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Abstract. All industrial systems and machines are subjected to degradation 

processes, which can be related to the operating conditions. This degradation can 

cause unwanted stops at any time and major maintenance work sometimes. The 

accurate prediction of the remaining useful life (RUL) is an important challenge 

in condition-based maintenance. Prognostic activity allows estimating the RUL 

before failure occurs and triggering actions to mitigate faults in time when 

needed. In this study, a new smart prognostic method for photovoltaic module 

health degradation was developed based on two approaches to achieve more 

accurate predictions: online diagnosis and data-driven prognosis. This 
framework of forecasting integrates the strengths of real-time monitoring in the 

first approach and relevant vector machine in the second. The results show that 

the proposed method is plausible due to its good prediction of RUL and can be 

effectively applied to many systems for monitoring and prognostics. 

Keywords: monitoring; photovoltaic module; prognosis; relevant vector machine; 

remaining useful life. 

1 Introduction 

The use of photovoltaic (PV) panels for electric energy production has rapidly 

increased in the last few decades. Several developed countries have set up an 

incentive system to encourage and accelerate the deployment of energy 

produced from PV sources. The need for renewable energies stems from the 
deterioration of the environment caused by the traditional sources of energy, 

and they have become a possibility with the advancement of science and 

technology. The prognostic and health management (PHM) of these products is 
becoming very urgent [1] in order to improve the position of PV panels 

available in the market as an eco-friendly source of energy. The prognosis 

decision is facilitated by the ability to accurately predict their remaining useful 
life (RUL) (Figure 1). Several studies on the RUL of PVs have already been 

published [2,3]. However, these are about specific environmental conditions [4] 

or a specific panel type [5]. We can also find works about emission of 

CO2/Kwh [6] and energy consumption [7]. 
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Figure 1 Illustration of RUL prediction. 

In the scientific literature, prognostic techniques can be categorized into four 
approaches based on the usage of information, i.e. experience-based, model-

based, data-driven and hybrid approaches. To estimate the parameters of the 

dominant reliability, the experience-based approach (or reliability-based 
approach) [8] uses data and knowledge gathered from experience during the 

system exploitation period. The works on Weibull [9] and lognormal laws [10] 

are of great importance. The main disadvantage of this approach is that it is 

difficult to have a past history of experiences representative of all systems’ 
conditions of use. 

The model-based approach [11] assumes that a model of system behaviour is 

available and uses this model to predict the future of the system behaviour. A 
number of recent developments in the model-based approach, such as Lumped 

parameter models [12] and functional models [13], have been reported in the 

literature. Thus far, model-based approaches are not suitable for many industrial 

applications, where physical models or mathematical models are difficult to 
build such that they precisely describe the mechanism of the system, which may 

vary under different operation conditions [14]. With respect to their accuracy, 

model-based approaches cannot be used for complex systems whose internal 
state variables are inaccessible to direct measurement using general sensors. 

Moreover, model-based approaches may not be the most practical approaches 

since the faults in question are often unique.  

The data-driven approach [15] aims to collect information and data from 

routinely monitored components and projecting them to estimate the future 

evolution of degradation within the system. Compared with model-based 

approaches, data-driven approaches avoid developing high-level physical 
models of the system so they are less complex and less costly to develop. In the 

last few years there has been more research interest in data-driven methods for 

forecasting such as support vector machine (SVM) [16] and neural networks 
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(NN) [17]. Hybrid approaches [18] combine the data-driven and model-based 

approaches and includes Bayesian techniques [19]. The application of hybrid 

approaches is limited to cases in which sufficient knowledge of system physics-

of-failure is available.   

Complexity and inflexibility are the two main causes that limit the use of 

model-based and hybrid approaches. On the other hand, data-driven approaches 

can reflect an inherent relationships in which only the historical and monitoring 
data are required to provide an RUL estimation. At the same time, most data-

driven methods are offline and therefore cannot hold online supervision. 

However, this results in unsatisfactory prediction accuracy. Considering the 

need for rapidly developed state monitoring and predicting, it is essential to 
propose an online RUL prediction approach. 

