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HIGH RESOLUTION MAPS OF THE VASCULATURE OF

AN ENTIRE ORGAN

Jacob N. Oppenheim, Ph.D.

The Rockefeller University, 2014

The structure of vascular networks represents a great, unsolved problem in anatomy.

Network geometry and topology differ dramatically from left to right and person to

person as evidenced by the superficial venation of the hands and the vasculature of the

retinae. Mathematically, we may state that there is no conserved topology in vascular

networks. Efficiency demands that these networks be regular on a statistical level and

perhaps optimal. We have taken the first steps towards elucidating the principles

underlying vascular organization, creating the first map of the hierarchical vasculature

(above the capillaries) of an entire organ. Using serial blockface microscopy and

fluorescence imaging, we are able to identify vasculature at 5 µm resolution. We have

designed image analysis software to segment, align, and skeletonize the resulting data,

yielding a map of the individual vessels. We transformed these data into a

mathematical graph, allowing computationally efficient storage and the calculation of

geometric and topological statistics for the network. Our data revealed a complexity of

structure unexpected by theory. We observe loops at all scales that complicate the

assignment of hierarchy within the network and the existence of set length scales,

implying a distinctly non-fractal structure of components within.
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Chapter 1

Introduction: The Problem of

Vascular Network Morphology

The efficient distribution of resources in any system requires a carefully designed architecture that

reaches every point in the system and can distribute its cargo with minimal effort. While the

principles of such networks are well understood in engineering and are beginning to be uncovered in

plants, they remain poorly elucidated in the case of higher animals. If one compares the networks

in the backs of one’s hands, or turns Figure 1.1 where the author’s are displayed, one immediately

notices a dramatic morphological inconsistency between right and left and from person to person.

There are many geometric differences between the networks: one can measure different radii for

the vessels, different branching angles, and different lengths between branch points. These differences

though can be related by a smooth transformation. Thinner vessels can be dilated to match thicker

ones; two merging vessels can be rotated and brought nearer one another. No amount of stretching,

bending, or shearing of a loop, however, can turn it into a tree. This inability to turn the structures

on the left into the ones on the right using smooth transformations implies that these two networks

are topologically distinct [38]. A destructive transformation that rips the loop apart is necessary. In

mathematical terms, the two are not topologically equivalent in any sense: neither homeomorphism,

nor homotopy equivalence, nor homology.

These topological differences present a problem. One could easily imagine that the blood vessels

differ from person to person in their exact placement, in how much they stray while connecting two

points, in the tightness of their curvature, or in their branching angles, for instance. Geometric
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Figure 1.1. The superficial venation of the author’s hands. Veins have been highlighted in blue.

properties would not be preserved, but topological ones would be. Such topological consistency1

might be what we would expect näıvely: a developmental plan and fluctuations that give each person

a unique pattern.

1.1 Four Features of Vascular Networks

The lack of consistent vascular topology from person to person indicates that on some level these

networks are random. This fact is well known in the medical community. We have been told that

medical students today are given at least one cadaver to dissect with an extra femoral artery (the

largest artery of the leg). This is a high-level structural abnormality affecting one of the largest

vessels originating from the heart. It is also not a rare concern; 4% of individuals have an extra

femoral artery, making an awareness of these abnormalities vital for surgeons [33].

A random network, unlike the choosing of random numbers, does not refer to a single ideal

structure that we can study statistically. The space of random networks is the space of rules

that define them and hence is infinite. Several major classes of models will be reviewed in §3.1

below; however, most of the well-known models are unsatisfactory and cannot be used as null

models for vasculature. For instance, one could imagine randomly connecting pairs of points, as

in bond percolation. If this probability of connection is sufficiently large, there will be a giant

connected component. Unless this probability is very close to 1, however, not all of the points will

be connected. Clearly, this this is inappropriate for a vascular network, which must supply every

“point” (or tissue) with nutrients. Even if we ensure universal connectivity, the vertices and edges

1Vasculature in this model would still have to obey the geometric constraints of the tissue in which it is embedded:
a minor venule would not cross the boundary of the liver
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exist in an undefined, high-dimensional space. The vertices lack co ordinates, and the edges lack

radii and lengths. Mathematically speaking, the network lacks an embedding [38].

This observation leads us to a second feature of vascular networks: their geometrical and topo-

logical properties are deeply intertwined. This is a rare occurrence mathematically. Topology is

the study of properties that are invariant under continuous transformations, whereas geometry is

the study of the properties of space that are changed by those continuous transformations, such as

position, length, and angle. Connections do exist in the form of the famous Gauss-Bonnet theorem

relating curvature (a geometric property) to the genus (a topological one) and the small set of index

theorems [38]. Geometric properties reflect hierarchy within networks: large vessels beget smaller

vessels. The largest vessels either connect to the heart or supply entire organs, and the smallest

vessels provide nutrients to tissues on the smallest scales [61]. At the same time, the instant a loop

is added to a treelike network, it gains nontrivial topology2 and is no longer simply connected. This

loop perturbs the hierarchy as well, creating an ambiguity as to which vessel is upstream of the

other.

As an example, consider optimizing the geometric properties of a network given a set topology.

A set of points and connections is given. The goal is to minimize power dissipated by flow through

the network while minimizing the cost of construction, a function of the conductivity of each edge.

If we demand treelike topology, the most central vessels will be highly trafficked and will have high

connectivity. These vessels would branch into smaller ones with appropriately smaller connectivities.

In the case of a looped topology, the redundancy provided by having multiple connections between

each pair of vertices would reduce the need for connections of high conductivity. Network topology

would drive geometry. Although this example is contrived, the same principles are observed in more

naturalistic models of leaf venation [26], where demands for redundant connections between vertices

(reflected in the network’s topology) alter its geometry.

The question of optimality reflects a third principle of vascular networks: they are on some level

efficient. The heart is of limited size and one’s body has limited resources. Yet they must also be

space filling, as mentioned above. These constraints greatly reduce the space of possible network

models. The interplay between topological randomness and efficiency with the condition of being

space filling is what makes the structure of vascular networks fascinating. Ultimately, these criteria

underlie the richness of the mathematical description of vascular networks and the connections

between geometric and topological properties. A complete analysis requires not only biological data

to inform the model and its constraints, but also pure mathematics to analyze the structure and

2It can no longer be deformation retracted to a single point
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physics to solve the inverse problem of its function and development.

We have taken the first steps in this effort, devising the first method of mapping the vasculature

of entire organs from images through cleaning, alignment, and skeletonization to reduction to an

analyzable mathematical graph. Although the analysis is still preliminary and far from complete, we

can see already tantalizing hints of an unimagined structural complexity from even the most basic

statistics.

1.2 Narrative Contents

This thesis is organized as follows. This chapter is followed by an overview of the state of medical

knowledge about vascular networks as well as a brief overview of vascular biology, current techniques

for examining its morphology, and the potential (medical) applications of an improved understand-

ing of vascular morphology. The next chapter reviews our knowledge of random networks and

hierarchical distribution networks, uniting mathematical models with data from river networks and

leaves. The fourth chapter describes our experimental apparatus, as well as a brief overview of failed

techniques and potential improvements in the future.

The next three chapters (5-7) cover the image processing portion of this effort. Segmentation,

alignment, cleaning, and attachment using morphological operations are in chapter five. Skele-

tonization and the isolation of individual vessels comprise chapter six, along with a brief overview of

digital topology in three dimensions. Chapter seven covers the surprisingly rich problem of turning

a skeletonized image into a mathematical graph of edges and vertices.

The last two chapters (8-9) are a tour of the analyses we have performed (and are performing) as

well as an overview of next steps experimentally, computationally, and theoretically for the future.
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Chapter 2

Blood Vessels and Vasculature

Networks

2.1 Anatomy

In the classical model of circulation, dating from Harvey [22], blood is pumped throughout the body

by the heart. It is distributed from the heart through a series of arteries that subdivide, forming

the finer grades of arterioles. These again ramify to form meshed networks of capillaries or sinusoids

depending on whether they are lined. The deoxygenated blood from these vessels is collected by the

venules which repeatedly merge, form larger veins, and eventually feed back into the heart. Venous

blood from the spleen, pancreas, stomach, instestines does not drain directly to the heart: it is not

even fully deoxygenated. Instead, these vessels coalesce into the hepatic portal vein, which provides

most of the blood supply to the liver, which is in turn drained by the hepatic vein (for details see

§4.1) [61]. This network can be seen in Figure 2.1.

The anatomy of individual vessels varies throughout the body. The lining of a vessel varies

with its size, the larger vessels having thicker and more complicated linings. Arteries are lined with

smooth muscle and pump blood by peristaltic action. Arteries are surrounded by afferent nerve

fibers, which in some places serve as baroreceptors, chemoreceptors, and mechanoreceptors and can

specifically dilate certain vessels. Many arterioles are termed resistance vessels; they are lined with

sphincters that control the flow into a capillary bed [61]. This ability of the vascular system to

monitor and control flow points to a level of sophistication that we expect to see reflected in the

network morphology. The lining of veins is considerably thinner than that of arteries. They rely on
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Figure 2.1. A Cartoon of Current Knowledge of Vascular Network Morphology. While this is an
admittedly crude drawing, it emphasizes what we do not understand about vascular morphology.
We know there are large vessels that branch somehow between each tissue or organ and the heart.
Within these tissues, there is a loopy mesh of capillaries in which flow is not clearly arterial or
venous (hence purple in this figure). Between the scale of the largest arteries and veins that branch
from the heart and to the level of the capillaries within tissues and organs, little is systematically
known. Image from [14]
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passive flow, with valves, residual blood pressure, and the contractions of nearby muscles moving

blood back to the heart. True capillaries are lined with a thin lumen; in many organs, such as the

liver and other elements of the digestive tract, the capillaries are not lined continuously (or at all)

and are termed fenestrated capillaries (or sinusoids) respectively.

This elegantly simple picture is complicated by a number of distinctively non-treelike components.

The arterial network is definitively not a tree. Anastomoses, or connections between vessels, are

prevalent throughout the body, especially in the joints, to ensure continuous flow whether the joint

bent or flexed, the abdomen (among the vessels feeding the digestive organs), and the brain. They

equalize pressures between arteries and ensure a constant supply of blood. Among smaller vessels,

the treelike model fails completely, as anastomoses are common: Gray’s Anatomy describes it as

a “close network.” The most important of these arterial anastomoses is the one that regulates the

blood supply to the brain, the circle of Willis. There exist also shunts between the arterial and

venous systems. For instance, many capillary beds have a preferred channel considerably wider

than a typical capillary through which blood is directed by precapillary sphincters during times

of low functional demand. Larger shunts, or arteriovenous anastomoses, are under the control of

nerve fibers and allow the redirection of blood under the control of the nervous system. Classic

examples of these include the shunts used for thermoregulation that move blood from your core

to your periphery, turning your skin red when overheated, and from your periphery to your core,

turning your skin white when cold. Similarly, blood flow to the erectile tissue in the genitals is

controlled by arteriovenous anastomoses [61, Chapter 6].

Beyond this level of specificity, anatomy texts generally focus solely on the general patterns

obeyed by the arteries and veins throughout the body1 [33, 61]. While the network of the largest

vessels is itself not completely stereotyped (as seen by the example of the femoral artery), it is

conserved enough for maps of the largest vessels to prove useful. The network as a whole, though,

lacks proper description. Mapping the vascular system should be done on all scales, from the largest

vessels that branch from the heart to the smallest capillaries, 5 µm in size. We must be capable of

mapping large volumes of tissue but at moderately high resolution.

2.2 Current Techniques for Mapping

The oldest technique for studying blood vessel networks is corrosion casting. It was first developed

in the 17th century by Frederik Ruysch, the discoverer of valves in the venous and lymphatic systems

1The British editions of Gray’s Anatomy have a short chapter on vascular network moprhology covering the various
types of anastomoses and the appearance of microcirculation. In my experience, most anatomy texts lack even this.
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who filled arteries and veins with wax by mouth and a primitive bellows. Today, the scientist fills

the blood vessels with a resinous compound by perfusion. The tissue is then placed in an acidic

bath that eats away the tissue, leaving only the resin in the blood vessels. The resulting casts are

beautiful, as in Figure 2.2, but ultimately two dimensional. As the vasculature is on some level space

filling, vessels will always obscure the ones behind them. In a large and detailed-enough corrosion

cast, the background has the appearance of out-of-focus resin. No amount of optical imaging would

give the structure of a corrosion cast. It would have to serially sectioned and imaged, which begs the

question of why the cast was made in the first place. When such casts are used in research today, it

is to study gross morphological differences in the vasculature, such as in colitis, where changes are

easily apparent and act on the periphery of the region casted [27]. Alternatively, the cast is sliced

open, and the exposed region is assumed to be indicative of the overall structure [23], characterizing

a three-dimensional region based on the statistics of a two-dimensional slice.

Standard medical imaging techniques such as sonogram, CT, and MRI are all useful at covering

large areas but unable to give sufficient resolution. For a sonogram, the resolution is measured as

an RMS accuracy and is usually ∼ 250µm, two orders of magnitude too large. The resolution of CT

is limited by the quality of the detector and the strength of the x-ray source used. The resolution

can be determined by the size of the sample divided by the size of the grid used, or 512× 512 pixels

per slice normally. If we were to place a lobe of rat liver 2 cm on a side in a CT, our resolution

would 20000/512 ≈ 40 µm on a side at best. CT is also disadvantageous because of its lack of

contrast for vasculature (see below). A similar calculation applies for MRI, though again contrast is

an issue. We placed the largest lobe of a mouse liver in gadolinium, a contrast enhancer, then left it

over the weekend in a 7 T MRI at Weill Cornell Medical School. We were able to recover only the

largest branch of the portal tree with an effective resolution (smallest feature size) in the hundreds

of microns, less than one decade of spatial resolution.

An early pioneer in the study of fractals, Heinz Otto Peitgen, used a combination of sonogram and

CT to map vasculature. Much of his efforts were focused around devising clever methods based on

the topology of vascular trees to segment vasculature from noisy data [54]. He was able to recover

the first three generations of the portal tree in humans, implying a resolution in the millimeters

or hundreds of microns. After these successes, he turned his efforts to surgical planning and the

identification of large vessels in tissue from pre-surgical CT scans [40]. The weak signal-to-noise

ratio in Peitgen’s imagining methods, necessitating complicated segmentation procedures, suggests

we should look elsewhere for an experimental technique.

Another option is micro-CT, a special configuration of CT that can allow for micron resolution.
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Figure 2.2. Corrosion Cast of Hepatic Vasculature. This close-up on a piece of a corrosion cast
shows the complexity and tortuousness of many of the blood vessels inside the liver. Note the
omnipresence of loops especially. At the same time, it shows why corrosion casts are useless for
mapping vasculature. One simply cannot see behind the outer couple of layers; vessels obscure the
ones behind them. For a large enough corrosion cast, after a certain distance, the background
appears to be all vessel, as in the upper left. Image from [45]
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2 ADVANCE ONLINE PUBLICATION NATURE NEUROSCIENCE

A R T I C L E S

that preserved the size of the vessels, all 
nuclei were labeled with a DNA stain and 
neuronal nuclei were further labeled with 
antibody to NeuN, a pan-neuronal marker 
(Online Methods). The second form of data 
set encompasses all of vS1 cortex as well as 
the representation of microvibrissa, typi-
cally 60 to 70 columns, and spans from the 
pia to approximately layer 5a of vS1 cortex (n = 4 mice; Fig. 1d).  
We used intrinsic optical imaging23,24 through a transcranial  
window18 to map the responses for 20–30 vibrissa before histology 
(Online Methods). All vessels and all nuclei were labeled as above, 
and we imaged the full extent of vS1 cortex, albeit over a limited 
depth. Additional mice (n = 4) provided auxillary data.

Vessels were automatically identified and vectorized as center 
points, of degree 2 or 3, that were connected with centerlines that 
had a length and an associated radius19,25,26 (Fig. 1d). Two exceptions 
were that the centerlines of some surface vessels were traced by hand 
and the labeling of all penetrating vessels was visually confirmed. 
Consecutive centerlines were joined together to form the vectorized 
substantiation of individual vessels that preserved the tortuosity of 
the brain vasculature. The vectorized vessel was abstracted as an edge, 
whose length is the total length of the vessel and whose radius is the 
median radius associated with all centerlines (Emn; Fig. 1e). Different 
edges predominantly meet as vertices of degree 3; that is, a fraction 
of 0.93 triads and <0.07 crosses (Vm; Fig. 1e). All vectorized vessels 
of the data set of one mouse formed a weighted graph27 of edges and 
vertices, which we refer to as an angiome.

In addition to vessels, we vectorized the location of all cell nuclei19. The 
boundaries of cortical columns were based on the increased density of 
neuronal nuclei at the level of layer 4 (Fig. 1a,c), and, for purposes of ana-
lysis, columns are taken to exist only across layer 4 (Online Methods).

The microvasculature forms a highly interconnected network
We focused first on the statistical properties of the microvasculature. 
These vessels had a broad distribution of lengths between 10 and  
200 m, with a median length of 50 m, and both median  
and mean radii near 2 m (Fig. 2a). We observed no edges that spanned 
hundreds of micrometers between cortical columns or the nearly  
1-mm depth of cortex (101,992 edges across 4 brains). The radii, which 
have the greatest effect on flow, were essentially constant as a function 
of depth into cortex (Fig. 2b). Consistent with past data for mice19, 
monkeys12 and humans28, there was a broad variation in the density of 

the vasculature as a function of depth into cortex (Fig. 2c) that differed 
from the sharper variation in neuronal density (Fig. 2c).

We then examined the network properties of the microvasculature. 
These formed a multitude of loops, with an average of eight edges 
across the compact loops (Fig. 2d). The prevalence of closed paths 
was consistent with a rebalancing of flow observed after blockage of 
a single microvessel29. For comparison, the pial vasculature, which 
is confined to two dimensions, forms loops with an average of four 
edges5, in which analogous rebalancing of flow occurs after an occlu-
sion of a single surface vessel4,30.

How does the interconnectivity reveal itself? If we assign a fluid resist-
ance to each edge and view the microvasculature as a three-dimensional 
resistive network, we would expect that the resistance across pairs of 
vertices in the network should asymptote to a constant value as we span 
pairs that are progressively further apart31. In contrast, this resistance 
should increase linearly for one-dimensional networks and logarithmi-
cally for two-dimensional networks31. We used a previously described 
empirical model32 (Fig. 2a,e), which corrects the Hagen-Poiseuille law 
for the granular nature of blood, to assign resistances on the basis of 
measured radius and length of each vessels (Online Methods). We then 
calculated the network resistance across pairs of vertices33 (Fig. 2f) and 
found that resistance asymptoted as a function of the Euclidean separa-
tion distance (Fig. 2g). This implies that the microvasculature forms a 
highly interconnected irregular lattice in all directions. An asymptotic 
network resistance of 0.4 P m−3 was reached by ~150 m (Fig. 2g), 
which corresponds to thrice the median length of the microvessels 
(Fig. 2a). Numerically, the asymptotic resistance is consistent with a 
network that has the same topology and identical resistance values of 
1.6 P m−3 at each edge. For comparison, the average resistances from 
the surface to the depth of layer 4 were 0.1 and 0.2 P m−3 for penetrat-
ing arterioles and venules, respectively.

Connectivity does not covary with columnar boundaries
A highly interconnected network may have systematic variations 
in connectivity. We asked whether such variations clustered in the 

Figure 1 Examples of the vectorized data sets. 
(a,b) Example of data obtained throughout the 
full depth of cortex and extending into the white 
matter. Surface and penetrating arterioles are 
colored red, venules blue and the borders of 
cortical columns are denoted by a golden band. 
A selected slice from this data set is shown to 
illustrate the extent of penetrating vessels (b). 
(c) Example of data obtained through the upper 
half of cortex from mice used for transcranial 
imaging of intrinsic optical signals; see Figure 6. 
(d) Schematic of the make-up of edges in terms 
of individual centerlines, each with length Imn

k( ), 
where m and n label the vertices and k labels the 
consecutive centerlines between vertices, and 
radius rmn

k( ), computed as the average between  
the measured radii at vertices m and n.  
(e) Schematic of labeling of edges (Enm) and 
vertices (Vm) used for topological analyses.
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Figure 2.3. Two Photon Microscopy of a 2 mm3 cube of mouse cortex, penetrating arteries and
veins colored red and blue respectively. While the overall resolution is 1 µm, the full range of vessel
sizes was not captured. The highly looped structure of the capillaries may be seen in the uncolored
vessels. Figure from [6]

Here again, we are limited by the resolution of the output images, which lies somewhere between 512

and 2000 pixels, due to computational issues in converting Fourier modes taken at a range of angles

into a map in real space. At micron resolution, this would mean putting 1mm3 pieces of tissue serially

into a scanner. While each individual scan would not take more than an hour, the reconstruction

time scales with the number of voxels, or the resolution cubed, implying approximately a day for

each cube used. In order to get the largest vessels, even in a mouse liver, we would need to subdivide

our tissue sample into cubes without damaging the edges, properly preserve each one, and reassemble

them in three dimensions [12]. While not impossible, this method is clearly impractical.

While limited in the total area it can capture at a time, two-photon imaging is a potentially useful

technique. By leveraging the natural autofluorescence in the liver or perfusing the animal before

sacrifice, beautiful, high-resolution images of the surface may be taken. The strong autofluorescence

signal greatly inhibits optical sectioning, the main use of two-photon microscopy, however. An

example may be seen in Figure 4.1. The Kleinfeld group at UCSD has used this method to map

cortical capillary networks and to find penetrating arterioles and venules in the cortex [5]. The

volume of tissue that is scanned, however, is still in the cubic millimeters, far too small to cover

the full range of vascular features, as can be seen in Figure 2.3. This is despite their imaging over

2000 cubes at micron resolution, stitched together to form the image shown. Larger vessels merely

pass through the cube of data studied; proper statistics cannot be calculated for them. Similarly,

disconnections were found for the smallest vessels, which required tracing by hand [6].
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The difficulty inherent in large-scale vascular imaging originates in the competing demands we

have seen above. The system must be capable of imaging large pieces of tissue and the largest

blood vessels within in order to capture the entire vascular tree. At the same time, it must have

moderately good resolution: capillaries are approximately 5 µm in size, necessitating a resolution

around one to two microns at least. We are looking for features whose size ranges over three orders

of magnitude, in the case of the rat, or more in larger organisms. These requirements place us

in a valley between the two major classes of imaging techniques: those that give extremely high

resolution, up to the wavelength of light used, but over very small areas (micro-CT, two photon)

and those that are capable of imaging large areas but only at resolutions in the tens to hundreds of

microns (MRI, Sonogram).

