747 research outputs found

    Quantification of Nε-(2-Furoylmethyl)-L-lysine (furosine), Nε-(Carboxymethyl)-L-lysine (CML), Nε-(Carboxyethyl)-L-lysine (CEL) and total lysine through stable isotope dilution assay and tandem mass spectrometry

    Get PDF
    The control of Maillard reaction (MR) is a key point to ensure processed foods quality. Due to the presence of a primary amino group on its side chain, lysine is particularly prone to chemical modifications with the formation of Amadori products (AP), Nε-(Carboxymethyl)-L-lysine (CML), Nε-(Carboxyethyl)-L-lysine (CEL). A new analytical strategy was proposed which allowed to simultaneously quantify lysine, CML, CEL and the Nε-(2-Furoylmethyl)-L-lysine (furosine), the indirect marker of AP. The procedure is based on stable isotope dilution assay followed by, liquid chromatography tandem mass spectrometry. It showed high sensitivity and good reproducibility and repeatability in different foods. The limit of detection and the RSD% were lower than 5 ppb and below 8%, respectively. Results obtained with the new procedure not only improved the knowledge about the reliability of thermal treatment markers, but also defined new insights in the relationship between Maillard reaction products and their precursors

    Encapsulation of ascorbic acid promotes the reduction of Maillard reaction products in UHT milk

    Get PDF
    The presence of amino groups and carbonyls renders fortified milk with ascorbic acid particularly susceptible to the reduction of available lysine and to the formation of Maillard reaction products (MRPs), as Nε-(Carboxyethyl)-L-lysine (CEL), Nε-(Carboxymethyl)-L-lysine (CML), Amadori products (APs) and off-flavors. A novel approach was proposed to control the Maillard reaction (MR) in fortified milk: ascorbic acid was encapsulated in a lipid coating and the effects were tested after a lab scale UHT treatment. Encapsulation promoted a delayed release of ascorbic acid and a reduction in the formation of MRPs. Total lysine increased up to 45% in milk with encapsulated ascorbic acid, while reductions in CML, CEL and furosine ranged from 10% to 53% compared with control samples. The effects were also investigated towards the formation of amide-AGEs (advanced glycation end products) by high resolution mass spectrometry (HRMS) revealing that several mechanisms coincide with the MR in the presence of ascorbic acid (AA)

    Evolution of protein bound Maillard reaction end-products and free Amadori compounds in low lactose milk in presence of fructosamine oxidase I

    Get PDF
    Thermal treatments and storage influence milk quality, particularly in low lactose milk as the higher concentration of reducing sugars can lead to the increased formation of the Maillard reaction products (MRPs). The control of the Amadori products (APs) formation is the key step to mitigate the Maillard reaction (MR) in milk. The use of fructosamine oxidases, (Faox) provided promising results. In this paper, the effects of Faox I were evaluated by monitoring the concentration of free and bound MRPs in low lactose milk during shelf life. Results showed that the enzyme reduced the formation of protein-bound MRPs down to 79% after six days at 37 °C. Faox I lowered the glycation of almost all the free amino acids resulting effective on basic and polar amino acids. Data here reported corroborate previous findings on the potentiality of Faox enzymes in controlling the early stage of the MR in foods

    Relationship of Thermal Treatment and Antioxidant Capacity in Cooked Foods

    Get PDF
    Most of the foods we eat undergo a cooking process before they are eaten. During such a process, the non-enzymatic browning occurs, which generates compounds such as furosine, 5-hydroxymethylfurfural (HMF) and furfural. These are considered markers of cookedness and can therefore be used as quality indicators. In this work, we study the production of these compounds in different foods (both of plant and animal origin) that are cooked with different techniques. Additionally, we investigate correlations between the production of these markers of cookedness and the antioxidant capacity produced after in vitro digestion and fermentation. We observe that, in general, cereals and vegetables are more thermally damaged. Toasting and frying produce the highest concentrations of Maillard compounds whereas boiling the lowest. Furosine content shows a significant positive correlation with in vitro digestion data in fried foods, and with fermentation in roasted foods. Furfural content shows a significant positive correlation with in vitro digestion results in roasted foods, specifically in the Folin–Ciocalteu method

    Effect of storage conditions on furosine formation in milk-cereal based baby foods

    Full text link
    [EN] The effect of storage during 9 months at 25, 30 and 37 degrees C on furosine formation in three milk-cereal based baby foods was studied to evaluate development of the Maillard reaction. Furosine was measured by HPLC-UV. Immediately after the manufacturing process, furosine contents were 310-340 mg/100 g protein and at the 9th storage month were 426-603 mg/100 g protein. Storage time and temperature have a significant increase (p < 0.05) of furosine content during storage. Furosine contents were higher in sample containing honey than in those without honey. Interactions (p < 0.05) between storage time and temperature or type of sample were found. A predictive model equation of the evolution of furosine during storage explaining 80% of the variability in furosine content was obtained. The blockage of lysine through storage calculated using the furosine and total lysine provided values ranged from 9.5% to 18.1% for analysed baby foods. (C) 2007 Elsevier Ltd. All rights reserved.L. Bosch is the holder of a grant from the Spanish Ministry of Education and Science. Thanks are due to the Generalitat Valenciana for the financial support given to the Bionutest (group 03/003), and also to Hero Espan˜a S.A. for providing the samples and for financing help.Bosch, L.; Alegría, A.; Farre, R.; Clemente Marín, G. (2008). Effect of storage conditions on furosine formation in milk-cereal based baby foods. Food Chemistry. 107(4):1681-1686. doi:10.1016/j.foodchem.2007.09.051S16811686107

