
Volume 18 Number 3

ACTA
CYBERNETICA

Editor-in-Chief: János Csirik (Hungary)

Managing Editor: Zoltán Kato (Hungary)

Assistant to the Managing Editor: Attila Tanács

Associate Editors:
Luca Aceto (Iceland)
Mátyás Arató (Hungary)
Stephen L. Bloom (USA)
Hans L. Bodlaender (The Netherlands)
Wilfried Brauer (Germany)
Lothar Budach (Germany)
Horst Bunke (Switzerland)
Bruno Courcelle (France)
Tibor Csendes (Hungary)
János Demetrovics (Hungary)
Bálint Dömölki (Hungary)
Zoltán Ésik (Hungary)
Zoltán Fülöp (Hungary)

Ferenc Gécseg (Hungary)
Jozef Gruska (Slovakia)
Tibor Gyimóthy (Hungary)
Helmut Jürgensen (Canada)
Alice Kelemenová (Czech Republic)
László Lovász (Hungary)
Gheorghe Páun (Romania)
András Prékopa (Hungary)
Arto Salomaa (Finland)
László Varga (Hungary)
Heiko Vogler (Germany)
Gerhard J. Woeginger (The Netherlands)

Szeged, 2008

ACTA C Y B E R N E T I C A

Information for authors. Acta Cybernetica publishes only original papers in the field
of Computer Science. Manuscripts must be written in good English. Contributions aire
accepted for review with the understanding that the same work has not been published
elsewhere. Papers previously published in conference proceedings, digests, preprints are
eligible for consideration provided that the author informs the Editor at the time of
submission and that the papers have undergone substantial revision. If authors have used
their own previously published material as a basis for a new submission, they are required
to cite the previous work(s) and very clearly indicate how the new submission offers
substantively novel or different contributions beyond those of the previously published
work(s). Each submission is peer-reviewed by at least two referees. The length of the
review process depends on many factors such as the availability of an Editor and the
time it takes to locate qualified reviewers. Usually, a review process takes 6 months to
be completed. There are no page charges. Fifty reprints are supplied for each article
published.

Manuscript Formatting Requirements. All submissions must include a title page
with the following elements:

• title of the paper
• author name(s) and affiliation
• name, address and email of the corresponding author
• An abstract clearly stating the nature and significance of the paper. Abstracts must

not include mathematical expressions or bibliographic references.
References should appear in a separate bibliography at the end of the paper, with

items in alphabetical order referred to by numerals in square brackets. Please prepare your
submission as one single PostScript or PDF file including all elements of the manuscript
(title page, main text, illustrations, bibliography, etc.). Manuscripts must be submitted by
email as a single attachment to either the most competent Editor, the Managing Editor,
or the Editor-in-Chief. In addition, your email has to contain the information appearing
on the title page as plain ASCII text. When your paper is accepted for publication, you
will be asked to send the complete electronic version of your manuscript to the Managing
Editor. For technical reasons we can only accept files in IixT£X format.

Subscription Information. Acta Cybernetica is published by the Institute of Infor-
matics, University of Szeged, Hungary. Each volume consists of four issues, two issues
are published in a calendar year. Subscription rates for one issue are as follows: 5000 Ft
within Hungary,' €40 outside Hungary. Special rates for distributors and bulk orders are
available upon request from the publisher. Printed issues are delivered by surface mail
in Europe, and by air mail to overseas countries. Claims for missing issues are accepted
within six months from the publication date. Please address all requests to:

Acta Cybernetica, Institute of Informatics, University of Szeged
P.O. Box 652, H-6701 Szeged, Hungary
Tel: +36 62 546 396, Fax: +36 62 546 397, Email: actaSinf.u-szeged.hu

Web access. The above informations along with the contents of past issues are available
at the Acta Cybernetica homepage http: / /ww.inf .u-szeged.hu/actacybernet ica/ .

http://ww.inf.u-szeged.hu/actacybernetica/

E D I T O R I A L B O A R D

Editor-in-Chief: Jänos Csirik
Department of Computer Algorithms
and Artificial Intelligence
University of Szeged
Szeged, Hungary
csirik@inf.u-szeged.hu

Managing Editor: Zoltan Kato
Department of Image Processing
and Computer Graphics
University of Szeged
Szeged, Hungary
kato@ i nf. u-szeged. h u

Assistant to the Managing Editor:

Attila Tanács
Department of Image Processing
and Computer Graphics
University of Szeged, Szeged, Hungary
tanacs@inf.u-szeged.hu

Associate Editors:

Luca Aceto
School of Computer Science
Reykjavik University
Reykjavik, Iceland
luca@ru.is

Mátyás Arató
Faculty of Informatics
University of Debrecen
Debrecen, Hungary
arato@inf.unideb.hu

Stephen L. B loom
Computer Science Department
Stevens Institute of Technology
New Jersey, USA
bloom@cs.stevens-tech.edu

Hans L. Bodlaender
Institute of Information and
Computing Sciences
Utrecht University
Utrect, The Netherlands
hansb@cs.uu.nl

Wilfried Brauer
Institut für Informatik
Technische Universität München
Garching bei München, Germany
brauer@informatik.tu-muenchen.de

Lothar Budach
Department of Computer Science
University of Potsdam
Potsdam, Germany
lbudach@haiti.cs.uni-potsdam.de

Horst Bunke
Institute of Computer Science and
Applied Mathematics
University of Bern
Bern, Switzerland
bunke@iam.unibe.ch

Bruno Courcelle
LaBRI
Talence Cedex, France
courcell@labri.u-bordeaux.fr

Tibor Csendes
Department of Applied Informatics
University of Szeged
Szeged, Hungary
csendes@inf.u-szeged.hu

Jcinos Demet rov ics
MTA SZTAKI
Budapest, Hungary
demetrovics@sztaki.hu

mailto:csirik@inf.u-szeged.hu
mailto:tanacs@inf.u-szeged.hu
mailto:luca@ru.is
mailto:arato@inf.unideb.hu
mailto:bloom@cs.stevens-tech.edu
mailto:hansb@cs.uu.nl
mailto:brauer@informatik.tu-muenchen.de
mailto:lbudach@haiti.cs.uni-potsdam.de
mailto:bunke@iam.unibe.ch
mailto:courcell@labri.u-bordeaux.fr
mailto:csendes@inf.u-szeged.hu
mailto:demetrovics@sztaki.hu

Bálint Dömölki
IQSOFT
Budapest, Hungary
domolki@iqsoft.hu

Zoltán Ésik
Department of Foundations of
Computer Science
University of Szeged
Szeged,Hungary
ze@inf.u-szeged.hu

Zoltán Fülöp
Department of Foundations of
Computer Science
University of Szeged
Szeged, Hungary
fulop@inf.u-szeged.hu

Ferenc Gécseg
Department of Computer Algorithms
and Artificial Intelligence
University of Szeged
Szeged, Hungary
gecseg@inf. u-szeged. h u

Jozef Gruska
Institute of Informatics/Mathematics
Slovak Academy of Science
Bratislava, Slovakia
gruska@savba.sk

Tibor Gyimóthy
Department of Software Engineering
University of Szeged
Szeged, Hungary
gyi mothy@i nf. u-szeged. h u

Helmut Jürgensen
Department of Computer Science
Middlesex College
The University of Western Ontario
London, Canada
helmut@csd.uwo.ca

Alice Kelemenová
Institute of Computer Science
Silesian University at Opava
Opava, Czech Republic
Alica.Kelemenova@fpf.slu.cz

László Lovász
Department of Computer Science
Eötvös Loránd University
Budapest, Hungary
lovasz@cs.elte.hu

Gheorghe Päun
Institute of Mathematics of the
Romanian Academy
Bucharest, Romania
George.Paun@imar.ro

András Prékopa
Department of Operations Research
Eötvös Loránd University
Budapest, Hungary
prekopa@cs.elte.hu

Arto Salomaa
Department of Mathematics
University of Turku
Turku, Finland
asalomaa@utu.fi

László Varga
Department of Software Technology,
and Methodology
Eötvös Loránd University
Budapest, Hungary
varga@ludens.elte.hu

Heiko Vogler
Department of Computer Science
Dresden University of Technology
Dresden, Germany
vogler@inf.tu-dresden.de '

Gerhard J. Woeginger
Department of Mathematics and
Computer Science
Eindhoven University of Technology
Eindhoven, The Netherlands
gwoegi@win.tue.nl

mailto:domolki@iqsoft.hu
mailto:ze@inf.u-szeged.hu
mailto:fulop@inf.u-szeged.hu
mailto:gruska@savba.sk
mailto:helmut@csd.uwo.ca
mailto:Alica.Kelemenova@fpf.slu.cz
mailto:lovasz@cs.elte.hu
mailto:George.Paun@imar.ro
mailto:prekopa@cs.elte.hu
mailto:asalomaa@utu.fi
mailto:varga@ludens.elte.hu
mailto:vogler@inf.tu-dresden.de
mailto:gwoegi@win.tue.nl

CONFERENCE OF
P H D STUDENTS IN

COMPUTER SCIENCE

Guest Editor:

Tibor Csendes

Department of Applied Informatics
University of Szeged

Szeged, Hungary
csendesOi nf. u-szeged. h u

Preface

The 5th Conference for PhD Students in Computer Science (CSCS) was orga-
nized by the Department of Computer Science of the University of Szeged (SZTE)
and held in Szeged, Hungary from June 27-30, 2006. The members of the Scientific
Committee were the following representants of the Hungarian doctoral schools in
computer science: Mátyás Arató (DE), András Benczúr (ELTE), Miklós Bartha
(SZTE), Tibor Csendes (SZTE), János Csirik (SZTE), János Demetrovics (SZ-
TAKI), Sarolta Dibuz (Ericsson), József Dombi (SZTE), Zoltán Ésik (SZTE),
Ferenc Friedler (VE), Zoltán Fülöp (SZTE), Ferenc Gécseg (chair, SZTE), Ti-
bor Gyimóthy (SZTE), P a l á z s l m r e h (SZTE^ János Kormos (DE), László Kozma
(ELTE), [Attila Kuba (SZTE)1; E ö r s Máté (SZTE), Gyula Pap (DE), András Recs-
ki (BMGE), Endre Selényi (BMGE), Katalin Tarnay (NOKIA), György Túrán
(SZTE), and László Varga (ELTE). The members of the Organizing Committee
were Balázs Bánhelyi, Tibor Csendes (chair), Judit Jász, Mariann Kocsorné Sebő,
Gabriella Nagyné Hecskó, and Péter Gábor Szabó.

There were more than 100 participants and 75 talks in several fields of computer
science and its applications. Beyond the Hungarian PhD schools in computer sci-
ence, 8 other European countries were represented. The talks were going in two
parallel sections in artificial intelligence, automata and formal languages, computer
networks, database theory, discrete mathematics, fuzzy decision support systems,
information systems, optimization, picture processing, and software engineering.
The talks of the students were completed by 4 plenary talks of leading scientists:
Tibor Gyimóthy (Szeged), Marius Minea (Timisoara), Lajos Rónyai (Budapest),
and Hermann Schichl (Vienna).

Three scientific journals, viz. Periodica Polytechnica (Budapest), Publicationes
Mathematicae (Debrecen) and Acta Cybernetica (Szeged) offered students to pub-
lish the paper version of their presentations after a selection and review process.
Altogether 19 manuscripts were submitted for publication. The present special
issue of Acta Cybernetica contains 7 such papers.

The full program of the conference, the collection of the abstracts and further
information can be found at h t tp : / /www.inf .u-szeged.hu/~cscs .

On the basis of our repeated positive experiences, the conference will be orga-
nized in the future, too, hopefully with more foreign participants. According to the
present plans, the next meeting will be held in July 2008 in Szeged.

Tibor Csendes

365

http://www.inf.u-szeged.hu/~cscs

Acta Cybernetica 18 (2008) 367-377.

On the Ambiguity of Reconstructing hv-Convex
Binary Matrices with Decomposable Configurations*

Péter Balázs*

Abstract
Reconstructing binary matrices from their row, column, diagonal, and

antidiagonal sums (also called projections) plays a central role in discrete to-
mography. One of the main difficulties in this task is that in certain cases the
projections do not uniquely determine the binary matrix. This can yield an
extremely large number of (sometimes very different) solutions. This ambi-
guity can be reduced by having some prior knowledge about the matrix to be
reconstructed. The main challenge here is to find classes of binary matrices
where ambiguity is drastically reduced or even completely eliminated. The
goal of this paper is to study the class of /iv-convex matrices which have de-
composable configurations from the viewpoint of ambiguity. First, we give a
negative result in the case of three projections. Then, we present a heuristic
for the reconstruction using four projections and analyze its performance in
quality and running time.

Keywords: discrete tomography; hv-convex. binary matrix; decomposable
configuration; reconstruction algorithm

The reconstruction of binary matrices from their projections is a basic prob-
lem in discrete tomography. Binary matrices can represent two-dimensional cross-
sections of an object made (or consisting) of homogeneous material, while one can
think of projections as the numerical results of measuring the density of the ob-
ject in the given cross-section along certain directions. Reconstruction algorithms
have a wide area of applications in non-destructive testing, biplane angiography,
crystallography, radiology, image processing, and so on. For a detailed overview of
the main problems and applications of discrete tomography the reader is referred
to [11, 12]. For practical reasons the projections in most cases can be taken only
from few (usually at most four) directions. This often leads to ambiguous recon-
struction, i.e., the reconstructed matrix can be quite dissimilar to the original one
which is inappropriate for applications [1, 14]. One commonly used technique to
reduce ambiguity is to use some a priori information of the matrix to be recon-
structed. In this paper we investigate the problem of ambiguity if the matrix to

•This work was supported by OTKA grant T048476.
t Department of Image Processing and Computer Graphics, University of Szeged, 6720 Szeged,

Árpád tér 2., Hungary, E-mail: pbalazsfiinf.u-szeged.hu

368 Péter Balázs

be reconstructed is hv-convex and its components form a so-called decomposable
configuration. First, we give a construction to prove that the use of only three pro-
jections is not sufficient to eliminate ambiguity, that is, for some inputs there can
be exponentially many to-convex decomposable binary matrices having the same
horizontal, vertical and diagonal projections. In the case of four projections we
are facing the following problem. Although all the hv-convex decomposable binary
matrices with the given four projections can be reconstructed in polynomial time
[2] this class is not explicitly defined. In more detail, one criterion for decompos-
ability is that the components of the binary matrix axe uniquely reconstructible
from their horizontal and vertical projections. However, when reconstructing hv-
convex matrices with the algorithm of [2] it cannot be decided in advance whether
this criterion is satisfied. If so then, clearly, the algorithm gives correct solutions.
However, in some cases the algorithm gives a solution even if the above criterion
is not fulfilled, i.e, if one or more of the components are not uniquely determined
by the horizontal and vertical projections. We conduct experiments to investigate
whether the above criterion is often implicitly satisfied. Since components of an
to-convex binary matrix axe necessarily hv-convex polyominoes, we investigate the
possibility that an hv-convex polyomino is uniquely determined by its horizontal
and vertical projections. We also study how the knowledge of a component's third
projection affects ambiguity, and based on the observations we develop a fast and
accurate reconstruction heuristic for the class of hv-convex binary matrices with
decomposable configurations.

This contribution is structured as follows. First, the necessary preliminaries
are introduced in Section 1. In Section 2 we show that in the class of to-convex
decomposables there could be a large number of ambiguous reconstructions, if we
use only three projections. In Section 3 we extend the method published in [2] for
reconstructing to-convex binary matrices with decomposable configurations even if
it is not guaranteed that the components axe uniquely determined by the horizontal
and vertical projections, and analyze the performance of the developed algorithm.
Finally, in Section 4 we discuss our results.

1 Preliminaries
Discrete sets (the finite subsets of the two-dimensional integer lattice) are highly
important in discrete tomography. A discrete set with the smallest containing
discrete rectangle (SCDR) of size m x n can be represented by a binary matrix
F = (fij)mxn where the Is in the matrix axe representing that the corresponding
element of the 2D lattice belongs to the discrete set (see Fig. 1). Based on this
correspondence, in the sequel, when we axe using the term discrete set we always
mean the set of positions of F having value 1. Analogously, the size of the discrete
set is defined by the size of its SCDR (or equivalently, the size of its representing
matrix F). To avoid confusion we stress that the size of the discrete set is not the
number of its elements (see, again, the discrete set of Fig. 1 which is of size 5 x 5
but has 14 elements). The horizontal and vertical projections of F are the vectors

On the Ambiguity of Reconstructing hv-Convex Binary Matrices... 369

2 —
3 —
3

3 —
3 —

• • •
• • • • • •

2 2 5 3 2

0 1 1 0
1 1 1
1 1 1

1 1 1 0 0
1 1 1 0 0

Figure 1: An hv-convex polyomino and the corresponding binary matrix. The
elements of the discrete set are marked with black dots. The projections of
the polyomino are the vectors H = (2,3,3,3,3), V = (2,2,5,3,2), D —
(0,2,3,2,1,1,2,2,1), and A = (0,0,1,3,4,4,2,0,0).

H(F) = H = (hi,..., h m), and V(F) — V — (i>i,..., vn), respectively, where
n m

hi = ^ 2 f i j (i — I,... ,m) and vj = ^ 2 f i j (j = l,...,n). (1)
j=l ¿=i

Similarly, the diagonal and antidiagonal projections of F are defined by V(F) =
D = (d\,..., dm+n-1), and A(F) = A — (ai,..., a m + „_i) , respectively, where

dk= hi a n d a k = f*i (fc = m + n _ • (2)
t+(n-j)=fc i+j=fe+l

Two positions P = (pi,p2) and Q = (91,92) in a discrete set are said to be 4-
adjacent if |pi — q\ \ 4- \p2 — Q2 \ = 1- The positions P and Q are 4-connected if there
is a sequence of distinct positions PQ — P, • • •, Pk = Q in the discrete set F such
that Pi is 4-adjacent to P1-1 for each I = 1 , . . . , k. A discrete set F is 4-connected
if any two points in F are 4-connected. The 4-connected discrete set is also called
polyomino. A maximal 4-connected subset of a discrete set F is called a component
of F. In particular, every polyomino consists of a single component. The discrete
set F is hv-convex if all the rows and columns of F are 4-connected (see Fig. 1).

Given an ordered pair of binary matrices (C, D) we say that we get the binary
matrix F by NorthWest-gluing (or shortly, NW-gluing) C to D if

' - (S S) - №
If C is a polyomino then we say that C is the NW-component of F. NE-, SE-,
SW-gluings and -components are defined similarly. A discrete set F consisting of
k >2 components is decomposable if all of the following properties are fulfilled

(a) the components of F are uniquely reconstructible from their horizontal and
vertical projections in polynomial time,

370 Péter Balázs

! í l] i

t : i : ± : i
i ' a A

T——r-

I i I ! i

(a)

--I-WW-
• • ' i
! i !

(b)

• •
• é -i ' —í—

—t—

! ! i 1 l
! ¡ ¿ M

L I I _ r . . .

(C)

• • , I I
I ! M

(d)

i •
I ' M -tűt

Figure 2: (a)-(c) Undecomposable and (d) decomposable to-convex discrete sets.

(0) the sets of the row and column indices of the components' SCDRs are disjoint,

(7) if k > 2 then we get F by gluing a single component to a decomposable dis-
crete set consisting of k — 1 components using one of the four gluing operators.

If F satisfies properties (/3) and (7) but not necessarily property (a) then we say
that the components of F are in a decomposable configuration. Obviously, every
to-convex set satisfies property (/3). The discrete set in Fig. 1 is undecomposable
since it consists of only one component. Figures 2a and 2b show a situation where
the components are in a decomposable configuration but property (a) does not
hold since the bottom left components of both sets have the same horizontal and
vertical projections. The discrete set in Fig. 2c does not satisfy property (7) while
the set shown in Fig. 2d is decomposable.

The reconstruction task aims to find a discrete set F such that Tl(F) = H
and V(F) = V for given vectors H and V (in the case of four projections two
more vectors D and A are also given, i.e., T>(F) = D and A(F) — A must also
hold). Not any pair (or 4-tuple) of vectors are projections of a discrete set (see,
e.g., [16] for a necessary and sufficient condition in the case of two projections).
However, in some cases there can be several (and also very dissimilar) solutions
with the same projections (see, e.g, [14]). This latter feature of the reconstruction
is the so-called ambiguity, a problem one tries to avoid during the reconstruction.
One of the most frequently used techniques to reduce ambiguity is to suppose
that the set to be reconstructed belongs to a certain class of discrete sets having
some geometrical properties. There are classes of discrete sets where ambiguity
is completely eliminated (see [3, 4, 8]). Furthermore, for certain classes it was
shown that only a polynomial number of discrete sets with the same projections
can belong to the given class [2, 5]. Finally, for some classes it is known that
ambiguity in those classes can be exponentially large [4, 8, 10]. In this paper we
are going to investigate the problem of ambiguity in the class of to-convex discrete
sets having decomposable configurations.

On the Ambiguity of Reconstructing hv-Convex Binary Matrices... 371

2 Three Projections: A Negative Result
In [2] it was shown that every hv-convex decomposable discrete set having the same
horizontal, vertical, diagonal, and antidiagonal projections can be reconstructed in
polynomial time. Clearly, this also means that the number of solutions is polyno-
mial, too. However, the question was left open whether the use of four projections
is necessary to achieve this result. The following theorem gives an answer to this
question.

Theorem 1. For some vectors H, V, and D there can be exponentially many
hv-convex decomposable binary matrices with the same horizontal, vertical, and
diagonal projections H, V, D, respectively.

Proof. Consider the following matrices

/1 o o\ M = 0 1 1 and M' = . (4)

Clearly, M and M' are decomposable and have the same horizontal, vertical, and
diagonal projections. Now, for a given k > 1 and for any S C {1,.. . ,k} let the
matrix Xj? be defined as follows

XS
k =

(Mx Mo

\ MkJ

j M if i e s where Mi
 = U ' i f i * s (5)

for every i = 1 , . . . , k. The matrices defined by (5) are, certainly, hv-convex and
decomposable and have the same horizontal, vertical, and diagonal projections. S
can be any subset of {1, . . . , k} which gives 2k matrices with the described proper-
ties. •

As a consequence of this theorem we get

Corollary 1. If there is an algorithm that reconstructs all the hv-convex decom-
posable binary matrices with the horizontal, vertical, and diagonal projections H,
V, and D, respectively, then there are some vectors H, V, and D for which the
time complexity of the algorithm is exponential.

Remark 1. Naturally, we get the same results replacing the diagonal projections
with the antidiagonal projections.

