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Abstract 

The control of Maillard reaction (MR) is a key point to ensure processed foods quality. Due to the 

presence of a primary amino group on its side chain, lysine is particularly prone to chemical 

modifications with the formation of Amadori products (AP), Nε-(Carboxymethyl)-L-lysine (CML), 

Nε-(Carboxyethyl)-L-lysine (CEL). A new analytical strategy was proposed which allowed to 

simultaneously quantify lysine, CML, CEL and the Nε-(2-Furoylmethyl)-L-lysine (furosine), the 

indirect marker of AP. The procedure is based on stable isotope dilution assay followed by, liquid 

chromatography tandem mass spectrometry. It showed high sensitivity and good reproducibility and 

repeatability in different foods. The limit of detection and the RSD% were lower than 5 ppb and 

below 8%, respectively. Results obtained with the new procedure not only improved the knowledge 

about the reliability of thermal treatment markers, but also defined new insights in the relationship 

between Maillard reaction products and their precursors.  
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Abbreviations: Maillard reaction (MR), Maillard reaction end products (MRPs) Nε-(2-

Furoylmethyl)-L-lysine (furosine), Nε-(Carboxymethyl)-L-lysine (CML), Nε-(Carboxyethyl)-L-
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(Carboxymethyl)-L-lysine (CML, PubChem CID: 123800), Nε-(Carboxyethyl)-L-lysine (CEL, 

PubChem CID: no items), lysine (PubChem CID: 5962). 

 

 



  

1. Introduction 1 

The final quality of many industrial food products depends on food formulation and processing 2 

design resulting in the formation of a huge variety of molecules as a consequence of thermal 3 

treatments and chemical changes (van Boekel, Fogliano, Pellegrini, Stanton, Scholz, Lalljie, et al., 4 

2010). Along with lipid oxidation, the Maillard reaction (MR) occupies a prominent place in the 5 

final quality of food being responsible not only for the desired color and aroma compounds but also 6 

for the formation of potentially toxic Maillard reaction end products (MRPs). The reaction between 7 

reducing sugars and amino groups is the first step in the Maillard cascade: the formation of the 8 

stable 1-amino-1-deoxy-2-ketose the Amadori product (AP) and 2-amino-2-deoxyaldose Heyns 9 

products represents the starting point of the many  chemical pathways of this reaction (Hodge, 10 

1953). The presence of an amino group on the side chain of lysine makes this amino acid 11 

particularly sensitive to the carbonyls attachments. The modifications arising from the lysine 12 

blockage resulted in the formation of a bewildering array of molecules: Nε-(1-Deoxy-D-fructos-1-13 

yl)-L-lysine (fructosyl-lysine), Nε-(Carboxymethyl)-L-lysine (CML), Nε-(Carboxyethyl)-L-lysine 14 

(CEL), pentosidine, pyrraline, lysino-alanine, 5-hydroxymethylfurfural (HMF), -dicarbonyls and 15 

aroma key odorants (Yaylayan & Huyghuesdespointes, 1994). Fructosyl-lysine, CML and CEL 16 

represent the most widely studied MRPs, and they are often used as biomarker of food quality 17 

(Erbersdobler & Somoza, 2007; Nguyen, van der Fels-Klerx, & van Boekel, 2013). As highlighted 18 

in Figure 1, the acid hydrolysis adopted to release free amino acids from the polypeptide chain 19 

promote the conversion of the 1-deoxy-fructosyl-L-Lysine (AP) through a cyclized Schiff base, into 20 

the of Nε-(2-furoylmethyl)-L-lysine (furosine) which is a compound that can be quantified after 21 

protein hydrolysis and it has been widely used as marker of thermal treatment particularly in the 22 

dairy products  (Krause, Knoll, & Henle, 2003). 23 

 The formation of CML and CEL from the oxidation of ARP and HRP has been well characterized 24 

(Nguyen, van der Fels-Klerx, & van Boekel, 2013). Carbohydrate fragmentation allows the 25 



  

formation of glyoxal and methylglyoxal that readily react with lysine residues yielding the 26 

glycoxidation products CML and CEL, respectively (Ahmed, Thorpe, & Baynes, 1986). Moreover, 27 

CML and CEL can be formed via the Namiki-pathway through three subsequent steps: Schiff  base 28 

production, glycolaldehyde alkylimine synthesis, oxidation and formation of glyoxal or 29 

methylglyoxal which react with lysine to yield CML and CEL. Another route of CML and CEL 30 

formation is linked to lipid peroxidation as glyoxal and methylglyoxal can derive from 31 

polyunsatured fatty acids (Hidalgo & Zamora, 2005). Moreover, the two markers can be also 32 

formed from fragmentation and subsequent glycation of ascorbic acid and dehydroascorbic acid 33 

