company. Therefore, measures are taken to ensure the availability
of production equipment and the good quality of the product [113].
Timely maintenance is a more aggressive strategy that keeps the system in good shape and cost-
effective. Some valuable related papers are, for example, [114, 115]. According to Zhou et al.
[116] maintenance of options for multicomponent systems considers random failures and disas-
sembly sequences. Bedford et al. [115] specifically, discuss a maintenance model in relation to
competing risks.
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2.3.1 Predictive Maintenance

To have a prediction with good model performance, is important that the sensor data collected is of
good quality. Deep predict models have been successfully used to improve condition monitoring
forecasts for industrial equipment. The old-fashioned approach to predictive fieldmaintenance was
to manually create a predictive schema for a specific component based on a Boolean combination
of some related event codes.
According to Kershaw and Robertson [110], predictive maintenance works by regularly monito-
ring the condition of components rather than replacing them, which means better data, increases
plant productivity, and prevents catastrophic failures. Predictive maintenance can increase safety,
quality, and availability in industrial plants [112].
This approach is very empirical, but illustrates an important concept - component failure can be
predicted by examining the pattern of data. Predictive maintenance requires a deep understanding
of the health and condition of the equipment. This can be done by adding sensors to the device for
recording and monitoring signs such as temperature and voltage [117].
In the development of a dedicated computer program, it is possible to highlight possible resolutions
for decision-making problems in relation to: manner, scope and schedules of replacements, repairs
and regular maintenance of elements of technical objects, mode and schedules of diagnosis and
preventive replacement of elements and problems of supplying spare parts to the maintenance
system [118].

According to Tsang [119], there are three types of decisions which need to be made in condition-
based maintenance:

1. selecting the parameters to be monitored;

2. determining the inspection frequency;

3. establishing the warning limit (the trigger).

In smart industries, predictive maintenance is one of the most used techniques to improve condition
monitoring, as it allows one to evaluate the conditions of specific equipment in order to predict
problems before failure [120]. For good performance of predictive models, it is important that the
sensor data collected are of good quality.

In order to assess the condition of a system, the predictive maintenance approach employs sensors
of different kinds. Some examples are temperature, vibration, velocity or noise sensors, which
are attached to the main components whose failure would compromise the entire operation of
the system. In this sense, predictive maintenance analyzes the history of a system in terms of
the measurements collected by the sensors that are distributed among the components, with the
objective of extracting a “failure pattern” that can be exploited to plan an optimal maintenance
strategy and thus reducing offline periods [121].

When systems start to be very complex or the number of sensor measurements to manage is very
large, it can be difficult to estimate a failure. For this reason, in recent years, machine learning
techniques are used more and more to predict working conditions of a component. Mathew et al.
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[122] propose several approaches to machine learning such as support vector machines (SVMs),
decision trees (DTs), Random Forests (RFs), and others that show which technique has the best
performance in RUL forecast for turbofan engines.

A major challenge in operations management is related to predicting machine speed, which can be
used to dynamically adjust production processes based on different system conditions, optimize
production performance and minimize energy consumption [123]. Preventive Maintenance (PM)
may have the ability to maintain machines with a high level of reliability [124]. But, the imple-
mentation of scheduled maintenance activities can also lead to machine unavailability while PM
is being performed [125, 126].

However, the creation of a Predictive Maintenance Program is a strategic decision that, until now,
lacks an analysis of the problems related to installation, management and control. According to
Shin and Jun [127], when it is a high-value asset, the Operation and Maintenance (O&M) phase
requires heavy charges and more effort than in the installation (construction) phase, as these assets
have a useful life that any unexpected event of the asset during that period causes catastrophic
damage to the industry.

The proposed option-based PM policy can provide flexibility to adjust production output to satisfy
the demand requirement [65].

2.3.2 Opportunistic Maintenance

Opportunistic Maintenance (OM) is used when a component and equipment are assumed to fail
stochastically, and the failures are independent according to known a probability distribution; in
this case, a combination of corrective and preventive maintenance (PM) applies as a failure occurs
[128].

OM policy is developed based on combination of age replacement policy and block replacement
policy and in practical; OM is applied as the combination of corrective maintenance which is
applied when any failure occurred, with preventive maintenance (PM) – a planned and scheduled
maintenance approach to prevent failure to happen.

In addition to the classic system-level maintenance strategy, a newmaintenance strategy is required
to achieve a fast and cost-effective response effectively [129].

Performing preventive maintenance, even when there is no opportunity, it can have a detrimental
effect. It can be said that opportunistic maintenance policies are sufficient in the case of systems
with a large number of components [130].

In case of CBM, the maintenance activities can begin at an arbitrary point within the opportunistic
zone (which is equal to or less than the P-F interval) Figure 2.15. This opportunistic zone is the
period during which the degradation started, without leading to a fatal shutdown of the component.
Within the opportunistic zone, Planned Maintenance (PM) activities can be carried out against PM
costs [131, 132].

[131] defined the opportunistic maintenance zone in age based replacement as a percentage of the
PM interval T (Figure 2.14).
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Figure 2.14: Opportunistic maintenance zone in ABR policy [131].

Figure 2.15: Opportunistic maintenance zone in CBM policy [131].

Rao and Bhadury [133] demonstrated that policies with various opportunistic maintenance ages for
each increasing failure rate component are better than policies with a single opportunistic mainte-
nance age for each component. In general, the relative advantage of opting for policies with various
ages of opportunistic maintenance increases with increasing time/cost of preventive maintenance.
Zhou et al. [134] studied a dynamic programming method in which decisions are based on a com-
bination of OM cost savings and penalty costs, and stated that an ideal maintenance practice is
determined by maximizing the savings of cumulative short-term costs. Ding and Tian [135] pro-
posed a method for making opportunistic maintenance decisions by comparing the age of a given
component with a limit defined by some percentage of the Mean Time To Failure (MTTF).
Dekker [76] developed a model to determine the ideal age for opportunistic maintenance when
the opportunity follows the Homogeneous Process of Poisson (HPP). Letot et al. [136] with the
adaptive opportunistic maintenance model, based on the forecast of the conditions of a railroad,
demonstrated that the adaptive opportunistic maintenance strategy has a lower cost per unit of
time than systematic preventive maintenance. Truong Ba et al. [137], in their results indicate
that significant savings can be achieved considering OM. In addition, it is shown that the new
consideration of partial opportunities significantly increases the benefit of OM.
Among preventive maintenance control policies, opportunistic maintenance is an effective strategy
for reducing the impact of maintenance operations on multistage manufacturing systems [138].
de Jonge and Scarf [139] stated that maintenance optimization consists on the development and
analysis of mathematical models that aim to improve or optimize maintenance policies. Substantial
developments in the field of maintenance optimization can be observed in [140] review. Rao [130]

22



demonstrates that policies with various opportunistic maintenance years for each increasing failure
rate component are better with respect to policies with a single opportunistic maintenance age for
each component.
They have developed a systematic method about when to turn off equipment for maintenance is
called a maintenance opportunity. The method incorporate real-time information about the pro-
duction and failure conditions of the machine. The research indicates that the implementation
of opportunistic maintenance allows preventive maintenance to be performed significantly more
during the scheduled production shifts [114].
Besnard et al. [141] present an opportunistic maintenance optimization model for offshore wind
energy systems. Chang et al. [111], for example, explore maintenance optimization and introduce a
method that incorporates real-time information about production conditions and machine failures.
According to Hu et al. [142] the opportunistic Predictive Maintenance strategy for global opti-
mization of predictive maintenance costs for the entire complex wind turbine system, considering
failure probabilities, repair costs, downtime, and installation cost, it can make maintenance work
more economical, with sufficient guarantee of system safety and reliability.

2.4 Artificial Intelligence

Daniyan et al. [143] propose the integration of Artificial Intelligence (AI) systems, since it brings
many benefits in the diagnosis of industrial machinery condition problems. They highlight the fea-
sibility of AI combining with a time series model, for fault diagnosis, to optimize the equipment
intervention time.

Many artificial intelligence tools help in security in identification to financial fraud. Also, to fin-
ding relevant web pages in response to the research of the user, find the best driving route any
destination, play chess, translating hundreds of languages and decision-making [144].
The quantity and quality of big data is subject to statistical replication in large-scale scientific ex-
periments and is subject to many cognitive uncertainties. Big data can have the greatest societal
impact when combined with artificial intelligence [144].
Artificial intelligence is advancing at breakneck speed, powered by ”deep learning” algorithms
that use vast amounts of data to train complex programs called ”neural networks” [145].
According to Mitchell [145], there are some limitations in artificial intelligence systems the tech-
nicians dealing with this type of technology know that artificial intelligence presents limitations
since it is not able to answer questions so far outside its training capacity. The lack of this under-
standing makes these programs vulnerable to unexpected bugs and undetectable attacks.
In practice, the learning process is implemented using mathematics, statistics, logic and computer
programming. The learning process allows AI models to be trained on data in an iterative process,
learning rules to adjust parameters through trial and error. Performance metrics minimize discre-
pancies between model predictions and experimental data [144].
As a powerful pattern recognition tool, AI has attracted great attention from many researchers and
has shown promise in fault identification applications in rotating electrical machines [146].
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The area of the artificial intelligence has with subsection Machine learning that can be defined as
”the field of study that enables computers to learn without being explicitly programmed”. It can be
said that ”Machine learning algorithms use computational methods to learn information directly
from data without using predefined equations as models” [147].

Modernmachine learningmethods provide excellent performance and are gaining popularity [148].
Can use high-dimensional and multivariate data [149]. One of the most popular tools is Artificial
Neural Networks (ANNs), which have been proposed in many industrial applications, soft sensing
[150] and predictive control [151]. As shown in this study [152], random forest models are also
good predictors.

2.5 Deep Learning

Deep learning is a branch of machine learning based on artificial neural networks. It is essentially
based on the essence, i.e. learning multilevel representations and data abstractions. Deep neu-
ral architectures have demonstrated excellent performance in both unsupervised and supervised
learning-based tasks [153].
Various deep learning algorithms such as Deep Multilayer Perceptron (DMLP), Restricted Boltz-
mann Machine (RBM), Deep Belief Network (DBN) are employed in recommendation, especially
in evaluating prediction Recurrent Neural Network (RNN), Convolutional Neural Network (CNN),
etc.

In a case related to the steel industry, Bampoula et al. [154] use neural networks to classify main-
tenance activities, so that interventions are planned based on the actual condition of the machine
rather than ahead of time. Identifying states and the Remaining Useful Life (RUL) at higher res-
olutions using multiple neural networks can be very difficult because the system can predict fault
classification and may fail to detect adjacent states.
According to Yasaka et al. [155] deep learning is used with CNN to achieve high performance in
image recognition. The images themselves can be used in the learning process by this technique
and no feature extraction is required before the learning process. Other computer vision research
includes [156, 157].
Deep learning strategies have been used, with success, in a variety of areas [158]. According to
[159] deep neural networks can outperform other methods in voice recognition tasks. A similar
approach was used in audio processing [160].

An autoencoder (AE) is an acyclic feed-forward neural network consisting of an input layer, one or
more hidden layers connecting the input and output layers, and an output layer [161]. The number
of neurons in the input and output layers is equal to the input layer, which minimizes the difference
between the input and output. Instead of predicting the output label, the input is recreated from the
learned features.
Basically, the purpose of this network is to efficiently learn hidden features so that the output
(similar to the input) can be reproduced after the features have been learned. It has two components,
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as shown in Figure 2.16: an encoder that encodes the input into a hidden/corrupted state, and an
decoder that produces an output (similar to the input) after taking the encoded data.

Figure 2.16: Architecture of autoencoders [131].

2.6 Recurrent Neural Network

Hsu et al. [162] demonstrated that neural networks can be a great technology in the support and
decision making of large and small companies. There is a trend to use those tools in predictive
maintenance systems with the aim of making the prediction systems more intelligent [163].

Experimentswere performedwith a predictivemodel based on the Long short-termmemory (LSTM)
with encoder and decoder architecture. Themodel consists of two LSTMs, in which the first LSTM
has the function of processing an input sequence and generating an encoded state. The encoded
state compresses the information in the input stream. The second LSTM, called a decoder, uses
the encoded state to produce an output sequence. Those input and output sequences can be of dif-
ferent lengths.
LSTM is very good at predicting in a time series [164, 165]. It could extract patterns from sequen-
tial data and store these patterns in internal state variables. Each LSTM cell can retain important
information for a longer period when it is used. This information property allows the LSTM to
perform well in classifying, processing, or predicting complex dynamic sequences [166].
This technique has already been used to solve problems such as the prediction of vehicle trajec-
tories based on deep learning [167]. Cho et al. [168] has shown great performance for tasks of
translating from sequence to sequence. LSTM encoder–decoder models have also been proposed
for learning tasks such as automatic translation [168, 169]. There is the application of this model
to solve many practical problems, such as the study of the equipment condition, applications in
language translations, among others [170, 171, 172].

Many networks showed instability when dealing with exploding or vanishing gradient problems
during learning. Those problems happen when the gradient of the error is too large or too small.
If it is too large, it overflows and the errors cannot propagate properly through different layers
during learning. If it is too small, it vanishes and the network does not learn.

Traditional ANNs are simple and adequate for a wide range of problems. Bangalore et al. have

25



studied the performance of neural networks for early detection of faults in gearbox bearings, to
optimize the maintenance of wind turbines [173].
In a case related to the steel industry, Bampoula et al. [154] used neural networks for classification
of maintenance activities, so that interventions are planned according to the actual status of the
machine and not in advance. Using multiple neural networks to identify status and RUL at a higher
resolution can be very difficult, as the system can predict failure classifications and may not be able
to recognize neighboring states. One limitation arises from the need for maintenance records to
label datasets and the need for large amounts of data of adequate quality with maintenance events,
such as component failures.
Beshr and Zarzoura [174] used neural network models to predict problems of suspended road
bridge structures based on global navigation satellite system observations.

2.7 The Paper Process

Non-wood materials were in use for papermaking in China almost 2000 years ago, until developed
countries adopted the process of producing pulp and paper from wood sources. This process was
invented in Germany by Friedrich Gottlob Keller in 1840 [175].
Nowadays, about 90–91% of the world’s pulp and paper production is produced from wood [176].
It involves the extraction of cellulose from either hardwood or softwood fibres. The cellulose
obtained is processed into pulp, used in papermaking. The world consumption of paper has grown
by about 400% in the last 40 years and continues to grow about 2.1% yearly since 2009 with North
America, Europe and Asia for more than 90% of total paper and paperboard consumption [177].

Chemical 
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Figure 2.17: Production process of the paper.

Cellulose paper can be divided into four stages: Extraction and preparation of wood; pulping;
conversion of wood to brown pulp; conversion of brown pulp to bleached pulp; and the final steps
to produce the desired paper. This process is illustrated in Figure 2.17.
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Originally, paper was produced by hand as individual sheets until Louis Robert invented the paper
machine in France in 1799 [178].
Due to the depletion of wood resources, the use of low-cost raw materials has been introduced
to serve as an alternative resource for pulp and paper production [179]. The alternative resources
include non-wood fibres, such as agricultural residues and annual plants (plants that germinate,
flower, set seed, and die all in one season), considered as valid alternative sources of cellulose for
pulp and paper production [180]. Properties that make them suitable include high yielding ability,
high pulping quality, good adaptation to prevailing climatic conditions and low-cost [181].

Figure 2.18: Schematic of a paper pulp drying press [182].

A paper machine consists of variousmechanical sections, each driven by amotor or an arrangement
of amainmotor and one ormore auxiliary drives and, usually controlled by speed or torque. Typical
sections are: Fourdrinier, Press, Dryer, Calender and Reel [182].
Figure 2.18 shows some of the constituent components of the pulp press. A more detailed study
of the nature of paper machines can be found in studies [183, 184, 185], in which they show the
losses and damage that can occur in these machines. The dewatering and drying of the paper
sheet as it passes through the paper machine is very complex and is influenced by many factors
[185]. Therefore, it is necessary to monitor all variables underlying the papermaking process in
this section.

2.8 Dataset

Organizations have a great concern with their future, which leads many to acquire technologies to
make them more flexible and competitive with their competitors. With the acquisition of sensors it
is possible to have information about each constituent equipment of the machine. There is a wide
range of sensors, not forgetting the IoT technology that allows the digital connection of objects.
Some of these technologies are present in Figure 2.19.
For data processing it is necessary to take into consideration the problematic existences which cor-
respond to three analysis methods: univariate analysis which consists in describing a population by
examining one variable at a time; bivariate analysis, which aims to study the existing relationships
between two variables for the purposes of explanation and/or prediction; and multivariate analy-
sis, which includes the methods analysis the relationships of multiple dependent variables and/or
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Figure 2.19: Support technologies.

multiple independent variables, whether or not cause/effect relationships are established between
these two groups.
For the present thesis ten datasets were used, of these two are of industrial origin and the remaining
were obtained from the following sources:

• EURONEXT;

• ECONOMIC RESEARCH;

• MACROTRENDS;

• WORLD STEEL ASSOCIATION.

The data from the pulp paper company has the characteristics described below.
The first dataset contains data samples from 1 February, 2018, to December, 2020, for a total of
33313 samples per hour.
The second dataset contains data samples from 1 January, 2018, to 20 December, 2021, for a total
of 33313 samples five minute.In this second set of data is included the variable of paper pulp
production in the presses.
The data set has the variables i) Current Intensity: current absorbed by the press motor, in Ampere;
ii) Hydraulic Unit Oil Level (in percentage); iii) Torque of the motor (in N.m); iv) VAT Pressure:
Pressure inside the cuba (in Kpa); v) Rotation Velocity: velocity of rotation of the press’ rolls,
in rotations per minute; vi) Temperature at Hydraulic Unit, in degree Celsius, and vii) Paper pulp
production .
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Figure 2.20 shows the plot of the raw data of the press. As the graph shows, there are zones of
typical operation and spikes of discrepant data. The data are not homogeneous. There are many
discrepant samples in the extreme quantiles and the distribution of data is not linear.

Figure 2.20: Plot of the sensor variables before applying data cleaning treatment.

Data quality is essential for developing effective modeling and planning. Data with discrepant
values, as those shown in the charts, can pose difficulties to machine learning models. Therefore,
data must be processed and structured prior to analysis.

There are several treatment methods designed for this purpose, but a careful selection is needed
so that information is not impaired. In the present work, the approach followed was the quantile
method [18]. Table 2.1 describes in all variables for the press one, press three and press four.

Figure 2.21: Histogram of variables showing the number of samples per quartile.

In Figure 2.21 the histogram of data of the press one is present It shows the dispersion of frequencies
data. It is possible to verify that there is a significant variation among them.

Figure 2.22 shows the amplitude of each sample concerning the lower and upper bounds for each
variable. As the figure shows, the distribution of data is skewed for all variables.
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Table 2.1: Statistical parameters of the dataset variables for the three presses, before processing:
Cintensity, hydraulic unit oil level, torque, VAT pressure, velocity, and temperature. .

Count Mean std min Q1—25% Q2—50% Q3—75% max
Hydraulic_unit_level1 399 492 74.45 5.81 44.95 71.47 74.14 78.12 99.34
Production1 398 746 26.50 7.75 0 25.03 29.03 31.26 37.14
VAT_pressure1 399 143 6.71 3.03 0 4.71 5.83 7.97 75.94
C_intensity1 395 991 26.36 6.66 0 26.53 28.27 29.04 75.00
Torque1 396 627 14.01 3.45 0 14.43 15.08 15.47 18.28
Velocity1 396 960 4.33 1.45 0 3.70 4.64 5.15 13.45
Temperature_at_U.H.1 399 491 36.97 3.69 13.08 35.52 37.17 38.80 66.58
C_intensity3 399 480 26.04 7.44 0 26.30 28.63 29.83 50.00
Hydraulic_unit_level3 399 293 75.69 4.88 1.23 73.50 76.13 78.76 85.34
Torque3 399 367 11.65 2.93 0.06 12.02 12.55 12.85 16.75
VAT_pressure3 394 382 9.67 4.04 0 7.12 9.85 12.30 60.87
Velocity3 397 181 6.74 2.21 0 5.81 7.29 8.13 13.94
Temperature_at_U.H.3 399 491 37.38 3.26 14.77 36.29 38.17 39.35 60.24
Production3 368 874 24.48 6.29 0 22.73 26.45 28.39 34.42
C_intensity4 395 611 20.31 4.96 0.02 20.06 21.56 22.42 41.57
Hydraulic_unit_level4 399 492 72.16 2.90 43.33 70.91 72.23 73.56 81.44
Torque4 383 119 11.83 1.85 0 11.82 12.27 12.62 17.49
VAT_pressure4 399 463 24.18 5.79 0.01 21.30 25.00 28.10 80.91
Velocity4 396 221 7.95 2.66 0 6.67 8.63 9.71 14.40
Temperature_at_U.H.4 399 491 35.77 3.57 12.93 34.31 35.57 37.41 62.16
Production4 399 194 26.90 7.97 0.00 25.31 29.53 31.67 39.85

Figure 2.22: Distribution of data points of all the sensors, with Low and High extremes.
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In Figure 2.23 it is verified individually each variable autocorrelations that decay relatively quickly.
In this there was the need to resort to data processingmethodologies in order to eliminate discrepant
data and also to improve the autocorrelation of the variables.

Figure 2.23: Autocorrelation between samples of all variables, calculated for 200 days.

2.9 Data Pre-processing

2.10 Conclusion

Since operations management is a practice that involves planning, execution and monitoring of
actions within a company, one of the great challenges is to keep the production flow at a high level
so that there are no interruptions and these are converted into losses.

Many of these failures may present certain patterns that make it impossible to explore them in order
to perform a prediction based on these patterns. The predictive maintenance policy, supported
by the mathematical tools mentioned has been widely explored by researchers to solve problems
related to various unwanted during the manufacturing process.

Being that a machine a set of components, failure of a Component can compromise the entire
operation, for this, if there is possibility to monitor these components can have an advantage over
what may happen.

In order to be able to make a forecast, it is first necessary to have data. This data is very important
as it contains information about the machine’s operation and can have different sampling periods.

Since a machine is made up of several components it is important to have these concepts since
they allow us to deal not only individually with the phenomena that may exist in the variables but
also allows us to understand them through the relationships that may exist between the variables.
Using the documentation available in web of science, scopus and google academic databases, we
can validate a global approach for the maintenance of results in production, and we can validate
the use and efficiency of several tools in solving related problems.
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In the maintenance field, some research is applied to solutions that can detect and diagnose fai-
lures based on this method, as well as the efficiency of neural networks and principal component
analysis.

The cumulative costs associated with plant failures are significant. For this reason, maintenance
methods have evolved to deal with these dilemmas, such as predictive maintenance (PM), which
consistently demonstrates the ability to maintain the integrity of the company by generating infor-
mation about the condition of the equipment; this data makes maintenance effective.

The state of the art proved to be sound, leading to a scientific article published in an indexed journal
with the intention of sharing these conclusions with other researchers willing to address this type
of problem (Appendix A).
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Chapter 3

Methodology

This chapter presents the methodologies applied to process treat data before the forecast algo-
rithms are applied. The data set and its respective variables present behaviours that must be taken
into account, and these behaviours can be seen in the representation of data in time series. The
chapter demonstrates the behaviour of data before and after the application of a data processing
method and beyond, as well as the autocorrelation of variables and the correlation between them.
Finally, the chapter presents the forecasting tools from the most classical to the most complex that
will be considered for the forecasting tests.

3.1 Processing Data Method

3.1.1 Interquartile Range (IQR) Method

The method of eliminating discrepant values is based on the idea that extreme values are most
probably data reading failures. They often happen due to sensor failures, communication interfe-
rence or other type of problems during data acquisition. As a result, the dataset sometimes contains
invalid samples such as readings outside of the expected sensor ranges, or zero when the machine
was stopped. Those samples can be eliminated, so that they do not negatively affect the machine
learning process.

In the present work, limits were calculated for each variable and the samples out of the allowed
range were replaced by the average. The limits were calculated using the following equations:

Q 1
4
=

1

4
(n+ 1) (3.1)

Q 3
4
=

3

4
(n+ 1) (3.2)

IQR = Q 1
4
−Q 3

4
(3.3)

Downlimit = Q 1
4
−K × IQR (3.4)

Uplimit = Q 3
4
+K × IQR (3.5)
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Downlimit is the lower limit accepted for the variable, calculated by subtracting the constant k
multiplied by IQR to Q 1

4
. Uplimit is the upper limit accepted for the variable, calculated by

adding the constant k multiplied by IQR to Q 3
4
, where k is the constant of variation of the limits.

The limits are calculated for each variable. Sample data points that contain values that are out of
the interval [Downlimit, Uplimit] are replaced by the average.

Figure 3.1: Plot of the dataset variables without extreme values.

Figure 3.2: Histogram of variables after removing discrepant data. The variables are Current
intensity, Hydraulic unit level, VAT pressure, Rotation velocity, Temperature in the Hydraulic Unit,
and Torque.

Use of the quantile method removes extreme values, which are often due to sensor reading errors,
stops, or other abnormal situations. After those samples are removed, it is possible to see more
normal data distributions, such as those shown in Figure 3.1 and Figure 3.2.

Removing the extremes, it can be seen in Figure 3.3 that the variables show more balanced distri-
bution. Also it is possible to see in Figure 3.4 that there is a significant increase in lag.
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Figure 3.3: Distribution of data points of all the sensors, without Low and High extremes.

Figure 3.4: Autocorrelation between samples of all variables, calculated for 200 days.

3.1.2 Data Filtering using LOWESS

LOWESS/LOESS (locally weighted/estimated scatterplot smoothing) is a non-parametric regres-
sion technique developed by Cleveland [186]. Robust locally weighted regression is a method for
smoothing variables, (xi, yi), i = 1, · · · , n, in which the fitted value at zk is the value of a polyno-
mial, fit to the data using weighted least squares, where the weight for (xi, yi) is large if xi is close
to xk and small if it is not. The number of samples (n) used for each local approximation (zk) is a
parameter of the model. The degree of the polynomial function is also a parameter of the model.
Often the polynomial degree is 1, which means a linear regression is performed.
The samples were registered with sampling period of 1 min for press number 2 and 5 min for press
number 4. For most of the experiments the dataset was downsampled, in order to reduce processing
time. The downsampling rate varied, although most of the time the 12 or 60 samples of each hour
are averaged, which is equivalent to using a sampling period of 1 hour.
Using this approach, Figure 3.5 shows that although there is no elimination of extremes, there is
a smoothing in them. Figure 3.6 shows the respective histogram, Figure 3.7 shows distribution of
sensor data points and the Figure 3.8 shows the variable autocorrelation.
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Figure 3.5: Plot of the dataset variables without extreme values: Current intensity, Hydraulic unit
level, VAT pressure, Rotation velocity, Temperature in the Hydraulic Unit, and Torque.

Figure 3.6: Histogram of variables after removing discrepant data. The variables are Current
intensity, Hydraulic unit level, VAT pressure, Rotation velocity, Temperature in the Hydraulic Unit,
and Torque.

Figure 3.7: Distribution of data points of all the sensors, with some Low and High extremes.
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Figure 3.8: Autocorrelation between samples of all variables, calculated for 200 days.

For the tests of the short- and long-term forecasting methods, we used resample, a function from
the Pandas library. With this function, we were able to run the prediction tests with an Asus i5
computer, 6GB Ram, 500GB rum storage and a VIDIA GeForce GT 720M graphics card.

3.1.3 Correlation of Variables

Correlation is a statistical measure of the relationship between two variables. This measure is
best for variables that demonstrate a linear relationship between them. The fit to the data can
be represented visually in a scatter plot. Using scatter plots, we can often assess the relationship
between variables and determine if they are related [187].

Correlation coefficient formulas are used to find out how strong a relationship between data is.
The formulas return values ranging from -1 to 1, where:

• 1 indicates a strong positive relationship.

• -1 indicates a strong negative relationship.

• A score of zero indicates no relationship.

In Figure 3.9 we can see that there is a high correlation on the values of pulp produced, in relation
to the current and the torque. These correlation values reach 0.9, being the maximum value of the
correlation 1. One can validate the feasibility of the predictions of these variables together.
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Figure 3.9: Correlation between all variables of the paper pulp presses.
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3.2 Forecasting with time series methods

3.2.1 Forecasting for AR Model

Since the number of the samples is very high, there was a need to down sample the data-set, from
a period of minutes to a period of days, in order to have a forecast in days. That was done by
averaging the samples of each day using the python pandas function df.resample (’D’), Mean ().

As a first approach to predict future behaviour, an autoregressive model was applied. Autoregres-
sive models are adequate to model variables that mostly on their previous behavior and a stochastic
value, thus satisfying the following equation:

The notation AR(p) refers to the autoregressive model of order p. The AR(p) model is written as

Xt =

p∑
i=1

φiXt−i + εt (3.6)

Where meansX measured in time period t, p is the order,φ1, · · · , φp are real parameters and εt is
a white noise process independent and identically distributed.

3.2.2 Forecasting for MA

MA(q) refers to the moving average model of order q:

Xt = µ+ εt +

q∑
i=1

θiεt−i (3.7)

where θ1, · · · , θq are the parameters of the model, µ is the expectation of Xt (often assumed to
equal 0), and the εt−1, · · · are white noise error [188].

3.2.3 Forecasting for ARIMAModel

The notation ARMA(p, q) refers to the model with p autoregressive terms and q moving-average
terms. This model contains the AR(p) and MA(q) models [189].

Xt = εt +

p∑
i=1

φiXt−i +

q∑
i=1

θiεt−i (3.8)

3.2.4 Forecasting for SARIMAModel

Some time series present a seasonal periodic component. A seasonal autoregressive model is cha-
racterized by the existence of a significant correlation between observations spaced by a multiple
time interval Khandelwal et al. [190].

Using the data for the press 4, Figure 3.10 presents the data with a sampling rate per week it is
possible to verify that there is has seasonality of great relevance, but it is possible to verify that
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Figure 3.10: Data sample for week press 4.
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Figure 3.11: Seasonality on press 4 in a week period.
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there are variations that present a great relevance. this concluson is also drawn through Figure
3.11.
The Seasonal Autoregressive Integrated Moving Average (SARIMA) model is a general case of
the models proposed by Yip et al. [191], for the adjustment of stationary time series. However,
when there is a seasonal component in the data, the model class is called SARIMA (p, d, q) (P, D,
Q), given by:

Xt = εt +

p∑
i=1

φiXt−i +

q∑
i=1

θiεt−i + εt +
P∑
i=1

ΦiXt−si +

Q∑
i=1

Θiεt−si. (3.9)

Where (p, d, q) refer to the model orders of the seasonal part: p is trend autoregression order, d
is trend difference order and q is trend moving average order. (P,D,Q) is the same but with
the Seasonal component. The parameters Φ1 · · ·ΦP , are the parameters referring to the seasonal
autoregressive part and Θ1 · · · ΘQ, are the parameters of moving averages, and i is an error that
cannot be estimated from the model and D indicates the number of seasonal differences made in
the series to make it stationary. The calculation of the parameters of the models that best fits, was
made using the most frequent Akaike Information Criterion (AIC), which is defined by:

AIC = 2log(L.K) + 2(K) (3.10)

where L.K is the maximized log-likelihood andK is the number of parameters in the model.