3 Four Projections: A Reconstruction Heuristic
The reconstruction of a discrete set from four projections is NP-hard [10]. Further-
more, the number of hv-convex discrete sets having the same four projections can

372 Péter Balázs

be extremely large. This can be shown, e.g., in a similar way as in the proof of
Theorem 1 but using the matrices

/ 0 0 1 0\ / 0 1 0
1 0 0 0 and M' = 0 0 0 1
0 0 0 1 and M' = 1 0 0 0

\ o 1 0 0 / 0 1 0 /

However, as we mentioned in Section 2 if we assume that the set is to-convex and
decomposable then every discrete set with the given four projections can be found
in polynomial time yielding a polynomial number of solutions. Before going further
we describe a somewhat modified version of the algorithm given in [2].

Algorithm 1.

Input: Four vectors, H € lNm, V € INn, D,Ae IN m + n _ 1 .
Output: The binary matrix F with H{F) = H, V(F) = V, V(F) = D, and
A(F) = A or the message "no solution".

1: F = 0;
2: try to find the bottom right corner (i,j) of a component in the NW-corner;
3: if (Step 2 succeed) then reconstruct all the to-convex polyominoes with

horizontal and vertical projections {hi,..., hi) and {vi,... ,Vj), respectively;
else goto Step 5;

4: select randomly a polyomino P with A{P) = (o i , . . . , ai+j-1) from the
candidates generated in Step 3;

5: if (no component) then try to decompose a component in the NE-corner
using the vectors H, V, and D similarly as in Steps 2, 3, and 4;
if (no component) then try to decompose a component in the SE-corner
using the vectors H, V, and A similarly as in Steps 2, 3, and 4;
if (no component) then try to decompose a component in the SW-corner
using the vectors H, V, and D similarly as in Steps 2, 3, and 4;
if (no component) then goto Step 6;
else { update H, V, D, and A according to the projections of P\

F = FuP;
goto Step 2; }

6: try to reconstruct the last component and update the vectors;
7: if {H = V = D = A = 0) then return F else FAIL (no solution);

The algorithm in its original form reconstructs hv-convex decomposable discrete
sets with the given four projections in polynomial time by decomposing a compo-
nent (which is an to-convex polyomino) in each step of the main loop. Since in that
class property (a) is satisfied the components are reconstructed from their horizon-
tal and vertical projections uniquely. However, when reconstructing a component
we always have a third projection which is not used directly for reconstruction
but only for testing whether the reconstructed polyomino in the given corner has

On the Ambiguity of Reconstructing hv-Convex Binary Matrices... 373

Table 1: The number of hv-convex polyominoes in the test data sets that are not
uniquely determined by two, three, and four projections.

Size n x n H, V H, V, D H, V, A H, V, D, A
4 x 4 1393 40 52 18
5 x 5 1442 33 36 16
7 x 7 967 13 8 2

10 x 10 586 4 6 1
20 x 20 312 2 1 1
40 x 40 210 1 0 0
60 x 60 162 1 0 0
80 x 80 148 0 0 0

100 x 100 171 0 0 0

the proper (diagonal or antidiagonal) third projection. Interestingly, in some cases
the algorithm also gives a solution even if one or more of the components are not
uniquely determined by the horizontal and vertical projections, i.e., if there are
ambiguous reconstructions for some of the components (see [2] for further details).
Algorithm 1 exploits this feature of the original algorithm to serve as a heuristic
for the broader class of hv-convexes with decomposable configurations. The idea of
our reconstruction heuristic is that we try to eliminate ambiguity by using directly
the third projection in the reconstruction. In Step 3 of Algorithm 1 we reconstruct
all candidates for a component from the horizontal and vertical projections. Then,
in Step 4 we choose one of them that has the proper third projection. Note that if
the discrete set to be reconstructed satisfies property (a), too, then Steps 3 and 4
together yield the original form of the algorithm presented in [2].

We have conducted experiments for investigating how ambiguity of the compo-
nents (which axe to-convex polyominoes) can affect the performance of Algorithm
1. Using the methods given in [13], we have generated hv-convex polyominoes with
different sizes sampled from a uniform random distribution. Each test data set
consisted of 5000 discrete sets with the same size. The second column of Table 1
represents the number of polyominoes in the test data sets that have ambiguous
solutions when only two projections are used to reconstruct them. Note that unless
the size of the polyomino is small ambiguity occurs in only 3-6% of the cases (these
results of this column are essentially the same that were established independently
by a similar investigation in [7]). This means that if the components of an hv-
convex discrete set form a decomposable configuration and they are relatively big
then it is very likely that the set will be decomposable, i.e., it will satisfy property
(a), too. Clearly, the more components the discrete set has, the less likely it is
that all the components are uniquely determined by the horizontal and vertical
projections. Moreover, if the set has small components then ambiguity can occur
more likely - possibly causing the algorithm to fail.

The accuracy of Algorithm 1 depends on whether the third projection can effec-

374 Péter Balázs

tively eliminate the ambiguity. The third and fourth columns of Table 1 represent
the number of polyominoes in the test data sets that are not uniquely determined
by three projections (clearly, due to symmetry the two columns have nearly the
same entries). These results show that if the size of the polyomino is greater than
3 x 3 then ambiguity occurs in less than 1% of the cases, and it reduces drastically
as the size of the set increases. Again, the more components the discrete set has
the more likely ambiguity occurs (since it can occur in any component). If we have
several candidates with the same three projections for a certain component then
the only thing that affects the remaining part of the reconstruction is the fourth
projection of the component. The fifth column of Table 1 shows that even in the
cases if there are several candidates with the same three projections, it still has a
small probability that the fourth projection of the chosen set will be the same as
the true component's one, and thus the algorithm will not fail.

The computational cost of Algorithm 1 mostly depends on whether Step 3 can
be performed fast. In this step we reconstruct to-convex polyominoes from their
horizontal and vertical projections. Several algorithms have been developed for
solving this problem (see [6] for a comparison of them). However, all of them can
find only one of the solutions in polynomial time. Since the number of to-convex
polyominoes with the same horizontal and vertical projections can be exponentially
large [9] executing Step 3 in some cases can take an exponential time. Fortunately,
in average case this task can be performed in a few hundredths seconds even on a
PC with a processor of only 533 MHz [6].

Based on the observations that all the to-convex polyominoes having the same
two projections can be found quite fast, and the number of ambiguous cases is
very small if three projections are used to reconstruct them, we expect our newly
developed heuristic to reconstruct to-convex discrete sets having decomposable
configurations (i.e., if property (a) might not hold) fast and in most cases accu-
rate. In order to support this claim we have conducted some experiments. We have
generated 5 data sets, each of them contained 1000 to-convex sets with decompos-
able configurations having fc components of size n x n for some fixed k and n. The
generation method was the following. Again, using the methods given in [13], we
have generated a sequence of k to-convex polyominoes of size nxn sampled from
a uniform random distribution. Then, we have generated a random sequence of the
elements NW, NE, SE, and SW. If the discrete set to be generated consisted of k
components then the length of the sequence was k — 1, and it represented the way
and order of how the k components should be glued together. For the 5 test data
sets we have chosen the parameters k and n as follows:

• Test 1: k = 10, n = 5;

• Test 2: fc = 20, n = 5;

• Test 3: fc = 30, n = 5;

• Test 4: fc = 10, n = 10;

• Test 5: fc = 20, n = 10.

On the Ambiguity of Reconstructing hv-Convex Binary Matrices... 375

Table 2: Accuracy and average running time of Algorithm 1 on the test data sets.

Test ^correct sol. ^incorrect sol. #no sol. time (s)
Test 1 939 14 47 0.600
Test 2 891 27 82 0.847
Test 3 851 41 108 2.322
Test 4 998 0 2 0.660
Test 5 994 0 6 5.676

For example, Test 1 contained 1000 discrete sets of size 50 x 50, and each of them
had 10 components of size 5 x 5 . The reconstruction heuristic was implemented
in C++ and the test run on an Intel Pentium IV 3.2GHz with 1GB RAM under
Debian GNU/Linux 3.1. Table 2 shows the average running times, and the number
of correct and incorrect solutions for the 5 test data sets. From the entries of Table
2 we can deduct that the number of incorrect solutions increases as the number of
components increases. But we should mention here that in the first three tests an
inaccurate reconstruction differed from the original set just in one component, and
just in 8 positions. More precisely, the original and the reconstructed components
always formed a pair like

/ 0 0 X 1 0 \ (0 1 X 0 0 \
1 1 1 1 0 0 1 1 1 1

X 1 1 1 X and M' = X 1 1 1 X
0 1 1 1 1 1 1 1 1 0

VO 1 X 0 0/ 0 X 1 0 /

where the positions marked by X can take arbitrary values and are the same in M
and M'. Moreover, according to Table 1 if the set has components of size 10 x 10 (or
bigger) then the algorithm can reconstruct the set in almost all cases, accurately.
In fact, in Tests 4 and 5 we did not find inaccurate reconstructions (although it has
a small probability that an inaccurate solution will be reconstructed). Evidently,
the larger the set is the more time is needed to reconstruct it, but even for the
biggest sets of Test 5 the average running time of the algorithm is very fast. We
should also add that the implementation was not optimised on time. Summarizing
this we can say that Algorithm 1 has really good performance in both quality and
running time.

4 Conclusions and Further Research
We have studied the problem of ambiguity for reconstructing hv-convex discrete
sets which have decomposable configurations. We have shown that if only the hor-
izontal, vertical, and one of the diagonal projections of the set to be reconstructed
are known then the number of solutions with the same projections can be extremely

376 Péter Balázs

large. It is an open question whether in this case a reconstruction algorithm can be
given to find a solution in polynomial time. If we assume that all four projections
of the discrete set are given then the reconstruction of to-convex decomposables
can be achieved in polynomial time. We extended this reconstruction algorithm to
the more general case when the components of the to-convex set are not necessarily
uniquely determined by their two projections but still form a decomposable config-
uration. Although the extended algorithm in some cases uses exponential time to
reconstruct a solution, experimental results show that the average running time of
the enhanced algorithm is very fast. The algorithm in some cases does not find a
solution (or not the original one). However, our investigation also shows that this
happens very rarely (especially if the set has components of size larger than 5 x 5) .

In [15] an algorithm is presented to reconstruct to-convex discrete sets from
horizontal and vertical projections. The worst case time complexity of this algo-
rithm is exponential, too [17]. This algorithm is suitable to reconstruct to-convex
sets from four projections as well. In this case one should simply reconstruct every
to-convex discrete set which have the same given horizontal and vertical projections
and then keep only the solutions that also have the proper diagonal and antidiag-
onal projections. It would be interesting to compare the average performance of
this algorithm to our newly developed one. However, the generation of general to-
convex sets using uniform random distributions is an unsolved problem, therefore
no method is known by which the comparison on the whole set of to-convexes could
be done. In the future we want to search for subclasses of the class of to-convexes
whose elements can be generated using uniform random distributions, and which
are general enough for doing significant comparisons.

Acknowledgments
The author of this paper would like to thank the anonymous reviewer for his sug-
gestions which considerably improved the quality of the paper.

References
[1] A. Alpers, P. Gritzmann, L. Thorens, Stability and instability in discrete to-

mography, Proceedings of Digital and Image Geometry, Lecture Notes in Corn-
put. Set, 22 43 (2001) 175-186.

[2] P. Balázs, A decomposition technique for reconstructing discrete sets from four
projections, Image and Vision Computing, accepted.

[3] P. Balázs, Reconstruction of discrete sets from four projections: strong decom-
posability, Elec. Notes in Discrete Math., 20 (2005) 329-345.

[4] P. Balázs, The number of line-convex directed polyominoes having the same
orthogonal projections, Proceedings of the 13th International Conference on

On the Ambiguity of Reconstructing hv-Convex Binary Matrices... 377

Discrete Geometry for Computer Imagery DGCI2006, Lecture Notes in Com-
put. ScL, 4245 (2006) 77-85.

[5] P. Balázs, E. Balogh, A. Kuba, Reconstruction of 8-connected but not 4-
connected hv-convex discrete sets, Disc. App. Math., 147 (2005) 149-168.

[6] E. Balogh, A. Kuba, Cs. Dévényi, A. Del Lungo, Comparison of algorithms
for reconstructing to-convex discrete sets, Lin. Alg. Appl. 339 (2001) 23-35.

[7] S. Brunetti, A. Del Lungo, F. Del Ristoro, A. Kuba, M. Nivat, Reconstruction
of 4- and 8-connected convex discrete sets from row and column projections,
Lin. Alg. Appl. 339 (2001) 37-57.

[8] A. Del Lungo, Polyominoes defined by two vectors, Theoret. Comput. Sci. 127
(1994) 187-198.

[9] A. Del Lungo, M. Nivat, R. Pinzani, The number of convex polyominoes re-
costructible from their orthogonal projections, Discrete Math. 157 (1996) 65-
78.

[10] R.J. Gardner, P. Gritzmann, Uniqueness and complexity in discrete tomogra-
phy, In [11] (1999) 85-113.

[11] G.T. Herman, A. Kuba (Eds.), Discrete Tomography: Foundations, Algorithms
and Applications, Birkháuser, Boston, 1999.

[12] G.T. Herman, A. Kuba (Eds.), Advances in Discrete Tomography and Its Ap-
plications, Birkháuser, Boston, 2007.

[13] W. Hochstáttler, M. Loebl, C. Moll, Generating convex polyominoes at ran-
dom, Discrete Math. 153 (1996) 165-176.

[14] T.Y. Kong, G.T. Herman, Tomographic equivalence and switching operations,
In [11] (1999) 59-84.

[15] A. Kuba, The reconstruction of two-directionally connected binary patterns
from their two orthogonal projections, Comp. Vision, Graphics, and Image
Proc. 27 (1984) 249-265.

[16] H.J. Ryser, Combinatorial properties of matrices of zeros and ones, Canad. J.
Math. 9 (1957) 371-377.

[17] G.W. Woeginger, The reconstruction of polyominoes from their orthogonal
projections, Inform. Process. Lett. 77 (2001) 225-229.

Acta Cybernetica 18 (2008) 379-390.

An On-line Speaker Adaptation Method for
HMM-based Speech Recognizers

András Bánhalmi* and András Kocsor*

A b s t r a c t

In the past few yeaxs numerous techniques have been proposed to improve
the efficiency of basic adaptation methods like MLLR and MAP. These adap-
tation methods have a common aim, which is to increase the likelihood of
the phoneme models for a particular speaker. During their operation, these
speaker adaptation methods need precise phonetic segmentation information
of the actual utterance, but these data samples are often faulty.

To improve the overall performance, only those frames from the spoken
sentence which are well segmented should be retained, while the incorrectly
segmented data should not be used during adaptation. Several heuristic al-
gorithms have been proposed in the literature for the selection of the reliably
segmented data blocks, and here we would like to suggest some new heuristics
that discriminate between faulty and well-segmented data. The effect of these
methods on the efficiency of speech recognition using speaker adaptation is
examined, and conclusions for each will be drawn.

Besided post-filtering the set of the segmented adaptation examples, an-
other way of improving the efficiency of the adaptation method might be to
create a more precise segmentation, which should then reduce the chance of
faulty data samples being included. We suggest a method like this here as
well which is based on a scoring procedure for the N-best lists, talcing into
account phoneme duration.

Keywords : speech recognition, speaker adaptation, faulty transcripts, con-
fidence measures, a posteriori phoneme probabilities

1 Introduction
The probabilistic models for speech recognition are normally trained on a large
amount of da ta samples tha t contain utterances recorded from many speakers.
While these speaker-independent models usually operate with a quite similar and
acceptable performance for most speakers, speaker-dependent models which are

•Research Group on Artificial Intelligence of the Hungarian Academy of Sciences and
University of Szeged H-6720 Szeged, Aradi virtanuk tere 1., Hungary, E-mail: {banhalmi,
kocsor }0inf .u-szeged.hu

380 András Bánhalmi et a1.

trained just on the sample utterances of a particular speaker are much more effi-
cient at the recognition task for this specific speaker. The problem with develop-
ing speaker-dependent systems for each speaker separately, however, is that large
amounts of speech training data for each speaker may be unavailable and even diffi-
cult to acquire. In order to fine-tune the speaker independent model to achieve the
efficiency of a speaker dependent model, the following important techniques have
been already proposed.

The usual approaches for improving the performance of the speaker-independent
models are the transformation of the incoming feature vectors (e.g. by VTLN,
CMN or CVN) and the fine-tuning of the parameters in statistical acoustic models
(speaker adaptation techniques). The aim of feature vector transformation-based
methods is to transform (normalize) both the training and the test data in such
a way that the classes are easier to separate. In most cases these methods try to
normalize the input data with respect to a given parameter. The VTLN (vocal
tract length normalization) method normalizes the spectrum of the input speech
data by converting it as if all the samples had been pronounced by speakers with
the same vocal tract length [10],while the basic CMN (cepstral mean normalization)
method converts the cepstral coefficients of the input data so that the samples for
each speaker have the same mean value [5].

The other approach for adjusting a speaker independent model in order to bet-
ter approximate the performance of a speaker dependent model is speaker adapta-
tion. In classical HMM-based systems various speaker-adaptation techniques have
been used with success. These techniques fine-tune the parameters of the speaker-
independent system to more 'suitable' ones corresponding to the adaptation data
examples of a particular speaker.

In most cases, adaptation can be applied using three strategies: batch adapta-
tion, self-adaptation and on-line adaptation [4, 15]. Batch adaptation performs the
reestimation of the model parameters only after all the adaptation data samples
have been collected, so it is an off-line method. Self-adaptation is performed on
the testing data at runtime, without collecting adaptation data, so this is normally
an unsupervised method. The on-line (or incremental) adaptation technique al-
ters the parameters of the statistical model only after a block of adaptation data
samples have been enrolled, and this block of data is thrown away after the adap-
tation method has been applied. Recognition errors and faulty transcripts pose
an important problem when the above-mentioned algorithms are used. The main
advantage of the on-line adaptation technique over the self-adaptation one is that
it has access to much more information to separate the non-faulty adaptation data
samples, which could be used in the adaptation phase with more success. The other
important advantage of on-line adaptation is that it will adapt the previous model
to those data samples which have the maximal probability after enrolling a block
of data, hence this method should be much more stable than the self-adaptation
one.

Computationally, two main approaches have been proposed in the literature for
the adaptation of HMM parameters. The first is the maximum likelihood (ML) -
based framework which contains the maximum likelihood linear regression (MLLR

An On-line Speaker Adaptation Method for EMM- based Speech Recognizers 381

[11]) approach, the maximum likelihood stochastic matching (SM) approach [18]
and the constrained transformation approach [3].Some other adaptation techniques
are based on the maximum a posteriori formulation (MAP [6]), where only the
parameters of the states corresponding to the Viterbi path (the path with maximal
probability values) are reestimated. Because the speech recognition algorithm in
our speech recognition system works in a similar way (namely it approximates the
forward probability with the maximal value along the Viterbi path), this latter
technique might be more feasible in our framework than MLLR-like techniques.
The second main approach contains discriminative adaptation techniques like MCE
(Minimum Classification Error) [9] and MMI (Maximum Mutual Information) [16,
17], all of which try to maximize the recognition accuracy explicitly for a given
vocabulary.

Our goal with the experiments presented in this paper was to improve the per-
formance of a continuous speech recognizer by applying some modifications to the
supervised adaptation process. As the first step of HMM phoneme model adapta-
tion, the recognition system has to collect the phonetic data from the utterances of
the user. To achieve this an automatic segmentation is carried out by the speech
recognizer. In Section 2 we will provide a short description about of the key aspects
of our framework. The automatic segmentation phase however can be faulty for a
variety of reasons; e.g. the initial model is of poor quality, noise has been intro-
duced by the microphone or by the user, or simply the user stutters, or misreads
words. Our aim was to exclude these faulty segmented data items from the adap-
tation or at least to reduce their number. In the literature several methods have
been proposed to tackle this problem. Confidence measures have been investigated
to help the adaptation process deal with faulty transcripts [1, 12, 7].In the latter
articles confidence measures were used to mark possible recognition errors and to
exclude the erroneously segmented words from the adaptation process. In Section
3 we also propose two confidence-measure-like methods for improving the efficiency
of speaker adaptation.

Actually, the frequency of the occurrence of faulty adaptation data samples can
also be reduced directly at the on-line speech recognition level when the automatic
segmentation for the speech signal is being performed. When the speech recog-
nizer fills up the N-best hypothesis stacks, the scores of the hypotheses can be set
to eliminate certain (possibly faulty) hypotheses from the stack. Here we give a
method like this as well in Section 3.

2 The Speech Recognizer and the Adaptation Mod-
ule

The speech recognizer employed here is a continuous density HMM-based Viterbi
N-best decoder extended with some speed-up and pruning techniques for the pur-
pose of being real-time [2]. The speed-up techniques include, for example, some
constraints for the hypothesis extension procedure, thresholds for the stack size and
for the maximum number of new hypotheses, and fast Gaussian computation tech-

382 András Bánhalmi et a1.

niques. The adaptation module is based on the same program code as that used in
the decoder, with the same adjustable constraints and parameters to guarantee the
equivalence between the adaptation process and the continuous speech recognition
process. Hence we can say that the program has a recognition mode, and also an
adaptation mode. The difference between the recognition mode and the adaptation
mode lies in the following points:

• When the adaptation mode is running, a huge amount of auxiliary data has
to be stored for each active hypothesis in the N-best list whose data will be
used to trace back the Viterbi path and to find the mixture and state indices
of the HMMs belonging to the Viterbi path during the adaptation process.

• In order to make the search process efficient, some hypotheses are unified
after each hypothesis extension. The unifying technique of the adaptation
mode differs from that of the speech recognition mode in the sense that in
the adaptation mode not all the hypotheses with the same phonetic history
are unified, but just those whose trace-back data can be unified without
information loss.

• Because of the large amount of stored data in the adaptation mode, the stack
size should be reduced to keep the process real-time.

When the recognizer is in the adaptation mode, it will store the following data
that will be used to trace back the Viterbi path and compute the new adapted
HMMs. These data items are:

• the probability matrix for each state of each HMM,

• the mixture index matrix for each state of each HMM,

• the state matrix (with the series of phonetic labels, respectively) containing
the state from which the given state was attained with maximal probability.

From these data items the Viterbi path, the phonetic segments and all the
other data necessary for the computation of the adapted parameters can be easily
obtained. In order to efficiently store all these data items for all the hypotheses,
these data items are kept in a tree structure. If all hypotheses share a common
root, then, up to the end of this common root, only one matrix from each type is
stored, so the algorithm has linear storage requirements.

The adaptation module can be used both for supervised adaptation and for un-
supervised adaptation. Supervised adaptation means that the uttered word series
are known. The possible phonetic transcript variants of the word series are defined
by a grammar containing rules which only permit the type of phoneme series that
could be the phonetic transcription of the given word series. This simple gram-
matic model can also take into account assimilation rules and the possibility that
there are silent gaps between the words. However, when the adaptation process is
unsupervised, not a simple grammar, but a rather complex language model is used
by the continuous speech recognizer to build up N-best lists of possible hypotheses.

