
Trends in condition monitoring for pitch bearings 

D. Sandoval1,2, U. Leturiondo1, F. Pozo2, Y. Vidal2, O. Salgado1	1

Control and Monitoring Area, Ikerlan Technology Research Center 
Pº. J. Mª. Arizmendiarrieta, 2. 20500 Arrasate-Mondragon, Spain´ 

Telephone: +34 943 712 400 
dasandoval@ikerlan.es 

2	Control, Modeling, Identification and Applications (CoDAlab) 
Department of Mathematics, Escola d’Enginyeria de Barcelona Est (EEBE) 

Universitat Politecnica de Catalunya (UPC), Campus Diagonal-Bes` os (CDB)` 
Eduard Maristany, 16, 08019 Barcelona, Spain 

Abstract 

The value of wind power generation for energy sustainability in the future is undeniable. 
Since operation and maintenance activities take a sizeable portion of the cost associated 
with offshore wind turbines operation, strategies are needed to decrease this cost. One 
strategy, condition monitoring (CM) of wind turbines, allows the extension of useful life 
for several parts, which has generated great interest in the industry. One critical part are 
the pitch bearings, by virtue of the time and logistics involved in their maintenance tasks. 
As the complex working conditions of pitch bearings entail the need for diverse and 
innovative monitoring techniques, the classical bearing analysis techniques are not 
suitable. This paper provides a literature review of several condition monitoring 
techniques, organized as follows: first, arranged according to the nature of the signal 
such as vibration, acoustic emission and others; second, arranged by relevant authors in 
compliance with signal nature. While little research has been found, an outline is 
significant for further contributions to the literature. 

1. Introduction

Currently, wind energy is considered the most important source of clean energy for the 
Europe Union (EU) to replace fossil energy by 2050(1). With EUR 26.7 billion of 
investments in 2018 (20 % more than 2017(2)), the economic factor of the budget for 
wind energy project has an important and decisive point for the realization. One of the 
key components of the budget is the operation and maintenance (O&M), which aims to 
achieve the greatest production without undue risk. The risk can be stated as health, 
safety and environmental, technical, commercial and financial risk considered equally(3). 
Therefore, O&M is a fundamental part of a wind turbine project because it ensures the 
proper operation of wind turbines during the lifetime. For each megawatt produced in 
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a wind farm, between 20 - 30 % of the price covers O&M expenses. Manufacturers 
attempt to lower these costs significantly by using a type of preventive maintenance 
called condition based maintenance (CBM). CBM is based on performance and/or 
parameter monitoring that may be scheduled, on request or continuous(4). From all the 
schemes of maintenance used nowadays in industry, CBM has the optimal point of 
maintenance and repair cost by virtue of the data adquisition(5). 

O&M for wind turbines requires several characteristics to be taken into consideration. 
One of them is the variety of components present in a wind turbine. As components 
have an individual maintenance timing, the maintenance schedules can be complex and 
costly. To manage this situation, a wind turbine can be divided into subassemblies: 
electrical system, electronic control, sensors, hydraulic system, yaw system, rotor hub, 
mechanical brake, rotor blades, gearbox, generator, support & housing, and drive 
train(6). Given that several subassemblies require rolling element bearings, such as drive 
train, pitch system and yaw system, it is important to understand how bearings work in 
order to manage an efficient O&M. 

 
 (a) (b) 

Figure 1. Place and dimension of pitch bearings: (a) pitch bearing placement on 
rotor hub(7) and (b) photograph of regular pitch bearing for dimension 

comparison(8). 

Rolling elements bearings reduce the friction between moving parts and constrain the 
motion of other elements. Considering the variety of applications, there are many types 
of bearings. A classification for bearings can be set according to the rotational speed. 
Regardless the fact that there is no official regulation, the current consensus in 
Academia is 600 revolutions per minute (rpm)(9). Rotational speed under this value is 
categorized as low rotating speed and above it, high speed. A particular bearing 
subgroup works in the slow speed, named slewing bearing (SB). As these type of bearing 
usually holds heavy and slow oscillating load, its design differs from general-purpose 
bearings(10). In wind turbines, several types of bearings are involved in the electricity 
generation chain, including SBs. SBs are used for blade pitch (also known as pitch 
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bearing), giving the feasibility to change the angle of incidence of the wind to the blade. 
The position of this type of bearing on rotor hub can be seen in Fig. 1. 