2.3 Applications of Vascular Research

If you ask a doctor about blood vessels, they will quickly begin speculating about how their favorite

poorly understood disease has a strong vascular component. This reaction is a reflection of our

ill knowledge about the structure of vascular networks. How can one properly study the vascular

component of a disease when they do not know what healthy vasculature looks like outside of the

cell types present in the linings of arteries and veins? Network abnormalities may be detectable by a

trained specialist who recognizes patterns in the vasculature, but they are not generally identifiable:

we do not even know what forms they take. Without a baseline, we cannot even begin to look for

aberrant vasculature.

One example of a disease with a clear vascular component is cirrhosis of the liver. A build-up

of toxins, usually alcohol, or a disease such as hepatitis kills healthy liver tissue. When the body

attempts to repair damaged hepatocytes (the main cell type of the liver see §4.1), thick bands of

fibrous scar tissue form between repair sites or nodules. These fibroses impede the flow of blood

throughout the liver, dramatically increasing the pressure in the portal vein. In response to this

change in venous pressure, new anastomoses form between vessels in the liver as well as between

veins in the stomach and esophagus that feed into the portal vein. Clearly, a better understanding

of healthy vascular morphology would be useful in understanding the progression and treatment of

cirrhosis. Additionally, while cirrhosis may be diagnosed from blood tests and ultrasound scans of

the liver, the gold standard for diagnosis remains biopsy [9]. Typical biopsy plugs are of the order of

a centimeter long and at least a millimeter in diameter (corresponding to a 16 gauge needles) [48].

Since cirrhosis causes remodeling of vascular architecture, one can imagine using these same biopsy
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plugs, mapping the vasculature, and comparing the statistics of the network morphology to those

of healthy liver tissue. Since the smallest vessels are on the order of 5 µm in size, only a small plug

would be needed, around one millimeter on a side, to gain good statistics.

This same kind of analysis could be repeated for any number of diseases, both to test for a vascular

component and, if one is found, as a method of biopsy. Similarly, understanding how disease shapes

vasculature would allow us to study how diseased tissue is supplied (or not) with nutrients and how

waste products are removed. This interaction between topology and disease can be seen clearly in

the case of cortical vasculature in the mouse in work done by the Kleinfeld group. Capillary networks

in the neocortex lie in layers parallel to the surface and are effectively two dimensional honeycomb

lattices. They are connected to other layers and a central blood supply via penetrating arterioles,

running perpendicularly to them and spaced on the order of 500 µm apart. While the ablation of a

capillary does not harm any tissue, because of the redundancy in the lattice, ablating an arteriole

kills off an entire region of tissue, as a patch of the capillary network is no longer supplied with

blood. This causes a small stroke. One can easily imagine similar interactions between network

structure and disease [5].

A similar question arises when considering cancer. It has long been hypothesized that cancers

grow aberrant and abundant vasculature. Hence, inhibiting angiogenesis should be a good method

of treatment. This line of argument was first proposed by Judah Folkman in the late 1960s [37].

A cartoon of this hypothesis from a review in Nature Medicine can be seen in Figure 2.4 [24].

Problematically, however, we lack a good definition of what is truly aberrant. If you consider the

images in the top row of Figure 2.4, this issue becomes clear. It is assumed that normal, healthy

vasculature is rigidly hierarchical with stereotyped bifurcations and branch lengths and is completely

treelike with no loops whatsoever. This assumption runs clearly counter to the evidence from leaves

(Figure 3.5), corrosion casts of vasculature (Figure 2.2), and our own evidence about loops on all

scales within vasculature (§8.2). The “abnormal” vasculature in the upper-right-hand panel on some

level looks healthier than the “normal” vasculature in the upper left panel. Similarly, the existence

of real endothelial anomalies in cancerous vasculature [37] should not predispose us to belief that

the network is definitively irregular. Perhaps these network abnormalities are being detected as a

result of more resources being poured into the study of tumor vasculature than healthy vasculature.

Lacking a proper point of reference, an overly simplistic, treelike model of vasculature is assumed.

This is not to state that we in any way believe tumor vasculature to be normal. We are simply

asserting agnosticism until a proper quantitative metric to compare healthy to cancerous vasculature

is created.
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Figure 2.4. A Cartoon of Cancerous Vasculature from a recent Nature review. Note the
assumption that normal vasculature is rigidly hierarchical, always bifurcating, and completely
loopless. These hypotheses will be tested throughout and found wanting. If we consider looped,
anastomsed, and not rigidly hierarchical (or even rigidly arterial or venous) vasculature to be the
norm, the abonormal vasculature in the upper-right-hand panel seems far less “abnormal,” and
perhaps even more normal than the “normal” vasculature. Figure from [24].
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If systematic changes in vasculature between cancers and their host tissues do exist, we again

could use analysis of the vasculature in biopsy plugs as a method of diagnosis. It is also possible

that the presence of a tumor induces the growth of vasculature in nearby host tissue to increase its

blood supply. Such abnormalities could also be detected and used as a method of diagnosis provided

a quantitative metric.

Beyond the realm of disease, the main application of vascular research is in artificial organs. We

are now able to cause cells to differentiate into various types based on the application of chemicals

or growth on a specific substrate. Entire artificial tissues and organs can be grown in the lab. That

is, entire tissues and organs lacking all vasculature above the level of capillaries. While we are able

to generate artificial capillaries, to cause differentiated cells to leave spaces for sinusoids and for the

endothelial cells necessary to line capillaries, we are still unable to generate hierarchical vasculature.

Capillary networks are utterly insufficient to supply nutrients and remove waste from tissues in three

dimensions. A flat sheet of cells can exist within the diffusive boundary layer of a nutrient bath, with

capillaries assisting the local flow of nutrients and waste, while a three-dimensional organ cannot.

Neither the experimental biologists that grow artificial organs [10, 64] nor the computational ones

that model cellular growth and differentiation [1, 32] can create a program to generate hierarchical

vessels: the large vascular “trees” (looped, of course) that service natural tissues [10].

Currently, there are various workarounds to this problem. Cells may be grown in mono- (or

bi- or tri-) layers on a nutrient bath, replacing vascular advection with diffusion. This is what

was done to create the first artificial hamburger and is a large part of why that project costs

so much. In three dimensions, small organoids are grown that can be kept within the diffusive

boundary layer but remain far too small to be effective transplants [64]. Artificial organs may also

be grown on a scaffold built from various biological materials or even decellularized tissue, examples

of which are shown in Figure 2.5. Here, biopolymeric tubes form a random network. Endothelial

cells grow along them, eventually digesting the substrate, leaving gaps that become arteries and

veins. This imprinting of the vasculature structure could, at the very least, be improved by a better

understanding of vascular network morphology [39,53,64]. Fundamentally, what is lacking is a good

understanding of angiogenesis. Before we tackle the growth of the vascular system, however, we

must know what it looks like and how to characterize it. We will begin that effort by reviewing the

state of current research about random graphs, hierarchical distribution networks, and vasculature

from the theoretical and computational points of view.
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Figure 2.5. Scaffolding Used in Artificial Organs. Unlike Capillaries, artificial hierarchical
vasculature cannot be grown from cell culture. The hierarchical vessels must be planned ahead of
time. This is accomplished by laying out a matrix, frequently random, of sucrose (or other
biopolymer) tubes and inducing the growth of endothelial cells along these tubes. When the
sucrose dissolves, these tubes become hierarchical vessels, albeit with far from natural statistics, or
network morphology. Figure from [39].
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Chapter 3

The Theory of Hierarchical

Distribution Networks

In the previous chapter, we reviewed the state of medical knowledge about vascular network mor-

phology, its importance, and our ability to grow it in vitro and in vivo. We now turn to the state of

theoretical knowledge about vascular and related networks. What unites blood vessels, leaf venation,

and even river networks is that they are systems for distributing resources between a central point

(the heart, the stem of a leaf, or the mouth of a river) and disparate, space-filling branches. All of

these networks are hierarchical. Small vessels feed in to medium ones, which in turn feed into larger

ones, etc. More important branches carry significantly more volume and are considerably wider. We

will begin by reviewing the most important classes of random graph models and why they are inap-

propriate for describing hierarchical distribution networks, then proceed to look at cases from the

simplest, namely river networks which are two dimensional and lack loops, to the more complicated,

such as leaf venation which is heavily looped in many cases but still two dimensional, to the most

complicated, the three-dimensional vasculature of higher organisms.

3.1 Random Networks

Unlike selecting random numbers, drawing a random graph admits a far greater space of possibilities.

One can imagine taking a set of points, perhaps with locations that are themselves random, and

connecting them with a certain probability. This is far from the only option. Graphs can be grown

with new nodes attaching preferentially according to a certain probabilistic rule. They can also
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be randomized, where a regular lattice is rearranged into a new, disordered structure. These three

methods, which certainly do not comprise all of the space of random graphs, constitute, however,

three of the most important classes of random graphs, the Erdős-Rényi, Barabási-Albert, and Watts-

Strogatz models respectively.

The Erdős-Rényi model is historically the oldest and is closely related to the problem of percola-

tion in physics. We imagine a set of points lying in some arbitrary space and connect pairs of them

with a probability p. As one would expect from the percolation analogy, a giant connected compo-

nent is found along with scattered smaller components and isolated nodes. The degree distribution

is binomial, with mean pN . The large number of connected components in this model warns us

away from a too-simple account of vascular development: simply connecting points, such as tissues

in the body, is not sufficient to even ensure overall connectivity [20].

One way to ensure universal connectivity is a lattice. In a lattice, however, there are no long-

range connections, so transmission across the network is very slow. This effect is what made capillary

networks spectacularly unsuited for growing entire artificial organs and tissues. The Watts-Strogatz,

or small world network, corrects this by introducing sparse long-range connections. It is generated

by taking a lattice, where each node connects to a certain number of its nearest neighbors, and

randomly permuting some fraction of the links. This process keeps the clique-y, local nature of most

connections while providing enough long range connection to greatly decrease the diameter of the

graph. Social networks, be they Facebook or authorship connections between researchers, are best

understood as Watts-Strogatz style networks. For certain kinds of distribution systems, such as a

telephone system, a Watts-Strogatz type network could be useful [62].

Both of these models, however, make no reference to demand or a preference for connectivity to

certain nodes. The Barabási-Albert is characterized by preferential attachment. A small, initially

completely connected core is augmented by new nodes, each of which connects to n others with

probability determined by their degree. This “rich get richer” rule of network growth yields a

power-law degree distribution with a few highly connected nodes and most nodes only having one

or two at most. This model is a useful description of, for instance, internet hyperlinks, metabolic

networks in cells, and scientific citations. It is not local, but it does ensure rapid passage between

any pair of nodes through a series of hubs [3].
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Figure 3.1. Three important classes of random graph models are pictured. At left is the
Erdős–Rényi Model with connected components colored by size. In the center is the
Watts-Strogatz Model, here showing the original lattice with connections between a point and its
four nearest neighbors having been rewired. At right is the Barabási-Albert Model, mimicking a
cellular metabolic network with the largest nodes colored by degree. From left to right, figures
from [58], [62], and [41] respectively.

3.2 River Networks and Optimal Trees

All of the above models are purely topological; they are only concerned with the links between nodes

in an arbitrary, high-dimensional space. There is neither a notion of weights on the links, nor is there

even an embedding. This divorce from geometrical properties and indeed physical processes underlies

their disutility in describing hierarchical distribution networks. A purely geometrical model, arising

from the study of river networks, the Scheidegger Model1, has been far more successful in providing

a control case for understanding hierarchical distribution networks throughout nature.

It has long been noticed that networks of rivers, over a large range of length scales, observe

certain statistical regularities in their morphology, relating the distances between branch points, the

number of branches of a certain size, and the area drained by consecutive branches. Provided a

properly defined hierarchy, known as Strahler stream ordering (see below), these relations may be

parametrized either in terms of segments between any pair of branch points or only “important”

ones where the stream impinges on others of equal or higher order. These formalisms, respectively

Tokunaga’s and Horton’s Laws, have been shown to be equivalent [17].

One can imagine defining a hierarchy for a treelike network based on the volume of flow in each

link or geometrically in terms of the number of upstream links it drains. This system is known

as Horton (or Shreve) stream ordering and is not particularly useful. As one moves down a tree

towards the mouth, the volume of flow, or the number of nodes upstream, increases exponentially.

Arithmetically distributed order classes are thus a poor descriptor of the hierarchy (and highly

1The Fundamental Group,π1 is always trivial for the Scheidegger model as there are no loops

18



sensitive to multiplicative noise) [49]. Rather, we desire something that scales logarithmically [43].

This criterion is intimately related to the fact that the exponential growth of trees will always

outstrip the slower, algebraic growth of the space they are embedded in. We may define the proper

ordering, known as Strahler stream order, as follows. Give the tip of every branch a value of one.

When two streams intersect, the resultant stream takes the higher of the two parent streams’ orders.

If they are of the same order, it is augmented by one. This system gives the desired scaling as well

as confirming our intuition about which streams are “important;” an example is displayed in Figure

3.2. Expressed in term of segments of Strahler order i, Horton’s Laws are:

li+1 = rl ∗ li (3.1)

ai+1 = ra ∗ ai (3.2)

ni+1 = rn ∗ ni (3.3)

Here l, a, and n are respectively the average length, area drained (or flow volume), and number

of streams of order i, and the values rl, ra, and rn are termed the length, area, and bifurcation ratios.

Empirically, these values for natural river networks are tightly constrained, perhaps reflecting some

optimality principle arising from the physics of their formation. Strahler stream ordering thus

provides the proper metric for understanding river networks and quantifying hierarchy, a feature

we would like to replicate in other classes of natural distribution networks. The example of river

networks should also caution us away from expecting perfect hierarchical relationships. Work by

Dodds and Rothman has shown that Horton’s Laws only hold for intermediate values of the Strahler

order with exponential cutoffs present at both the highest and lowest orders [18,49].

The Scheidegger model provides a convenient framework for understanding the origins of these

relations, giving in some sense “mean-field” values for the exponents that, while not exact, are close

to the physical values and obey the same sum relations. We imagine growing a river network on a

grid. Consider one direction to be downhill, z, as if the lattice lies on the side of a gently sloping

hill in two dimensions, unvarying in the x direction. At each point, a drop of rain falls and then

moves downhill, executing a random walk in the x direction, as shown in Figure 3.3 [52]. Since the

network is a collection of convergent random walks, the Horton’s Laws exponents may be calculated

analytically from field theoretical techniques. Deviations from the Scheidegger Model values can

inform us about the differences between natural systems and convergent random walks [51].
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Figure 3.2. The Strahler Stream Ordering System. We label the tips of the vessels as first order.
Then at every merger event, we choose the order of the daughter stream to be the maximum of the
parents’ orders. If they are of the same order, the daughter’s order is increased by one. Figure
from [13].
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Figure 3.3. The Scheidegger Model on a square lattice. At each lattice point, consider a drop of
rain falling down the page, moving either to the left or to the right in a random walk. (The blue
arrow corresponds to the chosen direction, the red, the other.) One possible realization is shown
with the “mouth” conditioned to be at the bottom of lattice.
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3.3 The Problem of Quantifying Angiogenesis

If we imagine taking the Scheidegger model into three dimensions, we can begin to understand

the difficulties inherent in describing angiogenesis mathematically. Ignoring the omnipresence of

loops on all scales, a feature that the Scheidegger Model cannot explain, we will concentrate on the

largest branches of the vascular tree. A first observation is that the ratio of the number of edges

in the tree to the number of potential edges is smaller in three dimensions. For a square lattice

in two dimensions, we have four points and four potential edges in each unit cell; the number of

edges required to create a spanning tree, Espan = V − 1, is 3. Thus three of every four potential

connections in two dimensions are part of the Scheidegger tree. This feature is intimately related

to the self-duality property of Scheidegger trees: if we draw a new tree with edges perpendicular

to the fourth unused edge in each unit cell, we will produce a second Scheidegger tree. In three

dimensions, we have a cubic lattice, with 12 potential edges and eight vertices. Espan is only 7, and

barely more than half of the potential connections are used. The convenient space-filling features of

the Scheidegger tree have disappeared.

We can also consider the construction of a Scheidegger tree perpendicular to a mainstream vessel

running the +~z direction, yielding a two-dimensional tree obeying a radial growth law, which we

could imagine as a model for vascular organization around a large central vein. Depending on whether

we choose the “downhill” direction to be decreasing outward (divergence) or inward (convergence),

drastically different morphologies arise (Figure 3.4). To aid the eye, we have colored points that

share a common outlet the same color and will refer to them as basins, in analogy to river networks.

In the convergent case (Left Panel), we see few, large basins with the typical fan-like shape found in

natural river basins. In the divergent case (Right Panel), there are many more basins, which share

a dramatically different morphology, a leaf-like pattern that begins narrow, widens in the middle,

and shrinks again near the mouth due to the spreading of the simulation manifold’s geodesics. The

simulation area is filled with these basins of all sizes, in a manner reminiscent of tilings of the

Poincaré disk [43].

The convergent and divergent cases resemble simple models of angiogenesis, wherein budding

vessels either climb up or down a gradient of a morphogen. Alternatively, we may consider blood flow

through an extant network of capillaries, choosing the shortest path possible through the capillary

bed, either away from the main vessel (an artery) or towards it (a vein). Yet both of these classes of

models are deeply problematic. In the morphogen case, we end up with a disconnected network (or

one that is not space filling) if vessels were to branch from a main vein and move down a gradient. In
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Figure 3.4. Radial Scheidegger networks for the convergent case (left) and divergent case (right).
Collections of edges that share a common mouth on the boundary of the simulation manifold (the
interior for the convergent case, the exterior for the divergent case) are colored the same and
termed basins. Note the dramatically different basin morphology in the two cases: there are a few
extremely large basins in the convergent case, and many basins on a multitude of scales in the
divergent case, the characteristic shape of two of which is highlighted in black.

the convergent case, we would predict only very large vessels would touch the main vessel, a feature

we definitely do not observe in real vascular networks, where small vessels continually impinge on

large ones (see below). In the case of our potential mirroring a “flow” in the network, we would

predict dramatically different network statistics for arteries and veins, something that has not been

observed before [43].

3.4 Leaves and Loops

Moving from river networks to natural vasculature, we do not see the same treelike morphology.

A brief glance at most leaf venation will reveal loops on all scales, as in Figure 3.5. The vascular

system in mammals is replete with important loops, as we saw in §2.1, from the circle of Willis that

provides a constant blood supply to the brain, to the anastomoses that allow the body to conserve

heat in the summer and lose it in the winter.

What then is the morphology of an optimal transport network? Looped like a leaf or a branching

tree, like in river networks? This question was studied by Bohn and Magnasco [7], who showed that

for a network with links of conductance C and building cost Cγ , minimizing the power dissipated2,

2P = CQ, where P is the pressure and Q the flow velocity. This analogy to Ohm’s Law, along with Kirchoff’s
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Figure 3.5. Leaves with fluorescein highlighting their venation. The leaf on the left is a Ginkgo,
whose vasculature is purely treelike. The leaf on the right is a Lemon with a highly looped pattern
of venation. Holes were cut into the main vein of both leaves to illustrate how the redundancy
conveyed by loopy venation provides robustness in the case of damage: the veins of the Lemon leaf
fill normally, while those of the Ginkgo are entirely empty behind the hole. Figures courtesy of
Eleni Katifori and Marelo Magnasco
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the potential at the nodes by solving the system of linear
equations ik !

P
lRkl"Uk #Ul$, then the currents through

the links Ikl are determined. We use these currents to
determine a first approximation of the optimal conductiv-
ities on the basis of the scaling relation. Then, the currents
are recalculated with this set of conductivities, and the
scaling relation is reused for the next approximation.
These steps are repeated until the values have converged.
We check by perturbing the solution that it actually is a
minimum of the dissipation, which was always the case.

For all !> 1, independently of the initial conditions, the
same conductivity distribution is obtained, which con-
forms to the analytical result of [6]: there exists a unique
minimum which is therefore global.

Furthermore, the distribution of "kl is ‘‘smooth,’’ vary-
ing only on a ‘‘macroscopic scale,’’ as show in Fig. 2(a).
No formation of any particular structure occurs. However,
the conductivity distribution is not isotropic. We can inter-
pret the conductivity distribution as a discrete approxima-
tion of a continuous, macroscopic conductivity tensor (see
also [10]). The smooth aspect of the distribution is con-
served while approaching ! ! 1 while the local anisotropy
increases, while the values of all "kl remain finite, even if
they get very small. For ! ! 1:5 and Ndia ! 15, the con-
ductivity distribution spreads already over eight decades
and becomes still broader as ! ! 1%, in which limit the
number of iteration steps diverges as the minima becomes
less and less steep.

! ! 1 presents a marginal case. The results of the
simulation suggest that the minimum is highly degenerate;
i.e., there are a large number of conductivity distributions
yielding the same minimal dissipation.

For !< 1, the output of the relaxation algorithm is
qualitatively different [Fig. 2(b)]. A large number of con-
ductivities converge to zero so that no loop remains. The
highly redundant network is transformed to a spanning
tree topology and the currents are canalized in a hierarch-
ical manner. This, too, is predicted by the analytical results
[6]. In contrast to !> 1, the conductivity distribution
cannot be interpreted as a discrete approximation of a
conductivity tensor: for Ndia ! 1, the structure becomes
fractal.

For different initial conditions, the relaxation algorithm
yields trees with different topologies: each local minima in
the high-dimensional and continuous space of conductiv-
ities f"klg corresponds to a different tree topology. To find
the global minima with !< 1, we search consequently in
the (exponentially large) space of tree topologies using a
Monte Carlo algorithm. (We start with some initial tree and
then switch links without creating loops and without dis-
connecting a part of the network.) Note that for a tree
topology, the currents do not depend on the values "kl
and, using the scaling relation, one may directly write
down the dissipation rate for a given tree; the iterative
relaxation is not necessary here. This regime has been
widely explored in the context of river networks
[4,5,13,15], mainly for a set of parameters that corre-
sponds, in our case, to ! ! 0:5. An example of a resulting
minimal dissipation tree structure is given in Fig. 2(c).
Note also, that the scaling relations can be seen as some
kind of erosion model: the more currents flows through a
link, the better the link conducts [4].

The qualitative transition is reflected also quantitatively
in the value of the minimal dissipation [Fig. 3(a)]. The
points for !> 1 were obtained with the relaxation algo-
rithm, the points !< 1 by optimizing the tree topologies
with a Monte Carlo algorithm. For ! ! 1, Jmin=Jhomo !
1 by definition; for ! ! 0, Jmin=Jhomo ! 0, because the
vanishing "kl allow the remaining "kl ! 1.