An On-line Speaker Adaptation Method for EMM- based Speech Recognizers 383

Figure 1: The process of unsupervised adaptation

After processing a few frames, the hypotheses in the N-best stack will have a com-
mon phonetic transcription prefix (they will have this, because N-best pruning is
used, and the number of hypotheses grows exponentially); afterwards this common
segment of the spoken data can be processed by applying the supervised method
(see Figure 1).

3 Reducing the Amount of Faulty Adaptation Data

3.1 Extracting the Adaptation Data
As we mentioned earlier, the adaptation process could be more efficient if faulty
adaptation data samples were removed from the well-segmented ones before the
adaptation process was carried out. We will now discuss a new and simple Viterbi
N-best cutting constraint that can be used to efficiently remove faulty adaptation
data samples. Methods like this can be computed only with a highly limited stack
size because of their high computational cost. So it cannot be normally used in the
speech recognition process, but it can be used when adaptation data extraction is
being performed, because the data samples necessary for this method are stored
and are accessible.

It is a widely accepted property of HMMs that their transitional probability
values do not model the duration of phoneme utterances very well. Moreover, the
A and A A feature components are strongly influenced by the phoneme duration
(because they measure how fast the features change). When samples are taken
from many different speakers, these features can be very different, so the resulting
accuracy of the phonetic segmentation could be quite low. When the duration of
the phoneme is modeled incorrectly, long phoneme durations can occur many times.
In reality this is very unlikely, except in the case when the phoneme model has to
model silent phases between two words. Our aim here is to reduce the number

384 András Bánhalmi et a1.

Figure 2: The histogram of the duration of all the phonemes except silence

of hypotheses containing an abnormally long phoneme utterance. Because the
Viterbi path is stored for each hypothesis and for each state of the corresponding
HMM models, the duration of the last phoneme can be computed using the Viterbi
path corresponding to the HMM state having the maximal probability (for each
particular state of a HMM there are different Viterbi paths). If the hypotheses with
an unlikely duration are punished, then hypotheses with likely phoneme durations
will be kept in the N-best list with a higher probability. With this in mind we
define an a posteriori phoneme-weighting function by which the probability score
of all hypotheses get multiplied:

Here L means the duration of the phoneme computed from the Viterbi path. For
the phoneme duration threshold (9) we used a value of 15, and for the punishment
constant (a) we used a value of -5. The duration threshold value was obtained from
the histogram above (see Figure 2), this histogram was computed on the training
database described later in the Section 4.

3.2 Confidence Measures for Adaptation
Many heuristic methods have been proposed in the literature for separating faulty
adaptation data from correctly segmented ones. Another family of methods per-
forms a weighting of the learning data samples when the adapted model is com-
puted, here the weights are based on some particular confidence values. In-this
section we propose some new confidence-measure-like heuristics to reduce the num-
ber of faulty adaptation data samples.

Our first confidence measure is based on the observation that many of the in-
correct segment boundaries are wrongly positioned by just a small amount. This

An On-line Speaker Adaptation Method for EMM- based Speech Recognizers 385

i Hp))

Figure 3: The histogram of the first confidence-measure scores on well-segmented
samples (solid line), and on incorrectly segmented samples (dashed line)

means that the faulty segment parts at the boundaries will generally give a lower
probability for the first and last states of the HMM. The difference between the
probability values at the segments boundaries and the probability of the interme-
diate part will be higher for the faulty data than for the correctly segmented data.
Based on this idea, we devised a simple formulation to measure this difference:

, , logp(Ale = P) + iogP(/JV|e = P) ¿=2S-ILOGP(/I|E P)

<P(P) = = 2 ATT2 '

where p is the recognized phoneme, 0 represents the HMM model, and fi is a
feature vector for the recognizer. Here f> is the function ranking the test phonetic
data, and a classification between the correct and faulty samples can be done using
an acceptance threshold.

In order to determine the proper threshold value, we had run an algorithm on
the training set which computed the distribution of the above-mentioned scores on
correctly segmented data and on incorrectly segmented data. The two histograms
are shown in Figure 3 above.

The second scoring method proposed by us is based on the Fisher score [13],
[8]. The Fisher score of a probabilistic model (which fits a probabilistic distribution
to the data, and uses the Bayes rule for classification) is the gradient of the log-
likelihood of a feature series with respect to the model parameters. Put formally,

Uf = V© log(P(/ |0))

386 András Bánhalmi et a1.

Figure 4: The histogram of the second confidence-measure scores on well-segmented
samples (solid line), and on incorrectly segmented samples (dashed line)

Here the parameter 0 represents the model, while the parameter / stands for the
feature vector series to be modeled. The gradient vector here measures how much
the log-likelihood of the feature data series changes when the model parameters
are varied. When using a Gaussian distribution, the Fisher score components with
respect to the means of the Gaussian mixtures can be computed via the following
formula:

m
VMk log(P(/|/ik)) - £ P(k\f i)ZlL (/ i - /*)

¿=i

Here m stands for the number of feature vectors modeled by the fc-th Gaussian
distribution. The feature vector series are denoted by f , and their elements are
denoted by fa.

We used the above-defined Fisher score to construct a confidence measure which
has the following form:

¿=i

where N is the number of feature vectors, and k is the index of the mixture that
corresponds to the Viterbi path. Figure 4 above shows the distribution of the scores
for the correctly segmented data samples and for the incorrectly segmented data
samples.

An On-line Speaker Adaptation Method for EMM- based Speech Recognizers 387

4 Experiments and Results
The adaptation technique used here was the MAP (maximum a posteriori) method,
which can be used for incremental adaptation by applying the following recursive
formula [19]:

xN+i + (N + a) • fj,d,N
= N + l + a "

Here the parameter N represents the number of adapting examples for the given
mixture component, while the parameter a controls how fast the mean (/id) is
altered by this linear regression procedure.

For testing purposes we used the following settings (only the main parameters
are given here):

• The continuous speech recognizer had a stack size value of 1000. The max-
imum number of new hypotheses for the phonetic hypothesis extension was
set to 250, and the log-likelihood cut-off parameter was set to 260.

• The phoneme HMM models were monophone HMMs with 3 states, each state
having a mixtures of 3 Gaussian distributions.

• The stack size of the adaptation method was 30, and the maximum number of
new hypotheses in adaptation mode was restricted to 20. The log-likelihood
cut-off parameter was set to 260.

• The recognition system used the conventional mel-frequency cepstral coeffi-
cient (MFCC) features. More precisely, 13 coefficients were extracted from
each 25 msec frame, along with their A and AA values, at a frame rate of
100 frames/sec.

• The a value of the MAP adaptation formula was set to 0.3. Other values were
also tested in the interval (0,1), but no significant difference was observed in
the results.

• The threshold for the first confidence-measure method had a value of 5, and
the threshold value used by the second method was 8. These settings were
selected to reduce a relatively high amount of faulty adaptation data (see
Figures 3 and 4).

In the experiments our own training, test and speaker adaptation databases were
employed. These databases and the continuous speech recognition system were cre-
ated by the Research Group on Artificial Intelligence, the University of Szeged and
the Laboratory of Speech Acoustics of the Budapest University of Technology and
Economics within the framework of the Hungarian Medical Dictation Project finan-
cially supported by the national fund IKTA-056/2003. The adaptation database
contained spoken sentences of 2 male(denoted by L and T) and 2 female (denoted
by A and B) speakers, each speaker uttered 17 paragraphs from the same text.

388 András Bánhalmi et a1.

Database A - B L T Average
Normal Adaptation 93.32% 92.28% 97.52% 93.29% 94.10%

Using PAPL 94.48% 93.48% 98.10% 94.10% 95.04%
WER reduction 17.36% 15.54% 23.38% 12.07% 17.08%

Table 1: Relative word error rate reductions achieved when using the phoneme a
posteriori likelihood (PAPL) method on the adaptation data sets of four speakers
(A, B, L, T).

Database A B L T Average
Base Adaptation 94.48% 93.48% 98.10% 94.10% 94.97%

1st method 94.92% 93.16% 98.10% 94.46% 95.16%
2nd method 95.77% 93.16% 98.33% 94.32% 95.41%

WER reduction 1. 7.9% -1.32% 0% 6.10% 3.9%
WER reduction 2. 23.36% -1.32% 13.68% 3.7% 8.8%

Table 2: Relative word error rate reductions achieved when using the proposed two
confidence measures on the adaptation data sets of four speakers (A, B, L, T).

The average duration of this speech data was 6 minutes per speaker, and the total
number of phoneme examples for the 44 monophone classes was 3500 on average.
The test database contained the utterances of the same four speakers, the record-
ings of 20 medical reports being taken from each speaker. The HMMs were trained
using the MRBA database that was created by the Research Group on Artificial
Intelligence, the University of Szeged and the Laboratory of Speech Acoustics of
the Budapest University of Technology and Economics within the framework of
the Hungarian Medical Dictation Project. This database contains 85365 phoneme
examples, 26 female speakers, and 74 male speakers. The grammar model built for
testing purposes was a simple word 3-gram, with a dictionary containing some 500
words. This grammar was trained on a text corpus built from 2500 thyroid gland
medical reports. The grammar model for the supervised adaptation contained 162
assimilation rules.

Table 1 shows the results of our experiments when using the a posteriori prob-
ability multiplier for punishing the hypotheses with extremely long phoneme du-
rations in the N-best stack. The results show that there is a definite improvement
in the efficiency of the adaptation when this kind of scoring technique is applied.
The experimental results using our confidence-measure-based methods to select the
adaptation data are listed in Table 2. As the reader can see, using theses methods,
a relative word error rate (WER) reduction of 4-8% was achieved on average, but
the WER reduction was not always positive. The reason for the instability of these
methods might be due to a significant reduction in the amount of adaptation data.

An On-line Speaker Adaptation Method for EMM- based Speech Recognizers 389

5 Conclusions and Further Work
Our results show that the efficiency of an adaptation method can be improved in two
ways suggested here: by increasing the robustness of the method which extracts the
adaptation data so that the automatically segmented data of the uttered sentence
should contain fewer incorrect segments, and by selecting and dropping probably
faulty adaptation data samples after the segmentation process. Building upon these
promising results, more advanced adaptation data filtering methods will be tried in
the near future which apply Data Description (One-Class Classification) methods
that have a better scoring mechanism for phonetic segments, and are also better
able to separate faulty data samples from the good data samples.

References
[1] T. Anastasakos, S.V. Balakrishnan, The Use of Confidence Measures in Un-

supervised Adaptation of Speech Recognizers, Proc. Int. Conf. on Spoken Lan-
guage Processing, Vol. 6, pp. 2303-2306., Sydney, NSW, Australia, Dec. 1998.

[2] András Bánhalmi, Dnes Paczolay, Lszl Tth An Empirical Study on the Per-
formanc of a CSR System Respect to Various Hypothesis-Space Pruning Tech-
niques, V. MSZNY, pp. 56-68., Szeged, Hungary, 2007.

[3] Digalakis, V. Rtischev, D. and Neumeyer, L., Speaker Adaptation Using Con-
strained Reestimation of Gaussian Mixtures, IEEE Trans, on Speech Audio
Processing, 3, pp. 357-366., 1995.

[4] V. Digalakis, On-line Adaptation of Hidden Markov Models Using Incremental
Estimation Algorithms, Proc. Eurospeech '97, pp. 1859-1862., Rhodes, Greece,
1997.

[5] S. Furui, Cepstral Analysis Technique for Automatic Speaker Verification, J.
Acoust. Soc. Amer., Vol. 55, pp. 1204-1312., June, 1974.

[6] J.-L. Gauvain and C.-H. Lee, Maximum a Posteriori Estimation for Multi-
variate Gaussian Mixture Observations of Markov Chains, IEEE Transactions
on Speech and Audio Processing, 2(2):pp. 291-298., April 1994.

[7] S. Homma, K. Aikawa and S. Sagayama, Improved Estimation of Supervision
in Unsupervised Speaker Adaptation, Proc. of ICASSP-97, Vol. II, pp. 1023-
1026., 1997.

[8] Jaakkola, T., Diekhans, M. and Haussler, D., Using the Fisher Kernel Method
to Detect Remote Protein Homologies, Proceedings of the Internation Confer-
ence on Intelligent Systems for Molecular Biology, pp. 149-158., Aug. 1999.

[9] B.-H. Juang, S.Katagiri, Discriminative Learning for Minimum Error Classi-
fication, IEEE Trans, on Signal Processing, Vol. 40, No. 12, pp. 3043-3054.,
1992.

390 András Bánhalmi et a1.

10] L. Lee and R.C.Rose, Speaker Normalisation Using Efficient Frequency Warp-
ing Procedures, Proc. ICASSP96, pp. 353-356., Atlanta, GA, 1996.

11] C. Leggetter, P. Woodland, Maximum Likelihood Linear Regression for
Speaker Adaptation of Continuous Density HMMs, Computer Speech and
Language, Vol. 9, pp. 171-185., 1995.

12] T. Matsui and S. Furui, N-Best-Based Instantaneous Speaker Adaptation
Method for Speech Recognition, Proc. of ICSLP-96, Vol. Ill, pp. 973-976.,
1996.

13] P.J.Moreno P.Ho and N.Vasconceles, A Kullback-Leibler Divergence Based
Kernel for SVM Classification in Multimedia Applications, Advances in Neural
Information Processing Systems 16. MIT Press, Cambridge, 2004.

14] P. Nguyen, P. Gelin, J.C. Junqua, J.T. Chien, N-Best Based Supervised and
Unsupervised Adaptation for Native and Non-Native Speakers in Cars, Proc.
IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, Vol. 1, pp. 173-
176., Phoenix, AZ, USA, March 1999.

15] P. Nguyen, L. Rigazio, R. Kuhn, JC. Junqua, C. Wellekens, Self-adaptation
using eigenvoices for large-vocabulary continuous speech recognition, In
Adaptation-2001, pp. 37-40, 2001.

16] Y. Normandin, R. Cardin, R. De Mori, High-Performance Connected Digit
Recognition Using Maximum Mutual Information Estimation, IEEE Trans, on
Speech and Audio Processing, Vol. 2, pp. 299-311., April 1994.

17] W. Reichl, G. Ruske, Discriminative Training for Continuous Speech Recog-
nition, Proc. EUROSPEECH, Madrid, Spain, pp. 537-540., 1995.

18] Sankar, A. and Lee, C.H., A Maximum-Likelihood Approach to Stochastic
Matching for Robust Speech Recognition, IEEE Trans, on Speech and Audio
Processing, 4 (3), pp. 190-202., 1996.

19] E. Thelen, Long Term On-Line Speaker Adaptation for Large Vocabulary Dic-
tation, IEEE ICSPL, 4: pp. 2139-2142., October 1996.

20] F. Wallhoff, D. Willet, G. Rigoll, Frame-Discriminative and Confidence-Driven
Adaption for LVCSR, Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal
Processing, Vol. 3, pp. 1835-1838., Istanbul, Turkey, June 2000.

21] Vicsi, K., Kocsor, A., Teleki, Cs., Tth, L., Hungarian Speech Database for
Computer-using Environment in Offices II. MSZNY, pp. 315-318., Szeged,
Hungary, 2004.

22] T. Zeppenfeld, M. Finke, K. Ries, M. Westphal, A. Waibel, Recognition of
Conversational Telephone Speech Using the Janus Speech Engine, Proc. IEEE
Int. Conf. on Acoustics, Speech, and Signal Processing, Vol. 3, pp. 1815-1818.,
Munich, April 1997.

Acta Cybernetica 18 (2008) 391-402.

Extracting Human Protein Information from
MEDLINE Using a Full-Sentence Parser \

Róbert Busa-Fekete* and András Kocsor*t

Abstract

Today, a fair number of systems are available for the task of processing
biological data. The development of effective systems is of great importance
since they can support both the research and the everyday work of biologists.
It is well known that biological databases are large both in size and num-
ber, hence data processing technologies are required for the fast and effective
management of the contents stored in databases like MEDLINE. A possi-
ble solution for content management is the application of natural language
processing methods to help make this task easier.

With our approach we would like to learn more about the interactions
of human genes using full-sentence parsing. Given a sentence, the syntactic
parser assigns to it a syntactic structure, which consists of a set of labelled
links connecting pairs of words. The parser also produces a constituent rep-
resentation of a sentence (showing noun phrases, verb phrases, and so on).
Here we show experimentally that using the syntactic information of each
abstract, the biological interactions of genes can be predicted. Hence, it is
worth developing the kind of information extraction (IE) system that can
retrieve information about gene interactions just by using syntactic informa-
tion contained in these text. Our IE system can handle certain types of gene
interactions with the help of machine learning (ML) methodologies (Hidden
Markov Models, Artificial Neural Networks, Decision Trees, Support Vector
Machines). The experiments and practical usage show clearly that our sys-
tem can provide a useful intuitive guide for biological researchers in their
investigations and in the design of their experiments.

Keywords: feature extraction, human gene interaction, data mining, ma-
chine learning, MEDLINE

•Research Group on Artificial Intelligence of the Hungarian Academy of Sciences
and University of Szeged H-6720 Szeged, Aradi vértanúk tere 1., Hungary, E-mail:
{busarobi,kocsor}0inf.u-szeged.hu

^The author was supported by the János Bolyai fellowship of the Hungarian Academy of
Sciences.

392 Busa-Fekete et. a 1.

1 Introduction
The MEDLINE [1] database is today becoming the most comprehensive biomed-
ical abstract repository among the life sciences literature. Due to its easy access
and availability, it is one of the most widely-used sources of scientific data em-
ploying several information retrieval systems. The NLM (U.S. National Library
of Medicine) maintained MEDLINE database contains over 13 million references
from about 4900 journals dating from 1965 to the present, and it & updated weekly.
Obviously a crucial task in bioinformatics text mining is to develop an automatic
system that extracts information about genes and their interactions. That is why
we decided to build an information extraction (IE) system which makes use of
natural language processing (NLP) techniques.

In the human life sciences, researchers are mostly interested in the interactions
of genes, so in this area of science it would be good if biologists had an IE system
that could search for relationships among genes [2, 3, 4, 5]. An interaction means,
for instance, the binding of genes, or the existence of a gene that can influence
the function of another gene. This kind of IE system can be quite useful in the
design of biological experiments and drugs. Hence here we will introduce a system
that can extract information about gene interactions which occur in living human
cells from the MEDLINE. Because we wanted to avoid the building of huge and
costly databases, we used and processed only freely available datasets. The system
introduced here relies on the part of speech tagged (POS) and full sentence parsed
(FSP) parts of MEDLINE. The main aim of our system is twofold: (a) to explore
the MEDLINE abstracts for a set of genes given by the user and (b) to gather
information about the interactions of genes that are described in the text of an
abstract provided by the user.

One of the cornerstones of our information extraction system is the recognition
of gene names. We used a thesaurus containing more than 40,000 gene names and
their 120,000 synonyms to annotate the gene names in the abstracts. The thesaurus
we obtained was built up using two sources: UMLS SPECIALIST Lexicon[7] and
the Agilent Technologies [8] database. With this lexicon the identification of gene
names can be reliably carried out. Later we will show some results of the efficiency
of gene name recognition.

To predict new gene interactions we first needed a part of MEDLINE that had
been annotated manually. In particular we needed an annotation based on the
interaction of gene pairs when they occurred in the text of the same abstract. The
National Center for Biotechnology Information (NCBI) [6] has many databases
about gene interactions that have been arranged taxonomically. Using these data
sets we were able to get a subset of MEDLINE containing information about human
gene interactions. In this way we could derive a training set suitable for machine
learning methods. Actually, many features of a syntactic tree can be represented
as a multidimensional vector (i.e. depth and frequencies of different labels), hence
each pair of gene names can be represented as a vector. In addition, the database
about the interactions allows us to find out whether a sample is positive or negative
(i.e. whether it is about the interaction of genes occurring in the text.) Here we

Extracting Human Protein Information from MEDLINE 393

tested талу machine learning algorithms on the training set. The results shows
that the Decision Tree model is the most suitable one for this purpose.

When designing our system we had to take into account the fact that MEDLINE
is a rapidly growing system and that the data is stored in compressed XML file
format. So we created a framework which could handle the abstracts and their
updates in their raw form, and could incorporate them into our IE system.

Not so long ago there was a workshop devoted to genie interaction extraction
using MEDLINE records. The task was quite similar to ours here, and many
results were produced by the participants of the workshop. These results are freely
available [21], and comparing our results we can say that our results are competitive
with the state-of-the-art systems. Moreover, we deal with a much bigger part of
the gene set.

The paper is organised as follows. In the next section we will discuss the Fea-
ture Extraction task and how we can combine the databases that are available.
Then in Section 3 we provide a brief overview of the Machine Learning models we
employed in experiments. Section 4 following gives a comprehensive study of the
performance of our IE system. Lastly, in Section 5, we summarise our results and
offer suggestions for future work.

2 Extracting Information from MEDLINE using
Distinct Data Sets

2.1 Relationships of the Applied Databases

With the advent of microbiology the experiments produce such a huge amount of
information that it has become necessary to organize them into databases. In the
middle of the last century some biologists began to collect and organize the papers
on the results of biological and chemical experiments. Later this collection, called
MEDLINE, became the main information resource for the experts dealing with
biology, pharmacology and the human life sciences. Nowadays with the advent of
extensive genome projects MEDLINE is getting bigger and bigger, and it contains
an indigestible amount of information about proteins, genes and so on. For fast
searching among the 13 billion records each abstract has a unique ID. It is called
its PMID, and it makes the identification of entries much easier.

In order to construct a working system in the first step we needed to isolate
the part of MEDLINE that is connected with human genes. Hence we generated a
comprehensive lexicon containing the names and synonyms of the genes. Because
biological work and experiments have gone on in parallel without being synchro-
nized many genes were discovered in different labs at the same time, and they
were named in a different way. These things makes the recognition of gene names
harder. To resolve this problem we used the most comprehensive lexicons of the
big biological research centres and chemical labs. The two lexicons that we then
merged are the following:

394 Busa-Fekete et. a 1.

Figure 1: The relationships of the databases

• UMLS Specialist Lexicon

• Lexicon of Aglient Techonolgies

To identify a gene in two distinct lexicons we used a unique gene identification
number. This ID is based on a consensus, and it is universal. In this way we
obtained a synonym containing more than 40,000 gene IDs and about 120,000
synonyms. It allowed us to have a reliable gene name annotation.

Before we began extracting features we needed to have a part of MEDLINE
that was not just about human genes, but about their interactions too. For this
we used the interaction database of NCBI. It contains triplets, that is the gene ID
of the interactants, and the PMID of the abstracts whose content is about their
interactions. Using this we generated a subset of MEDLINE with 12,638 texts of
abstracts, and then we annotated the resultant text by applying the synonyms lex-
icon mentioned above. We made use of this part of MEDLINE for the preparation
of the training database.

Summarizing the above-mentioned points, in our studies we generated tree
databases for the preparation of the training set: an extended synonym lexicon, a
collection of interactions and a part of MEDLINE. The connections between them
can be seen in Figure 2.1 later on. The unique PMID and gene ID were of course
used as the primary key.