To overcome the abovementioned difficulties, in this study a new prognostic 

model was developed that is a kind of mixture between two approaches for the 
estimation of RUL. The first approach is an online diagnosis method based on a 

condition-monitoring framework. It allows supervision of the critical 

parameters in a PV module. The second approach is a data-driven method based 
on the relevant vector machine (RVM) technique to predict degradation. This 

paper is organized as follows. Section 2 contains the new fusion prognostic 

framework. In Section 3, application and performance evaluation are described 

with a discussion of future works. Finally, Section 4 deals with the advantages 
and shortcomings of the suggested method. 

2 Fusion Prognostic Framework for PV Module Life 

Forecasting 

In this section, first we briefly discuss two principal components of the 

proposed prognostic framework: real-time monitoring and RVM prognosis. The 
fusion prognostic framework will then be described, so as to develop a more 

reliable RUL of PV module. 

2.1 Real Time Monitoring (Online Diagnosis) 

Before starting the prognostic process, we need to establish the current health of 

the system by making a diagnosis. This initial phase (diagnosis), employs 

pattern recognition and machine learning to detect changes in the system states 
[20]. During the last decade, there has been more research interest in methods of 

diagnosis such as condition monitoring [21]. The researchers also developed 

several model-based approaches for machinery diagnosis [22], such as the 

extended Kalman filter [23] or observer-based diagnosis [24].  
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Model-based diagnosis approaches require the development of an accurate 

mathematical model, which is not always possible, especially in the case of 

large-scale systems. The advantage of condition-monitoring techniques is their 

ability to transform high-dimensional noisy data into lower-dimensional 
information for diagnosis. But, the accuracy of the latter is highly dependent on 

the quantity and quality of the system’s operational data. 

Online condition monitoring determines where we are on the health curve. Is it 
‘‘nominal”? Or are there some anomalies to have to be dealt with? 

Today with new available technologies, the engineering of monitoring makes 

important data about a machine’s condition available. However, such data are 

not effectively analysed due to the lack of efficient analysis methods. If we can 
establish a mechanism to analyse real-time data, the equipment condition can be 

observed and evaluated effectively and quickly, and this mechanism will be 

very useful in the development of a prognostic approach. 

With the proposed model, we aim to develop a practical diagnostic tool that can 

be used to supervise the health condition of a system in real time by 

continuously monitoring the system’s condition and using data anomaly 
detecting techniques. The online monitoring analyses operating data and 

compares it with a healthy baseline (threshold of diagnosis) to look for 

anomalies. When there is fault or anomaly, the diagnostic module generates an 

alarm and starts the process of RUL computing. The progress of diagnosis will 
be detailed in Section 2.3. 

2.2 Relevance Vector Machine 

Many data-driven approaches for prognosis have been reported in the literature, 

such as the auto regressive (AR) model [25], Gaussian process regression 

(GPR) [26], artificial neural networks (ANN) [27] and relevance vector 

machine (RVM) [28,29].  RVM is a Bayesian form representing a generalized 
linear model with a functional form identical to that of support vector machine 

(SVM). RVM is developed based on sparse Bayesian learning theory [30,31]. It 

differs from SVM in the case of solutions that provide a probabilistic 
interpretation of its outputs [32]. The strongest asset of RVM is its high learning 

ability, easy training, as well as prediction results through kernel and statistical 

probability learning. RVM has been successfully adopted in a variety of 

application fields, including renewable energy [33], mechanical fatigue [34] and 
battery life [35]. 
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Consider a set of input vectors Njx ...1}{ =  
and their corresponding target vectors

1...
{ }

j N
t

=
. The goal is to learn a model of the dependency of the target vectors on 

the inputs in order to make an accurate prediction of t  for an unseen value of x . 

We define function )(xF
 
in the input space to make a prediction with the 

learning process to identify the parameters of the function. In the context of 

SVM, )(xF  takes the form as shown in Eq. (1), 
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0

w  is bias. The output of the RVM model can be expressed 

as in Eq. (2), 
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where, 
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2σ from Eq. (3) will lead to severe overfitting [30]. To overcome this 
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the parameters by choosing a zero-mean Gaussian prior probability distribution 

over w  as provided by Eq. (4), 
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However, we cannot compute the solution of Eq. (5) directly since we cannot 

perform the normalizing integral in the denominator. Instead, we can 

decompose the posterior distribution as shown in Eq. (6), 

 
                     (6) 

For reasons of simplification, the posterior distribution of weight can be written 

as in Eq. (7), 

 

                              (7) 

The posterior over the weight is then obtained from Bayes’ rule in Eq. (8), 
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−1 2

exp −
1

2
(w−µ)T Σ−1(w−µ)
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The posterior covariance and mean are shown in Eqs. (9) and (10), 
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It is important to note that 
2σ  is also treated as a hyper-parameter that may be 

estimated from the data. The sparse Bayesian learning can then be expressed as 

maximisation of the hyper-parameters’ posterior distribution: 

( ) ( )222 ,, σασασα pptptp ∝ . Therefore, the maximum a posteriori (MP) 

estimate of hyper-parameters needs only to maximize likelihood 2,p t α σ . 