(Leclere, Birlouez-Aragon, & Meli, 2002).  34 

From the analytical point of view the identification of these markers of heat treatment can be  35 

approached in several ways (Tessier & Birlouez-Aragon, 2012). Furosine is used as indirect marker 36 

of quality control of moderately heat-treated dairy samples. The golden standards for furosine 37 

detection are ion-exchange chromatography, reverse phase high performance liquid 38 

chromatography (RP-HPLC) with UV detection, (Henle, Zehetner, & Klostermeyer, 1995) capillary 39 

electrophoresis and ion-pairing HPLC by using sodium-heptanosulphonate (Vallejo-Cordoba, 40 

Mazorra-Manzano, & Gonzalez-Cordova, 2004). These procedures had several drawbacks mainly 41 

related to the modifications occurring during sample preparation: the acidic hydrolysis does not 42 

allow the differentiation between AP and glycosyl-amine; overestimation or underestimation linked 43 

to the acidic hydrolysis might occur due to the formation of further intermediates and end-products 44 

(Pischetsrieder & Henle, 2012).  45 

As for furosine, CML and CEL analysis implies acidic hydrolysis to hydrolyze peptide bonds 46 

followed by their quantification that could be performed by different instrumental methods 47 

(Nguyen, van der Fels-Klerx, & van Boekel, 2013). In some papers a pre-column derivatization 48 

with o-phthalaldehyde was used to allow the detection by florescence detector (Hartkopf, Pahlke, 49 

Ludemann, & Erbersdobler, 1994), while a widely used approach for CML and CEL detection is 50 



  

gas or liquid chromatography coupled with tandem mass spectrometry. Specifically, multiple 51 

reaction monitoring (MRM) mode improves the sensitivity, reduces the coefficient of variability 52 

and ruled out the problems of derivatization (Delatour, Hegele, Parisod, Richoz, Maurer, Steven, et 53 

al., 2009). A double derivatization is required for GC separation and this bottleneck highlights the 54 

advantages of LC-MS/MS detection: no derivatization, highest sensitivity and good reproducibility 55 

(Charissou, Ait-Ameur, & Birlouez-Aragon, 2007; Fenaille, Parisod, Visani, Populaire, Tabet, & 56 

Guy, 2006). Moreover CML, CEL and lysine detection is possible also by matrix-assisted laser 57 

desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) that allows relative 58 

quantification of protein lactosylation and it is a reliable method to monitor the early Maillard 59 

reaction as well as MRPs during milk processing (Meltretter, Becker, & Pischetsrieder, 2008).  60 

The aim of the present paper, was to further improve the existing methodologies for the detection of 61 

lysine and MRPs. A new method was designed which included direct hydrolysis along with stable 62 

isotope dilution assay coupled with solid phase extraction and ion pairing liquid chromatography 63 

tandem mass spectrometry (LC-MS/MS). The developed procedure allowed the simultaneous 64 

detection of total lysine, furosine, CML and CEL. The method was tested on several foods: milk, 65 

infant formulas, cookies, bread slices. The robustness after several injections and the reliability of 66 

the results obtained were evaluated in soybean-based feed products obtained under severe thermal 67 

treatment conditions. Data demonstrated satisfactory analytical performances on all tested samples 68 

and results were perfectly in line with those previously obtained.      69 

2. Material and methods 70 

2.1 Chemicals and reagents 71 

Acetonitrile, methanol and water for solid phase extraction (SPE) and LC-MS/MS determination 72 

were obtained from Merck (Darmstadt, Germany). The ion pairing agent perfluoropentanoic acid, 73 

trichloroacetic acid, hydrochloric acid (37%) and the analytical standards L-lysine hydrochloride 74 



  

and [4,4,5,5-d4]-L-lysine hydrochloride (d4-Lys) were purchased from Sigma-Aldrich (St. Louis, 75 

MO). Analytical standards Nε-(2-Furoylmethyl)-L-lysine (furosine), Nε-(Carboxymethyl)-L-lysine 76 

(CML) and its respective deuterated standard Nε-(Carboxy[
2
H2]methyl)-L-Lysine (d2-CML) were 77 

obtained from Polypeptide laboratories (Strasbourg, France), Nε-(Carboxyethyl)-L-lysine and its 78 

internal standard Nε-(Carboxy[
2
H4]ethyl)-L-lysine (d4-CEL) were purchased from TRC-Chemicals 79 

(North York, Canada). 80 

2.2 Foods samples  81 

Powdered infant formula and milk samples were purchased in a local market, biscuits samples and 82 

bread slices were prepared according previous papers published by our group (Fiore, Troise, Mogol, 83 

Roullier, Gourdon, Jian, et al., 2012; Vitaglione, Lumaga, Stanzione, Scalfi, & Fogliano, 2009). 84 