2.2 Relevant nouns and verbs
During our study we noticed that only a few nouns and verbs rarely occur between
the pairs of gene names in the abstracts. One reason for this is that the texts were
mostly written by researchers who were non-native speakers of English. Another
was that a technical text always has a poor vocabulary. For instance in the following
sentence the verb interact characterizes the given situation very well: Here we show
that BRCA1 interacts and colocalizes with topoisomerase Ilalpha in S phase cells.

Extracting Human Protein Information from MEDLINE 395

In our studies we collected the nouns and verbs that frequently occur between
the interactant genes and, based on their distributions we chose the relevant verbs
and nouns. In our case a verb was deemed relevant if it occurred more than 1% in
any case. These results eventually gave us 35 nouns and 15 verbs. We used this
information as a discrete feature in the machine learning task as well.

2.3 Part of Speech Tagging and Syntactic Parsing
A morpho-syntactically analyzed text contains many possible parts of speech tags
based on the word stem. The aim of the Part Of Speech (POS) Tagging is the selec-
tion of the appropriate POS Tags for each word according to its grammatical role
in the sentence. The widespread approaches are based on machine learning tech-
niques available today. But here we used the POS Tagger developed by the Human
Language Technology Group of the University of Szeged. This tagger utilizes the in-
ternationally acknowledged MSD (Morpho-Syntactic Description) scheme [20] that
is also used for encoding words. Due to the fact that the MSD encoding scheme
is extremely detailed (one label can store morphological information on up to 17
positions), we did not exploit the granularity of this sort of annotation scheme. We
only employed the following groups:

Adjective Particle
Conjunction Adverb
Determiner Postposition
Interjection, sentence word Article
Numeral Verb
Noun Other, unknown word
Special tokens Abbreviation
Pronoun

Syntactic parsing is the process of finding the immediate constituents of a sen-
tence, that is a sequence of words. Syntactic parsing is an important part of the
field of natural language processing and it is useful for supporting a number of
large-scale applications including information extraction. Here we carried out the
syntactic parsing of the texts of abstracts using the Link Grammar Parser [16]. The
syntax trees of annotated sentences contain various types of phrases, as shown in
the following list:

Noun phrase (NP) Verb prefix (PREVERB)
Adjective phrase (ADJP) Conjunction (C)
Adverb phrase (ADVP) Pronoun phrase (PP)
Verb phrase (VP) Clause (CP)
Infinitive(INF) Sentence (S)
Negative (NEG)

To build a learning dataset we collected different types of numerically encodable
information describing each tag (part of speech and syntactic). These constituted
the vector of attributes for the classification. After we made use of the number of

396 Busa-Fekete et. a 1.

distinct POS tags that can be found between two given gene names. Here we also
utilised the distinct number of syntactic tags that can be found on the only path
between the pairs of the genes in the syntactic tree as features. Thus this gave us
35 features based on the sum of the number of POS tags and syntactic tags we
used.
In summary the features we employed were the following:

• the number of words between two protein names

• part-of-speech code syntactic labels (for the two protein names themselves
and for the words between them)

• the relevant nouns and verbs that occur in a sentence

3 The learning models
To solve classification problems effectively it is worth applying various types of
classification methods. The features we used are discrete. Therefore we applied
the C4.5 decision tree model, which usually works well on discrete feature set.
The SVM classifier was also applied using binarized kernel function because these
functions can be more suitable for discrete features than the traditional ones such
as Gaussian RBF kernel and polynomial kernel function. We compared these two
models to the Hidden Markov Model and Artificial Neural Network which are widely
used models. Now we will provide a brief overview of the learning models we applied
to the problems.

3.1 C4.5

C4.5 [19] is based on the well-known ID3 tree learning algorithm. It is able to
learn pre-defined discrete classes from labeled examples. The result of the learning
process is an axis-parallel decision tree. This means that during the training, the
sample space is divided into subspaces by hyperplanes that are parallel to every
axis but one. In this way, we get many n-dimensional rectangular regions that are
labeled with class labels and organized in a hierarchical way, which can then be
encoded into the tree. Since C4.5 considers attribute vectors as points in an n-
dimensional space, using continuous sample attributes naturally makes sense. For
knowledge representation, C4.5 uses the "divide and conquer" technique, meaning
that regions are split during learning whenever they are insufficiently homogeneous.
Splitting is done by axis-parallel hyperplanes, and hence learning is very fast. One
great advantage of the method is time complexity; in the worst case it is 0(dn2),
where d is the number of features and n is the number of samples. Based on this
we ran the C4.5 algorithm numerous times to perform preliminary tests to decide
whether the inclusion of additional features was beneficial to the model or not.

Extracting Human Protein Information from MEDLINE 397

3.2 Hidden Markov Model (HMM) approach
The Hidden Markov Modelling (HMM) technology it is assumed that the obser-
vation vectors belonging to a given state are independent, which in turn implies
that the corresponding likelihood values can be combined by multiplication. With
this poind in mind we adopted this probabilistic approach to predict new interac-
tions. Each class was represented by a HMM, and the decision rule was based on
the maximum posteriori probability derived from the HMMs. When we just used
morpho-syntactic information the observation was the POS tags between the pairs
of gene names. We also tried out the HMM approach on syntactic information (i.e.
on the syntactic tags between two gene names), where the input data was the set
of syntactic tags on the only path between the interactants. Here we varied the
number of states between 2 and 5, because this was found to be the best empirically.

3.3 Artificial Neural Networks (ANN)
Since it was realized that, under the right conditions, ANNs can model class pos-
teriors [13], neural nets have become evermore popular in the Natural Language
Processing field. ANNs are based on the parallel architecture of the brain. We can
view it as a simple multiprocessor system with a large number of interconnections
and interactions between the processing units that use scalar messages. However,
describing the mathematical background of ANNs is beyond the scope of this article.
Besides, we believe that they are already well known to those who are acquainted
with pattern recognition. In the ANN experiments we utilised the most common
feed-forward multilayer perceptron network with the backpropagation learning rule.

3.4 Support Vector Machines and Binarized
Kernel Functions

Theoretical discoveries generally have their own very different, unique histories
before they find any practical application. One such example is the " kernel-idea",
which had appeared in several fields of mathematics and mathematical physics
before it became a key notion in machine learning. The kernel idea can be applied
in any case where the input of some algorithm consists of the pairwise dot (scalar)
products of the elements of an n-dimensional dot product space. In this case, simply
by a proper redefinition of the two-operand operation of the dot product, we can
have an algorithm that will now be executed in a different dot product space, and is
probably more suitable for solving the original problem. Of course, when replacing
the operand, we have to satisfy certain criteria, as not every function is suitable
for implicitly generating a dot product space. The family of Mercer Kernels is,
however, a good choice, and is based on Mercer's theorem [18]. Here we turn to
the well-known and widely used Support Vector Machines (SVMs) [14, 15], which
is a kernel method that separates data points of different classes with the help of
a hyperplane. This separating hyperplane produced has a margin of maximal size
with a verified optimal generalisation capability. Another nice feature of margin

398 Busa-Fekete et. a 1.

maximization is that the calculated result is independent of the distribution of the
sample points. Perhaps the success and popularity of the method can be attributed
to this property.

There are many kernel functions for us to use, and there are also many ways
of deriving functions from the existing ones. From the functions available, the two
most popular are:

Polynomial kernel:

Gaussian RBF kernel:

Cosine polynomial kernel

Our feature set consists of discrete features. Hence we will investigate a derivation
technique for kernel functions. This technique will make the kernel functions more
suitable for discrete features. The main idea behind it is to use the binarized form
of the input vectors. In detail if we have a feature having a domain set |£>| = k, then
we can map D into a binary vector space. This bijection represents the elements of
D as binary vectors with a fixed length of k. Each binary vector has precisely one
non-zero element. Thus each coordinate in the binary representation corresponds
to a value in the domain set. Let us denote the mapping by 77 (x) that carries out
this bijective mapping componentwise for the input space. Using this 77 mapping
we can extend the well-known kernel functions:

fcb(x,y) = fc(r?(x),77(y)) (4)

All of the well-known kernel functions have a binarized form, and the exper-
iments clearly show that, using this kind of kernel on a discrete feature set, the
SVM can achieve a higher classification performance.

4 Experiments
4.1 The performance of the learning method
We carried out our experiments using the dataset described in Section 2. We then
obtained a learning database containing 22195 positive and 90656 negative samples.
The evaluation method we used here was a 10-fold cross validation.

We tried out various learning methods that were outlined in Section 3. In tests
we found that the C4.5 decision tree learning method slightly outperformed the
other machine learning algorithms. Here the confidence factor was set to 0.33.
The ANN method had one hidden layer of one and half times more the number of
hidden units than input neurons, used sigmoid activation functions, and 50 training
session had a 0.3 learning rate. The SVM method gave a better performance using
the binarized form of the well-known kernel function (linear, polynomial and cosine
kernels). The best results using the SVM approach was achieved with a binarized

fc1(x,y) = (x T y) d , deli, (l)
fc2(x,y) = e x p (- | | x - y | | 2 / r) , r e E+ (2)

(T \ 1

^ m i + a j > 9 e N, CT e R+. (3)

Extracting Human Protein Information from MEDLINE 399

NEGATIVE
POSITIVE

PRECISIONS) RECALL(%) F-MEASURE(%)

SVM (linear) 61.02
59.56

60.54
60.05

60.78
59.8

SVM (cosine pol.) 63.29
60.29

58.67
64.84

60.89
62.49

SVM (binarized lin.) 63.0
60.56

59.86
63.67

61.39
62.08

SVM (binarized cos.) 67.3
64.11

62.92
68.42

65.04
66.19

ANN 72.07
68.58

70.33
70.39

71.19
69.47

C4.5 71.64
71.89

73.53
69.93

72.58
70.9

HMM(POS) 59.52
56.39

53.03
62.74

56.09
59.39

Table 1: The classification performance of the various algorithms. In each cell the
upper and lower values correspond to the performance of the different machine
learning models on the negative class and positive class, respectively.

cosine polynomial kernel of 3rd degree. The performance of the HMM was better
when we used POS tags as observations. The number of states was always tested
in the range 1 — 5. The experiments revealed that the 3-state HMM best fit the
problem, although ironically it gave the worst performance. As the reader will
notice in Table 4.1 below, each cell contains the percentage accuracy for the positive
and negative classes separately. The columns on the other hand list the precision,
recall and F-measure for each method we tested.

4.2 Description of the system
The system can be accessed through a web-based user interface that has two types
of queries. First, the user can request a query concerning gene names. In response,
the system can provide information about the MEDLINE records that describes the
given genes. In addition, the system can visualise the results using Multi Dimen-
sional Scaling. Hence the users will be better able to understand the relationships
of the genes in question. Second, the user can also provide a text of an abstract as
an input for the system. The system will then collect the gene names that crop up
in the text, and it will may discover a possible interaction pattern among the genes
that are listed in the abstract. A schematic overview of this is given in Figure 2.

The usefulness of the system cannot be underestimated as it considerably fa-
cilitates biological and biomedical activities in two ways. First, it supports the
comparability of research findings achieved in different countries. Experiences can

400 Busa-Fekete et. a 1.

Figure 2: A schematic overview of the system

be accumulated in this way, and conclusions, deductions and extrapolations can be
found more easily and in a shorter time. Second, it helps reduce research costs,
since results can be obtained in a automated way and this also eliminates the need
for many people to work on this time-consuming and laborious task. This way, re-
searchers can focus on a variety of areas using the results produced by the system,
and perhaps make new discoveries using our software tool. Below in Figure 3 is a
screenshot of the system in operation.

5 Conclusions and Further Work
The information extraction technology presented here differs from existing methods
in that it applies semantic-based natural language processing methods to biological
content processing problems. As a novel aspect, it can visualise in a graph-like form
the information about genes and their interactions that was retrieved, which can
then be interactively browsed. This technology facilitates the work of researchers
by providing structured, customisable and easily browsable information relating to
their daily work. For this reason we think that it is certainly worthwhile developing
our system further.

Next, we intend to improve our gene interaction recogniser using syntactic frame
matching. This approach is a very commonly used technique in NLP, and we plan
to define semantic frames. We hope that with these frames we will able to determine

Extracting Human Protein Information from MEDLINE 401

IRCA1

Figure 3: A screenshot of the system

the level of gene interactions as well. This would be a promising start in building
a useful informatics tool for bio research and development.

References
[1] http://www.pubmedcentral.nih.gov

[2] Takeshi Sekimizu, Hyun S. Park, Jun'ichi Identifying the Interaction between
Genes and Gene Products Based on Frequently Seen Verbs in Medline Ab-
stracts. Genome Informatics 9:62-71, 1998.

[3] Marcotte EM, Xenarios I, Eisenberg D. Mining literature for protein-protein
interactions. Bioinformatics. 2001 Apr;17(4):359-63.

[4] Ono T, Hishigaki H, Tanigami A, Takagi T. Automated extraction of infor-
mation on protein-protein interactions from the biological literature. Bioinfor-
matics. 2001 Feb;17(2):155-61.

[5] Donaldson I, Martin J, de Bruijn B, Wolting C, Lay V, Tuekam B, Zhang
S, Baskin B, Bader GD, Michalickova K, Pawson T, Hogue CW. PreBIND
and Textomy-mining the biomedical literature for protein-protein interactions
using a support vector machine. BMC Bioinformatics. 2003 Mar 27;4:11. Epub
2003 Mar 27.

http://www.pubmedcentral.nih.gov

402 Busa-Fekete et. a 1.

[6] http://www.ncbi.nlm.nih.gov

[7] http://www.nlm.nih.gov/research/umls

[8] http://www.home.agilent.com

[9] Daniel Sleator and Davy Temperley. Parsing English with a Link Grammar.
Carnegie Mellon University Computer Science technical report CMU-CS-91-
196, October 1991.

[10] John Lafferty, Daniel Sleator, and Davy Temperley. Grammatical Trigrams:
A Probabilistic Model of Link Grammar. Proceedings of the AAAI Conference
on Probabilistic Approaches to Natural Language, October, 1992.

[11] Dennis Grinberg, John Lafferty and Daniel Sleator. A robust parsing algorithm
for link grammars. Carnegie Mellon University Computer Science technical re-
port CMU-CS-95-125, and Proceedings of the Fourth International Workshop
on Parsing Technologies, Prague, September, 1995.

[12] V. N. Vapnik. Statistical Learning Theory. John Wiley and Son, 1998.

[13] C.M. Bishop. Neural Networks for Pattern Recognition. Oxford University
Press, 1995.

[14] N. Cristianini and J. Shawe-Taylor. Support Vector Machines and other kernel-
based learning methods. Cambridge University Press, ISBN 0-521-78019-5,
2000.

[15] B. Scholkopf, C.J.C. Burges, and A.J. Smola. Advances in Kernel Methods:
Support Vector Learning. MIT Press, Cambridge, MA, 1999.

[16] http://www.link.cs.cmu.edu/link/

[17] http://www.hprd.org

[18] J. Mercer. Functions of positive and negative type and their connection with the
theory of integral equations. Philos. Trans. Roy. Soc. London, 415-446,1909.

[19] J. R. Quinlan. C4-5: Programs for machine learning. Morgan Kaufmann,
1993.

[20] Erjavec, T. and Monachini, M., ed. (1997) Specification and Notation for Lex-
icon Encoding, Copernicus project 106 "MULTEXT-EAST", Work Package
WP1 - Task 1.1 Deliverable D1.1F.

[21] http://genome.jouy.inra.fr/texte/LLLchallenge/

http://www.ncbi.nlm.nih.gov
http://www.nlm.nih.gov/research/umls
http://www.home.agilent.com
http://www.link.cs.cmu.edu/link/
http://www.hprd.org
http://genome.jouy.inra.fr/texte/LLLchallenge/

Acta Cybernetica 18 (2008) 403-425.

Programming Language Elements for Correctness
Proofs*

Gergely Dévai*

Abstract

Formal methods are not used widely in industrial software development,
because the overhead of formally proving program properties is generally not
acceptable. In this paper we present an ongoing research project to make
the construction of such proofs easier by embedding the proof system into a
compiler.

Using the introduced new programming language, the programmer writes
formal specification first. The specification is to be refined using stepwise
refinement which results in a proof. The compiler checks this proof and
generates the corresponding program in a traditional programming language.
The resulting code automatically fulfills the requirements of the specification.

In this paper we present language elements to build specification state-
ments and proofs. We give a short overview on the metaprogramming tech-
niques of the language that support the programmer's work. Using a formal
model we give the semantics of specification statements and refinements. We
also prove the soundness of the basic algorithms of the compiler.

1 Introduction
1.1 Motivation
The study of formal methods to reason about program properties is getting a more
and more important research area, as a considerable par t of a software product 's life-
cycle is testing and bug-fixing. The theoretical basis — such as formal programming
models and reasoning rules [16, 15, 20, 7, 17] — has been developed so far, but these
are rarely used in industry [6]. The main reason for this fact is tha t formally proving
a program property usually takes much more time than writing the program itself.

The goal of this research is to use programming language elements to make
the construction of these proofs easier. The basic idea is to develop a new pro-
gramming language where the source code contains the formal specification and

*This work is supported by "Stiftung Aktion Österreich-Ungarn (OMAA-ÖAU 66öu2)" and
"ELTE IKKK (GVOP-3.2.2-2004-07-0005/3.0)".

t Department of Programming Languages and Compilers, Faculty of Informatics, Eötvös Loränd
University, Budapest, E-mail: deva8elte.hu

404 Gergely Dévád

the correctness proof of the implementation. The proofs are built up using stepwise
refinement [23, 22], as this technique provides correctness by construction, and also
helps the programmers to make the right decisions during software development.
The compiler of the language has to check the soundness of the proof steps and to
generate the program code in a target language using the information of the proof.

Similarly to programs, proofs also contain schematic fragments. These can be
managed efficiently using proof templates that have the same role in proof con-
struction as procedures have in traditional program development. This leads to a
special kind of metaprogramming [9]: by the instantiation of the templates a proof
is constructed (and checked) in compile time and from the proof a target language
program is generated which automatically fulfills all the requirements stated in the
specification.

1.2 Related work
We summarize existing solutions for formally verified software development and
point out how the system presented in this paper differs from these approaches.

The most obvious solution is to embed the programming model in the frame-
work of a theorem prover. Once the program is written, one can (automatically)
generate its representation in the prover, formulate the desired properties (speci-
fication) and discharge them using the tools of the prover. Theorem provers like
Coq [5] or Isabelle/HOL [24] can be used for this purpose. The problem is, that the
program often does not fulfill the specification. In that case one has to start the
whole procedure from the beginning by fixing the error in the program code and
reconstructing parts of the proof. In contrast, our approach uses the correctness by
construction principle: the programmer writes the specification first and refines it
towards the implementation. Using this method one can discover design errors in
an early stage of the development.

Another approach is to extend a programming language by annotations (JML
and ESC/Java2 [8], SPARK [4], FPP [25]) which express the specification and
possibly the key elements of the proof. If the source code is extended by the speci-
fication statements only, we need additional tools to discharge the proof-obligations:
the previously mentioned problems arise again. If the elements of the proof appear-
ing in the code are detailed enough to enable automatic check of soundness, the
source code becomes redundant: a complete proof of correctness usually contains
all the necessary information needed to reconstruct the algorithm. This is exactly
what is done in the system presented in this paper: the programmer writes speci-
fication and proof only, the instructions of the algorithm are "extracted" from the
proof by the compiler automatically.

Functional and logic programming have a tight relation to formal methods as
programs in these languages can be considered as executable specifications. For
example in a functional language a program that sums the elements of a list reflects
the "natural" definition of the problem very well. In contrast, it is not the case if we
consider for example the problem of sorting a list. The "natural" way of specifying
it, is to state that we seek a sorted permutation of the original sequence, while

Programming Language Elements for Correctness Proofs 405

(effective) implementations1 in functional and logic programming languages are
closer to the different sorting algorithms used also in imperative programming.
This problem motivates several projects developing theorem provers especially for
functional programming languages, like the Lisp-based ACL2 [19], and Sparkle
[10] for the Clean language. Theorems proved in these systems express relations
between the functions implemented in the functional languages. This means that
the construction of the proof takes place after the implementation of the functions.
This has the same drawback mentioned before. Furthermore there axe essentially
"imperative" programming problems (consider for example the 10 processes) that
axe hard to deal with in a purely functional environment. The proof of the soundness
of these program fragments require further sophisticated methods [18]. In the
language presented in this paper it is possible to specify the problem on an abstract
level without any constraints to be "executable", while it also gives the possibility to
fully control the effectiveness of the implementation. If we consider the example of
sorting, the specification just states that a sorted permutation is needed, and this
can be refined towards any of the effective sorting algorithms. It is even possible
to choose assembly as the target language and to apply robust optimizations still
keeping the program proved correct.

The most similar projects to the one presented in this paper are the B-method
[3] and Specware [21], as both of them uses refinement. The B-method uses abstract
machines specified by pre- and postconditions of its operations and invariants. The
abstract machines are refined towards the implementation, and proof-obligations
are generated to each refinement. Additional tools help to construct the proofs.
Specware uses essentially the same schema, but it uses category theory as its basis.
The goal of the project presented here is to keep the essence of these successful
approaches while keeping the specification language and the refinement rules as
simple and straightforward as possible, eliminating proof assistants and unifying
the different levels of refinement.

The main characteristics and contribution of our approach can be summarized
as follows:

• It is a refinement-based method to ensure correctness by construction.

• The resulting target language program is generated automatically, the pro-
grammer has to develop the specification and its refinements only.

• The compiler and the language is independent of the target language, because
code generation is done by a separate module. The compiler's output is a set
of state transitions. Any language which is able to implement these transitions
can be a target language.

• The proofs are completed using the features of the new language only, no
external tools are needed.

1It may be also possible to implement the sorting algorithm directly as a search for a sorted
permutation (for example in Prolog), but the resulting algorithm is extremely ineffective.

406 Gergely Dévád

• Reasoning in temporal and classical logic is unified.

• Proof strategies are not hard-wired in the compiler, but can be developed
using the metaprogramming techniques provided by the new language.

1.3 Current state of the presented project
The programming language and the underlying system described in this paper is
implemented in C++. The compiler currently consists of more than 6000 lines of
source code. There are also hundreds of source files written in the new language to
test the compiler, and several example programs implementing simple but useful
algorithms [1, 13] are constructed for demonstration reasons. A small utility library
is developed that contains templates to ease reasoning about loops, conditionals
and can automatically construct proofs for expression evaluation. The currently
supported target language is C++, but in a previous version the NASM assembly
was supported.

As a relatively young project, the system's automated reasoning capabilities
are not comparable yet with the power of the leading interactive theorem provers.
However the advanced metaprogramming capabilities of the language are quite
promising: it makes possible to reuse often used proof parts and to develop own
proof strategies.

2 Examples
In this section we informally present the main features of the language using sev-
eral small examples. The specification language and the refinement possibilities
will be presented in more detail (2.1, 2.2), to help the reader to understand their
formalization described in sections 3 and 4. On the metaprogramming features of
this language and code generation issues we give a brief overview (2.3, 2.4).