Figure 3(b) shows the behavior of minimal dissipation
rate close to ! ! 1. For ! smaller than 1, the relaxation
method only furnishes a local minimum, the Monte Carlo
algorithm searching for the optimal tree topologies gives
lower dissipation values. The different values correspond-
ing to different realization indicate that the employed
Monte Carlo method does not find the exact global min-
ima. For !> 1, the optimal tree obtained by the
Monte Carlo algorithm is not the optimal solution since
the absolute and only minima has loops. The dissipation
rate which results from the relaxation algorithm is then, of
course, lower than the dissipation of any tree. While the
curve is continuous, the crossover at ! ! 1 shows a clear
change in the slope of Jmin"!$. One could interpret this
behavior as a second order phase transition. (The change in

 

)c()b()a(

FIG. 2. Examples of the optimized conductivity distributions obtained by the relaxation method for (a) ! ! 2:0 and (b) ! ! 0:5. For
!< 1, the relaxation leads in general only to a local minimum. The global minimum can be approached by searching in the space of
tree topologies. The result for ! ! 0:5 is shown in (c). The arrows indicate the localized inlet.
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Figure 3.6. Optimal Distribution Networks provided a material constraint from the model of
Bohn and Magnasco. The cost exponent, γ, is 2.0 at left, and 0.5 in the center and at right. The
center panel illustrates a local optimum found via relaxation, the right panel, the global optimum,
found by exploring the cost landscape. Figure from [7]

with a fixed cost will give a tree for γ < 1 and a uniform “sheet” of loops for γ > 1. Loops appear

when there are no longer any returns to scale: when building a wider pipe is not worthwhile. These

results are illustrated in Figure 3.6. For the case of Poiseuille Flow, the fluid velocity, Q ∼ r4,

whereas the cost of a tube of length l scales as the radius, giving γ = 1/4, deep in the tree regime.

How then can we make sense of the loopy venation present in many leaves, especially as treelike

vasculature is found in many ancient species such as Ginkgo (seen in the left-hand panel of Figure

3.5), whereas more modern plant lineages have looped vasculature suggesting the action of natural

selection? Perhaps we are optimizing the wrong functional. Leaves, like many other transport

networks, must be robust to varying load across the system. In the case of leaves, this is manifested

as stomatal patchiness. Only certain portions of a leaf are photosynthesizing at a time. In the case

of human vasculature, it is well known that blood demand varies across the vasculature in response

to changing activities. Notably, this is the principle behind fMRI. Leaves especially also should be

robust to damage, as the lemon leaf in the right-hand panel of Figure 3.5 is. They are continually

attacked by herbivores, disease, and the elements. A similar, albeit somewhat weaker, case can be

made that mammalian vasculature must be similarly robust. Optimizing under these two criteria

dramatically changes the morphology of the optimal network [26].

In the case of the robustness to damage (“broken bonds”) model, this can be done by minimizing

the power dissipated when a random link is broken. Since the dissipated power becomes infinite for a

disconnected graph, the addition of some loops, at the least a single vein running along the perimeter

of the leaf, becomes necessary. The optimal network shows more loops than strictly necessary. See

the left-hand side of Figure 3.7. In the case of fluctuating load, Katifori and Magnasco minimized

the power dissipated for a single source at the step and a sink located randomly in the network and

continuity and conservation laws allow for easy solution of the flows through the network
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tree had T terminal nodes, then this would result in T facets
in the graph. Many leaves have such a rim of veins [15].
However, this only guarantees finiteness; to actually mini-
mize the value of R more loops than that are required, as
shown in the left column of Fig. 2.

In our second model, we consider fluctuating load by
introducing a single moving sink. We define Ia

k ¼ !0k "
!ak, i.e., a single source at the stem and a single sink at
node a. This induces new potentials Va

k , power loss P
a and

similarly to the cut bond model:

F ¼
X

a

Pa: (5)

Optima of this functional are shown in Fig. 2, right column.
The model in [3–5] was already computationally costly

enough that it could only be optimized through relaxation
techniques, or Monte Carlo methods that involved search-

ing the space of tree graphs. The extensions presented in
this Letter cannot be optimized by such a Monte Carlo
method as the optima are not trees. We alternatively use an
annealing method; however, much like any method that
does not use exhaustive search, the minima found cannot
be guaranteed to be global minima. The method required

the evaluation of the inverse of an N # N matrix Ĝ that
depends on the conductivity. For computational efficiency
in the cut bond model, rather than inverting a different
matrix for each of the terms in the ab sum, we perturba-

tively expand Ĝ and show that it can be evaluated using
only the inverse of the original matrix of the full network
and a sparse matrix multiplication, dramatically speeding
up the evaluation. To simplify the calculation in the fluc-
tuating load model we similarly use the sparse nature of the
Ia. Details are given in the supplementary material [18].
Similarly to the results found in [3–5] the cut bond

model exhibits a transition from the "< 1 hierarchical
structure case, to the "> 1 case, where the network is a
uniform sheet. However, unlike the simple tree model, the
veins anastomose and we observe the formation of nested
loops, reminiscent of the ones seen in real leaves. Indeed,
evolutionary trends in vascular plants indicate a tendency
of the vascular system to develop redundancy and hier-
archical network patterns [15].
As shown in Fig. 3, where we plot the ratio of the energy

of the network to the energy of a network with a constant
conductivity distribution and same " (normalized dissipa-
tion), the results for the bond case are very similar to the
uniform load case. They both exhibit a cusp at " ¼ 1. The
situation is drastically different for the moving sink model,
where the phase transition (seen by the discontinuous
change in slope of the curve at " ¼ 1) has been replaced
by a crossover shown in the inset of Fig. 3.
Although we observe hierarchical loops in both models,

the quantitative aspects of the networks are very different.
The voltage drop profile, though qualitatively very similar
between the tree (not shown) and cut bond model is dras-
tically different between the cut bond and fluctuating sink
model. For large " the voltage drop Vp across the leaf blade
is controlled by the Euclidean distance from the leaf base
both for broken bonds and moving sinks. However, as "
decreases in the broken bond model, Vp depends primarily
on the distance from the nearest main vein and not the
network source. In all cases the average Vp of the moving
sink model was much larger than the average Vp of the
broken bond model for the same ". For " ’ 0:1–0:8 the
average valency of both models ranged from 3–4, in agree-
ment with [19], but the distribution of valencies was very
different between the two models. Moreover, whereas for
the broken bond model fractal-like features of the network
persist until "< 1, for the sink model fractality disappears
for "> 0:5 [20].
To conclude, it is widely yet incorrectly stated that many

natural distribution networks, such as animal vasculature
or tree leaves, are treelike [21,22]; even the most cursory of

FIG. 2 (color). Loops as a result of optimizing under damage
to links (left column) and under a fluctuating load (right col-
umn). In all plots the vein thickness (shown in black) is propor-
tional to Cð"þ1=2Þ=3. The background color of each network
represents the pressure drop relative to the network source,
normalized by the mean pressure drop of a network optimized
for the tree model with the same ".
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Figure 3.7. Optimal Distribution Networks in the cases of robustness to damage (“broken
bonds”), left side, and fluctuating load, right side. Loops are present for γ < 1 in both cases, with
increasing hierarchy as γ decreases. The pressure drop is encoded in the color scale. Note how the
pressure drop varies as the distance to the stem for the fluctuating load model but as the distance
to the nearest main vein for the “broken bonds” model. Figure from [26].

averaged over all instantiations. The resulting networks are also extremely loopy and are displayed

on the right hand side of Figure 3.7. While both networks are loopy, they differ in their properties.

For the broken bond model, the pressure drop is controlled by the distance to the nearest large vein,

whereas for the moving sink model, it is controlled by the distance to the stem. The former is fractal

for γ < 1, whereas in the latter, fractality only holds for γ < 0.5 [26]. The venation patterns of

leaves look considerably closer to the “broken bonds” model than the fluctuating load one.
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3.5 Vasculature in Three Dimensions

Vascular networks in three dimensions have generally received scant attention, with the majority of

studies rather blindly adopting treelike models, looking for fractal properties [2, 63], or attempting

to understand metabolic scaling laws (see below). This situation is odd given the knowledge of

anastomosis dating by Harvey, Malpighi, and Ruysch, as well as Poiseuille, whose work on fluid flow

in blood vessels is replete with drawings of looped vasculature [46]. These efforts have been successful

in treelike structures, mostly the bronchioles of the lung [31], which can be shown to be close to the

optimum in terms of the bifurcation and length ratios3. There is one prominent exception in the

work of Cecil Murray in the 1920s, who used the principles of fluid dynamics to find the optimal

flow conditions in vascular networks without assuming treelike morphology. This relation, known

as Murray’s Law, has been validated by a host of experimental studies in the decades since its

publication and constitutes the strongest piece of our theoretical grounding for vascular networks in

three dimensions [55].

If we consider a vessel with Poiseuille flow, f ∼ r4∆p, with f the flow rate, ∆p the pressure

drop, and r the radius, the power dissipated by flow, Pf , will scale as:

Pf = f∆p = af2r−4 (3.4)

Here a is an arbitrary constant. The metabolic power expended, Pm, will scale as the blood volume,

giving:

P = Pf + Pm = af2r−4 + br2 (3.5)

with b an arbitrary constant with units of length. We may find the vessel radius at which minimal

power is dissipated by differentiating and equating to zero:

dP

dr
= 0 = −4af2r−5 + 2br (3.6)

4af2 = 2br6 (3.7)

r3 ∼ f (3.8)

To ensure maximal efficiency, blood should flow at a rate proportional to the cube of the radius. At

a junction where vessel 1 bifurcates into vessels 2 and 3, this implies what has come to be known as

3The difference between the optimal fractal and the lung bronchioles seems to convey robustness to blockage
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Murray’s Law:

r31 = r32 + r33 (3.9)

This result has been verified in a range of natural vascular systems and imposes a strong architectural

constraint [35,36].

It is also worth mentioning the flurry of attention paid to theoretical arguments about vascular

structure in the attempt to provide an explanation for Kleiber’s Law. This “law” is merely a codifi-

cation of the observation that over 27 orders of magnitude in organism size, from bacteria to whales,

metabolic rate seemingly scales as body mass to the 3/4 power. This observation has long been

considered theoretically problematic, as a simple geometric argument would suggests an exponent of

2/3, assuming heat loss proportional to surface area and energy production proportional to volume.

West, Enquist, and Brown optimized a general hierarchical model, parametrized by length, radius,

and bifurcation ratios, and found an optimum for a fractal, treelike network. Assuming blood volume

scales as the metabolic rate, one may calculate from the necessary depth of the network (related to

organism size) that there should be and show 3/4 power scaling of metabolic rate [63].

This model is problematic for numerous reasons. Dodds and Rothman showed that the math-

ematics used in the optimization procedure do not in general produce the solution WEB claimed.

It even violates Murray’s Law4. The assumption of fractality, used in many such models, while

seductive, is not well grounded in the first place (see §2.1) and does not even hold over all scales in

simpler systems (e.g. river networks). Further models by Banavar and by West et al. stepped away

from vascular structure, though their mathematics have been criticized as well. Ultimately, though

these models have taught us little about vasculature and about metabolic scaling (it is not even clear

that the proper exponent is 3/4 when the data are properly examined), they have served to pique

interest in many in the problem of vascular morphology and of allometric scaling in general [19].

Beyond the mathematical flaws of the West Enquist Brown model, there is a deeper method-

ological flaw. It has been well known for decades that vascular networks are highly anastomosed,

creating loops on all scales. Gray’s anatomy is full of beautiful drawings of these connections and

suggests, as we saw in §2.1, that on small scales there is more a “dense network” of arteries than a

tree. To suggest that this type of structure is analyzable in terms of rigid hierarchies and bifurcations

seems a bridge too far. The scale of the “loopiness” in the network surpasses occasional redundant

connections. A hierarchy fundamentally based on loops is better suited for this purpose [61].

4If we state that the number of vessels of order i + 1 is b times the number of vessels of order i and the vessels
are smaller in length and radius by a factor a, then volume conservation implies r2i l = br2i a

2l or a2b = 1 to match
Murray’s Law, a condition that is not enforced by WEB
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3.6 Analyzing Hierarchies

The paucity of theoretical models for vasculature is surely related to both the lack of good mor-

phological data (Chapter 2) and the lack of theoretical tools to analyze what data we do possess.

Current toy models do not include loops, despite their presence across all scares in natural vascular

networks. Our basic methods of analysis are also at a loss: Strahler stream ordering cannot deal

with loops as it assumes only mergers between lower order vessels while moving downstream, not

bifurcations. A closer look at the lemon leaf in Figure 3.5 above reveals an apparent hierarchy of

the venous loops within the leaf: smaller loops nested in larger loops. The problem is to quantify it.

The trick is to hearken back to the intimate connection between geometry and topology we

observe in vascular networks. We need a rule that classifies loops, which are a purely topological

feature. Our only choices of parameters to do this are geometric in nature, for instance the width and

length of the segments that make up the loop. Katifori’s algorithm for loop hierarchy identification

makes use of the vessel radius. At each step, the narrowest vessel along the edge of a loop is cut,

eliminating that loop and merging it with a neighboring one. If we number each loop and draw a

tree corresponding to the order of their mergers, we establish a representation of the hierarchy of the

loops within the leaf. This process is illustrated in Figure 3.8. When applied to real leaf networks as

well as random network models, this algorithm results in statistically distinct trees. Using standard

methods of quantifying tree architecture, such as the bifurcation ratio and the tree asymmetry, these

networks may be distinguished [25].
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Figure 2: (a) Deletion of an edge in a loopy graph. (i) The deletion of the edge joins two adjacent loops. (ii) The deletion
of the edge disconnects the graph. (b)Hierarchical decomposition of a planar graph. Boundary loops sequentially join the
outside space, marked as ∞. Left: Nesting tree of the hierarchical decomposition. Right, top to bottom: hierarchically
decomposed graph. The bottom right panel corresponds to the full graph, the rest represents the network at different
levels of decomposition (the corresponding cutoff level of the tree representation is marked with a gray dashed arrow). As
edges of the graph are hierarchically deleted, based on their thickness, the original loops (A-E) are joined to form derived
loops (N1-N3). (c) Hierarchical decomposition of a planar graph. Phantom boundary loops surround the graph perimeter.
Loops contiguous to the perimeter of the graph join a ring of phantom boundary loops. The decomposition proceeds as
in (b), but the phantom loops b1-b4 appear among the loops of the original graph in the tree representation. (d) Building
blocks of a loopy architecture. The two basic building blocks of the loopy architecture can be identified using the tree
representation of the graph. (i1),(i2): multiplicative nestedness. Nested loops merge hierarchically. (i3): This architecture is
represented by “tall” trees. (ii1),(ii2): additive nestedness. Ordered loops join consecutively. (ii3): The tree representation
is that of “short” trees. Graphs (i1) and (i2) map equivalently to (i3), similarly graphs (ii1) and (ii2) map equivalently to
(ii3). (e) Cumulative size distributions of additive and multiplicative models of nestedness. (i1) Nesting tree for additive
nestedness. The degree of each node is is shown. (i2) Degree (size) distribution for additive nestedness. (i3) Cumulatize size
distribution for additive nestedness. (ii1) Nesting tree ,(ii2) Degree (size) distribution and (ii3) Cumulatize size distribution
for multiplicative nestedness.

2 Results

2.1 Hierarchical decomposition

We have developed a method that maps a predominately loopy architecture to a dichotomously branching tree.
This method hierarchically decomposes the loopy architecture by succesively deleting edges and joining contiguous
loops, and represents this hierarchical decomposition as a tree, termed the nesting tree.

In what follows, the term link will refer to a graph element that connects two nodes, and the term edge will
refer to a chain of links, connecting nodes. Each node in an edge is connected to exactly two other nodes, except
the nodes at the boundaries of the edge, which can be connected to only one other node (when that edge is the
“leaf” of a tree), or three or more other nodes. The “edge strength” WJ is a quantity that parametrizes the weight

3

Figure 3.8. Illustration of the Katifori Algorithm for creating a hierarchy of loops in a planar
graph. Both of the graphs in the top and bottom rows respectively yield the same tree shown on
the right. Briefly, edges are removed in order of their width, forcing the merger of loops, resulting
in a treelike structure for loops based on the weights of their edges. Figure from [25].

Critically, this procedure cannot be easily extended to three dimensions. It only works for planar

networks. Removing an edge in a nonplanar network can cause the formation of a new nonplanar

loop (or facet) to form, which is deeply problematic. For example, consider a wireframe cubic

lattice. If we remove any link, we merge four loops that formerly defined the faces of four cubes

with a common edge. The resulting loop outlines a + shape extruded into the third dimension.

This is clearly structure with different topology than a loop. What is needed is to find a proper
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two-dimensional embedding for the graph and then find a way of running the Katifori algorithm.

We will return to this question later, when considering the loops present in the vasculature of entire

organs.
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Chapter 4

How to Image the Vasculature of

Entire Organs: Serial Blockface

Microscopy

For our initial experimental foray, we chose the rat liver. Rats present an ideal system as they

are plentiful in biomedical research laboratories, allowing us to use the rats discarded by other

laboratories and those used for training by the animal facility at Rockefeller. Physiologically, they

are relatively close to humans: they eat a similar diet, as they have evolved for centuries alongside

human settlements. Rodents are the closest order among the mammals to the primates; the two form

superorder Euorchotoglires along with the lagomorphs. We could thus expect organ morphology and

structure to be relatively conserved. In the case of the liver, this is true across all mammals [61].

Rat organs are also a good size for slicing and imaging (see below). A lobe of rat liver, or an

entire heart or kidney, fits easily within a 22×30×20 cm rectangular embedding mold and onto the

surface of a 40 mm Peltier device. More importantly, the scale of the largest vessels will be around

an order of magnitude less than the size of the organ, in our case in the hundreds of microns. The

size of the capillaries is around 5 µm and the smallest hierarchical vessels perhaps twice as large. In

a rat organ, we had vessels whose size ranged over nearly three orders of magnitude to study (and

five orders of magnitude in cross-sectional area). In a mouse, we would have lost between a half and

a full order of magnitude (a lobe of rat liver is the same size as an entire mouse liver of 5-6 lobes),

greatly weakening our ability to probe vascular structures at all scales. Examining a mouse liver
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under a dissecting microscope revealed a further complication: dramatically different morphology

in the largest hepatic vessels. They appear as large fissures in the tissue rather than rounded, lined

vessels.

The liver is a useful organ with which to begin. Structurally it is simple (for details see §4.1)

with very little internal geometry. The main functional/structural unit, the lobule, is not regularly

tiled, or packed into the liver, leading to a lack of a preferred axis and symmetries. This situation

may be constrasted with the kidney, where the nephrons are highly stereotyped in structure and

pack regularly to fill out the interior of the kidney, itself aligned along a central axis. A lack of

preferred geometry would prove useful when cutting initially: we would not have to align our sample

to hit certain features head on. This structural simplicity also manifests itself in the existence of

only two major cell types: the hepatocytes and the Kupffer cells. These latter cells line the smallest

capillaries and are dramatically smaller than the hepatocytes: ∼ 1 µm versus ∼ 10 µm. With a

paucity of cell types, our signal would be more regular and easy to interpret. The remarkable ability

of the liver to regenerate after removal of up to 70% of its mass suggests an attractive structural

simplicity and uniformity as well as the ability to probe vascular development [9, 61].

The liver is additionally heavily vascularized. It plays host to four vascular networks in two

trees. The portal triad consists of the portal vein and hepatic artery (the two sources of oxygenated

blood) and the largest bile ducts, whose flow is in the opposite direction of the rest of the triad.

The second tree is that of the hepatic vein, which drains the liver. As the liver “cleans” the blood,

there is a large volume fraction of capillaries, around 15%, leading individual slices of liver to look

like wormwood or an extremely complex swiss cheese as in Figure 4.1 [9]. The liver additionally

strongly autofluoresces, notably in the blue-violet, unlike other organs. An example spectrum at

400 nm is shown in Figure 4.2. Initially we had hoped to image solely using this autofluorescence

signal. While this turned out to be impractical, see §4.3, this signal was extremely useful during the

image analysis stage.

The liver is also afflicted by a range of vascular diseases, from the various forms of hepatitis to

cirrhosis, originating in different toxins. Nearly all of these diseases may be induced in rats, as well

as cancers of the liver, which, as mentioned previously, may significantly rearrange vasculature. The

ability to easily study diseased organs added to the advantages of rat liver.

While we set out to characterize the entire vasculature of whole organs, we were not able to image

the capillaries in general due to the limitations of our imaging system (see §4.3). We concentrated

our efforts on studying what we term the hierarchical vasculature: the arteries and veins above the

scale of the capillaries. Our effective resolution was ∼ 10 µm, allowing us to capture the arterial and
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Figure 4.1. Two-photon image of a slice of rat liver. Note the large volume fraction of vascular
regions, the dark spaces between the hepatocytes, which fluoresce green. A well-ordered lobule (see
§4.1) can be seen in the center, ringed radially polarized cells separated by sinusoids. On the right
side, a large “cavity” can be seen, corresponding to two large branches of the portal triad. One
large vessel is perpendicular to the plane, and another merging with it runs parallel to the plane.
Photo by the author.

Figure 4.2. Autofluorescence Spectrum of hepatic tissue at 400 nm. Note the wideband signal
and the strength of response in the blue. Figure from [15].
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venous trees. This limitation was unfortunate; on the other hand, as seen in §2.1, there appears to

be a large difference between the anatomy and network morphology of capillaries and of arteries and

veins. Our inability to generate artificial versions of the latter suggests strongly different statistics

and network structures, beyond a simple caricature of a honeycomb lattice versus a binary tree,

between the two. Characterizing the hierarchical vessels then is an important first step and, on

some level, fills the largest gap in our understanding of vascular network morphology. Lastly, if we

had been able to capture the capillaries, even with as little as 2× better resolution, we would have

been encumbered by a truly enormous dataset, in the hundreds of gigabytes, unable to be held in

memory by any one machine at any time.

Our apparatus was a simple and cheap implementation of conventional blockface microscopy

and will be justified and detailed below. Briefly, we perfused rats with 200 nm fluorescent beads.

We then fixed, embedded, and froze samples of rat liver to the head of a microtome. A precision

controlled camera equipped with a makro lens performed imaging at 5 µm resolution. The system

was robotized allowing us to cut hundreds of 5 µm slices. These slices could then be segmented,

aligned, and reconstructed in three dimensions, giving a map of the vasculature of the liver, down

to the ∼ 10 µm level.

4.1 Hepatic Morphology

The liver is composed of four lobes: the large right and left lobes, which we use in our experiments,

and the smaller caudate and quadrate lobes. This structure is generally conserved across vertebrates.

Functionally, these lobes are essentially equivalent. Within each lobe, there is a branch of the portal

triad (portal vein, hepatic artery, and bile ducts) and one of the hepatic vein. The liver is the site

of the breakdown of toxins and many of the body’s waste products, among them hemoglobin. The

presence of large numbers of aromatics and ring structures, such as in billirubin, cause the dramatic

autofluorescence present in liver tissue. The liver is also the site of the production (and breakdown)

of glycogen, many amino acids, red blood cells, and several other compounds. It may also act as a

storehouse for vitamins and other nutrients [9].