UHT milk was prepared according to the procedure previously described (Troise, Fiore, 85 

Colantuono, Kokkinidou, Peterson, & Fogliano, 2014). Raw milk (protein, 3.5%; fat, 1%) was 86 

purchased in a local market.  87 

2.2.1 Soybean samples  88 

One batch of quartered raw soybeans was purchased from Rieder Asamhof GmbH & Co. KG 89 

(Kissing, Germany).The raw soybeans were further processed at the hydrothermal cooking plant of 90 

Amandus Kahl GmbH & Co. KG (Reinbeck, Germany). First, the beans were short-term 91 

conditioned to reach a temperature of 80 °C after 45 seconds. Afterwards, the beans entered a 92 

hydrothermic belt cooker at 72 °C and left inside for 3 min at a temperature of 70 °C. Then they 93 

were expanded at 117 °C using an annular gap expander (Typ OEE 8, Amandus Kahl GmbH & Co. 94 

KG, Reinbeck, Germany). The expanded soybeans were collected in a drying wagon for 10 min. 95 

Then they were dried with air at 65 °C for 10 min and cooled for another 10 min to reach a final 96 

moisture content of 12%. Afterwards, the expanded soybeans were autoclaved for 0, 5, 10, 15, 20, 97 



  

25, 30, 35, 40, 45, 50 and 60 min at 110 °C and 1470 mbar using a fully controlled autoclave (Typ 98 

HST 6x9x12, Zirbus Technology GmbH, Bad Grund, Germany). 99 

2.3 Samples preparation 100 

Lysine and its derivatives Nε-(2-Furoylmethyl)-L-lysine (furosine), Nε-(Carboxymethyl)-L-lysine 101 

(CML), Nε-(Carboxyethyl)-L-lysine (CEL) were analyzed considering previous papers (Delatour, et 102 

al., 2009; Fenaille, Parisod, Visani, Populaire, Tabet, & Guy, 2006; Troise, Dathan, Fiore, Roviello, 103 

Di Fiore, Caira, et al., 2014) and introducing several modifications. Briefly, 100 mg of each sample 104 

was accurately weighed in a screw capped flask with PTFE septa and 4 mL of hydrochloric acid (6 105 

N) was added. The mixture was saturated by nitrogen (15 min at 2 bar) and hydrolyzed in an air 106 

forced circulating oven (Memmert, Schwabach, Germany) for 20 h at 110° C. The mixture was 107 

filtrated by polyvinylidene fluoride filters (PVDF, 0.22 Millipore, Billerica, MA) and 400 µl was 108 

dried under nitrogen flow in order to prevent the oxidation of the constituents. The samples were 109 

reconstituted in 370 µl of water and 10 µL of each internal standard d4-Lys, d2-CML and d4-CEL 110 

was added in order to obtain a final concentration of 200 ng/mg of samples for both standards. 111 

Samples were loaded onto equilibrated Oasis HLB 1 cc cartridges (Waters, Wexford, Ireland) and 112 

eluted according to the method previously described, then 5 µl was injected onto the LC/MS/MS 113 

system.  114 

2.4 Liquid chromatography tandem mass spectrometry (LC-MS/MS) 115 

Separation of furosine, CML, CEL, lysine and their respective internal standards was achieved on a 116 

reversed – phase core shell HPLC column (Kinetex C18 2.6 µm, 2.1 mm x 100 mm, Phenomenex, 117 

Torrance) using the following mobile phases: A, 5 mM perfluoropentanoic acid and B, acetonitrile 118 

5 mM perfluoropentanoic acid. The compounds were eluted at 200 µL/min through the following 119 

gradient of solvent B (t in [min]/[%B]): (0/10), (2/10), (5/70), (7/70), (9/90), (10/90), (12/10), 120 

(15/10). Positive electrospray ionization was used for detection and the source parameters were 121 



  

selected as follows: spray voltage: 5.0 kV; capillary temperature: 350 °C, dwell time 100 ms, cad 122 

gas and curtain gas were set to 45 and 5 (arbitrary units). The chromatographic profile was recorded 123 

in MRM mode and the characteristic transitions were monitored in order to improve selectivity 124 

using an API 3000 triple quadrupole (ABSciex, Carlsbad, CA). All relevant parameters are 125 

summarized in Table 1.  126 

2.5 Analytical performances 127 

CML, CEL, furosine and total lysine were quantified using a linear calibration curve built with 128 

specific solutions of CML spiked with d2-CML, lysine and furosine spiked with d4-lysine and CEL 129 

spiked with d4-CEL (final concentration of internal standards: 200 ng/ml) dissolved in water. The 130 