2.1 Temporal properties

Expressions of the language are formulas of typed first order logic used to describe
states of the program. The instruction pointer (ip) is considered as a normal
variable and it may also appear in the formulas. For example the expression

ip = B & s = "Hello!"

states that the program execution is at the label B and the string "Hellol" is stored
in the variable s. Using the symbol one can connect two such statements to build
a temporal progress property:

i p = A > > i p = B & s = "Hello!";

Programming Language Elements for Correctness Proofs 407

This expresses that whenever the program execution is at label A, it has to reach
after some (finite but not certainly bounded) steps label B and then s = "Hello\"
must hold.

We can express classical pre- and postconditions of Hoare logic [16] using the
reserved labels Start and Stop instead of A and B in the example. Moreover,
the explicit usage of the ip variable makes it possible to specify non-terminating
programs. Like in the following example

i p = A > > ip = A & s = "Hello!";

where the "postcondition" implies the "precondition", stating that the program re-
peatedly returns to the same state or does not leave it.

This temporal property is close to the leads to property of Unity [7] and its
relational version [17], but without supposing any kind of fairness of the scheduling.
(As this language is currently designed for sequential languages, fairness is not a
point.)

In many formal specification systems connections between pre- and postcon-
ditions are expressed using auxiliary variables (also called parameter variables).
We also use this technique. For example the parameter variable j is used in the
following property

ip = Start & i = j > > i p = Stop & i = j+1;

to state that this program increments the value of the variable i. Program variables
and parameter variables are not distinguished syntactically but their declarations
are different. As usually, parameter variables are not allowed to appear in the
program, only in specification and proof.

It is also possible to express safety properties of the program: these are formulas
enclosed between the '[' and ']' symbols. A safety property concerns one or more
progress properties (the ones that are in the scope of it, for exact definition see
section 3.4).

[i > 0];
ip = A > > ip = B;

This example means that while the program proceeds from the label A to B, if
i > 0 becomes true, it remains true at least until ip — B is reached.

If a formula holds throughout a program fragment, in Hoare logic style proofs
one has to repeat it in all intermediate steps. In our system one can use a safety
property instead.

The always operator of temporal logic [20] and invariant notion of [17] are too
strong, stating that a property must hold during the overall program. Our safety
property is closer to the (weak) unless operator and the unless property of Unity
and [17]. The difference is that our property must hold "between" a pre- and a
postcondition.

408 Gergely Dévád

2.2 Refining the specification
Progress properties of specifications can be refined by two constructs: sequence
and case analysis. Safety properties are not to be refined, they are checked by the
compiler automatically.

A sequence breaks a progress property into consecutive steps. In the following
example the first line is the property to be refined and the two refining statements
are enclosed by the braces.

ip = Start >> ip = Stop & s = "Hello!" {
ip = Start >> ip = A & s = "Hello!" { ... >
ip = A & s = "Hello!" >> ip = Stop & s = "Hello!" { ... >

>
This refinement states that the original progress property is fulfilled by the program
such that it first sets the desired value of the variable s while it steps to the label
A, and then it terminates.

Note, that this example contains lots of unnecessary details. The algorithm
actually used by the the compiler to check its soundness (see section 4.1) enables
us to omit most of this redundancy. Furthermore such a simple refinement can be
automatically constructed by proof tactics implemented in the language, so that
the only fine of the specification would be enough.

A case analysis can be used to implement conditionals. In the following example
we want to compute the factorial of i. The program first computes the condition
i = 0 and commits a conditional jump. The precondition of the following example
describes the state of the program after this jump: it is at label A if i — 0, while
it is at the label B if i / 0. The result is computed differently in each of the two
cases, that is why we use case analysis. This is denoted by the select keyword.

(ip = A &.i = 0) I (ip = B & !(i = 0))
>> ip = C & f = fact(i)
select
•C

ip = A & i = 0 > > i p = C & f = fact(i) { ... >
ip = B & ! (i = 0) >>ip = C & f = fact(i) { ... >

>
The soundness of such a refinement is checked by the algorithm presented in section
4.2.

These two refinement constructs are very close to the Hoare logic rules [16]
for program sequences and if statements. Similar rules are the transitivity and
disjunctivity of the leads to operator of Unity [7, 17].

2.3 Template features
The basic idea of this language is that the programmer builds specification and
proof using the previously presented properties and refinement constructs, then

Programming Language Elements for Correctness Proofs 409

the compiler checks their soundness and generates the corresponding program in
a target language. The programmer's work is supported by a metaprogramming
layer of the language consisting of templates and compile-time conditions.

Templates are often used or valuable proof parts which are parametrized. These
templates can be called by the programmer with arguments to obtain a concrete
proof fragment.

Template arguments can be examined by compile-time conditions. Depending
on these conditions a template call may result in different proof fragments. For
example we have constructed a template to generate proof for expression evaluation.
The expression to be computed by the program is an argument of the template.
Compile time conditions examine whether this expression is a constant, a variable
or a function application etc. Depending on the kind of the expression, a proof of
an assignment instruction or a proof of a function call is produced by the template.

Formally defining the semantics of templates is not in the scope of this paper.
We give a brief overview of template substitutions. If a template is called, the
arguments are type checked first, then every occurrence of the formal arguments in
the template definition is replaced by the corresponding actual ones. Compile-time
conditions are evaluated next. Proof parts with false conditions are left out, and
the template call is replaced by the remaining parts.

Templates and compile-time conditions are similar to the macro features of
macro assemblers like MASM [2]. However, our templates are type checked. Sim-
ilarly to macro assemblers, our metaprogramming constructs can also be used to
simulate higher level programming constructs like control structures, procedures,
exceptions etc. While macros of a macro assembler generate assembly instruc-
tions implementing the constructs, our templates generate their proofs. In order to
achieve this goal we developed several kinds of templates. In the following we give
a brief overview of them.

2.3.1 Temporal and classical axioms

Templates marked with the axiom or atom keywords contain classical or temporal
axioms respectively. The programmer is able to declare functions and predicates
to use in specifications and proofs and can state their mathematical properties in
axiom templates. Atom templates contain temporal properties of instructions of
the target language, like an assignment or procedure call.

2.3.2 Tactics

The tactic keyword introduces a template that can be called by the compiler au-
tomatically. These templates have to have exactly two boolean arguments. If the
compiler finds a non-refined progress property (which is not in an axiom or atom) it
calls the available tactics with the pre- and postcondition of the progress property
as arguments. If none of the tactics provide a valid refinement for the property, an
error-message is generated.

410 Gergely Dévád

2.3.3 Static templates

If the programmer marks a template by the static keyword, the compiler checks
the soundness of its refinements regardless of its arguments. The soundness of
these refinements and the set of program instructions generated from them are not
allowed to depend on the actual arguments of the template. If this is violated, the
compiler generates an error message.

As a result, when a static template is called, there is no need to check its contents
again. This makes it possible to implement induction with static templates. Proofs
of loops and procedures are usually placed inside static templates, as induction is
often needed to prove their soundness.

2.3.4 Passing proof fragments as arguments

Templates usually get expressions as arguments, but it turned out to be quite useful
to pass complete blocks of refinements too. Using this possibility we were able to
define templates that generate proofs for if-statements and for different kinds of
loops. The following example is a sketch of computing the absolute value of i.
We call the if template, which gets two "simple" arguments: the condition of the
branch, and the postcondition that is to be established. It also has two "special"
arguments: the proofs of the if- and else-branch.

if(i < 0, j = abs(i)) {
// proof of if-branch

> {
// proof of else-branch

>
2.3.5 Templates declared in templates

It is possible to declare templates inside other templates. For example we were able
to write a template that can be used to declare procedures: when it is called, it
generates two other templates, one static template with the proof of the procedure
itself, and another template with the proof of the procedure call.

2.4 Code generation
When the compiler checks the refinements and finds a temporal progress property
axiom, it saves the corresponding atom template call to a set. This set of template
calls is the compiler's output. A separate code generation module converts it to
the syntax of the target language.

Most template calls in the set contain the label of the corresponding instruction
and the label of the following instruction. Template calls coresponding to instruc-
tions like goto and return contain their own label only, because these instructions
do not pass the control flow to the instruction after them.

Programming Language Elements for Correctness Proofs 411

That is, these labels define a partial order on the set of template calls. The
code generator sorts the instructions according to this order and generates the
target language code.

3 Semantics of the specification language
In this section we present the model that is the semantic domain of the specifi-
cation statements of the language. We use this model to prove certain properties
of the temporal statements. In section 4 these properties will be used to prove
the correctness of the algorithms used by the compiler to check refinements of the
language.

3.1 Expressions and logic
Expressions in this language are typed first order logic formulas. The free variables
of the formulas are program variables and parameter variables. These variables
define a state space that the formulas are interpreted on. The programming model
introduced in section 3.2 uses this state space to describe the behavior of programs.

The detailed presentation of the syntax and semantics of the expressions of this
language can be found in [11].

3.2 Underlying programming model
The semantics of the safety and progress properties is given using a relational
programming model, that we present in this section. The rules that the stepwise
refinement is based on are also proved in this model.

3.2.1 State space, program

Let A be an arbitrary set, the state space. A program over A is a set of state
transitions:

S C A x A
In case of (a, 6) € S, the program S can change its state form a to b.

In this model the instruction pointer of a program is a component of the state
space, just as all other variables. For example the program

K: b = true;
L: b = false;
M:

operates on a two-component state space, A = {K, L, M} x {true, false} and has
two variables, ip and b respectively. It has four state transitions:

5 = {((K, false), (L, true)), ((K, true), (L,true)),

((L, false), (M, false)), ((L, true), (M, false))}.

412 Gergely Dévád

3.2.2 Operation of programs

The operation of a program can be described by the state sequences that the pro-
gram follows during its execution. We use the notation A** for the set of all (finite
or infinite) nonempty sequences over the set A. The operation of program S over
state space A is the following subset of A**2:

rs = {a G A** I Vi G [l..|a| - 1] : (<*, a i + i) G S A (|a| < +oo - a N $ £>s)}

This definition states that the program changes its state according to its transitions
and it stops iff there is no applicable state-transition. Note that each a' postfix of
a sequence a G r s is in r s too.

For example, the sequences

are not.
The notation F(Q,a) is used for the first occurrence of an element in the se-

quence a G A** for which the statement Q holds.

This notation will be used to define the temporal properties of programs.

3.2.3 Temporal properties of programs

Let 5 be a program and P, Q and K be statements over the state space A. S leads
to Q from P (P » s Q), iff

That is, if the program is in a state for which the statement P holds it will reach
some state where Q holds after a finite (but not certainly bounded) number of state
transitions. The statement K is a safety property of S between P and Q ([/sTJ^'^)

< (K, false), (L, true), (M, false) >

m «) = { i e V a if Q(ai) A Vj G [l..i - 1] : - Q (a j)
+oo if V j e V c - . - i Q i a j)

Va <Ers: (P{ai) F(Q, a) < +oo).

iff

Va G r s : (P (a x) V? G [F(K,a)..F(Q,a)]nVa : K{aj)).

= {a £ A | 36 G A : (a, 6) 6 S} is the domain of the relation S.

Programming Language Elements for Correctness Proofs 413

That is, if the program reaches some state where K holds while it proceeds form
P to Q, then K remains true at least until Q is reached.

For example the properties

ip = K »5 ip = M

and
[b = true]<£p=KUip=L)

hold for the example program in 3.2.1.

3.2.4 Temporal properties with parameters

Recall the example of section 2, where we used a parameter variable to express a
progress property for each integer j:

ip = Start & i = j » ip = Stop & i = j+1;

In general, let S be a program over state space A, and B be an arbitrary set,
the parameter space, C = A x B, and P, Q and K be statements over C. If b € B,
we use the notation Pb for the statement over A for which

i-P6! = {a € A | (a,b) € [P]}

holds. We say, that
F » s < 3 and

is true iff for every 6 € B

Pb »s Qb and

hold respectively.

3.2.5 Refinement rules

Using the relational model we introduce rules of the temporal properties. These
rules are the basis for the algorithm that the compiler uses to check the refinement
steps in the source code.

The proofs of these rules are not really difficult but rather technical. You can
find them in the technical report [12]. Here we give short informal proofs and
explanations.

In the following we suppose that 5 is an arbitrary program over the state space
A, the parameter space is B, and C = Ax B. Furthermore we suppose that P, Q, R
and K are arbitrary statements over C.

414 Gergely Dévád

Rule of consequence

If P => Q then P »s Q and [K]g'Q.

To show this rule, we must take the sequences from r s starting with an element
satisfying P. But these elements also satisfy Q and using the definitions of the
temporal properties we get what the rule states.

The condition of the rule states that each time the precondition holds, the
postcondition also holds immediately. That is why any program can be used to
reach the postcondition from the precondition. The same rule is present in the
Unity based models [7, 17] for the leads to operator. In [16] Hoare had two such
rules: one for the precondition and one for the postcondition. Both of those rules
can be derived from our one and the rule of sequence.

Rule of sequence

If P » s <3 and Q » s R then P »s R-
If [K]%Q and then [K]%R.

To deal with the claim about the progress properties is quite simple: in each se-
quence starting with an element satisfying P, we can find an element for that Q
holds, because of the first hypothesis. And then, by the second hypothesis we know
that there is an element in the sequence for which R is true.

To prove the second statement we must explore cases depending on the order
of the first occurrence of Q, R and K. In each case by using one or two of the
hypothesis we can prove the statement.

This rule is essentially the rule of Hoare logic for program sequences and the
transitivity of leads to in Unity.

Rule of case analysis

If P » s R and Q »s R then P v Q » s Ji.
If [K]^R and [AT]«'« then [*r]fv Q '*

To prove this rule it is enough to consider, that if the first element of a sequence
satisfies P V Q, then it satisfies either P or Q. In each case we can use the cor-
responding hypothesis to prove the claim. This reasoning can be applied for both
statements.

This rule can be used to build proof for conditionals in a program. It splits the
precondition into parts and allows the programmer to reach the postcondition in
different ways from these parts. The corresponding rules are the disjunctivity of
leads to and the Hoare rule for if statements.

Programming Language Elements for Correctness Proofs 415

Rule of safety property application

If P » S Q and [K]%Q then (P A K) » 5 (Q A K).
If [/]£•« and \K)P

S'Q then [lfs^QAK.

The core of both statements is that if K is a safety property between P and Q, then
starting from P A K, if we reach Q, then K A Q will hold. In the first statement
we additionally suppose that Q is surely reached, which means Q A K is reached.
Similar reasoning applies for the second statement.

In Hoare logic proofs all the unchanged parts of the assertions are present in
every step of the proof. Using the rule described here we can "save" these unnec-
essary parts to safety properties and "put them back" into the progress properties
when necessary. In Unity a similar rule describes the connection between the leads
to operator and invariants of the program.

Rule of composition

Suppose that S = Si U S2 and VSl D T>s2 = 0.
If P » S l Q then P » 5 Q.
If [K\s[Q and P »Sl Q then

Because the program Si reaches Q from P, every state on this way must be in
the domain of Si. Thus, by the crucial condition that the domains of the two
composed programs are disjoint, these states can not be in the domain of S2. From
this we get that the compound program does exactly the same from P to Q as Si
does. From this follows both claims of this rule.

Note that the disjointness can easily be fulfilled in case of sequential programs,
but it is much harder for parallel/concurrent ones. Similar rules are established in
Unity. In Hoare logic, this rule is implicitly present in each of its rules, as they are
all compositional. The Hoare-style sequencing rule can be emulated in this model
by first applying our composition rule for both programs and then applying our
sequencing rule.

3.3 Syntax of proofs
In this paper we do not deal with the formal description of the operation of tem-
plates. After processing the meta programming elements in the code, the resulted
proof consists of specification statements and their refinements. In this section we
present the syntax of these elements.

In the grammar the following notations are used: non-terminal symbols are
enclosed between the < and > symbols, alternatives are divided by the | symbol,
the [and] symbols enclose optional parts, while [and]* denotes iteration (0, 1 or
more times), terminals appear between single quotes.

<proof> ::=
[<safety property> I <temporal axiom> | <classical axiom>

416 Gergely Dévád

I <sequence> I <case analysis>
I <conclusion refinements]*

<safety property> ::=
'[' <expression> ']'

<temporal axiom> ::=
[[<condition>] <safety property> ';']*
<expression> '»' <expression> ';'

<classical axiom> :: =
<expression> '=>' <expression>

<sequence> ::=
<expression> '»' <expression> '{' <proof> '}'

<case analysis> ::=
<expression> '»' <expression> 'select'
'{' [<sequence> I <case analysis>

I <conclusion refinement>]* '}'

<conclusion refinement> ::= ^
<expression> '=>' <expression> ['select']
'{' [«¡conclusion axiom> I <conclusion refinement>]* '}'

That is, the proof is a sequence of safety and progress properties and conclusions.
Each progress property and conclusion has to be refined, unless it is a progress
property axiom or a conclusion axiom. These axioms are always produced by a
template containing temporal or first order logic axioms. Conditions in safety
property axioms are special expressions that can be computed in compile time.

3.4 Semantics of statements
Now we connect the statements of the language with the model presented in section
3.2. First, we define the state space, that the formulas are interpreted on. Let the
•A. — {i>i, be the set of program variables and B = {pi, ...,pm} be the set of
parameter variables in the proof, and let V{ and Pj denote the sets of values corre-
sponding to the types of Vi and Pj respectively. Then the formulas are interpreted
on the space (Vi x ... x Vn) x (Pj x ... x Pm).

Let S denote the model of the specified program on state space V\ x ... x Vn. A
progress property Q » R of the proof specifies that Q » 5 R has to be fulfilled by
S.

In the grammar of section 3.3 the sequence of statements directly derived from
the < proof > symbol is called a block. The scope of a safety property consists of
the statements from the location of the safety property to the end of the innermost

Programming Language Elements for Correctness Proofs 417

block that contains it. If the progress properties Qi i?i, ..., Qn~S> Rn are in the
scope of the safety property [K], it specifies, that S fulfills [K]^uRl, ..., [K}^n'R,x.

A safety property axiom c : [K\, may contain expression variables. We say that
[A"'] is stated by the axiom if it is possible to assign expressions to the expression
variables such that replacing them in K results in K', and the condition c is true for
this assignment. If the temporal axiom consists of ci : [K\\, ...cn : [Kn]\ P Q\
then the axiom specifies P Q, and for each [L\ that is stated by one of the
safety property axioms, is specified too.

We say that a refinement is sound, if each program that fulfills the refining prop-
erties, also fulfills the refined properties. In the next section we present algorithms
to check refinements, and prove that each refinement accepted by these algorithms
is sound in the sense of the previous definition.

4 Algorithms to check refinements
In this section we present the algorithms of the compiler used to check the sound-
ness of refinement steps. In the pseudo codes we use the following conventions.
Parameters are always passed by value, that is, the procedures do not have side-
effects, results are given by return values only. We use set variables with the usual
set operations, and stacks with push, pop and top operations. In section 4.5 the
function sizeof is also used to give the number of elements in a stack. If T is a
progress property, we use the notations pre(T) a,nd post(T) to denote the pre- and
postconditions of T respectively.

In the algorithms the procedure infer(P, Q) is called. This can be any algorithm
that tries to infer the formula Q from P. The only requirement is, that it has to be
sound, that is, if it returns true then P => Q has to hold. Of course, this procedure
can not be complete, because first order logic is not decidable.

An other algorithm, GCNF(P) is also used in the algorithms. It transforms the
formula P to a generalized conjunctive normal form. The exact form of this GCNF
and the infer algorithm currently used in the compiler are described in [11].

4.1 Processing sequential refinements
Algorithm: process — sequent(Stm, K., V)
Parameters: Stm: the statement to process, JC: set of formulas, V: stack of
formulas
Local variables: T: statement, P: formula
Return value: stack of formulas

1. V := push{V, GCNF(pre(Stm)))\ T :=the first refining statement;

2. if T is the first statement of an axiom then call
V,T := process — axiom(T, K., V);
go to step 8;

418 Gergely Dévád

3. if T is a safety property \K] then K. := K. U {K}; go to step 8;

4. if infer(top(V),pre(T)) returns false then return ERROR;

5. if T is a sequential refinement then call
V := process — sequent(T, fC, V);
go to step 7;

6. if T is a refinement by case analysis then call
V := process — select(T,IC, V);
go to step 7;

7. P top(V); V := pop(V);.V := jmsh{V,GCNF{Pkpost{T)))\

8. if T is the last refining statement in Stm,

a) then go to step 9;
b) else T :=the next statement of the refinement; go to step 2;

9. if infer(top(V),post(Stm)) returns false then return ERROR;

10. return pop(V);

4.2 Processing refinements by case analysis
Algorithm: process — select(Stm, fC, V)
Parameters: Stm: the statement to process, K: set of formulas, V: stack of
formulas
Local variables: T: statement, P: formula
Return value: stack of formulas

1. D :=empty disjunction; T :=the first refining statement;

2. V := push(V, GCNF(pre(Stm))); D := D \ pre{T);

3. if T is a sequential refinement then call
V process — sequent(T, IC, V);
go to step 5;

4. if T is a refinement by case analysis then call
V := process — select(T, K., V);
go to step 5;

5. P := top(V)-, V :=pop{V)-, V := jmah(V,GCNF(PSepost(T)))-,

6. if infer(top(V),post(Stm)) returns false then return ERROR;

7. V:=pop(V);

8. if T is the last refining statement in Stm,.

Programming Language Elements for Correctness Proofs 419

a) then go to step 9;

b) else T :=the next statement of the refinement; go to step 2;

9. if infer(pre(Stm), D) returns false then return ERROR;
10. return V;

4.3 Processing axioms
Algorithm: process — axiom(Stm, K, V)
Parameters: Stm: the first statement to process, /C: set of formulas, V: stack of
formulas
Local variables: M: set of statements, U: formula, W: stack of formulas
Return value: stack of formulas, statement

1. M := 0; W :=empty stack;

2. if Stm is a safety property axiom [M]

a) then M := M U {M}\ Stm :=the next statement; go to step 2;
b) else go to step 3;

3. if infer(top(V),pre(Stm)) returns false then return ERROR;

4. for each element K G /C: if 3M G M: check - safety — property(K,M)
returns false then return ERROR;

5. for each element F = Fi$z...kFn of V (from the bottom to the top):

a) for each Fi (i G [l..n]):
if 3M G M: check — safety — property(Fi, M) returns false then
F :=remove F{ from F\

b) W :=push(W,F)-,

6. U := top(W)\ W := pop{W)\ W := push(W, GCNF(Ukpost(Stm)))-,

7. return W, Stm;

4.4 Using safety property axioms
Algorithm: check — safety — property(K, L)
Parameters: K: formula, L: safety property axiom statement (of the form c : [/])
Return value: boolean

1. Try to assign an expression to the expression variables in I such than K and
I match. If it is not possible then return false;

2. Evaluate the condition c with the assigned expressions. If it is true return
true, else return false.

420 Gergely Dévád

4.5 Soundness of the algorithms
In this section we present a theorem that states the soundness of the presented al-
gorithms, and three lemmas that are used in the proof of the theorem. The proofs
can be found in appendix A.