3.3 Forecasting with deep learning

3.3.1 LSTMWith Encoder and Decoder

The LSTM is a deep learning recurrent neural network architecture that is a variation of traditional
recurrent neural networks (RNNs). It was introduced by Hochreiter and Schmidhuber in 1997.
The most popular version is a modification refined by many works in the literature [192, 193],
which is called vanilla LSTM (hereinafter referred to as LSTM).
The LSTM is excellent at handling time series data only with its network parameters. For example,
weights and polarization are adjusted or optimized [194]. The primary modification of the LSTM
when compared to the RNN architecture is the structure of the hidden layer [195]. The LSTM
model is a powerful type of RNN capable of learning long-term dependencies [196].
Kong et al. demonstrate some relevant conclusions such as (1) LSTM has a good predictive capac-
ity; (2) their use can significantly improve the profit of service providers, so there is an opportunity
when it comes to exploring the forecast in real time [197].
Ayvaz and Alpay apply Long Short-Term Memory (LSTM) neural network approaches to predict
real production data, obtaining satisfactory results, superior to conventional models [198]. In their
study to improve maintenance planning to minimize unexpected stops, they apply a new method
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that consists of the combined use of decomposition in empirical mode of ensemble and long-term
memory. Their results showed a performance superior to other state of the art models. Essien and
Giannetti [199] use a deep convolutional LSTM encoder-decoder architecture model on real data,
obtained from a metal packaging factory. They show that it is possible to perform combinations of
LSTM with other networks to significantly improve the results. LSTM neural networks achieved
the best performance in a range of computational sequence labeling tasks, including speech recog-
nition and machine translation [200]. There are a variety of engineering problems that can be
solved with predictive neural models. The architecture of an LSTM network includes the number
of hidden layers and the number of delay units, i.e., the number of previous data points considered
for training and testing. Currently, there is no general rule for selecting the number of delays and
hidden layers [201]. A deep LSTM can be built by stackingmultiple LSTM layers, which generally
works better than a single layer. Deep LSTM networks have been used to solve many real-world
sequence modelling problems [202].

Figure 3.12 shows the internal architecture of an LSTM unit cell. According to [203], the internal
calculation formulae of the LSTM unit are defined as follows:

it = σ(xtU
i + ht−1W

i + bi) (3.11)

ft = σ(xtU
f + ht−1W

f + bf ) (3.12)

ot = σ(xtU
o + ht−1W

o + bo) (3.13)

at = tan(xtU
C + ht−1W

C + bC) (3.14)

where U i, Uf , Uo and UCare the weight matrices for mapping the current input layer on three
gates and the state of the current input cell.

Figure 3.12: Detailed layout of a long short-term memory unit [204].
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Matrices Wq and Uq contain the weights of the input and recurrent connections, where the index
can be the input gate i, output gate o, the forgetting gate f or the memory cell c, depending on
the activation being calculated. ct ∈ Rh is not just a cell of an LSTM unit, but contains h cells of
the LSTM units, while it, ot and ft represent the activations of, respectively, the input, output and
forget gates, at time step t, where:

• xt ∈ Rd: input vector to the LSTM unit;

• ft ∈ (0, 1)h forget gate’s activation vector;

• it ∈ (0, 1)h input/update gate’s activation vector;

• ot ∈ (0, 1)h output gate’s activation vector;

• ht ∈ (−1, 1)h hidden state vector, also known as the output vector of the LSTM unit;

• c̃t ∈ (−1, 1)h cell input activation vector;

• ct ∈ Rd: cell state vector.

W ∈ Rh×d, U ∈ Rh×h and b ∈ Rh are weight matrices and bias vector parameters, which need to
be learned during training. The indices d and h refer to the number of input features and number
of hidden units.
W i,W f ,W o andWC are the weight matrices for mapping the previous output layer on three gates
and the current state of the input cell. bf , bi, bo, and bc are polarization vectors for calculating the
state of the gate and the input cell. σ is the gate activation function, which is normally a sigmoid
function. tan is the hyperbolic tangent function which is the activation function for the current
state of the input cell.

3.3.2 Gated Recurrent Unit With Encoder and Decoder

It shows that the Gated recurrent unit (GRU) has an updated gate and a reset gate similar to forget
and input gates on the LSTM unit. The refresh gate defines how much old memory to keep, and
the reset gate defines how to combine the new entry with the old memory. The main difference is
that the GRU fully exposes its memory content using just integration (but with an adaptive time
constant controlled by the update gate).
The GRU was introduced by Cho et al. [205]. Although it was inspired by the LSTM unit, it is
considered simpler to calculate and implement. It retains the LSTM immunity to the vanishing
gradient problem. Its internal structure is simpler and, therefore, it is also easier to train, as less
calculation is required to upgrade the internal states. The update gate controls the extent to which
the state information from the previous moment is retained in the current state, while the reset gate
determines whether the current state should be combined with the previous information [205].
Figure 3.13 shows the internal architecture of a GRU unit cell. These are the mathematical func-
tions used to control the locking mechanism in the GRU cell:

zt = σ(xtW
z + ht−1U

z + bz) (3.15)
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rt = σ(xtW
r + ht−1U

r + br) (3.16)

h̃t = tan(rt × ht−1U + xtW + b) (3.17)

ht = (1− zt)× h̃t + zt × ht−1 (3.18)

whereW z,W r,W denote theweightmatrices for the corresponding connected input vector. U z, U r, U

represent the weight matrices of the previous time step, and br, bz and b are bias. The σ denotes
the logistic sigmoid function, rt denotes the reset gate, zt denotes the update gate, and h̃t denotes
the candidate hidden layer [206].

Figure 3.13: The cell structure of a gated recurrent unit.

It shows that the GRU has an updated gate and a reset gate similar to forget and input gates on the
LSTM unit. The refresh gate defines how much old memory to keep, and the reset gate defines
how to combine the new entry with the old memory. The main difference is that the GRU fully
exposes its memory content using just integration (but with an adaptive time constant controlled
by the update gate).

3.4 Model Evaluation

In the present experiments, LSTM and GRU neural network models are compared. To evaluate
the model prediction performance, the models used were root mean square error (RMSE), mean
absolute percentage error (MAPE), and mean absolute error (MAE). They are defined as follows:

RMSE =

√√√√ 1

n

n∑
t=1

(Yt − Ŷ )2 (3.19)
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where Yt is the actual data value and Ŷ is the forecast obtained from the model value. The predic-
tion error is calculated as the difference between Y and Ŷ , i.e., the difference between the output
desired and the output obtained. n is the number of samples used in the test set.

MAE =
1

n

n∑
t=1

|Yt − Ŷt| (3.20)

MAPE =
1

n

n∑
t=1

|Yt − Ŷt|
|Yt|

(3.21)

3.5 Conclusion

The application of a classical predictive model and a machine learning model requires sensitivity
to the data structure, i.e. the data must be treated as a model input, and many data may have
non-numeric formats, duplicate values, null values and discrepant values.

The chapter shows that data processing is essential for checking the behaviour of variables over
time, such as trend and seasonality. The trend and seasonality did not provide enough evidence to
be considered in the study.

With the processing of the data, there was an increase in the autocorrelation of the variables, which
gave results of considerable accuracy with classical forecasting models, although there were limi-
tations. With the proposal of the recurrent neural network model, these limitations were overcome.

The results of the method research and testing were published at the INCOME-VI AND TEPEN
2021 conference in China (Appendix B), and many of the methods presented that support the
development of the following chapters.
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Chapter 4

Tests and Results with Maintenance Data.

In this chapter the different results from different methodologies of data prediction presented in the
previous chapter are used for the tests based on the data of press two. The tests aim to present the
best parameters and hyperparameters in order to obtain better prediction results, and the methods
of data treatment were also considered to achieve better results.

4.1 Test with Autorregressive and SARIMA model

As can be seen from the last section, production management brings many challenges, one of these
is short and long term planning. There are tools that can help to support these problems such
as predictive tools. It should be emphasized the extreme importance that maintenance policies,
namely the predictive maintenance policy, have in avoiding failures that can bring sudden stops.

After analyzing and processing the data, the prediction test was performed using the autoregressive
model in order to validate this model’s performance against the others presented in the previous
chapter. A slidingwindow of 10 dayswas applied to themodel, corresponding to 1440× 10=14400
data samples and a forecast window of the next 30 days that corresponds to 1440 × 30 = 43200.

In order to perform the test it was necessary to reduce the sampling rate since the computer used
was not robust enough tomake a prediction with a very high sampling rate (one sample per minute),
thus giving a capacity error. Reducing the sampling rate to hourly, it was noted that although it
was possible to perform the prediction, reach a point where it stabilized as shown in Figure 4.1.

With the reduction of the sampling rate using again the AR forecasting model, the results are stable
for a 10-day forward forecast with a 30-day backward sliding window as shown in Figure 4.2.

Figure 4.3 shows that the ARIMA method gives stable predictions, when using 10 days sliding
window.

Figure 4.4 shows SARIMA model forecasts with a 10-day delay window and a 30-day forward
forecast.

Table 4.1 shows the results of the forecasting errors in the period referring to the two models, AR
and SARIMA. The table shows the Mean Average Error (MAE), the Mean Squared Error (MSE)
and the Mean Average Percent Error (MAPE).
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Figure 4.1: Prediction of the six variables with sample rate per hour, using Autorregressivemethod,
with 10 days lag and 30 days forward.

Table 4.1: Forecasting errors of the classical models.
C. intensity Hydraulic unit level Torque VAT pressure Velocity Temp. at U.H.

AR
RMSE 1.76 2.64 0.77 2.03 1.30 1.53
MAPE 4.63 2.89 4.64 10.89 22.79 3.50
MAE 1.43 2.05 0.65 1.78 1.12 1.26

ARIMA
RMSE 1.45 3.00 0.78 2.90 0.81 1.50
MAPE 4.50 3.78 4.86 15.39 13.36 3.42
MAE 1.35 2.79 0.68 2.39 0.65 1.23

SARIMA
RMSE 2.71 2.92 0.94 2.20 2.25 1.23
MAPE 6.99 3.69 5.37 11.27 43.91 2.95
MAE 2.16 2.71 0.78 1.90 2.09 1.08
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Figure 4.2: Prediction of the six variables with sample rate per day, using a Autorregressive
method, with 30 days lag and 10 days window.
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Figure 4.3: Prediction of variables using the ARIMA method, with 10 days lag and 30 days for-
ward.

50



Figure 4.4: Prediction of variables using the SARIMA method, with 10 days lag and 30 days
forward.

51



4.2 Test with Recorrent Neural Network LSTM model

To perform the prediction test, the deep network model was proposed, given that it involves a large
amount of data to forecast 30 days ahead. The SARIMA model for a 10-day forecast had as result
a stabilization, which is not intended.

The architecture for the model is encoder and decoder, as shown in Figure 4.5, with a hidden LSTM
layer in the middle and a dense layer at the output. Prior processing of data is essential for training
and test validation of a recurrent neural network and prevents undesirable phenomena during this
process.
The prediction model has six variables in input and six variables in output. The goal is to predict
the values   of these variables with the highest confidence for additional predictive maintenance
benefits. The models were implemented in Python using the TensorFlow library and Keras.

TensorFlow is an open-source library of comprehensive machine learning a variety of tasks. It
allows the creation and training of neural networks to detect and decipher patterns and correlations,
analogous to human learning [207]. Keras is an open source neural network library in Python
language. Keras can acts as an interface for the TensorFlow library [208].

Figure 4.5: Model summary of one of the LSTM networks used. The model receives a window of
n samples of each variable and predicts the value of those variables as predicted 30 days ahead.

To train and test the models, the dataset was divided into train and test subsets. Validation was
performed using the test set, but those samples were not incorporated into the training set. The
training set contained 85% of the samples and the test set the remaining 15% of samples. These
values are adequate for convergence during learning. As an example, Figure 4.6 shows a learning
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curve for a model with 70 units in the middle layer and a window of 30 lag samples. The Figure
shows that learning converges and takes less than 10 epochs.

Figure 4.6: Example of learning curve, showing loss during training of an LSTM model.

Without the treatment of the data, the first test was made using the sampling rate per hour and it
was verified the impossibility of performing the prediction due to the high number of oscillations
the variables presented, as shown in Figure 4.7, where orange line is the train values and green line
is a test values.

4.2.1 Test to Determine Historical Window Size and Number of LSTMUnits Using
One Sample per Day

The first experiments performed aimed to determine the best window size to use. The smaller the
window, the smaller and faster the model that can be used. However, if the window is too small, it
may be insufficient to make accurate predictions.
The original dataset had 1,445,760 data points, which is very large and would require a lot of
memory and time to train and test. The experiments were performed after downsampling the data,
so that there is only one sample per day. Each sample is the average of 1004 original samples. The
downsampled dataset is, therefore, less than one thousand of the original dataset.
The results are measured in the test set. Figure 4.8 shows the MAPE and MAE measured for each
variable. It also shows the global RMSE measured globally for the train and test sets.
As Figure 4.8 shows, models with windows of 40 and 50 samples allow better learning and produce
smaller prediction errors.
Additional experiments to determine the best size for the number of cells in the hidden layer were
performed.
For those experiments, a window of 40 historical samples was used, relying on the results of the
previous experiments.
Figure 4.8 shows the results obtained for experiments with a window of 40 days and different
numbers of hidden cells. As the results show, the model with the best performance is the one with
50 hidden cells.
After the results of the first experiments with one sample per day, additional experiments were
conducted to determine if there was any considerable loss in down sampling from one sample per
minute to one sample per day. A first experiment, which consisted of halving a down sampling
period from 24 hour to just 12 hour, was performed. Therefore, the dataset doubled in size, since
it contained two samples per day instead of just one.
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Figure 4.7: Prediction of the current intensity variable without data processing.
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Figure 4.8: Results obtained with a different number of LSTM cells in the hidden layer, as well
as different sliding window sizes, to predict values 30 days in advance with downsampling to one
sample per day.

4.2.2 Test to determine Historical Window Size and Number of Unit LSTMs Using
Two Samples per Day

According to the results shown in Figure 4.9, it concluded that a window of 10 days (20 samples)
shows the best performance. This shows that the model can exhibit approximately the same per-
formance with even fewer input samples when compared to the models above. The models used
for those experiments had 20 cells in the hidden layer.
Once the impact of the window size was determined, additional experiments were performed to
gain a better insight into the impact of using more or less cells in the hidden layer. Figure 4.9 shows
results of using different numbers of cells.
Figure 4.10 shows a graphical representation of the results obtained using the model with 40 cells
in the hidden layer and a 10-day sample window. As the graph shows, predictions usually follow
the actual signal most of the time. However, there are still some areas where the actual signal
differs from the predicted value by a small percentage, namely speed and temperature. Most of the
differences may be due to behaviors that are difficult to capture due to the small dimensions of the
dataset. As more data are collected, neural models may be able to capture more patterns and make
more accurate predictions.
In addition to the graphs shown in Figure 4.10, in Tables 4.2, and Table 4.3, the magnitudes of the
RMSE errors in the training set and test set are also presented. They were measured in the model
validation dataset.
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Figure 4.9: Results obtainedwith a different number of cells in the hidden layer, also using different
window samples to predict values 30 days in advance with resampling for the two samples for a
day.

After the test with the LSTM neural network, it was verified that the higher the sampling rate the
more difficult is to learn the LSTM neural network. In summary, the model did not show ability
to perform good predictions as is shown in Table 4.4.

Through the model learning curve it was validated the instability in the training and validation
process as shown in Figure 4.11. In order to circumvent this situation it was proposed to perform
the comparison between two models whose architecture is the same, but the neuronal units are
different.
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Figure 4.10: Variable forecast with a window of samples of 10 days, sampling rate two samples
per day, and a network model with 40 units in the hidden layer. The blue lines show the actual
value. The orange lines show the predictions during the training set and the gray lines show the
predictions in the test set.
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Table 4.2: The magnitude of RMSE errors in the test and training set, using one sample per day.
Window Size (Days) Train Test Units Train Test

5 2.39 2.20 10 4.23 4.07
10 2.57 2.24 20 3.99 3.93
20 4.21 4.09 30 2.52 2.35
30 2.31 2.19 40 1.68 1.70
40 1.81 1.77 50 1.66 1.70
50 1.74 1.86 60 8.14 7.85

Table 4.3: The magnitude of RMSE errors in the test and training set, using two samples per day.
Window Size (Days) Train Test Units Train Test

5 8.91 8.87 10 2.07 1.99
10 1.80 1.61 20 1.82 1.91
20 3.29 3.23 30 1.65 1.59
30 1.98 1.94 40 1.58 1.41
40 2.07 1.98 50 1.61 1.42
50 4.32 4.16 60 1.64 1.46

4.3 Test with Recorrent Neural Network GRU model

Deep learning networks are very sensitive to hyperparameters. If the hyperparameters are not
set correctly, the prediction output will produce high frequency oscillations [209]. Important
hyperparameters for GRU network models are the number of hidden units in the recurrent layers,
the dropout value, and the learning rate value.

This test was performed to confirm the ability of the models to learn, and then to determine the
optimal hyperparameters of the LSTM and GRU.

Individually, these hyperparameters can significantly influence the performance of the LSTM or
GRU neural models. Studies, such as [210, 211], demonstrate how important the adjustment of
hyperparameters is, as it optimizes the learning process and can present good results against more
complex neural network structures.

To begin the test considered the same case to determine the best size for the sliding window, expe-
riments were performed, resampling to just one sample per day, which gave a total of 1004 samples,
70% of which were used for train and 30% for test.

4.3.1 Testing the Convergence of the Learning Process

Figure 4.12 shows the learning curve for a GRU model with 40 units in the hidden layer and 12
samples in the window. The graph shows the losses measured in the train and test sets. Although
the learning curve shows that the model learns very fast in less than 10 epochs, in the following
experiments the number of epochs is limited to 15.

4.3.2 Model Performance with Different Window Sizes

The first experiments performed were aimed at finding the best windows for the LSTMmodel and
the GRU model. Therefore, the dataset has a total of 1004 samples. The model used has 40 units
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Table 4.4: MAE, MAPE using the LSTM neural model with the relu activation function.
Resampling (hour) C. intensity Hydraulic unit level Torque VAT pressure Velocity Temp. at U.H.

12 2.42 2.92 3.72 10.36 17.19 2.30
6 357.00 134.54 210.17 108.43 660.79 222.86
3 0.00 0.00 0.00 0.00 0.00 0.00
1 0.00 0.00 0.00 0.00 0.00 0.00

Resampling (hour) C. intensity Hydraulic unit level Torque VAT pressure Velocity Temp. at U.H.
12 0.71 2.22 0.55 1.57 0.64 0.88
6 105.86 102.49 31.66 18.19 25.16 84.91
3 0.00 0.00 0.00 0.00 0.00 0.00
1 0.00 0.00 0.00 0.00 0.00 0.00

Figure 4.11: Example of learning curve, LSTM model.

Figure 4.12: Learning curve of a GRU model.

in the hidden layer.
Figure 4.13 shows the results of two models with different window sizes and two different activa-
tion functions in the output layer. RMSE is the mean of all variables.

As shown, GRU always outperforms LSTM regardless of window size or activation function used.
The window size has little effect on the performance of the model, with a small difference between
2 days and 12 days. On the other hand, the results are better when ReLU is used in the output layer.

The difference in performance between GRU and LSTM is larger when using the Sigmoid function
than when using the ReLU function.

Figure 4.14 shows the MAPE and MAE associated with the 30 day forecast, for past windows
of 2 to 12 days. The charts demonstrate that the LSTM architecture that uses a ReLU activation
function in the output layer has lower errors. Using the sigmoid function, the LSTM errors are
much larger.

The GRU, however, in general performs better than the LSTM for all variables and activation
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(a) Results with ReLU activation (b) Results with sigmoid activation

Figure 4.13: RMSE values for LSTM and GRUmodels, with different window sizes and activation
functions for the output layer.

functions. The prediction error results are much more stable for the GRU than they are for the
LSTM. Table 4.5 shows exact error values for the best window sizes for the LSTM model and
GRU model.

(a) MAPE using ReLU activation (b) MAPE using sigmoid activation

(c) MAE using ReLU activation (d) MAE using sigmoid activation

Figure 4.14: MAPE and MAE errors, for each variable, using ReLU and sigmoid activation func-
tions, for window sizes of 2, 4, 6, 8, 10, and 12 days, using one sample per day. Exact values are
shown in Tables 4.5 for the best window sizes.

4.3.3 Experiments toDetermineModel PerformancewithDifferentResampleRates

In the present experiments, the dataset contains a large number of samples, so only undersampling
techniques are necessary in order to reduce the number of data points. The same method was used
to average a number of samples, depending on the size of the dataset desired.

Experiments were performed undersampling to obtain one sample per 12 h (two per day), one per
six hours (four samples per day), one per each three hours, and, finally one sample per hour. So,
the dataset size was greatly reduced.
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Table 4.5: Summary of the best prediction errors obtained with the LSTMmodels and GRU. Win-
dow is the historical window size in days. AF is the output activation function.

MAPE
Window-AF C. Intensity Hydraulic Torque Pressure Velocity Temperature

LSTM 4-ReLU 2.95 2.32 3.68 8.28 14.06 2.38
6-Sigmoid 16.48 65.98 4.24 12.09 19.70 34.00

MAE
Window-AF C. Intensity Hydraulic Torque Pressure Velocity Temperature
4-ReLU 0.86 1.74 0.54 1.29 0.50 0.91
6-Sigmoid 4.91 50.34 0.61 1.83 0.72 13.02

MAPE
Window-AF C. Intensity Hydraulic Torque Pressure Velocity Temperature

GRU 12-ReLU 3.63 1.95 3.53 7.74 15.99 1.92
10-Sigmoid 2.57 2.21 3.74 9.53 15.41 2.82

MAE
Window-AF C. Intensity Hydraulic Torque Pressure Velocity Temperature
12-ReLU 0.77 2.20 0.44 1.49 0.55 0.86
10-Sigmoid 0.93 1.32 0.61 1.42 0.64 0.91

The window sizes were the best of the previous experiments: a window size of 4 days for the
LSTM and 12 days for the GRU, with the ReLU. A window size of 6 days for the LSTM and 10
days for the GRU, with the sigmoid.

Figure 4.15 shows the average RMSE errors for both models. As the results show, sometimes
the LSTM overperformed the GRU, namely when using the sigmoid function with periods of six
and three hours. However, the difference was not statistically significant. On the other hand, the
GRU was able to learn in all the situations and the RMSE error was always approximately 1. So,
the GRU is robust and accepts larger periods with minimal impact on the performance, while the
LSTM model is much more unstable.

(a) Using ReLU function at the output layer (b) Using sigmoid at the output layer

Figure 4.15: RMSE value for LSTM and GRU model with ReLU and sigmoid at the output layer,
for different undersampling rates: using one data point per 12 h, one per six hours, one per 3 h,
and one per hour.

4.3.4 Experiments with Different Layer Sizes

An additional experiment was performed to compare the performance of the models with different
numbers of units in the hidden layer.
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Using the GRU model, it is possible to learn with a larger number of samples, and with different
variations of the model units, as shown in Figures 4.16 and 4.17. The LSTM was unable to learn
with the resampling rate period of 1 h; therefore, results are missing. The window used in the ex-
periments was 10 days for the sigmoid and 12 days for the ReLU, which were the optimal windows
for the GRU using the ReLU and sigmoid functions, respectively.

(a) Using ReLU function at the output layer (b) Using Sigmoid at the output layer

Figure 4.16: RMSE errors measured, with different numbers of cells in the hidden layer.

(a) MAPE using ReLU function (b) MAPE using sigmoid function

(c) MAE using ReLU function (d) MAE using sigmoid function

Figure 4.17: MAPE and MAE obtained with different numbers of units in the hidden layer, mea-
sured when predicting future values 30 days in advance, with a resampling period of one hour. The
LSTM was not able to learn, so the results are just for the GRU.

As the charts show, the GRU, using the sigmoid activation function, achieves the lowest RMSE
error with 50 units in the hidden layer. Experiments described in Section 4.3.3 showed that the
GRU with the same parameters, with 40 units in the hidden layer, had an RMSE error of 1.06.
Table 4.6 shows the best results for the GRU model, after the tests with different numbers of cells
in the hidden layer.
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Table 4.6: Summary of the best results obtained with different numbers of units in the hidden layer.
MAPE

Unit C. Intensity Hydraulic Torque Pressure Velocity Temperature
80-ReLU 2.66 4.09 3.19 10.31 13.83 3.29
50-Sigmoid 2.30 2.80 2.85 9.87 11.80 2.66

MAE
Unit C. Intensity Hydraulic Torque Pressure Velocity Temperature

80-ReLU 0.78 3.02 0.47 1.58 0.55 1.25
50-Sigmoid 0.68 2.05 0.42 1.48 0.46 1.01

4.3.5 Comparing Many-to-Many and Many-to-One Architectures

An additional experiment was performed, in order to determine if the models are better trained
to predict all the variables at the same time (one model, six outputs, many-to-many variables) or
trained to predict just one variable (six models with six variables in input, with only one in output,
i.e., many-to-one variable).

This experiment was just performed for the GRU, which presented the best results in the previous
experiments.

According to the graphs presented in Figure 4.18, it is clear that architecture ’many-to-many’
presents slightly better results. Therefore, there is no advantage in training one model to predict
each variable.

Figure 4.18: Comparison of the performance of the GRUmodels, trained to predict many-to-many
and many-to-one variables.

4.3.6 Tests with Different Activation Functions in the Hidden Layer

An additional step was to test combinations of different activation functions, for the hidden and
output layers of the GRU. The activation functions tested were sigmoid, hyperbolic tangent (tanh),
and ReLU. Figure 4.19 shows a chart with the average RMSE of the models. Globally, ReLU
in the hidden layer and tanh for the output are the best models, even though ReLU–sigmoid and
ReLU–ReLU are closely behind.

Table 4.7 shows the RMSE error for the different combinations of activation functions, for each
variable. As the table shows, different variables may benefit from different functions, although, in
general, a first layer of ReLU and a second layer of ReLU, sigmoid, or tanh are good choices.
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Figure 4.19: Average RMSE values, different types of activation functions.

The values shown in Table 4.7 are calculated for the raw output predicted. However, the raw output
values have some sharp variations, which are undesirable for a predictive system. Therefore, the
values were filtered and smoothed using amedian filter. Figure 4.20 shows plots of selected results,
where the signals and predictions were filtered with a rolling median filter, with a rolling window
of 48 h. Table 4.8 shows the MSE errors calculated after smoothing. As the table shows, after
smoothing, the prediction errors decrease.

Table 4.7: Average RMSE obtained for the six variables, with different activation functions, cal-
culated after the values were smoothed with a median filter.

RMSE
Function C. Intensity Hydraulic Torque Pressure Velocity Temperature

ReLU–ReLU 0.96 3.48 0.42 1.90 0.84 1.90
ReLU–Sigmoid 0.93 1.72 0.53 1.60 0.79 1.19
ReLU–Tanh 0.83 2.47 0.48 1.70 0.76 1.25

Sigmoid–Sigmoid 0.98 6.40 0.45 2.14 0.89 1.35
Sigmoid–ReLU 1.22 4.87 0.43 1.86 0.74 1.31
Sigmoid–Tanh 1.19 7.38 0.45 2.03 0.78 1.35
Tanh–Tanh 1.36 7.84 0.44 2.24 0.91 1.35
Tanh–ReLU 0.86 7.3 0.42 1.91 0.76 1.41

Table 4.8: Average RMSE obtained for the six variables after the average clean method, with
different activation functions using the GRU model.

RMSE
Function C. Intensity Hydraulic Torque Pressure Velocity Temperature

ReLU–ReLU 0.71 3.33 0.28 1.36 0.66 0.80
ReLU–Sigmoid 0.61 1.58 0.39 1.08 0.61 0.78
ReLU–Tanh 0.54 2.33 0.35 1.13 0.54 0.82

Sigmoid–Sigmoid 0.73 6.36 0.30 1.70 0.68 0.94
Sigmoid–ReLU 1.03 4.80 0.28 1.32 0.50 0.89
Sigmoid–Tanh 0.98 7.35 0.29 1.53 0.54 0.94
Tanh–Tanh 1.18 7.81 0.29 1.80 0.70 0.96

Figure 4.20 shows examples of plots of different prediction lines in part of the test set. As the
results show, in some cases the ReLU–tanh combination is the best, while in other cases, the ReLU–
sigmoid offers better performance. The ReLU–tanh combination is better, in general, but in the
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case of temperature, the sigmoid output shows the best performance.

4.4 Improving data pre-processing for GRU model

For model validation the data were divided into two subsets. The training subset uses the first 80%
of the total data and the test subset contains the remainder 20% of the data samples.

The purpose of the experiments is to find the best data preprocessing methods, neural model ar-
chitectures and hyperparameters that produce the best results predicting future behaviour of the
paper pulp presses. The tests were performed using a GRU neural network with data encoder and
decoder architecture, which was the architecture that showed best results in previous work [212].

The experiments aim at testing different pre-processing methods. Elimination of discrepant values
is Method 1. Data smoothing using the LOWESS filter is Method 2. The combination of both,
first the elimination of discrepant data, then smoothing, is called Method (1, 2). The architecture
of the neural network was the same for all the experiments, and it is the same that showed best
results in previous work. Nonetheless, experiments were still performed with a smaller and faster
GRU, with just 50 units, and a larger and slower network, with 500 units.

For press number 2, LOWESS method presented better results using a window of 5 days. The
window size was halved because the number of data samples available from press 2 was too small
for using larger windows. The dataset for press 4 contains 34800 hours of data, while the dataset
for press 2 contains just 24096 hours of data.

Figure 4.21 shows the RMSE values of predictions for press 2, with the smaller and the larger
GRU neural networks, with and without LOWESS filtering. As the figure shows, the prediction
errors are much smaller when data are filtered. The difference is even more notorious in the larger
network. For the same press and the same architecture, increasing the GRU units of the neural
network to 500, it is verified that the combination of the methods leads to the same result, but with
much smaller errors. The hydraulic variable in particular shows a larger error for both network
structures.

For data originary from press number 4, the LOWESS filter presented better results using a window
of 36 days. From the RMSE diagram in Figure 4.22, it can be seen that the results for press 4 also
show much lower errors when the LOWESS filter is applied. The smaller model, with 50 GRU
neural units, shows errors slightly larger than the larger model. For the same press using 500
GRU neural units, the RMSE errors are smaller, as demonstrated by the smaller area of the chart
polygons.

Applying the two methods to press 2 data, it can be seen that while the errors in Table 4.9 are small,
the important information are omitted from the graph in Figure 4.23, which is not good for possible
press failure analysis.

Figure 4.24 shows the result of predicting the model with the better method of data processing for
the press 4, which in this case falls on the intersection of the two methods. From the Table 4.10 it
can be seen that the error is smaller.
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Table 4.9: Prediction error results for 30 days advance forecast, using the two data preprocessing
methods, removal of discrepant data and smoothing, for the 500 unit GRU and LOWESS with 5
days window, for press 2.

Prediction errors for press 2
C. Intensity Hydraulic Torque VAT Velocity Temperature

MAPE 0.62 1.85 2.24 3.91 10.27 0.96
MAE 0.2 1.39 0.35 0.82 0.57 0.38
RMSE 0.23 1.55 0.37 0.95 0.6 0.5

Table 4.10: Prediction error results for 30 days advance forecast, using the two data preprocessing
methods, removal of discrepant data and smoothing, for the 500 unit GRU and LOWESS with 36
days window, for press 4.

