42 research outputs found

    Non-abelian Quantum Statistics on Graphs

    Get PDF
    We show that non-abelian quantum statistics can be studied using certain topological invariants which are the homology groups of configuration spaces. In particular, we formulate a general framework for describing quantum statistics of particles constrained to move in a topological space XX. The framework involves a study of isomorphism classes of flat complex vector bundles over the configuration space of XX which can be achieved by determining its homology groups. We apply this methodology for configuration spaces of graphs. As a conclusion, we provide families of graphs which are good candidates for studying simple effective models of anyon dynamics as well as models of non-abelian anyons on networks that are used in quantum computing. These conclusions are based on our solution of the so-called universal presentation problem for homology groups of graph configuration spaces for certain families of graphs.Comment: 50 pages, v3: updated to reflect the published version. Commun. Math. Phys. (2019

    High Resolution Maps of the Vasculature of An Entire Organ

    Get PDF
    The structure of vascular networks represents a great, unsolved problem in anatomy. Network geometry and topology differ dramatically from left to right and person to person as evidenced by the superficial venation of the hands and the vasculature of the retinae. Mathematically, we may state that there is no conserved topology in vascular networks. Efficiency demands that these networks be regular on a statistical level and perhaps optimal. We have taken the first steps towards elucidating the principles underlying vascular organization, creating the rst map of the hierarchical vasculature (above the capillaries) of an entire organ. Using serial blockface microscopy and fluorescence imaging, we are able to identify vasculature at 5 μm resolution. We have designed image analysis software to segment, align, and skeletonize the resulting data, yielding a map of the individual vessels. We transformed these data into a mathematical graph, allowing computationally efficient storage and the calculation of geometric and topological statistics for the network. Our data revealed a complexity of structure unexpected by theory. We observe loops at all scales that complicate the assignment of hierarchy within the network and the existence of set length scales, implying a distinctly non-fractal structure of components within

    Design and Investigation of Genetic Algorithmic and Reinforcement Learning Approaches to Wire Crossing Reductions for pNML Devices

    Get PDF
    Perpendicular nanomagnet logic (pNML) is an emerging post-CMOS technology which encodes binary data in the polarization of single-domain nanomagnets and performs operations via fringing field interactions. Currently, there is no complete top-down workflow for pNML. Researchers must instead simultaneously handle place-and-route, timing, and logic minimization by hand. These tasks include multiple NP-Hard subproblems, and the lack of automated tools for solving them for pNML precludes the design of large-scale pNML circuits

    Essays on the economics of networks

    Get PDF
    Networks (collections of nodes or vertices and graphs capturing their linkages) are a common object of study across a range of fields includ- ing economics, statistics and computer science. Network analysis is often based around capturing the overall structure of the network by some reduced set of parameters. Canonically, this has focused on the notion of centrality. There are many measures of centrality, mostly based around statistical analysis of the linkages between nodes on the network. However, another common approach has been through the use of eigenfunction analysis of the centrality matrix. My the- sis focuses on eigencentrality as a property, paying particular focus to equilibrium behaviour when the network structure is fixed. This occurs when nodes are either passive, such as for web-searches or queueing models or when they represent active optimizing agents in network games. The major contribution of my thesis is in the applica- tion of relatively recent innovations in matrix derivatives to centrality measurements and equilibria within games that are function of those measurements. I present a series of new results on the stability of eigencentrality measures and provide some examples of applications to a number of real world examples