Theorem. If the refinements in a (finite) proof are accepted by the algorithms
presented in sections 4.1-4.4, and a program fulfills all the axioms used in the
proof, then the program fulfills all the temporal properties appearing in the proof.

Lemma 1. If a program S fulfills an axiom with properties c : [/]; and P » Q
and check — invariant(K,c : [/]) returns true, then also holds.

Lemma 2. If the call W,Stm' := process — axiom(Stm,K.,V) processes the ax-
iom consisting of statements ci : [/i](= Stm), c2 : [I2], ...,Cn : [In], P > Q without
returning an error and the program S fulfills these properties, then

• top{V) >s top(W),

V i f G K :

• Vi e [1 ..sizeof(pop(V)) - 1] for the ith elements F, of pop(V) and Gi of
pop(W): Fi => Gi and [G i }^ p { v) ' t M W) is true.

Lemma 3. If the call W := process — sequent(Stm, /C, V) or W := process —
select(Stm, JC, V) accepts a refinement without error, and the program S fulfills all
the properties inside the refinement, then the following hold:

• pre(Stm) »5 post(Stm),

m g £ . ^jpre(Stm),post(Stm)

• Vi G [1 ..sizeof(V)] for the ith elements F{ of V and G{ of W: Fi => Gi and
f/-< 1 pre(Stm) ,poat(Stm)
l^tJs

5 Summary
The project presented in this paper experiments with two aspects of formal meth-
ods:

• embedding of a refinement based calculus into a compiler to produce code
correct by construction,

• and using metaprogramming techniques to make proof construction easier.

Programming Language Elements for Correctness Proofs 421

In the current paper we discussed the first aspect. Semantics of specification state-
ments were presented as well as the basic refinement-checking algorithms of the
compiler together with their proofs of correctness.

Further research efforts have been issued to test the flexibility of our program-
ming model and specification language. We embedded a model to reason of dynamic
memory management and pointers [13], and also some datatypes of the C++ Stan-
dard Template Library and their basic operations with iterators were specified in
this language [14]. These embeddings were possible without modifying the com-
piler and language design. Therefore we concluded that it is flexible and expressive
enough.

In this paper we gave only a brief overview of the metaprogramming toolset of
this language. Our current research concentrates on supporting the programmers'
work by these tools. We investigate how to emulate higher level proof rules by
templates.

There are also interesting research areas for later development of this work. It
would be useful to extend the expressive power of the specification statements, for
example to specify randomized algorithms, parallel programs, resource consumption
of the program etc.

In its current state this system in already applicable to specify programming
problems and to derive not-too-complicated algorithms as verified solutions. The
limitation is clearly the non-sufficient automatic reasoning capabilities of the sys-
tem. We experiment with the metaprogramming features of the language to over-
come this limitation. While most formal methods use their built-in provers as black
boxes, in our case most of the proof strategies are implemented not in the compiler
but using the language itself. They are accessible and extendable.

A Proof of theorems of section 4.5

A. l Proof of the theorem
We prove the theorem by structural induction on the structure of the proof tree.
In the base case we observe a refinement where all the refining statements are
axioms. By the assumption of the theorem, the program S fulfills all these axioms.
From this, by lemma 3 we get that S fulfills the refined properties too.
In the inductive case, by the induction assumption the program fulfills all the
properties inside a refinement. From this, by lemma 3 we get that S fulfills the
refined properties too.

A.2 Proof of lemma 1
If the call returned true, it means that it was possible to assign expressions to the
expression variables such that K and I matched and the condition was also true.
Using the semantics described in section 3.4 it means that K is stated by c : [/],
and [K\s'Q.

422 Gergely Dévád

A.3 Proof of lemma 2
Step 2 of the algorithm collects all the safety property axioms into the set M .
Because the algorithm processed the axioms without error, by step 4 we know that
V i f e i C :
Step 5 copies the elements of V to W in such a way that it removes certain parts of
the conjunctive chains, thus Vi G [1 ,.sizeof(V)] : Fi => Gi, where Fi and Gi are the
ith elements of V and W respectively. By lemma 1 we get that the removed parts axe
those that are not safety properties of the axiom. It means that VG G W : [G] ^ .
In the following steps the algorithm modifies only the top element of W, so at the
end we have Vi G [1..sizeof {pop(V))\ : Fi => Gi and [Gf]p'^, where Fi and Gi are
the ith elements of pop(V) and pop(W) respectively.

Let us denote the value of top(W) by T at the end of step 5. Thus, we also
have top{V) => T and [T] p®. Because the call did not return an error, by step 3
we know that top(V) => P, and because of top(V) => T also top(V) => PScT. By
the assumption of the lemma we know that P 3>s Q holds. Using the rule of safety
property application we get that P&cT 2>s Q&cT. In step 6 the algorithm changes
top(W) from T to Q&T, that is we have P&T »s top{W). Prom this and from
top(V) => P&T by the rules of conclusion and sequence we get top(V) 2>s top(W).
Using the safety property parts of the same rules give:
VG € pop(W) : [G]5°p(V)'top(lV) and \/K € K : [K}t°p{y)'to^W).

A.4 Proof of lemma 3
We prove the lemma by structural induction on the structure of the proof tree.
The base case is a refinement where all the refining statements axe axioms. Prom
the syntax presented in section 3.3 follows that such a refinement is a sequential one.
First, we prove, that each time when the algorithm process — sequent(S.tm', K.', V')
is at step 2, then the following loop invariants hold: pre(Stm') top(V), VK €
K' : \K\pp{Stm'^topiy) and Vi G [1 ..sizeof{V')) for the ith element F, G V' and
Gi e V : F i ^ Gi and [G1]^ re(Sim ') ' top(V). When the algorithm is at step 2 for the
first time top(V) = pre(Stm'), because of the initialization in step 1, so the loop
invariants hold because of the rule of conclusion. By lemma 2 we get that step
2 preserves these invariants. As, according to our assumption, there are axioms
in this refinement only, step 2 and 8 are repeated until we reach the end of the
refinement. Then by step 9 we get that top(V) => post(Stm'). From this and the
loop invariants, using the rules of conclusion and sequence we get the properties
that we wanted to prove.
In the inductive case of the proof we have two cases: the cases of refinements by
sequence and case analysis.
If the refinement is sequential, then the proof is similar to the base case including
the loop invariant, but we have to deal with steps 3-7 too. In step 3 /C is changed
but in the loop invariant K,' is present, so that is preserved. If the execution is
at step 4 then we know that T is a progress property, and that top(V) => pre(T).
Then, depending on the type of the refinement of T step 5 or 6 is executed. We use

Programming Language Elements for Correctness Proofs 423

the induction assumption and a proof similar to the end of the proof A.3 to show
that the loop invariant is preserved.
If the refinement is a case analysis, let V* and V? denote the value of the stack
V at the end of step 2 and step 6 respectively at the ith refining statement T*.
By the induction assumption at steps 3 and 4 we get that pre(Ti) 3>s post(Ti),
VK e)C: and Vi € [1 . . s i zeo fW)] for the element Fj e
and Gj G V^2: Fj => G3 and [Gj]^r<:(Ti)'post(Tl). Thus we have pre(Stm) ^
top(V?) and [top(V?)]p

s
re{Ti)'post{Ti). From the latter one by the rule of safety

property application we get pre(Ti)ktop(V?) ~>s post(Ti)ktop(V?), VK € K. :
[A"]^.7'e(Ti)&iop(v''2),posi(T')&iop(Vi2) and VG € V? .yG}Pp(T№op(y?),posW)btoP(v?)
As step 5 changes top(V) from top(Vf) to post(Ti)ktop(V.f) by step 6 we get that
post(Ti)htop(Vi) => post(Stm). From this by the rules of consequence and se-
quence we havepre(Ti)ktop{V?) »s post(Stm),\/K € K : ^K^T^p(v?),Post(stm)
and VG e V? :[G]P-(ri)&toP(^),post(Stm); w h . c h ig t m e for e a c h s t a t e m e n t T . i n t h e
refinement. Using the rule of disjunction n — 1 times, we get (pre(T\)&iop(V\2)) |
... | (pre(Tn)8ztop(Vn)) ~>s post(Stm) and the similar safety properties.
Because of step 2 we know that at step 9 D — pre(Ti) | ... | pre(Tn), and step
9 checks that pre(Stm) D. From this, by pre(Stm) =>• top(V?) we get that
pre(Stm) (pre(Ti)k.top(Vi)) | ... | (pre(Tn)&top(V£)) is also true. Using the
rule of consequence and the rule of sequence for this and for the previous result we
get the properties of the lemma.

References
[1] Home of LaCert: http://deva.web.elte.hu/LaCert.

[2] HomeofMASM: http://masm32.com/.

[3] J.-R. Abrial. The B-book: assigning programs to meanings. Cambridge Uni-
versity Press, New York, NY, USA, 1996.

[4] J. Barnes. High Integrity Software: The SPARK Approach to Safety and Se-
curity. Addison Wesley, 2003.

[5] Y. Bertot and P. Casteran. Interactive Theorem Proving and Program Develop-
ment. Coq'Art: The Calculus of Inductive Constructions. Texts in Theoretical
Computer Science. Springer Verlag, 2004.

[6] J. P. Bowen and M. G. Hinchey. Ten commandments revisited: a ten-year
perspective on the industrial application of formal methods. In FMICS '05:
Proceedings of the 10th international workshop on Formal methods for indus-
trial critical systems, pages 8-16, New York, NY, USA, 2005. ACM Press.

[7] K. M. Chandy and J. Misra. Parallel Program Design, A Foundation. Addison-
Wesley, 1988.

http://deva.web.elte.hu/LaCert
http://masm32.com/

424 Gergely Dévád

[8] D. R. Cok and J. R. Kiniry. ESC/Java2: Uniting ESC/Java and JML. In
Construction and Analysis of Safe, Secure, and Interoperable Smart Devices,
volume 3362/2005, pages 108-128. Springer, 2005.

[9] M. Czarnecki and U. Eisenecker. Generative Programming: Methods, Tools,
and Applications. Addison-Wesley, 2000.

10] M. de Mol, M. van Eekelen, and R. Plasmeijer. Theorem proving for functional
programmers, Sparkle: A functional theorem prover. LNCS, page 55, 2001.

11] G. Dévai. Programming language elements for proof construction. In Volume of
abstracts of the 6th Joint Conference on Mathematics and Computer Science,
2006.

12] G. Dévai. Refinement rules of LaCert. Technical report, Dept. of Programming
Languages and Compilers, Fac. of Informatics, ELTE University, 2007.

13] G. Dévai and Z. Csörnyei. Separation logic style reasoning in a refinement
based language. In Proceedings of the 7th International Conference on Applied
Informatics (to appeare), 2007.

14] G. Dévai and N. Pataki. Towards verified usage of the C + + Standard Template
Library. In Proceedings of the 10th Symposium on Programming Languages and
Software Tools (to appeare), 2007.

15] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

16] C. A. R. Hoare. An axiomatic basis for computer programming. Commun.
ACM, 12(10) :576-580, 1969.

17] Z. Horváth. A Relational Model of Parallel Programs (in Hungarian). PhD
thesis, Phd School in Informatics, Eötvös Loránd University, Budapest, Hun-
gary, 1996.

18] Z. Horváth, T. Kozsik, and M. Tejfel. Extending the Sparkle core language
with object abstraction. Acta Cybemetica, 17:419-445, 2005.

19] M. Kaufmann, J. S. Moore, and P. Manolios. Computer-Aided Reasoning: An
Approach. Kluwer Academic Publishers, Norwell, MA, USA, 2000.

20] F. Kröger. Temporal Logic of Programs. Springer, Berlin, Heidelberg, 1987.

21] J. McDonald and J. Anton. Specware - producing software correct by con-
struction, 2001.

22] C. Morgan. Programming from specifications. Prentice Hall International (UK)
Ltd., second edition, 1994.

23] J. M. Morris. A theoretical basis for stepwise refinement and the programming
calculus. Sei. Comput. Program., 9(3):287-306, 1987.

Programming Language Elements for Correctness Proofs 425

[24] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant
for Higher-Order Logic, volume 2283 of LNCS. Springer-Ver lag, 2002.

[25] J. Winkler. The frege program prover FPP. Internationales Wissenschaftliches
Kolloquium, 42:116-121, 1997.

Acta Cybernetica 18 (2008) 427-450.

Pebble Alternating Tree-Walking Automata and
Their Recognizing Power*

Loránd Muzamel*

Abstract

Pebble tree-walking automata with alternation were first investigated by
Milo, Suciu and Vianu (2003), who showed that tree languages recognized by
these devices axe exactly the regular tree languages. We strengthen this by
proving the same result for pebble automata with "strong pebble handling"
which means that pebbles can be lifted independently of the position of the
reading head and without moving the reading head. Then we make a com-
parison among some restricted versions of these automata. We will show that
the deterministic and non-looping pebble alternating tree-walking automata
are strictly less powerful than their nondeterministic counterparts, i.e., they
do not recognize all the regular tree languages. Moreover, there is a proper
hierarchy of recognizing capacity of deterministic and non-looping n-pebble
alternating tree-walking automata with respect to the number of pebbles,
i.e., for each n > 0, deterministic and non-looping (n + l)-pebble alternating
tree-walking automata are more powerful than their n-pebble counterparts.

1 Introduction
The concept of a tree-walking automaton (twa) was introduced in [1] for mod-
eling the syntax-directed translation from strings to strings. A twa A, obeying
its state-behaviour, walks on the edges of the input tree s and accepts s if the
(only) accepting s ta te qyes is accessed. Every tree language recognized by a twa
is regular. It was an open problem for more than 30 years whether twa can be
determinized or whether twa can recognize all regular tree languages. The answer
for these two questions were provided in [4] and [3] saying tha t (1) twa cannot
be determinized and (2) twa do not recognize all regular tree languages. Hence
dTWA c TWA c REG, where dTWA and TWA denote the tree language classes
recognized by deterministic twa and twa, respectively, and REG is the class of
regular tree languages.

'Research of the author was partially supported by German Research Foundation (DFG) under
GrantGK 334/3 during his stay in the period February-April 2005 at TU Dresden, and also was
supported by the Hungarian Scientific Foundation (OTKA) under Grant T 030084.

^Department of Computer Science, University of Szeged, Árpád tér 2., H-6720 Szeged, Hungary,
E-mail: muzameiainf.u-szeged.hu

428 Loránd Muzamel

The generalization of twa with nested pebbles came recently, by two independent
motivations: On the one hand, with the advancement of XML theory, finite state
recognizers (with name n-pebble tree automata) were used in [21] to show that the
XML typechecking problem is decidable. On the other hand, the concept of n-
pebble tree-walking automata (n-ptwa) were defined in [9] to recognize first-order
logic on trees. Later, in [10] n-ptwa were extended with a more general pebble
handling. In the present paper we will consider tree recognizers along the line of
[10].

An n-ptwa A is equipped with a pointer (or reading head), and n different
pebbles, which are denoted by 1 , . . . , n. The pointer of A walks on the edges of an
input tree s, while the pebbles can be dropped at and lifted from a node of s in a
stack-like fashion which means the following:

Dropping of pebbles: If there are I < n pebbles on s, then pebble I + 1 can
be dropped at the node pointed by the pointer.

Lifting of pebbles: There are two different approaches.

weak pebble handling: If there are I > 0 pebbles on s, then pebble I can be
lifted iff it is placed at the node pointed by the pointer.

strong pebble handling: If there are I > 0 pebbles on s, then pebble I can be
lifted independently of the position of the pointer.

The automaton A computes on s as follows. Initially, A is in the initial state
<7o, its pointer points to the root of s, and no pebbles are placed on s. Then -
applying its rules - A moves along the edges of the input tree, drops, and lifts
pebbles in a stack-like fashion (with strong or weak pebble handling, depending on
the definition). Each step depends on (1) the current state, (2) the presence of the
pebbles on the input tree, and (3) the position of the pointer. A accepts s, if the
(only) accepting state qyes is accessed. Otherwise, A rejects s. We say that L is
the tree language recognized by A, if L contains exactly the trees accepted by A.

Originally, the n-ptwa was defined in [9] with weak pebble handling. In the the
present paper we are interested in the more general strong pebble handling, which
was used in [10, 22, 5].

In [10] it was proved that tree languages recognized by ptwa are regular. In [5] it
was shown that there is a proper hierarchy of the recognizing power of n-ptwa with
respect to n, moreover, there is a regular tree language which cannot be recognized
by any ptwa. Formally,

TWA C l-PTWA C 2-PTWA C . . . C PTWA C REG,
where n-PTWA denotes the class of tree languages recognized by n-ptwa, for

n > 0, and PTWA = (Jn>0 n-PTWA.
It was also an interesting and surprising result of [5] that ptwa with strong peb-

ble handling have the same recognizing power as those with weak pebble handling.
Alternation was introduced in [7] as a natural generalization of nondetermin-

ism for Turing machines, finite automata, and pushdown automata. Due to the
generality of the concept, it is obvious how to define alternation for other types of
sequential automata. For various kinds of (sequential) tree automata, alternation

Pebble Alternating Tree- Walking Automata and Their Recognizing Power 429

was first investigated in [23]. In [10] it was left as an open problem, whether the
tree languages recognized by n-ptwa with alternation and strong pebble handling
are regular or not.

In the remainder of this paper we will consider pebble tree-walking devices only
with strong pebble handling. Moreover, the definition of n-patwa in the present
paper will follow the line of the definition of n-pebble tree transducers of [11].

A computation of an n-pebble alternating tree-walking automaton (n-patwa) A
on an input tree s starts in the initial state with the pointer at the root node, and
there are no pebbles on s. Depending on the applicable rules it generates new par-
allel computations (such that each has its own copy of s with the current position of
the pointer, and the pebbles). The automaton A accepts s if all the computations
spawned from the initial configuration terminate in the (only) accepting state qyes.
We say that L is the tree language recognized by A if L contains exactly the trees
accepted by A. In case n = 0, we write alternating tree-walking automaton (atwa)
for 0-patwa. We denote the tree language class recognized by n-patwa, determin-
istic n-patwa, atwa, and deterministic atwa by n-PATWA, n-dPATWA, ATWA,
and dATWA, respectively. The unions Un>o n-PATWA and |J„>o n-dPATWA are
denoted by PATWA and dPATWA, respectively.

As main result of this paper, we answer the open problem raised at page 18
of [10] and prove that for all n > 0, n-patwa recognize exactly the regular tree
languages, i.e., n-PATWA = REG.

Roughly speaking, an n-patwa A is looping if there is an input tree s such that
one of the computations of A on s gets into an infinite loop. Otherwise A is non-
looping. We denote the non-looping version of the above tree language classes by
subscripting an lnV to their names e.g. dTWAni, dATWAni, n-dPATWAni, etc.

In the second part of this paper we investigate the recognizing power of deter-
ministic non-looping subclasses of the above tree language classes and show that
these subclasses do not recognize áll the regular tree languages, moreover the fol-
lowing proper inclusion hierarchy holds:

dTWA c dATWAni c l-dPATWAnl c 2 -dPATWA n l . . . c dPATWAnl c REG.
(*)

The paper is organized as follows. In Section 2 we define the necessary concepts.
In Section 3 we give the formal definition of an n-patwa and define the looping
property for them. In Section 4 we present our main result and prove that n-patwa
recognize the regular tree languages. In Section 5 we prove the proper hierarchy
(*). Finally, in Section 6 we conclude our results and give some future research
topics.

2 Preliminaries

2.1 Sets, strings, and relations
We denote the set of nonnegative integers by N. For every n € N, we let [n] =
{ l , . . . , n} .

430 Loránd Muzamel

For a set A, V(A) denotes the power set of A. The empty set is denoted by 0.
If it does not lead to confusion, we write a for a singleton set {a}.

For a set A, A* denotes the set of strings (or: words) over A; the empty string
is denoted by e. For a string w G A*, denotes its length. For every n > 0, we
define A-n = {u € A* | |u| < n}. For every u e A*, and 1 < I < |u|, u(l) denotes
the Z-th element of A in u.

An alphabet is a finite nonempty set. Let A be an alphabet and L C A* a finite,
nonempty set. We write the strings of L* in the form [u i ; . . . ; itj], where I > 0 and
ui,...,ui G L. The empty string over L is denoted by [].

Let p C H x H be a binary relation. The fact that (a, b) G p for some a,b G H
is also denoted by apb. For every I > 0, the i-th power of p is denoted by pl, the
transitive closure, and the reflexive, transitive closure of p are denoted by p+ and
p*, respectively.

2.2 Trees and tree languages
A ranked set is an ordered pair (E, ranks), where E is a set and ranks is a mapping
of type E —• N. If E is an alphabet, then (E , r a n k s) is a ranked alphabet. If
rank-^(a) = k for a G E and k > 0, then the rank of a is k and we indicate this fact
also by writing <r(k\ For every fc > 0, we define £(fc) = {a G E | ranks(cr) = fc}.
If E is clear from the context, we write rank instead of ranks, moreover, we drop
ranks and write a ranked set as E.

We denote by maxrank(E) the maximum of ranks of symbols of E, i.e.,
maxrank(E) = max{rank(a) \ a G E}.

Let E be a ranked set. The set of trees over E, denoted by Ts, is the smallest
set of strings T C (E U {(,)} U {,})* such that E^0) C T and whenever k > 1,
a G E<fc\ and i i , . . . , G T, then cr(ti,... ,tk) G T. Certainly, TE ^ 0 if and only
if E(°) ^ 0.

For every tree s G Ts, we define the set pos(s) C \maxrank(E)]* of the nodes of
s as follows. We let pos(s) — {e} if s G and pos(s) = {iu | 1 < i < k, u G
p o s (s j) } if s = ct(si, ... ,Sk) for some k > 1, a G and s i , . . . , s k G Ts-

Now, for a tree s G Ts and a node u G pos(s), we define lab(s,u) G E, i.e., the
label of s at node u, by induction:

(i) if s G (which implies u = e), then lab(s, u) = s;

(ii) if s = ct(si, . • • , S f c) for some k > 1 , a G and trees S i , . . . , sk G Ts, then

- if u = e, then lab(s,u) — er,

- if u = iu', where 1 < i < k, and u' G pos(si), then lab(s,u) = lab(si,u').

For every s G Ts and u G pos(s) we define the parent of u, denoted by parent(u)
and the child number of u, denoted by childno(u) as follows:

(i) if u = e, then childno(u) = 0 and parent(u) is undefined,

Pebble Alternating Tree- Walking Automata and Their Recognizing Power 431

(ii) if u = u'j for some v! G pos(s) and j 6 N, then childno(u) = j and
parent(u) = vl.