The likelihood function (3) can be marginalized by integrating the weights as: 
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To complete the specification of this hierarchical prior, the hyper-parameters 

over α  and 
2σ  are approximated as delta functions at their most probable 

values 
MPα and 

2

MPσ . By maximizing the marginal likelihood of Eq. (11) as in 

[30] we can obtain the iterative re-estimation formulas as shown in Eqs. (12) 
and (13), 
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        (12) 

   (13) 

Having found the maximizing values
MPα  

and 
2

MPσ , predictions for new data 

are then made according to Eq. (14) knowing that 
*x  is the new input. 

 
     (14) 

2.3 Description of the Proposed Methodology 

The proposed model for prognosis aims to assess the machine’s performance 

degradation and foretell the RUL through the use of diagnosis and prognosis in 
a manner that can take the strengths of each. To apply this method, an online 

monitoring process is first carried out to acquire the system’s condition. The 

data obtained from the diagnosis can be properly managed and utilised by the 

RVM approach for making a prognosis. A flowchart of the combination 
between diagnosis and prognosis is shown in Figure 2. The suggested method 

consists of two steps. The role of each one can be summarized as follows. 

The diagnostic routine starts with data acquisition using multi-sensors attached 
to the operating system. Then, embossed operating state features are extracted 

from the collected data (considering root mean square (RMS) as the monitoring 

indicator). This calculated feature (RMS) will be used to reflect the system’s 
health and to supervise the level of anomaly using a predefined threshold of 

diagnosis. Next, an automatic alarm is triggered to prevent machinery 

performance degradation or malfunction. The alarms triggered in the diagnostic 

phase are dependent on the quality of feature extraction; the existence of non-
robust features may lead to false or missed alarms when the monitoring tool 

cannot detect the existence of a system fault. The prognosis routine starts when 

the alarm is activated. After identifying the fault in the diagnosis step, the 
historical data are employed by calculating the feature. This feature can be used 

to represent the degradation evolution of the observed system.  

The results are regarded as target vectors of degradation probability. RVM is 
then used for training and validation. The weights obtained from training and 

validation are used as predicted values of degradation. In order to evaluate the 

forecasting accuracy, a performance indicator is used, the mean absolute scaled 
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error (MASE). Some data from the feature calculation unit can be used to test 

the performance of RVM after validation. 

Definition of the MASE [37]: 

A scaled error is defined as in Eq. (15), 

    

,                                    (15) 

with 2≥N  

where M  is the real measurement, M̂ is the predicted value and N is the 

number of predictions data set. The MASE in simplified form is shown in Eq. 
(16), 

   (16) 

 

Figure 2 Flowchart of the integration of real time monitoring and prognostic 
(RTM-RVM). 

3 Application and Performance Evaluation 

The photovoltaic (PV) module consists of several PV cells that convert solar 

rays into direct current (DC). Degradation of a PV is the gradual deterioration of 
its characteristics, which may affect its performance and its ability to operate 

within the limits of desired criteria caused by the operating conditions. A 
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degraded PV module may keep executing its primary function, which is to 

generate electricity from sunlight. However, the degraded state of the module 

can cause problems when the degradation exceeds a predefined critical 

threshold. 

According to the literature, PV module performance can be degraded due to 

several factors such as: temperature [38], humidity [39], irradiation [40], 

corrosion [41], discoloration [42], and delamination [43]. The most important 
electrical characteristics of a PV module are the current voltage (I-V) [44] and 

power voltage (P-V) curves [45], short-circuit current (Isc) [46], open-circuit 

voltage (Voc), fill factor (FF) [47], and maximum power output (Pmax) [48].  