Prediction errors for press 4
C. Intensity Hydraulic Torque VAT Velocity Temperature

MAPE 1.2 1.12 2.32 1.6 2.77 1.36
MAE 0.27 0.8 0.18 0.51 0.26 0.5
RMSE 0.30 1.00 0.20 0.61 0.30 0.69

4.5 Conclusion

In this chapter, the prediction results using classical models and recurrent neural networks of vari-
ables were presented. Although the predictions of the classical models are good, they do not allow
long-term prediction or prediction by multivariate data.

Recurrent neural networks showed a good ability to forecast 30 days ahead and demonstrated the
ability to forecast with multivariate data.

The chapter also showed the importance of preprocessing the data at the input of the recurrent
neural network and reinforced the conclusion of the importance of adjusting the hyperparameters
to realise a prediction with good accuracy.

The scientific results of this chapter led to four articles published in journals indexed in Scopus,
where they already have a number of relevant citations, as this is one of the first studies to use this
type of recurrent neural network architecture to predict pulp press failure (Appendix B, C, D and
E).
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Figure 4.20: Plot of the predictions with different combinations of activation functions.

67



0

1

2

3

4
C. intensity

Hydraulic unit level

Torque

VAT pressure

Velocity

Temperature at U.H.

Press number 2 with 50 units

RMSE_Method(1) RMSE_Method(2) RMSE_Method(1,2)

0

1

2

3

4
C. intensity

Hydraulic unit level

Torque

VAT pressure

Velocity

Temperature at U.H.

Press number 2 with 500 units

RMSE_Method(1) RMSE_Method(2) RMSE_Method(1,2)

Figure 4.21: RMSE of the best models for press 2, using the two different methods for pre-
processing data, for the smaller and larger GRU networks. Method 1 only removes discrepant
data. Method 2 smoothes the data using a LOWESS filter. Method (1,2) is the application of both.
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Figure 4.22: RMSE for predictions of press 4 using the different data pre-processing methods.
LOWESS filtering and 500 GRU units result in smaller RMSE errors.
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Figure 4.23: Signals and forecast results for press 2, with 30 day advance, using the two data
processing methods, both removal of discrepant data and data smoothing using LOWESS filtering
with 5 days window. The blue lines represent the actual value. The orange and green lines are
predictions, respectively, in the train and test subsets.
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Figure 4.24: Signals and forecast results for press 4, with 30 day advance, using the two data
processing methods, both removal of discrepant data and data smoothing using LOWESS filtering
with 36 days window. The blue lines represent the actual value. The orange and green lines are
predictions, respectively, in the train and test subsets.
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Chapter 5

Tests and Results for Algorithm in Production

5.1 Prediction indexed to future’s stock market

5.1.1 Use the Dataset for Steel Production

For the study of the forecast of the steel production variable we considered the variables of the
future stock market and population growth. Figure 5.1 presents the description of the variables in
which we can verify that they present a temporal behavior since the sampling rate is in a period of
one year.

Figure 5.1: Annual crude steel production in the world, in millions of metric ton.

In Figure 5.1 it is possible to verify how the behavior of the variables has an upward tangential
growth and it is also verified that when the price index per commodity lowers had an increase in
the production of steel, but some points come to land the same behavior, already for the variable
of population growth it is possible to verify that there is a constant growth.

Figure 5.2: Correlation among variables.

Performing the correlation study between the variables it is possible to verify that there is a cor-
relation of great relevance among the three variables and these correlations reach a value of 0.9
being 1 the highest value as shown in Figure 5.2.
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It was also made an autocorrelation study starting from the steel production variable whose cor-
relation falls when it reaches a lag of 10, in the same way this behavior is verified for other 2 as
shown in Figure 5.3.

Figure 5.3: Autocorrection of variables.

Having characterised the variables with the same forecasting model, an early prediction of 1 year
was performed as the sampling rate for both variables is 1 year. The first test consists of adding the
model input one variable at a time until the last one, having the steel production variable fixed and
the model output with the feathered one variable forecast result for steel production. In Table 5.1,
and Table 5.2 is present the errors of the total steel production forecast. Figure 5.4 and the Figure
5.5 shows the result of the best model against the input.
For test 1, when a variable is incremented to the input we notice that the error increases with the
exception of the Steel Prodution and World Population variable that decreases.

Figure 5.4: Best prediction of Test 1 result for the steel production variable with two neural net
inputs.

As can be seen from Figure 5.6, the variables have a good correlation. In this case of the deriva-
tives the correlations are weak, the derivative that has a reasonable correlation in relation to steel
production is the world population.
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Table 5.1: Test 1 error of the forecast Steel Production with Sampling rate per Year.
RMSE MAPE MAE R2

Steel Production 0.07 8.13 0.061 0.87
Producer Price Index 0.03 3.76 0.03 0.97
World Population 0.16 19.98 0.15 0.23
Steel Production Der 0.13 14.38 0.11 0.56
Producer Price Index Der 0.13 16.32 0.12 0.52
World Population Der 0.17 18.56 0.14 0.32

Figure 5.5: Best prediction of Test 2 result for the steel production variable with two neural net
inputs.

Table 5.2: Test 2 error of the forecast Steel Production with Sampling rate per Year.
RMSE MAPE MAE R2

Steel Production 0.07 8.83 0.07 0.60
Producer Price Index 0.12 14.48 0.12 -0.10
World Population 0.08 9.89 0.08 0.50
Steel Production Der 0.02 2.27 0.02 0.97
Producer Price Index Der 0.08 9.32 0.08 0.55
World Population Der 0.06 7.86 0.06 0.69
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Figure 5.6: Correlation between variables and derivatives.

Using the same forecasting model and methodology with the same defined parameters, the forecast
was carried out again, but with the particularity of having as input the derivatives of other variables
for the steel production forecast.

5.1.2 Market Futures

Market Futures are used to trade an underlying asset at a future date at a set price, protecting buyers
from changes in Asset prices.
The Commodities are the raw inputs used in the production of goods and of Market Futures, that
can be bought and sold on specialized exchanges as Financial Assets - these Financial Assets are
produced by Physical Assets. The Commodities are highly speculative and are especially sensitive
to economic changes.
Like all kinds of Assets, the Commodity prices are determined by Supply and Demand: Supply and
Demand can be impacted in many ways, such as economic shocks, natural disasters, and investor
enthusiasm. The Commodities can be: Hard – which are usually classified as those that are mined
or extracted from the earth (for example: metals, gold and petroleum); Soft - such as agricultural
products (for example: wheat, cotton, coffee, sugar and soybeans).
The importance of Market Futures, having into account the preceding, relates directly to the pro-
duction to be predicted by the plants managers in the future, year after year.
When the plants managers know what to produce in the future, they know the Availability of the
Physical Assets they need to fulfil those objectives. If the plants managers Know the Physical
Asset’s Availability, they can plan the best Maintenance Policy to reach the Key Performance
Indicators (KPI) most adequate to perform the production objectives aiming to reach the Market
Futures forecast.
The preceding is one of the biggest value added of this research, which permits to relate the Future
Market with the shop floor planning, correlating Production and Maintenance Policy planning.
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5.1.3 Production Forecast Indexed To Futures Market Values

After the test with the steel production data similar tests were carried out with the pulp production
data. Since the external variables (PSIALL, Wood Pulp, ALTRI SGPS, Consumer_Prices) have
different sampling rates, it was decided to standardize the sampling rates by month, once some
samples were in that sampling rate. With the monthly sampling rate, the data were normalised,
because they had different magnitudes, having the results shown in Figures 5.7.

Figure 5.7: Total Paper Pulp Production with Sampling Range per Month.

In Figure 5.8 we can see the respective histogram that show the frequencies in the data, where it is
possible to verify that there are some discrepancies between some data, namely the total production
data and the company data.

Figure 5.8: Hestogram and boxplot of futures market variables.

Table 5.3 shows the data description, averages of the standard deviation variable, the minimum,
maximum, first, second and third quantiles. Being the variables normalized we will have its mini-
mum as zero and its maximum at one.
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Table 5.3: Statistical parameters of the variables for the stock Exchange.
Count Mean std min Q1—25% Q2—50% Q3—75% max
count mean std min 0.25 0.50 0.75 max

Total Production 46 0.71 0.28 0.00 0.59 0.81 0.91 1.00
PSIALL 46 0.56 0.30 0.00 0.42 0.55 0.87 1.00
Wood Pulp 46 0.50 0.39 0.00 0.07 0.61 0.87 1.00
ALTRI SGPS 46 0.63 0.27 0.00 0.62 0.66 0.83 1.00
Consumer_Prices 46 0.46 0.29 0.00 0.25 0.51 0.65 1.00
Pulp_Paper 46 0.58 0.30 0.00 0.42 0.54 0.91 1.00

Table 5.4: Test 1 error of the forecast Total Paper Pulp Production with Sampling Range perMonth.
RMSE MAPE MAE R2

Total Production 0.18 28.38 0.16 0.33
ALTRI SGPS( volume ) 0.21 30.86 0.19 0.16
ALTRI SGPS 0.17 26.13 0.15 0.4
PSI ALL-SHARE 0.24 34.35 0.22 -0.11
Consumer 0.21 31.68 0.17 0.1
PCU32213221 0.18 27.21 0.13 0.33
Total Production Der 0.23 34.83 0.2 -0.09
ALTRI SGPS( volume ) Der 0.24 35.22 0.18 -0.11
ALTRI SGPS Der 0.24 35.89 0.22 -0.17
PSI ALL-SHARE Der 0.23 33.78 0.18 -0.07
Consumer Dear 0.28 40.43 0.21 -0.55

It was verified that, there is a correlation between the variable the paper pulp production with
the variables of the futures market as shown in Figure 5.9. The production of pulp paper have a
correlation with the 3 variables Company, Consumer Prices and Pulp Paper.
With the same architecture used in the previous studies texts were carried out with a main objective
to add information in the prediction model by increasing the input variables of the neural network
in order to improve the prediction of the total paper pulp production from 30 days forward.
The first test, which consists of adding a variable in each training and testing process, was per-
formed using the same architecture. It was found that the results improved when applied to an
encoder and decoder architecture with 100 Gru units with a training process of 200 epochs, with
the combination of activation functions in the first ’tangent’ layer and in the second ’relu’ layer.
Table 5.4 shows the results of the prediction of the variable combinations, in Figure 5.10 show the
best prediction the paper pulp total production.
Using the same architecture, we moved on to the second test, which has net input a pair of variables
that corresponds a total pulp production as a fixed variable. Table 5.5 shows the prediction errors,
which do not prove that the prediction has good accuracy. Figure 5.11 shows the pair of variables
that gave the best results.
Figure 5.12 shows the result of the technique of increasing the sample size from one sample size
per month to one sample size per day.
In Figure 5.13 it can be seen that the correlation between the variables and derivatives remains low
in relation to the total paper production variable.
The first test added a variable in each training and testing process to predict the value of all pulp
production using the same architecture. The results were better with the encoder and decoder
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Figure 5.9: Correlation between stock market variables and total production.

Table 5.5: Test 2 error of the forecast Total Paper Pulp Production with Sampling rate per Month.
RMSE MAPE MAE R2

Total Production 0.17 26.55 0.15 0.42
ALTRI SGPS( volume ) 0.20 30.28 0.18 0.19
ALTRI SGPS 0.22 32.05 0.15 0.03
PSI ALL-SHARE 0.27 39.14 0.26 -0.50
Consumer 0.24 36.25 0.17 -0.13
PCU32213221 0.21 30.67 0.19 0.15
Total Production Der 0.23 35.92 0.19 -0.06
ALTRI SGPS( volume ) Der 0.18 27.50 0.16 0.38
ALTRI SGPS Der 0.20 30.74 0.18 0.18
PSI ALL-SHARE Der 0.20 30.34 0.18 0.21
Consumer Dear 0.17 26.46 0.15 0.40
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Figure 5.10: Best Model of Test 1 in Forecasting Total Pulp Production with Sampling Range per
Month.
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Figure 5.11: Best Model of Test 1 in Forecasting Total Pulp Production with Sampling Rate per
Day.

Figure 5.12: Total Paper Pulp Production with Sampling Range per Day.

architecture with 100 units of GRU, with the combination of the activation function in the first
layer TanH (Hyperbolic Tangent) and in the second layer ReLU (Rectified Linear Unit).

Using the same architecture, the second test was conducted, which consisted of the net input being
two variables and the output is the prediction of the total pulp production variable. Table 5.6, and
Table 5.7 shows the prediction errors as a function of the variables entered into the network. Figure
5.14 shows the best prediction result of test 2.

Using the same architecture, we moved to the second test, which has net input a pair of variables
that have the total pulp production as a fixed variable. Figure 5.15 shows the pair of variables that
gave the best results.
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Figure 5.13: Correlation of all variables with the Sampling rate per Day.

Table 5.6: Test 1 error of the forecast Total Paper Pulp Production with Sampling rate per Day.
RMSE MAPE MAE R2

Total Production 0.06 6.84 0.05 0.75
ALTRI SGPS (volume) 0.05 6.16 0.04 0.79
ALTRI SGPS 0.06 6.76 0.05 0.75
PSI ALL-SHARE 0.06 7.09 0.05 0.73
Consumer 0.13 14.91 0.11 -0.12
PCU32213221 0.09 9.99 0.07 0.41
Total Production Der 0.12 13.94 0.10 -0.04
ALTRI SGPS (volume) Der 0.12 12.58 0.09 0.05
ALTRI SGPS Der 0.12 13.07 0.10 0.03
PSI ALL-SHARE Der 0.16 18.02 0.14 -0.75
Consumer Dear 0.10 10.84 0.08 0.34

5.2 Conclusion

Forecasting represents a major importance in adjusting production management, as informed de-
cisions can be made to minimise risks based on the correlation of variables.

This chapter shown the importance of the stock exchanges in adjusting the forecasting model; for
the steel production data, it was found that the forecast was adjusted with the increase of the stock
exchange variables; this importance is confirmed in the correlation curve between the variables.

For paper pulp production, although some variables show significant correlation, there is another
factor that did not allow the expected results, namely the low sampling rate per day of paper pulp
production.

82



Figure 5.14: Best Model of Test 1 in Forecasting Total Pulp Production with Sampling Rate per
Day.

Table 5.7: Test 2 error of the forecast Total Paper Pulp Production with Sampling rate per Day.
RMSE MAPE MAE R2

Total Production 0.05 5.71 0.04 0.82
ALTRI SGPS( volume ) 0.05 5.91 0.04 0.80
ALTRI SGPS 0.06 6.16 0.05 0.79
PSI ALL-SHARE 0.06 6.20 0.05 0.80
Consumer 0.12 13.52 0.10 0.08
PCU32213221 0.06 7.01 0.05 0.72
Total Production Der 0.05 5.08 0.04 0.86
ALTRI SGPS( volume ) Der 0.05 5.55 0.04 0.82
ALTRI SGPS Der 0.06 6.55 0.05 0.77
PSI ALL-SHARE Der 0.05 5.43 0.04 0.83
Consumer Dear 0.05 5.23 0.04 0.84

This chapter led to the participation in the National Congress of Asset Management in Coimbra
(Congrega 2022), publication in a Scopus indexed journal andwinning third place in the Innovation
Prize for Young Engineers - PIJE 2021 (Appendix F).
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Figure 5.15: Best Model of Test 2 in Forecasting Total Pulp Production with Sampling Rate per
Day.
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Chapter 6

Discussion

6.1 Summary of main results

Predicting the future behavior of industrial assets is a long-awaited goal, as it enables predictive
maintenance to take the right action at the right time. Therefore, the application of time series and
other AI models to predict device health is a new and growing field.

This thesis compiles a set of results concerning the state of the art and the results of the proposed
predictive models.

The model comparison becomes important since to select the best model that fits the data it is
necessary to test them, and if they are well parameterized this effort can present advantages in the
optimization of computational resources.

Among all the models proposed in this work, the GRU recurrent neural network presented the best
result compared to the others. The study shows that with more information in the GRU neural
network, it is possible to obtain good prediction results. The sampling rate plays an important role
in reaching a good prediction result.

6.2 Comparison of these results with the state of the art

For short-term forecasting, themodels are satisfactory, emphasizing the need to clean the discrepant
data. According to new studies in this area, they show superiority in the growth of the use of Neural
Networks for those objectives, namely Recurrent Neural Networks that have greater long-term and
short-term forecasting efficiency due to their Long-Short Term Memory capacity [213, 214, 215].

Based on the research proposed in the prior art, the usefulness of deep networks for time series
variable forecasting can be verified. The field of prediction using deep neural networks has grown
rapidly due to the development of new models and the development of computing power.

The stochastic models AR, ARMA and SARIMA showed good results although for either high
sampling rate or low sampling rate in a 30-day forecast, the forecast became stable which is not
intended.

Using these three models (AR, ARMA and SARIMA), it can be verified using evaluation data that
both provide acceptable prediction errors. The ARIMA model outperformed the AR model, and
SARIMA model.

There are no hyperparameters to optimize for regression model performance. However, in order
to find the best model, it is necessary to evaluate multiple models and use the AIC information
criterion to choose the parameters that best fit the data. Based on data showing moderate variation,
it can be concluded that these models have good predictive.
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The results show that it is possible to optimize neural models LSTM to forecast future values 30
days in advance. The model with LSTM unit experimented uses as input a vector consisting of
concatenation of a number of samples of all variables. The output is a vector with the predictions
of all samples too. The performance of the models is generally better for some variables and worse
for others.

In the literature review, no other studies were found to deal with forecast for industrial paper pulp
presses using encoder-decoder architectures and recurrent neural units.

LSTM and GRUmodels are two of the best forecast models. They have gained popularity recently,
even though most of the state-of-the-art models are more traditional architectures. The GRU net-
work is simpler than the LSTM, supports higher resampling rates, and it can work on smaller and
larger datasets.

The experiments performed showed that the best results are based on the GRU neural network: it is
easier and faster to train and achieve good results. A GRU network, with encoding and decoding
layers, is able to forecast future behavior of an industrial paper press, 30 days in advance, with
MAPE in general less than 10%.

An optimized GRU model offers better results with a 12-day sampling sliding window, with a
sampling period of 1 h, and 50 units in the hidden layer.

The best activation functions depend on the model. However, the ReLU–tanh is perhaps one of
the best models, on average. The results also demonstrate that training the models using just one
output variable, thus optimizing a model for each variable separately, is not advantageous when
compared to training one model to predict all six variables at the same time.

Data processing removing discrepant data simplifies the learning process of the RNN model and
also leads to an improvement in the prediction results. The results obtained showed an improve-
ment with data from both presses when discrepant data samples were replaced by the average.
An analysis of autocorrelations shows that the use of data processing methods results in higher
correlations for larger periods of time, when compared to untreated data.

Using data smoothed with the LOWESS filter, the learning process is highly facilitated. The pre-
diction errors obtained in a 30 days advance forecast are smaller, with MAPE in general less than
10 %.

Compared to first results the LSTM predict model, the MAPE for the Current Intensity for press
2 decreased from 2.30% to 0.62%. For the Hydraulic oil level the MAPE decreased from 2.8%
to 1.85%. For the Torque, the MAPE decreased from 2.85% to 2.24%. For the VAT pressure, the
MAPE comes from 9.87% to 3.91%. For the Velocity, MAPE decreased from 11.8% to 10.27%.
Finally, for the Temperature MAPE decreased from 2.66% to 0.96%.

The quality of the results is confirmed visually which are in general easy to read and show the main
trends of the variables.
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6.3 Advantages and limitations of proposals

Resorting to the futures market database, we extracted the most relevant data to our study. Having
as objective to add information to the model for the prediction of the paper pulp production in
the future in the period of 30 days ahead, with the same model it was not possible to perform
the prediction since the stock exchange data are in a sample per day making it difficult since it is
necessary to reduce the sampling rate of the base and production data of the paper pulp having as
result very low sampling rates and in what concerns few samples for the model.

Using other data the same test previously intended was performed and it was found that there is
an improvement when information is added to the model input, in this case the derivatives of the
respective variables.
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Chapter 7

Conclusions and Future Work

7.1 Problem summary

Predicting the future behavior of industrial machinery is key to the success of predictive main-
tenance. This study aims to find predictive models suitable for accurately predicting the future
behavior of industrial plants.

In the industrial world, minimizing downtime is very important. Equipment downtime due to
malfunction or curative maintenance means lost production time. To solve this problem, predictive
maintenance is the best solution today. Artificial intelligence models have been deployed with the
aim of predicting the future behavior of machines and thus avoiding potential failures.

For a prediction to be satisfactory, several factors must be considered, including sensor readings,
database records, model processing and tuning. The processing showed a great support to the
quality of the results. When processing the data, some variables also showed instability in the
learning process and its respective prediction.

In modern industries, prediction algorithms can anticipate future trends and contribute for better
management decisions, namely in predictive maintenance.

The predictive model used was based on LSTM networks, with encoding and decoding layers as
the input and output, respectively. In this study, different data pre-processing techniques, network
architectures, and hyperparameters were tested, in order to determine the best models.

The predictive model used was based on LSTM network, with encoding and decoding layers as
the input and output, respectively.

The results show that the model proposed is able to learn and forecast the behavior of the six
variables studied: torque, pressure, current intensity, velocity, oil level and temperature. The best
results were obtained using a window of samples of the last 10 days at two samples per day. The
MAPE errors varied in the range of 2 to 17% for one of the best models for different variables.

7.2 Research Limitations

The research seeks to explore recurrent neural networks, which have shown good efficiency in
forecasting time series, and the data acquired present a characteristic that can be called time series.
During the research, it was difficult to overcome the following limitations:

• Models developed fail in data that do not have high sampling rates;

• Computational capacity is limited for certain data size;
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• Although the models are for prediction for diagnostics, they are only performed to a certain
extent period;

• The study is focused on predicting failures without considering the damage to other compo-
nents of the paper press.The approach is not completely holistic.

7.3 Ideas for future work

The training process of a recurrent neural network becomes time consuming when it comes to high
sampling rate. In future work it is intended to make a prediction in real time so that employees
can have information of the market behaviour with a head start of 30 days ahead. This will be
possible with the increase in computational power and with the methodologies that are emerging,
thus making the training process a faster process.
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Abstract: ­Nowadays, companies want to give a quick answer in order to face their market competitors. These
quick responses must be reflected in the quality of the products; to this be possible, it is necessary to manage a
number of factors that will bring benefits in its market positioning. As technology grows, there is the possibility, at
a computational level, to create a combination of mathematical and technological tools that were not implemented
in the past due to the lack of resources, since they have high robustness about their analytical resolution.
This paper presents mathematical and computer tools that have potential great benefits when applied to industrial
problems solving, such as operation management.
Along the paper it is made a temporal location of all tools with their main objectives about optimizing indus­
trial processes, focusing on maintenance costs, contributing directly to the rationalization of global costs of the
processes.
Analytical and technological methods that have had great success regarding to the reduction costs of production
in industries are presented. The approaches of this paper bring a literary review of process optimization, namely
about Neural Networks and multivariate analysis for prediction.

Key­Words: Optimization; Production; Forecast; Neural Networks; Multivariate Analysis; Industrial
Maintenance

1 Introduction
The research on maintenance optimization has been
a priority [1], also having been a big trend in the
area of optimization based on maintenance simula­
tion [2], [3]. The research in this context has as its
main objective to find the best maintenance plans that
minimize the general maintenance cost or maximize
a system performance measure bringing cost reduc­
tions [4]. Maintenance plays an important role in the
industry, being responsible for improving the avail­
ability of assets, thus reducing the downtime in in­
dustrial plants. The cost of maintenance can vary be­
tween the values of 15% and 70% of the production
costs [5]. With the technological evolution of indus­
trial processes, maintenance has increased its com­
plexity [5], [6]. This is mostly due to modern manu­
facturing systems that involve numerous interactions
and dependencies among components [7]. Corrective
and preventive maintenance aim to take the systems
”as good as new”. Regarding the predictive substitu­
tion model policy, under some assumptions, the one
that fits most practical situations, has proved to have
a limit control policy [8].
J. Khalil [9] Predicting the failure rate of each ma­
chine part is possible. Because of this, the following
actions must be executable, spending the minimum
effort:

• get a clear view of the industrial domain (usu­
ally vast, confusing and complicated) in an indus­

try, in terms of its most basic units (the machine
parts);

• obtain an economical and scientifically calcu­
lated service life for each machine part in the in­
dustrial domain;

• to adapt preventive actions as opportunities;

• to be able to refine restricted production, subject
to the relationship between recent and historical
trends in machine part failures; and

• to obtain a mathematical formulation of the costs
and the probabilities of survival of each part of
the machine throughout its useful life, in order to
be able to change the availability of that part with
full knowledge of the financial consequences.

The structure of maintenance cycles in the preventive
strategy makes the objective function of the decision­
making problem discontinuous. Therefore, it is sug­
gested to solve the problem with the use of dynamic
programming methods.
In the development of a dedicated computer program,
it was possible to highlight possible resolutions for
decision­making problems in relation to: manner,
scope and schedules of replacements, repairs and reg­
ular maintenance of elements of technical objects,
mode and schedules of diagnosis and preventive re­
placement of elements and problems of supplying
spare parts to the maintenance subsystem [10].

Appendix A
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Based on the inspiration of [11], three slightly differ­
ent decision dimensions are proposed: ”product di­
mension”; ”risk dimension”; and ”resource dimen­
sion”. This research concludes that these decision di­
mensions must be considered simultaneously, at the
same time, in which they optimize maintenance in an
integrated way. The structure of this paper is the fol­
lowing:

• The first section presents the introduction of the
theme;

• The second section presents the state of the art,
namely a global approach about optimization;

• The third section presents proposals for possible
resolution of the problems in this area;

• The fourth section presents a discussion based on
the results of the research;

• Finally, they are presented the conclusions.

The degree of adaptation of a competitive organiza­
tion imply priorities in its primary decisions related
to structural and infrastructural investments, provid­
ing the key to the progress of the full potential of their
operations as a competitive weapon. Figure 1 illus­
trates a graphic model about the operations strategy
generally accepted [12].

Figure 1: Operations strategy model [12]

The paper is focused on the aggregation of knowledge
for future implementations of the tools covered in the
scope of operations management; in the second sec­
tion it is made a retrospective of the premises of the
maintenance policies focused on production costs that
supports the paper case studies. In this same section,
the forecasting tools, based on multivariate analysis
and neural networks are addressed. In section three
the proposal for the next phase of the study is pre­
sented and, in third section, the state of the art of these
tools is presented; in section five a conclusion of the
study is made.

2 State of the Art
2.1 Global approach
The poor maintenance of our car can lead its poor per­
formance, causing malfunction at an inopportune mo­
ment, even causing a bad flow on the road. An opera­
tion’s manager does not want this happen on his man­
ufacturing line. Therefore, it can be said that main­
tenance is a fundamental pillar for the fluidity of the
production plant. This paper focuses on maintenance
management and in what it can prevent failure and in­
crease equipment availability. Compared to the costs
associated with maintenance, the production system,
according to Dhillon [13] becomes increasingly im­
portant, because, in many industrial plants, the main­
tenance costs can exceed 30% of the operational costs
and, in the context of the service life cycle, mainte­
nance and support of manufacturing systems, repre­
sent 60 to 75% of the total cost of the life cycle. Ac­
cording to Mobley [14], the production capacity of a
plant is partly demarcated by the availability of pro­
duction systems and their auxiliary equipment, being
the main function of the maintenance organization to
ensure that all equipment and systems in the plant are
up to date, always “online” and in good operating con­
ditions, without jeopardizing profitability and, always
possible using other tools such as optimization. Al­
though it seems that optimization is an activity present
in people’s daily lives, according to Cua, McKone &
Schroeder [15], this is the best option to carry out a
task without compromising restrictions: a fast and ef­
ficient task that companies use to improve and make
more profitable processes. The same authors say that,
the optimization techniques seek the best solution for
each problem (maximum or minimum of measurable
quantities in their domains of definition); they are
necessary tools in many areas of engineering, such as:

• Operational research ­ optimization of technical
and economic systems, stock control, production
planning, etc.;

• Process engineering ­ process sizing and opti­
mization, parameter estimation, data grouping,
flexibility analysis, etc.;

• Process control ­ system identification, optimal
control, adaptive control, predictive control, state
estimators, etc.;

• Numerical analysis ­ approximations, regression,
solution of linear and non­linear systems, etc.

Wang et al. [16] say that an optimization process is
needed to determine the optimal capabilities and op­
erational strategy. There has been a great contribution
in making optimization in a dynamic way by combin­
ing process simulators with metaheuristic techniques
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for simultaneous optimization of process flowcharts
with the corresponding operating conditions [17].
The Operations Management have applications into
strategic and tactically oriented applications, namely
in next areas: aggregate planning; forecasting; lo­
cation decisions; scheduling; capacity planning; lay­
out; process and product design; quality control; task
design; control inventory; maintenance and reliabil­
ity [18].
In the industrial area, it is also possible to carry out
an adaptation of the optimization model, demonstrat­
ing their efficiency for the solution of complex prob­
lems; it can start with simpler problems, observing
what already exists in nature, for example, [19] re­
transmitting a study that presents an overview of re­
cent work on ant algorithms, i.e., algorithms for dis­
crete optimization that were inspired by the observa­
tion of ant colony forage behaviour and presenting the
ant colony optimization metaheuristic.
The field of metaheuristics for applying combinato­
rial optimization problems is a rapidly growing field
of research. This is due to the importance of combi­
natorial optimization problems for the scientific and
industrial world [20]. Alaswad & Xiang [21] present
a review of the Condition Based Maintenance (CBM)
literature with emphasis on mathematical modelling
and optimization approaches. They focused the re­
view on important aspects of the CBM, such as opti­
mization criteria, frequency of inspection, degree of
maintenance, solution methodology, etc.
Nocedal &Wright [22] refer that knowledge of the ca­
pabilities and limitations of optimization algorithms
leads to a better understanding of their impact in var­
ious applications and points the way for future re­
search on algorithms and software for improvement
and extension. To encompass the optimization of a
digital industry, it is necessary to fulfil some require­
ments such as the robustness of the database and the
reliability of the data/samples. According to Dekker
[1], there are several applications of maintenance op­
timization models that generally cover four aspects:

1. A description of a technical system (its function
and importance);

2. A model for the deterioration of the system over
time and possible consequences for the system;

3. A description of the information available on the
system and the actions available to management;

4. An objective function and an optimization tech­
nique that helps to find the best balance.

These maintenance optimization models produce dif­
ferent results. First, policies can be evaluated and
compared to the characteristics of cost­effectiveness
and reliability.