The liver is commonly divided into subunits known as lobules. A hepatic lobule consists of a

hexagonal prism of tissue, commonly only shown in two dimensions, surrounding a central hepatic

vein. On three vertices of the hexagon lie branches of the portal triad. An example maybe seen

in Figure 4.3. With the exception of a few species, such as pig, where the lobules are defined by

connective tissue, this tiling of the vascular networks admits another interpretation, with a section of
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100 µm 

Figure 4.3. Liver Lobules in Theory, left panel, and Practice, right panel. The supposedly
stereotyped structure of the liver lobule with a central element of the hepatic vein surrounded by
three branches of the portal triad on alternating vertices of a hexagon. The area between these
large vessels is filled with sinusoids. The extension in the third dimension is rarely extrapolated
very far; a typical size would be 100− 500 µm. On the right-hand side is an image of a cut through
a liver lobule in pig, where the boundaries of the lobule are defined by connective tissue. Images
from [61] (left) and [11] (right).

portal triad at its center, known as a portal lobule. Hereafter we shall refer to the hepatic lobule as

solely a lobule. The packing of hexagonal prisms into a curved three-dimensional lobe is problematic.

All of the central hepatic veins and the portal triad components must merge and exit the lobe as

one vessel. Similarly, the vessels must merge before the stacks of lobules reach the outside of the

liver, lest the portal triad empty into the abdominal cavity. This packing, then, must be heavily

irregular, replete with topological defects, and the hexagonal prismatic structure must not persist

too far in the third dimension. Lobules must exist at different sizes and different relative angles. We

do not necessarily expect to see many hints of lobular structure looking at the vasculature of the

entire liver [61].

No matter the definition, the lobules are filled with generally radial sinusoids (unlined capillaries)

and the hepatocytes proper. These cells are generally polyhedral, with faces ∼ 10 µm on a side, and

apical projections that form the bile cannaliculi. These latter vessels are only around 1 µm in size;

along with the similarly sized Kupffer cells that are located along the sinusoids, they are invisible

to our imaging. It is commonly thought that the hepatocytes form radial cords from the central

hepatic vein to the edges of the lobule. Other opinions suggest that the hepatocytes in an entire
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lobe of liver form a single, corrugated sheet, holes in which are formed by anastomoses between the

sinusoids. While intriguing, these structural details are beyond our current optical capabilities and

present an interesting subject for future study [61].

4.2 Slicing

The opacity of hepatic tissue and its copious autofluorescence rule out the possibility of optical

sectioning. There exist methods of optically clearing tissue; however, these procedures have not

proved successful when applied to liver. One school of thought uses urea (in a solution known as

scale) to turn tissue transparent at the cost of introducing volumetric distortions [21]. When we

tried this method on mouse liver, approximately three orders of magnitude smaller in volume, we

found that even extended soaking did not turn the tissue fully transparent. While the clarity method

shows some promise, it is not clear to us how well it will function in the liver, whose tissue is filled

with all manner of optically dense and fluorescent compounds.

We were thus led to serial sectioning. A first attempt to simply cut slices on a cryostat, mount

them on slides, and then image them proved unsuitable for the task. The fundamental tradeoff

in serial sectioning is between the structural integrity of the slices, which increases with thickness,

and the z resolution, which requires as thin slices as possible. Technicians experienced in this type

of work are able to cut slices thicker than about 12 µm without issue. We require approximately

twice this resolution to be able to capture all the vessels above the scale of the capillaries. Slices of

8− 10 µm can frequently be cut without error. However, occasional errors would be devastating for

our ability to connect slices in three dimensions1 These errors can include small tears in the tissue,

blade-induced shearing, and warping of slices with large vascular features and hence large holes.

Even at an error rate of 1%, we would still have of order ten unusable slices per centimeter lobe of

liver. This is far too high an error rate.

Instead of keeping the slices, one can discard them and instead image what remains after a slice

is taken. This procedure is known as blockface microscopy; it originates with the relatively recent

work of Winfred Denk [16]. Provided one’s optics do not take in too much out of focus light, these

images will not be appreciably different in resolution and quality than those of slices, but without

the risks of warping and tearing. The large block of tissue is essentially immune from shear and

tearing.

1These figures come from a month’s effort in collaboration with the Nottebohm lab at Rockefeller. A technician
cut slices of zebrafinch liver from birds previously sacrificed and we imaged and segmented the resulting images on a
standard light microscope.
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The major issue with blockface microscopy is that the optics must be brought into the sectioning

environment. Normally, tissue is cut on a cryostat, a microtome mounted inside a glass-walled

freezer, operating around −20 ◦C to ensure solidity and density matching. The operator controls

the machine from the outside, examining his work through a glass window. Slices may be removed

via a small opening in this window. If we wish to simultaneously slice and image, either the optics

must peer through this window or be placed at the opening. The former is unacceptable as the

windows are not made of optical glass and are not perpendicular to the sample. Images taken

through the glass are full of artifacts from the frequently scratched and dirty glass as well as from

imaging at an angle through a piece (or worse, pieces) of glass. If instead of imaging through glass,

we image through the window, we expose our optics to the cold of the cryostat. Thermal gradients

of this magnitude, 40 ◦C over approximately a centimeter or so, are unhealthy for precision optics.

Similarly, the cold air of the cryostat will cause large amounts of condensation on the lenses, making

imaging more difficult and potentially causing the dissolution of the various anti-reflective coatings

on the lenses.

To solve this problem, we built our own cryostat out of a commercial microtome, a Leica RM

2250, and a Peltier-based cooling system. We reasoned that our samples were small enough that if a

cold enough temperature were applied to them on one side, they could be kept within a temperature

range appropriate for cutting. Low temperatures can be achieved over small areas through the use

of a Peltier device, which creates a thermal gradient in response to an electric current. This effect

is the precise analog of the better-known thermoelectric effect, wherein an applied thermal gradient

causes the formation of an electric potential in a material; the two are connected through an Onsager

Reciprocity Relation [42]. The problem is that a Peltier device consists of an cold side and a hot

side. These devices are also only 10-30% efficient, producing a significant quantity of waste heat.

A Peltier device mounted on a thermal conductor can remain cold for a short period of time, but

holding a consistent low temperature for hours requires efficient cooling of the hot side.

We used 110 W Peltier devices, which produced too much heat, around 80-100 W, for air cooling

to prove sufficient. Instead, a water cooling system was necessary. We adopted a GPU water cooling

system made by Swiftech, the H2O-X20 series. The Peltier was mounted on a copper block, with

hundreds of microchannels cut into its back, the waterblock of the Swiftech kit. Water flowed

through these channels, then through a series of plastic tubes to a radiator, itself cooled with two

RDMS fans. This system proved more than adequate to keep the Peltier at −18 ◦C for weeks at a

time. The copper block was mounted to the head of the microtome with a set of screws and adapters

of our own design. The Peltier was attached using thermal grease, which, provided it did not reach
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high temperature, formed an extremely strong bond, resistant to being pulled directly off. Since this

connection could be sheared, we designed a plexiglass “cup” to fit around the head of the microtome

and the Peltier to lock it into place. This piece could be easily cut out on a milling machine or a

laser cutter and assembled by chemical welding.

Modified in this manner, we were able to keep samples of up to 1cm thick well below the freezing

point. The main cause of sample melting was not the ambient temperature, which we attempted to

keep below 20 ◦C, but rather the humidity in the room. Any water in the air would consdense and

eventually freeze onto the sample, releasing a significant amount of latent heat. In the New York

City spring and summer, we had significant problems with humidity, oftentimes limiting the length

of time we could keep a sample frozen. In the winter, the air was dry enough to allow us to leave

samples up for a month or more at a time without any problems. To combat the effects of humidity,

we built a chamber around the sample from ThorLabs metal poles and plexiglass sheets. A hole was

left in the front for imaging. Nitrogen, either gaseous or liquid, could be leaked into this chamber

from the back to expel humid air and prolong the sample lifetime. Liquid nitrogen could also be

sprayed directly onto the sample to cool it in case it was melted during the attachment process.

The use of blockface microscopy allowed us to cut thinner sections; we were limited only by the

precision of the microtome. Following the advice of a microtome engineer, we limited our slices to

5 µm, a length that could be improved upon with a newer microtome. Temporary blades, profile

C, were mounted at 5◦. Initially, we cut with a perfectly vertical blade. However, when cutting

thin slices, there was a tendency for melted embedding medium and tissue to accumulate on the

back side of the blade. This could be corrected by tilting the blade slightly. Every 100 slices or so,

the blade was cleaned with acetone to remove any accumulated tissue. If left unchecked, occasional

pieces of tissue or embedding medium would stick to the blade, causing streaky artifacts on the

blockface itself and impairing our images. These artifacts could be removed in post processing, but

would limit our resolution if they were not cleaned.

4.3 Imaging

As we saw in Section 2.2 above, the combination of a large area to be imaged and a demand for

near micron resolution make designing an imaging apparatus nontrivial. Our solution was to use

makrophotography. A akro lens is one that allows a camera to take images of the same size as its

sensor, 35× 24 mm, for most commercial cameras. If the camera has a 21 megapixel (5616× 3744)

sensor, then our effective resolution is 35/5616 mm ≈ 6 µm. We used a Canon Mark II 5D camera

38



with a Canon MPe 5x Makro lens.

While the Makro lens was able to magnify up to 5 fold in theory, any resolution beyond 2x

was useless. This is due to the peculiar scaling of the Numerical Aperture of Makro lenses with

magnification. Typically in photography, one measures light-gathering ability and resolution by the

f-number, or the ratio of the focal length to the aperture diameter. As the objects we photograph

are not very far from the lens, we need a more accurate calculation. We may calculate the working

f-number as follows [8]:

Nw =
1

2Na
≈ (1 + |m|)N (4.1)

where N is the uncorrected f-number, m is the magnification, and Na the numerical aperture. The

size of the diffraction limited spot is given as [8]:

d = λ/(2 ∗Na) = λ(1 + |m|)N (4.2)

Theoretically, we can achieve maximum resolution with a small f-number. If we let N get too small,

however, we will let too much out of plane (and thus out of focus) light into the camera. As a

compromise, we settled on a value of N = 4, or three clicks above the minimum. The primary

wavelength we image at is set by our fluorophore and filters (see below) and is approximately 550

nm. This gives a diffraction limited spot of:

d = 550 ∗ 4 ∗ (1 + |m|) nm = 2.2(1 + |m|) µm (4.3)

This calculation rules out the magnification on the lens as useful above approximately 2x. Any

effective resolution gain is washed out by the large diffraction-limited spot. We set the magnification

of the Makro lens to give us 5 µm pixels, ensuring nearly equal resolution in all directions. This was

accomplished by adjusting the magnification until a feature of set size, the length the embedding

mold (2 cm) subtended the short side of the camera sensor, or 3744 pixels, giving a resolution of

≈ 5.3 µm in x and y.

The camera was mounted on a set of precision XYZ axes. We attached three ThorLabs Long

Travel Stages, each capable of moving up to 300 mm in 4µm increments, to one another. These axes

were controlled by a GUI on the computer or alternatively could be programmed in C. The X and

Y axes were used to control the area of the sample the camera is imaging. The Z axis focused the

camera by adjusting its distance to the sample. We focused the camera under white light with the

emission filter for fluorescence (see below) attached. By opening the live view mode in the Canon
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camera software with maximum exposure (1/40 s), we were able to see the degree of focus in real

time. By panning back and forth, the proper focus was easily found. The entire system was mounted

on a vibration insulated optical table, ensuring stable imaging.

4.4 Fluorescence and the Search for Signal

It is tempting to believe that there is no need for enhanced contrast to detect vasculature in pieces

of tissue. Blood vessels are, after all, holes in a piece of tissue2 and in the limit of thin slices, they

can be easily detected: a slice of tissue of single-micron thickness will look like a piece of swiss cheese

under a microscope, full of vascular “holes.” When imaging the blockface, the vascular regions would

appear darker, as less light would reach into them, especially if the illumination were tangential.

Similarly, any activated autofluorescence signal would be weaker in the vessels, providing further

contrast. While practicable in theory, this form of illumination was not sufficient, as can be seen in

Figure 4.4.

While in portions of the sample, such as the lower left, there is good contrast, especially for the

largest vascular features (the honeycomb array of dark dots), it is inconsistent across the sample.

There are an abundance of freezing artifacts in other regions of the sample, from parallel lines of

ice crystals that obscure the vasculature behind them to deposits of embedding medium left by the

blade that appear as irregular white lines across the tissue. Clearly a stronger signal was needed.

However, with the passage from white light to fluorescence, the exposure time needed for an image

increased dramatically, from 1
40 s to around 1 s. The search for a strong, high-contrast, and uniform

signal was not simple.

We turned next to autofluorescence, making use of the liver’s propensity to glow even when

illuminated deep in the violet. Imaging with a 405 nm LED and a 425 nm filter, we could be

assured of only getting an autofluorescence signal (and one that could be easily separated form the

excitation source at that). An example image is seen in Figure 4.5. The biggest problem with the

autofluorescence images is the lack of contrast. While larger blood vessels can be detected as dark

spots, the strength of the signal varies substantially across the sample. As the signal-to-noise ratio

is not great in the brightest regions, these contrast gradients are deeply problematic. While the

exposure of images can be changed, it becomes impractical at some point to take four or ten-second

exposure images for hundreds of slices of liver, not to mention that the longer the integration time,

the higher the risk of blurring due to slight motion of the microtome head.

2Lined, of course
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Figure 4.4. Image of rat liver taken only with tangential white light. Note the good contrast in
the lower-left-hand region of the tissue, allowing easy separation of larger vascular features (the
dark pixels) and smaller, in plane vessels, from the surrounding tissue. In the right-hand side of
the figure, note the artifacts due to freezing (the parallel ice crystals) and the obscuring of tissue
by cutting artifacts, as well as poorer contrast.
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Figure 4.5. Autofluorescence Image of rat liver. Note that large vascular features can be easily
distinguished, but that the overall signal to noise ratio is quite poor and the strength of the signal
varies across the tissue. Compare the extractable features with those in the white light image,
Figure 4.4

Since the tissue itself did not provide sufficient contrast, we turned to perfusion. Rather than

making the tissue glow, we would fill the vessels with a fluorophore and make them glow. Our lack

of experience in highly technical perfusions led to us ruling out filling the vessels with a resin or

plastic compound combined, as is done in corrosion casting3. It is far simpler to perfuse with a pure

fluorophore or a suspension of fluorescent beads. We began by perfusing with molecular fluorescein,

which provides an extremely strong signal. Unfortunately, it is a small molecule and was readily

absorbed by the tissue and would leak out of the sample during fixation, leaving a mostly dark

sample with haloes around the vessels. One rapidly fixed and frozen sample did yield images of

capillaries in a small region, when cut. These may be seen in Figure 4.6.

One way to correct for the “running” of the fluorescein is to weight it with a significantly heavier

protein, such as albumin, or a sugar, such as dextran. We experimented with fluorescein conjugated

to albumins and dextrans (FITC) with molecular weights up to 70000. While the heavier FITCs

stayed within the sample, we were not able to prevent them from being uptaken by the tissue.

Instead of glowing vessels surrounded by dark tissue, we saw mostly dark vessels ringed by glowing

haloes of FITC, much like images of the Solar corona during an eclipse. This signal slowly away

3We believe this would be the correct way to proceed in the future, provided access to someone with the proper
technical expertise.
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Figure 4.6. Capillaries in a lobule of liver, seen at 5× magnification on the Makro lens. Perfusion
with fluorescein, followed by rapid freezing, led to a rare image of capillaries through our
makrophotographic optics. As we are imaging features at the scale of the diffraction limited spot,
the image is necessarily rough. Note the neat lobular structure around the merger of two
hierarchical vessels.

from the vessel into the tissue. Provided a good model of the diffusion of the FITC into the tissue,

we believe these images could be used succesfully to determine the locations of the blood vessels.

Absent one, however, it would be hopeless to segment either based on overall brightness, which

would pull out both tissue and blood vessels, or edge detection, which would find both the vessels

and the edges of their “haloes.” Two options that we did not try are carboxyfluorescein, a form of

fluorescein that cannot be uptaken by cells, and FITC-Dextran, with a molecular weight of 2 million.

We suspect they both would be ideal for imaging capillaries. The latter is about 30 times heavier

than the heaviest FITC-Albumin preparation we used, suggesting it will diffuse
√

30 ≈ 5.5× less.

Both of these compounds have their drawbacks: carboxyfluorescein will run during fixation, and the

heavy FITC dextran is eventually uptaken by tissue, especially if it is not immediately fixed and

frozen.

Following a lead in the literature [56], we chose a different tack: perfusion with fluorescent beads

(microspheres). Normally used for flow cytometry and labeling, they are made of polystyrene bonded

to fluorescein (or another fluorophore) and will readily attach to extracellular proteins. A vial of

them is substantially cheaper than FITC and contains 10 mL, exactly enough to replace the blood

volume of a rat. We can directly inject at their standard concentration of 1% w/v. They can be

purchased in sizes ranging from the tens of nanometers to about ten microns. Initially, we thought
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that micron-sized beads would be ideal. They would get stuck in the large vessels, making them glow.

Unfortunately, beads above a micron or so in size are large enough to appear as punctate sources

surrounded by diffraction rings, rather than producing a smooth glow. Extremely small beads get

uptaken into cells, again causing the haloing effect. The ideal size turned out to be 200-400 nm. At

that size, the beads no longer got stuck in the large, hierarchical vessels but in the capillaries, which

we confirmed using a dissecting microscope. This causes the tissue to glow and the vessels to be

dark, essentially enhancing the contrast we see in the autofluorescence images. An example image

can be see in Figure 4.7.

After perfusion, rats were left until their heart stopped beating. At that point, the liver and any

other organs of interest were removed, washed with paraformaldehyde (formalin), and then placed

into a 10% formalin solution for 48 hours to fix. After fixation, samples were placed directly into a

30% w/v sucrose solution in phosphate buffered saline (PBS) for density matching. While common

preparations suggest first placing the sample in 5% and 15% w/v sucrose solutions until they sink,

we found that our tissue would sink instantly upon being placed in both. Once the sample sunk,

after approximately 24 hours, it was placed in an embedding mold (22× 30× 20 mm), and the mold

was filled with embedding medium (Neg-50 from Richard Allen Scientific)4. We let the samples sit

in the embedding medium for a day to fill any large pores and to attain an equilibrium position in

the mold before placing them in a −20 ◦C freezer. Samples were left covered with aluminum foil

in the freezer until ready to be sliced. When the time came for use, the Peltier device and water

cooling systems were switched on, the sample was uncovered, and additional Neg-50 was added to

replace any that had sublimated off and to give a flat surface. The mold was then inverted onto the

cold Peltier device, instantly forming a strong bond. Once the sample had frozen onto the Peltier,

the embedding mold could be pulled or cut off.

4.5 Automation

Slicing a lobe of liver into 5 µm slices requires 2000 cuts per centimeter, each of which must be

followed by a photograph. Automation of our experimental setup was necessary in order to make

it high throughput and to avoid unnecessary experimentalist error. We had three systems that

needed to communicate with one another: the microtome itself, the camera, and the precision xyz

controllers. One of these systems, the microtome, was not electronically accessible; while it had

a remote control, Leica was unwilling to share the communication protocol that it used. This

4This cryotomy preparation technique was taught to us by the Nottebohm lab and is standard in the literature

44



Figure 4.7. A slice of liver illuminated with fluorescent beads. Note the good overall contrast for
vascular features, the dark regions, and their sharply defined boundaries. The preparation is the
same as in Figure 5.1
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necessitated the addition of two more systems: one to press the cut button on the microtome and

another to tell if and when a slice had been taken. These two tasks could be accomplished through

the use of Phidget microcontrollers. Unfortunately, we were still left with three uncommunicative

APIs.

This number could be reduced by one if we were satisfied with only controlling the camera’s

shutter remotely and not any of its other electronic features. A camera trigger consists of three

wires: a ground wrapped around a focus wire and a shoot wire, each of which is held at a different

potential. When the trigger is depressed partway, focus connects to ground, a circuit is completed,

and the camera runs its focus sequence. If depressed fully, it takes a picture and continues taking

pictures as long as the circuit is connected. This system could be hacked by attaching a transistor

between the ground and shoot wires. The base pin of the transistor was connected across a 2200 Ω

resistor to one of the digital outputs of the Phidget Interface Kit (see below). The camera’s exposure

length, F-stop, and output properties were set manually ahead of time. Our electronics setup is

shown in the schematic (Figure 4.8) below.

Phidgets are a system of electronic microcontrollers and sensors that can be driven by software

from a computer. Generally, one has an “Interface Kit” with a set of digital inputs and outputs as

well as analog inputs (for sensors), a 5 V power supply, and a ground. This hub is connected via

USB to a computer, which can read the inputs and control the outputs. Software for Phidgets can

be written in any number of languages, which proved useful when working with hardware APIs that

only run in C. The digital outputs each give a 5 V signal when turned on and need to be connected

across a resistor in the kΩ range when attached to transistors. Phidgets made the task of controlling

the microtome easy. A Phidget shortrange IR distance sensor was attached to the bottom of the

microtome head and its values for the up (resting) and down (at the bottom of a cut) positions

were measured. Whenever the microtome head dropped into the down position, we knew a cut was

occurring. When it returned to the up position, we took a photograph.

When using extremely bright LEDs, we needed a way to limit the amount of time that they

were on to prevent overheating. A transistor was inserted between the LED and ground and only

activated during the time that a picture was being taken. This transistor was connected over a

resistor to a digital out on the Interface Kit.

The microtome cutting procedure was driven by an actuator that simultaneously pressed the

“Run” and “Enable” buttons on the remote control. The microtome had previously been set to take

single 5 µm slices when instructed to cut. The actuator required a positive voltage to extend and

a negative voltage to retract. We attached two circuits to a relay switch, one from +5 V to ground
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and one from ground to +5 V, both of which connected to the actuator, and switched between them

using a transistor connected across a 2200 Ω resistor to one of the digital outs of the Phidget. By

flipping the relay, we changed the polarity of the current in the actuator, causing it to extend or

contract. The actuator itself was augmented with a handful of Lego bricks to enable it to press two

buttons on the microtome panel simultaneously.