For the health condition analysis of the SB, the loads and the rotational speed conditions 
have a strong influence. The operating conditions for pitch bearings depend on the 
power production, which is influenced by the fluctuation of the wind and the power 
generation control system. The pitch control reacts continuously to the fluctuation of 
the wind throughout the day. The random nature of the wind forces the movement of 
the SB in both directions around a setting point (clockwise and counter-clockwise), 
where no full turn is a normal situation(11). Due to the dimension of the bearing and the 
magnitude of the forces involved, the turning speed is relatively slow (up to 5 rpm). 

The analysis of a bearing under low speed is particularly challenging, since the ratio 
between noise and signal is especially high under regular pitch bearings conditions(12). 
The impact from a defect spot and an element from the pitch bearing at low rotation 
has low energy emission, hence it can be hard to distinguish from the present noise. The 
damage can grow to a severe stage and it may be detected when it is too late. Both 
conditions (loads and rotational speed) have as a result that the methods and features, 
normally used for typical rolling element bearing, are less useful for identification of 
abnormal condition for slow rotational speed, and especially for the situation of SB(13). 

The aim of this work is to present a review of the signal types and methods which are 
currently used in Academia to obtain condition monitoring information of the SB. This 
paper is organized as follows: Section 2 describes the methods arranged according to 
the nature of the signal. Section 3 highlights relevant authors who work particularly on 
SBs; and finally, conclusions are presented in Section 4. 

2. Signal clasiffication 

In order to understand the condition of a SB, several signal types and data sources can 
be used. Some of them are vibration signal (VB), acoustic emission (AE) or temperature. 
There is also the possibility to use oil analysis results as a data source, and some other 
sources such as parameters from motor actuator(14). Among these sources, the VB is the 
most used and studied in the literature. For this reason, it is the first signal to be 
reviewed. 

2.1.Vibration signal 

The analysis of VB can be done in particular domains, but there are common among 
domains: statistical features(15). One well known feature is the root mean square (RMS). 
The variance and some more precise features as kurtosis and skewness can be 
calculated, which are related to the probability density function (PDF)(16). The 
relationship of PDF and the state of the bearing is the reason to have kurtosis and 
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skewness as features. Some other features can be easily calculated: shape and crest 
factor, upper and lower limit, impulse and margin factor. In time domain it is especially 
usual to calculate these features, and some of them have their counterpart in the 
frequency domain. 

Besides the calculation of feature extraction, there are models applied in time domain 
that are found in the reviewed literature such as the autoregressive (AR) model. An AR 
model describes certain time-varying random process based on past behavior. The 
model has AR parameters(17), which applied to SB can vary according to the state of the 
bearing. Other types of AR models are autoregressive moving average (ARMA) models, 
n level AR model (AR(n)), autoregressive integrated moving average (ARIMA) model and 
threshold AR model. 

The frequency domain is another approach to analyze the condition of SBs with VB 
signals. An statistical analysis can be performed as explained for the time domain with 
the spectral skewness, spectral kurtosis, spectral entropy and Shannon entropy(18). The 
concept of spectral statistic is adopted in addition to the concept of the classical power 
spectral density (PSD)(19). When the signal has stationary Gaussian noise in certain 
frequencies, PSD gives zeros values. During the occurrence of transients, it gives high 
positive values. The transient signals are hard to notice under the background noise, 
hence the fault is hard to detect. The skewness value can solve this problem by analyzing 
the frequency band and select the sensitive frequency band that corresponds to the 
bearing condition(20). 

There are also several techniques where the information from the frequency and time 
domain are given at the same time, named time-frequency analysis. Short time Fourier 
transform is one of these techniques, where the analysis of the frequency domain is 
done at several time windows(21). For each time window, the Fourier transform is applied 
to obtain the frequency information. The oddities on time can be perceived using the 
frequency information. An important parameter of this method is the size time interval. 
Another point of view for signal processing is the generalization of the concept behind 
the Fourier transform. The Fourier transform decomposes a signal into sine waves at 
several frequencies. This wave could be other class of wave, or generally speaking 
wavelets. Wavelet transform and decomposition are tools for information extraction 
and noise filtering(22). Another concept is the empirical mode decomposition (EMD)(23), 
formulated as the decomposition of a data set into a number of intrinsic mode functions 
(IMFs). The IMFs generate instantaneous frequencies as functions of time by means of 
the Hilbert transform(24). The information of the IMF can be better interpreted by a 
representation of the energy-frequency-time distribution called the Hilbert spectrum. 