Wang [23] presents an extensive review of mainte­
nance optimization policies. Maintenance optimiza­
tion studies prior to 2002 mainly considered time­
based maintenance configurations. Syan & Ram­
soobag [24] state that modern maintenance optimiza­
tion decisions are complex problems that need to sat­
isfy multiple and conflicting criteria. With the in­
crease in applications and recent advances in Multi­
Criteria Optimization (MCO) approaches, a review
is needed to group and categorize these advances in
the field of maintenance. Jonge & Scarf [25] says
that optimization applied to maintenance comprises
the development and analysis of mathematical models
that aim to improve or optimize maintenance policies.
A study on the substantial developments in the field
of maintenance optimization is fully demonstrated in
[23].
In order to validate the effectiveness of decision mod­
els, Bousdekis et al. [26] prove that an event­driven
proactive decision model is possible for joint predic­
tive maintenance and optimization of the spare parts
inventory, which addresses the ”Detect” ”prevent­
decide­act” model phase that can be incorporated
into an EDA (Event Oriented Architecture) for pro­
cessing time within the framework of the concept of
electronic maintenance. Zhou, Qi & Liu [27] show
some drawbacks that the ideal maintenance policy is,
in fact, a monotony of control limits, in which the
control limits decrease monotonously with the age
of the system; but, other studies expose some solu­
tions like Zhao et al. [28], that propose a predictive
maintenance policy based on process data, demon­
strating that, when compared to traditional preventive
maintenance strategies, their strategy have adaptabil­
ity and effectiveness to the deterioration of the sys­
tem. Among the techniques presented in [14], there
are five non­invasive techniques used for the man­
agement of predictive maintenance such as monitor­
ing vibrations, monitoring process parameters, ther­
mography, tribology and visual inspection. Predictive
techniques can vary, as mentioned in [29]: lubricant
analysis; vibration analysis; thermography; penetrat­
ing liquids; radiography; ultrasound; corrosion con­
trol; etc.
There is a current concern in making predictive diag­
nostics to avoid unwanted costs of maintenance and
production, having industries and researchers bet on
their resources to solve this dilemma. One of the main
focuses of multivariate analysis is the search for mod­
els that best apply to a forecast or even explain the be­
haviour of the variables studied. In this section, ap­
plications of multivariate models are presented in the
scope of engineering, with a focus on asset manage­
ment during the life cycle monitoring production and
maintenance management to reduce unwanted costs.
The reduction of expenses in the industrial sphere is
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a great challenge in which it involves a chain of re­
sponsibility from the worker who is fully with the ma­
chine passing through the managers and reaching the
researchers, who have as challenge theway to respond
effectively to these events unwanted. Vatn, Hokstad
& Bodsberg [30] present a global approach to main­
tenance optimization that requires knowledge in sev­
eral fields; for example, decision theory, risk analy­
sis, reliability and maintenance modelling. The au­
thors also refer that, in order to perform maintenance
optimization, it is generally not feasible to carry out
a complete risk analysis, and the effect of the cho­
sen maintenance program on safety, that can be as­
sessed by a somewhat simplified approach, consid­
ering only a very limited number of scenario repre­
sentatives. Besnard et al. [31] present an opportunis­
tic maintenance optimization model for offshore wind
energy systems. The model takes advantage of wind
forecasts and corrective maintenance activities to per­
form preventive low cost maintenance tasks. Pinto &
Nascif [32] refer that, sometimes, the increase in re­
liability is done through the expense of availability.
This suggests a threefold restriction between quality,
availability, and reliability of maintenance, directly
influencing costs (Figure 2).

Figure 2: Triple maintenance constraint [32]

Maintenance plays a key role in reliability, availabil­
ity, product quality, risk reduction, greater equipment
efficiency and safety [33]. According to Kershaw &
Robertson [34], predictive maintenance works with
periodic monitoring of component conditions, instead
of replacing them, which means better data, increas­
ing plant productivity and preventing disastrous fail­
ures. For example, Chang et al. [35] explore the opti­
mization of maintenance, presenting a method that in­
corporates information in real time about production
conditions and machine failure. Carnero [36] states
that Predictive Maintenance can provide an increase
in safety, quality and availability in industrial plants.
The graph shown in Figure 3 illustrates that contin­
uous investments in preventive maintenance reduce
failure costs and, as a consequence, a decrease in the

total maintenance cost, in which preventive mainte­
nance costs are added to the failure costs. However,
the graph also shows that, from the ideal point of
investment in preventive maintenance, more invest­
ments bring few benefits to reduce the cost of failures
and end up increasing the total cost, which is what the
maintenance policy takes into account.

Figure 3: Graph of cost versus maintenance level [37]

However, the creation of a Predictive Maintenance
Program is a strategic decision that, until now, lacks
an analysis of the problems related to installation,
management and control. According to Shin & Jun
[38], when it is a high­value asset, the Operation and
Maintenance (O&M) phase requires heavy charges
and more effort than in the installation (construction)
phase, as these assets have a useful life that any un­
expected event of the asset during that period causes
catastrophic damage to the industry.

3 Some specific approaches
3.1 Opportunistic Maintenance
In order to fulfill themaintenance objectives, the com­
pany needs management skills to integrate people,
policies, equipment and practices. It also needs ad­
equate engineering and technology [39]. Colledani,
Magnanini & Tolio [40] state that Opportunistic
Maintenance (OM) is an effective strategy to reduce
interference betweenmaintenance and production op­
erations in multi­stage manufacturing systems and its
application in the industry is still limited due to the
complexity of predicting its impact on system per­
formance. The maintenance of opportunities is the­
oretically adjusted automatically; if insufficient op­
portunities arise, the average delay increases and fail­
ures increase until a balance is reached, but there are
minimal conditions for a given age renewal sched­
ule and the natural balance may not be economically
ideal [41]. Takahashi [42], thorough investigation of
these opportunities and their occurrences, comes to
next questions:
• When opportunities arise, which machines allow
for other simultaneous repairs?
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• What opportunities are needed, when do they
arise, and for how long?

For Takahashi [42], Maintenance Management must
consider some points to restructure a company and
prepare it for future challenges, always with the par­
ticipation of all employees:

1. Restrict investments in unnecessary equipment;

2. Make the most of existing equipment;

3. Improve the rate of use of equipment for produc­
tion;

4. Guarantee the quality of the product, through the
use of the equipment;

5. Reduce low­cost labour, improving equipment;

6. Reduce the cost of energy and material pur­
chased, through innovations in equipment and
improvements in methods of use.

Iung, Levrat & Thomas [43] show that the numerical
results of the study presented in the paper, by prop­
erly defining the parameters of opportunistic main­
tenance actions, it is possible to obtain an effective
synchronization of preventive maintenance and pro­
duction operations, preserving the conditions of the
machine and meeting the production goals. The supe­
riority of Condition Based Maintenance remains un­
certain in multicomponent systems, in which oppor­
tunistic maintenance strategies can be applied [44].

Figure 4: production / maintenance interface [20]

Compared to the static opportunistic maintenance
strategy and the strategy without considering oppor­
tunistic maintenance, the total cost of maintenance
and inventory of the dynamic opportunistic main­
tenance strategy shows a decline of 10.927% and
18.304%, respectively [45]. Vu et al. [46] mention
that the structure of the system, the maintenance op­
portunity and its support, as well as the economic de­
pendence, are important issues that must be consid­
ered when making maintenance decisions.

In CBM, the opportunistic zone is defined as (part of)
the P­F interval (Figure 5) that is part of the degra­
dation curve. It starts at the point where a potential
failure can be detected (P) and ends at the moment
when the failure occurs (F) [47].

Figure 5: Opportunistic maintenance zone in CBM
policy [44]

In case of opportunistic maintenance, the mainte­
nance activities can begin at an arbitrary point within
the opportunistic zone (which is equal to or less than
the P­F interval). This opportunistic zone is the period
during which the degradation started, without leading
to a fatal shutdown of the component. Within the op­
portunistic zone, Planned Maintenance (PM) activi­
ties can be carried out against PM costs [44]. Rao [48]
demonstrates that policies with various opportunis­
tic maintenance ages for each increasing failure rate
component are better with respect to policies with a
single opportunistic maintenance age for each compo­
nent. Performing preventive maintenance, even when
there is no opportunity, can have a detrimental effect.
It can be said that opportunistic maintenance policies
of the type (n, ∞) are sufficient in the case of systems
with a large number of components [48]. Zhou, Xi
& Lee [49] studied a dynamic programming method
in which decisions are based on a combination of
OM cost savings and penalty costs and stated that an
ideal maintenance practice is determined bymaximiz­
ing the savings of cumulative short­term costs. Ding
& Tian [50] proposed a method for making oppor­
tunistic maintenance decisions by comparing the age
of a given component with a limit defined by some
percentage of the Mean Time To Failure (MTTF).
Dekker [1] developed a model to determine the ideal
age for opportunistic maintenance when the oppor­
tunity follows the Homogeneous Process of Poisson
(HPP) [51] with the adaptive opportunistic mainte­
nance model, based on the forecast of the conditions
of a railroad, demonstrating that the adaptive oppor­
tunistic maintenance strategy has a lower cost per
unit of time than systematic preventive maintenance.
Truong Ba et al. [52], in their results indicate that sig­
nificant savings can be achieved considering OM. In
addition, it is shown that the new consideration of par­
tial opportunities significantly increases the benefit of
OM.
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Among preventive maintenance control policies, op­
portunistic maintenance is an effective strategy for
reducing the impact of maintenance operations on
multistage manufacturing systems [43]. Under the
scope of Operations Management, one of the great
challenges is to give them as occurrences of unex­
pected failures, which is why numerous studies have
emerged with the main objective of avoiding these
unexpected events such as Multivariate Analysis and
Neural Networks, among others.

3.1.1 Multivariate Analysis
One of the main focuses of Multivariate Analysis is
the search for models that best apply to a forecast
or even explain the behaviour of the variables stud­
ied. Multivariate data consists of observations about
several different variables for various individuals or
objects. Such data immerse in all branches of sci­
ence, such as Psychology, Education, Geology, So­
cial Sciences, Engineering, Ergonomics, etc. The
multivariate method has become an increasingly im­
portant area of statistics. In fact, the vast majority of
the data is multivariate [53]. The multivariate model
also aims at data reduction or structural simplifica­
tion, classifying, and grouping, investigating the de­
pendency among variables, predicting, and formulat­
ing hypotheses [54]. Simoglou, Martin &Morris [55]
extended the existing methodologies to monitor dy­
namic processes; as it is multivariate, they considers
the effect of exogenous inputs, providing additional
monitoring methods and appropriate control limits
when the serial correlation is present in the data sys­
tem. There are several techniques for analysing mul­
tivariate data. Among them, factor analysis, multi­
ple regression and multiple correlations, multiple dis­
criminant analysis, multivariate analysis of variance
and covariance, joint analysis, canonical correlation,
cluster analysis, and scheduling. Barker & Newby
[56] presented a study focused on the problem of de­
termining the inspection and maintenance strategy of
a system whose state is described by a multivariate
stochastic process.
Chatfield & Collins [53] show that the general point
that multivariate analyses tend to be concerned with
finding relationships, not only among variables but
also among individuals. Based on this, the opportu­
nity arises to include computer technology as Internet
of Things (IoT).There is also an extremely important
tool, the multivariate control charts, which provides
powerful methods to detect out of control situations
and to diagnose causes; for example, Hotelling [57]
presents a multivariate control plot procedure that is
based on the most recent observation ­ it is insensi­
tive to small and moderate changes in the mean vec­
tor. The difficulty of interpreting an out­of­control
signal on a multivariate control chart was widely dis­

cussed by Chua and Montgomery [58], Alt [59], Do­
ganaksoy et al. [60], Lowry et al. [61] and Haq [62].
The procedures of the multivariate control chart are
often considered for use in cascade­type processes,
such as those found in the process industries [63].
Multivariate models are a family of several models
in which each one has its applicability depending on
the behaviour of the data to be analysed. Wang [64]
presents a design and an optimization of simulation­
basedmultivariate Bayesian control graph for mainte­
nance applications based on conditions. It combines
the use of the concept of delay time and Bayesian the­
ory to develop the posterior probability function of the
underlying state, given the history of observed moni­
toring information.

3.1.2 Neural Networks
Within the scope of the development of Artificial In­
telligence, there was a promising development, with
a high degree of success, with regard to the applica­
tions of neural networks in the detection of defects in
energy systems, as mentioned in [65], [66] and [67].
According to Lippmann [68], Artificial Neural Net­
works have been widely used for pattern recognition
due to their ability to generalize and respond to un­
expected patterns. The main strength of Neural Net­
works is the ability to recognize patterns in incom­
plete or ”noisy” data. Regarding the forecast, this
tool has presented satisfactory answers. Cadenas &
Rivera [69] present a study of wind speed forecast in
the region of La Venta, Oaxaca, Mexico, using var­
ious techniques of Artificial Neural Networks, with
data resources collected, making possible to verify the
importance of this tool in relation to the precision.
Jolliffe [70] mentions in his work that the most com­
mon application in Principal Component Analysis
(PCA) is to reduce, with minimal loss of information,
the dimensions of the data varieties. Generally, these
data sets constitute a large set of correlated variables
that are transformed into a new set of variables, called
Principal Components. Not everything is 100% ideal.
Crupi, Guglielmino & Milazzo [71] present one of
the disadvantages of the neural network that requires
training.
Bansal, Evans & Jones [72] exposed a predictive
maintenance system in real­time for machine systems
based on the neural network approach. The use of
simulated data, generated by an experimentally vali­
dated simulation model, proved to be effective.
In the study of hydraulic pumps presented in [73],
there was a preference by the choice of MultiLayer
Perceptron (MLP) neural networks, with greater ca­
pacity to be suitable for the classification of patterns.
The study provided by Ni & Wang [74] mentions
the effectiveness of the prediction of the Multilayer
Feed­forward Neural Networks (MFNNs); the Neu­
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ral Network models showed a high precision in their
results. Firat & Gungor [75] go in the same research
line reaching the results, indicating that the General
regression neural network can be successfully applied
to predict the depth of cleaning around the pillars of
the circular bridge.
AlGhazzawi & Lennox [76], in their study, exposed
that static PCA techniques were not suitable for the
development of a simple process monitoring system
that would allow process operators to quickly and
easily identify any sources of abnormalities in the
process. Zaranezhad, Mahabadi & Dehghani [77],
in a numerical analysis with respect to the result of
neural networks, present a comparison of the preci­
sion model demonstrating that the perceptron neural
networks had a prediction accuracy of 90.9% with
a prediction accuracy rate of 96.19%; the neural­
GA model obtained the highest forecast accuracy of
95.9% and an accuracy of 96.7%. In a forecasting
study presented in [78], it is said that its quality of
RNA prediction can be improved by expanding the
training data sets and optimizing the construction of
the network. Rao [79] also states that the results will
depend on the collection of high­quality data.
Gilabert &Arnaiz [80] present a case study based on a
Neural Network, where it is possible to find a predic­
tive maintenance solution for non­critical machines.
The results indicate the feasibility of partial solutions
in monitoring and diagnosis.
Fu et al. [81] present a form of identification and di­
agnosis based on Artificial Neural Network (ANR)
in the electro­hydraulic servomechanisms of a hydro­
electric unit. Experimental tests show that the pro­
posed strategy can guarantee optimal performance.
According to the study presented in [82], predictive
maintenance is already used or will be used by 83%
of production companies; it has been a valuable ap­
plication of the Internet of Things (IoT) mainly on the
factory floor.
According to the CXP Group report, the Digital
Industrial Revolution with Predictive Maintenance
showed that the level of use of predictivemaintenance
is being used by 91% of manufacturers [83]; it can be
verified that the reduction in the repair time of 93% of
the companies pointed to the improvement of the old
industrial infrastructure as the main objective of their
predictive maintenance initiatives.
Javadpour & Knapp [84] present an implementation
of a predictive neural network for use as an opera­
tor assistance fault diagnosis with high forecasting ac­
curacy in an automated manufacturing environment.
The network was able to correctly classify three dif­
ferent fault categories with a performance rate greater
than 99% in standards and 100% in failures. As a re­
sult of implementing adequate tools, ans according to
a PWC report [85], predictive maintenance in facto­

ries could:

• Reduce the cost by 12%;

• Improve uptime by 9%;

• Reduce safety, health, environment and quality
risks by 14%;

• Increase the useful life of an old asset by 20

4 Proposed approaches
The previous sections show that maintenance policies
play an essential role in the operations management.
One of the big challenges of Operations Management
science is to avoid several losses in the goods’ manu­
facturing process, avoiding unwanted losses; most of
these failures are classified as random but, through the
reliability function and related tools, it is possible to
exploit the maintenance capacity through its policies;
for example, the predictive maintenance policy, sup­
ported by the math tools referred in the past section,
can make predictions with results with a high degree
of rigour – but, it must be emphasized that these re­
sults depends on the quality of the data available.
With these tools, the proposal is to improve the asset
monitoring system using the portfolios provided by
the asset management system; in this perspective, it
is possible to automate the maintenance system using
the concept that emerged in 1999, and whose main
objective is to make equipment autonomous and in­
telligent enough, aiming they do not need human in­
tervention: this concept is supported by the IoT [86].
Applying IoT in the industry, it becomes possible, for
maintenance stops, to converge to an optimal reduc­
tion in intervention times and, consequently, in costs,
which implies making the process more profitable.
The purpose of future developments is to explore the
predictive maintenance policy in order to avoid bot­
tleneck phenomena, making the production process
more versatile, regarding to capacity readjustment.
Neural Networks will be used to support the classi­
fication of groups of variables in order to understand
them, and the multivariate analysis applied to fore­
cast, with the main focus on Machine Learning (ML).
Since maintenance is an important branch in the pro­
duction process, BigData analysis, Machine Learning
and the IoT, using real­time forecasting in the man­
ufacturing equipment, will make possible to predict
failures at run time, aiming to launchWorking Orders
before the fault happens [87]. For a first test, the tech­
nologies of Figure 6 will be applied.

5 Discussion
The present article brings an overview of the linked
literature Optimizing production by maximizing the
availability of assets, when it comes to optimizing
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Figure 6: Support technologies.

production it is necessary to have accessibility than
that the trailer behind, for this reason our study brings
the reader a location of concepts that directly influ­
ences the study presented on this topic.
What can be seen in many studies in this area about
a conflict between the investment limit and the return
that a prediction maintenance system can bring to an
entity? Regarding the prediction methods by multi­
variate models, there are very few, and there is a gap
regarding the automation of prediction through this
model. Regarding neural networks, there is a wide
range of studies, this does not mean that it presents a
significant advantage over multivariate analysis, each
of which has particular advantages.
When it is possible to have a timely response to make
decisions that avoid making bad decisions in any de­
partment of a company, the big challenge is to reduce
the time to act in the face of events such as failures.
Therefore, there are mathematical and computational
tools that, together, can bring a great benefit, such as
obtaining data through IoT technology and exploring
them for possible event prediction. Finally, we will
have an optimized process, as these failures can be
controlled and resolved within a restricted time win­
dow. As the failure of a machine will depend onmany
variables to be extinguished, such as vibration, tem­
perature and noise, among others; one variable may
be related to another or not, which makes multivariate
analysis an ideal tool for this study. Currently, some
“software” and their respective languages show that
many have limitations in terms of their programming.
Based on the tools presented in this paper, it is possi­
ble to avoid unwanted events; if we work with prob­
abilities, hence the great strength of the predictive
maintenance policy, that arises because it reduces the
probability of equipment failures; its domain is cov­
ering the production system and the values associated
with the production is the availability of the equip­
ment that is related with its faults. Since the total cost
is the sum of all costs related to production, this means

that the reduction in one of them reflecting the reduc­
tion of the total cost. According to Yip, Fan & Chi­
ang [88], the time series models General Regression
Neural Network (GRNN) and the Box­Jenkins, usu­
ally describe the behaviour and predict the costs asso­
ciated with maintaining different categories of equip­
ment at an acceptable level of precision. Mateus,
Margalho & Farinha [89] presented in their studies
the disadvantages that the ARMA time series model
presents in relation to the forecast when faced with
oscillatory data (dummy variables).
During this research, it was possible to verify that the
multivariate analyses showed promising results in the
researches done, solving problems that were previ­
ously unthinkable because they had a solution or ap­
proaches to solutions of a great result. With thismulti­
variate analysis, these solutions are a good part of the
performance and versatility of the ”software” devel­
oped for these purposes. During the problem­solving
process, it is necessary to go through several assump­
tions. According Renwick [90] Most benefits the pre­
dictive maintenance programs include not only evi­
dent cost benefits, such as reducing machinery down­
time and production losses, but also the more subtle
long­term cost benefits which can result from accu­
rate maintenance scheduling.
The importance of Maintenance in a production sys­
tem has been validated and a concern to respond in
a timely manner to unwanted stops on a manufactur­
ing line. To solve problems, knowing the variables in
question must be one of the important factors, know­
ing the right time for intervention, without forget the
life cycles of all parts that make up a complex system,
with complex problems joining simple problems.

6 Conclusions
The paper presents a global approach about the main­
tenance in production results, and that it is possible
to validate the use and efficiency of several tools in
solving problems related to the increase maintenance
efficiency. In the Maintenance space, some studies
were applied to solutions in which it was possible
to detect and diagnose the failure based on this ap­
proach, and also verifying how efficient the Neural
Networks and the Principal Component Analysis are.
The accumulated costs associated with factory fail­
ure have a high level of significance. For this rea­
son, maintenance approaches have evolved to respond
to these dilemmas, such as Predictive Maintenance
(PM), which has always shown the ability to evolve to
maintain integrity in companies, generating informa­
tion about the conditions of the equipment; this data
allows maintenance to be effective.
The real cost of implementing and maintaining a pre­
dictive maintenance program is not the initial cost of
the system. Instead, it is the annual labour costs and
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indirect costs associated with the acquisition, storage,
trends, and analysis of the data necessary to determine
the operational condition of the plant’s facilities. In
this area, predictive maintenance systems present a
greater variation in their capacity, automation in data
acquisition and storage, etc.; this will reduce operat­
ing costs.
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Abstract.  Predictive maintenance is fundamental for modern industries, in order 

to improve the physical assets availability, decision making and rationalize costs. 

That requires deployment of sensor networks, data storage and development of 

data treatment methods that can satisfy the quality required in the forecasting 

models. The present paper describes a case study where data collected in an in-

dustrial pulp paper press was pre-processed and used to predict future behavior, 

aiming to anticipate potential failures, optimize predictive maintenance and phys-

ical assets availability. The data were processed and analyzed, outliers identified 

and treated. Time series models were used to predict short-term future behavior. 

The results show that it is possible to predict future values up to ten days in ad-

vance with good accuracy. 

Keywords: Data Analysis, Autoregressive Models, ARIMA, Deep Learning, 

Time Series Forecasting, Predictive Maintenance. 

1. Introduction 

Life cycle optimization has been a concern for decades; it becomes clear that a phys-

ical asset with an adequate maintenance will have a longer life with a greater return for 

the organization [1]. Monitoring industrial equipment is essential to anticipate and avoid 

potential failures, which can endanger people and assets.  Sensors are deployed and data 

are collected to facilitate and automate the process. The methods applied to treat and 

analyse the data are relevant for improving the fault detection performance, predictions 

and decision making.  Data cleaning is one of the key challenges [2], [3], so that excess 

data or wrong data can be removed out of the analysis process. Using the data collected 
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and properly treated, machine learning models can be trained, parameters can be calcu-

lated and obtained, so that actions, decision making, control, supervision and planning 

can be implemented to optimize manufacturing plants production processes [4], [5]. 

One of the biggest challenges is the elimination of duplicate data and noise. Gong et 

al. (2017) propose a simple binary classifier to separate useful data from bad data with 

99% accuracy[6]. Veit et al. (2017) propose an approach that consists of combining 

clean and noisy data, pre-training a network using a large noisy data set, and then fine-

tune it with the clean data set [7]. Plutowski & White in 1993 use a multi-layer feedfor-

ward neural network architecture to find patterns of bad quality data in a dataset [8]. 

Sensor data recorded along the time can be processed using time series methods. Ac-

cording to Zhang (2016), the classical decomposition method of the time series is, for 

example, to decompose a seasonal time series into trend, seasonal, cyclical, and irregular 

components [9]. After the components are known, the data can then be used to adjust or 

train suitable machine learning models. 

Time series prediction models such as Autoregressive Integrated Moving Average 

(ARIMA) models, as well as Artificial Neural Networks (ANN) are frequently used and 

compared, with mixed conclusions about the superiority in forecasting performance [9], 

[10]. Mateus et al.( 2020) discuss the disadvantages that the Autoregressive Moving 

Average (ARMA) time series model presents to forecast when faced with oscillatory 

data (dummy variables) [11]. In the case of complex problems that have both linear and 

non-linear correlation structures, the combination of ARMA with ANN is an effective 

way to improve forecasting performance. Although ANN are essentially nonlinear mod-

els, they have a capacity of modelling linear processes as well [9]. 

Deep learning methods are capable of identifying the structure and patterns of data, 

such as non-linearity and problems of complexity in time series forecasting [10]. Back-

propagation networks (BP) are good at solving a wide variety of problems, and are used 

in time series forecasting [12]. According Hecht-Nielsen (1989), the standard BP net-

work using a subjective transfer function can learn any measurable function in a very 

precise manner when a sufficient number of hidden neurons are used to [13].  

The paper is structured as follows: Section two gives an overview of prediction prob-

lems on maintenance and some problem reviews about the prediction model and some 

solutions; In the third section it is presented Data Characterization and Pre-processing; 

In the fourth section a case study, to evaluate and validate the forecasting models, is 

presented; Finally, the conclusions of the study are made. 

 

2. Related Work 

Machine learning methods are increasingly popular in predictive maintenance. 

Jimenez et al. (2020) showed that there exists potential in the development of predictive 

models for application in predictive maintenance [14]. Rodrigues et al. use neural net-

works and principal component analysis to assess diesel engine oil degradation and de-

termine the optimal point for oil replacement  [15]. 
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 Daniyan et al. (2020) combine ANN with a dynamic time series model in diagnosing 

failures, to optimize maintenance intervention time in industrial equipment [16]. Ayvaz 

& Alpay (2021) propose a method to improve maintenance planning to minimize unex-

pected stops, through the combined use of Ensemble Empirical Mode Decomposition 

and Long Short-Term Memory [17]. Huang et al. (2019) apply Long Short-Term 

Memory (LSTM) neural network approaches to forecast real production data, obtaining 

satisfactory results, superior to conventional models [18]. 

Using deep networks to carry out stock market forecasting, Nti et al. (2021) reach a 

fairly satisfactory result of forecasting. They concluded that the efficient fusion of in-

formation from different sample indicators offers greater precision than individual data 

[19]. Liu et al. (2021), using an elastic mesh algorithm and LSTM to calculate the re-

maining bearing life, demonstrate that this algorithm can achieve good stability in terms 

of problem prediction [20]. Still, Aydin & Guldamlasioglu (2017) used an LSTM net-

work to predict the current situation of an engine - their model demonstrated good fore-

casting reliability [21]. 

 

3. Data Characterization and Pre-processing 

3.1 Dataset and framework 

Data used in the present work are the result of monitoring an industrial paper press 

system. Six sensors are monitoring the functioning of the press, with a sampling period 

of 1 minute. The variables monitored are: 1) Electrical Current Intensity; 2) Hydraulic 

Unit Oil Level; 3) VAT Pressure; 4) Rotation Velocity, 5) Temperature in the Hydraulic 

Unit; and 6) Torque.  

The dataset contains the sensor readings from 1 February 2018 to 30 October 2020. 

There are 1,490,400 samples in the dataset. Fig. 1 shows a plot of the values of all var-

iables in the original dataset. This dataset was loaded in python and processed, using 

ScyPy libraries. 

 

Fig. 1 Plot of the original dataset values. The variables are: C. intensity, Hydraulic unit level, 

VAT pressure, velocity, Temperature u. l., and Torque. 
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3.2. Data characterization and identification of discrepant data 

As Fig. 1 shows, there are some sensor readings which show extreme levels. The very 

large values may be reading errors or overload moments. The very low values may be 

when the press was stopped, malfunctioning, underused, or they may also be reading 

errors. Those extremely low or extremely high values provide information about abnor-

mal functioning of the press.  They may negatively impact the performance of the fore-

casting algorithms. 

Table 1 shows some statistical values of the data, namely the mean, standard devia-

tion, minimum and maximum values: Fig. 2 shows histograms of the variables’ quar-

tiles. 

Table 1. Statistical parameters of the variables: C. intensity, Hydraulic unit level, VAT pres-

sure, velocity, Temperature u. l., and Torque. 

 C. intensity Hydraulic  Torque VAT  Velocity Temperature  

mean 30.26 75.90 15.28 18.25 4.59 38.22 

std 1.32 4.54 0.69 2.67 0.977 1.62 

min 26.34 62.93 13.59 9.67 1.27 33.19 

25% 29.30 72.86 14.90 17.13 3.92 37.17 

50% 30.46 75.53 15.43 18.72 4.57 38.33 

75% 31.28 79.52 15.78 19.97 5.28 39.35 

max 34.26 88.97 17.09 26.17 7.87 43.10 

 

 

 

 

Fig. 2 Histogram of variables showing the number of samples per quartile.  

 

Fig. 3 shows the amplitude of each sample concerning the lower and upper bounds 

for each variable. As the figure shows, the distribution of data is skewed for all variables.  
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Fig. 3  Distribution of data points of all the sensors, with Low and High extremes. 

 
 

Fig. 4  Plot of the dataset variables without extreme values: Current intensity, Hydraulic unit level, 

VAT pressure, Rotation velocity, Temperature in the Hydraulic Unit, and Torque. 
 

 In order to achieve best performance in training predictive machine learning models, 

discrepant data (Ning & You, 2017) must be identified and possibly removed. The 

method used was the quartile approach, as explained in Formulae (1) to (5). In the for-

mulae, 𝑄1

4

 is the first quartile,  𝑄3

4

 is the end quartile, n is sample number and 𝐼𝑄 Inter-

quartile Range. 

Q1
4

=
1

4
 (n+1) 

(1)  

Q3
4

=
3

4
 (n+1) 

(2)  

 

IQ=Q1
4

 - Q3
4

 (3)  

Downlimit=Q1
4

-k.IQ (4)  

Up
limit

=Q3
4

+k.IQ (5)  

 

𝐷𝑜𝑤𝑛𝑙𝑖𝑚𝑖𝑡  is the lower bound limit accepted for the variable, calculated by subtract-

ing of the constant k multiplied 𝐼𝑄 to Q1

4

. 𝑈𝑝𝑙𝑖𝑚𝑖𝑡  is the upper bound limit accepted for 
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the variable, calculated by adding the constant k multiplied 𝐼𝑄 to Q3

4

, where k is the var-

iation constant of the limits. 

After the application of the quartile method described above, the discrepant samples 

are taken out of the dataset. Namely, samples which are not in the interval 𝐷𝑜𝑤𝑛𝑙𝑖𝑚𝑖𝑡  

were removed. 

 

 

Fig. 5   Histogram of variables after removing discrepant data. The variables are Current intensity, 

Hydraulic unit level, VAT pressure, Rotation velocity, Temperature in the Hydraulic Unit, and 

Torque. 

 

 

Fig. 6   Distribution of samples for all the sensors after removal of discrepant data. The variables 

are: Current intensity, Hydraulic unit level, VAT pressure, Rotation velocity, Temperature in the 

Hydraulic Unit, and Torque. 

 

3.3 Study of correlations 

 

Correlations between variables, as well as autocorrelations, are very important to 

have a better insight into the dependence of variables and determine which data models 

can be applied with higher probability of success. shows the matrix of correlations be-

tween variables. It is possible to verify some strong correlations between the variables 
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Current intensity and Velocity, among others that are presented in the graphs below. 

Most of the correlations, however, are weak. 

Fig. 7, shows the autocorrelation of each variable. As the figure shows, the autocor-

relations decay very quickly to less than 0.5. The charts show, therefore, that the corre-

lation and autocorrelation of variables are very weak. 

 

 
 

Fig. 7 Correlations among all variables.  

 

   

   
 

Fig. 8 Autocorrelation between samples of all variables, calculated for 200 days.  

In Autocorrelation there is a decay in the period making the correlation increasingly 

lower. The graph in Fig. 8, shows only a correlation of up to 200 samples that also served 

for the test and for the forecast. Since the number of the samples is very high 

(1,490,400), there was a need to down sample the dataset, from a period of minutes to a 
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period of days, in order to have a forecast in days. That was done by averaging the 

samples of each day using the python pandas function "df.resample ('D'). Mean ()". 