Provided we did not need to move the camera in x and y, that is, we did not have to tile a

set of images between cuts, we did not need to control the xyz axes during cutting, unless the

experimenter decided there would be some utility to doing so. Our software did allow for tiling

in a rather unelegant manner. A separate C program controlled the xyz axes, which continually

checked a file. If a digit, or a sequence of digits, were written in the file, it would move in a specified

fashion and then change the digit in the file. This file was simultaneously checked and written to by

the program that controlled the Phidgets. If instructed to, it would take a picture, move the axes

(by writing to the file), wait until the move was done (by checking the file), and then take another

picture. The z axis, which determined the focus on the camera, was set ahead of time. The entire

apparatus is shown in Figure 4.9.
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Figure 4.8. Diagram of the major circuits controlling the setup. The phidget interface kit reads
in information from sensors (analog in) and controls electronics through the use of 5V digital
outputs. One of these controls the firing of the camera, another the movement of an actuator,
which extends when given +5 V and retracts when given −5 V. A third circuit (not pictured) could
be used to turn on and off an LED.
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Figure 4.9. Our apparatus: the Scanning Blockface Microtome. On the left, the white box is the
body of the Leica microtome, surrounded by a chamber formed of ThorLabs supports and lexan
sheets. The microtome head is surrounded by a layer of metal, to which the water cooling
apparatus is attached (the green tubes) and the Peltier device (the white square). Mounted on the
Peltier is a frozen sample (the white cube). The blade sits below, mounted in the large, silver
knifeholder, which is attached to the base of the microtome (the blue metal piece on the optical
table). The ThorLabs axes sit just to the right. The camera is behind the z axis, but its back can
be see to the right, with attached wires running to the control electronics and the computer (for
image viewing and downloading). To the left of the axes, the makro lens is sticking out. The
whitish control panel to the right runs the microtome, note the actuator above the two blue keys,
which robotically instructs the microtome to cut a slice. An imaging led, mounted on a silver post
is to the left of the control panel. The Phidget control panel and other electronics are behind the
axes. The distance sensor that judges when a slice has been cut can be seen just below the
microtome head: it appears as a small black rectangle.
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Chapter 5

Image Analysis

Given a set of images, we must turn them into a set of binary masks, where the “on” pixels represent

vasculature and the “off” pixels represent everything else. A representative slice is shown in Figure

5.1 below. There is a yellow-green blob of tissue, full of dark regions of all shapes and sizes. These

are slices through vasculature, from the smallest venules to the largest sections of the portal vein.

We see dots and circles where we have cut into a vessel perpendicularly and long cylindrical shapes

where the vessel runs parallel to the plane. We even occasionally see two vessels merging, such as in

the upper-right-hand corner of the tissue. There are large vessels that appear more like cracks in the

tissue, filled with the embedding medium. The tissue is uneven in color and brightness, varying from

a bright yellow along the left side in the middle to a darker, greener color in the center. Occasional

bright yellow-green splotches are signatures of clumps of fluorescent beads.

There is a multicolored background, illuminated by the scattered fluorescence from the sample.

Cracks and imperfections in the embedding medium, arising during the freezing process, lend a

complexity to the region around the sample. Outside the frozen block, we see a darker region of

scattered light illuminating pieces of the Peltier device and the microtome head.

There are several levels of image processing necessary. First, we must separate the tissue from the

background, which includes not only frozen embedding medium but also pieces of the microtome

head and peltier. Second, we must isolate vascular features (generally the dark blotches in the

sample) from the tissue, despite varying degrees of brightness and contrast in the tissue itself. We

are not helped by the occurrence of vascular features on all scales, from small single-pixel scale

regions to large areas comparable in size to the entire sample, such as where the portal triad enters

the liver.
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Figure 5.1. A slice of liver from one of our datasets. Note that we must first extract a region of
interest (the tissue including vasculature) from the surrounding embedding medium and
background before progressing to separating vasculature from tissue. The preparation is the same
as in Figure 4.7
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Figure 5.2. Red Channel of the liver slice image. Note the darkness of the background and the
relatively low contrast for vasculature versus tissue. We are mostly seeing autofluorescence here.

5.1 What Exactly Are We Seeing?

Given the complexity of our image processing problem, it is best to start by examining the image

from as many perspectives as possible. One place to start is the individual color channels that make

up the photograph image. In Figures 5.2 and 5.3 below, we display the red and green channels

respectively.

The red channel is dominated by the autofluorescence signal, as fluorescein glows in the yellow-

green. We are picking up the autofluorescence of various compounds in the liver, activated both by

our LED and the fluorescein fluorescence. While this signal is somewhat weak, it clearly distinguishes

tissue from the background, which presents only a weak, scattering signal. Vascular features are the

(relatively) darker spots but can be hard to isolate on this image, as many of them are not extremely

deep in the z direction (into the plane). The autoflourescence from behind brightens them, leaving

less contrast. The absolute largest vessels, which appear more as cracks in the sample, are filled
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Figure 5.3. Green Channel of the liver slice image. Note the relative brightness of the
background as compared to the tissue and the strong contrast between vasculature and tissue.
This image is dominated by the light from tissue fluorescence, both direct and scattered.

with embedding medium. As such, they are clearly distinguished in the red channel, wheareas in

the green channel, they appear as little more than an exceptionally smooth piece of tissue.

In the green channel, the situation is reversed. The vasculature-tissue contrast is extremely good.

The fluorescent beads have accumulated in the capillaries, illuminating the tissue as a whole. The

vessels are quite dark. On the other hand, the distinction between embedding medium and tissue

is considerably more difficult to make. While we can make out the boundary between the two of

them, the embedding medium scatters enough of the fluorescence from the sample to appear bright.

There is an additional confounding present on the lower-left quadrant of the image. We can see

out-of-focus light from tissue behind a layer of embedding medium and even begin to make out the

general pattern of vascular features. This layer is invisible in the red channel image due to the

weakness of the autofluorescence signal as compared to the beads and the specific attenuation of the

embedding medium.
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In the blue channel, there is only darkness. This is a good sanity check: if we saw anything,

it would be evidence that our filter was not blocking out all of the light of our illumination LED,

which, at 475 nm, is filtered into the blue by the camera.

We are still left with the problem of how to remove the background, embedding medium and

microtome head, from the images. In the green channel, we have poor contrast between in-plane

and out-of-plane tissue, and bright regions of tissue blend smoothly into the background. In the red

channel, neither the tissue nor the background is particularly bright, though there is decent contrast

between them. What we need is to integrate the two signals: the tissue changes less in brightness

than the embedding medium between the red and green channels. This suggests that if we look

at the image resulting from dividing one channel by the other, we would get a strong signal. This

“ratio channel” is seen in Figure 5.4.

Due to the complexities of the vascular channel, anything that will separate tissue from back-

ground will necessarily make vascular regions look different from tissue. We see that effect in the

ratio channel, where some vascular regions are extremely bright (reddish colors), due to a strong

autofluorescence signal, in the red, perhaps due to residual blood, and none in the green. Natural

heterogeneity in the tissue and large vessels filled with embedding medium produce areas where

there is little autofluorescence, so the red:green channel ratio is more background-like. There is,

however, a strong contrast at the border between tissue and background.

To extract our region of interest, we use a strict segmentation (approximately 1.2, the yellow color

in Figure 5.4) and look for the largest connected component of “on” pixels, using the bwconncomp

function in matlab.. This will correspond to the tissue. It will also be full of holes due to the

aforementioned areas where bead fluorescence dominates autofluorescence. To correct this issue, we

calculate the Euler Characteristic of the draft region of interest, a measure of the genus, or number

of holes in an object, using the bweuler function. We then perform morphological closing (see

§5.3 for details) with structuring elements gradually increasing in size until the Euler Characteristic

equals 1, the value for a two-dimensional object without holes. Armed with a region of interest, we

may isolate the regions we will search for vascular features by simply multiplying the original images

by it.

5.2 The Nature of the Vascular Signal

While the vascular features can be easily segmented by eye, they are not easily computationally

distinguished. The regions we instantly pick out as blood vessels are subjectively dark but not
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Figure 5.4. Top: Ratio of the Red Channel to the Green Channel. Bottom: Region of Interest
extracted from this ratio channel. Note that the tissue is clearly identified. Certain vascular
features appear very brightly, as they contain an autofluorescence signal only in the red channel,
possibly due to residual blood in the vessels. While the background retains its complexity, it is
easily segmentable from the foreground.
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objectively so. If we were to segment with a constant threshold, we would either not pick out all of

the vasculature, or it would label some regions of tissue as vasculature. For example, consider the

top region of Figure 5.3. The outer edge of the tissue is a thin, brighter region bounded on the inside

by substantially darker tissue. The interior is a mixture. Many of the regions directly adjacent to

the vascular features are dark – they are “anti-haloed.” In the upper right, sections of blood vessel in

lighter regions of tissue are no darker than the halos around the vessels in the dark regions. Fainter

features would be lost in any overall segmentation operation. To maximize signal-to-noise ratio, we

will use the green channel, as it shows the strongest contrast between vasculature and tissue.

What we notice by eye is that vascular regions are darker than the areas that immediately sur-

round them. The vascular regions can be easily separated from their “anti-haloes” by this criterion.

This suggests that a relative segmentation procedure is the correct way to proceed. We would sub-

tract the image from an averaged (or smoothed) version itself and the vascular features would stick

out as particularly bright. A related procedure would be to take a gradient feature and connect

maxima of the brightness gradient. This is the general manner in which edge-detection filters work1.

There are a few problems with this approach. Most importantly, the gradient is a notably noisy

operation. When we require precise edges, this poses a severe issue. Our features are also frequently

small and have irregular edges. Correcting for small defects where no edge is found would not be

trivial. Similarly, false edges would connect separate vascular regions, complicating segmentation.

Lastly, an edge-detection filter would find the borders between lighter and darker regions of tissue.

Such a result is unacceptable.

Having decided upon the need for a relative filter, we must choose a method of averaging the

signal over a region. Two standard methods of doing this are to apply a median or a mean filter.

The effect of both on an image of the Duomo in Florence, taken by the author, are displayed in

figure 5.5 below. Note that the mean filter merely appears like an out-of-focus image, whereas the

median filter accentuates the blocks of color and other features that naturally draw the eye. It is

better at preserving boundaries as well, as can be seen by examining the edges of the Duomo itself

or the buildings in the foreground. One might say the median filter is more “artistic.” In our work,

the preservation of sharp boundaries and the accentuation of large features is an attractive feature

in an averageing method.

Statistically, a median filter is likely optimal for work on a noisy image with somewhat rare,

darker vascular pixels. The median is the value that minimizes the L1 norm for every point in a

1As an example, the famous Canny edge-detection filter uses a derivative of a gaussian: a gaussian smoothing and
a gradient to detect edges.
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Figure 5.5. At the top is an image of the Duomo in Florence. On the lower left is a median filter.
The lower right is a mean filter. Note the more naturalistic, perhaps artistic feel of the median
filter, as opposed to the mean filter, which appears fuzzy. Photos by the author.
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set, whereas the mean minimizes the L2 norm, or the mean square distance. A mean filter, thus,

will drag down the overall brightness of a region due to the vascular pixels present in it, as it more

strongly weights exceptionally dark or exceptionally bright points. Similarly, if the background of a

region is slowly changing in color in an uneven fashion, the median will give a more representative

value than the mean, as it does not assume linearity [50]. We implemented a median filter using the

medfilt2 function in matlab.

Once we choose a method of averaging, we must decide how much area to average over. Since

there are many small vascular features comprising only a handful of pixels, we likely wish this region

to be small to preserve context. It seems reasonable to begin with an area 20 pixels to the side, or

100 µm. The result of this operation is shown in Figure 5.6 in the top row with the filtered image

at left and with the original subtracted at right. The median filter preserves many (if not most) of

the vascular structures we saw by eye; they are simply too large to be smoothed out by a 20 pixel

filter. At right, we can see that the extracted signal is weak, seemingly consisting of punctate dust.

We are extracting only the smallest vessels without a hint of the larger ones. Clearly another size

filter is necessary.

Moving to a 100-pixel median filter (500 µm), we see considerably more. The median filtered

image shows mostly splotches of color, corresponding the overall brightness of the image within a

region. After subtracting the original, we see vascular features of a range of sizes, larger ones in the

center, smaller ones nearer the top and bottom of the image. If we look more closely at the top of

the image, though, we can see that the smallest vascular features, the punctate dust picked out by

the small median filter, are not reproduced by this larger one. Additionally, the largest blood vessels

in our image, the branch of the portal vein at lower right and the dark arc in the center, are not well

extracted by a filter of this size. It is clear though that we need a set of filters in order to properly

extract all the vascular features. In this case, it appears a small, a medium, and a large one will do.

Setting up a larger median filter is somewhat tricky. As the size of the filter increases, so does

the time necessary to run it. We also need to be clear what large features we are looking for; not

incidental variations of brightness across the sample but large vessels filled with embedding medium.

Returning to Figures 5.2 and 5.3, we see that these features are considerably stronger in the red

channel than the green. For this largest filter, we should use the red or the ratio channel. We also

must choose its size such that the largest vessels are picked out but not the incidental variations in

brightness across the sample. We settled on 300 pixels, or 1.5 mm. The results are shown in the

bottom row of Figure 5.6.

Applying filters to an irregularly shaped region surrounded by a background one desires to ignore
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Figure 5.6. Median Filters at varying radii and the features extracted when the original image is
subtracted. In the left-hand column, a median filtered version of the green channel of our image is
displayed. In the right column, we display the median filter with the original image subtracted,
highlighting the vasculature. The top row has a median filter of size 20 pixels, the middle of 100
pixels, and the bottom of 300 pixels.
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is inherently problematic. If we apply the filter to an image multiplied by the region of interest,

rendering the background black, we will create darker-than-normal regions for the inside edge of

our sample and brighter-than-expected regions just outside of it. Since our region of interest isn’t

perfectly coterminal with the tissue, this leads to numerous false positives around the edges. Our

solution is to only look at points a distance of one pixel or greater from the edge. While this deprives

us, theoretically, of some vascular features, it helps ensure that we do not mark the boundary of the

tissue as vasculature.

The last step in the relative filtering is to decide what level of brightness difference between

the filtered and the original images constitutes evidence for vasculature. To properly normalize our

data, we perform a round of histogram equalization using MATLAB’s imadjust function on the

original image before filtering. Empirically, we noticed that smaller vascular features gave a weaker

signal, perhaps because they skewed the median filter in their region more strongly, perhaps due

to secular brightness fluctuations. We marked everything in the 11th brightness bin (out of 256)

or higher vasculature for the small filter, the 16th and higher for the medium filter, and the 21st

or higher for the large filter. These thresholds were chosen by examining the image histogram and

choosing the point that best separated the generally normal distribution of brightness of the tissue

pixels versus the long tail of vascular pixels. This effort was complicated by the existence of a “hard

wall” of brightness at the 0 bin, yielding only half of agaussian to work with. If both sides had been

in evidence, it would have been easier to estimate where the normal fluctuations in brightness ended

and the vascular features began by comparing both halves of the distribution about its center.

The issue of brightness abutting zero suggests a new version of the feature extraction algorithm

less reliant on thresholds extracted by eye. This scoring algorithm would repeat the three-filter

process above, but instead of definitively marking a pixel as vasculature, it would assign it a score,

based on its distance from the edges of the normal distribution of brightness fluctuations, akin to

a z-score in statistics. If we convert our images to double-precision numbers, as opposed to the

unsigned 16-bit integers that the camera assigns, we can allow for negative brightness values, giving

us the full distribution. Setting thresholds is then greatly simplified, and we have the advantage of

being able to look at the tail of pixels that are much darker than average. In a properly perfused

animal, these would not be particularly useful. However, if there are large vessels full of beads, they

will appear brighter than the tissue on average, and lie in the darker-than-average tail. This tail also

contains border regions from just inside the sample, where the median filter averaged over pieces

of purely black background. This process can be done both on the red and the green channels, as

well as the ratio channel if so desired, giving us nine potential sources of vascular detection (×2 if
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the dark tail is included). We may then assign a score, either binary or based on log differential

brightness2 and then taking all the pixels whose score is greater than some amount. In the dataset

described in this thesis, that minimum score was one. In other datasets, this has not been the case.

No matter the method chosen to determine which pixels constitute vasculature, be it a union

of the brightest elements in three separate filterings or a scoring algorithm, we are left with a

binary mask that provides an estimate of which pixels constitute vasculature. Those we take to be

vasculature are “on” with a value of unity. Those that are background are “off” with a value of

zero. We have greatly compressed our images, in taking them from 3 channel, 16 bit tiffs to binary

masks. This initial mask is shown in the lefthand panel of Figure 5.7.

5.3 Morphological Operations and Cleaning

While we have done a fair job of capturing most of the vasculature, there is still an abundance of

false positives, or noise that we have marked as vasculature, and false negatives, vascular pixels that

have gone unmarked, leaving holes in the regions we have determined to be blood vessels. For the

false positives, we need a procedure that will eliminate features that are below a certain size and/or

are not extended in any direction; to pull out punctate shot noise, but preserve vasculature. For the

false negatives, we need a way of connecting isolated pixels that have been marked as vasculature

but are separated by gulfs of background pixels. If we have missed a vessel altogether, we cannot

rescue it. While this statement is somewhat tautological, it suggests the proper order of operations

for fixing defects in our mask. First, we should try to connect disparate pieces of vessel and only

afterwards should we attempt to denoise our data by removing isolated components.

False positives and false negatives in our image are in some sense the dual of one another.

False negatives can be thought of as false positives for the background, while false positives can be

viewed as false negatives for the background. Viewed from this angle, a denoising procedure and

a connecting components procedure are not so different. One is applied to the original image and

to its inverse with all the “on” pixels turned to “off” and vice versa. Because the statistics of the

foreground and background differ, this duality relation does not hold exactly. We expect vessels to

look like sections of cylindrical tubes and the background to look like swiss cheese (to first order).

An operation that perfectly removes false positives for the foreground is clearly not the ideal one

to remove false positives for the background. Mathematical morphology provides the proper set of

2Most vascular pixels are not too different in brightness from the original sample, and we desire maximum control
in the low score region. Additionally, we naturally judge brightness logarithmically (the Weber-Fechner Law). Hence,
compressing the scale with a logarithm is reasonable.
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Figure 5.7. Initial binary mask created by taking the union of all the pixels marked as vasculature
in the three relative median filters. Note the abundance of false positives and false negatives.
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Figure 5.8. The Erosion (left) and Dilation (right) operators. The original image, A is the dark
blue square, the structuring element, B is the gray circle, centered at the red dot. The resulting
image is the light blue square. Images from [47].

tools for both of these procedures: any operation that we specify for the “on” pixels has its dual

that performs the equivalent for the “off” pixels [50].

The two fundamental operations of mathematical morphology are the erosion and dilation oper-

ators. We consider an image, A, and a structuring element (or filter), B defined on a grid, E, with

Bz denoting B centered at a point z. We define the erosion operator as:

A	B = z ∈ E|Bz ⊆ A (5.1)

Hence, the erosion of A by the element B is equal to those points in A, where if we center B, B only

contains points in A. An example can be seen in the left-hand panel of Figure 5.8. The dilation

operator is precisely the dual of the erosion operator:

A⊕B =
⋃
z∈A

Bz (5.2)

Dilation represents the union of all points within B when B is centered at every point in A. It is

shown in the right-hand panel of Figure 5.8 [50].

To put these operations to good use, we may define two second-order operations, also duals of

one another, opening and closing. Respectively, these are an erosion followed by a dilation and a
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Figure 5.9. The Opening (left) and Closing (right) operators. The original image and structuring
element are the same as before. In the case of opening, note how the initial erosion leaves a new
shape with rounded corners, so the subsequent dilation does not return the original shape, but a
smoother version. In the case of closing, the opposite occurs. The initial erosion leads to regions
that cannot be removed by a dilation. Images from [47].

dilation followed by an erosion [50]. We write them:

A ◦B = (A	B)⊕B (5.3)

A •B = (A⊕B)	B (5.4)

Examples may be seen in the left and right panels, respectively, of Figure 5.9. Morphological opening

“opens” gaps between separate objects and closing “closes” them. A dilation that fills a hole will

not be undone by a subsequent erosion, hence closing. An erosion that opens a distinct gap, or in

the case of Figure 5.9, sands the corners off of a shape, will not be undone by a subsequent dilation.

Opening will also erase regions smaller than B surrounded on all sides by points not in A. In the

case of stable shapes, both closing and opening do nothing, making them ideal for the removal of

false positives and negatives. Our program is then a round of morphological closing to fill in holes

of “off” pixels surrounded by “on” pixels and to bridge gaps between areas that should connect,

followed by a round of morphological opening to remove noise.

We have yet to specify the structuring element, B, however. During morphological opening, it

will specify our minimum feature size and shape. For simplicity and maximal resolution, we chose

a 2 × 2 pixel square. This meant the smallest vascular features we accepted would be 10 µm on

a side, small enough to still capture all of the hierarchical vessels but large enough to get a real
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Figure 5.10. Morphological Closing on the draft binary mask of our example slice.

Figure 5.11. Morphological Opening on the morphologically closed mask of our example slice.

improvement in signal to noise (≈
√

4 = 2× improvement). For the closing, we desired a structuring

element large enough to fill in gaps of moderate size without generating new, false connections. We

chose a rhombus of radius two pixels as a useful and fast approximation of a circle. The results of

our morphological operations are shown in Figures 5.10 and 5.11. We see a substantial improvement

in the quality and quantity of vascular features extracted from the images.

There still remain issues in this image, mostly related to the large vessel in the lower-right

quadrant of the image, which is still not filled in entirely. Additionally, some features in the upper-

left quadrant appear to be overly large. This is no reason for despair, however, as we have 1760

images in our dataset. A false positive in one image is not likely to be a false positive in the

images before and after. As such, it will only slightly contaminate the appearance of our dataset

without affecting its mathematical properties. The distance transform will not be affected by a

slight projection in one z slice. Neither should the skeleton (see §6 below) be disturbed by a slight
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protrusion in one direction.

Similarly, a piece of vessel left unfound in one image is likely to be found in a neighbor. A round

of morphological closing in the z direction, implemented either in the xz and yz planes or truly three

dimensionally (see §5.4 below), will suffice to close these gaps. If we carefully examine the original

image (Figure 5.1 above), we will see that the area left uncaptured is significantly shallower in the

z direction than the captured region. If we imagine looking down into the sample, we are near the

“bottom” of that piece of vessel. Hence, leaving it uncaptured should not trouble us too much.

Ultimately, however, these issues are a reminder that, provided proper computing resources, all of

the morphological operations should be done in three dimensions. We would take the initial masks,

perform a denoising step via morphological opening, align these modestly modified masks using the

procedure in §5.4, and assemble a z-stack of the unaltered images using the alignments from the

denoised images. The morphological closing and opening steps would then take place fully in three

dimensions. We could connect features fully in three dimensions with an approximation of a sphere

of radius two or three pixels as structuring element using morphological operations. Similarly, we

could do a real denoising step, where we made sure that punctate features in one image did not

exist in the following image, using a 2× 2× 2 cube as structuring element. The signal-to-noise ratio

would improve by a factor of
√

2 as we went from averaging over four pixels to averaging over eight.

5.4 Moving to Three Dimensions

Once we have a set of binary masks, they need to be connected in the third, z, dimension. As the

microtome head moves during the slicing procedure, there will always be a bit of noise in its position:

it returns to its original position ±10 µm. Additionally, the varying shape of the tissue and how it

is embedded in the mold can lead to a need to move the camera during slices. Consider an oblate

ellipsoid of tissue, mounted at an angle in the mold, either due to stability reasons or by an accident

of freezing. The initial slices will have tissue to one side, say the right, but as one continues cutting

the tissue, the tissue will move through the center of the mold area to the left. An occasional move

of the camera to center the tissue within the frame is easily accomplished but must be corrected for

in post processing. Alignment is vital to the entire enterprise.