Additionally to the analysis of time and frequency domain, methods based on chaos 
theory and fractal dimension are also found on the reviewed literature. Qiao et al.(25) 

review the literature related to stochastic resonance (SR) applied to bearings fault 
detection. The review surveys the applications of SR with several methods based on 
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classical bistable models, improved SR models, and processing methods. The largest 
Lyapunov exponent (LLE) algorithm is an established method which calculates the 
degree of the chaos of vibration signal at a certain time(26). The degree of chaos 
corresponds to any local instability in the vibration signal due to the dynamic contact 
between elements of bearing and defect spots during the SB operation. The 
approximate entropy quantifies the degree of regularity in the vibration signal; this value 
is larger when the behaviour of the signal is irregular(27) and smaller for regular 
behaviour. Yan et al.(28) related the deterioration of the bearing condition and the 
increase in the number of frequency components. As a consequence, the approximate 
entropy value will increase according to the deterioration of the bearing. The 
instantaneous angular speed based fault diagnosis is given by Moustafa et al.(29), in order 
to compensate for the shortcoming of conventional monitoring techniques for low-
speed bearings. The Teager energy operator is used to strengthen the signal after 
wavelet noise reduction and combined with the complementary ensemble empirical 
mode decomposition (CEEMD) to extract bearing fault through IMF decomposition(30). 

2.2.Acoustic emission 

As the collection of waves (or signals) is the fundamental of AE, there are several 
parameters which are useful for evaluation: the number of events, peak amplitude, ring-
down count and duration of the signal. These parameters are in the time domain, and 
they are used to discriminate the situation of the material(31). For the case of bearings, 
these parameters are not enough to recognize among faults. Consequently, further 
analysis is needed to comply with CM. Because the signal of an AE is different from VB, 
it is not possible to calculate the same parameters. The most frequent parameters 
calculated are average energy (AErms), average signal level (ASL) and kurtosis for single 
wave detection(32). Van Hecke et al.(33) use several condition indicators such as Shannon 
entropy, crest factor and histogram upper and lower bounds. 

In order to follow a classification of CM and fault diagnosis methods for AE, the methods 
can be categorized as signal processing and feature extraction. If the assumption of the 
hidden periodicity of the energy flow of a signal is given, the concept of cyclostationary 
can be applied to AE signals(34). The analysis in frequency and the time domain is possible 
to state for AE signals with the use of wavelet concept(35), and spectral kurtosis(36). The 
AE signals have a multi-modal, multi-mode and multi-frequency spectrum, and the 
Wigner–Ville distribution can be implemented(37). For feature extraction methods, the 
use of AR coefficients(38) and approximate entropy(39) is stated in the reviewed literature. 
Elforjani et al.(40) demonstrates the use of AE measurements to monitor natural defect 
initiation and propagation. In further publications, Elforjani estimates the remaining 
useful life (RUL), and showed that techniques such as kurtosis and crest factor cannot 
be employed for observing high transient events(41). 
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2.3.Other signals 

2.3.1.Shock Pulse 
The shock pulse method (SPM) is a non-destructive method which is based on the 
detection of VB with a transducer tuned at 32 kHz resonance frequency. Because the 
frequency of the signals is distant from the regular vibration analysis range, the 
described waves are produced by the impact between the damaged surface and an 
element inside the bearing. From the beginning, SPM was used to slow speed bearing (2 
rpm)(42). SPM is today mixed with several methods(43) and it is considered as a special 
case of vibration analysis. Yao et al.(44) proposed an improvement to the method, which 
may cause erroneous diagnosis in the presence of strong background noise or other 
shock sources. This is the reason to propose a pulse adaptive time-frequency transform 
method to extract the fault features of the damaged rolling element bearing. In the work 
of Mukane et al.(45) the use of HilbertHuang and wavelet transform along with SVM and 
the neuronal network is proposed to identify damage in bearings. Although in their 
origins it was proved the use of the method under low-speed operating conditions, 
today there is no further research in this aspect. 
2.3.2.Oil analysis 
The oil state from lubricated bearings, such as pitch bearing, can be analyzed to obtain 
information from the bearing state. Although it is not a signal as VB and AE, ferrography 
and spectrometric analysis can identify an abnormal condition of bearings efficiently 
from the contamination of the oil(46). One of the main goals for oil analysis is the 
development of automatic devices which allow the automatic analysis of the oil and 
consequently be used into CBM systems. 