4. Modelling using time series 

 

4.1 Autoregressive model 

 

As a first approach to predict future behaviour, an autoregressive model was applied.  

Autoregressive models are adequate to model variables that depend mostly on their pre-

vious behavior and a stochastic value, thus satisfying the following equation: 

 

  

𝐴𝑅 = ∅1𝑋𝑡−1 + ∅2𝑋𝑡−2 + ∅𝑝𝑋𝑡−𝑝 +∈𝑡 (6)  

 
Where ∅1, … , ∅𝑝are real parameters and ∈𝑡 is a white noise process independent and 

identically distributed. 

 

 

 

4.2 ARIMA and SARIMA models 

 

Some time series present a seasonal periodic component. A seasonal autoregressive 

model is characterized by the existence of a significant correlation between observations 

spaced by a multiple time interval [22]. 

The Seasonal Autoregressive Integrated Moving Average (SARIMA) model is a gen-

eral case of the models proposed by [23] Box And Jenkins at 1976, for the adjustment 

of stationary time series. However, when there is a seasonal component in the data, the 

model class is called SARIMA (p, d, q) (P, D, Q), given by: 

 

 
MA=-θ1∈t-1-θ2∈t-2-…-θq∈t-q 

 

(7)  

Where 𝜃1, … , 𝜃𝑝, are parameters of an order of structures,∈𝑡 is white noise with zero 

mean. 

  

 
ARs=Φ1Xt-1s+Φ2Xt-2s+,…,+ΦpXt-P 

 

(8)  

MAs=-Θ1∈t-1-Θ2∈t-2-ΘQ∈t-Q 

 
(9)  

∇D∆dXt=AR-MA+ARs+MAs 
 

(10)  

Where (p, d, q) refer to the model orders of the seasonal part: p is trend autoregression 

order, d is trend difference order and q is trend moving average order. (P, D, Q) is the 
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same but with the Seasonal component. The parameters 𝛷1, … , 𝛷𝑝 , are the parameters 

referring to the seasonal autoregressive part and 𝛩1, … 𝛩𝑄 , are the parameters of moving 

averages, and i is an error that cannot be estimated from the model and D indicates the 

number of seasonal differences made in the series to park it. The calculation of the pa-

rameters of the models that best fits was made using the most frequent Akaike Infor-

mation Criterion (AIC), which is defined by: 

 

AIC= 2 log(L.k)+2(k) (11)  
 

where L.k is the maximized log-likelihood and k is the number of parameters in the 

model.  

 

4. Experiments and Results 

4.1 Results of the Autoregressive model 

The model was applied with a 20-day sliding window, thus corresponding to 1440 x 

10 = 14400 data samples and a forecast window with the same size, thus predicting the 

values for the next 10 days. 
 

 

 

 

 

 

 

Fig. 9 Prediction of the six variables using a retrogressive method, with 20 days lag and 10 days 

predict window. 
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After eliminating the discrepant data samples, some irregularities in the samples, 

which may be momentary or prolonged damage, are still visible in Fig. 9. Nonetheless, 

the autoregressive model shows a good fit to all variables. The prediction errors between 

the forecasted values and the actual values are given in Table 2. 

4.2 Results of the SARIMA model 

 

The AIC was used to define the hyperparameters p, d, q, P, D and Q of the SARIMA 

model. The seasonal period was fixed at 12 for all-time series. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10 Prediction of variables using the SARIMA (0, 1, 2) (1, 1, 2) method, with 20 days lag and 

10 days predict window. 

shows that the SARIMA model gives stable predictions, when using 20 days sliding 

window and parameters SARIMA (0, 1, 2) (1, 1, 2). 
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Table 2 shows the results of the forecasting errors in the period referring to the two 

models, AR and SARIMA. The table shows the Mean Average Error (MAE), the Mean 

Squared Error (MSE) and the Mean Average Percent Error (MAPE). 

Table 2. Summary of the MAE, MSE and MAPE errors for the autoregressive and SARIMA 

models tested. 

  C. inten-
sity 

Hydraulic unit 
level 

Torque VAT pressure Veloc-
ity 

Temp. at 
U.H. 

AR MAE 3.60 3.06 0.93 2.97 1.15 0.36 
MSE 13.08 18.37 1.15 10.54 1.47 0.24 
MAPE 12.92 3.76 6.57 16.95 25.17 0.97 

SARIMA MAE 0.21 1.05 0.15 0.57 0.25 0.64 
MSE 0.07 1.32 0.03 0.59 0.11 0.66 
MAPE 0.68 1.40 0.95 2.83 4.50 1.71 

5. Discussion 

 

Using the two models, (Auto-regressive and SARIMA), it was possible to verify 

that both offer acceptable prediction errors, with the data evaluated. The SARIMA 

model shows better performance than the AR model, what is expectable since it en-

compasses the three different components (autoregressive, moving averages and sea-

sonal component). However, that implies a cost of an additional processing time. The 

SARIMA model takes approximately 15 times more computing time than the AR 

model. As the SARIMA model, its processing lasted 40 seconds and for the AR model 

4 seconds. 

For the regressive model prediction, there were no hyperparemeters to optimize. 

However, to find the best model, it was necessary to evaluate several models and to 

choose the parameters that best fit the data, using the AIC information criterion. It can 

be concluded that there is a good capacity of these models to predict based on data that 

presents a moderate variation. 

For short-term forecasting, the models are satisfactory, emphasizing the need to 

clean the discrepant data. According to new studies in this area, they show superiority 

in the growth of the use of Neural Networks for those objectives, namely Recurrent 

Neural Networks that have greater long-term and short-term forecasting efficiency due 

to their Long-Short Term Memory capacity [19], [20] and [26]. That is planned as 

future work in the present project, where deep neural models will be designed and 

optimized for prediction. 

 

5. Conclusion 

Sensor data is fundamental to monitor industrial equipment and processes. The pre-

sent paper describes a case study where six variables were sampled during almost three 

years, with a period of one minute. The data were selected and cleaned of discrepant 
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data samples, analysed and used to forecast future behaviour with time series models, 

namely Autoregressive and SARIMA. Data processing and experiments were carried 

out in Python using ScyPy libraries. The SARIMA model showed smaller errors in the 

test set, so it is more adequate for the data analysed.  

 Future work includes experiments with Neural Networks and larger forecast range 

predictions. 
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Abstract: Predictive maintenance is very important in industrial plants to support decisions aiming
to maximize maintenance investments and equipment’s availability. This paper presents predictive
models based on long short-term memory neural networks, applied to a dataset of sensor readings.
The aim is to forecast future equipment statuses based on data from an industrial paper press. The
datasets contain data from a three-year period. Data are pre-processed and the neural networks are
optimized to minimize prediction errors. The results show that it is possible to predict future behavior
up to one month in advance with reasonable confidence. Based on these results, it is possible to
anticipate and optimize maintenance decisions, as well as continue research to improve the reliability
of the model.

Keywords: time series prediction; LSTM prediction; deep learning prediction; predictive maintenance

1. Introduction

Modern processors, computers and high speed networks make it possible to acquire,
transfer and store large quantities of data in real time. Acquisition and combination of
data from different sensors makes it possible to gain an insightful view of the state of
factories, industrial plants and other facilities. Large datasets can be constructed, stored
and processed using information technologies such as Big Data, cloud computing, cutting-
edge computing, and artificial intelligence tools. The Internet of Things (IoT) is a recent
concept, which provides many benefits to different areas, such as maintenance and produc-
tion management, because it facilitates the automation of tasks such as monitoring and
maintenance. This results in the popularization of intelligent systems, which are highly
dependent on Big Data [1] and are an important area of study, since they offer the tools
and methods to acquire and process large volumes of data such as historical production
processes, including many production and operating parameters.

Modern time-series and other data analysis techniques have been used with success
for different tasks, such as freeway traffic analysis [2] and additive manufacturing [3].
Different approaches have also been proposed in the field of predictive maintenance [4,5].
Satisfactory results were obtained using Big Data records as support for PCA models,
which resulted in a warning alarm several days before a potential failure happened [6].

Life cycle optimization has been an important concern for decades. A physical asset
with proper maintenance will have a longer useful life with a greater return on investment
for the organization [7].

Predictive maintenance requires good quality data. The information that is extracted
from the online or offline data must be reliable, and so the results must be good enough
to justify the investment in data collection and analysis. The process starts from the
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correct calibration of the reading sensors and equipment [8]. The data are then stored and
processed using different models, such as Principal Component Analysis (PCA) and Neural
Networks [9]. Maintenance planning involves the use of several algorithms, the most
common being time series [10].

Maintenance of equipment in the industry becomes a sensitive and important point
that affects the equipment’s operating time and efficiency [5]. This makes maintenance
one of the strategic points for the development and growth of competitiveness vis-à-vis
competitors. Chen and Tseng studied the total expected cost of maintaining a flotation
system, including the cost of lost production, the cost of repairs, and the cost of standby
machines [11].

Daniyan et al. propose the integration of Artificial Intelligence (AI) systems, which
will bring many benefits in diagnosing condition problems of industrial machines [12].
They highlight the viability of AI that combines the use of Artificial Neural Networks
(ANNs) with a dynamic time series model, for fault diagnostics, to optimize the equipment
intervention time.

Hsu et al. demonstrated that neural networks can be a great technology in the support
and decision making of large and small companies [13]. There is a trend to use those tools
in predictive maintenance systems with the aim of making the prediction systems more
intelligent [14].

According to Jimenez et al., there is a great effort in the development of predictive
models for application in predictive maintenance [15]. Ayvaz and Alpay apply Long
Short-Term Memory (LSTM) neural network approaches to predict real production data,
obtaining satisfactory results, superior to conventional models [16]. In their study to
improve maintenance planning to minimize unexpected stops, they apply a new method
that consists of the combined use of decomposition in empirical mode of ensemble and
long-term memory. Their results showed a performance superior to other state of the
art models.

LSTM networks use several ports with different functions to control neurons and to
store information. The LSTM cell can retain important information for a longer period in
which it is used. This property of information maintenance allows the LSTM to exhibit a
good performance in the classification, processing, or forecasting of a complex dynamic
sequences [17].

The present work uses different LSTM models to predict future trends of six variables,
on a dataset containing three years of data samples grabbed in an industrial press, which
aims to operate continuously with minimum downtime. Different data pre-processing
techniques, network architectures and hyperparameters were tested in order to determine
the models that best fit the data and provide the lowest prediction errors.

Section 2 contains a summary of related work. Section 3 describes the theory of the
LSTM networks. Section 4 describes the methods used for the present work. Section 5 de-
scribes the results and validation of the predictive model. Section 7 draws some conclusions
and suggestions for future work.

2. Related Work
2.1. Predictive Maintenance

In smart industries, predictive maintenance is one of the most used techniques to
improve condition monitoring, as it allows one to evaluate the conditions of specific
equipment in order to predict problems before failure [18]. For good performance of
predictive models, it is important that the sensor data collected are of good quality. Deep
neural models have been used with success to improve prediction for condition monitoring
of industrial equipment.

Wang et al. [19] use a model of long short-term recurrent neural networks (LSTM-
RNN) with the objective of predictive maintenance based on past data. The main objective
of predictive maintenance is to make an accurate estimate of a system’s Remaining Useful
Life (RUL). Traditional systems are only able to warn the user when it is too late and the
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failure occurs, causing an unpredictable offline period during which the system cannot
operate properly with a consequent waste of time and resources [20].

In order to assess the condition of a system, the predictive maintenance approach
employs sensors of different kinds. Some examples are temperature, vibration, velocity or
noise sensors, which are attached to the main components whose failure would compromise
the entire operation of the system. In this sense, predictive maintenance analyzes the history
of a system in terms of the measurements collected by the sensors that are distributed
among the components, with the objective of extracting a “failure pattern” that can be
exploited to plan an optimal maintenance strategy and thus reducing offline periods [21].
In a case related to the steel industry, Ref. [22] used neural networks for classification of
maintenance activities, so that interventions are planned according to the actual status
of the machine and not in advance. Using multiple neural networks to identify status
and RUL at a higher resolution can be very difficult, as the system can predict failure
classifications and may not be able to recognize neighboring states. One limitation arises
from the need for maintenance records to label datasets and the need for large amounts of
data of adequate quality with maintenance events, such as component failures.

When systems start to be very complex or the number of sensor measurements to
manage is very large, it can be difficult to estimate a failure. For this reason, in recent years,
machine learning techniques are used more and more to predict working conditions of a
component. Mathew et al. [23] propose several approaches to machine learning such as
support vector machines (SVMs), decision trees (DTs), Random Forests (RFs), and others
that show which technique has the best performance in RUL forecast for turbofan engines.

A major challenge in operations management is related to predicting machine speed,
which can be used to dynamically adjust production processes based on different system
conditions, optimize production performance and minimize energy consumption [24].
Essien and Giannetti [25] use a deep convolutional LSTM encoder–decoder architecture
model on real data, obtained from a metal packaging factory. They show that it is possible
to perform combinations of LSTM with other networks to significantly improve the results.

2.2. Prediction with LSTM Models

LSTM neural networks achieved the best performance in a number of computational
sequence labeling tasks, including speech recognition and machine translation [26]. There
are a variety of engineering problems that can be solved using predictive neural models.
Beshrand Zarzoura used neural network models to predict problems of suspended road
bridge structures based on global navigation satellite system observations [27]. Sak et al.
demonstrated that the proposed LSTM architectures exhibit better performances compared
to deep neural networks (DNNs) in a large vocabulary speech recognition task with a
large number of output states [28]. Chen et al. adopted LSTMs for predicting the failure
of heavy truck air compressors [29]. They concluded that the use of LSTMs leads to more
consistency in predictions over time compared to models that ignore history, such as
random forest models.

Gosh et al. [30] presented an extension that they called Contextual LSTM (CLSTM).
This model was also used for the forecasting of pollutants. There is also the proposal for a
genetic long short-term memory (GLSTM), which has been used in the study of wind energy
forecasting [31]. Guo et al. presented a combination method based on real-time prediction
errors in which the support vector regression (SVR) and LSTM outputs are combined in
the final results of the model’s prediction, thus obtaining results of greater precision [32].

Ren et al. used a combination of a Convolution Neural Networks (CNNs) and LSTM
in order to extract more in-depth information from data to predict the useful life of ion
batteries [33]. Niu et al. used an LSTM and developed an effective speed prediction model
to solve prediction problems over time [34]. Feng et al. report that the LSTM algorithm
is superior and, according to them, it performs better than conventional neural network
models [35].



Appl. Sci. 2021, 11, 6101 4 of 16

The architecture of an LSTM network includes the number of hidden layers and the
number of delay units, which is the number of previous data points that are considered for
training and testing. Currently, there is no general rule for selecting the number of delays
and hidden layers [36]. A deep LSTM can be built by stacking multiple LSTM layers, which
generally works better than a single layer. Deep LSTM networks have been applied to
solve many real-world sequence modelling problems [37]. The LSTM can also be used for
planning studies [38], namely for planning the analysis of road traffic speed.

To produce a prediction model with good accuracy, it is necessary to optimize neural
models’ hyperparameters. While simple models can often produce good results with
default hyperparemeters, the optimization process can greatly improve the results [39–41].
The selection of hyperparameters often makes the difference between underperformance
and state-of-the-art performance. Optimization is often performed using machine learning
algorithms, such as grid search, grey wolf optimization or particle swarm optimization. In
the present prediction model, however, the hyperparameters were optimized manually,
following a trial and error guided process, one variable at a time. This method was followed
because it was the most convenient considering the limited computing power available.

2.3. LSTM with Encoder and Decoder

Experiments were performed with a predictive model based on the LSTM with encoder
and decoder architecture. The model consists of two LSTMs, in which the first LSTM has
the function of processing an input sequence and generating an encoded state. The encoded
state compresses the information in the input stream. The second LSTM, called a decoder,
uses the encoded state to produce an output sequence. Those input and output sequences
can be of different lengths.

This technique has already been used to solve problems such as the prediction of
vehicle trajectories based on deep learning [42]. This architecture [43] has shown great
performance for tasks of translating from sequence to sequence. LSTM encoder–decoder
models have also been proposed for learning tasks such as automatic translation [43,44].
There is the application of this model to solve many practical problems, such as the study
of the equipment condition, applications in language translations, among others [45–47].

3. Theoretical Background

The present work uses LSTM networks, considering the referred different studies
showing their usefulness for time series predictions [48,49]. The LSTM is a deep learning
recurrent neural network architecture that is a variation of traditional recurrent neural
networks (RNNs). It was introduced by Hochreiter and Schmidhuber in 1997. The most
popular version is a modification refined by many works in the literature [50,51], which is
called vanilla LSTM (hereinafter referred to as LSTM). The LSTM is excellent at handling
time series data only with its network parameters. For example, weights and polarization
are adjusted or optimized [52]. The primary modification of the LSTM when compared
to the RNN architecture is the structure of the hidden layer [53]. The LSTM model is a
powerful type of recurrent neural network (RNN), capable of learning long-term depen-
dencies [54]. They became popular due to their power of representation and effectiveness
in capturing long-term dependencies [55].

Many networks showed instability when dealing with exploding or vanishing gradient
problems during learning. Those problems happen when the gradient of the error is too
large or too small. If it is too large, it overflows and the errors cannot propagate properly
through different layers during learning. If it is too small, it vanishes and the network
does not learn. Different methods were proposed to solve those problems, known as a
kind of of “door control” that is used in RNN models. For example, Gated Recurrent
unit (GRU) algorithms [56,57], as the LSTMs [58,59], are to a large extent immune to the
gradient problems and learn well.

The LSTM network structure is based on three ports whose function is to regulate
the flow. Those ports are called the entrance door, the forget gate, and the exit door. The
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main port of entry is to regulate the entry of new memory data; the forget gate has the
function of regulating the storage time in the network memory and the output port intends
to regulate how much the value retained in memory influences the activation of the output
block [60].

Kong et al. demonstrate some relevant conclusions such as (1) LSTM has a good
predictive capacity; (2) their use can significantly improve the profit of service providers,
so there is an opportunity when it comes to exploring the forecast in real time [61]. LSTM
networks are the de facto gold standard for deep learning algorithms for analyzing time
series data [55].

Figure 1 shows the internal architecture of an LSTM unit cell. According to [62,63],
the internal calculation formulae of the LSTM unit are defined as follows:

it = σ(xtUi + ht−1Wi + bi) (1)

ft = σ(xtU f + ht−1W f + b f ) (2)

ot = σ(xtUo + ht−1Wo + bo) (3)

at = tan(xtUC + ht−1WC + bC) (4)

where Ui, U f , Uo and UCare the weight matrices for mapping the current input layer on
three ports and the state of the current input cell.

Figure 1. Detailed layout of a long short-term memory unit [63].

Wi, W f , Wo and WC are the weight matrices for mapping the previous output layer on
three ports and the current state of the input cell. b f , bi, bo, and bc are polarization vectors
for calculating the state of the door and the input cell. σ is the gate activation function,
which is normally a sigmoid function. tan is the hyperbolic tangent function which is the
activation function for the current state of the input cell.

Then, the current state of the output cell and the output layer can be calculated using
the following equations.

Ct = σ( ft × Ct−1 + it × at) (5)

ht = tanh(Ct)× ot (6)

To assess the quality of the prediction model, one of the most popular metrics is the
Root Mean Square Error (RMSE), which is given by Equation (7):

RMSE =

√
1
n

n

∑
t=1

(Yt − Ŷ)2 (7)

where Yt represents the desired (real) value and Ŷ is the predicted (obtained from the
model) value. The difference between Y and Ŷ is the error between the value expected
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to obtain and the value actually obtained from the network. n represents the number of
samples used in the test set.

The RMSE, however, is an absolute error. Therefore, there are also the Mean Absolute
Percentage Error (MAPE) and the Mean Absolute Error (MAE). Those errors are given by
the following formulae:

MAE =
1
n

n

∑
t=1
|Yt − Ŷt| (8)

MAPE =
1
n

n

∑
t=1

|Yt − Ŷt|
|Yt|

(9)

where Yt represents the real value, Ŷt the predicted value and n represents the total number
of samples.

4. Data Preparation

Data are key to developing efficient modeling and planning. However, to be valuable,
data need to be processed and structured before being analyzed.

4.1. The Problem

The main goal of the present work is to predict potential failures in an industrial
drying press before they happen. Data come from six sensors installed in the press. Those
sensors monitor the operation of the press, with a sampling period of one minute. The
monitored variables are: (1) electric current intensity; (2) oil level at the hydraulic unit;
(3) VAT pressure; (4) rotation speed; (5) temperature in the hydraulic unit; and (6) torque.
The dataset contains six time series, one for each sensor, with the values stored in the
database from 2016 to August 2020.

Figure 2 shows a plot of the six time series, before any processing is applied. These
data present some upper and lower extremes, which may be discrepant data. Those
discrepant samples may be due to reading errors or periods when the equipment was off
or in another atypical state.

Figure 2. Plot of the original dataset values. The variables are electric current intensity, hydraulic
unit oil level, VAT pressure, motor velocity, temperature at the hydraulic unit, and torque.

Some of the samples, such as those when the equipment was off but the sensors
were still reading, can compromise the training of the machine learning models to be
developed. Table 1 shows some statistical parameters such as mean, standard deviation
(std), minimum, third quantiles, and maximum value.
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Table 1. Statistical parameters of the dataset variables, before processing: C. intensity, hydraulic unit
oil level, torque, VAT pressure, velocity, and temperature.

C. Intensity Hydraulic Torque VAT Velocity Temperature

mean 30.26 75.90 15.28 18.25 4.59 38.22
std 1.36 4.54 0.69 2.67 0.98 1.62
min 26.34 62.93 13.59 9.67 1.27 33.19

Q1—25% 29.30 72.86 14.90 17.13 3.92 37.17
Q2—50% 30.46 75.53 15.43 18.72 4.57 38.33
Q3—75% 31.28 79.52 15.78 19.97 5.28 39.35

max 34.26 88.97 17.09 26.17 7.87 43.10

4.2. Cleaning Discrepant Data

In order to facilitate the training process, discrepant samples were identified and
removed using the quantiles method. Samples which are beyond the Q1 − 3 × std or
Q3 + 3× std are replaced by the mean value. The extreme values were replaced with the
average. Figure 3 shows the same variables after discrepant data samples were removed.

As the figure shows, the lines are now smoother and easier to read. Figure 4 shows
that the samples are evenly distributed after the withdrawal of discrepant data.

Figure 3. Plot of the dataset values after cleaning discrepant data. The variables are current intensity,
hydraulic unit oil level, VAT pressure, velocity, temperature, and torque.

Figure 4. Distribution of data points of all the sensors, with lowly and highly discrepant data cleaned.
The predictive models to be used are robust and tolerant to noise. However, the cleaner

data are expected to show better results. As an example, a provisional experiment to train
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a neural network LSTM model with a historical window of 70 samples and 40 LSTM unit
cells showed higher and undetermined errors. The model was not able to learn or predict
some variables, as shown in Table 2. With clean data, there were better and determinable
results, as shown in Table 3. The tables show the MAPE and MAE for all input variables,
as determined in the test set. They also show the RMSE, as calculated in the train and test
sets, globally for all variables.

Table 2. Prediction results without cleaning discrepant data in the database, with a window of
70 samples and 40 LSTM units.

Window 70 Days

C. Intensity Hydraulic Torque VAT Velocity Temperature

MAPE inf 8.46 inf 98.19 inf 11.59
MAE 3.52 6.57 24.73 10.53 14.88 4.21

Train Test

RMSE 79.52 79.64

Table 3. Forecast results with treatments in the database with 40 LSTM units.

Window 70 Days

C. Intensity Hydraulic Torque VAT Velocity Temperature

MAPE 2.52 3.02 2.44 13.10 inf 2.48
MAE 0.76 2.28 0.37 1.32 0.57 0.94

Train Test

RMSE 1.71 1.97

5. Experiments and Results

Experiments were performed with the aim of validating the model that has the best
performance in predicting data from the industrial press. The tests are divided into
two subsections, first with resampling of data to one sample per day and then with
resampling for a sample each 12 h.

5.1. LSTM Models and Dataset Partition

After processing the data, experiments were performed with an LSTM model. The
model included an encoder and decoder, with one hidden LSTM layer in the middle and a
dense layer at the output. The model was used to train and predict, with six variables that
represent data coming from the paper press sensors. The goal was to forecast the value of
those variables with the highest possible level of confidence so that it brings added benefits
in predictive maintenance.

Figure 5 describes the architecture of one of the network models used. The models
were implemented in Python using the TensorFlow library and Keras.

The experiments were performed aiming to obtain a prediction for all variables one
month in advance, from a window of a number of past samples.

The LSTM models received, as an input, a sequence consisting of the composition of a
number of samples for each variable. The number of samples depended on the window size
and the resampling rate used. The output sequence is composed of the values predicted
for each of the variables.
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Figure 5. Model summary of one of the LSTM networks used. The model receives a window of n
samples of each variable and predicts the value of those variables as predicted 30 days ahead.

To train and test the models, the dataset was divided into train and test subsets.
Validation was performed using the test set, but those samples were not incorporated
into the training set. The training set contained 85% of the samples and the test set the
remaining 15% of samples. These values are adequate for convergence during learning.
As an example, Figure 6 shows a learning curve for a model with 70 units in the middle
layer and a window of 30 lag samples. The figure shows that learning converges and takes
fewer than 10 epochs. The remainder experiments were performed using 100 epochs.

Figure 6. Example of learning curve, showing the loss measured during training of an LSTM model.

5.2. Experiments to Determine Historical Window Size and Number of LSTM Units Using One
Sample per Day

The first experiments performed aimed to determine the best window size to use. The
smaller the window, the smaller and faster the model that can be used. However, if the
window is too small, it may be insufficient to make accurate predictions.

The original dataset had 1,445,760 data points, which is very large and would require
a lot of memory and time to train and test. The experiments were performed after down-
sampling the data, so that there is only one sample per day. That sample is the average of
1004 original samples. The downsampled dataset is, therefore, less than the one thousand
of the original dataset.

The results are measured in the test set. The figure above shows the MAPE and MAE
measured for each variable. It also shows the global RMSE measured globally for the train
and test sets.

As Figure 7 shows, models with windows of 40 and 50 samples allow better learning
and produce smaller prediction errors.
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Figure 7. Results obtained with a different number of LSTM cells in the hidden layer, as well as
different sliding window sizes, to predict values 30 days in advance with downsampling to one
sample per day.

Additional experiments were performed to determine the best size for the number of
cells in the hidden layer. For those experiments, a window of 40 historical samples was
used, relying on the results of the previous experiments.

Figure 7 shows the results obtained for experiments with a window of 40 days and
different numbers of hidden cells. As the results show, the model with the best performance
is the one with 50 hidden cells.

After the results of the first experiments with one sample per day, additional experi-
ments were conducted to determine if there was any considerable loss in downsampling
from one sample per minute to one sample per day. A first experiment was performed,
which consisted of halving the downsampling period from 24 to just 12 h. Therefore, the
dataset doubled in size, since it contained two samples per day instead of just one.

5.3. Experiments to Determine Historical Window Size and Number of Unit LSTMs Using
Two Samples per Day

According to the results shown in Figure 8, it is concluded that a window of 10 days
(20 samples) shows the best performance. This shows that the model can exhibit approx-
imately the same performance with even fewer input samples when compared to the
models above. The models used for those experiments had 20 cells in the hidden layer.

Once the impact of the window size was determined, additional experiments were
performed to gain a better insight into the impact of using more or less cells in the hidden
layer. Figure 8 shows results of using different numbers of cells.



Appl. Sci. 2021, 11, 6101 11 of 16

Figure 8. Results obtained with a different number of cells in the hidden layer, also using different
window samples to predict values 30 days in advance with resampling for the two samples for a day.

5.4. Plot of One Result

Figure 9 shows plots of the results obtained using the model using 40 units in the
hidden layer and a 10-day window of samples. As the figure shows, the forecasts in general
follow the actual signals most of the time. However, there are still some areas where the
actual signal diverges a small percentage from the prediction, namely for velocity and
temperature. Most of the differences may be due to behaviors that are still difficult to
capture due to the small dimension of the dataset. As more data will be collected, the neural
models will probably be able to capture more patterns and offer more accurate predictions.

In addition to the graphs shown in Figure 9, in Tables 4 and 5, the magnitudes of the
RMSE errors in the training set and test set are also presented. They were measured in the
model validation dataset.

Table 4. The magnitude of RMSE errors in the test and training set, using one sample per day.

Window Size (Days) Train Test Units Train Test

5 2.39 2.20 10 4.23 4.07
10 2.57 2.24 20 3.99 3.93
20 4.21 4.09 30 2.52 2.35
30 2.31 2.19 40 1.68 1.70
40 1.81 1.77 50 1.66 1.70
50 1.74 1.86 60 8.14 7.85
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Figure 9. Variable forecast with a window of samples of 10 days, sampling rate two samples per day, and a network model
with 50 units in the hidden layer. The blue lines show the actual value. The orange lines show the predictions during the
training set and the gray lines show the predictions in the test set.
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Table 5. The magnitude of RMSE errors in the test and training set, using two samples per day.

Window Size (Days) Train Test Units Train Test

5 8.91 8.87 10 2.07 1.99
10 1.80 1.61 20 1.82 1.91
20 3.29 3.23 30 1.65 1.59
30 1.98 1.94 40 1.58 1.41
40 2.07 1.98 50 1.61 1.42
50 4.32 4.16 60 1.64 1.46

6. Discussion

Anticipating industrial equipment’s future behavior is a goal that has been long sought
after, for it allows predictive maintenance to perform the right actions at the right time.
Therefore, the application of time series and other artificial intelligence models to forecast
the equipment’s state is a new and growing area of interest.

The present research uses a dataset of approximately 2.5 years of data of an industrial
paper press. A procedure to clean the data is proposed and different experiments are
described to use a deep neural model based on LSTM recurrent networks.

The method proposed is going to be applied in other industrial presses, aiming to
improve predictive maintenance. Based on the state of the art and experiments, this
architecture presents a good versatility, depending of course on the quality of data and
hyperparameter settings.

The results show that it is possible to optimize neural models to forecast future
values 30 days in advance. The model experimented uses as input a vector consisting of
concatenation of a number of samples of all variables. The output is a vector with the
predictions of all samples too. The performance of the models is generally better for some
variables and worse for others. Those differences will be dealt with in future work.

An important conclusion is that the downsampling used might have been too aggres-
sive. Experiments were performed using one sample per day and two samples per day.
The models trained with two samples per day showed a better performance. Hence, more
resolution is better for reducing errors and may allow for better learning. That is achieved
at the cost of additional processing power. This is also another research question which
will be dealt with in future work.

7. Conclusions

Predicting industrial machines’ future behaviors is key for predictive maintenance
success. The present research aims to find prediction models adequate for anticipating the
future behavior of industrial equipment with good certainty.

The predictive model used was based on LSTM networks, with encoding and decoding
layers as the input and output, respectively. In this study, different data pre-processing
techniques, network architectures, and hyperparameters were tested, in order to determine
the best models.

The predictive model used was based on LSTM network, with encoding and decoding
layers as the input and output, respectively.

The results show that the model proposed is able to learn and forecast the behavior
of the six variables studied: torque, pressure, current intensity, velocity, oil level and
temperature. The best results were obtained using a window of samples of the last 10 days
at two samples per day. The MAPE errors varied in the range of 2 to 17% for one of the
best models for different variables.