Methods commonly applied by researchers to monitor and assess a module’s 
electrical performance are current voltage (I-V) and power voltage (P-V) curve 

scanning. In general, the degradation of a photovoltaic module is assessed by 

measuring the power and therefore the power loss during its lifetime compared 
to its initial power.  

PV module

Latitude tilted

Horizontal  

Figure 3 PV module installation. 

In this study, we have analysed the performance data of one PV module 

collected over a period of 55 months. The PV module was mounted open-rack, 
open-circuit and latitude tilted as shown in Figure. 3. A temperature sensor 

attached to the back of the module provided the back-skin temperature. The 

maximum power output of the module was derived from an electrical 
performance test. The measurements were carried out every 50 days. 

The effect of temperature on PV module performance is often neglected, but 

studies have shown that it cannot be ignored [49,50]. Although there is an 
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increase in the current with temperature, the overall effect of increased 

temperature is a decrease in power due to the larger decrease in voltage. 

According to Mazer [51], the decrease of Voc with temperature is caused by the 

increase of the saturation current, which increases with intrinsic carrier 
concentration, which in turn is exponentially dependent on temperature. Figures 

4 and 5 show the effect of temperature on Voc and Pmax, respectively. 

Subsequently, we will evaluate the performance of the PV module by using the 
method from Section 2, taking into account the test measurement data. 

 

Figure 4 Temperature dependence of Voc of PV modules. 

The PV module used in our study was a crystalline silicon (c-si) [52] with initial 

standard test condition (STC) parameters Pmax= 100.7 W, Voc = 22.84 V, Isc = 

4.8A, FF = 66.8%, and η  
= 9.4%. STC refers to 1000 W/m

2
 irradiance, 25 °C 

cell temperature, and AM 1.5 G spectrum. The data that were used to assess 

degradation and calculating the RUL were Voc and Pmax.  
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Figure 5 Temperature dependence on Pmax of PV module. 

The collected data in the learning area were used to predict the degradation in 

the next twelve years (145 months) and to compare them with the real 

degradation values. 

3.1 Diagnosis of PV Module 

For machinery fault diagnostics and prognostics, different types of signals can 

be used. In this research, we used the voltage Voc data because they are readily 
available and the trend of voltage is closely related to PV degradation, as 

already indicated.  

The data of voltage Voc from the PV were used for diagnosis in real time; 
measurements were taken in the nominal operating condition. A total of 43 

measurements were collected during a period of 72 months for monitoring the 

health of the PV module. After measuring the voltage Voc, the health condition 

of the PV was checked to see if there was an anomaly or just noise in the signal. 
Confirmation of the existence of an abnormality was done by measuring the 

RMS of the difference between Vocr (open-circuit voltage reference) and Vocm 

(open-circuit voltage measured) measured in real time. The Vocr voltage is the 
value of Voc measured the first time after the installation of a new PV module 

(see Eq. (17)). 

 VocRMS =
1

n
(Vocr(t)−Vocm (t))2

t=1

n

∑










1 2

 (17) 
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Figures 6 and 7 show the voltage Voc drop and the evolution of RMSVoc  

respectively; the Voc decreases with usage and the saturation of current Isc. It 

was observed that during a period of 75 months the RMSVoc  gradually 

increased and at time 33 it reached the diagnosis threshold defined by the RTM, 

which will trigger an alarm and prognosis process. The trigger level of the alarm 

(diagnosis threshold) was set to RMSVoc
 
= 1. 

 

Figure 6 Real time monitoring of voltage Voc degradation. 

 

Figure 7 Online RMS evolution. 
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3.2 Prognosis of Degradation and RUL Estimation of PV Module 

After validation of the diagnosis, the RVM model was trained by using the past 

data of Pmax. After the training process, which produced and saved weight and 
bias, the predictions results were obtained (degradation of Pmax). Two different 

prognostic thresholds were used, with a particular maintenance action for each. 

At time 70 degradation reached threshold 1 = 87 W and at time 87 degradation 

reached threshold 2 = 85 W, as shown in Figure 8. 

Our method of prognosis was employed to make a specified number of 

predictions and determine the RUL of the PV module. By measuring the 

distance between the actual life cycle 
p

T  and the predicted life cycle rulT  (at 

which the future degradation value hits the threshold of prognosis for the first 
time), we get an RUL distribution as shown in Eq. (18), 

    (18) 

The estimated values of degradation and corresponding 95% confidence 

intervals (CI) are shown in Figure 8, with additional indication of the RUL for 

convenience of visualization. 