If E is a ranked alphabet, then any subset L C T s is a tree language. The
complement of L is the tree language L = Ts — L. If £ is a class of tree languages,
then co-C = {L\LeC}.

We will need a tree recognizer concept called top-down tree automaton. The
unfamiliar reader can consult with [17, 18] for this concept, although they called it
root-to-frontier automaton. A tree language is regular, if it can be recognized by a
top-down tree automaton. We denote the class of regular tree languages by REG.
The following classical result saying that regular tree languages are closed under
complementation will be needed later.

Proposition 2.1 REG = co-REG.

2.3 MSO logic for trees
Monadic second order (MSO) logic was originally proposed to describe properties
of strings in [6]. MSO logic can be extended for trees, see [24, 8, 2]. We will recall
the syntax and the semantics of this logic over a ranked alphabet E.

Syntax:

We define the language MSOL(E) of MSO formulas (over E) . This language is
built up from the following symbols.

node variables: x,y,xi,x2, We denote the set of node variables by VAR\.
node-set variables: X,X\,X2, We denote the set of node-set variables by

VAR2.
other symbols: A, 3, (,)
Atomic formulas are strings of one of the following types:

• laba(x), where a G E, and x G VAR\,

• childi{x 1,2:2), where 1 < i < maxrank(E), and £1,0:2 £ VAR\,

• x G X, where x G VARlt and X G VAR2.

The language of MSO formulas over E is the smallest set MSOL(E) satisfying
the following conditions.

(i) Each atomic formula is a formula of MSOL(E).

(ii) Let <Ai,02 e MSOL(E), x G VARX, and X G VAR2. Then (-1^1), (fa A
02), 3x{<f> 1), BXifa) G MSOL{E).

Let <f> G MSOL(E) be an MSO formula and x (X) a node (node-set) variable in
<j>. Then an occurrence of x (X) in <f> is said to be free in (j), if x (X) is not in the
scope of 3x (3X), otherwise that occurrence is bound in 0. The formulas without
free occurrences of node and node-set variables are the closed formulas.

432 Loránd Muzamel

Semantics:

The truth value of a formula is considered through structures. A structure (over
Y.) is a triple (s,IIi ,n2), where

• s € TE,

• IIi : VARi —• pos(s), and

• n2 : VAR2 P(pos(s)).

Now, let (s, IIi, n 2) be a structure and <p G MSOL(E) a formula. We define that
the structure (s , n i , n 2) models <j> G MSOL(E), or (f> is true in (s,n1 ,I l2) (denoted
by (s, IIi » H2) |= <t>) by formula induction on </> as follows.

(i)/a If 4> = laba(x), then (s, IIi, II2) [= </> iff the label of the node ïïi(:r) is a.

(i)/b If <f> = childi(x\,x2), then (s,IIi,n2) |= <j) iff node ni (x 2) is the parent of
node of IIi(a;i) and childno{J\.\(xi)) = i.

(i)/c If <j> = x G X, then (s , n i , n 2) |= </> iff nx(x) G n 2 (X).

(ii)/a If <t> = then (s,nun2) \=4>ïS (s,IIi,n2) ^

(ii)/b If ^ = (<j>i A <j>2), then (s,IIi,II2) [=0 iff (s , n i , n 2) (=01, and (s , n i , n 2) |=
<t> 2-

(ii)/c If 4> = 3x(4>i), then (s , n i , n 2) (= <j> iff there is a node u € pos(s) and a
structure (s,IIj, lis), such that for every y G VARi, we have

and (s , n i , n 2) M i .

(ii)/d If <j> = 3X((pi), then (s,IIi,II2) |= <p iff there is a node set U Ç pos(s) and a
structure (s , II i ,n2) , such that for every Y G VAR2, we have

and (s,IIi,II2) \=

To improve the readability of a formula, we omit the outer brackets. Moreover,
we will use the standard shorthand <pi V <j)2 for ->(p 1 A -><f>2, <p 1 —> (j>2 for -><f> 1 V (f>2,
Vx<f> for -i3x-*f>, and VX0 for

It is straightforward that for a closed formula <j> G MSOL(E), and structure
(s ,II i ,n2) , the mappings IIi and n 2 do not influence the fact that (s,IIi,II2) [= <t>
or not. Hence for a closed formula 4>, we will write s (= (¡> for (s,ni,n2) |= (j).

Let <j) G MSOL(E) be a closed formula. The tree language defined by 4> is the
tree language L((f>) = {s G Tg | s <f>}. A tree language L C Ts is MSO-definable,
if there is a closed formula 0 G MSOL(E), where L = L(<f>). The following classical
result from [8, 24] states that the MSO-definable tree languages are exactly the
regular tree languages.

Pebble Alternating Tree- Walking Automata and Their Recognizing Power 433

Proposition 2.2 A tree language is MSO-definable if and only if it is regular, o

3 Pebble alternating tree-walking automata

3.1 Syntax and semantics
In this section we introduce the concept of an n-pebble alternating tree-walking
automaton. For this, we define the set of instructions.

Definition 3.1 For every integer d > 0, let
Id = {stay, up, drop, lift, downi, down2,..., downd}-

The elements of Id are called instructions.
For a ranked alphabet E, symbol a G E, n > 0, bit vector b G {0, l } - n , and

j 6 {0 ,1 , . . . , maxrank(E)}, let Ia,bj,n Q A-anfcO) be the smallest set satisfying the
following conditions:

(i) stay G 7CT,b,j,„,

(ii) if j ± 0, then up G Ia,b,j,n,

(iii) for every 1 < i < rank(a) we have downi G Ia,b,j,n,

(iv) if \b\ < n, then drop G /CT,6,j,n,

(v) if by e, then lift G Ia,b,j,n-

If n is clear from the context, then we write Ia,b,j for Ia,b,i,n- o

Definition 3.2 For n > 0, an n-pebble alternating tree-walking automaton (shortly
n-patwa) is a system A = (Q, E, <?o, qyes, R), where

• Q is a finite nonempty set, the set of states, which is partitioned into pairwise
disjoint subsets Qo, Qi, • • •, Qn,

• E is a ranked alphabet, the input alphabet,

• Qo G Qo is a distinguished state, the initial state,

• Qyes Q is a new state, the accepting state,

• R is a finite set of rules, which is partitioned into pairwise disjoint subsets
Ro, Ri,..., Rn, such that for each 0 < i < n, the set Ri consists of

- accepting rules of the form (q,cr,b,j) —• (qyea,stay),

- pebble tree-walking rules of the form (q,cr,b,j) —• (p, </?), and

- alternating rules of the form (q,cr, b,j) —* {{pi, stay), {p2, stay)},

434 Loránd Muzamel

where q G QI, a G E, b G {0,1}', 0 < j < maxrank(T), pi,p2 G QI, G /<t,6,j,

By a pebble alternating tree-walking automaton (patwa) we mean an n-patwa
for some n.

A tree s G TE is called an input tree to A or just an input tree. In the remainder
of this section A stands for the n-patwa A = (Q, E, g0, Qyes, R)-

We say that A is deterministic, if, for every q G Q, o G E, b G {0,1}-",
and j G {0,1, . . . , maxrank(E)}, there is at most one rule of R with left-hand side
(q,cr,b,j). Next we introduce further syntactic restrictions for patwa.

Definition 3.3 A is

• an alternating tree-walking automaton (shortly atwa), if A is a 0-patwa.

• an n-pebble tree-walking automaton (shortly n-ptwa) [10], if there axe no alter-
nating rules in R.

• a tree-walking automaton (shortly iwa)[l], if A is a 0-ptwa. o

By a pebble tree-walking automaton (ptwa) we mean an n-ptwa for some n. Next
we make some preparation for defining the semantics of a patwa. First we define
the concept of an n-pebble configuration.

Definition 3.4 For an input tree s G i s , an n-pebble configuration (or: pebble
configuration) over s (and A) is a pair h — (u, n), where u G pos(s) is a node of s
and 7r G (pos(s))-n, i.e., tt is a string over pos(s) of length at most n. The set of
pebble configurations over s and A is denoted by PCA,S• o

A pebble configuration h = (u,ir) G PC a,si with the string of strings 7r =
[ui; . . . ;u;] contains the information that the node being scanned by A (the current
node) of the input tree s is u and A put I — |7r| pebbles on the nodes u\,. ..,ui of
s. Note that more than one pebble can be put on the same node.

We define a mapping that tests a pebble configuration and returns a triple,
which will influence the computation relation.

Definition 3 . 5 Let s G TE be an input tree and h = (U,TT) G PC A,A A pebble
configuration. Then tests(h) = (o,b,j), where

• a = lab(s,u),

• b G {0,1}* is a string (bit vector) of length I = |7r|, where, for every 1 < i < I,

moreover

o

(Note, it follows from Definition 3.4 that .1 < n.)

Pebble Alternating Tree- Walking Automata and Their Recognizing Power 435

• j = childno(u). o

If s is clear from the context, then we write test(h) for tests(h). Next we define
how an instruction can be executed on a configuration.

Definition 3.6 Let s £ Te be an input tree and h = (u, 7r) £ PC a,s an n-pebble
configuration over s with 7r = [xii;... ; u/]• Let test(h) = (a,b,j) and take an
instruction (p £ Itest(h) = • The execution oftp on h is the pebble configuration
<p(h) defined in the following way.

(u, 7r) if <p = stay,
(parent(u), 7r) if ip = up,
(ui, 7r) if <p = downi,
(it, \u\ ;••... ; ui ; u]) if tp = drop,
(u, [ui;. . . ;ui_i]) if <p=lift.

<p(h) = <p((u,n)) =

Now we define the concept of a configuration of A.

Definition 3.7 Let s £ T j be an input tree. A configuration of A (over s) is a
pair (q, h), where q £ Q U {qyes} and h £ PCA,s• o

Roughly speaking, a configuration is a snapshot of the computation, storing the
current state, the node pointed at by the pointer, and the positions of the dropped
pebbles. The set of configurations of A over s is denoted by CA,S-

Due to alternation, A is capable to do arbitrary many parallel computations
(threads) while processing s and hence, the computation relation works over the
subsets of CA,S• We turn to introduce this computation relation.

Definition 3.8 Let s £ T s be an input tree. Then h^.sC V(CA,S)XV(CA,S) is the
computation relation of A on s, where for all configuration sets .Hi, #2 € V(CA<S)
we have Hi H2 if and only if there is a configuration (q,h) £ Hi, such that
one of the following is true.

(1) There is an accepting rule (q,a,b,j) —* (qyes ,stay) in R such that test(h) =
(a,b,j) and H2 = (Hi - {(q,h)}) U {(?„„,h)}.

(2) There is a pebble tree-walking rule (q, a, b, j) —* (p, <p) in R such that test(h) =
(a,b,j) ¡mdH2 = (H1-{(q,h)})U{{p,<p(h))}.

(3) There is an alternating rule (q, c, b,j) —> {{pi,stay), (p2, stay)} in R such that
test(h) = (a, b,j) and H2 = (Hi - {(q,h)}) U {(pi,h), (j)2,h)}. o

We note that the role of the alternating rules is to spawn two parallel com-
putations (threads) from one computation, such that the two new computations
start out to work from the current pebble configuration. Moreover, each parallel
computation has its own copy of the input tree and an own pebble configuration,
which cannot be modified by other computations.

436 Loránd Muzamel

Pebble tree-walking rules are responsible for the sequential steps of a compu-
tation (moving on the edges, dropping and lifting of pebbles), and accepting rules
are for terminating and accepting a computation.

The n-patwa A works as follows on an input tree s. It starts out in the initial
configuration set {(qo, (e, []))} (i-e., only one thread, initial state, pointer at the root
node, and no pebbles dropped on s). Then, applying s step by step, it computes
further configuration sets. The goal is that each parallel computation spawned
from the initial configuration should be accepting, in other words, to terminate in
a special configuration set H £ ~P(CA,S), such that the state-component of each
configuration of if is qyes. In that case if is an accepting configuration set. It is
easy to see that there is no computation step from an accepting configuration set.

Let ACCA,S = { L Y E S } x PCA,S be the largest accepting configuration set. Thus
the tree language recognized by A is defined as follows.

Definition 3.9 The tree language recognized by A is
L(A) = {s € T s | (qo, (e, [])) H, for some H C ACCA,S}- O

The classes of tree languages computed by n-patwa, atwa, n-ptwa, and twa
are denoted by n-PATWA, ATWA, n-PTWA, and TWA, respectively. The unions
U„>o n-PATWA, and U„>o n-PTWA are denoted by PATWA, and PTWA, respec-
tively. The deterministic subclasses of the above tree language classes are denoted
by prefixing a letter 'd' in front of their names, e.g., n-dPATWA, dATWA.

It should be clear that with the growing number of pebbles, the recognizing
power of patwa and ptwa do not decrease, i.e., n-PATWA C (n + \)-PATWA, and
n-PTWA C (n + \)-PTWA for every n > 0.

3.2 Looping and non-looping patwa
Now we turn to the looping property of patwa. Roughly speaking, A is looping, if
it has an infinite computation on an input tree.

We introduce the looping property for patwa similarly as the circularity concept
was introduced for attributed grammars [20, 19], attributed tree transducers [12,
16], and pebble (macro) tree transducers [11, 14, 15].

We say that (q, h) € CA,S is a looping configuration, if there is a configuration
set H C CA,s, such that (q, h) e H and (q,h) H. Moreover, A is looping, if
there is an input tree s e Ts, a configuration set H C CA,S such that

• H contains a looping configuration and

• (go, (e, [])>

Otherwise, A is non-looping.
The looping property for pebble macro tree transducers appear in [15] by name

"strong circularity". Let us denote the non-looping version of the above tree lan-
guage classes by n-PATWAni, n-dPATWAni, etc.

Pebble Alternating Tree- Walking Automata and Their Recognizing Power 437

3.3 Patwa with general alternating rules
When using alternation in a patwa, sometimes it is convenient not to be restricted
to the forms of the possible right-hand sides of alternating rules of Definition 3.2. It
should be clear that we can allow not only two, but arbitrary many state-instruction
pairs for the right-hand sides of the alternating rules. Moreover, in the right-hand
side of an alternating rule we allow not only stay, but arbitrary instructions. A
general alternating rule is a rule of the form (q,&,b,j) —» {(91, ip\), • .., (qm, Vm)}
with m > 1, (qi,<fi), • • •, (qm,¥>m) £ Q x I<r,bj- Moreover, we assume that the state
set is not partitioned, and qi,..., qm can be arbitrary states of Q U {qye$}-

An n-patwa with general alternating rules is a tuple A — (Q, qo, qyes, R),
where R is a finite set of general alternating rules (and the rest is as for an n-
patwa). For A, the notion 'deterministic', and the concept of 'configuration' are
defined in the same way as for an n-patwa.

For defining the computation relation of A we remove point (1) and (2) and
modify point (3) in Definition 3.8 in the following way.

(3) There is a general alternating rule (q,a,b,j) —> {(pi,<£i),..., (pm,<pm)}
in R such that test(h) — (a,b,j) and H2 = (Hi — {(q,h)}) U
{<Pi,Vi(h)), • • •, {pm, ipm(h))}.

Finally, the tree language L(A) recognized by A is defined in the same way as in
Definition 3.9, and the looping property of A can be defined similarly as in section
3.2.

We leave the proof of the following lemma to the reader.

Lemma 3.10 For every n > 0, and n-patwa A with general alternating rules, we
can construct an n-patwa A!, such that

. L(A) = L(A'),

• A is deterministic iff A! is deterministic, and

• A is non-looping iff A! is non-looping. o

3.4 Some notes about alternation and patwa
The idea of extending Turing machines and automata with alternation comes from
[7]. The term "alternation" means the mixture of existential nondeterminism and
universal nondeterminism.

Existential nondeterminism is the classical nondeterminism concept, i.e., a con-
figuration will be accepting, if there is at least one accepting computation which
starts out from that configuration. On the other hand, universal nondeterminism
means, that a configuration is accepting, if all possible computations which start
out of that configuration lead to acceptance.

438 Loránd Muzamel

The mixture of existential and universal nondeterminism is solved in the folklore
by partitioning the state set Q into QOR (existential states), and QAND (univer-
sal states), moreover the configurations with states from QOR (resp. QAND) are
regarded with existential nondeterminism (resp. universal nondeterminism).

Our definition of patwa differs from the usual alternating devices, because the
present form of patwa is sometimes more handable in this paper. In our context,
each state is existential. The universal nondeterminism for patwa is due to the
alternating rules which spawn parallel computations, such that all of those compu-
tations should be accepting in order to accept the input.

However, it is easy to show that the definition of patwa with classical alternation
(with existential, universal states and without alternating rules) would yield tree
recognizers with the same recognizing power as patwa of the present paper have.

4 The recognizing power of patwa
In this section we show that the tree languages recognized by patwa are exactly the
regular tree languages. We closely follow the ideas in the proof of Theorem 4.7 of

It is easy to see that each top-down tree automaton can be simulated by a
0-patwa. To prove the converse, we will give a closed MSO formula <j> for every
patwa A, such that L(<j>) = L(A). Then using Proposition 2.2, we will obtain
that each tree language recognized by a patwa is regular. To make the proof more
understandable, we will need some abbreviations of MSOL(T,) formulas, which are
listed bellow. Let d = maxrank(E) and 0 < i < d an arbitrary number.

• x\ = X2 = VX(xi € X «-» X2 € X) (that is true in (s,Hi,n2), if node n ^ Z i)
equals node ni(x2))>

• child(x\,x2) = childi(xi,x2) V . . . V childd{x 1, X2) (that is true in (s, IIi, n2),
if n i(a;1) is a child of ^ (£2)) ,

• root(x) = \/xi(->child(x,Xi)) (that is true in (s,IIi,Il2), if II^x) is the root

• root £ X = Vx(root(x) —» x £ X) (that is true in (s, IIi, n2), if the root node

(that is true in (s ,n i ,n 2) , if the child number of Hi(a;) is ¿), and

• true =Vx(x = x) (which is a valid formula).

In the remainder of this section let n > 0, A = (Q, qo, qyes,R) an n-patwa,
and s € Ts an input tree to A. We enumerate the states in Q such that Q =

[21].

node)

is in n2(X)),

Pebble Alternating Tree- Walking Automata and Their Recognizing Power 439

{go, • • • ,Qm}, and Qo = {Qtuo = 90, • • • , Qmi-l}, Ql = {qmi, • • • ,9m2-l}, • • • ,Qn '
tim„,- • • ,9mn+1-i 1 9m}- Let us observe that m n + i = m + 1.

Next we give an alternative way to define that A accepts or rejects a tree s. In
fact, we will define the acceptance through node sets So, • • •, Sm C pos(s), where for
each 0 < i < m, node set Si is associated with state qi of A. Note that for 0 < I < n,
the node sets concerned with the states of Qi are S m , , . . . , Sm,+1_1, since Qi —
{imi, • • • i9m i+i-i}- Then, we show that the alternative definition of acceptance
described below can be expressed by an MSO formula. Hence, by Proposition 2.2,
it follows that the tree language accepted by A is regular.

We begin with some preparation. Namely, we define the closed, and the strongly
closed properties for node sets So,..., Sm.

Definition 4.1 Let 0 < I < n, u\,...,ui £ pos(s), and So, • • •, S m i _i ,
S m i , . . . , S m i + 1 -1 C pos(s). We define the node sets Sm,,..., Sm i + 1_i to be l-
closed with respect to A, s, ui,..., ui, and So,..., Sm ,_i by a downward induction
on I as follows. (Note that the base of the induction is I = n.)

(i) If I = n, then the following statements hold.

(1) For every mi < p, < m;+i — 1 and u £ pos(s), if (q^, (u, [ui ; . . . ;uj])) K4,s
(qyea,(u, [ui;...;u;])), then u £ S

(2) For every mi < p,v < m ; + i - l and u,u' £ pos(s), if (q^, (u, [ui; . . . ;u(])) h ^
(qv, (v!, [ui; . . . ;uj])}, and u' £ S„, then u £

(3) For every mi < p, v2 < mi+i — 1 and u £ pos(s), if
(<7M,(u , [u i ; . . . ; u i])) \-AtS {(qVl, (u, [u i ; . . . ; itj])), {qV2, (u, [u i ; . . . ; u ;])) } , u £
SUl, and u £ SU2, then u £ S^.

(4) For every mi < p, < m;+i — 1, mi-1 < v < mi — 1 (provided that I > 0), and
u £ pos(s), if (9M,(u, [ui;. . .;uj])) (u, [ui;. . . ;uz-i])) and u £ Sv,
then u £ Sp.

(ii) Let I < n. Then (l)-(4) hold, moreover:

(5) For every mi < p, < mi+1 — 1, m/+i < u < mi+2 — 1, and u £ pos(s),
if (q^, (u, [ui;. . . ;ui])) h^^ (qv, (u, [t*i;... ;ui;u])), and for all node sets
Smt+1, • • •, 5m i + 2_i that are (I + l)-closed with respect to A, s, ui,..., ui,u,
and So, • • • 5 m i + 1 _i , we have u £ Sv, then u £ S^. o

Definition 4.2 Let 0 < / < n, So, • • •, S m i + l _i C pos(s), and m,...,ui £ pos(s).
We say that So, • • • > Sm i + 1_i are strongly l-closed with respect to A, s, and u\,...,ui,
if

So, . . . , S m i _ i are 0-closed with respect to A and s,
S m i , . . . , Sm 2_i are l-closed with respect to A, s, ui, and So, • • •, S m i _ i ,

S m , , . . . , Sm ,+ 1_i are ¿-closed with respect to A, s, ui,...,ui, and
So, • • •, S m i _i . o

440 Loránd Muzamel

In case / = 0 we make the following observation.

Observation 4.3 So, • • •. Smi-i are strongly 0-closed if and only if So, . . . , S m i _ i
are 0-closed with respect to A and s. o

Lemma 4.4 Let ui,...,un € pos(s) be arbitrary nodes. Define the node sets
To,...,Tm C pos(s) such that for each 0 < I < n, mi < fj, < mi+i — 1, and
u E pos(s), we have u € iff there is an accepting configuration set H C ACCA,S
such that (u, [iti;. . .; u;])) s H.

Then To,. . . , Tm are strongly n-closed with respect to A, s, and ui,..., un.

Proof. Let 0 < I < n. It suffices to prove that T m j , . . . ,Tm i + 1_i are /-closed with
respect to A, s, u i , . . . ,uj, and To,... ,Tm,_i. We prove by induction on I. (Note
that the induction base is I = n.)

(i) Let I = n. It is easy to see that properties (1) - (4) of Definition 4.1 hold for
Tmn) • • •) +1—1 with respect to A, s, ui,.. -, Un, and To,... ,Tmn-i.

(ii) Let I < n. Then, we can also easily see that properties (1) - (4) hold for
T m i , . . . ,Tm i + 1_i with respect to A, s, u i , . . . and To,... ,Tm ,_i. Now we prove
that property (5) of Definition 4.1 holds for Tmi,..., Tm ,+1_i with respect to A, s,
ui,... ,ui, and To,... ,Tm ,_i as follows.