Future work includes additional experiments to determine the optimal sampling rate
and stabilize the results for optimal performance with all the variables. The predicted
results will also be used to determine an expected probability of failure, using classification
models. Other methods may also be used to deal with discrepant data. Later, the models
developed will also be applied to other equipment.
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Abstract: The accuracy of a predictive system is critical for predictive maintenance and to support
the right decisions at the right times. Statistical models, such as ARIMA and SARIMA, are unable
to describe the stochastic nature of the data. Neural networks, such as long short-term memory
(LSTM) and the gated recurrent unit (GRU), are good predictors for univariate and multivariate data.
The present paper describes a case study where the performances of long short-term memory and
gated recurrent units are compared, based on different hyperparameters. In general, gated recurrent
units exhibit better performance, based on a case study on pulp paper presses. The final result
demonstrates that, to maximize the equipment availability, gated recurrent units, as demonstrated in
the paper, are the best options.

Keywords: LSTM; recurrent neural network; GRU; paper press; predictive maintenance

1. Introduction

Modern algorithms, data storage, and computing power make it possible to not only
analyze past behavior, but to anticipate future behavior of industrial equipment with
reasonable confidence [1–3]. Anticipating future failures is, therefore, a topic that has been
receiving increasingly more attention from researchers.

There are a few types of maintenance: curative, which solves problems after they
occur; preventive, which can be done at regular intervals, aimed at preventing common
problems; conditioning, namely in the predictive way, which attempts to predict problems
that are going to happen and prevent them from happening at the optimal time [4].

Nowadays, predictive maintenance is the most common approach. It aims to optimize
maintenance costs and increase equipment availability [5]. Maintenance procedures are
performed when parts are supposed to be worn out, preventing failures and halting the
production processes for more time than strictly necessary. Its main focus is to prevent
future failures. However, in this case, some parts may be replaced before they are actually
worn out, while others may wear out faster than expected and still fail [6]. Predictive
maintenance aims to make the process more efficient, narrowing down the optimal time
window for maintenance procedures. Using sensory data and adequate forecasting algo-
rithms, the state of the equipment can be determined and the optimal time for maintenance
interventions can be predicted some time in advance, avoiding unnecessary costs, as well
as failures due to lack of maintenance.
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Traditional forecasting algorithms have relied more on time series models, such as expo-
nential smoothing [7] and seasonal autoregressive integrated moving average (SARIMA) [8–10].

More recently, however, artificial intelligence methods have become more popular.
They impact societies, politics, economies, and industries [11], offering tools for data
analysis, pattern recognition, and prediction, which could be beneficial in predictive
maintenance and in production systems.

Modern machine learning methods offer superior performance and have become more
popular [12]. They can work with high-dimensional data and multivariate data [13]. The
most popular tools include artificial neural networks (ANNs), which have been proposed
in many industrial applications, including soft sensing [14] and predictive control [15].
Random forest models are also good predictors, as shown in this study [16].

Traditional ANNs are simple and adequate for a wide range of problems. Bangalore et al.
have studied the performance of neural networks for early detection of faults in gearbox
bearings, to optimize the maintenance of wind turbines [17]. However, for prediction in
sequential data, long shot-term memory (LSTM) and gated recurrent units (GRUs) have
shown superior performance [18].

LSTM is very good at predicting in a time series [19,20]. It could extract patterns from
sequential data and store these patterns in internal state variables. Each LSTM cell can
retain important information for a longer period when it is used. This information property
allows the LSTM to perform well in classifying, processing, or predicting complex dynamic
sequences [21].

The present study aims to compare the performance of LSTM and GRU to solve the
problem of predicting the future behavior of an industrial paper pulp press.

Section 2 presents a survey of related work. Section 3 describes the theory of the
LSTM and GRU networks, as well as the formulae used to calculate the different errors.
Section 4 describes the methods used for cleaning the dataset and also the behavior of
some samples. Section 6 describes the tests, results, and validation of the predictive models.
Section 7 discusses the results and compares them to the state-of-the-art. Section 8 draws
some conclusions and suggestions for future work.

2. Literature Review

Monitoring physical assets has becoming a priority for predictive maintenance. Recent
studies prove the importance of the topic [22,23]. Many statistical and machine learning
tools have been used for prediction purposes, in monitoring and preventing equipment
failures [24,25], quality control [26], and in other areas [27].

Artificial neural networks have received special attention in the area of electrical
energy. Studies, such as [27,28], show their capacity and performance as good predictors,
as long as a dataset with sufficient quality and quantity of data is available and the right
parameters are found.

2.1. Predictive Maintenance

The creation of a predictive maintenance program is a strategic decision that, until
now, has lacked analysis of issues related to its installation, management, and control.
Carnero [29] suggests that predictive maintenance can provide an increase in safety, quality,
and availability in industrial plants.

Bansal et al. [30] present a new real-time predictive maintenance system for machine
systems based on neural networks. Other studies, such as [31,32], indicate the feasibility of
artificial neural networks for predictive maintenance.

2.2. MLP and Recurrent Networks

Multilayer Perceptron (MLP) neural networks have been used with success for pre-
dicting and diagnosing pump failures, showing promising results with different types
of failures [33–36]. According to Ni and Wang [37] Partovi and Anandarajan [38], neural
networks have high prediction accuracies and aid in decision-making [39].
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In the context of recurrent neural networks, LSTM-based models presented good
performance in time series classification tasks and prediction tasks [40]. The LSTM network
is useful in solving non-linear problems due to its non-linear processing capacity [41].

Sakalle et al. [42] used an LSTM network to recognize a number of emotions in
brain waves. The results obtained with the LSTM were superior when compared to the
other models mentioned in the study. The same approach was used in predictive and
proactive maintenance for high-speed rail power equipment [43]. Some architectures have
good ability in predicting univariate or multivariate temporal series with LSTM and GRU
networks [44–46].

Models that use RNN are usually suitable for time-series information. Hochreiter and
Schmidhuber [47] proposed an LSTM, which showed an extraordinary execution power in
several sequence-centric tasks, such as handwriting recognition [48,49], auditory speech
demonstration [50,51], dialect modeling [52], and dialect translation. Besides these areas,
networks have also been used in predicting heart failure [53].

2.3. Deep Learning

Recently, deep learning strategies have been used, with success, in a variety of ar-
eas [54]. Vincent et al. [55] show that deep neural networks can outperform other methods
in voice recognition tasks. A similar approach was used in audio processing [56].

Yasaka et al. [35] used deep learning with a convolutional neural network (CNN),
obtaining a high performance in image recognition. The images themselves can be used in
a learning process with this technique, and feature extraction prior to the learning process
is not necessary. Other studies in the field of computer vision include [57,58].

Krizhevsky et al. [36] showed good results in image processing, employing a layered
pre-training technique. The analysis shows that a large deep convolutional neural network
can achieve record-breaking results in a challenging data collection using supervised
learning. This same study demonstrates how important the amount of convolutional
layers is to achieve good results. In order to learn the types of difficult functions that can
represent high-level abstractions, it is necessary to have deep architectures. There is a need
for an exhaustive exploration of the types of layers, sizes, transfer functions, and other
hyperparameters [59].

3. Theoretical Background
3.1. Long Short-Term Memory

Figure 1 shows the inner design of an LSTM unit cell, according to Li and Lu [60].
Formally, the LSTM cell model is characterized as follows:

ft = σ(xtW f + ht−1U f + b f ) (1)

it = σ(xtWi + ht−1Ui + bi) (2)

ot = σ(xtWo + ht−1Uo + bo) (3)

C̃t = tan[(xtWC + ht−1Uc + bc] (4)

Ct = σ( ft × Ct−1 + it × C̃t) (5)

ht = tanh(Ct)× ot (6)

Matrices Wq and Uq contain the weights of the input and recurrent connections, where
the index can be the input gate i, output gate o, the forgetting gate f or the memory cell
c, depending on the activation being calculated. ct ∈ Rh is not just a cell of an LSTM
unit, but contains h cells of the LSTM units, while it, ot and ft represent the activations of,
respectively, the input, output and forget gates, at time step t, where:

• xt ∈ Rd: input vector to the LSTM unit;
• ft ∈ (0, 1)h forget gate’s activation vector;
• it ∈ (0, 1)h input/update gate’s activation vector;
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• ot ∈ (0, 1)h output gate’s activation vector;
• ht ∈ (−1, 1)h hidden state vector, also known as the output vector of the LSTM unit;
• c̃t ∈ (−1, 1)h cell input activation vector;
• ct ∈ Rd: cell state vector.

W ∈ Rh×d, U ∈ Rh×h and b ∈ Rh are weight matrices and bias vector parameters,
which need to be learned during training. The indices d and h refer to the number of input
features and number of hidden units.

Figure 1. The cell structure of a long short-term memory unit.

3.2. Gated Recurrent Unit

The gated recurrent unit is a special type of optimized LSTM-based recurrent neural
network [61]. The GRU internal unit is similar to the LSTM internal unit [62], except that
the GRU combines the incoming port and the forgetting port in LSTM into a single update
port. In [63], a new system called the multi-GRU prediction system was developed based
on GRU models for the planning and operation of electricity generation.

The GRU was introduced by Cho et al. [64]. Although it was inspired by the LSTM
unit, it is considered simpler to calculate and implement. It retains the LSTM immunity to
the vanishing gradient problem. Its internal structure is simpler and, therefore, it is also
easier to train, as less calculation is required to upgrade the internal states. The update port
controls the extent to which the state information from the previous moment is retained
in the current state, while the reset port determines whether the current state should be
combined with the previous information [64].

Figure 2 shows the internal architecture of a GRU unit cell. These are the mathematical
functions used to control the locking mechanism in the GRU cell:

zt = σ(xtWz + ht−1Uz + bz) (7)

rt = σ(xtWr + ht−1Ur + br) (8)

h̃t = tan(rt × ht−1U + xtW + b) (9)

ht = (1− zt)× h̃t + zt × ht−1 (10)

where Wz, Wr, W denote the weight matrices for the corresponding connected input vector.
Uz, Ur, U represent the weight matrices of the previous time step, and br, bz and b are bias.
The σ denotes the logistic sigmoid function, rt denotes the reset gate, zt denotes the update
gate, and h̃t denotes the candidate hidden layer [65].
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Figure 2. The cell structure of a gated recurrent unit.

It shows that the GRU has an updated port and a reset port similar to forget and
input ports on the LSTM unit. The refresh port defines how much old memory to keep,
and the reset port defines how to combine the new entry with the old memory. The main
difference is that the GRU fully exposes its memory content using just integration (but with
an adaptive time constant controlled by the update port).

Deep learning networks are very sensitive to hyperparameters. When the hyperparam-
eters are incorrectly set, the predicted output will produce high-frequency oscillation [66].
Important hyperparameters for GRU network models are the number of hidden units in
the recurrent layers, the dropout value, and the learning rate value.

Individually, these hyperparameters can significantly influence the performance of
the LSTM or GRU neural models. Studies, such as [67,68], demonstrate how important
the adjustment of hyperparameters is, as it optimizes the learning process and can present
good results against more complex neural network structures.

3.3. Model Evaluation

In the present experiments, LSTM and GRU neural network models are compared. To
evaluate the model prediction performance, the models used were root mean square error
(RMSE), mean absolute percentage error (MAPE), and mean absolute error (MAE). They
are defined as follows:

RMSE =

√
1
n

n

∑
t=1

(Yt − Ŷ)2 (11)

where Yt is the actual data value and Ŷ is the forecast obtained from the model value. The
prediction error is calculated as the difference between Y and Ŷ, i.e., the difference between
the output desired and the output obtained. n is the number of samples used in the test set.

MAE =
1
n

n

∑
t=1
|Yt − Ŷt| (12)

MAPE =
1
n

n

∑
t=1

|Yt − Ŷt|
|Yt|

(13)

4. Data Preparation

The present work is a continuation of previous work, where the data from the indus-
trial press were already studied and analyzed using LSTM models [59]. The industrial
presses are monitored by six sensors, with a sampling period of 1 min. The dataset con-
tains data samples from 1 February, 2018 to December, 2020, for a total of 1004 days. The
variables monitored are (1) electric current intensity (C. intensity); (2) hydraulic unit oil
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level (hydraulic unit level); (3) VAT pressure; (4) motor velocity (velocity); (5) temperature
at the unit hydraulic (temperature at U.H.); and (6) torque.

Figure 3 shows the plot of the raw data. As the graph shows, there are zones of typical
operation and spikes of discrepant data. Figure 4 is a Q–Q plot, showing the normality of
the data. As the figure shows, the data are not homogeneous. There are many discrepant
samples in the extreme quantiles and the distribution of data is not linear.

Figure 3. Plot of the sensor variables before applying data cleaning treatment. Many extreme values
are visible for many variables, namely the hydraulic oil level and temperature.

Figure 4. Q–Q plots of the sensor values before data cleaning treatment being applied.

Data quality is essential for developing effective modeling and planning. Data with
discrepant values, as those shown in the charts, can pose difficulties to machine learning
models. Therefore, data need to be processed and structured prior to analysis.

There are several treatment methods designed for this purpose, but a careful selection
is needed so that information is not impaired. In the present work, the approach followed
was the quantile method [59]. The quantile method removes extreme values, which are
often due to sensor reading errors, stops, or other abnormal situations. After those samples
are removed, it is possible to see more normal data distributions, such as those shown in
Figures 5 and 6.
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Figure 5. Sensor variables after applying data cleaning treatment. Many extreme values were removed.

Figure 6. Q–Q plots of the sensor values after data cleaning treatment applied.

Since the present study relies on information that exists in the samples, this gives rise
to the idea of presenting the correlation that exists between the variables. That information
was condensed in the correlation matrix shown in Figure 7. As the figure shows, some
of the correlations are interesting, such as those observed among the current, torque, and
pressure. Other correlations are very low, such as those between oil level and temperature.
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Figure 7. Correlation matrix, showing the correlation between all variables.

5. Methods

The present study aims to compare the performance of the LSTM model and the GRU
model to predict future sensor values with 30 days advance, based on a window of past
values. Experiments were performed using a computer with a third generation i5 processor,
with 8 GB RAM. Previous work [59] shows that LSTM can make predictions with MAPE
errors down to 2.17% for current intensity, 2.71% for hydraulic unit oil level, 2.50% for
torque, 7.65% for VAT pressure, 16.88% for velocity, and 3.06% for temperature, using a
window of 10 days and a sampling rate of two samples per day per sensor.

In the present work, different network architectures and hyperparameters were tested,
for LSTM and GRU. In both cases, the networks rely on an encoding layer, a hidden layer
of variable lengths, and an output layer. The internal architecture of the LSTM and GRU
units are as shown in Figures 8 and 9.

The models were programmed in python, using the frameworks TensorFlow and
Keras. For training, a batch size of 16 was used. Other hyperparameters, such as the activa-
tion function, when not indicated otherwise, are the TensorFlow and Keras default values.

Figure 8. Base architecture of the LSTM model used.
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Figure 9. Base architecture of the GRU model used.

For the experiments, the dataset was divided into train and test subsets. The test set
was used for validation during the training process and for final evaluation. The samples
were not included in the training set. The training set consisted of 70% of the samples and
the test set contained the remaining 30% of the samples.

Experiments were performed with different resampling rates. Using aggressive re-
sampling, the size of the dataset is greatly reduced, which increases speed and decreases
the influence of outliers in the data. However, for more precision, lower resampling rates
must be used.

To determine the best size for the sliding window, experiments were performed,
resampling to just one sample per day, which gave a total of 1004 samples, 70% of which
were used for train and 30% for test. Experiments were also performed to determine the
best resample rate, showing that using one sample per hour was a good compromise
between the computation required and the performance of the model, as explained in
Section 6.

Different experiments were performed to compare the performance of the LSTM and
the GRU, with different sets of hyperparameters. The parameters were varied and tested
one-by-one. Dense search methods, such as grid-search, were not used because of the
processing time required.

6. Experiments and Results

Experimental work was performed to confirm the ability of the models to learn, and
then to determine the optimal hyperparameters of the LSTM and GRU.

6.1. Testing the Convergence of the Learning Process

Figure 10 shows the learning curve of a GRU model, with 40 units in the hidden layer
and window of 12 samples. The graph shows the loss measured in the train and in the
test set. The learning process converges and takes less than 10 epochs to reach a small loss.
This is similar to previous results obtained for the LSTM [59].

Although the learning curve shows that the model learns very quickly, in less than
10 epochs, in the following experiments, the number of epochs was limited to 15.
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Figure 10. Learning curve of a GRU model, showing the loss measured in the train and test set
during the first 14 epochs.

6.2. Experiments to Determine Model Performance with Different Window Sizes

The first experiment carried out, aimed to find the optimal window for the LSTM
model and for the GRU model. The experiments were performed using one sample per
day. Thus, the dataset had a total of 1004 samples. The models used had 40 units in the
hidden layer.

Figure 11 shows the results of the two models, using different window sizes and
two different activation functions in the output layer. The RMSE is the average of all the
variables. As the charts show, the GRU is always better than the LSTM, regardless of the
window size or activation function used. The window size only has a small impact on the
performance of the model, being the differences minimal from two to 12 days. On the other
hand, the results are better when the ReLU is used at the output layer. When the sigmoid
function is used, the difference in performance between the GRU and the LSTM is larger
than when the ReLU function is used.

(a) Results with ReLU activation (b) Results with sigmoid activation

Figure 11. RMSE values for LSTM and GRU models, with different window sizes and activation
functions for the output layer.

Figure 12 shows the MAPE and MAE associated with the 30 day forecast, for past
windows of 2 to 12 days. The charts demonstrate that the LSTM architecture that uses a
ReLU activation function in the output layer has lower errors. Using the sigmoid function,
the LSTM errors are much larger. The GRU, however, in general performs better than the
LSTM for all variables and activation functions. The prediction error results are much
more stable for the GRU than they are for the LSTM. Table 1 shows exact error values for
the best window sizes for the LSTM model. Table 2 shows the best window sizes for the
GRU model.
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(a) MAPE using ReLU activation (b) MAPE using sigmoid activation

(c) MAE using ReLU activation (d) MAE using sigmoid activation

Figure 12. MAPE and MAE errors, for each variable, using ReLU and sigmoid activation functions,
for window sizes of 2, 4, 6, 8, 10, and 12 days, using one sample per day. Exact values are shown in
Tables 1 and 2 for the best window sizes.

Table 1. Summary of the best prediction errors obtained with the LSTM models. Window is the historical window size in
days. AF is the output activation function.

MAPE

Window-AF C. Intensity Hydraulic Torque Pressure Velocity Temperature

4-ReLU 2.95 2.32 3.68 8.28 14.06 2.38
6-Sigmoid 16.48 65.98 4.24 12.09 19.70 34.00

MAE

Window-AF C. Intensity Hydraulic Torque Pressure Velocity Temperature

4-ReLU 0.86 1.74 0.54 1.29 0.50 0.91
6-Sigmoid 4.91 50.34 0.61 1.83 0.72 13.02

Table 2. Summary of the best prediction errors obtained with the GRU models. Window is the historical window size in
days. AF is the output activation function.

MAPE

Window-AF C. Intensity Hydraulic Torque Pressure Velocity Temperature

12-ReLU 3.63 1.95 3.53 7.74 15.99 1.92
10-Sigmoid 2.57 2.21 3.74 9.53 15.41 2.82

MAE

Window-AF C. Intensity Hydraulic Torque Pressure Velocity Temperature

12-ReLU 0.77 2.20 0.44 1.49 0.55 0.86
10-Sigmoid 0.93 1.32 0.61 1.42 0.64 0.91

6.3. Experiments to Determine Model Performance with Different Resample Rates

In a second experiment, the models were tested with different resampling rates.
Resampling is often used as a preprocessing method. Different techniques are used. Some
of them are undersampling, in which the dataset size is reduced. This speeds up the data
processing. In other cases, oversampling methods (such as data augmentation) are used in
order to increase the number of samples.
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In the present experiments, the dataset contains a large number of samples, so only
undersampling techniques are necessary in order to reduce the number of data points. The
method used was to average a number of samples, depending on the size of the dataset
desired. Experiments were performed undersampling to obtain one sample per 12 h (two
per day), one per six hours (four samples per day), one per each three hours, and finally
one sample per hour. So the dataset size was greatly reduced.

The window sizes were the best of the previous experiments: a window size of 4 days
for the LSTM and 12 days for the GRU, with the ReLU. A window size of 6 days for the
LSTM and 10 days for the GRU, with the sigmoid.

Figure 13 shows the average RMSE errors for both models. As the results show,
sometimes the LSTM overperformed the GRU, namely when using the sigmoid function
with periods of six and three hours. However, the difference was not statistically significant.
On the other hand, the GRU was able to learn in all the situations and the RMSE error was
always approximately 1. So, the GRU is robust and accepts larger periods with minimal
impact on the performance, while the LSTM model is much more unstable.

(a) Using ReLU function at the output layer (b) Using sigmoid at the output layer

Figure 13. RMSE value for LSTM and GRU model with ReLU and sigmoid at the output layer, for
different undersampling rates: using one data point per 12 h, one per six hours, one per 3 h, and one
per hour.

Figure 14 shows the MAE and MAPE errors calculated for each variable. It is possible
to verify that, in general, the errors are much smaller with the sigmoid function. The LSTM
model with the ReLU function is able to learn when a period of 12 h is used. When the
sampling period is six hours, it seems the error gradient explodes for all variables and the
errors become extremely large. For lower sampling periods, the LSTM does not learn. The
GRU model continues to learn with acceptable errors. Table 3 shows the best results for the
LSTM model with different resampling rates. Table 4 shows the best results for the GRU
model with different resampling rates.

Table 3. Summary of the best prediction errors obtained with the LSTM models, using different resampling rates.

MAPE

Resampling-AF C. Intensity Hydraulic Torque Pressure Velocity Temperature

12-ReLU 2.42 2.92 3.72 10.36 17.19 2.30

MAE

Resampling-AF C. Intensity Hydraulic Torque Pressure Velocity Temperature

12-ReLU 0.71 2.22 0.55 1.57 0.64 0.88
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Table 4. Summary of the best prediction errors obtained with the GRU models, using different resampling rates.

MAPE

Resampling-AF C. Intensity Hydraulic Torque Pressure Velocity Temperature

1-ReLU 2.52 2.94 3.03 9.91 15.05 2.84
1-Sigmoid 2.22 2.72 2.88 9.29 12.42 2.74

MAE

Resampling-AF C. Intensity Hydraulic Torque Pressure Velocity Temperature

1-ReLU 0.70 2.62 0.43 1.58 0.50 1.21
1-Sigmoid 0.65 1.99 0.43 1.41 0.48 1.03

(a) MAPE using ReLU activation function (b) MAPE using sigmoid activation function

(c) MAE using ReLU activation function (d) MAE using sigmoid activation function

Figure 14. Results of the errors MAPE and MAE obtained with different undersampling rates,
forecasting 30 days in advance.

6.4. Experiments with Different Layer Sizes

An additional experiment was performed, to compare the performance of the models
with different numbers of units in the hidden layer.

Using the GRU model, it is possible to learn with a larger number of samples, and with
different variations of the model units, as shown in Figures 15 and 16. The LSTM was unable
to learn with the resampling rate period of 1 h; therefore, results are missing. The window
used in the experiments was 10 days for the sigmoid and 12 days for the ReLU, which were
the optimal windows for the GRU using the ReLU and sigmoid functions, respectively.

(a) Using ReLU function at the output layer (b) Using Sigmoid at the output layer

Figure 15. RMSE errors measured, with different numbers of cells in the hidden layer.
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(a) MAPE using ReLU function (b) MAPE using sigmoid function

(c) MAE using ReLU function (d) MAE using sigmoid function

Figure 16. MAPE and MAE obtained with different numbers of units in the hidden layer, measured
when predicting future values 30 days in advance, with a resampling period of one hour. The LSTM
was not able to learn, so the results are just for the GRU.

As the charts show, the GRU, using the sigmoid activation function, achieves the
lowest RMSE error with 50 units in the hidden layer. Experiments described in Section 6.3
showed that the GRU with the same parameters, with 40 units in the hidden layer, had an
RMSE error of 1.06. Table 5 shows the best results for the GRU model, after the tests with
different numbers of cells in the hidden layer.

Table 5. Summary of the best results obtained with different numbers of units in the hidden layer.

MAPE

Unit C. Intensity Hydraulic Torque Pressure Velocity Temperature

80-ReLU 2.66 4.09 3.19 10.31 13.83 3.29
50-Sigmoid 2.30 2.80 2.85 9.87 11.80 2.66

MAE

Unit C. Intensity Hydraulic Torque Pressure Velocity Temperature

80-ReLU 0.78 3.02 0.47 1.58 0.55 1.25
50-Sigmoid 0.68 2.05 0.42 1.48 0.46 1.01

6.5. Comparing Many-to-Many and One-to-Many Architectures

An additional experiment was performed, in order to determine if the models are
better trained to predict all the variables at the same time (one model, six outputs—many-
to-many variables) or trained to predict just one variable (six models, one output each—
many-to-one variable).

This experiment was just performed for the GRU, which presented the best results in
the previous experiments.

According to the graphs presented in Figure 17, it is clear that architecture ’many-
to-many’ presents slightly better results. Therefore, there is no advantage in training one
model to predict each variable.
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Figure 17. Comparison of the performance of the GRU models, trained to predict many-to-many and
many-to-one variables.

6.6. Tests with Different Activation Functions in the Hidden Layer

An additional step was to test combinations of different activation functions, for
the hidden and output layers of the GRU. The activation functions tested were sigmoid,
hyperbolic tangent (tanh), and ReLU. Figure 18 shows a chart with the average RMSE of
the models. Globally, ReLU in the hidden layer and tanh for the output are the best models,
even though ReLU–sigmoid and ReLU–ReLU are closely behind.

Figure 18. Average RMSE values, different types of activation functions.

Table 6 shows the RMSE error for the different combinations of activation functions, for
each variable. As the table shows, different variables may benefit from different functions,
although, in general, a first layer of ReLU and a second layer of ReLU, sigmoid, or tanh are
good choices.

The values shown in Table 6 are calculated for the raw output predicted. However,
the raw output values have some sharp variations, which are undesirable for a predictive
system. Therefore, the values were filtered and smoothed using a median filter. Figure 19
shows plots of selected results, where the signals and predictions were filtered with a rolling
median filter, with a rolling window of 48 h. Table 7 shows the MSE errors calculated after
smoothing. As the table shows, after smoothing, the prediction errors decrease.
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Table 6. Average RMSE obtained for the six variables, with different activation functions, calculated after the values were
smoothed with a median filter.

RMSE

Function C. Intensity Hydraulic Torque Pressure Velocity Temperature

ReLU–ReLU 0.96 3.48 0.42 1.90 0.84 1.90
ReLU–Sigmoid 0.93 1.72 0.53 1.60 0.79 1.19

ReLU–Tanh 0.83 2.47 0.48 1.70 0.76 1.25
Sigmoid–Sigmoid 0.98 6.40 0.45 2.14 0.89 1.35

Sigmoid–ReLU 1.22 4.87 0.43 1.86 0.74 1.31
Sigmoid–Tanh 1.19 7.38 0.45 2.03 0.78 1.35

Tanh–Tanh 1.36 7.84 0.44 2.24 0.91 1.35
Tanh–ReLU 0.86 7.3 0.42 1.91 0.76 1.41

Table 7. Average RMSE obtained for the six variables after the average clean method, with different activation functions
using the GRU model.

RMSE

Function C. Intensity Hydraulic Torque Pressure Velocity Temperature

ReLU–ReLU 0.71 3.33 0.28 1.36 0.66 0.80
ReLU–Sigmoid 0.61 1.58 0.39 1.08 0.61 0.78

ReLU–Tanh 0.54 2.33 0.35 1.13 0.54 0.82
Sigmoid–Sigmoid 0.73 6.36 0.30 1.70 0.68 0.94

Sigmoid–ReLU 1.03 4.80 0.28 1.32 0.50 0.89
Sigmoid–Tanh 0.98 7.35 0.29 1.53 0.54 0.94

Tanh–Tanh 1.18 7.81 0.29 1.80 0.70 0.96

Figure 19 shows examples of plots of different prediction lines in part of the test set.
As the results show, in some cases the ReLU–tanh combination is the best, while in other
cases, the ReLU–sigmoid offers better performance. The ReLU–tanh combination is better,
in general, but in the case of temperature, the sigmoid output shows the best performance.

Figure 19. Cont.
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Figure 19. Plot of the predictions with different combinations of activation functions.

7. Discussion

Based on studies presented in the state of the art, it is possible to verify the usefulness
of deep networks for prediction in time series variables. The area of prediction using deep
neural networks has grown fast, due to the development of new models and the evolution
of calculation power. LSTM and GRU models are two of the best forecast models. They
have gained popularity recently, even though most of the state-of-the-art models are more
traditional architectures.

The GRU network is simpler than the LSTM, supports higher resampling rates, and it
can work on smaller and larger datasets. The experiments performed showed that the best
results are based on the GRU neural network: it is easier and faster to train and achieve
good results. A GRU network, with encoding and decoding layers, is able to forecast
future behavior of an industrial paper press, 30 days in advance, with MAPE in general
less than 10%.

An optimized GRU model offers better results with a 12-day sampling sliding window,
with a sampling period of 1 h, and 50 units in the hidden layer. The best activation functions
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depend on the model. However, the ReLU–tanh is perhaps one of the best models, on
average.

The results also demonstrate that training the models using just one output variable,
thus optimizing a model for each variable separately, is not advantageous when compared
to training one model to predict all six variables at the same time.

The present work shows that a GRU network, with encoding and decoding layers, can
be used to anticipate future behavior of an industrial paper press. It shows better overall
performance, with less processing requirements, when compared to an equivalent LSTM
model. To the best of the authors’ knowledge, this is the first time such a study has been
made. The prediction errors are smaller than those presented by the LSTM neural network
and the GRU is more immune to exploding or vanishing gradient problems, so it learns in
a wider range of configurations.

Compared to the literature, previous research has shown that the GRU is often the
best predictor [69–71]. However, those studies were performed for univariate data only.
The present work uses six variables in a time series and compares the multivariate and
the univariate models. In [72], the model that presents the lowest RMSE is the ARIMA.
However, that is just for a small dataset and forecast with 6 samples advance. In [44,73],
forecasting models with LSTM, including encoding and decoding, are proposed, although
not compared to GRU.

8. Conclusions

In the industrial world, it is important to minimize downtime. Equipment downtime,
due to failure or curative maintenance, represents hours of production lost. To solve this
problem, predictive maintenance is, nowadays, the best solution. Artificial intelligence
models have been employed, aimed at anticipating the future behavior of machines and,
therefore, avoiding potential failures.

The study presented in this paper compares the performance of LSTM and GRU
models, predicting future values of six sensors, installed at an industrial paper press
30 days in advance.

The GRU models, in general, operate with less data and offer better results, with a
wider range of parameters, as demonstrated in the case study based on pulp presses.

Future work will include testing the performance of the GRU with different time gaps,
in order to determine the best performance for different time gaps.
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Abbreviations
The following abbreviations are used in this manuscript:

AF activation function
ARIMA autoregressive integrated moving average
NN neural network
GRU gated recurrent unit
LSTM long short-term memory
MAE mean absolute error
MAPE mean absolute percentage error
RMSE root mean square error
RNN recurrent neural network
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1. Introduction

1.1. The new paradigm of predictive maintenance

A good maintenance strategy aims to provide the best reliability, availability, safety
and performance, with the lowest possible maintenance cost (Almeida Pais et al., 2021;
Cline et al., 2017). In recent years, maintenance has gained more and more attention
due to increasing demand for system safety and reliability, while at the same time the
systems become increasingly more complex and commodities and labor become more
expensive (Sherif and Smith, 1981). In the UK manufacturing industry, maintenance
costs account for 12–23 % of the total plant operating costs (Cross, 1988).