As our slices are about the length scale of a single cell, we do not predict there to be much change

in the features of the tissue between consecutive slices. This makes a correlation-based approach

both easy and relatively practical. If we were not in this regime, for example if we were cutting at 10

or 20µm, we would need to align based on the edges of the sample, a considerably more complicated
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prospect. While the boundaries of each slice are clear to the naked eye, extracting them perfectly,

as opposed to a general region of interest, is difficult; additionally, there are fewer pixels on the

perimeter to inform our correlations than there are vascular pixels in the interior.

A näıve implementation of a correlation function is not efficient. Multiplying millions of pixels

by each other, summing over all of them, and repeating the procedure for tens of thousands of

potential shifts (one hundred pixels in each direction) between hundreds of images is not practical

even if we use binary masks. A slight speed-up can be gained by using hardcoded functions, such as

corr2 in matlab. The need to search up to 200 pixels in each direction (for 40000 possible shifts

total) makes any direct implementation of correlation impractical. Our solution has been to exploit

the Wiener-Khinchin theorem and use the two dimensional Fourier Transform3. Alternatively, one

can think of the Fourier Transform in the physical terms of quantum mechanics, where it is nothing

other than the generator of translations.

Practically speaking, if we consider an image, I(~x), where ~x is a discrete vector of coördinates,

then Ishift = I(~x+~r) represents I with a shift corresponding to the vector ~r. To extract ~r, we need

only to take the ratio of the Fourier transforms of the two images.

Ĩ(~k) =

∫
I(~x)ei

~k·~xd~x (5.5)

Ĩshift(~k) =

∫
I(~x+ ~r)ei

~k·~xd~x (5.6)

=

∫
I(~x)ei

~k·(~x−~r)d(~x+ ~r) (5.7)

= Ĩe−i
~k·~r (5.8)

The ratio of Ĩ to ˜Ishift gives us a planewave with wavevector ~r, in Fourier space. The imaginary

part of the logarithm of this ratio will be linearly increasing along the direction of ~r, modulo 2π.

We have found that the best way to extract this value is to Fourier transform back to real space and

then look for the peak of the power spectrum. This will be the dominant mode of the triangle wave,

corresponding to ~k ·~r mod 2π, which is precisely our shift. The success of the alignment procedure

can be seen in Figure 5.12 below. Note the successful connectivity in the third dimension as well as

the lack of shot noise issues.

Once we are connected in three dimensions, we can simply run a round of morphological closing

in three dimensions either directly or between collections of slices in both the xz and yz planes.

3The Wiener-Khinchin, or correlation, theorem states that the correlation between f and g is simply the inverse
Fourier transform of the product of the Fourier transforms, f̃ and g̃.
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Figure 5.12. Series of aligned images showing three-dimensional features of our dataset. These
figures are heatmaps summed over several slices: brighter colors correspond to more vascular pixels
in the z-direction. On the left, 100 slices (500 µm) without the largest vessels (those isolated from
the two largest of the relative median filters) are displayed. On the right, are 50 slices (half the
thickness of the left) with all the vessels displayed. Note the connectivity in the third dimension.

Again, we use a rhombus (or rhomboid) structuring element of radius 2 pixels (10 µm). We can use

an iterative implementation of a floodfill (see below) to see what fraction of the vascular pixels

belong to the largest connected component. Before the closing, this values is ≈ 85%. After, it is

≈ 95%, indicating successful connectivity in three dimensions.

As floodfill will keep recurring as a useful tool in this thesis, now is an opportune time to

define it. The basic idea is to choose a starting point, color it, then repeat the process with its

neighbors. The process then repeats until there is no pixel bordering a colored one left uncolored. If

we have a series of disconnected components, we can choose a random point, run floodfill, then

jump to a new, uncolored random point, and color it another color. Once there are no uncolored

points remaining, we can tell from the number of colors used how many connected components there

are. Ideally, this algorithm is run recursively, in which case it is extremely fast. In the case of our

images and the skeleton, however, it needs to be run with a queue, as there are too many pixels to

recurse without running out of memory. This iterative floodfill marks the neighbors of a colored

point as “to visit” and places them at the end of a queue. It then moves to the next point in the

queue, colors it, and adds the neighbors. The use of a “to visit” color prevents the multiple addition

of points to the queue.
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Lastly, all cavities in the dataset are filled: we look for regions of “off” pixels that do not connect

with the background. Physically, these would correspond to tissue surrounded on all sides by blood

vessel – a biologically dubious situation at best. We correct these anomalies by turning all of these

pixels “on.” While these regions can theoretically be found with a simple floodfill on the “off”

pixels, to speed the process of finding them, we iteratively color the background a third color from the

outside. This greatly reduces the number of pixels that need to be examined. With the passage from

two dimensions into three, we move from the problems of image analysis to those of skeletonization.
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Chapter 6

Skeletonization

Ideally, we would like to visualize this data directly. Unfortunately, the size of our dataset makes this

task impossible. After alignment, we have approximately 4000× 6000 pixels in xy and 1750 images

in z. Even as binary pixels, this still yields approximately 43 GB of data, which runs up against

the limits of commercially available machines. We can achieve some improvements by trimming our

dataset: many of the xz planes (constant y values) especially are all 0s. The same is true for some of

the yz planes. By removing all the planes containing less than 10 or so on pixels, which we assume

to be due to shot noise creeping in from loosely defined regions of interest in individual images, we

can reduce the size to 3770× 3021× 1750 voxels, or about 19 GB of memory. Of these voxels, ≈ 973

million are “on,” or vasculature, representing just under 5% of the dataset.

While it is possible to coarse-grain this data to a more manageable size, then display it in any

number of three-dimensional viewing formats, the act of setting a threshold for an “on” value in the

new, larger pixels is problematic. If set too low, or even to one, the image becomes a solid mass.

The vascular tree, even without the capillaries, is close enough to being space filling. If set at a

higher level, around 50%, large sections of the tree will be apparent. However, the boundaries will

also appear like thick solid blocks. This issue originates in the high density of small, thin vessels

along the edges of our sample. When coarse-grained, these “treelets” are at high enough density to

form thick blobs. With some tweaking of parameters, we were able to print a passable 3d model,

whose defects, however, would become dramatically more visible as a rotating image.

The fruits of our work in image processing thus remain beyond our sight. They are also beyond

the reach of mathematics: thick bands of pixels cannot be analyzed in any useful manner as a

network of branching and intersecting tubes. We can get neither a qualitative or a quantitative
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handle on the data in its current form. It is this dilemma that leads us to skeletonization.

The need to reduce our dataset to a mathematical graph, or a set of nodes and edges, suggests a

new tack: to reduce our thick and bumpy vessels to single pixel thick lines. This process is known as

skeletonization. Skeletonization can be an effective way to compress complicated three-dimensional

shapes. If one can reduce a region to a sparse set of points and their distance from the background,

there is an efficient way of storing it. There are two constraints to this procedure: that the skeleton

shares the same topology as the original image and that it contains only points that are equidistant

from two or more boundary points. This second, geometrical constraint codifies the intuition that

no compression is going on if you are simply taking points a distance n from each boundary and

marking them with a radius n.

6.1 Algorithms

The construction described above is an ideal image skeleton. Mathematically, it would be defined

as the Voronoi diagram of of the boundary of the image and would satisfy both the topological and

geometrical constraints. As we have millions of points in three dimensions, this calculation is not

practical to implement. The remaining algorithms satisfy only one of the two constrains exactly.

We may implement a geometric algorithm that finds the points equidistant from the boundaries or

a topological algorithm that “thins” the image without changing its topology until it is reduced to

a single-pixel width.

Finding the set of points equidistant from at least two boundary points is easy to visualize. We

are looking for the centers of the circles (in two dimensions) or the spheres (in three dimensions) that

are tangent to the boundary in at least two places. The locus of all these points is the geometrical

skeleton of the object. One approximate way to do this is to take the distance transform of the

object, defined to be the distance of each pixel (or voxel) from the nearest boundary, and look for

ridges: places where the gradient is either stationary or changes sign. While easy to implement,

this method has issues with places where a small feature impinges on a much larger one, such as

the T intersection, where the vertical is considerably narrower than the horizontal. With modest

resolution, there will be places where ridges simply end and need reconnection [28, 44]. In practice,

what is used is a grassfire-type algorithm where points are sequentially removed from the boundaries.

When two removal fronts (or fires) meet, their location is marked as part of the skeleton. A common

implementation in two dimensions uses morphological erosion. This algorithm was used to generate

the skeletons in Figure 6.1.
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Figure 6.1. Geometric skeletons of a rectangle in two dimensions. Note the strong effect on the
skeleton exerted by small defects in its boundary: inducing two additional lines that do not
conform to the rest of the shape, as seen on the left. Note also that the corners of the rectangle
induce the forked protrusions at either end of the skeleton, neither of which has much resemblance
to the shape as a whole. Figures from [44].

Looking closely at Figure 6.1, we see a variety of issues. For even a simple rectangle, the geometric

skeleton is in the shape of a double-tailed arrow, due to the corners, rather than the extended line

we might have imagined. If noise is added, in the form of surface defects, new skeleton components

are generated, greatly changing its graph structure, if not its topology1. The introduction of new

skeleton components is completely unacceptable for our vascular data. Since we desire our skeleton

to contain the vessels and only the vessels, we need a topological algorithm.

A topological algorithm moves through the image, considering each voxel in turn and removing

it if and only if its removal does not affect the topology of the image. Since the connectivity is purely

local, we only need consider the 3× 3× 3 cube of voxels, centered on the one being considered. How

to decide which voxels can be removed (“simple points” in the literature), however, is considerably

more fraught. There are 27 voxels in a 3 × 3 × 3 cube. Since we are considering turning the

central voxel from “on” to “off,” there are 26 voxels whose identity could differ. This leaves us with

226 ≈ 67, 000, 000 cases, far too many to calculate by hand or even to easily visualize. This differs

from the two-dimensional case where there are only 23
2−1 = 256 cases, many of which are related

by simple rotations. That is a small enough number of cases for each to be examined individually.

The three-dimensional skeletonization literature is riddled with improper analogies to two dimen-

sions, algorithms that work only in some subset of cases, and sloppy mathematics. To our knowledge,

ours is the first nontrivial dataset to which three dimensional skeletonization has been applied. Lee

1Technically, no topological invariant, such as the Euler Characteristic Changes here, as we are just adding pairs
of edges and vertices, which cancel out: χ = F − E + V . That said, the structure is still quite different.
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et al. attribute this to a paucity of three-dimensional data worth skeletonizing until recently, the

underdevelopment of digital topology, and the greater difficulty of visualization in three dimensions.

The original algorithm by Morgenthaler, while technically correct, is impractical to implement, as it

involves checking for changes in the number of two-dimensional holes among both the “on” and “off”

pixels [34]. In the attempt to avoid this calculation, many other research groups went astray, believ-

ing that a lack of change in genus [30,59], or number of foreground and background objects [57], was

sufficient. A connectivity approach by Bertrand and Malandrin [4] could not be verified to work by

us. The literature is riddled with citations to these earlier, incorrect papers, likely due to the lack of

application of these algorithms currently. The paper by Lee, Kashyap, and Chu gives an exhaustive

discussion of these issues as well as a correct algorithm for topological skeletonization [29].

Rather than present a walkthrough of the Lee et al. algorithm [29], we will begin with a discussion

of basic considerations in digital topology in three dimensions, focussing on the choice of a grid. We

will then derive their algorithm from basic desiderata and computational feasibility, presenting our

changes and implementation along the way. In this manner, any differences of opinion and/or

potential mathematical errors can be easily identified, removing an obstacle to understanding from

the literature.

6.2 Digital Topology in Three Dimensions

Having decided on the use of a topological algorithm, we now must define digital topology in three

dimensions. Specifically, we must choose a grid. In two dimensions, one can consider the pixels

that share an edge with a central one to be its neighbors, yielding the “4-neighborhood,” or all the

pixels that abut it, and the “8-neighborhood,” which additionally includes the four corners. In three

dimensions, we have the choice of those pixels that share a face, the “6-neighborhood;” those that

share at least an edge, the “18-neighborhood;” or those that touch at all, the “26-neighborhood.”

For the sake of simplicity and to avoid breaking connectivity, we would like to consider a maximalist

definition and hence the 26-neighborhood [28].

We run into an issue, however, when we attempt to apply our basic mathematical intuition to

bear on these structures. For the purposes of illustration, we will use two-dimensional examples. The

same considerations apply in three dimensions as well. Assuming the use of an “8-neighborhood,”

consider, as in Figure 6.2, a closed curve that separates an outside from an inside. We desire that a

string of connected “on” pixels would divide the “off” pixels into an interior and an exterior. However,

if the curve consists of pixels connected along a diagonal, both the “on” pixels are connected along
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Figure 6.2. Illustration of the Jordan Curve Lemma in two-dimensional digital topology. Red
pixels are considered “on” and blue pixels are considered “off.” Depending on the choice of
connectivity (4 or 8), both the blue and the red pixels can either connect diagonally on the right
side of the figure. The associated topological problems with choosing the same connectivity for
both “on” and “off” pixels compel one to choose a different connectivity for foreground and
background.

the curve, and the “off” pixels are connected perpendicular to it. This violates the Jordan Curve

lemma and suggests that universal 8-connectivity is not a proper topology to use. Similarly, if we

use the 4-neighborhood, we would have a set of “on” islands that somehow manage to divide two

regions of “off” pixels. That is, an unconnected curve would divide inside from out, again yielding

a contradiction to the Jordan Curve lemma [28].

The inherent issue is that in two dimensions, 4- and 8- connectivity are dual. If we choose the

“on” pixels to be 8-connected, then we must choose 4-connectivity for the background and vice versa.

Then and only then are we able to satisfy the basic constraints of topology. In the example, if “on”

is 8-connected, the curve is a connected loop and divides inside from out. If it is “4-connected,”

the curve is a U-shape, not a loop, and does not divide the background. In three dimensions, this

duality relation becomes one between 6- and 26-connectivity. This can be seen by projecting a

three-dimensional loop into two dimensions. 18-connectivity is not self dual (as can also be seen

by projection) and is effectively a mathematical curiosity [28]. We chose our “on” pixels to be

26-connected and our “off” ones to be 6-connected.

Having defined a grid, we now have to perform topology on it. In general, we would like to

isolate a skeleton homeomorphic to the original image. Homeomorphism corresponds to the cartoon

view of topology held by many: it considers those properties of shapes that are invariant under

continuous transformations e.g. shrinking, expanding, stretching, and bending of objects, that is,
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anything but tearing and gluing. A pure, single voxel thick skeleton would be homeomorphic to the

original image. Unfortunately, there is no general method for calculating homeomorphism. We need

to consider other, less exclusive forms of topological equivalence [38].

A more general property is homotopy equivalence, which can be thought of as homeomoprhism

plus deformation retraction. That is, we allow extended objects to be retracted down to a single

point if the map and its inverse are continuous. Trees can be shrunk to (nearly) nothingness, but

loops cannot. Modulo homotopy equivalence, we can characterize structures algebraically through

what are known as the homotopy groups, πi. These groups πi represent the mappings of the sphere of

dimension i, Si, to the object in question. The zeroth homology group, π0 represents the mappings of

points, measuring the number of connected components. The most important homotopy group is π1,

the fundamental group, which describes how loops “fit” into the object. Unfortunately, calculation

of the fundamental group is not trivial, leading us to look for a new strategy [38].

The abelianization2 of the fundamental group gives us the first homology group, H1. The higher

homology groups in our case correspond to the homotopy groups (up to and including H3). In

general, the homology groups represent the interaction of boundary operator with a properly defined

scaffold of the object in i dimensions. These groups can be calculated algerbraically and form the

basis of our algorithm [38].

The cöıncidence of nearly all of our homology groups with the homotopy groups, i.e. Hi = πi|i 6=

1, suggests that we should attempt to corral the fundamental group into this paradigm. We know

that the rank, or the number of generators, of H1 and π1 is the same. Hence, if the rank of H1

doesn’t change when a voxel is turned “off”, all we need to worry about is whether the way these

generators combine changes. The key here is that the removal of a voxel changes the structure of

the overall object locally. There is simply no way that if the number of generators does not, the

relations between them will from the removal of one pixel3. It is the number of generators that

matters, not the internal structure of the group, due to the local nature of the pixel removal. Given

this knowledge, we can create an algorithm to perform homotopic thinning [38].

2Making commutatitve. For instance, the fundamental group of a figure eight is the free product of the generators
of the two loops (or lobes) of the figure eight. The first Homology group is the direct product of these generators.

3Returning to the example of the figure eight, if the number of generators does not change that is we preserve the
two lobes, removing a pixel (if the edges of it are “thick”) won’t change how these two generators interact. It will
still be a free product.
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6.3 Homotopic Thinning

The Betti numbers, β0, β1, ..., βd are the ranks of the homology groups. They are topological invari-

ants. If they do not change during a voxel removal, neither does the topology of the image. Our

image is three dimensional, cavity free, and embedded in Euclidean space. Hence, β3 is trivially

zero: we can have no three-dimensional holes. The zeroth and second homology groups are nearly

as easy to calculate. H0 represents the number of connected components in the object. As long as

we do not disconnect any two regions of our image, when removing a voxel, β0 is guaranteed not to

change. We may easily test this criterion with a floodfill before and after removal. Moving up one

dimension, β1 is not simple to calculate, as it counts the two-dimensional loops in the object, which

is three dimensional. These loops may be pointed every which way and at any angle. Calculating

it directly is extremely difficult. H2 represents the number of two-dimensional holes, or cativites, in

the image [38]. This too is easily calculable. We started with no cavities (see §5.4 above) and desire

to drill no new ones. Hence, we only remove border points, that is, points that have a 6-neighbor

that is “off.” Any pixel turned “off” is then already adjacent to the background, and no cavity is

formed.

We are still left with determining whether or not H1 changes. We are aided here by the Euler

Characteristic, χ, which is defined as χ =
∑d
i=0(−1)iβi, the alternating sum of the Betti numbers.

This is not the only way to calculate the Euler characteristic, however. On graphs, it is the number

of faces (F), minus the number of edges (E), plus the number of vertices (V). In three dimensions,

we need only to subtract an additional term for the number of complete cubes, which we will denote

O [30]. Collecting terms:

∆χ = ∆β0 + ∆β1 + ∆β2 (6.1)

= −∆O + ∆F −∆E + ∆V (6.2)

Exploiting that ∆β0 = 0 and ∆β2 = 0:

∆β1 = −∆O + ∆F −∆E + ∆V (6.3)

We now have a relation for β1 that may be exploited, enabling us to return to the 3×3×3 cubes

of §6.1. One might worry that by looking only locally, we ignore the global nature of topological

properties. This, however, is not an issue. We can consider properties in dimensional order as before.
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Clearly, the number of connected components cannot change globally if it does not change locally:

a narrow bridge between two regions will appear to be a narrow bridge, admittedly connecting

“thinner” regions, on the local scale. There are two ways in which loops may appear: they can be

local and seen by the algorithm within a 3×3×3 cube, or they may be substantially larger: imagine

an extended three-dimensional loop of inner diameter 25 voxels and outer diameter 30 voxels. Our

algorithm has no way of “seeing” this loop. However, as it thins the outside of the loop, it will

approach a point where all it sees is a narrow bridge, that is, the loop will have shrunk to an outer

diameter of 26 voxels. At that point, removing a voxel and breaking the loop will be prohibited,

because it would generate two disconnected components. As for cavities, a similar argument applies.

Local cavities are easily prevented. Global cavities will be seen as something resembling a flat plane

inside one of our 3 × 3 × 3 cubes, comprising a section of its wall. If we were to remove the center

pixel of this wall, we would create a loop, which is clearly prohibited. Local topological invariance

thus implies global topological invariance in our case.

If we were forced to calculate the Euler Characteristic for all 226 cases according to the above

formula, we would not have saved ourselves much trouble. Instead, we can make use of one final

property: the Euler Characteristic is additive. If we properly weight faces, edges, vertices, and

cubes by the number of pieces shared between them, we may calculate the Euler Characteristic by

summing over these pieces instead of all at once. Our task is now simple: we calculate the change

in χ for each 2× 2× 2 octant, whence O in the formula, in our cube and sum over all of them. We

may even go one step further and look at the change in χ in each octant so that only one summation

is necessary. This reduces the number of cases in our octant look-up table to 27 = 128, since one

cube is always the one to be removed, enabling us to calculate ∆χ analytically and hardcode the

values into our software. The paper by Lee et al. [29] also includes a table of these values, further

simplifying the task.

Since our algorithm only considers homotopy, our skeleton will be topologically equivalent to our

original image modulo deformation retraction. Any branch or treelike set of branches will not be

preserved, as they are homotopy equivalent to a point. As our dataset consists of a series of branched

tubes, we can correct for this. We manually mark the 26 cases where the center pixel is on along

with one other pixel as nonremovable. This procedure will preserve branching tubes once they are

reduced to one voxel in thickness, which we term “strings.” These tubes will inevitably be shortened

as their width is reduced. As long as the most peripheral vessels are at least one voxel longer than

their radius, they will be preserved with the proper radius4 but with an underestimate of its length.

4defined as a maximum over the vessel
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All vessels downstream of these after the first merger will be properly preserved. We have only to

worry about the case of vessels whose length is equal to or less than their radius. For these, it is

not clear whether they constitute proper vessels in the first place or are simply irregularities on the

surface of another larger vessel. The vast majority of our vessels are also substantially longer than

they are wide and are less than 10 voxels in radius (see §8.1 for details).

With the above algorithm, we can generate a look-up table for each of the 226 cases. We are

not done, however. If we näıvely iterate over all points, hash their region, and decide whether or

not the center voxel can be removed, we end up with disconnected, meaningless fuzz. A simple

example will suffice: consider a region consisting of a 2 × N × 1 set of pixels, perhaps connecting

two broader regions. When approached from the +x direction, we see we may remove the entire

row. The algorithm sees the full width, two pixels, of the region, so removing any one of them

is no problem. The mirror image situation is seen from the −x direction. Hence, when we raster

through the image and remove all the voxels, we will have deleted the entire region. Clearly, this is

unacceptable. Removing one pixel changes the context of its neighbors.

An obvious solution is to go through and remove points immediately if they are simple. While

correcting for the prior issue, this method will not give us the skeleton we expect. Rather, we will

see artifacts from the removal process. Imagine moving through the image iteratively, first down

rows in x, then columns in y, then planes in z. If we encounter a thick tube, extended, say, in the y

direction, we will remove planes of constant z until it is only one voxel thick in z. We will continue

removing pixels in the x direction. Our skeleton of this vessel will consist of a line of voxels on the

edge of the tube, perpendicular to its circumference. While this is topologically correct, it renders

our distance transform meaningless, as we will get a value of 1 no matter the width of the tube.