3.3 Results and Analysis 

In Figure 8, it can be seen that the values of degradation estimated by the 

proposed prognostic framework were very close to the real degradation. 
Moreover, almost all predicted values were located within the confidence 

interval (CI). It can also be seen that the proposed method can forecast the RUL 

of a PV model over a long term (when the real degradation reaches the 
threshold of prognosis, the predicted value almost equals its actual value). 

Then, to verify and evaluate the applicability and to further illustrate the 

accuracy of the proposed method, the GPR and autoregressive integrated 
moving average (ARIMA) model [53] were applied for the prognosis of 

degradation using the same data as applied in our method (Figure 9).  

3.3.1 Gaussian Process Regression for Prognostic 

A Gaussian Process (GP) is a collection of random variables, any finite number 

of which have a joint Gaussian distribution. A real GP ( )f x  is specified by its 

mean function  ( )m x
 
and co-variance function ( , ')k x x

 
as defined in Eq. 

(19): 

rul p
RUL T T= −
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                     (19) 

The index set X ∈ℜ  is the set of possible inputs. The information about the GP 

and a set of training points{ }( , ) 1, ...,
i i

x f i n= , the posterior distribution over 

functions, is derived by imposing a restriction on the prior joint distribution to 

contain only those functions that agree with the observed data points [54]. 

These functions can be expressed as ( )y f x ε= + , where ε  is additive IID

2(0, )
n

N σ . Once we have a posterior distribution it can be used to assess 

predictive values for the test data points using the equations of the predictive 

distribution [55] (See Eqs. (20) to (22)): 
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,                 (20) 

  

Since we know the values of training set y, we are interested in the conditional 

distribution of 
test
f  given y, which is expressed as: 

   (21) 

where 

   (22) 

 
. 

3.3.2 ARIMA Model for Prognosis 

ARIMA is a forecasting technique, denoted as ARIMA (p,d,q). The general 
model, introduced by Box and Jenkins [53], is a method that allows both 

autoregressive (AR) and moving average (MA). It explicitly includes 

differencing in the formulation of the model, where p  and q  are the 

autoregressive parameter and the moving average parameter respectively, while 

d  is the number of non-seasonal differences. The autoregressive part of the 

model of order p  is written in Eq. (23),  

( ) [ ( )],
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1

p

t i t i t
i

x c xϕ ε−
=

= + +∑                                      (23) 

where 
t

x  is a stationary series, 
t i

x − represents lag i  of tx , the iφ , 1 , ...,i p=

are the parameters of the model, c  is a constant and tε  is white noise. The 

moving average part of the model of order q  is written in Eq. (24), 

 

                                      (24) 

where the 
i
θ , 1,...,i q=  are the parameters of the model, µ  is the expectation 

of 
t

x , which is often assumed to be equal to zero. The 
1

, , ...,
t t t q
ε ε ε

− −
 are white-

noise error terms. After an initial differencing step (corresponding to the 

integrated part of the model) the ARIMA (p,d,q) can be presented as an ARMA 

(p,q) process: 

   (25) 

The estimation of the ARIMA model corresponding to some learning data is 
done through the Box-Jenkins methods [53]. The procedure for forecasting can 

be summarized as follows: 

1. Check stationary: If the data are not stationary, they need to be transformed 
into stationary data using the differencing technique. 

2. Identification: Specify the appropriate number of autoregressive term p and 

moving average term q from the autocorrelation function (acf) and partial 

autocorrelation function (pacf) correlograms. 
3. Forecasting: Based on the forecasting model, multi-step-ahead prediction is 

then conducted to forecast the final failure time. 

4. Verification: If the predictions result in an unexpected trend, repeat Step 2 
and Step 3 until the model fits the historical data well enough. 

3.3.3 RUL Comparison and Discussion 

In the implementation of the ARIMA (p,d,q) model, the appropriate number of 
autoregressive terms p and moving average terms q are both chosen to be 1. 

Parameter d is chosen to be 2 to eliminate non-stationarity.  

1

q

t i t i t
i

x µ θ ε ε−
=

= + +∑

1 1

p q

t t i t i i t i
i i

x c xε ϕ θ ε
− −

= =

= + + +∑ ∑
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Figure 8 Degradation prediction of PV module using RTM-RVM. 