The concept of Maintenance has been evolving from the corrective to the preventive
maintenance, and from scheduled, to on-condition (condition monitoring), until the
most recent concept of predictive. The predictive maintenance started with stochastic
models. From that, evolved to algorithms based on Artificial Intelligence, namely with
traditional Machine Learning and also Deep learning approaches.

The potential of artificial intelligence tools, especially machine learning, enables
to improve system availability, reduce maintenance costs, improve operational perfor-
mance and safety. It also supports decision making regarding the optimal time and
action to perform maintenance interventions (Lv et al., 2021; Yam et al., 2001; Zhikun
et al., 2013).

Maintenance activities play an important role in almost all areas of industry. Pre-
ventive maintenance has proven to be a great support when it comes to maximizing
asset availability. It is fundamental for example to guarantee good availability of wind
farms (Asgarpour and Sørensen, 2018; Canizo et al., 2017; Florea et al., 2012; Lei et al.,
2015; Turnbull and Carroll, 2021; Udo and Muhammad, 2021), and also to improve,
manufacturing capabilities in industry (Edwards et al., 1998; Lee et al., 2006; Spendla
et al., 2017).

More recently, developments in hardware computational power and artificial in-
telligence algorithms make predictive maintenance possible. This has been achieved
through some advances at the level of predictive maintenance tools, which aim to pre-
dict the variations that may occur in each period. Using those tools, the probability
of failure can be estimated and many failures can be prevented through maintenance
interventions, therefore increasing equipment availability and maintaining the produc-
tion flow. Predictive maintenance has demonstrated its great effectiveness in antic-
ipating problems of malfunction that could otherwise occur in the future. (Zhikun
et al., 2013) use stochastic models for predictive maintenance of power transformers.
(Rodrigues et al., 2021) use feed forward neural networks to predict future behavior
of a paper press. (Mateus et al., 2021) do the same using LSTM and GRU networks.

As more sensors and data are available, prediction algorithms have become increas-
ingly more popular in recent years. The connection with Big Data data storage tech-
nology is a relevant topic for possibly all industrial sectors. Machine learning shows
good results in prediction with Big Data (L’Heureux et al., 2017; Qiu et al., 2016;
Zhou et al., 2017). For the entertainment industry, for example, modern techniques
are applied to get a good approximation and knowledge of their customers to propose
more specific products, possibly customized to each customer.
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1.2. Industry 4.0 and IoT

Industry 4.0, which is based mostly on the digitization of information, documents,
and even assets, is facilitating the use of predictive maintenance because it is easier to
acquire, store and share information, which in turn brings great benefits in developing
strategies for dealing with anomalies that occur during the production process (Glistau
and Coello Machado, 2018; Kalsoom et al., 2020).

Big data analytics, Autonomous Robots, Simulation, The Internet of Things (IoT),
Cloud Computing, Additive Manufacturing, Augmented Reality and Cyber Security
are the most important pillars in industry 4.0 (Erboz, 2017). Big data analysis can be
used in different fields such as fault prediction to reduce the probability of error (Ji
and Wang, 2017). In the case of maintenance, it is boosted due to the large amounts
of data which are now possible to collect using network sensors.

The Internet of Things (IoT) is considered the future of the Internet, which allows
machine-to-machine communication and learning (Balevi et al., 2018; Huang and Li,
2010).

It is on the basis of the modern sensor networks, which allow real time monitoring
of modern industries. The IoT is presented as possibly the most important pillar of
the fourth industrial revolution (Drath and Horch, 2014)

Machines can exchange data, perform data analysis, make decisions and perform
operations without human intervention (Husain et al., 2014).

The Internet of Things (IoT) is presented as the most important pillar of the fourth
industrial revolution (Drath and Horch, 2014).

The benefits of predictive maintenance include increased productivity, reduction of
system errors (Dalzochio et al., 2020; Li et al., 2014) and minimization of unplanned
downtime (Jezzini et al., 2013).

Maintenance 4.0 is about predicting future asset failures and ultimately determining
the most effective preventive measures by applying advanced analytics techniques to
Big Data about the technical condition, usage, environment, maintenance history and
similar assets elsewhere and, in fact, anything that might correlate with an asset’s
performance.

1.3. Data pre-processing and fault detection

When data are collected, most of the times they come with discrepant data. That can
be due to failure of the sensors themselves, events that happen in the environment or
communication problems. The problem of dealing with discrepant data has been sub-
ject to heavy research and different treatment methods have been proposed, including
different types of filters (Kim et al., 2017; Martins et al., 2020; Narendra et al., 2015).

Fault detection through machine learning techniques has provided additional ben-
efits beyond improvements in risk mitigation and maximising system up time (Cline
et al., 2017).

There are many machine learning techniques which can be used to detect failure
patterns (for example, (Lykourentzou et al., 2009; Zibar et al., 2016), where the re-
gression approach is used to predict numbers that can represent possible failures in
the future state of the machine.), as well as predict future trends of the variables
monitored, as in the present work.

3



1.4. Research method

Modern Artificial Intelligence (AI) methods are efficient in predicting machine fail-
ure, using different types of data (Jabeur et al., 2021; Yam et al., 2001). Therefore,
predictive maintenance has attracted the attention of several scientific areas.

Predictive maintenance through artificial intelligence is a great way to overcome
problems of unexpected machine breakdowns (Liu et al., 2018).

The literature search was conducted using the publications searched in Scopus, Web
of Science, and ScienceDirect, as shown in Table 1.

Table 1. Total articles searched

Documents searched) Search (Scoup) Search (WOS) Search (ScienceDirect)

Keywords ”Predictive Maintenance”

Total of documents 2,587 3,308 2,730

Keywords ”Predictive Maintenance”
”Recurrent Neural Network”

Total of documents 66 94 337

Keywords ”Predictive Maintenance”,
”Recurrent Neural Network”,”GRU”

Total of documents 14 17 90

Keywords ”Predictive Maintenance”,
”Recurrent Neural Network”,”GRU”,

”Pre-Processing Methods”

Total of documents 0 0 3

Keywords ”Predictive Maintenance”,
”Recurrent Neural Network”,”GRU”,”
”Pre-Processing Methods”, ”LOWESS

Total of documents 0 0 0

The total number of articles associated with the keyword ”Predictive Maintenance”
in the search engines presented above is 8625 articles, this number decreases to 497
when the keyword ”Recurrent Neural Network” is added. Adding the keyword ”GRU”
decreases the total number of articles to 121, and adding the keyword ”Pre-Processing
Methods” decreases the total number of articles to 3, and none of them uses the
LOWESS method proposed in our research.

Table 2 lists the research results of the articles that use the techniques presented
in the present work. Although the articles in the table have used similar techniques,
they use a low sample rate, except one of the three, which also demonstrates the
importance of the LOWESS technique. Additionally, the studies present limitations
at the level of long-term prediction. They do not compare the performance of neural
network architecture for different types of samples.

Table 2 lists the research findings of articles that use the same techniques pre-
sented in this article. Although the articles in the table use the techniques, they have
a low sample rate, but one of the three is that it demonstrates the importance of
the LOWESS technique. In addition, the studies have limitations at the long-term
prediction level, i.e. they are not comparing the same neural network architecture for
different types of samples.

Machine learning methods are useful for predictive maintenance, namely managing
machine operations based on data collected by sensors. Those data contain patterns
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Table 2. Most Relevant Article

Author Focus Concept Theoretical Method Sample Findings
Model

Dai et al. (2022) Impact of data Data processing LOWESS Photovoltaic LOWESS smoothing can
fluctuations on GRU and Random Smoothing power generation generate the smallest

Forest prediction error.
forecast accuracy Optimize the

prediction performance
of GRU model.

GRU model is more
He et al. (2022) Voltage Prediction Auto-encoder LOWESS Voltage suitable for the

based health Smoothing prediction of photovoltaic
indicator and power generation.
LSTM network The method is

more suitable for the
hort-term forecasting
han the medium and
slong-term forecasting.
Good prediction
between different load profiles.

Wang et al. (2022) Online useful Bi-LSTM LOWESS Capacity(Ah) The proposed online RUL
life batteries Smoothing prediction method
prediction proves to achieve

better prediction
results than LSTM,
LSTM-AT, and Bi-LSTM
models.

and information on phenomena that occur during the production process (Gorski et al.,
2021; Zfle et al., 2021). The machine learning algorithms are able to discover those
patterns using computational power, rather than human work, with minimal human
intervention.

In the field of prediction, there are some typical machine learning algorithms, such as
neural network models (Wang, 2003), deep random forest (Miller et al., 2017), genetic
algorithms (Zhou et al., 2018), fuzzy logic (Couso et al., 2019), Bayesian algorithms
(Tipping, 2003) and hidden Markov model algorithms (Martins et al., 2021), which
have been applied in the diagnosis of dynamic device failures. Each of these models
has its advantages with respect to the problems presented. For example, although
multilayer neural networks and decision trees are two very different techniques for
classification purposes, some researchers have conducted some empirical comparative
studies (Eklund et al., 1998; Lim et al., 2000). Some general conclusions drawn in this
work are:

(1) Neural networks are generally better at incremental learning than decision trees;
(2) The training time for a neural network is generally much longer than the training

time for decision trees;
(3) Neural networks generally perform as well as decision trees, but rarely better.

The third point can be refuted by recent studies that report good performance of neural
networks, even with optimized architecture (Schwenk and Bengio, 2000). Studies such
as (Chong et al., 2004) use a combination of the two approaches to exploit their
strengths.

The present work focuses on a supervised learning method, namely GRU neural
network, to anticipate future trends of a number of variables. The GRU is in general
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accepted as one of the best models for prediction using multivariate data. The exper-
iments were performed using sensor data acquired at an industrial paper pulp press.
The main goal is to develop a model that can predict future sensor values, and there-
fore the state of the equipment, with at least 30 days advance, so that maintenance
interventions can be planned and failures can be prevented. In previous work, the best
prediction results were already obtained with the GRU model (Mateus et al., 2021).
The encoder and decoder architecture with GRU unit to data from same press, called
press number 2, and another press, called press number 4. Data pre-processing is done,
both eliminating discrepant data and smoothing using the LOWESS filter to achieve
more stable results.

The focus of this section is to present the contributions and objectives of this pa-
per. Based on the literature, the current preprocessing approaches, although they are
well known, are rarely used for this purpose, as well as the Gated Recurrent Unit
(GRU) neural network. To validate the proposed model, the sensory data, from two
paper pulp presses, are used. The data is composed of six variables: Current Intensity;
Hydraulic Unit Oil Level; Torque; VAT Pressure; Rotation Velocity; Temperature at
Hydraulic Unit. The results of this research contribute to adapt appropriate predictive
policies to upgrade the operational reliability of paper processing systems. Therefore,
the main objectives of this research are as follows: Review and survey of current AI-
based predictive maintenance algorithms in processing industries; Develop a novel
Gated Recurrent Unit (GRU) neural network for future predictive failure applications
by comparing various pre-processing approaches; Validate the proposed model with
sensory data from paper presses 2 and 4; Realization of the results to predict future
failures as well as maintenance tasks in pulp industries.

Section 2 describes the theory of GRU recurrent networks, as well as the formulae
used to calculate the different errors. Section 3 describes the method used to clean
the dataset, prepare data and properties of some samples. Section 4 describes tests
performed using the GRU neural network, results, and validation of the predictive
models. Section 5 discusses the results and compares them to work already done.
Section 6 draws some conclusions and highlights suggestions for future work.

2. Background and Methods

2.1. LSTM and GRU neural networks

Recurrent Neural Networks (RNN) are relatively popular for predictive maintenance
tasks. They are one of the most efficient methods of prediction. They present a good
performance at fault prediction based on data time series (Koprinkova-Hristova et al.,
2011; Markiewicz et al., 2019; Nascimento and Viana, 2019; Rivas et al., 2019).

Wang et al. (2020) used a RNN for achieving predictive and proactive maintenance
for high-speed railway power equipment. They also used a similar approach for IoT
based predictive maintenance based on a Long Short-Term Memory (LSTM) RNN
estimator. Chui et al. (2021) also used an RNN model for predicting remaining useful
life of turbofan engines. According to the authors, the Root Mean Squared Error
(RMSE) improved 12.95–39.32 % compared to existing works.

LSTM networks have also been used to predict the failure of air compressor motors
(Tsibulnikova et al., 2019), induction furnaces (Choi et al., 2020), oil and gas equip-
ment (Abbasi et al., 2019), and machine components such as bearings (Wu et al.,
2020).
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The studies conducted so far mostly refer to the type of encoder and decoder ar-
chitecture using the recurrent neural network LSTM. The LSTM model is good and
versatile for working with sequences. Nonetheless, it has many parameters and there-
fore it is hard to fine tune. The GRU is a simpler model, with less parameters and
therefore easier to fine tune. According to Santra and Lin (2019), the GRU neural
network can be called an LSTM optimized neural network. There is less research on
using GRU models, although the GRU often produces better results than the LSTM
in experimental work; In (Mateus et al., 2021), this alternative is proposed and its
good long-term prediction capability is shown.

Introduced by (Cho et al., 2014), GRU aims to solve the vanishing gradient prob-
lem that comes with standard recurrent neural networks.These are the mathematical
functions used to control the locking mechanism in the GRU cell:

zt = σ(xtW
z + ht−1U

z + bz) (1)

rt = σ(xtW
r + ht−1U

r + br) (2)

h̃t = tan(rt × ht−1U + xtW + bh) (3)

ht = (1− zt)× h̃t + zt × ht−1 (4)

Where,

• W z,W r,W are the weight matrices for the corresponding connected input vector;
• U z, U r, U the weight matrices of the previous time step;
• br, bz and bh are bias;
• xt is the input vector;
• ht is the output vector;
• h̃t is the candidate activation vector;
• zt is the update gate vector;
• rt is the reset gate vector.

Figure 1 shows a diagram of a GRU unit. The activation function is usually tanh or
a sigmoid function. The GRU was developed as a solution for short-term memory. It
has built-in mechanisms called gates that regulate the flow of information (Li et al.,
2018; Zhang et al., 2021).

Figure 2 shows the scheme of the proposed method, with the function of extracting
the data treatment by means of the two proposed methods, in order to have a predictive
model with good predictive capacity. It is possible to predict patterns of failures in
the variables of the presses.

2.2. Model evaluation

The Mean Absolute Percentage Error (MAPE) was used as a model performance
measure. It is calculated according to Equation 5. It is a metric commonly used to
estimate AI models’ error and works best when there are no extremes in the data,
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Figure 2. Diagram showing the data flow.

namely, zeros cannot exist in the actual output, so that the value of the fraction can
be calculated.

MAPE =
1

n

n∑
t=1

|Yt − Ŷt|
|Yt|

(5)

Where:

• n is total number of observations;
• Yt is the actual value;
• Ŷt is the value predicted by the model.

Root Mean Square Error (RMSE) was also used to validate the results, which is
given by the mathematical formula:
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RMSE =

√√√√ 1

n

n∑
t=1

(Yt − Ŷt)2 (6)

The Mean Average Error (MAE), which evaluates the magnitude of the average
error in a set of predictions without considering their direction, has also been used.

MAE =
1

n

n∑
t=1

|Yt − Ŷt| (7)

3. Data Pre-processing

In order to ensure quality of data fed to the machine learning models, one of the first
steps of the present study was the analysis and elimination of discrepant data which
could interfere with the convergence of the learning algorithms. Two methods were
used: the first was the Elimination of lower and upper extreme values, the second was
based on smoothing using linear regression.

3.1. Eliminating discrepant data

The method of eliminating discrepant values is based on the idea that extreme values
are most probably data reading failures. They often happen due to sensor failures,
communication interference or other type of problems during data acquisition. As a
result, the dataset sometimes contains invalid samples such as readings outside of the
expected sensor ranges, or zero when the machine was stopped. Those samples can be
eliminated, so that they do not negatively affect the machine learning process.

In the present work, limits were calculated for each variable and the samples out of
the allowed range were replaced by the average. The limits were calculated using the
following equations:

Q 1

4
=

1

4
(n+ 1) (8)

Q 3

4
=

3

4
(n+ 1) (9)

IQR = Q 1

4
−Q 3

4
(10)

Downlimit = Q 1

4
−K × IQR (11)

Uplimit = Q 3

4
+K × IQR (12)
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Downlimit is the lower limit accepted for the variable, calculated by subtracting
the constant k multiplied by IQR to Q 1

4
. Uplimit is the upper limit accepted for the

variable, calculated by adding the constant k multiplied by IQR to Q 3

4
, where k is the

constant of variation of the limits. The limits are calculated for each variable. Sample
data points that contain values that are out of the interval [Downlimit, Uplimit] are
replaced by the average.

3.2. Data smoothing

LOWESS/LOESS (locally weighted/estimated scatterplot smoothing) is a non-
parametric regression technique developed by Cleveland (Cleveland, 1981). Robust
locally weighted regression is a method for smoothing variables, (xi, yi), i = 1, · · · , n,
in which the fitted value at zk is the value of a polynomial fit to the data using weighted
least squares, where the weight for (xi, yi) is large if xi is close to xk and small if it is
not. The number of samples (n) used for each local approximation (zk) is a parameter
of the model. The degree of the polynomial function is also a parameter of the model.
Often the polynomial degree is 1, which means a linear regression is performed.

Recent research has used the LOWESS smoothing technique in order to optimize
the process of training and testing deep neural networks (Bury et al., 2021; Kulkarni
et al., 2021). According to Phyo et al. (2019), LOWESS/LOESS procedure is used to
overcome the problem of discrepant values. The study by (Jeenanunta et al., 2019)
presents the influence that the LOWESS smoothing processing method has on the
forecast errors of time series. According to Dai et al. (2022) all five different smoothing
methods used in the study can improve the prediction performance of the GRU model.
Among them, LOWESS smoothing can produce the smallest prediction error.

3.3. Data before and after pre-processing

The data set used in the present research contains samples from two paper pulp presses.
The samples were collected through several sensors that are installed in the two presses,
in a large industrial plant. The sensors read the following variables: i) Current Inten-
sity: current absorbed by the press motor, in Ampere; ii) Hydraulic Unit Oil Level (in
percentage); iii) Torque of the motor (in N.m); iv) VAT Pressure: Pressure inside the
cuba (in KPa); v) Rotation Velocity: velocity of rotation of the press’ rolls, in rotations
per minute; vi) Temperature at Hydraulic Unit, in degree Celsius. There are nominal
values for each of those variables, from the press manufacturer. Deviations from the
expected intervals, which are related among them, may cause equipment failure.

A plot of the original data is shown in Figure 3. The samples were registered with
sampling period of 1 min for press number 2 and 5 min for press number 4. For most
many of the experiments the dataset was downsampled, in order to reduce processing
time. The downsampling rate varied, although most of the time the 12 or 60 samples
of each hour are averaged, which is equivalent to using a sampling period of 1 hour.

The original data contain many discrepant samples, shown as extremes values in
Figure 3. There are spikes and sudden variations, which are mostly noise for the
machine learning algorithms. Using the methods described in the previous subsections,
most of the extremes are removed, specially the zeroes which were abundant and may
be caused by reading errors or production line stops.

The discrepant data cleaning eliminates many extreme values. Nonetheless, the
amplitude and frequency of variations still make the readings very unstable. Testing
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Figure 3. Plot of the variables for press number 4, before any data pre-processing. The variables contain a

large amount of noise.

Figure 4. Plot of the variables for press number 4, after data pre-processing. The variables contain a low

amount of noise.
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the LOWESS method with a window size of 3 days it is possible to verify that in Figure
4 there is a significant reduction of the extreme values which were present in Figure
3, without affecting the trends that the data was showing. The trends are maintained
and the variables are smoothed.

4. Case Study

4.1. Analysis of correlations before and after pre-processing

In order to have a better understanding on the impact of filtering the data using
the LOWESS filter, an analysis of variable autocorrelation was performed. Figure 5
shows autocorrelations of the six variables before cleaning and applying the LOWESS
filter. As the charts show, the correlations decay at a fast pace. The current intensity
and torque, which are two very important variables, show autocorrelations of almost
zero at 400 lags, which corresponds to 17 days. As for the variables VAT pressure,
Hydraulic unit oil level, and Temperature, the correlation reaches almost zero at 500
lags, corresponding to 21 days. For velocity the decay happens at a slower pace, where
the correlation is still about 0.1 at 1000 lags, corresponding to 42 days.

This shows that prediction with 30 days in advance is an ambitious goal, although
not impossible, specially combining all variables into a multivariate model as done
before (Mateus et al., 2021).

Figure 5. Variable autocorrelations, before cleaning and filtering the data.

Figure 6 shows the autocorrelations of the variables after data cleaning and filtering
using the LOWESS method with 36 days window size. As the figure shows, the cor-
relations for all variables have become larger than shown in Figure 5. The hydraulic
unit oil level is the one with faster autocorrelation decay. The other variables show a
good improvement, indicating better chances of small prediction errors.

4.2. Prediction and comparison of the results

For model validation the data were divided into two subsets. The training subset uses
the first 80% of the total data and the test subset contains the remainder 20% of the
data samples.

The purpose of the experiments is to find the best data preprocessing methods, neu-
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Figure 6. Autocorrelation for the all variables, obtained after cleaning and smoothing the data using

LOWESS with 36 days window.

ral model architectures and hyperparameters that produce the best results predicting
future behaviour of the paper pulp presses. The tests were performed using a GRU
neural network with data encoder and decoder architecture, for it was the architecture
that showed best results in previous work (Mateus et al., 2021).

Compared to LSTM models, GRU models have fewer parameters and simpler struc-
tures. (Gao et al., 2020) show that GRU models perform as well as LSTM models.
(Mateus et al., 2021) show that GRU has a higher capacity in terms of the sampling
rate.
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Figure 7. RMSE of the best models for press 2, using the two different methods for pre-processing data, for

the smaller and larger GRU networks. Method 1 only removes discrepant data. Method 2 smoothes the data

using a LOWESS filter. Method (1,2) is the application of both. (a) prediction test with 50 GRU units with the

two data processing methods, (b) prediction test with 500 GRU units with the two data processing methods.

The experiments aim at testing different pre-processing methods. Elimination of
discrepant values is Method 1. Data smoothing using the LOWESS filter is Method 2.
The combination of both—first the elimination of discrepant data, then smoothing—,
is called Method (1, 2). The architecture of the neural network was the same for all the
experiments, and it is the same that showed best results in previous work. Nonetheless,
experiments were still performed with a smaller and faster GRU, with just 50 units,
and a larger and slower network, with 500 units.

For press number 2, LOWESS method presented better results using a window of 5
days. The window size was halved because the number of data samples available from
press 2 was too small for using larger windows. The dataset for press 4 contains 34800
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hours of data, while the dataset for press 2 contains just 24096 hours of data.
Figure 7 shows the RMSE values of predictions for press 2, with the smaller and

the larger GRU neural networks, with and without LOWESS filtering. As the figure
shows, the prediction errors are much smaller when data are filtered. The difference
is even more notorious in the larger network. For the same press and the same archi-
tecture, increasing the GRU units of the neural network to 500, it is verified that the
combination of the methods leads to the same result, but with much smaller errors.
The hydraulic variable in particular shows a larger error for both network structures.
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Figure 8. RMSE for predictions of press 4 using the different data pre-processing methods. LOWESS filtering
and 500 GRU units result in smaller RMSE errors. (a) prediction test with 50 GRU units with the two data

processing methods, (b) prediction test with 500 GRU units with the two data processing methods.

For data originary from press number 4, the LOWESS filter presented better results
using a window of 36 days. From the RMSE diagram in Figure 8, it can be seen that
the results for press 4 also show much lower errors when the LOWESS filter is applied.
The smaller model, with 50 GRU neural units, shows errors slightly larger than the
larger model. For the same press using 500 GRU neural units, the RMSE errors are
smaller, as demonstrated by the smaller area of the chart polygons.

Table 3. Prediction error results for 30 days advance forecast, using the two data preprocessing methods,

removal of discrepant data and smoothing, for the 500 unit GRU and LOWESS with 5 days window, for press

2.

Prediction errors for press 2

C. Intensity Hydraulic Torque VAT Velocity Temperature

MAPE 0.62 1.85 2.24 3.91 10.27 0.96
MAE 0.2 1.39 0.35 0.82 0.57 0.38
RMSE 0.23 1.55 0.37 0.95 0.6 0.5

Applying the two methods to press 2 data, it can be seen that while the errors in
Table 3 are small, the important information are omitted from the graph in Figure 9,
which is not good for possible press failure analysis.

Figure 10 shows the result of predicting the model with the better method of data
processing for the press 4, which in this case falls on the intersection of the two
methods. From the Table 4 it can be seen that the error is smaller.
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Figure 9. Signals and forecast results for press 2, with 30 day advance, using the two data processing methods,

both removal of discrepant data and data smoothing using LOWESS filtering with 5 days window. The blue

lines represent the actual value. The orange and green lines are predictions, respectively, in the train and test

subsets.

Table 4. Prediction error results for 30 days advance forecast, using the two data preprocessing methods,

removal of discrepant data and smoothing, for the 500 unit GRU and LOWESS with 36 days window, for press

4.

Prediction errors for press 4

C. Intensity Hydraulic Torque VAT Velocity Temperature

MAPE 1.2 1.12 2.32 1.6 2.77 1.36
MAE 0.27 0.8 0.18 0.51 0.26 0.5
RMSE 0.30 1.00 0.20 0.61 0.30 0.69

5. Discussion

Data processing removing discrepant data simplifies the learning process of the RNN
model and also leads to an improvement in the prediction results. The results obtained
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showed an improvement with data from both presses when discrepant data samples
were replaced by the average. An analysis of autocorrelations shows that the use of
data processing methods results in higher correlations for larger periods of time, when
compared to untreated data as shown in Figure 9, and Figure 10.

In the literature review, no other studies were found to deal with forecast for in-
dustrial paper pulp presses using encoder-decoder architectures and recurrent neural
units. The present work and comparative analysis of the results obtained for two in-
dustrial presses show that the architecture proposed is versatile and the same network
architecture can be applied to both datasets, forecasting with acceptable errors af-
ter training. The larger architecture, using 500 GRU units, is slower and produces
lower errors. The smaller architecture, with just 50 units, is faster and is still able to
learn, although produces larger errors. Using data smoothed with the LOWESS filter,
the learning process is highly facilitated. The prediction errors obtained in a 30 days
advance forecast are smaller, with MAPE in general less than 10 %.

Compared to previous results (Mateus et al., 2021), the MAPE for the Current
Intensity for press 2 decreased from 2.30% to 0.62%. For the Hydraulic oil level the
MAPE decreased from 2.8% to 1.85%. For the Torque, the MAPE decreased from
2.85% to 2.24%. For the VAT pressure, the MAPE comes from 9.87% to 3.91%. For
the Velocity, MAPE decreased from 11.8% to 10.27%. Finally, for the Temperature
the MAPE decreased from 2.66% to 0.96%.

The quality of the results is confirmed visually in the charts, where the charts are
in general easy to read and show the main trends of the variables.

In summary, we demonstrate that the approach done innovates, namely the follow-
ing one: -The conjugation of Elimination of lower and upper discrepant values and
LOWESS to data processing before inserting them in the NN, what proved to have
better results than the other approaches described in the literature.

Additionally, the approach proposed can be adapted to other types of equipment,
helping to solve prediction problems and contributing to increasing their availability.

6. Conclusions

In modern industries, prediction algorithms can anticipate future trends and contribute
for better management decisions, namely in predictive maintenance. The results ob-
tained in the present work demonstrate the applicability of recurrent neural networks
(i.e., GRUs) in predicting future behavior in the paper press industry. The encoder and
decoder architecture with GRU unit showed good results learning data from two dif-
ferent industrial pulp presses, and by applying the LOWESS technique the prediction
errors decrease considerably, as described in Section 5.

Data pre-processing can play a very important role in improving the predictions. In
the present work, filtering out discrepant data and smoothing using a LOWESS filter
reduced the MAPE errors for all variables.

The results show that it is possible to forecast future behavior of industrial paper
pulp presses up to 30 days in advance with good degree of certainty. That can be a
good opportunity for optimizing maintenance decisions, reducing downtime and costs.

As limitations of the present approach, it must be referred that the method requires
near real time operation, demanding high-speed networks and high power computation
for monitoring the equipment and producing forecasts in advance. Additionally, the
approach being based on machine learning algorithms produces only estimates with a
degree of uncertainty.
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Figure 10. Signals and forecast results for press 4, with 30 day advance, using the two data processing

methods, both removal of discrepant data and data smoothing using LOWESS filtering with 36 days window.
The blue lines represent the actual value. The orange and green lines are predictions, respectively, in the train

and test subsets.
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In future work, other variables can be included in the study, namely through the
inclusion of stock market variables in the model. These variables will aim to improve
the predictive model, exploring the link between the stock market and the need for
the production of the machines and their corresponding availability.

Abbreviations:
AI Artificial Intelligence
ANN Artificial Neural Networks
IoT Internet of Things
IQR Interquartile Range
NN Neural Networks
GRU Gated Recurrent Units
LSTM Long Short-Term Memory
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
RMSE Root Mean Square Error
RNN Recurrent Neural Networks
AF Activation Function
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Resumo 

 

O entendimento das variáveis que constituem o mercado das bolsas apresenta inúmeras 

vantagens pouco exploradas no âmbito industrial. Estas variáveis podem influenciar 

direta ou indiretamente o valor dos nossos produtos. Ao longo do tempo têm surgido 

novos desenvolvimentos no âmbito da gestão das operações, designadamente as que 

permitiram compreender e otimizar as dinâmicas de fabrico por via da redução do 

desperdício do tempo que se perde na manutenção das linhas de produção. A manutenção 

preditiva é fundamental para as indústrias modernas, a fim de melhorar a disponibilidade 

dos ativos físicos, a tomada de decisões e a racionalização dos custos. Isso exige a 

implementação de redes de sensores, armazenamento de dados e desenvolvimento de 

métodos de tratamento de dados que possam satisfazer a qualidade exigida nos modelos 

de previsão. O presente projeto tem como finalidade apresentar uma nova abordagem de 

monitorização da cadeia de produção por via da previsão da produção total das prensas 

de polpa de papel e também das previsões das falhas que possam ocorrer. Os dados foram 

obtidos por via de sensores instalados nas prensas de pasta de papel industrial para 

monitorizar o estado da mesma e prever a sua evolução com até 30 dias de antecedência, 

usando redes neuronais recorrentes Gated Recurrent Unit (GRU). O GRU é um dos 

modelos de inteligência artificial que tem produzido melhores resultados nos problemas 

de previsão, nomeadamente com séries temporais. No caso presente consegue antecipar 

valores futuros com o erro quadrático médio de seis variáveis entre 0.39 e 1.58. 
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1.  Introdução 

 

1.1. Enquadramento   

A gestão da produção pretende otimizar recursos de produção, necessários para produzir 

produtos e serviços da qualidade desejada no mais curto espaço de tempo e ao menor 

custo. A implementação operacional desta função depende da cooperação de diferentes 

áreas técnicas com marketing, finanças, gestão e funções similares. Os recursos humanos 

e as ferramentas tecnológicas são um pré-requisito para assegurar esta coordenação e 

sinergias. 