While topologically incorrect, the skeleton would not even be approximately geometrically correct.

Any program for iterating through the image will yield artifacts, some of which can be dramatically

more dangerous. If we remove points in a Monte Carlo fashion, we will almost definitely create

unphysical branching structures on our skeleton. Statistically, we will drill holes into thick tubes.

If the hole were to turn, or to reach until the vessel were one voxel thick, we would create a new

treelike feature during skeletonization, which would pose a problem if we were preserving “strings.”

Even if we were not, the skeleton of a tube would follow a random walk, complicating all measures

of its length and radius.

The solution is to only remove one layer of points at a time, akin to peeling an onion. We keep

two copies of the partial skeleton in memory (I and J ). During each pass, we examine points to

make sure that they are border points on one copy (I). If they are, we move to the second copy
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where we hash the 3 × 3 × 3 cube of the point and its neighbors and remove them if removable

(J ). After examining every “on” point, we copy J to I and restart the process. The first copy

ensures that we are removing only a single layer at a time. The second has updated context so that

we do not remove features of an even-numbered width. The process is complete once no points are

removed during a pass.

This algorithm is slow, as only one layer of points can be removed at once and every “on” point

must be iterated over. It may be parallelized; the alteration of local context of one point by the

removal of its neighbors limits its effectiveness, however. To divide the image up into sectors, where

no 3× 3× 3 cubes overlap such that the removal of the central points does not affect the next cube

requires that we have eight separate subpasses. We may consider a point simultaneously with a point

two units away in any direction. While their 3 × 3 × 3 cubes will share a plane, the central point

of one will not appear in its neighbors’ and vice versa. Since the structure is three dimensional, we

have 23 = 8 separate cases. The image is hence divided into subregions, depending on whether its x,

y, and z coördinates are odd or even. Within any subregion, we may parallelize, considering points

independently. At the end of each pass, the partial skeleton is reassembled, and the next octant is

considered.

Skeletonization must be performed on the largest connected component of the image, otherwise

the result will be disconnected subskeletons. These artifacts may be removed afterwards, via a

floodfill, but will slow skeletonization. It is worth considering what would have happened had we

used the dual, 6-connectivity, for our “on” pixels. We chose 26-connectivity to adjust for the limited

resolution of the optics; we expected there to be connected features that only linked up diagonally,

due to the limited, 5 µm optical resolution. With better optics, we could see how a “6-skeleton”

differed from its 26 counterpart (hopefully not at all).
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Chapter 7

From Skeleton to Graph

Confronted with a skeleton of the original dataset, it is still not obvious how to proceed. While the

skeleton has dramatically fewer points, 4.5 million or 14.5 million depending on whether we chose to

preserve “strings” instead of 973 million, we are still faced with the task of intuiting the structure

and ordering of millions of cubes in space, each of which has a characteristic distance from the edge,

given by the distance transform. What must be done is to extract a mathematical graph, that is a

set of nodes and edges joining them, from the smaller collection of cubes. This structure will readily

lend itself to analysis and visualization, allowing us, for the first time, to see the data extracted. We

analyzed the data in two forms: with and without string preservation. In the former, there are no

strings, only loops and the treelike components that connect these loops, what we might term the

“topological core” of the network.

7.1 Finding Your Neighbors

The first step is to take the dual of the structure of cubes: to turn shared faces into connections and

full cubes into points, or, in short, to find one’s neighbors. Just as in the skeletonization routine,

we may hardcode vectors giving the relative coördinates of the 26-neighborhood and iterate over

all pixels. This time, however, we capture the location of all neighboring points and formulate an

adjacency list, storing the neighbors of each point in the skeleton. It is convenient to arbitrarily

label all the points in the skeleton and store their coördinates in a hash table for reasons of speed

and memory.

Looking at the spectrum of node degree, we find that 93% of nodes have two neighbors, indicating

they are part of lines in the skeleton or vessels (not junctions) in the original dataset. The remaining
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Figure 7.1. Anomalies in the definition of vertices within the graph extracted from the skeleton
of the dataset. The skeleton is shown in red with the degree of each node written inside in yellow.
At a triple junction in two dimensions, four separate points can lay claim to being a vertex, three
of which have the expected connectivity of three, but one of which has degree four!

nodes would then correspond to vertices. Nearly all of them are three-connected, as one would expect

for vertices in natural vasculature. There are a nontrivial number, however, of nodes of higher degree:

nearly 11000 of degree four and handful of degree five and six. Similarly, many of these supposed

“vertices” were adjacent to another “vertex.” Intuitively, these situations should not exist and made

us question the procedure for turning the skeleton into a graph.

We began to investigate these anomalous situations, examining the direct connections between

vertices and the points of suspiciously large degree. These vertex agglomerations occur at essentially

every intersection. A simple example of why can be seen in Figure 7.1. At a flat (two-dimensional)

triple junction, there are three three-connected nodes and one four-connected one. If even the

simplest triple junctions have anomalous connectivity, the problem is a general one. It is complicated

further by the presence of a third dimension. If one images moving the vertical line in 7.1 up and

out of the page and then rotating it towards the viewer, a situation can be generated in which a

triple junction has only one three-connected “vertex.”

The third dimension may hinder as well as help. If we imagine two nearby triple junctions,

separated by a unit in the horizontal, x, and out of the page, z directions, there will be points
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between them that have connectivity as high as five or six, despite there being two distinct vessel

intersections. On some level, these issues are due to the limits of the resolution of our optical system.

The smallest vessels we capture, themselves only two pixels in diameter, may only be two pixels from

the nearest vessel. On another level, these problems are purely statistical. With 253,000 lines, we

are bound to have some number of arbitrarily close triple junctions.

7.2 Vertex Simplification, Edges, and Lines

It is tempting to believe that these cliques of “vertices” can be found in a purely topological manner.

We can construct an adjacency matrix of “vertices” that impinge upon one another and look for

cycles between them. If we remove one connection from every cycle, then repeat the process, ideally

we would be able to reduce these cliques to one multiply connected node, chosen at random, to be

the true vertex.

In the simplest case, cycles of length three, this procedure works well. We take our adjacency

matrix of impinging “vertices”, A, and raise it to the third power. The elements of the trace, Tr[A3],

are cycles of length three. Since each of three nodes in the cycle will be represented in the trace,

we must not consider every such element. Rather, we go in order and once a node is considered,

every other node it borders is not considered. This procedure is overly conservative, as a single node

may be part of multiple triangles, such as the four-connected node in Figure 7.1 above. It may be

run multiple times in a row, however, until no more triangles are found. In practice, nearly all the

triangles (> 3
4 ) are removed in the first pass. Altogether, slightly over 75000 triangles are removed,

contributing 52% of the removal of the vertex candidates.

Extending this method to cycles of length four yields a problem. Cycles of length four do not

have to be quadrangles in the graph, unlike those of length three that are always triangles. A cycle

of length four may simply be the sum of two different cycles of length two, or even the same cycle

with itself. Mathematically speaking, we are taking direct sums over the graph, G, with itself and

looking for identity elements:

G ⊕ G ⊕ G ⊕ G = 1 (7.1)

If we only have three copies of G, there is no subdivision of the sum that will give use two

elements that each equal the identity. In the case above with four elements, however, we can have

G
⊕
G = 1. If so, 1

⊕
1 = 1, giving us trivial solutions and meaningless cycles of length four. If we
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Figure 7.2. Two nearby triple junctions can create a situation wherein two properly construed
vertices cannot be extracted. Instead, using our vertex clique reduction algorithm (see text), all
nearby multiply connected nodes are combined into one, new vertex point, with coördinates equal
to their mean.

were working with a regular lattice, this problem would disappear, as we could precisely calculate

the number of cycles of each length and then extract them from the trace. Then again, in that

regime, there is no need to solve the problem, as the underlying graph structure is known.

After removing the triangles, we must simply rely on an ad-hoc method to turn clumps of

vertices into a single, unphysical vertex. For instance, if we have the situation displayed in Figure

7.2, two nearby intersections cannot be properly separated. We cannot topologically isolate the two

intersections from the adjacency matrix of the the candidate “vertices.” To rectify this situation, we

take the clump of impinging “vertices,” isolated by a simple floodfill on the adjacency matrix,

and create a new vertex out of it. Its coördinates are taken to be the mean of those of its component

members. It is connected to the same points as its members. It is given a “radius” to represent the

distance to the edges of its component members, to ensure that the proper lengths will be collected.

While this solution is somewhat inelegant and creates new vertices of high degree, they are rarer

than before (there are 16 of degree 5 and 2520 of degree 4): 1.4% of total vertices versus 3.5% before

clique removal.

Once we have isolated the vertices, we may go through and combine two-connected points into the

edges of the graph. Computationally, this is a simple procedure: extract the two connected points,

choose one at random, move in both directions until one hits a vertex, label those vertices the end
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points, and store the collection of two-connected points as a line with a specific hash key. When

repeated over all of the remaining two-connected points, we should be able to form an adjacency

matrix with entries corresponding to each edge of the graph. In the case of a string-preserving

network, we also label the one-connected points as vertices (there is no ambiguity in defining them).

Edges that lead nowhere and end will then be accounted for.

While simple in theory, this algorithm fails to account for the structure of our network. When

we isolated the “topological core” of the skeleton, we left only components belonging to loops or

connecting them. Hence a small loop, with “strings” hanging off of it is reduced to a loop at the end

of the vessel(s) that connected it to the rest of the network e.g. in the shape of a noose. If only one

vessel did so, we would form an edge that is looped but only has one endpoint. If there are two, we

would find multigraph edges, multiple edges that connect the same pair of vertices. These features

may appear even without string removal. There is no reason to presume that small loops do not

exist within the hierarchical vasculature whose purpose we cannot ascertain because we have not

yet mapped the capillaries. Our knowledge of the vasculature of leaves should give a strong prior to

expect loopy features on all scales (see §8.2). Rather than dealing with multigraph edges and loops

at the ends of vessels as an anomaly, we should expect them to be omnipresent. Their existence is

a strong argument for attempting preserve strings, which we expect to turn multigraph edge pairs

into loops spanning several vertices.

For each edge we identify in the network, we store the original voxels that comprise it, its

endpoints, and its radius. From the voxels, we can extract the path that it follows as well as the

distance transform value for each point in it. To assign a radius to the vessel, we take the maximum

value of the distance transform along the segment. The maximum could potentially be somewhat

corrupted by artificially high values near the junction of a small vessel at a larger one if the skeleton

of the smaller vessel includes some points physically insider the larger ones. However, if at any point

the skeleton is not precisely in the center of the vessel, the distance transform will be unphysically

small, dragging the mean down. Similarly, if we desire to select lines only of a certain radius or

larger, we are, on some level, creating a surrogate dataset mimicking the effect of imaging with

optics of a set, worse resolution. These optics would be able to detect vessels that hovered around

the resolution limit if sections of them were wide enough to be clearly detected, due to our use

of morphological closing. The use of a maximum over the distance transform hence mimics our

approach during segmentation.

When computing network statistics, we may select edges only of a certain radius (or radii) or

certain length(s). With the lines that obey that criterion selected, we determine which vertices are
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in the network by including only those that are endpoints of the selected lines. The number of

connected components may be determined from a floodfill on the graph. In this manner, we

extract all the relevant graph properties for a set criterion, allowing us to see what our structures

look like when only vessels of a certain radius or larger are included.

7.3 Visualization

Visualization still provides the largest technological difficulties in this effort. As mentioned previ-

ously, the original image, with 973 million “on” voxels and 19 billion voxels total, there is simply

no way for the data to be displayed. After skeletonization, while the volume of data has been

reduced by 50 to 200 times, depending on string preservation, there are still too many individual

voxels to be easily displayed, not to mention that with single voxel thick lines, the resulting image

would be nearly meaningless. Coarse-graining the skeleton would be even more counterproductive

than coarse-graining the original dataset (see §6). With the reduction to a graph, we finally have a

compressed form of the data, consisting of connections and their respective radii, that can be more

easily displayed.

This, too, is easier said that done. We have over 250000 edges in the topological core and

about eight times that number in the string-preserved skeleton. Each edge must be rendered as a

separate cylinder. The total number of object handles necessary proves to be too much for nearly

all general-purpose imaging software. We have had some success coding our dataset directly into

a three-dimensional viewing language, such as vrml or its successor x3d, and viewing the results

with more specialized software. Since both languages are written in ascii, a matlab function can

be written that, after defining object types in the header, goes through the list of edges and adds

a new object to the image file for each. By defining all of the vessels as transformed instances of

one original cylinder, we greatly save on memory and can display the entire dataset. Each cylinder

much be scaled to the proper length and radius, translated to the mean of its endpoints, and rotated

to align with the vector of its endpoints. This last step is the trickiest: finding the principle axis of

rotation and the angle rotated around it from the endpoints. We must first take the vector between

the endpoints and find its direction. This is interpreted as the combination of a rotation about the x

axis (setting θ), followed by one about the z axis (setting φ). Only two rotations are needed because

of the radial symmetry of the cylinder. These two rotations Rx(θ) and Rz(φ) are multiplied to give

a total rotation matrix, R. This matrix must be diagonalized to find the rotation axis, given by the

principle eigenvector, and the angle about that axis, given by arccos 1
2 (TrR− 1). An image of our
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Figure 7.3. The Largest Vessels in the Our Dataset. Shown here is a screenshot from the VRML
3d image of our dataset (see text). Displayed are only those vessels of radius 10 pixels (50 µm) or
greater (around 1% of the data). Vessels are color coded according to their width, with the largest
ones in red and progressively thinner ones darkening to purple. Note the large tree corresponding
to the portal triad and the way that its branches fill the space of the tissue. While scattered
disconnections are seen, these should not be troubling: 10 pixels is an arbitrary cutoff: any noise in
vessel radii or slight thinnings of anastomoses will lead to disconnections when sectioning the data
in this manner.

dataset containing only the largest 1% of vessels is shown in Figure 7.3.

There are a few caveats to this approach. Only certain properties may be transformed in VRML:

position, direction, and scale. While we can place, orient, and size each vessel correctly, we cannot

easily change its color to correspond to its radius. Every vessel colored differently requires an instance

of either a new object type or a one-off object. Either way, the computational load increases. In the

diagrams, we have tended to color the smallest vessels all the same (blue), the medium size vessels a

different color (purple), and the largest vessels a shade of red corresponding to their radius, as there

are not many of them. Since we define every vessel to be some form of stretched cylinder, we are

unable to use the actual paths of the vessels, which are considerably more tortuous. This problem

is especially apparent with the multigraph edges, which define a loop, but in our visualization

procedure, they are concentric.

Ultimately, the sheer number and density of vessels makes looking into the three-dimensional
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image nearly impossible. We have come full circle and returned to our inability to image corrosion

casts, as we cannot see inside of them. Imaging software allows us to rotate the object in three

dimensions and to fly into it. Comprehending it is another problem entirely. Our best successes

have come from only looking at small fractions of the dataset: plotting the data for vessels larger

than a certain radius. With a minimum radius of 10 voxels (50µm), we have only a couple thousand

vessels and can see how an initially treelike structure branches into a heavily looped, space-filling

one, as in Figure 7.3.
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Chapter 8

Analysis

Faced with comprehending a graph composed of over two million edges and nearly as many vertices,

we are forced into the realm of statistics. There exists no good way to comprehend this structure,

even when only a small subset of the vessels, such as those of radius 50 µm, are included. What

statistical properties are meaningful, however, and what can they tell us about the structure of the

network? How can we understand the hierarchy of the vessels? These are the questions we are just

beginning to answer. The analysis of loopy, hieararchical distribution networks is young; in the case

of nonplanar networks, it is even younger. We are just beginning to peer into these structures: in

many cases we simply do not know the right questions to ask. With that caveat, however, we have

examined several basic geometrical properties, such as vessel radius and length, and topological ones,

the numbers of graph theoretical components. Taken together, we can examine the scale on which

the loops occur: a first estimate of the kind of unified geometrical and topological analysis we hope

someday to perform.

While it is seductive to believe that we can separate arteries from veins, given our imaging

procedure, we are able only to identify vessels, not their lining. We suspect that the portal triad

is frequently identified as one vessel, with morphological closing connecting the large portal vein to

the substantially smaller hepatic artery next to it. On smaller scales within the liver, schematics

frequently indicate the mixing of blood between these two vessels, once they feed into the sinusoids.

Given the frequency of arteriovenous anastomoses throughout the body (see §2.1), this crossover

should be expected. Similarly, we do not identify separate portal triad and hepatic venous networks.

There is only one large connected component in the skeleton. We expect arteriovenous anastomoses

to be frequent enough to prevent any easy identification of separate vascular networks.
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8.1 Geometrical Properties: Vessel Radius and Length

While simple models of distribution networks do not include loops, they do make predictions about

what the distribution of segment radii should look like. Since our data lack a natural method for

defining a hierarchy of segments, we will invert and equate the relations based around hierarchical

order to extract predictions for the distribution of vessel radii and length. In the simplest case,

imagine a binary tree, where vessels travel a distance l and then bifurcate into two vessels, each

of which has radius di+1/di = 1√
2

smaller than its mother vessel to conserve volume. Continuing

this process, the number of vessels of order i increases exponentially, and the radius of the vessels

decreases exponentially. Hence, the number of vessels of a certain radius, n(r) obeys a power-law

relation. This a reflection of volume conservation: if we only demand that the total volume in each

order is constant, vi = vi+1 = c, then vi = ld2ini = c and ni ∝ 1/d2i , giving a power-law distribution.

More generally, we can consider a system parametrized by Strahler stream ordering and obeying

Horton’s Laws, such as the Scheidegger Model. Here, we allow irregularities in the branching pattern

and do not demand volume conservation at each junction. The number of vessels of order i scales

geometrically: ni+1/ni = rn and the radius of each vessel scales similarly di/di+1 = rd. This second

relation is not strictly one of Horton’s Laws, rather the area drained scales with the order [49]. If

we assume constant flow per area drained, we get a scaling relation for the radius:

vi+1/vi = ai+1/ai = 1/ra (8.1)

=
li+1d

2
i+1

lid2i
(8.2)

di+1/di =

√
rl
ra

= 1/rd (8.3)

In the last step, the length ratio li+1/li = rl was substituted. To find n(d) we must invert

the relationship for the number of vessels of diameter i. Since the geometrical scaling implies an

exponential functional form, i.e. di = ar−id where a is an arbitrary constant, inverting this gives

i = − log d
a/ log rd. Substituting into the the functional form for the number distribution we get:

ni = brin = belog rni (8.4)

= belog rn log d
a/ log rd (8.5)

= cd
log rn
log rd | log rd =

1

2
(log ra − log rl) (8.6)

where c is a new constant dependent on a and b to various powers. This relationship is clearly a
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Figure 8.1. Histograms of the vessel radii. Left: number of vessels versus radius with each vessel
counted once. Right: number of vessels versus radius with each individual pixel in a vessel counted
once (length weighted). In both, radii are in pixels, and the y-axis is logarithmic. Data are the
blue dots, and log-linear fit is shown by the red dashed line. On the left, the decay constant is 6
pixels, or 30 µm, r2 = 0.98. On the right, the decay constant is 6.6 pixels, or 33 µm, r2 = 0.96,
artificially brought down by the cutoff on the right.

power law with exponent determined by the how the volume is distributed between the number and

length of vessels and of the area drained by each vessel. A similar but simpler relation holds for the

histogram of vessel lengths. If li = r−il , n(l) = l
log rn
log rl , another power-law relation.

A power-law relation, however, is not what we see when we plot the empirical radius histograms,

as shown in Figure 8.1. We provide two different ways of calculating the radius histogram, counting

each vessel once (left) and weighting by vessel length (right). In each case, the plot is nearly

perfectly linear on semilogarithmic axes, indicating an exponential relationship. While the decay

constant varies slightly, from 30 ± 1 µm to 33 ± 1.5 µm, this could be entirely due to the length

weighting inducing a slight shift in the data.

The lack of difference in functional form between these two figures suggests the robustness of our

findings. Segments are typically defined between points where their Strahler order changes. Lacking

a hierarchy, we subdivide large vessels into many smaller segments, counting intersections with less
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important vessels. To correct for this bias, if we weight by length, we find:

l(d)n(d) = l(i(d))d−rd (8.7)

= l(− log(d)/ log(rd))d
−rd (8.8)

= r
− log(d)/ log(rd)
l d−rd (8.9)

= d
log rl
log rd

−rd (8.10)

This relation, too, is power law. While the exponents may be simplified, by substituting in

equation 8.6 above, this is unnecessary.

Examining the histogram of vessel lengths, Figure 8.2, we see a more complicated, but still non-

power-law relation (right panel). It appears there exist two regimes in the vessel length data: one

for the shortest vessels, with a high decay constant, and one for the longer vessels, with a somewhat

smaller decay constant. The fit, shown in red, seems to pick up more of the latter, slower decay

than the former. As skeletonization will shorten the most peripheral vessels while thinning them,

we expect an overabundance of short vessels. The second regime may be nothing more than an

artifact, giving a purely exponential distribution. Similarly, the deviation from the fit at high length

may be due to our inability to calculate a proper hierarchy for the network. Traditionally, segments

have length defined by the distance between points where their Strahler order changes. We are

counting the distance between all intersections. This will systematically underweight the lengths of

the largest, thickest vessels. While the skeletonization procedure will reduce the lengths of “strings,”

that is vessels that have a one-connected vertex as an endpoint, if we discard the “strings,” we find

the same pattern for the length histogram, indicating a robust pattern.

The lack of power-law scaling in both the radius and length histograms indicates a severe differ-

ence between vascular networks, with loops on all scales (see §8.2) and treelike distribution networks.

The derivations above demonstrate that power-law scaling for number of segments of radius r and

length l is universal for treelike models and reflective of their internal structure. Our observation of

exponential scaling puts into stark terms the changes wrought by looped morphology and implies

that analogies to topologically simpler systems are not only a simplification but also incorrect. The

loops are not a “decoration” on an internal treelike structure: they are fundamental to it.

One might interject, though, that the failure to observe power-law scaling is evidence is of a

failure in our imagine our analysis procedures. That is, we simply are not capturing all the vessels

or calculating their properties accurately. This seems unlikely. There is no signature of power-law
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Figure 8.2. Histograms of the vessel length. Left: number of vessels versus length with each
vessel counted once on semilogarithmic axes, data in blue circle. Right: the same relationship on
fully logarithmic axes. From the right panel, it is clear the relationship is not a power law, though
the fit, shown in red on the left hand panel, is clearly insufficient. The decay constant of the fit is
8.5 pixels or 43 µm; r2 = 0.98, even for this poor fit.

behavior in either the small vessel or the large vessel regimes. We see neither a cutoff or some kind

of finite size effect truncating power-law scaling. If we are making an error, it is systematic. In that

case, the error process must have statistics equivalent to an exponential minus (or divided by) a

power-law. This, too, seems highly unlikely. The empirical evidence evidence implies length scales

in both the distributions of vessel radii and vessel lengths. The assumption, then, that vascular

networks are fractal is contradicted by the empirical evidence, at least in the case of the hierarchical

vasculature of the liver.