    Constrained Planarity and Augmentation Problems

    Get PDF
    A clustered graph C=(G,T) consists of an undirected graph G and a rooted tree T in which the leaves of T correspond to the vertices of G=(V,E). Each vertex m in T corresponds to a subset of the vertices of the graph called ``cluster''. c-planarity is a natural extension of graph planarity for clustered graphs, and plays an important role in automatic graph drawing. The complexity status of c-planarity testing is unknown. It has been shown by Dahlhaus, Eades, Feng, Cohen that c-planarity can be tested in linear time for c-connected graphs, i.e., graphs in which the cluster induced subgraphs are connected. In the first part of the thesis, we provide a polynomial time algorithms for c-planarity testing of specific planar clustered graphs: Graphs for which - all nodes corresponding to the non-c-connected clusters lie on the same path in T starting at the root of T, or graphs in which for each non-connected cluster its super-cluster and all its siblings in T are connected, - for all clusters m G-G(m) is connected. The algorithms are based on the concepts for the subgraph induced planar connectivity augmentation problem, also presented in this thesis. Furthermore, we give some characterizations of c-planar clustered graphs using minors and dual graphs and introduce a c-planar augmentation method. Parts II deals with edge deletion and bimodal crossing minimization. We prove that the maximum planar subgraph problem remains NP-complete even for non-planar graphs without a minor isomorphic to either K(5) or K(3,3), respectively. Further, we investigate the problem of finding a minimum weighted set of edges whose removal results in a graph without minors that are contractible onto a prespecified set of vertices. Finally, we investigate the problem of drawing a directed graph in two dimensions with a minimal number of crossings such that for every node the incoming and outgoing edges are separated consecutively in the cyclic adjacency lists. It turns out that the planarization method can be adapted such that the number of crossings can be expected to grow only slightly for practical instances

    Algorithm Engineering for Realistic Journey Planning in Transportation Networks

    Get PDF
    Diese Dissertation beschäftigt sich mit der Routenplanung in Transportnetzen. Es werden neue, effiziente algorithmische Ansätze zur Berechnung optimaler Verbindungen in öffentlichen Verkehrsnetzen, Straßennetzen und multimodalen Netzen, die verschiedene Transportmodi miteinander verknüpfen, eingeführt. Im Fokus der Arbeit steht dabei die Praktikabilität der Ansätze, was durch eine ausführliche experimentelle Evaluation belegt wird

    Graph layout using subgraph isomorphisms

    Get PDF
    Today, graphs are used for many things. In engineering, graphs are used to design circuits in very large scale integration. In computer science, graphs are used in the representation of the structure of software. They show information such as the flow of data through the program (known as the data flow graph [1]) or the information about the calling sequence of programs (known as the call graph [145]). These graphs consist of many classes of graphs and may occupy a large area and involve a large number of vertices and edges. The manual layout of graphs is a tedious and error prone task. Algorithms for graph layout exist but tend to only produce a 'good' layout when they are applied to specific classes of small graphs. In this thesis, research is presented into a new automatic graph layout technique. Within many graphs, common structures exist. These are structures that produce 'good' layouts that are instantly recognisable and, when combined, can be used to improve the layout of the graphs. In this thesis common structures are given that are present in call graphs. A method of using subgraph isomorphism to detect these common structures is also presented. The method is known as the ANHOF method. This method is implemented in the ANHOF system, and is used to improve the layout of call graphs. The resulting layouts are an improvement over layouts from other algorithms because these common structures are evident and the number of edge crossings, clusters and aspect ratio are improved

    Doctor of Philosophy

    Get PDF
    dissertationWhile boundary representations, such as nonuniform rational B-spline (NURBS) surfaces, have traditionally well served the needs of the modeling community, they have not seen widespread adoption among the wider engineering discipline. There is a common perception that NURBS are slow to evaluate and complex to implement. Whereas computer-aided design commonly deals with surfaces, the engineering community must deal with materials that have thickness. Traditional visualization techniques have avoided NURBS, and there has been little cross-talk between the rich spline approximation community and the larger engineering field. Recently there has been a strong desire to marry the modeling and analysis phases of the iterative design cycle, be it in car design, turbulent flow simulation around an airfoil, or lighting design. Research has demonstrated that employing a single representation throughout the cycle has key advantages. Furthermore, novel manufacturing techniques employing heterogeneous materials require the introduction of volumetric modeling representations. There is little question that fields such as scientific visualization and mechanical engineering could benefit from the powerful approximation properties of splines. In this dissertation, we remove several hurdles to the application of NURBS to problems in engineering and demonstrate how their unique properties can be leveraged to solve problems of interest

    Acta Cybernetica : Volume 18. Number 3.

    Get PDF

    Social Graphs and Their Applications to Robotics

    Get PDF
    In this thesis, we propose a new method to design a roadmap-based path planning algorithm in a 2D static environment, which assumes a-priori knowledge of robots’ positions, their goals’ positions, and surrounding obstacles. The new algorithm, called Multi-Robot Path Planning Algorithm (MRPPA), combines Visibility graph VG method with the algebraic connectivity
    corecore