Table 1 Performance Indicator Measurements 

 MASE 

RTM-RVM 3,832 

ARIMA 10,611 

GPR 4,347 

The results of the application indicate that all methods can in principle come up 

with an RUL estimation, although the gap between the real and estimated RUL 

varies considerably. From the comparative results for accuracy performance 
presented in Figure 10 and Table 1 it can be seen that the RTM-RVM model 

performs significantly better than the GPR and ARIMA model via a smaller 

MASE value. It can be seen that the prediction values of GPR and ARIMA 

model are far off the real degradation values. In the prediction, we set up the 
same CI of 95% for all three methods. Therefore, after giving the prognostic 

thresholds, the RUL can be obtained for the different methods (Figure 11). 
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Figure 9 Comparison of prediction results with real degradation of PV module. 

From Figure 9, it can also be seen that the results of RTM-RVM seem to be 

underestimated. In real application, an underestimated prediction is more 

reliable than an overestimated prediction. If the predicted RUL ends earlier than 

the actual value, a correct pre-maintenance can be performed. In most cases, it 
is more favourable to have an early prediction, instead of a late prediction. 

It should be noted that the degradation thresholds (Pmax = 85W and Pmax = 

87W) defined in the prognosis (Section 3.2) correspond to levels of degradation, 
which require the following actions: 

1. In case 1 (threshold 1) the technician must check the availability of spare 

parts in stock. 
2. In case 2 (threshold 2) the intervention will be PV module substitution or 

the addition of PV modules to compensate the power loss due to 

degradation. 
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Figure 10 Scaled error Q for different prognosis methods. 

The major limitations of the ARIMA model are: first, some of the traditional 

techniques for identifying the correct model from the class of possible models 
are difficult to understand. Consequently, by dint of its subjectivity, the 

reliability of the chosen model depends on the skill and experience of the 

forecaster. Second, the underlying theoretical model and structural relationships 
are not as distinct as some simple forecasts models, such as simple exponential 

smoothing. 

The intrinsic ability of GPR to fit probability distribution functions (pdfs) to the 
data is desirable. Although GPR provides a theoretically sound framework for 

the prediction task it has some disadvantages concerning choosing the correct 

covariance function because it encodes our assumption of inter-relationships 

within data. 

The predictions of RTM-RVM perform well and remain asymptotic to real data 

of degradation. Its power comes from its capacity to detect underlying trends in 

noisy data through the use of probabilistic kernels to account for inherent 
uncertainties. To always guarantee this benefit, the RTM-RVM process requires 

that there be sufficient points in the learning data set. 
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Figure 11 Comparison of real RUL and estimated RUL for different methods. 

3.4 Future Work: Improving the Results 

Generally, the RTM-RVM prediction accuracy seems acceptable. RVM has 
shown its intrinsic ability to give promising results of prognosis. However, it 

still suffers from the problem of uncertainties and does not take into account 

operating condition variation. 

The obtained results are the basis of real time monitoring and historical data. 

Forecast accuracy can be improved by using additional information about the 

degradation model. In this case, hybrid approaches can be used that operate with 

two kinds of information (the degradation model and measurement data). 
According to bibliographic studies, particle filter is a hybrid method that meets 

our requirements and has shown its capability in multiple applications [56,57]. 

The degradation model that we aim to use in future work is that of output 
power, as mentioned in [58]. 

4 Conclusion 

The accurate and efficient evaluation of performance degradation of PV 
modules is the next step after installation and commissioning to reap maximum 

benefit from its efficacy and to extend its lifetime. In this paper a prognostic 

framework was presented where a combination of real-time monitoring and the 
RVM algorithm was applied to estimate the RUL of a PV module device. A 

comparison based on prognostic performance using criteria of MASE to 
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evaluate the performance, indicated that the proposed real-time 

monitoring/prognostic approach is more suitable than classical methods such as 

ARIMA and GPR.  

The advantage of this proposed prognostic framework, outside its ability to 
predict the RUL, is the real-time monitoring, which triggers the prognosis 

process at the right time accompanied by a warning alarm. A limitation of this 

analysis is that data-driven prognosis does not incorporate any damage model 
into the computation. The use of the proposed method is not limited to PV 

module prognosis but can be generalized to other prognostic applications and 

non-repairable systems in particular. 
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