limit of detection (LOD) and the limit of quantitation (LOQ) were monitored according to the signal 131 

to noise ratio (Armbruster, Tillman, & Hubbs, 1994). The coefficients of determination r
2
 for the 4 132 

analytes were tested plotting the ratio between the pure compounds and their respective internal and 133 

the concentration of the pure compounds in the linearity range 5-1000 ng/mL. The internal standard 134 

ratio was used for the quantification and the relative standard deviation of intraday and interday 135 

assay was monitored three times each day and six times in different days. The recovery test was 136 

monitored according to the concentration of the internal standards used and to the ratio between 137 

labeled compounds and native compounds.        138 

2.6 Statistical analysis 139 

All of the analyses were performed in quadruplicate and the results expressed as mg/100 g of 140 

protein. Statistical calculations were performed using Matlab R2009b (Natick, MA) while for mass 141 

spectrometry data, Analyst version 1.4.2 (Applied Biosystems, Carlsbad, CA) was used.   142 

3. Results and discussion 143 

3.1 Liquid chromatography set up 144 



  

Under the above described chromatographic conditions, typical retention time of CML and d2-CML 145 

was 7.11 min, for d4-Lys and Lys it was 7.23 min, for furosine it was 7.91 min, while for CEL and 146 

d4-CEL it was 7.36 min (Figure 2). Previous papers highlighted the problems due to the poor 147 

retention of amino acids and their derived molecules on silica bonded and C-18 column (Frolov & 148 

Hoffmann, 2008). Preliminary trials performed using C-18 column without the ion pairing agent 149 

confirmed this feature: the retention was poor and the analytes co-eluted with the impurities on the 150 

front of the chromatographic run with the consequent partial suppression of the signal associated to 151 

the markers. Inadequate separation of the analytes was obtained also using polar end-capped 152 

column; however a significant improvement was obtained using with this column 153 

perfluoropentanoic acid as ion pairing agent. In these experimental conditions, the retention time 154 

followed a typical reversed phase profile according to the polarity and to the steric hindrance of 155 

each molecule, as previously observed by other papers published earlier (Fenaille, Parisod, Visani, 156 

Populaire, Tabet, & Guy, 2006; Troise, Fiore, Roviello, Monti, & Fogliano, 2014). The presence of 157 

the ion pairing agent charged the core shell residues increasing the retention and promoting the 158 

selectivity of the positively charged CML, CEL, furosine, lysine and their respective internal 159 

standards. The presence of a core shell phase increased of the resolution which directly reflects the 160 

good performances of the reported method, the shape of the peak was maintained over each batch 161 

and the retention time shift was lower than 0.5 min, highlighting the robustness of the analytical 162 

performances.   163 

3.2 Mass spectrometry set up 164 

Mass spectrometry conditions were optimized by infusing singularly the seven standards directly in 165 

the ion source. Collision energy, declustering potential, tube lens voltage along with spray voltage 166 

and interface temperature were monitored in order to favor the formation of the typical 167 

fragmentation pattern (Delatour, et al., 2009). The lysine derived compounds underwent the 168 

formation of the fragment ion at 130 m/z which corresponds to the pipecolic acid generated by the 169 



  

subsequent cyclization of the side chain of lysine and the loss of ε- amino group, similarly the mass 170 

shift for deuterated standards d4-CEL and d4-Lys was +4 Da as consequence of the fragmentation 171 

occurred on the side chain of lysine (Figure S1 in supplementary material section) (Yalcin & 172 

Harrison, 1996). The MRM revealed the loss of formic acid giving the typical fragment at m/z 84; 173 

the mass shift for the deuterated molecules was +4. The seven standards were also infused inside 174 

the chromatographic flow in order to evaluate the interferences due to the ion pairing agent or to the 175 

solvent and the results revealed that no enhancement or suppression effect can be ascribed to the 176 

parameters monitored.       177 

3.3 Analytical performances  178 

The analytical performances of the method were tested against reproducibility, repeatability, limit 179 

of detection (LOD), limit of quantification (LOQ), linearity, precision, carry-over and coefficient of 180 

correlation (r
2
). Before and after each batch, three solutions of acetonitrile and water (90:10; 50:50 181 

and 10:90) were injected in order to verify the absence of any contaminants with the same signal 182 

and the same retention time of the analyzed molecules. The limit of detection and the limit of 183 

quantitation were determined according to the procedure previously described. The concentration 184 

0.1 ppb resulted in no signal, while the LOD was 0.5 ppb for CML and lysine while for CEL and 185 

furosine it was 1 and 3 ppb, respectively. The slight differences among CML, CEL and furosine can 186 

be related to the different stability in the injection conditions. By injecting these concentrations the 187 

signal to noise ratio was always higher than 3. The LOQ were 5 ppb for CML, CEL and Lysine 188 

while for furosine it was 9 ppb, as highlighted in Table 2. These values were perfectly in line with 189 

those previously described for CML, CEL and lysine quantification by MS/MS (Delatour, et al., 190 