3. Current status 

The CM of SBs is a restricted field of study. Although several methods and features 
calculation have been commented, some authors have relevant research works to be 
mentioned. Caesarendra started with a combined approach for bearing degradation 
prognostics, where he proposes the use of relevance vector machine, logistic regression 
(LR) and ARMA models to assess failure degradation(47). Later the author used EMD and 
ensemble EMD (EEMD) for fault recognition at 4.5 rpm, where the data from the fast 
Fourier transform (FFT) was not sufficient to identify the fault(48). A feature extraction 
with four types of nonlinear methods to a set of real data of 138 days slewing bearing 
test-rig at 1 rpm was done(49). The use of several indicators combined in a multivariate 
state estimation technique (MSET) estimate the RUL on VB data from laboratory(50). 
Another paper focused the work on the application of LLE on a SB dataset of 139 days 
with a contrast of FFT and time domain statistics(51). The same data was used for the 
calculation of several parameters(20), including Hjorth parameters (activity, mobility, 
complexity)(20). Prognosis was also proposed with an advanced predictive analytic called 
PANFIS, which is compared to some established methods such as ANFIS, eTS, and Simp 
eTS(52). Caesarendra et al. proposed a novel application for a circular domain feature 
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calculation based for CM method(53) . In this publication they applied the method from 
Pewsey and Fisher for CM in SB vibration data(54). Several publications continued the 
study of circular domain applied to SBs(55,56). Finally, Caesarendra made a review and 
applied the CM methods to a 15 months data set from SB based on the acoustic emission 
signal data, with early defect evidence stated at the end of the data set(57). 

Feng proposed an EEMD with a principle component analysis (PCA) based method as 
performance degradation model for SB using VB and it was applied to experimental 
data(58). In another paper the same author proposed the least squares support vector 
machine (LSSVM) to estimate the trend of SB degradation with small sample data, using 
PCA to fuse multi-feature health state vectors of SB (root mean square, kurtosis, wavelet 
energy entropy, and IMF energy)(59). The degradation trend was predicted using the 
LSSVM model. Feng also studied the feasibility of RUL prediction based on modified 
Weibull distribution, building a relationship with failure rate(60). Zvokelj works on AEˇ 
signals applied to SB CBM. An application of EEMD-based multiscale PCA (EEMDMSPCA) 
is presented as performance degradation model for SB, with the use of AE(61). A 
subsequent work used a kernel principal component analysis for a model called 
EEMDMSKPCA, whose validation is done with simulated and real VB and AE signals(62). A 
final attempt proposed the integration of the independent component analysis(63). 
4. Conclusion 

Regardless that in the last 15 years a constant growth in the research of SB condition 
monitoring has been detected, its number of publications, in comparison to other 
bearings, is still low. The main focus of SB publications is not about CM, therefore the 
difficulty to find studies related to this field. Moreover, the CM of SBs is challenging and 
it can be noticed with the results of the reviewed publication. Additionally, the odd 
operating conditions stated for pitch bearings can give an additional layer of complexity. 
This is the main reason for the constrained feasibility of several methods used in 
bearings application. Nevertheless, the present work shows the principal trends on CM 
according to the signal nature and calculation domain. 

The use of vibration signals is predominant in the reviewed literature, as seen in the 
number of papers. The methods used in the literature come from several knowledge 
fields, such as statistics, signal processing, and even neuroscience. AE signals are also a 
promising source of data for SB. Although the studies are not as vast as for VB signals, 
there are enough studies demonstrating its feasibility. One reason for this situation 
could be the complexity of the equipment required to meet the AE laboratory 
experiments and higher complexity methods, and thus a computationally more time-
consuming monitoring approach. 

There is enough space for improvement in the field of SBs. While there are limited 
studies about automated diagnosis for low-speed bearings using VB, the lack of this type 
of studies for AE is possible to notice in the literature . As seen in the reviewed literature, 
there is no one for all solution for CM of SBs, and future lines of research in this field can 
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improve current results in the literature. Finally, a last interesting research area is the 
fusion of several signals from the SB, in order to establish their current and future state. 
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