thesis

Constrained Planarity and Augmentation Problems

Abstract

A clustered graph C=(G,T) consists of an undirected graph G and a rooted tree T in which the leaves of T correspond to the vertices of G=(V,E). Each vertex m in T corresponds to a subset of the vertices of the graph called ``cluster''. c-planarity is a natural extension of graph planarity for clustered graphs, and plays an important role in automatic graph drawing. The complexity status of c-planarity testing is unknown. It has been shown by Dahlhaus, Eades, Feng, Cohen that c-planarity can be tested in linear time for c-connected graphs, i.e., graphs in which the cluster induced subgraphs are connected. In the first part of the thesis, we provide a polynomial time algorithms for c-planarity testing of specific planar clustered graphs: Graphs for which - all nodes corresponding to the non-c-connected clusters lie on the same path in T starting at the root of T, or graphs in which for each non-connected cluster its super-cluster and all its siblings in T are connected, - for all clusters m G-G(m) is connected. The algorithms are based on the concepts for the subgraph induced planar connectivity augmentation problem, also presented in this thesis. Furthermore, we give some characterizations of c-planar clustered graphs using minors and dual graphs and introduce a c-planar augmentation method. Parts II deals with edge deletion and bimodal crossing minimization. We prove that the maximum planar subgraph problem remains NP-complete even for non-planar graphs without a minor isomorphic to either K(5) or K(3,3), respectively. Further, we investigate the problem of finding a minimum weighted set of edges whose removal results in a graph without minors that are contractible onto a prespecified set of vertices. Finally, we investigate the problem of drawing a directed graph in two dimensions with a minimal number of crossings such that for every node the incoming and outgoing edges are separated consecutively in the cyclic adjacency lists. It turns out that the planarization method can be adapted such that the number of crossings can be expected to grow only slightly for practical instances

    Similar works