2009; Tareke, Forslund, Lindh, Fahlgren, & Ostman, 2013) while for furosine the performance of 191 

LOD and LOQ were below the values previously reported in milk (Bignardi, Cavazza, & Corradini, 192 

2012). According to the LOD and LOQ, linearity was achieved in the range 5-1000 ppb for CML, 193 

CEL and lysine, while for furosine the linearity range was between 9 and 1000 ppb. The carryover 194 



  

effect was tested injecting after each point of the calibration curves a solution consisting in 195 

acetonitrile and water (50:50, v/v) and verifying the absence of the target compounds. The linearity 196 

of the calibration curves was evaluated three times in the same day (intraday assay for the 197 

reproducibility) and three times for three subsequent days (interday assay for the repeatability) 198 

using the ratio between the target compounds and their respective internal standard. The RSD (%) 199 

among the three curves was always lower than 8%, demonstrating that external factors had marginal 200 

impact on the performance of the method. Each point of the calibration curves was monitored using 201 

two specific transitions: the most intensive fragment was used as quantifier, the lowest as qualifier. 202 

For CML, CEL, furosine and lysine, the respective transitions of m/z 205−84.1, m/z 219.1−84.1, m/z 203 

255.1−130.2, and m/z 147.2−130.2 were used as quantifier, whereas m/z 205−130.2, m/z 204 

219.1−84.1, m/z 255.1−84, and m/z 147.2−84.1 were used as qualifier. CML was quantified using 205 

d2-CML as internal standard (m/z 207−144.1 and 207−84 for quantification and confirmation, 206 

respectively), CEL was quantified using d4-CEL (m/z 223−134.1 and 223 − 84 for quantification 207 

and confirmation, respectively) whereas for furosine and lysine, d4-lysine was used (m/z 208 

151.2−134.1 and m/z 151.1− 88 for quantification and confirmation, respectively). The use of d4-209 

lysine as internal standard for the quantification and recovery of furosine was optimized by 210 

monitoring the relative intensity of furosine standard towards d4-CEL, d2-CML and d4-lysine. A 211 

mixture of the four standards (10 ppm) was directly infused in the ion source. Results revealed that 212 

the intensity of the signal at m/z 151.2 and m/z 255 were similar and both were 15% higher than the 213 

signal of d2-CML and d4-CEL.   214 

The response of the method in food was tested during each batch evaluating the ratio between the 215 

target compounds and the internal standard, these procedures confirmed and deepened the aspects 216 

linked to the recovery assay: in each sample the ratio between the area of the analyte and the area of 217 

the deuterated compounds was compared towards the calibration curve in order to obtain the final 218 

concentration of the analytes in the matrix. The intensity of the internal standard in the samples and 219 



  

in the standard was compared and the RSD (%) between the spiked samples and the spiked 220 

standards was always lower than 10%. The recovery test was monitored in all the food matrix 221 

according to the intensity of the internal standard, the results were 91.1 ± 8.4, 84.2 ± 7.4, 88.0 ± 6.9 222 

for d2-CML, d4-CEL and d4-Lysine. 223 

 3.4 CML, CEL, furosine and total Lysine in food 224 

Powdered samples were freeze dried prior analysis in order to remove the interferences due to the 225 

humidity. The extraction procedure of MRPs is characterized by three key steps: the reduction with 226 

sodium borohydride, the hydrolysis with hydrochloric acid and the stable isotope dilution assay 227 

prior ion pairing solid phase extraction. According to the nature of protein and to their concentration 228 

each of the above listed can influence the yield and the efficiency of the extraction. The reduction 229 

with sodium borohydride promotes the conversion of free fructosyl-lysine into hexitol-lysine in 230 

order to avoid the overestimation of CML, CEL (Niquet-Leridon & Tessier, 2011). Moreover, the 231 

use of sodium borohydride is recommended when the concentration of free unstable Amadori 232 

products is high. Unfortunately, the use of this reducing agent had several drawbacks: protein 233 

degradation and free counterpart losses during the reduction, precipitation and purification 234 

procedure; moreover, the use of sodium borohydride can interfere with the release of furosine with 235 

the above mentioned reduction of fructosyl-lysine into hexitol-lysine. After several preliminary 236 

measurements it was decided to avoid the reduction.  A good compromise between the detection of 237 

furosine and that of CML/CEL was achieved controlling the oxidation under nitrogen. In particular, 238 

prior the acidic hydrolysis the screw capped flasks were saturated with nitrogen in order to reduce 239 

the effect of autoxidation and control the reaction pathway (Yaylayan & Huyghuesdespointes, 240 