8.2 Topological Properties: Loops and Network Structures

How can we count the number of loops present in a network too large to comprehend mentally? At

first, this task seems impossible: for instance, in Figure 8.3, the smallest loops, such as the triangles

on the right-hand side, are contained within larger loops, e.g. the combination of two or three of

those triangles, all of which are contained within the loop that forms the perimeter of the graph.

This difficulty in counting is reflective of our not having defined what we mean by a “loop.” If we

are interested in topological features, what we want to calculate is our “distance,” in a topological

“metric”, from a treelike network. We can draw a spanning tree, such as in the right panel of Figure

8.3 and then count how many extra edges are present. These edges are what form the loops and
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Figure 8.3. How to Count Loops: In the left-hand panel, a graph with 11 vertices and 18 edges is
displayed. In the right-hand panel, a spanning tree for this graph is shown. Every edge that is not
part of this spanning tree forms a loop and is part of the basis for the cycle space.

provide a way of counting them. Since a spanning tree for V vertices requires V − 1 edges, the

number of loops, according to this definition, is L = E − V + 1, where E is the number of edges. In

the example of Figure 8.3, this gives 18− 11 + 1 = 8 loops.

These loops correspond to Faces in the graph; Euler’s formula tells us that the Euler Character-

istic, χ, of a graph is equal to the number of Faces, minus the number of Edges, plus the number of

Vertices, as we used in the skeletonization procedure. Solving for the number of faces, after plugging

in χ = 2, as the genus of a planar graph is 01, and subtracting 1 for the face that corresponds to

the region outside the graph, we get the number of loops. Returning to the spanning tree, when

we add edges back in, each new edge is creating exactly one loop. The edges we are adding are

in some sense a basis for a linear-algebraic space of loops, as well as forming faces. This space is

known as the cycle space, and the loops we are counting are the basis elements of it. If we add two

neighboring loops together, modulo 22, we get a larger loop consisting of the perimeter of the two,

minus the shared edge(s). Any larger loop that is not part of our original cycle basis is just the

sum of linearly independent elements in the cycle basis. Depending on how we draw the spanning

tree, we could make any individual loop part of the cycle basis. Consider, for instance, in Figure

8.3, including every segment along the perimeter of the graph except one in the spanning tree. The

remaining edge would create a loop in the cycle space: the one formed by the perimeter of the entire

1χ = 2 − 2g
2That is, if an edge is counted twice, 1 + 1 mod 2 = 0: the edge is not counted at all
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graph. By subtracting all the other loops in the cycle basis, we could extract the smallest loop this

edge adjoins. Ideally, however, the cycle basis will only be composed of the smallest loops in our

graph [60]. The problem of constructing a spanning tree that allows this is a subject of current

research.

In the “topological core” of our dataset, there are 253127 edges and 162605 vertices, leading

to 90523 loops. With strings preserved, we have 2063110 edges and 1972588 vertices and exactly

the same number of loops as in the topological core, a satisfying validation of our algorithms. As

promised and as expected from the analogy with leaves, our data is extremely loopy, throwing off

our intuitions about what sort of structures would be optimal. To begin to make sense of these

loops, we can look at the scale on which they appear. If they are all at the smallest scale, composed

of vessels of radius only a few of pixels (or tens of microns) in diameter, we can rationalize them as

part of a transition to capillary morphology. We can segment our graph without ever assembling a

full adjacency matrix, including the multigraph edges. We start by creating an adjacency matrix

that only contains the connection of the largest diameter between two vertices. This link can be

found by looking through the list of the edges, sorting by endpoints and then radius. We then censor

our new adjacency matrix to only include connections of radius r > rt, those that are larger than a

certain threshold. The number of vertices is the number of nonzero rows (or columns). Censoring

by vessel radius can be a destructive operation, however, separating regions that had been formerly

connected. We need to calculate the number of connected components, which can be done with

a simple floodfill on the graph defined by the censored adjacency matrix and add them to the

number of Edges. These results are plotted in Figure 8.4.

Examining Figure 8.4, we see a generally exponential distribution of components included versus

the minimum vessel radius considered. This relationship is clearest for the number of vertices

included. For the number of edges and loops, there is an uptick at the smallest vessel size in both,

indicating that the profusion of thin vessels increases the loopiness in the network. All have a decay

length of 32 ± 1.5 µm. The set length scale present in both geometrical and topological properties

suggests robustness in our findings of non-fractality. While we can justify the lack of a pole at zero

radius by assuming the smallest hiearchical vessels are not space filling and only drain the capillary

mesh at a certain length scale, thus pushing the pole into the realm of a fictional, negative radius,

we cannot explain the exponential distribution of components without recourse to different models.

We are perhaps seeing hints of the lobular organization of the liver, albeit on a scale considerably

smaller than typically expected in anatomy: ∼ 31 µm versus ∼ 100− 500 µm traditionally. Perhaps

this reflects the packing of the lobules and the existence of many smaller ones deep within the liver.
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Figure 8.4. Graph Theoretical Properties of the vascular dataset, string included. We plot, on
semilogarithmic axes, the fraction of the total loops (green triangles), vertices (red circles), and
edges (blue squares) included when considering vessels of radius r or greater (the x axis). This
chart should be read from right to left, from only the largest vessels to including progressively
smaller ones. Note the exponential distribution of vertices included: this is the same pattern as in
the histogram of vessel radii. The decay length is 32± 1.5 µm. Similarly, note the generally
exponential trend in the number of loops, with a small tick upwards when the smallest vessels are
considered. The thinnest vessels, thus, are more likely to be anastomoses than the larger ones.
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We hope to answer this question by studying orientational order within our dataset. If there is

a strong correlation length in the decay of orientational ordering between vessels, we would have

considerably more evidence to support this lobular hypothesis. The lobules themselves could be

scaled in a power-law fashion, much as in an Apollonian packing. Ultimately, the question will have

to be answered by looking at the orientational ordering of the cells themselves, as in Figure 4.1.

We may quantify the relationship between edges and loops by taking the discrete derivative of

the number of edges and loops considered in the topological core, then dividing the latter by the

former, effectively giving us dL
dE , where L indicates the number of loops. This value is plotted in the

left panel of Figure 8.5. For most of the range of vessel sizes, there is a constant value of around

0.35, indicating one in three vessels connects two others to form a loop, much as one might expect

for a network of triangular loops. When the thinnest vessels are included, this ratio increases, slowly

at first, to 0.47 for vessels of radius 3 (11% of vessels) and 0.75 for vessels of radius 1 (23% of all

vessels). The smallest vessels, thus, are more likely than not to be anastomoses, and by a significant

margin at that. Nearly one third of all loops (32.5%) are created by vessels of radius 1. If this

analysis is repeated for the entire dataset, at most 10% of the new edges added form anastomoses:

again this occurs for the vessels of radius 1.

Also plotted in Figure 8.5 is the number of connected components. The rampant disconnections

present at certain radius cutoffs is troubling. Using the maximum over-edge voxels as the definition

of radius instead of the mean greatly ameliorates this problem (not pictured) but does not eliminate

it. The disconnected components are nearly always pairs of vertices connected by a single edge: our

problem is likely noise in the vessel radii, disconnecting components on the boundary of the graph

that lack redundant connections. Additionally, there is no guarantee that vessels will not shrink

in size and then reëxpand, especially given that the tissue has been through a traumatic series of

procedures: perfusion, fixation, density matching, and freezing. Some minor distortions are perhaps

to be expected. The problem is most acute for vessels of radius greater than two pixels but smaller

than 20, where the largest connected component is approximately constant in size while the number

of vertices included increases dramatically. Full connection rapidly returns once the smallest vessels

are included as indicated both by the number of components and the sizes of the largest component.

In the future, we hope to use an extension of the Katifori algorithm, devised by Carl Modes

(currently a postdoc in the lab), to understand the hierarchy of loops in the network. When applied

to nonplanar graphs, the original algorithm breaks down. Consider a three-dimensional cubic lattice;

clearly there are loops everywhere, forming the faces of each of the cubes. If we remove one edge, we

do not create a typical planar loop. Rather, we create a + sign extruded in the third dimension one
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Figure 8.5. Additional Topological Properties. On the left is plotted the dL
dE , the discrete

derivative (taken from the right hand side) of the number of loops added per number of new edges
in the topological core. Apart from some noise at large vessel size, due to the small number of
edges and loops therein (see Figure 8.4), there is a relatively constant ratio of about 0.34,
suggesting a structure of triangular loops, with a sharp uptick for the thinnest vessels, indicating a
greater propensity to be anastomoses. On the right, we have plotted the number of connected
components (blue), the median size of those components (green), and the size of the largest
component (red) for the network of vessels of radius r or greater. Note that the vast majority of
disconnected components are very small and that connectivity is assured by the inclusion of the
smallest vessels, for which the number of connected components drops precipitously.
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lattice spacing. Four faces of cubes coming together at a common edge that no longer exists, forming

a strange structure that cannot be embedded in two dimensions. This situation is clearly untenable:

what is needed is to find a surface on which the graph can be embedded (in two dimensions),

returning our loops to planarity. This surface will be necessarily contorted and of high genus. It

may be found, for generally three-regular graphs, by constructing a spanning tree and cycle basis

that contain the smallest loops possible. The few large loops that remain will be signatures of the

embedding in non-Euclidean space. There will be an additional “topological” loop for each hole in

the surface. If these loops can be identified, then the Katifori algorithm maybe run on the newly

embedded graph, giving the hierarchy of loops.
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Chapter 9

Prospects in Vasculomics

While we have seen hints of a profound morphological complexity, reflected in the scaling of geome-

terical and topological properties with vessel size, we are still limited in what we can say about the

data. In order to understand what is going on - how the network is formed and what properties it

is optimizing - we need a better understand of what the key variables are, or what the quantitative

“knobs” are. Traditionally, confronted with a large number of measurements of a complex system,

one would construct a series of theoretical models and test the quantitative predictions of those

models versus the data. We believe that, epistomologically, this is the incorrect way to proceed in

the case of vascular mapping. What is needed are more experiments, more detailed vascular maps,

to allow us to pin down the key features of the “vasculome,” before searching for those features in

theoretical models.

9.1 The Paucity of Theory

If there has been one, simple theoretical prediction across models, it is the power-law scaling of

n(r), the histogram of vessel radius, with r. We have found an exponential relation not only for

radius, but also for the number of vessels of length l, where the clearest error model can explain the

deviations from an exponential fit only at the smallest and largest radii, and also for the number

of loops, in the network containing only vessels radius r and larger. Our inability to find models

that predict exponential scaling indicates a yawning gap between experiment and theory. Clearly,

the loopiness of the network has fundamentally changed its statistics. It is possible that no true

hierarchy exists. While we may define more and less “important” loops, the order of an individual

vessel may not be well-defined. If so, we could not properly define the relations d(i) and n(i), let
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alone substitute one into the other, rendering fragile our theoretical predictions.

At the same time, the volumetric argument that also predicts power laws may not completely

apply. The hierarchical vasculature drains the capillary beds. While the latter are space filling,

it is not clear that the former must scale as a space-filling network. The existence of flow within

the capillary “lattice” may strongly change the statistics. The need to be space filling can be

counterbalanced by directed flows through preferred channels in the capillary network, allowing for

larger spacing between the hierarchical vessels that drain it. In a hierarchical model, the volume

in each layer would be constant or a power law, depending on the sum of the radius, length, and

bifurcation ratios. We see the existence of a clear peak in the distribution of volume contained in

vessels of radius r, shown in Figure 9.1, indicating yet again substantially different network structure.

For an exponential distribution of vessel radii and lengths, the volume of vessels of radius r, assuming

no correlations between radius and length, would be a constant multiplying r2e−r/r0 , exactly the

type of distribution we find. The existence of weak radius length correlations alters the exponent

and the length scale in the theoretical relation to approximately 1.72 and 40 µm respectively. As

the relationship between vessel length and radius is neither simple nor easily approximated by a

function, we cannot give a deeper analytical explanation of these values.

Even granted rules for developing theoretical models that obey this desideratum, we are faced

with an enormous inverse problem. The space of networks that can be developed is enormous. For

every modification of a simple network with Poiseuille flow, as used by Katifori and Magnasco, we

must decide which complications to introduce (broken bond, multiple sources), choose values of the

cost parameter γ and grow the networks in three, not two dimensions. Exploring this space is slow,

costly, and not clearly informative. To get the same kind of resolution of network structures and

statistics in three dimensions compared with two, we need n3 lattice sites versus n2. Recent work

by Katifori and others suggests that the initial choice can have a strong effect on the final network

morphology, as the network evolution dynamics are glassy.

Beyond these networks with multiple sources and sinks, the Magnasco group has worked on

several other models of network growth and formation in arbitrary dimension. One can formulate a

shortest path/geodesic growth law, where the edges that are part of more shortest paths between any

pair of points grow preferentially. One may also formulate a Ford-Fulkerson style approach, where

each link has both a conductivity and an overall capacity. If one of those properties is updated in

response to flow, looped morphologies may be favored as well. Despite these issues, we view it as

highly likely that the existence of exponential scaling among components in the network is due to

network evolution, rather than an ab initio design principle. Anatomy texts make frequent reference
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Figure 9.1. The volume in cubic millimeters contained in vessels of radius r, given in microns
(one pixel corresponds to five microns). Note the existence of a clear maximum, a feature that
cannot be explained by hierarchical models, which would predict a constant or a power-law
distribution. The decay length is ∼ 8.3 pixels or 41.5 µm
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to the development of the vascular system after birth when the baby’s circulatory system takes over

from the mother’s and the placenta stops being the source of oxygenated blood. Some large vessels

atrophy, but many more vessels widen, and hierarchy is established among previously similarly-sized

vessels. These observations suggest that the proper modeling procedure is to consider an initial

lattice (or other graph) of capillaries and update their sizes in response to changing demands [61].

Given these theoretical complexities, however, we would argue that the best way to proceed is to look

for naturally perturbed vasculature. If we can see how the statistics change and which features are

preserved, we would get a better idea of what the quantitative “knobs” are in the network. What

then are the best experiments to perform? Where should we look for perturbations to network

statistics?

9.2 Separation of Scales

Throughout this thesis, we have assumed a stark difference in network topology between the capil-

laries and the hierarchical vasculature. This has been a useful assumption, justifying our decision

to image at a resolution that did not capture the capillaries. While grounded in experimental and

computational evidence (Chapter 2), it has yet to be confirmed with full-scale vascular mapping. In

order to proceed, a full resolution map of the vasculature of an entire organ at 1 µm resolution is

necessary. The resulting dataset will be two orders of magnitude larger than ours. Computation-

ally, it would be extremely useful if this hypothesis were true, allowing us to continue work only

examining hierarchical vessels.

That said, our data strongly imply this “separation of scales” hypothesis. Stereotypically, capil-

lary beds form in patterns similar to a honeycomb lattice of hexagons. This is the model that the

Kleinfeld group proposed for the vascular networks in the mouse cortex [5]. If we turn to the classical

picture of the liver, the lobules have generally radial sinusoids that frequently anastomose [61]. Even

if this network is not a true lattice, we would expect to see similar statistics, as in computational

cell models [1, 32].

From a lattice, one would expect smoothed-delta functions or gaussians for the distributions

of vessel radii and lengths. No one vessel is more important than any other, and they all have

approximately the same length. We certainly do not see these statistics in Figures 8.1 and 8.2.

Similarly, radius and length of vessels would be tightly correlated; while we see a correlation, it is

far from perfect, yielding a correlation coefficient of only 0.384, due to the presence of many long

thin vessels. This number is likely somewhat of an underestimate. As mentioned previously, due
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to our lack of ability to assign a hierarchy or an importance to intersections, the widest vessels are

overly subdivided. This introduces a set of large-radius, short-0length vessels that are not useful for

describing correlations between vessel radius and length.

Topologically, each vertex will connect to six edges, each of which touches two vertices, suggesting

that the number of edges should be thrice the number of vertices or half the vertex coördination

number. For our full dataset, the number of edges is approximately the same as the number of

vertices. In a two-dimensional lattice, each edge would be part of two loops with three edges

per loop. In three dimensions, this number would be larger. The number of edges per loop is

approximately three over much of our dataset in the topological core (as shown in Figure 8.5), which

would suffice for two dimensions. For the smallest vessels, it decreases to slightly over one, but is still

far from its value for a three-dimensional lattice. This analogy, too, ignores the treelike components

that decorate the topological core. While there may be structural similarities between the rampant

anastomosis in the topological core and a two dimensional lattice, the analogy to a capillary network

is fraught.

The separation of scales hypothesis would be experimentally and clinically convenient. There

would be two vascular morphologies per tissue to characterize, but each could be mapped and

analyzed separately, the former with scanning blockface cryotomy, the latter with microCT. In

terms of data storage, it would decrease by a factor of around 100 the amount of memory and

storage necessary to analyze the data. The only way to prove it, however, is to image an entire

tissue or organ at full resolution. We have designed an optical system to replace the Makro lens in

our setup that can accomplish precisely this. A macroscope, or documentation microscope, is used

for imaging. These devices are designed for industrial use; they make it possible to find micron-scale

defects with a large working distance, for use in precision manufacturing processes. They combine a

large working distance with a long enough focal length to ensure a not-too-small numerical aperture.

Our choice, the Leica Z6 APO has a working distance of up to 97 mm that allows ample distance

between the optics and the microtome blade and the sources of cold. With a numerical aperture

of 0.117, our effective resolution will be at least 500 nm ∗ 1/(2 ∗ 0.117) ≈ 2 µm. The Z6 APO also

allows for varying degrees of magnification, from 0.57− 9×, making it efficient for imaging only the

hierarchical vessels as well.

We have designed a custom fluorescence setup, to allow for epifluorescence imaging while keeping

the overall weight of the optics as low as possible1. We cut a hole into the infinity space of the

macroscope, inserted a filter cube, and built an attachment for a CoolLED light source. By changing

1The ThorLabs axes are only supposed to carry a limited amount of weight.
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Figure 9.2. Capillaries isolated with macroscope optics. On the left is an image at 9×
magnification of a poor perfusion of rat liver (see text for details). Note the wavering pattern
across the image, especially clear in front of the bright patches. These changes in brightness are
the signatures of the sinusoidal capillaries of the liver, as can be confirmed via dissecting
microscope. On the right, we have isolated the capillaries through the use of a relative median
filter and morphological operations. Note the radial pattern around the central vein (the bright
spots on the left).

the filter cube, we can switch from autofluorescence imaging at 400 nm to fluorescein imaging. In

Figure 9.2 below, we show an example of the kinds of images we may take and the ease with which

the capillaries may be segmented. We used the Z6 APO with a 1× objective and at maximum zoom

for 9× total or about 2
3 µm per pixel. Our sample was a poorly perfused lobe of rat liver where

most of the beads stayed inside the largest vessels and the nearby capillaries, creating bright patches

surrounded by small “haloes” of beads. While useless for mapping the hierarchical vasculature, the

brightness of the clumps of beads allowed us to map the capillaries surrounding the large vessels using

the same segmentation methodology as with the hierarchical vasculature. We took a 20-pixel-radius

median filter, subtracted the original image and looked for the relatively bright pixels, performed

morphological closing and opening, and arrived at the image in the lower panel of Figure 9.2. Note

the radial pattern of the capillaries as in the traditional lobular model of liver structure.

Ideally, with a brighter light source, better optics, and epifluorescence, we will not need to change

our contrast agents. If they prove to be insufficient for automatic segmentation, however, we believe
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the solution is to adapt one of the resins used for corrosion casting for our fluorescence imaging.

We would color the resin with a fluorophore (or else use black resin for a negative image). The

most difficult part of this procedure would be finding a resin that could be density matched to the

surrounding tissue, to ensure smooth cutting. The use of a resin would ensure perfect boundaries

between vessels and the surrounding tissue. Other easier-to-implement solutions we are currently

attempting are carboxyfluorescein (a fluorescein that cannot be uptaken by cells) and 2 million

molecular weight dextran.

9.3 Where to Look for Perturbations

With this new experimental setup, we propose three different vascular networks to map that are of

both theoretical and clinical interest. We desire networks where there are known perturbations that

we can look for in the statistics, to help gain proper quantitative “handles” on vascular data. With

a better understanding of what features can and cannot change, we will be better able to design

and constrain theoretical models of vasculature. Vascular anomalies will also provide hints to the

developmental process in showing how it may go astray. Clinically, we are interested in vasculature

in cases with a direct tie to human health.

Given these desiderata, a cirrhotic liver is the logical next step. Mouse and rat models of cirrhosis

exist and can be easily induced by feeding a a range of toxins to the animal in question. We know that

cirrhosis alters the vasculature; perturbations are guaranteed to exist. Given a map, the challenge

will be to find which statistics reflect this remodeling and whether the newly grown vasculature

follows the statistics of healthy liver. In either case, we will gain insights into the developmental

process.

After cirrhosis, the logical next step is to map the vasculature of cancerous hepatic tumors.

Given a sense of how the vasculature can go awry, we can test whether or not cancer vasculature is

in fact aberrant. If we can tell that it is, the question becomes one of isolating the best statistics

to tell whether vasculature is cancerous or healthy for use as a diagnostic tool. If not, the Folkman

hypothesis may be incorrect. Similarly, mapping the vasculature of tissue surrounding a tumor,

which may have been altered by the demands of the nearby tumor, would be worthwhile. Potentially,

vasculature in healthy tissue could provide a diagnostic tool for cancers. Both of these efforts,

however, would require a stronger understanding of where to look for vascular abnormalities. A

small tumor could be an order of magnitude smaller on a side than the host tissue, greatly limiting

the range of size of vessels that we can image.
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Ultimately, to make vascular morphology useful as a diagnostic and clinical tool, we must be able

to characterize it without having mapped the blood vessels in an entire organ. Statistical anomalies

should be more apparent on smaller scales, where there are more vessels that can be altered. Ideally,

capillary morphology will not require study either, limiting the necessary scale on the opposite

end as well. These statements, however, will remain hypothetical until we have full maps of all

the vasculature of an entire organ in both a healthy and a cirrhotic (diseased) state. We have

taken the first steps in this effort, developing the necessary histological, optical, image processing,

and analytical techniques and presenting the first maps of the hierarchical vasculature of an entire

organ. Elegant and convenient theoretical assumptions, such as fractality and a simple hierarchy

with loops merely as a decoration, have been shown to be incomplete and a poor approximation of

vascular morphology. We may now begin the effort of making vascular topology a useful tool in the

medical arsenal.
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