Os promotores do crescimento económico afirmam que a tecnologia acabará por conduzir 

a métodos de produção mais eficientes e a menos danos ambientais. Contudo, a maioria 

dos estudiosos da sustentabilidade afirmam que este pensamento está errado e que 

precisamos de mudar a nossa definição de prosperidade e ignorar a busca do crescimento 

económico sustentável (Jackson, 2016). Outos estudos analisam a forma como a 

reciclagem de papel na Europa pode ser expandida através de várias melhorias ao longo 

da cadeia de valor do papel (Blanco et al., 2013).  

A tomada de decisão em tempo certo apresenta vantagens para a indústria, uma vez que 

uma decisão fora do tempo certo pode acarretar consigo custos indesejados. Por exemplo, 

a paragem não planeada do equipamento pode aumentar os custos da produção. Se antes 

deste acontecimento houvesse uma manutenção planeada, poderia ser evitada esta 

paragem indesejada. Para além dos custos, a tomada de decisão também pode afetar na 

eficiência e flexibilidade da produção dos bens. 

Não há dúvida de que estamos a enfrentar a pior crise de sustentabilidade da história. 

Mudanças no clima, pobreza, poluição, escassez de água, e sobre consumo são algumas 

das preocupações de investigação, incluindo áreas como a ecologia, biologia, química, 

economia, sociologia, gestão, criatividade e inovação (Brem & Puente-Díaz, 2020); 

(Syren et al., 2021). Embora o papel seja um bom parceiro na luta contra o uso excessivo 

do plástico, não está isento de potenciais problemas que podem trazer para o ambiente, 

como estes estudos demonstram (Bloemhof-Ruwaard et al., 1996; Odada et al., 2004; 

Vaccari et al., 2005). 

Uma produção mais equilibrada e tecnologicamente sustentável, baseada na gestão da 

disponibilidade face às aquisições no mercado pode ser uma das possíveis soluções. E, 

mais importante ainda, a gestão das instalações que produzem estes bens, porque a sua 

má gestão pode conduzir ao abate da instalação, e muitas destas instalações têm uma 

pegada ambiental significativa. 

Durante o ciclo de vida de um bem tangível, ocorrem uma variedade de mudanças internas 

e externas. Por conseguinte, é importante desenvolver estratégias para apoiar a tomada de 

decisão. Enquanto algumas mudanças estão para além das previsões, outras, tais como 

alterações na legislação, impactos ambientais, e requisitos de produção, devem ser 



 

 

antecipadas. No entanto, a gestão de ativos baseia-se numa visão holística que oferece a 

possibilidade de evitar os acontecimentos mais imprevisíveis (Almeida Pais et al., 2021). 

A monitorização do equipamento industrial é essencial para antecipar e evitar potenciais 

falhas, que podem pôr em perigo pessoas e bens. A manutenção preditiva visa tornar o 

processo mais eficiente, reduzindo a janela de tempo ideal para os procedimentos de 

manutenção. Usando dados sensoriais e algoritmos de previsão adequados, o estado do 

equipamento pode ser determinado e o tempo ideal para intervenções de manutenção pode 

ser previsto com alguma antecedência, evitando custos desnecessários e falhas por falta 

de manutenção. 

Tal como discutido em (Sullivan et al., 2010), a manutenção preditiva pode reduzir os 

custos de manutenção em 25 %-35 %, eliminar falhas em 70 %-75 %, reduzir o tempo de 

paragem em 35 %-45 %, e aumentar a produção em 25 %-35 %. O estudo refere que estas 

percentagens não têm em conta aspetos importantes como a segurança do sistema e a 

imagem corporativa. 

1.1. Objetivos do presente projeto 

Algoritmos modernos, capacidade de armazenamento de dados e poder de computação, 

tornam possível não só analisar o comportamento passado, mas também antecipar o 

comportamento futuro de equipamentos industriais com razoável confiança (Bousdekis 

et al., 2021; Martins et al., 2020; Pech et al., 2021). Antecipar falhas futuras é, portanto, 

um tema que tem recebido cada vez mais atenção dos investigadores. 

O presente projeto tem como finalidade demonstrar a correlação que existe entre as 

variáveis da prensa da produção de papel com fluidez de produção,  também apresentar a 

inovação do monitorização dos valores cotados em bolsas em relação ao fabrico do papel, 

consumo do papel no mundo, com principal intuito de tornar a produção mais estável, 

ecológica, evitando grandes quantidades de stocks que por vezes acabam por se 

deteriorar, tornar a produção fiável, de modo a acompanhar as tendências do consumo do 

mercado, mas sem desperdiçar os recursos. 

1.2. Estrutura do Documento 

O presente projeto está organizado pelas seguintes secções: 

A secção 2 objetivos, expetativa de contribuição para o ramo da engenharia em questão; 

A secção 3 conceitos teóricos da inteligência artificial nomeadamente as redes neuronais; 

A secção 4 redes neuronais recorrentes LSTM e GRU; A secção 5 desenvolvimento do 

projeto. A secção 6 aplicabilidade prática e perspetivas de futuro; A secção 7 conclusões. 

 

2. Objetivos, expetativa de contribuição para o ramo da engenharia 

em questão 

No processo de produção, a otimização não está apenas na primeira interação, como é 

apresentado no estudo (Monostori et al., 2016). O objetivo é otimizar ciclicamente o seu 



 

 

sistema de produção de modo a atingir os objetivos definidos no período de tempo pré-

definido. 

A abordagem de planeamento e programação de processos em circuito fechado na Figura 

1 utiliza feedback dinâmico do calendário de produção e informação sobre a atual 

disponibilidade de recursos para gerar planos de processo. Em suma, a fase de 

planeamento comunica ao processo de programação a atual disponibilidade de máquinas 

no chão de fábrica. 

Cada vez que uma operação é concluída na oficina, é gerada uma carga de trabalho 

baseada em recursos para determinar a próxima operação e atribuir os recursos 

necessários. Em geral, os departamentos de planeamento e programação do processo 

devem ser completamente reestruturados devido à necessidade de comunicação 

bidirecional em tempo real  (K. Iwata and Y. Fukuda, 1989) 

 

Figura 1 - Planeamento e Programação do Processo ClosedLoop (Zijm et al., 2019). 

Tsang (2002) apresentou uma forma de visualizar o sistema de manutenção com base no 

estado do equipamento, carga operacional, ações de manutenção (estratégias), e objetivos 

comerciais. De acordo com isto, o estado do equipamento é afetado tanto pela carga 

operacional como pelas ações de manutenção. A  Figura 2 apresenta a estrutura de 

produção, e o seu ambiente. Durante anos, a relação entre a produção e a manutenção foi 

considerada um antagonismo na tomada de decisões de gestão. Esta situação não se 

alterou porque os requisitos de escala de cada papel não estão alinhados (Weinstein & 

Chung, 1999).  

 

Figura 2 - Estrutura de produção, e seu entorno. 



 

 

Um estudo mais detalhado da natureza das máquinas de papel pode ser encontrado em 

estudos (Holmberg et al., 2013) (Zvolinschi et al., 2006) (Stewart et al., 2003), nos quais 

mostram as perdas e danos que podem ocorrer nestas suas relações e a praticidade do 

problema torna-o desafiante e interessante (Xiao et al., 2016). 

2.1. Manutenção preditiva  

A manutenção preditiva pode ser descrita como uma estratégia de manutenção que visa 

determinar o momento exato em que a ação de manutenção efetiva deve ser desencadeada 

(Montero-Jiménez & Vingerhoeds, 2018).  

A criação de um Programa de Manutenção Preditiva é uma decisão estratégica que até 

agora careceu de análise das questões relacionadas à sua instalação, gestão e controle. 

Carnero (2006) refere que a Manutenção Preditiva pode proporcionar um aumento na 

segurança, qualidade e disponibilidade nas indústrias. Bansal et al. (2004) apresentam um 

novo sistema de manutenção preditiva em tempo real para sistemas de máquinas baseado 

em redes neuronais. Outros estudos como (Bruneo & De Vita, 2019; Ghaboussi & 

Joghataie, 1995) indicam a viabilidade de redes neuronais artificiais para manutenção 

preditiva. 

Em (Carvalho et al., 2019), é possível ver que cada abordagem proposta deste trabalho 

aborda um equipamento específico, pelo que se torna mais difícil compará-lo com outras 

técnicas. Ao mesmo tempo, é de notar que a própria manutenção preditiva está a tornar-

se uma nova ferramenta para a gestão de eventos de serviço. A monitorização de todos os 

fluxos com estratégias ótimas de qualidade e manutenção como resultado de um sistema 

regulado pode permitir às empresas aumentar a sua rentabilidade e nível de serviço ao 

cliente (Gejo-García et al., 2022). 

A monitorização de ativos físicos tornou-se uma prioridade para a manutenção preditiva. 

Estudos recentes comprovam a importância do tema (Aydin & Guldamlasioglu, 2017; 

Dong et al., 2017). (Sana, 2012) fala sobre um modelo baseado no inventário para gerir a 

produção imperfeita através de manutenção preventiva, de trabalho e garantia. Neste 

modelo de inventário, a produtividade é constante e a procura é determinista. 

Muitas ferramentas estatísticas e de aprendizagem computacional têm sido usadas para 

fins de previsão, na monitorização e prevenção de falhas de equipamentos (Baptista et 

al., 2018) (J. Wang & Zhang, 2008), controle de qualidade (Cruz et al., 2021), bem como 

em outras áreas também (Chao-Ton Su et al., 2002).  

Os métodos modernos de Inteligência Artificial (IA) são eficientes na previsão de falhas 

de máquinas, utilizando diferentes tipos de dados (Yam iet al., 2001) (Jabeur et al., 2021; 

Liu et al., 2018). Por conseguinte, a manutenção preditiva tem atraído a atenção de várias 

áreas científicas. A Figura 3 mostra a distribuição de documentos SCOPUS por área 

científica, ao procurar "manutenção preditiva" (https://www.scopus.com, verificado 

2022-03-12). 



 

 

 

Figura 3 - Distribuição de documentos SCOPUS na área "preditivos manutenção”. 

Os métodos de aprendizagem computacional são úteis para a manutenção preditiva, 

nomeadamente a gestão de operações de máquinas com base em modelos que usam dados 

recolhidos por sensores. Esses dados contêm padrões e informações sobre fenómenos que 

ocorrem durante o processo de produção (Züfle et al., 2021)(Gorski et al., 2022). Os 

algoritmos de aprendizagem de máquinas são capazes de descobrir esses padrões 

utilizando poder computacional, reduzindo o esforço da mão de obra. 

3. Conceitos teóricos 

3.1.  Inteligência artificial     

Mais recentemente, entretanto, os métodos de Inteligência Artificial tornaram-se mais 

populares. Eles estão a ter impacto na sociedade, na política, na economia e nas indústrias 

(K. Wang & Wang, 2018), oferecendo ferramentas para análise de dados, reconhecimento 

de padrões e previsão. Esse impacto pode ser benéfico na manutenção preditiva e nos 

sistemas de produção.  

Chen et al., (2003) aplica redes neuronais a um mercado financeiro emergente: previsão 

e negociação do índice de ações de Taiwan. Resultados empíricos mostram que as 

estratégias de investimento baseadas em redes neuronais probabilísticas (PNN) obtêm 

retornos mais elevados do que outras estratégias de investimento examinadas neste 

estudo. São também consideradas as influências da duração do horizonte de investimento 

e da taxa de comissão.(Freitas et al., 2009), (Reynolds et al., 2019) utilizada as redes 

neuronais e um algoritmo genético para a otimização operacional da oferta e da procura.  

Métodos modernos de aprendizagem de máquina provaram oferecer desempenho 

superior e tornaram-se mais populares (Carvalho et al., 2019). Eles podem trabalhar com 

dados de elevada dimensionalidade e dados multivariados (Wuest et al., 2016). As 

ferramentas mais populares incluem Redes Neuronais Artificiais (ANN), que foram 

propostas em muitas aplicações industriais, incluindo soft sensing (Soares, 2015) e 

controle preditivo (Shin et al., 2018). Modelos de floresta aleatória (Random Forest) 

também são bons preditores, como mostrado neste estudo (Paolanti et al., 2018). 



 

 

3.2. Redes Neuronais Artificiais 

As Redes Neuronais Artificiais têm recebido atenção especial, na área de energia elétrica. 

Estudos de (Chao-Ton Su et al., 2002; J.-T. Zhang & Xiao, 2012) mostram a sua 

capacidade e desempenho como bons preditores, desde que um conjunto de dados com 

qualidade e quantidade de dados suficientes esteja disponível e os parâmetros corretos 

sejam encontrados.  

As RNA tradicionais são simples e adequadas para uma ampla gama de problemas. 

Bangalore & Tjernberg, (2015) mostraram o desempenho de redes neuronais para 

detecção precoce de falhas em rolamentos de caixa de engrenagens, para otimizar a 

manutenção de turbinas eólicas. As Redes Neuronais Recorrentes (RNN) são 

relativamente populares para tarefas de manutenção preditiva. São um dos métodos mais 

eficientes de previsão. Apresentam um bom desempenho na previsão de falhas com base 

em séries temporais de dados (Koprinkova-Hristova et al., 2011) (Rivas et al., 2019).  

Wang et al. (2020) utilizaram um RNN para manutenção preditiva e proactiva para 

equipamentos de energia ferroviária de alta velocidade. Também utilizaram uma 

abordagem semelhante para a manutenção preditiva baseada em tecnologias Internet of 

Things (IoT) utilizando um estimador RNN de Long Shot-Term Memory (LSTM).  No 

entanto, para previsão em dados sequenciais, LSTM e Gated Recurrent Units (GRU) 

mostraram desempenho superior (Sugiyarto & Abadi, 2019) (Mateus et al., 2021; Mateus, 

Mendes, Farinha, & Cardoso, 2021).  

Chui et al. (2021) também utilizaram um modelo RNN para prever a vida útil 

remanescente dos motores turbofan. De acordo com os autores, o erro médio quadrático 

(RMSE) melhorou 12,95-39,32 % em comparação com trabalhos existentes. As redes 

LSTM também foram utilizadas para prever falhas de motores de compressores de ar 

(Tsibulnikova et al., 2019), fornos de indução (Choi et al., 2020), equipamento de 

petróleo e gás (Tsibulnikova et al., 2019), e componentes de máquinas, tais como 

rolamentos (Wu et al., 2018). 

 

4. Unidades de LSTM e GRU 

A Figura 4 mostra o desenho interior de uma célula de unidade LSTM, de acordo com 

(Li & Lu, 2019). Formalmente, o modelo de célula LSTM é caracterizado da seguinte 

forma: 

𝑓𝑡 = 𝜎(𝑥𝑡𝑊𝑓 + ℎ𝑡−1𝑈𝑓 + 𝑏𝑓) (1)  

𝑖𝑡 = 𝜎(𝑥𝑡𝑊𝑖 + ℎ𝑡−1𝑈𝑖 + 𝑏𝑖) (2)  

𝑜𝑡 = 𝜎(𝑥𝑡𝑊𝑜 + ℎ𝑡−1𝑈𝑜 + 𝑏𝑜) (3)  

𝐶~𝑡 = 𝑡𝑎𝑛 

 
(4)  



 

 

𝐶𝑡 = 𝜎(𝑓𝑡 × 𝐶𝑡−1 + 𝑖𝑡 × 𝐶𝑡
~) (5)  

ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝐶𝑡) × 𝑜𝑡 (6)  

As matrizes 𝑊𝑞 e 𝑈𝑞 contêm os pesos da entrada e das ligações recorrentes, onde o índice 

pode ser a porta de entrada 𝑖, porta de saída 𝑜, a porta de esquecimento 𝑓 ou a célula de 

memória 𝑐, dependendo da activação a ser calculada. 𝐶𝑡 ∈ 𝑅ℎ não é apenas uma célula 

de um LSTM, mas contém células ℎ das unidades LSTM, enquanto 𝑖𝑡, 𝑜𝑡𝑒𝑓𝑡 representam 

as activações da unidade, respectivamente, os portões de entrada, saída e esquecimento, 

no espaço de tempo 𝑡, onde: 

• 𝑥𝑡  ∈ 𝑅ℎ: vector de entrada para a unidade LSTM; 

• 𝑓𝑡 ∈ (0,1)ℎ esquecer o vetor de ativação do portão; 

• 𝑖𝑡 ∈ (0,1)ℎ vector de activação do portão de entrada/actualização; 

• 𝑜𝑡 ∈ (0,1)ℎ vetor de ativação do portão de saída; 

• ℎ𝑡 ∈ (−1,1)ℎ vetor de estado oculto, também conhecido como o vetor de saída da 

unidade LSTM; 

• 𝑐~𝑡 ∈ (−1,1)ℎ  vetor de ativação de entrada da célula; 

• 𝑐𝑡 ∈ 𝑅𝑑: vector de estado das células. 

𝑊 ∈ 𝑅ℎ×𝑑×d, 𝑈 ∈ 𝑅ℎ×ℎ e 𝑏 ∈ 𝑅ℎsão matrizes de peso e parâmetros vetoriais de 

polarização, que precisam de ser aprendidas durante a formação. Os índices 𝑑 e ℎ 

referem-se ao número de entradas características e número de unidades escondidas. 

 

Figura 4- Estrutura detalhado de uma unidade de memória LSTM. 

O GRU foi introduzido por (Chung et al., 2014). Embora inspirado na unidade LSTM, é 

considerado mais simples de calcular e implementar. Ele retém a imunidade do LSTM ao 

problema do vanishing gradient, um problema que dificulta o treino. A sua estrutura 

interna é mais simples e, portanto, também é mais fácil de treinar, pois menos cálculos 

são necessários para atualizar os estados internos. A porta de atualização controla até que 

ponto as informações de estado do momento anterior são retidas no estado atual, enquanto 



 

 

a porta de redefinição determina se o estado atual deve ser combinado com as informações 

anteriores (Cho et al., 2014). A Figura 5 mostra a arquitetura interna de uma célula 

unitária GRU.  

Para avaliar o desempenho de predição do modelo, utilizou-se Root Mean Squared Error 

(RMSE), Erro Médio Percentual Absoluto (MAPE) e Erro Médio Absoluto (MAE), que 

são definidos da seguinte forma: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑌𝑡 − 𝑌)

2
𝑛

𝑡=1

 

 

(7)  

onde 𝑌𝑡  representa o valor desejado (real) e 𝑌é o valor predito (obtido do modelo). A 

diferença entre  𝑌  e  𝑌 é o erro entre o valor que se espera obter e o valor realmente 

obtido da rede. 𝑛  representa o número de amostras usadas no conjunto de teste. 

𝑀𝐴𝐸 =
1

𝑛
∑ 𝑌𝑡 − 𝑌 ∨

𝑛

𝑡=1

 (8)  

𝑀𝐴𝑃𝐸 =
1

𝑛
∑  

𝑛

𝑡=1

|𝑌𝑡 − 𝑌̂|

𝑌𝑡
 (9)  

 

Figura 5- Estrutura detalhado de uma unidade de memória GRU. 

𝑧𝑡 = 𝜎(𝑥𝑡𝑊𝑧 + ℎ𝑡−1𝑈𝑧 + 𝑏𝑧) (10)  

𝑟𝑡 = 𝜎(𝑥𝑡𝑊𝑟 + ℎ𝑡−1𝑈𝑟 + 𝑏𝑟) (11)  

ℎ𝑡
~ = 𝑡𝑎𝑛(𝑟𝑡 × ℎ𝑡−1𝑈 + 𝑥𝑡𝑊 + 𝑏) (12)  

ℎ𝑡 = (1 − 𝑧𝑡) × ℎ𝑡
~ + 𝑧𝑡 × ℎ𝑡−1 (13)  

 



 

 

Onde 𝑊𝑧, 𝑊𝑟, 𝑊 denotam as matrizes de peso para o correspondente vector de entrada 

ligado. 𝑈𝑧, 𝑈𝑟, 𝑈 representam as matrizes de peso do passo de tempo anterior, e 𝑏𝑟, 𝑏𝑧 e 

𝑏 são o enviesamento. O 𝜎 denota a função sigmoide logística, 𝑟𝑡 denota a porta de 

reinicialização, 𝑧𝑡 denota a porta de atualização, e ℎ~𝑡 denota a camada oculta candidata 

(Lynn et al., 2019). 

 

5. Desenvolvimento 

O presente projeto debruça-se sobre a otimização do funcionamento de 5 prensas 

indústrias monitoradas por seis sensores (por prensa), com período de amostragem a cada 

5 minuto. O conjunto de dados contém amostras de dados desde 1 de fevereiro de 2018 a 

20 de novembro de 2021, para um total de 1388 dias. 

As variáveis monitoradas para todas as prensas são 1) Intensidade de corrente elétrica (C. 

intensity); 2) Nível de óleo da unidade hidráulica (Hydraulic unit level); 3) pressão do 

VAT; 4) Velocidade do motor (Velocity); 5) Temperatura na unidade hidráulica 

(Temperature at U.H.); e 6) Binário (Torque). Na Figura 6 está presente todas as variáveis 

em formato de uma série temporal. 

 

Figura 6- Série temporal de todas as variáveis das prensas de polpa de papel. 

Na Figura 7 verifica-se que existe uma correlação elevada sobre os valores de pasta de 

papel produzida, em relação à corrente e ao torque. Estes valores da correlação chegam a 

ser de 0.9, sendo que o valor máximo da correlação 1.  Verificando estas correlações entre 

o valor da produção e as variáveis Intensidade da Corrente, Torque e a Velocidade, pode-

se validar a exequibilidade das previsões destas variáveis em conjunto. 



 

 

 

Figura 7- Correlação entre todas as variáveis das prensas de polpa de papel. 

Além da análise das correlações entre variáveis, foram também analisadas as auto-

correlações, de forma a compreender-se até quantas amostras se pode esperar fazer uma 

boa previsão. Verifica-se que individualmente cada variável apresenta autocorrelações 

que decaem relativamente depressa.  De qualquer forma, os modelos de previsão 

multivariados foram testados para previsão a 30 dias, esperando-se dessa forma obter o 

máximo ganho da informação presente no conjunto de todas as variáveis. Para a 

realização dos testes foram apenas consideradas as 2 prensas de papel. 

 

 

 

Figura 8- Autocorrelações variáveis da prensa 4. 



 

 

A Figura 8 mostra as autocorrelações das variáveis da prensa 4 e o nível de óleo da 

unidade hidráulica é o que tem um decaimento mais rápido da autocorrelação. As outras 

variáveis mostram uma boa melhoria, indicando maiores probabilidades de pequenos 

erros de previsão. 

Conforme apresentado atrás, redes neuronais recorrentes apresentam uma boa capacidade 

de previsão de séries temporais, embora ainda não havia previsões feitas para dados deste 

tipo de prensa. Nisto foram explorados os parâmetros e hiperparâmetros do modelo em 

questão, o que resultou em dois trabalhos científicos (Mateus, Mendes, Farinha, & 

Cardoso, 2021) (Mateus, Mendes, Farinha, Assis, et al., 2021).  

 

 

Figura 9 – Arquitetura do modelo de previsão 30 dias para frente. 

As experiências foram realizadas utilizando um computador com um processador i5 de 

terceira geração, com 8 GB de RAM. A Figura 9 descreve a arquitetura de um dos 

modelos de rede utilizados. Os modelos foram implementados em linguagem de 

programação Python utilizando a biblioteca TensorFlow e Keras. A mesma está composta 

por unidades GRU. 

Os resultados mostram que o modelo proposto é capaz de aprender e prever o 

comportamento das seis variáveis estudadas:  Intensidade de corrente elétrica; Nível de 

óleo da unidade hidráulica; pressão do VAT; Velocidade do motor; Temperatura na 

unidade hidráulica e binário, como mostra a Figura 10.  



 

 

 

Figura 10 - Gráfico das previsões da prensa 2 com diferentes combinações de funções 

de ativação. 

Usando uma abordagem comparativa das redes neuronais GRU, é possível verificar que 

a GRU oferece bons resultados. Os erros de previsão são menores do que aqueles 

apresentados pela rede neural LSTM no estudo de Mateus et al. (2021) e o GRU é mais 

imune a problemas de explosão ou desaparecimento do gradiente durante a aprendizagem, 

como referido atrás. Portanto ele aprende numa gama mais ampla de configurações. 

A rede com unidades GRU suporta taxas de reamostragem mais altas, portanto, pode 

trabalhar com janelas de dados menores. O otimizador Adam é eficaz para minimizar o 

problema de exploding gradient, e foi também utilizado nos modelos GRU. Um modelo 

GRU otimizado oferece melhores resultados com uma janela deslizante de amostragem 

de 12 dias de dados com um período de amostragem de 1 hora. Isto para um modelo GRU 

com 50 unidades na camada oculta. As melhores funções de ativação dependem do 

modelo, porém, o relu-tanh talvez seja um dos melhores modelos, em média. 

Foi feita também uma análise do impacto de remover dados discrepantes do conjunto de 

dados. A limpeza de dados discrepantes elimina muitos valores extremos, 

designadamente valores próximos de zero que são lidos durante as paragens da máquina, 

ou registados por falhas de comunicação. Esses dados foram eliminados usando o 



 

 

intervalo interquartil e método LOESS (que é regressão local ou regressão polinomial 

local). 

No entanto, mesmo depois da eliminação de dados discrepantes, a amplitude e a 

frequência das variações ainda tornam as leituras muito instáveis. Os dados têm muito 

ruído e tornam a aprendizagem e a leitura dos resultados difíceis. Utilizando método de 

eliminação dos dados discrepantes e o método de filtragem e alisamento LOESS (ou 

LOWESS) foi possível aumentar a precisão do modelo e produzir gráficos mais estáveis 

e, portanto, fáceis de ler. A Figura 11 e a Figura 12 mostra uma das representações da 

previsão da variável da Intensidade da Corrente num período de 30 dias para frente. Com 

esta precisão é possível prever com antecedência variáveis que poderão originar uma 

paragem. 

 

Figura 11 - Gráfico das previsões da prensa 2 da Intensidade da corrente com previsão a 

30 dias. A azul o sinal original alisado com LOESS, a laranja a previsão no conjunto de 

treino e a verde a previsão no conjunto de teste. 

 

Figura 12 - Gráfico das previsões da prensa 4 da intensidade da corrente com previsão a 

30 dias. A azul o sinal original alisado com LOESS, a laranja a previsão no conjunto de 

treino e a verde a previsão no conjunto de teste. 

Aplicando os métodos de processamento, os resultados com GRU e LOESS apresentaram 

uma superioridade com relação aos resultados publicados no trabalho (Mateus, Mendes, 



 

 

Farinha, Assis, et al., 2021). O MAPE (Erro Percentual Absoluto Médio) para a 

Intensidade Atual para prensa de papel 2 diminuiu de 2,30% para 0,62%. Para o nível de 

óleo hidráulico o MAPE diminuiu de 2,8% para 1,85%. Para o Torque, a MAPE diminuiu 

de 2,85% para 2,24%. Para a pressão do VAT, a MAPE passou de 9,87% para 3,91%. 

Para a velocidade, a MAPE baixou de 11,8% para 10,27%. Finalmente, para a 

Temperatura, a MAPE baixou de 2,66% para 0,96%. 

Com as previsões de antecipação de 30 dias das variáveis da prensa, aplicamos o mesmo 

modelo com objetivo de realizar também uma previsão da nossa produção total. Na 

Tabela 1  é possível verificar que os erros apresentados são significativamente baixos. O 

coeficiente de determinação é alto, o que nos leva a ter um modelo preparado para assim 

ser aplicado na previsão da produção. Na Figura 13  está presente o resultado da previsão 

da produção total das prensas de pasta de papel, o mesmo encontra-se com uma taxa de 

amostragem de uma amostra por mês. 

Tabela 1 - Resumo dos melhores erros de predição da variável da produção total.  

Error Produção Total 

MAPE 12.23 

R^2 0.85 

MAE 0.08 

RMSE 0.08 

 

 

Figura 13 - Gráfico das previsões da produção total a 30 dias. 

Os resultados mostram que é possível prever com bom grau de certeza o comportamento 

futuro das prensas de pasta de papel industrial e a sua capacidade de produção com até 

30 dias de antecedência. Isso pode ser uma boa oportunidade para otimizar as decisões de 

manutenção, reduzir o tempo de paragem e os custos. 

 

 



 

 

6. Aplicabilidade prática e perspetivas de futuro 

Pelos registos dos técnicos de manutenção houve uma avaria no mês de setembro. Aa 

mesma foi prevista pelo nosso modelo por via do comportamento da variável da corrente 

mostrada na Figura 14, em que o momento está marcado com uma cruz. Não foi possível 

obter informação sobre outros momentos de avaria até à data de conclusão do presente 

trabalho. 

 

Figura 14 – Previsão da prensa 4 da intensidade da corrente á 30 dias para frente. 

Fazendo uma previsão a 30 dias a Figura 15, apresenta a previsão de uma forma interativa 

do mês de dezembro do ano de 2021, o que torna mais fácil a visualização da previsão e 

por sua vez nas tomadas de decisão com relação a produção do mês em questão. 

 

Figura 15 – Placar da previsão da produção total com 30 dias para frente. 

Tendo a disponibilidade da produção das três prensas de pasta de papel, no trabalho futuro 

outras variáveis podem ser incluídas nos algoritmos de previsão, nomeadamente as 

cotações bolsistas que se sabe afetaram a procura e, portanto, as necessidades de 

produção. Segundo a Figura 16, variáveis de cotação da bolsa, obtidas no site da 

EURONEXT e FRED , que apresentam uma grande relevância a nível de correlação com 

a nossa produção total (Soma das produções), estas variáveis da bolsa são: 1) ALTRI 



 

 

SGPS, 2) Consumer_Prices e 3) Pulp_Paper. Com estas conclusões deu-se início ao 

estudo de um modelo de previsão para assim ser feita a previsão das variáveis mais 

relevantes. 

 

Figura 16- Correlação entre a produção total e os valores da bolsa. 

 

7. Conclusão 

A manutenção preditiva assume uma importância cada vez maior para as empresas, e o 

crescente poder computacional para adquirir e processar dados tornam possível a sua apli-

cação prática. No âmbito do presente trabalho foram desenvolvidos algoritmos pioneiros 

para previsão do estado de prensas de pasta de papel. O método e algoritmos são replicá-

veis entre prensas, tendo sido testados com duas prensas diferentes. Cada prensa tem um 

estado de funcionamento diferente, sendo necessário treino para ajuste dos modelos. 

A ferramenta desenvolvida é um auxílio na tomada de decisão, com base nos comporta-

mentos das variáveis, sendo que com uma previsão de 30 dias para frente a empresa pode 

ajustar as intervenções nas máquinas. Esta torna possível a redução das falhas das prensas 

de papel, por conseguinte evita possíveis paragens não programadas e os custos que as 

mesmas provocam. 

No âmbito deste projeto também se demonstrou uma boa capacidade de previsão da pro-

dução total da prensa, com modelo GRU. Isto trará grandes benefícios na empresa, para 

otimização e eventual redução nos ‘stocks’ sem que haja falhas nem atrasos nas entregas. 

O projeto apresenta uma desvantagem que é, para elevadas quantidades de dados é ne-

cessário uma elevada capacidade computacional, sendo que o tempo de treino do modelo 

pode levar horas ou até mesmo dias, no caso de várias prensas serem consideradas. De 

qualquer forma, atualmente o processamento em GPU é relativamente barato e com baixo 

consumo energético. 
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