1994).  241 

The use of hydrochloric acid is a mandatory step for the hydrolysis of peptide bonds and for the 242 

release of amino acids, MRPs and for the conversion of fructosyl-lysine into furosine. Different 243 



  

concentrations of protein per mL of hydrochloric acid can lead to different efficiency of the 244 

hydrolysis with the consequent underestimation of lysine content. In the present study, the 245 

extraction procedure was optimized in order to promote the dehydration reaction that leads to the 246 

formation of furosine and to the release of MRPs (Krause, Knoll, & Henle, 2003; Mossine & 247 

Mawhinney, 2007). Further studies will be conducted in order to compare the effect of time and 248 

concentration of hydrochloric acid on lysine release, mainly in protein rich samples.  249 

The above described analytical performances were tested in food and feed samples in order to 250 

verify the robustness of the method. Several thermally treated foods were tested: powdered infant 251 

formula, low lactose milk, lab scale UHT milk, biscuits samples, bread (all prepared according to 252 

three different procedures previously described by our group) and powdered soybean-based feed 253 

products (prepared at industry scale). All data are summarized in Table 3. The concentration of 254 

CML in powdered infant formula analyzed ranged from  8.22 ± 0.31 mg/100 g of protein to 14.81 ± 255 

0.92 mg/100 g of protein, while CEL and furosine ranged from 0.71 ± 0.02 mg/100 g of protein to 256 

1.31 ± 0.11 mg/100 g of protein and 471.9± 22.3 mg/100 g of protein to 639.4± 21.1 mg/100 g of 257 

protein, respectively. The concentration of total lysine varied from 9.89 ± 0.88 to 13.12 ± 0.78 % of 258 

total protein. In low lactose milk the content of lysine was 5.21± 0.30 g/100 g of protein, while the 259 

concentration of CEL and furosine was 0.28 mg ± 0.01 mg/100 g of protein and 12.32 ± 0.31 260 

mg/100 g of protein, respectively. CML was 1.28 mg ± 0.11 mg/100 g of protein and this value was 261 

perfectly in line with the one previously obtained. Lab scale UHT milk was prepared in order to 262 

verify the effect on raw cow milk; while the lysine content was of the same order of magnitude of 263 

the low lactose milk (4.71 ± 0.22 mg/100 g of protein), the concentration of the three markers of the 264 

MR was 18.41 ± 0.93, 1.12 ± 0.02 and 14.41 ± 1.02 mg/100 g of protein for CML, CEL and 265 

furosine respectively. The results obtained were perfectly in line with those previously obtained  for 266 

the three categories of milk (Fenaille, Parisod, Visani, Populaire, Tabet, & Guy, 2006; Tareke, 267 

Forslund, Lindh, Fahlgren, & Ostman, 2013), specifically the CML in low lactose milk was similar 268 



  

to one previously obtained  by our group for LC-MS/MS analysis (Troise, et al., 2014). The 269 

concentration of CML and furosine was closed to the range previously obtained: 2.2 – 30.8 and 0.8 270 

– 3.7 mg/100 g of protein for furosine and CML, respectively (de Sereys, Muller, Desic, Troise, 271 

Fogliano, Acharid, et al., 2014) .   272 

In bakery products CML content was 43.75 ± 2.02 and 27.15 ± 0.61 mg/100 g of protein for biscuits 273 

samples and bread slices, respectively, while CEL and furosine were 46.25 ±  3.01 and  10.01 ± 274 

0.61 and 10.91 ± 0.01 and  98.55 ± 4.61 mg/100 g of protein  for biscuits and bread, respectively. 275 

The lysine content was almost similar in the two products: 5.01 ± 0.04 and 5.81 ± 0.04  g/100 g of 276 

protein, even if the protein content was 6% and 8% for biscuits and bread. The results here reported 277 

were of the same order of magnitude  as the ones previously reported. Hull et al., analyzed several 278 

kinds of bread and other bakery products and the concentration of CML ranged from 2.6 to  45.1 279 

mg/100 g of protein  for wheaten bread and potato bread, respectively (Hull, Woodside, Ames, & 280 

Cuskelly, 2012). On the other hand He and coworker reported higher values for wholemeal bread: 281 

CML ranged from 66.72 to 109.9 mg/100g of protein and CEL ranged from 53.30 to 82.04 mg/100 282 

g protein for bread, while in biscuits samples the concentrations varied from 50.8 to 116.7 and 283 

15.87 to 45.26 mg/100g protein for CML and CEL, respectively (He, Zeng, Zheng, He, & Chen, 284 

2014). Interestingly, the concentration of furosine in bread (after 20 min at 200° C) is similar to the 285 

one reported by Capuano and coworker: after 13 min the concentration of furosine increased up to 286 