    The quality of low lactose milk is affected by the side proteolytic activity of the lactase used in the production process

    Get PDF
    Lactose intolerance syndrome can be efficiently tackled consuming low lactose products. Lactase is the key tool to manufacture low lactose milk (LLM): its addition during milk processing can be done in batch, i.e. before thermal treatment, or directly in pack after sterilization. In this paper data on sensory properties, Maillard Reaction products (MRPs) and free amino acids formation were obtained on six commercial Italian LLMs over six months storage. They showed that the side proteolytic activity of lactase caused the release of amino acids with a significant higher MRPs and off-flavors formation in four out of five samples produced by adding the enzyme in the pack after thermal treatment. We concluded that the in pack addition of lactase after milk sterilization can have negative sensorial and nutritional consequences mainly related to the enzyme side proteolytic activity especially for prolonged storage time

    Storage of milk powders under adverse conditions: 1. Losses of lysine and of other essential amino acids as determined by chemical and microbiological methods

    Get PDF
    1. Whole-milk powders containing 25 g water/kg were stored for up to 9 weeks in sealed aluminium containers at elevated temperatures. Lysine and other essential amino acids were measured by chemical and microbiological methods. 2. Storage at 60° resulted in the progressive formation of lactulosyl-lysine. After 9 weeks, 30% of the lysine groups were present in this form. The powders still retained their natural colour and the levels of tryptophan, methionine, cyst(e)ine and leucine remained unchanged. 3. Storage at 70° resulted in the formation of lactulosyl-lysine followed by its complete degradation with the development of browning. Available tryptophan, methione, leucine and isoleucine decreased progressively during storage. 4. The different methods for lysine determination gave widely dissimilar results. The direct fluorodinitrobenzene (FDNB) technique and reactive lysine from furosine were considered to be the most reliable methods. The FDNB-difference, dye-binding lysine, Tetrahymena and Pediococcus methods all seriously underestimated reactive or available lysine in heat-damaged milk powders. Tetrahymena and Pediococcus appeared to utilize lactulosyl-lysine as a source of lysine. 5. The results are discussed in relation to storage and distribution of milk powders in hot climate

    Urinary excretion of amino acids and their advanced glycation end-products (AGEs) in adult kidney transplant recipients with emphasis on lysine:furosine excretion is associated with cardiovascular and all-cause mortality

    Get PDF
    Arginine (Arg) and lysine (Lys) moieties of proteins undergo various post-translational modifications (PTM) including enzymatic N-G- and N-epsilon-methylation and non-enzymatic N-G- and N-epsilon-glycation. In a large cohort of stable kidney transplant recipients (KTR, n = 686), high plasma and low urinary concentrations of asymmetric dimethylarginine (ADMA), an abundant PTM metabolite of Arg, were associated with cardiovascular and all-cause mortality. Thus, the prediction of the same biomarker regarding mortality may depend on the biological sample. In another large cohort of stable KTR (n = 555), higher plasma concentrations of N-epsilon-carboxymethyl-lysine (CML) and N-epsilon-carboxyethyl-lysine (CEL), two advanced glycation end-products (AGEs) of Lys, were associated with higher cardiovascular mortality. Yet, the associations of urinary AGEs with mortality are unknown. In the present study, we measured 24 h urinary excretion of Lys, CML, and furosine in 630 KTR and 41 healthy kidney donors before and after donation. Our result indicate that lower urinary CML and lower furosine excretion rates are associated with higher mortality in KTR, thus resembling the associations of ADMA. Lower furosine excretion rates were also associated with higher cardiovascular mortality. The 24 h urinary excretion rate of amino acids and their metabolites decreased post-donation (varying as little as - 24% for CEL, and as much as - 62% for ADMA). For most amino acids, the excretion rate was lower in KTR than in donors pre-donation [except for S-(1-carboxyethyl)-l-cysteine (CEC) and N-G-carboxyethylarginine (CEA)]. Simultaneous GC-MS measurement of free amino acids, their PTM metabolites and AGEs in urine is a non-invasive approach in kidney transplantation

    Stability of oligosaccharides derived from lactulose during the processing of milk and apple juice

    Get PDF
    The scientific evidence on the bioactivity of oligosaccharides from lactulose has encouraged us to study their physicochemical modifications during the processing of milk and apple juice. The carbohydrate fraction with a degree of polymerization ≥3 was stable in milk heated at temperatures up to 100°C for 30 min and in apple juice heated up to 90°C for 15 min. An assessment of the Maillard reaction in heated milk pointed out a higher formation of furosine in milk with oligosaccharides from lactulose as compared to its counterpart without this ingredient, due to a higher presence of galactose. The organoleptic properties of juice with oligosaccharides from lactulose were acceptable and similar to those of apple juice with commercial galactooligosaccharides. The results presented herein demonstrate that oligosaccharides from lactulose can be used as prebiotic ingredients in a wide range of functional foods, including those intended for diabetics and lactose intolerant individuals.This work has been supported by project AGL2011-27884 from Spanish Ministerio de Economía y Competitividad.Peer Reviewe
    corecore