Design and Investigation of Genetic Algorithmic and Reinforcement Learning Approaches to Wire Crossing Reductions for pNML Devices

Abstract

Perpendicular nanomagnet logic (pNML) is an emerging post-CMOS technology which encodes binary data in the polarization of single-domain nanomagnets and performs operations via fringing field interactions. Currently, there is no complete top-down workflow for pNML. Researchers must instead simultaneously handle place-and-route, timing, and logic minimization by hand. These tasks include multiple NP-Hard subproblems, and the lack of automated tools for solving them for pNML precludes the design of large-scale pNML circuits

    Similar works