200 mg/100 g of protein and it quickly decreased up to 20 mg/100 g protein at the end of the 287 

thermal treatment (Capuano, Ferrigno, Acampa, Ait-Ameur, & Fogliano, 2008). A similar kinetic 288 

profile was observed also by Ramirez-Jimenez and coworker in sliced bread: the concentration of 289 

furosine at the end of the process was 79.3 mg/100 g of protein while after 12 min it reached a 290 

concentration higher than 200 mg/100 g protein (Ramirez-Jimenez, Garcia-Villanova, & Guerra-291 

Hernandez, 2001). In biscuit samples the kinetic profile revealed similar trends to the ones obtained 292 

for bread; as a consequence at the end of the thermal process the concentration of  furosine value of 293 



  

10.01 ± 0.61 mg/100 g of protein was comparable to those of sucrose-containing cookies reported 294 

by previous authors (Gökmen, Serpen, Açar, & Morales, 2008).   295 

The above described analytical performances were evaluated in industrially prepared soybean feeds 296 

in order to verify the main advantages of the method on industrial sampling. The simultaneous 297 

quantification of the four analytes allowed a direct overview of the extent of the MR, where the 298 

concentration of lysine and the formation of furosine, CEL and CML can be easily related to the 299 

final quality of foods using a single extraction and a single injection. According to the procedure 300 

described in material and methods section, soybeans were incubated at 110° C for one hour in an 301 

autoclave and the kinetic profile was reported in Figure 3. The initial concentration of lysine was 302 

3.45 ± 0.12 g/100 g of protein while CML, CEL and furosine were 9.94 ± 0.74, 0.98 ± 0.04 and 303 

24.24 ± 1.74 mg/100 g of protein respectively. After 30 minutes the concentration of furosine 304 

reached the highest values: 108.01 ± 8.97, then it rapidly decreased up to 60.58 ± 3.75 mg/100 g of 305 

protein after 55 min. According to the reaction mechanism the degradation of the Amadori products 306 

was followed by the increase of CML: at the end of the thermal treatment its concentration was 307 

higher than 76 mg/100 g of protein. CEL reached the maximum concentration after 45 minutes 308 

(2.41 ± 0.24 mg/100 g of protein), then it decreased probably due to degradation processes or to the 309 

blockage of methylglyoxal by other compounds. The degradation of lysine was constant throughout 310 

the thermal treatment, after 60 min lysine concentration was 2.60 ± 0.08 g/100 g of protein thus 311 

around 23%. Several studies reported the effect of soy proteins in the development of the MR 312 

focusing on soy health benefits and on the presence of functional molecules able to control the 313 

extent of the MR (Palermo, Fiore, & Fogliano, 2012).  314 

This paper represents the first example of a systematic study on the relationship between thermal 315 

treatments, MR and soybean products in feeds and in pet food a topic recently attracting the 316 

attention of the scientific community. In fact, it has been observed that the average daily intake 317 

(mg/kg body weight
0.75

) of HMF is 122 times higher for dogs and 38 times higher for cats than 318 



  

average intake for adult humans. Possible health risks, such diabetes and renal failure, can be 319 

associated to the intake of MRPs not only in human, but also in pets (van Rooijen, Bosch, van der 320 

Poel, Wierenga, Alexander, & Hendriks, 2013).          321 

4. Conclusion 322 

The analytical method allowed a comprehensive approach in the analysis of MRPs, simultaneously 323 

determining both lysine and its heat-induced derivatives. Up to now the golden standards for MRPs 324 

detection were RP-HPLC with UVvis detection for furosine and LC-MS/MS  for CML, CEL and 325 

lysine, respectively. These results showed that the extraction procedure with nitrogen and 326 

hydrochloric acid provided a good compromise for the simultaneous detection of the four analytes. 327 

The analytical performances showed high sensitivity and good reproducibility and repeatability in 328 

several foods. Quantitative data were fully in line with those previously obtained by other authors 329 

on similar foods. The simultaneous detection of the four analytes offered a sensitive tool for the 330 

kinetic modeling on neoformed contaminant reaction routes monitoring the precursor lysine, the 331 

intermediate furosine via the indirect analysis of the Amadori products and the end-products CEL 332 

and CML. The simultaneous monitoring of all compounds allowed to minimize the variability 333 

among different samples and to combine the reaction steps starting from lysine blockage, Amadori 334 

compounds formation and fragmentation, CML and CEL formation.   335 
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Figure legend 454 

Figure 1: Effect of glucose and dicarbonyls on the formation of protein-bound MRPs. At the 455 

bottom the structure of β-Lactoglobulin (Brownlow, Cabral, Cooper, Flower, Yewdall, Polikarpov, 456 

et al., 1997). 457 

Figure 2: Extracted ion chromatogram of the four target molecules and their respective internal 458 

standards 459 

Figure 3: Kinetic profile of the precursor lysine (green), intermediate, furosine (blue) and end-460 

products, CML and CEL (red). 461 

Figure S1: Fragmentation pathway for lysine and its deuterated internal standard d4-lysine. The 462 

structures of pipecolic acid and 1,2,3,4‐tetrahydropyridin‐1‐ium ion was reported (Yalcin & 463 

Harrison, 1996).  464 

 465 

Table legend 466 

Table 1: Mass spectrometry set up 467 

Table 2: Analytical performances for the four analytes and their respective internal standards 468 

Table 3: MRPs concentration after 8 replicates in different samples, the results for CML, CEL and 469 

furosine were reported as mg/100 g of protein, except for lysine. The results were compared to the 470 

AGE Database (Technische Universität Dresden, 2014). 471 



  

Tables 

Table 1 

Compounds [M+H]
+
 Fragments CE (V) DP (V) 

CML 205 84 29 30 

  130.2 27 30 

d2 -CML  207 84 30 20 

  144 21 20 

  130 17 20 

Furosine 255.1 130 18 21 

  84.4 28 21 

Lys 147.2 130.2 16 30 

  84.1 24 30 

d4 –Lys 151.3 134.1 15 30 

  88.2 26 30 

CEL 219.2 130.3 20 30 

  84.0 28 30 

d4-CEL 223 134.1 18 25 

  88.0 30 25 

Table 1: Mass spectrometry set up 

 

 

 

 

 

 

 

 

 



  

Table 2  

Compound LOD LOQ RSD [%] Linearity range r
2
 Recovery 

CML 0.5 ppb 5 ppb 7  5-1000 ng/ml > 0.99 91.1 ± 8.4 

CEL 1 ppb 5 ppb 5 5-1000 ng/ml > 0.99 84.2 ± 7.4 

Lysine 0.5 ppb 5 ppb 5 5-1000 ng/ml > 0.99 88 .0± 6.9 

Furosine 3 ppb 9 ppb 8 9-1000 ng/ml > 0.99 88.0 ± 6.9 

Table 2: Analytical performances for the four analytes and their respective internal standards 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

Table 3:  

Food CML CEL Furosine Lysine (g/100 g protein) 

Infant formula -1 8.22 ± 0.31 0.71  ± 0.02 471.91 ± 22.31  9.89 ± 0.88 

Infant formula -2 10.4 ± 0.52 0.85  ± 0.06 542.53 ± 11.91 12.24 ±0.91 

Infant formula -3 10.9 ± 1.03 1.10 ± 0.05 574.5 ± 44.12 13.12 ± 0.78 

Infant formula -4 14.81 ± 0.92 1.31 ± 0.11 639.4 ± 21.11 10.28 ± 1.01 

Age Database 0.6 – 40.5 / Up to 1819 / 

Low lactose milk 1.28 ± 0.11 0.28 ± 0.01 12.32 ± 0.31 5.21 ± 0.30 

Age Database 1.4 / / / 

Lab scale UHT milk 18.41 ± 0.93   1.12 ± 0.02 14.41 ±1.02 4.71 ± 0.22 

Age Database 0.9-8.3 / 12.4 – 220.0 / 

Biscuits 43.75 ± 2.02 46.25 ± 3.01 10.01 ± 0.61 5.01 ± 0.04  

Bread slices 27.15 ± 0.61 10.91 ± 0.01 98.55 ± 4.61 5.81 ± 0.04 

Age Database 2.6 – 45.1 / / / 

Table 3: MRPs concentration after 8 replicates in different samples, the results for CML, CEL and 

furosine were reported as mg/100 g of protein, except for lysine. The results were compared to the 

AGE Database (Technische Universität Dresden, 2014). 

 

 



  

Figure-1

http://ees.elsevier.com/foodchem/download.aspx?id=1656682&guid=b04366f6-c0a6-4766-80d4-22a29aea1340&scheme=1


  

Figure-2

http://ees.elsevier.com/foodchem/download.aspx?id=1656683&guid=0f380a08-e217-449c-8fcb-b146d8538c90&scheme=1


  

Figure-3

http://ees.elsevier.com/foodchem/download.aspx?id=1657759&guid=139f59c8-32dd-4904-90b8-5cbc45184e51&scheme=1


  

 Tandem mass spectrometry and stable isotope dilution ensured reliable performances. 

 The method achieved simultaneous detection of CML, CEL, Lysine and furosine.  

 CML, CEL, Lysine and furosine were quantified in several foods. 

 The analysis of the four markers paved the way for a better quality control.  