Let mi < ¡JL< mj+ i — 1, mi+1 <u< m/+2 - 1, and u € pos(s), assume that

(*) (qv,(u>fai;---;^«])), and

(**) u e s u for all node sets S m i + 1 , . . . , Smi+2-i, that are (i+l)-closed with respect
to A, s, ui,... ,ui,u, and T 0 , . . . ,rTOl+1_i.

Moreover, we define the node sets , . . . C pos(s), such that for
each 77ij+i < r) < m/+2 — 1, and v e pos(s), we have v e T^ iff there is an accepting
configuration set H C ACCA,a such that (q^, (v, [ui;. . . ;ui\u])) h j 5 H.

We make the following observations.
a) By the induction hypothesis, the node sets T^ , . . . are (Z + 1)-

closed with respect to A, s, u 1 , . . . ,ui,u, and To,... ,Tm | + 1_i.
b) Then, by (**) and a) we obtain that u € T^.
c) By the definition of ..., T{ni+2_1 and b), we obtain that there is an

accepting configuration set H C ACC a,a, such that (<?„, (u, [ui; . . . ; s H.
d) By (*) and c) we obtain that (qfl, (u, [ui ; . . . ; uj])) h j a H.
Thus, u e TM, which confirms property (5) of Definition 4.1 for node sets

Tm i , . . ' . ,Tm,+1_i with respect to A, s, u\,...,ui, and To,... ,Tm ,_i. With this,
we have finished the proof of this lemma. o

In the following we show that the acceptance of A can be described in an
alternative but equivalent way in terms of closed node sets.

Pebble Alternating Tree- Walking Automata and Their Recognizing Power 441

Lemma 4.5 Let 0 < I < n, u,ui,... ,m £ pos(s), and mi < ¡x < TO;+i — 1. The
following statements are equivalent.

(a) There is a set of accepting configurations H C ACCA.S, such that
(q^,(u, [ui; . . . ;uj])> H.

(b) For every Sq, ..., Smi+1-i C pos(s), if the node sets SO,..., Sm j + 1_i are
strongly /-closed with respect to A, s, and u\,... ,ui, then u £

Proof, (direction "(a) => (b)":) Let k > 1 and suppose that
(<Zm> [ui! • • •! ui])) H a n { l that So, - • •, Sm | + 1_i C pos(s) are strongly /-closed
with respect to u\,..., ui. We prove by induction on k.

(i) Let k = 1. Then obviously, H is singleton and (u, [ui ; . . . ;u;]))
(qyes, (u, [ui ; . . . ; it;])) = H. By property (1) of Definition 4.1 we obtain that u £ S^.

(ii) Let k > 1. Then we consider the following cases.
case 1: (q^, (u, [tn; . . . ; uj])) \-A,a (Qu, K , [ui; • • •; uj])> l " ^ 1 H> w h e r e m i < v <

rrii+i — 1. Then, by the induction hypothesis u' £ Sv. Hence, by property (2) of
Definition 4.1 we obtain that u £

case 2: (q^, (u, [m; . . . ;it(])) t - ^ {{qVl,(u, [«i; . . .; uj])), (qU2, (u, [m;;uj])>}
b*"1 H, where mi < vi,v2 < mi+i — 1. Then, it is obvious that there are ac-
cepting configuration sets H\,H2 C ACCA,S and numbers ki,k2 < k such that
{qVl, (u, [iti; . . . ; ii/])) Hx and (qV2, (u, [ux; . . .; u;])) H2. By the induction
hypothesis u £ SUl and u £ S„2. Hence, by property (3) of Definition 4.1 we obtain
that u £ S^.

case 3: / > 1 and (q^, {u, [ui ; . . . ;u/])) hA,s (qv, (u, [un . . . ;u;_i])) h^"1 H,
where mi-1 < u < mi — 1. Then, by the induction hypothesis u £ Su. Hence, by
property (4) of Definition 4.1, we obtain that u £ S^.

case 4: / < n and (q^, (u, [ui; . . . ; it;])) hAiS (qv, (u, [ui\... ;u{;u])) h^"1 H,
where mi+i < u < mi+2 — 1. Let 5 m j + 1 , . . . , Sm i + 2_i C pos(s) be arbitrary / + 1-
closed node sets with respect to A, s, u i , . . . ,ui,u, and So, • • • ,5 m i + 1 _i . Then, by
the induction hypothesis u£ Sv. Hence, by property (5) of Definition 4.1 we obtain
that u £ S^.

(direction "(b) (a)":)
Let . . . , un £ pos(s) be arbitrary dummy nodes, and To,. . . , Tm C pos(s)

the node sets defined in the same way as in Lemma 4.4. By that lemma, To,. . . , Tm
axe strongly n-closed with respect to A, s, and ui,... ,un. From this fact and
Definition 4.2 we obtain the following statement.

Statement: The node sets To,. . . , Tm i + 1_i are strongly /-closed with respect to
A, s, and ui , . • • ,ui-

Now, assume that (b) holds. By (b) and our Statement we get that u £ T^.
It follows that there is an accepting configuration set H C ACCA,S, such that

(u, [ui ; . . . ; it;])) I-J H, and with this, we have finished the proof. o

442 Loránd Muzamel

Corollary 4.6 s e L(A) if and only if for all 0-closed node sets So, • • •, S m i _ i , we
have that £ € SQ.

Proof.
s e L(A)

(Definition 3.9) 3 H g A C C ^ s u c h ^ ^ ^ []) } ^ H

(Lemma 4.5) ,
<=4» for all strongly 0-closed node sets So , . . . , S m i _ i ,

we have e e So
(Observation 4.3)

for all 0-closed node sets So , . . . , S m i _ i ,
we have £ £ SQ. O

Now we are ready to prove the main result of this section.

Theorem 4.7 For every n > 0, n-patwa recognize exactly the regular tree lan-
guages. Formally, REG = n-PATWA.

Proof. Clearly, already 0-patwa are capable to simulate classical top-down tree
automata, hence each regular tree language is recognizable by an n-patwa for n > 0,
i.e., REG C n-PATWA for n > 0. For the converse, it suffices to prove that L(A)
is a regular tree language (since A is picked as an arbitrary n-patwa).

Now we construct an MSO-formula defining L(A). The thorough reader will
find this formula almost literally the same as the one in the proof of Theorem 4.7
of [21].

Let b G {0, l } - n be a bitvector of length I. We define a predicate
pebblesb(x,xi,... ,xi) with free variables x,xi,... ,xi which is true in a struc-
ture (s .n^ I Iz) , if the presence of pebbles at node IIi(a;) agrees with 6, assum-
ing that I pebbles are on the input tree and the positions of pebbles 1 , . . . , I are
n i (x i) , . . . ,IIi(xi), respectively. The predicate pebblesb(x) is defined by induction
on I.

(i) If I = 0, then pebblesb(x) = pebblese(x) — true.
(ii) If I > 0, then

nobles (t t , s_[pebblesb,{x,x1,...,xi-1)h(xi = x) if b = b'l
peooiesb[x,xu...,xi) - | •pebbles b,(x,x\,... ,x;_i) A -^(xi — x) if b = b'O

For every a € E, b G {0, l } - n , where |6| = I, and 0 < j < maxrank(E) let
9<r,b,j(x) = laba(x) A pebblesb(x, x \ , . . . , x{) A chnOj(x)

be the formula with free first-order variables x,xi,... ,xi, which is true
in a structure (s,IIi,II2) iff the test result of the pebble configuration
(n ^ z) , [I l ^ x i) ; . . . ;IIi(xi)]) is (a ,b, j) , see Definition 3.5.

For each 0 < I < n and mj < n < m;+i — 1, we give the formula as follows.
... I 'iX0 ... VXm, _i (0-closed —> root G Xu) if I = 0
<№ = { V / \

I VXm, ... VXm i + 1_! U-closed xi 6 XA if I > 0,
where

I-closed = f\ ipr,
refti

and ipr's are defined as follows.

Pebble Alternating Tree- Walking Automata and Their Recognizing Power 443

(1) If r is an accepting rule of the form {q,, a, b,j) —> (qyes,stay), where q, £ Qi,
0 < I < n, and a £ E, b £ {0,1}', 0 < j < maxrank(E), then

ipr — Vx/+i ^ ^ (x j + i) —•x i+i e

(2) If r is of the form (q„cr,b,j) -* (qv,stay), where q„qv £ Qi, 0 < I < n,
a £ E, b £ {0,1}', and 0 < j < maxrank{Y,), then

ipr = Vxi+1 (i6a,bj(xi+1) A Xi+1 € X„) x i + i

(3) If r is of the form {q,, a, b,j) —* (qv, up), where q„ qu £ Qi, 0 < I < n, a e E,
b £ {0,1}', and 0 < j < maocrank(E), then

ipr - Vxi+iVy((Oaib!j(xi+i) A child(xi+i,y) Ay € Xu) —• x i + i

(4) If r is of the form cr,6, j) —> (qu, dowrii), where q„qv £ Qi, 0 < I < n,
a £ E, b £ {0,1}', and 0 < j < maxrank(£), then

ipr = A childi(y,xi+i) Ay £ X„) xi+i ex,).

(5) If r is an alternating rule of the form {q„a ,b , j) —» {{qUl,stay), (qU2, stay)},
where q^q^^q^ £ Qi, 0 < I < n, a £ E, b £ {0,1}', and 0 < j <
maxrank(E), then

tpr = Vxi+1 ((9o,b,j{xi+i) A Xt+1 £ XVl A Xi+i e XV2) -> Xi+i e X,).

Moreover:

(6) If r is of the form (gM,cr, b,j) —> {qu, lift), where qM e Qi, 1 < I < n, a G E,
b £ {0,1}', 0 < j < maxrank(Ti), and qv £ Qi-\, then

ipr = Vxi+1 ((0<T,6j(®i+i) A Xt+1 £ Xu) —> xl+1

(7) If r is of the form {q,,a,b,j) (qu, drop), where q, £ Qi, 0 < / < n - 1,
cr £ E, b £ {0, l}1, 0 < j < maxrank(E), and qv £ Qj+i, then

•>pr = Va;i+1 ((0<,,6,j(a;i+i) A <p„+1)) xt+i £ X,).

We make the following observations concerning the formula tfift •
a) has free node-set variables Xo,... ,Xmi-i, and free node variables

Xi,...,Xl.
(In particular, is a closed formula.)
b) The subformula l-closed of has free node-set variables Xm[,..., Xmi+1-i,

in addition to the free variables above, and l-closed is true in a structure
(s, IIji H2) if and only if n 2 (X m i) , . . . , n 2 (X m i + 1 _ 1) are /-closed with respect to
A, s, I I i (x i) , . . . ,IIi(xi) and n2(X'o), . . . , I l2(Xm)_i) .

Note that the conjunction of formulas of type (l)-(7) expresses Definition 4.1
for node sets n 2 (X m [) , . . . , n 2 (X m i + 1 _ i) (with respect to A, s, I I i (x i) , . . . ,IIi(xi)
and n 2 (X 0) , . . . , n 2 (X m i - i)) .

444 Loránd Muzamel

c) Hence, <j>\i is true in a structure (s ,n i ,n2) if for all node-sets
Smi > • • • , Smi+i — i Q pos(s), Z-closed with respect to A, s, n i (x i) , . . . , ni(xj) , and
n 2 (Xo) , . . . , n 2 (X m i - i) , we have that

• root € if I = 0, or

• II i(xî) 6 if I > 0.

Thus, by Corollary 4.6, we obtain that s 6 L(A) if and only if s |= <f>Q°\ Hence,
L(A) = L((f>and this concludes that the tree language recognized by A is MSO-
definable, and thus it is regular. o

5 Inclusion results for patwa
In this section we investigate the recognizing power of deterministic and non-looping
patwa with and without pebbles. First we collect the preliminary results, which
are necessary for this section.

Theorem 1 of [4] says that deterministic tree-walking automata are less powerful
than their nondeterministic counterparts. Formally, dTWA C TWA. We note
that the separating tree language treated by [4] (which cannot be recognized by a
deterministic twa) can be recognized already by a nondeterministic and non-looping
twa. Thus, dTWAni C TWAni, and moreover, by Proposition 1 of [22] (saying that
dTWA = dTWAni), we obtain the following "non-looping version" of the above
proper inclusion result.

Proposition 5.1 dTWA C TWAnl. o

Theorem 1. of [22] states that deterministic twa are closed under complemen-
tation.

Proposition 5.2 dTWA = co-dTWA. o

One of the main results of [5] is Theorem 1.1 saying that ptwa do not recognize
all the regular tree languages, formally, PTWA c REG. Using the obvious fact
that PTWAni Ç PTWA, we obtain the following proposition.

Proposition 5.3 PTWAni c REG. o

Moreover Theorem 1.2 of [5] says, that the expressive power of n-patwa is strictly
less than the expressive power of (n+l)-patwa for each n > 0, formally, n-PTWA C
(n + I)-PTWA. We note that Theorem 1.2 of [5] refines Theorem 2 of [3], which
says that TWA C REG. However, we wish to obtain the "non-looping version" of
the proper inclusion n-PTWA C [n + 1)-PTWA. For this we make the following
observations.

Pebble Alternating Tree- Walking Automata and Their Recognizing Power 445

(1) In the preceding paragraph of Theorem 3 of [22] it was shown that for each
n-ptwa A with weak pebble handling we can construct a non-looping n-ptwa
A' with weak pebble handling, such that L(A) — L(A').

(2) It was shown in Lemma 5.1 of [5] that for each n-ptwa A we can construct
an n-ptwa A' with weak pebble handling, such that L(A) = L(A').

(3) By Theorem 1.2 of [5], n-PTWA C (n + \)-PTWA.

We note that the "weak pebble handling" property for ptwa is discussed in the
Introduction. By (l)-(3) we conclude the following proposition.

Proposi t ion 5.4 For each n > 0, n-PTWAni c (n + l)-PTWAnl. o

Now we prove that the complements of the tree languages of n-dPATWAni form
exactly the tree language class n-PTWAni.

Lemma 5.5 For each n > 0, co-n-dPATWAnl = n-PTWAnl.

Proof . co-n-dPATWAni C n-PTWAni: Let A = (Q,T,,q0,qye3, R) be a determin-
istic and non-looping n-patwa. We construct the (nondeterministic, non-looping)
n-ptwa A' = (Q, E, qo,qyes, R') where R' is the smallest set of rules satisfying the
following conditions.

• For each q £ Q, a £ E, b £ {0,1}-", and j £ {0, . . . , maxrank(E)}, if
there is no rule in R with left-hand side (q, a, b,j), then the accepting rule
(q, a, b, j) (qyes, stay) is in R'.

• For each pebble tree-walking rule (q,a,b,j) —> (p, ip) of R it is also in R'.

• For each alternating rule {q, o, b,j) —* {{pi, stay), (p2, stay)}, the pebble tree-
walking rules (q,a,b,j) —» (pi, stay) and (q,a,b,j) —* {p2,stay) are in R!.

Since M is non-looping, it is obvious that also M' is non-looping. The proof of
L(A') = L(A) is straightforward, hence we omit it.

n-PTWAni C co-n-dPATWAnV- Let A = (Q,E,q0 ,q y e s ,R) be a non-looping
(nondeterministic) ptwa. We construct the deterministic patwa with general al-
ternating rules A' — (Q\ E, qo, q'ye3, R') (by Lemma 3.10 we are allowed to use
general alternating rules) as follows.

• Q' = QU{qyes}, and

• R' is the smallest set of rules satisfying the following conditions.

- For each q e Q, a £ E, b € {0, l } - n , and j £ {0, . . . , maxrank{T,)}, if
there is no rule in R with left-hand side (q,a,b,j), then the accepting
rule (q, a, b,j) (q'ye3,stay) is in R'.

446 Loránd Muzamel

- For each q G Q, a G £, b G {0,1}-", and j G {0, . . . , maxrank(E)},
if {(<7i)Vi)> • • • i (<?m, Vm}} is the set of state-instruction pairs that are
the right-hand sides of rules with left-hand side {q,cr, b,j), then the rule
{q,a,b,j) -» {(çi,yi),...,(4m,V>m)} is in R'.

Again, it is obvious that A' is deterministic, non-looping, and we leave the proof
L(M) = L(M') to the reader. o

Now we prove the following proper inclusion result.

Theorem 5.6 dTWA C dATWAnl.

Proof. We prove by contradiction. Let us assume that dTWA = dATWAni. Then
we make the following observations.

a) Obviously, co-dTWA = co-dATWAni.
b) By Proposition 5.2, dTWA = co-dATWAni.
c) By Lemma 5.5, dTWA = TWAni, which contradicts Proposition 5.1.
With this, we have proved this theorem. o
Next we prove that with the deterministic and non-looping n-patwa are strictly

weaker than deterministic and non-looping (n + l)-patwa are.

Theorem 5.7 For each n> 0, n-dPATWAnl C (n + l)-dPATWAnl.

Proof. The inclusion n-dPATWAnl Ç (n + l)-dPATWAni is obvious. We prove
the proper inclusion by contradiction. Let us assume that n-dPATWAni = (n +
l)-dPATWAni. Then, applying operation 'co' to both sides of the equation we get
that co-n-dPATWAni = co-(n + 1)-dPATWAni. By Lemma 5.5 we obtain that
n-PTWAni = (n + l)-PTWAni, which contradicts Proposition 5.4. o

Finally, we prove, that deterministic and non-looping patwa do not recognize
all the regular tree languages.

Theorem 5.8 dPATWAnl c REG.

Proof. dPATWAni Ç REG comes from Theorem 4.7 The proper inclusion is proved
by contradiction. Let us assume that dPATWAni — REG. Then we make the
following observations.

a) Applying the operation 'co' to both sides, we obtain that co-dPATWAni =
co-REG.

b) By Proposition 2.1 we obtain that co-dPATWAni = REG.
c) By Lemma 5.5 we get that PTWAni = REG, which contradicts Proposition

5.3. o

Pebble Alternating Tree- Walking Automata and Their Recognizing Power 447

Th. 4.7
REG = PATWA

Figure 1: Inclusion diagram of some subclasses of PATWA. The continuous lines
represent proper inclusions.

6 Conclusions
In this paper we gave a formal definition for pebble tree-walking automata extended
with alternation [23] and have answered the open problem raised at page 18 in [10],
which asked, whether the patwa recognize the class of regular tree languages. Our
answer is yes, i.e., PATWA = REG.

In the remainder of this paper we have investigated the recognizing power of
some subclasses of PATWA. We have come to the conclusion that

dTWA c dATWAni c l-dPATWAnl C...C dPATWAnl C REG.
However, it is still an open problem, whether n-dPATWA C (n+ \)-dPATWA.
The most important known and new results are summarized in Figure 1.
We can find the relation between patwa and pebble tree transducers. It is trivial

that the domain of each n-pebble tree transformation of [11] can be recognized by
an n-patwa with weak pebble handling, i.e., pebbles can be lifted only from a node
pointed at by the pointer. We can extend the pebble tree transducers of [11],
such that the pebble in the input tree with the highest number can be lifted even
from a node not pointed at by the pointer. This is the strong pebble handling (see

448 Loránd Muzamel

[10, 22, 5]), which is also used throughout the present paper. Then we can easily see
that the domains of n-pebble tree transformations are exactly the tree languages
recognized by n-patwa, i.e., the regular tree languages. Using the results of this
paper, we obtain that

• dom(n-PTT) = REG, where n > 0, and

• dTWA C dom(0-dPTTni) C dom(l-dPTTnl) C ... C dom{dPTTnl) C
REG,

assuming that n-PTT is the class of n-pebble tree transformations, PTT =
[Jn > Qn-PTT (the prefix 'd\ and the subscription 'nZ' denote the deterministic
and non-looping subclasses), and for a tree transformation r , the notation dom(r)
means the domain tree language of r .

Another application of the inclusion result dATWAni C l-dPATWAni c REG
is, that deterministic and non-looping atwa (0-patwa) are exactly the tree-walking
automata in universal acceptance mode of [13], where it was proved that these
automata recognize exactly the domains of partial attributed tree transformations
[12]. It is straightforward that the non-looping version for this result also holds,
i.e., non-looping tree-walking automata in universal acceptance mode recognize
exactly the tree languages recognized by non-looping deterministic atwa, that axe
the domains of non-looping partial attributed tree transformations. Hence, we
obtain that dTWA C dom(ATTnl) C l-dPATWAni c REG, where ATTnl is the
class of non-looping partial attributed tree transformations.

Acknowledgments
I thank Zoltán Fülöp for giving me a lot of useful advice. Moreover, I am

grateful to the anonymous referee for his/her valuable ideas and suggestions which
have rised the quality of this paper substantially.

References
[1] A. V. Aho and J. D. Ullman. Translations on a context-free grammar. Inform.

Control, 19:439-475, 1971.

[2] R. Bloem and J. Engelfriet. Characterization of properties and relations de-
fined in monadic second order logic on the nodes of trees. Technical Report
Technical Report 97-03, Leiden University, August 1997.

[3] M. Bojanczyk and T. Colcombet. Tree-walking automata do not recognize
all regular languages. In STOC '05: Proceedings of the thirty-seventh annual
ACM symposium on Theory of computing, pages 234-243, New York, NY,
USA, 2005. ACM Press.

[4] M. Bojanczyk and T. Colcombet. Tree-walking automata cannot be deter-
minized. Theoretical Computer Science, 350:164-173, 2006.

Pebble Alternating Tree- Walking Automata and Their Recognizing Power 449

[5] M Bojañczyk, M. Samuelides, T. Schwentick, and L. Segoufin. Expressive
power of pebble automata. In ICALP'06: Proceedings of 33rd Interna-
tional Colloquium on Automata, Languages and Programming, pages 157-168.
Springer Berlin / Heidelberg, 2006.

[6] J. R. Biichi. Weak second-order arithmetic and finite automata. Zeitschrift
für Mathematische Logik und Grundlagen der Mathematik, 6:66-92, 1960.

[7] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. J. ACM,
28(1):114-133, 1981.

[8] J. Doner. Tree acceptors and some of their applications. J. Comput. System
Sci., 4:406-451, 1970.

[9] J. Engelfriet and H. J. Hoogeboom. Tree-walking pebble automata. In Jewels
are Forever, Contributions on Theoretical Computer Science in Honor of Arto
Salomaa, pages 72-83, London, UK, 1999. Springer-Verlag.

[10] J. Engelfriet and Hendrik Jan Hoogeboom. Automata with nested pebbles
capture first-order logic with transitive closure. Technical Report 05-02, Leiden '
University, The Netherlands, April 2005.

[11] J. Engelfriet and S. Maneth. A Comparison of Pebble Tree Transducers with
Macro Tree Transducers. Acta Informática, 39:613-698, 2003.

[12] Z. Fülöp. On attributed tree transducers. Acta Cybernet., 5:261-279, 1981.

[13] Z. Fülöp and S. Maneth. Domains of partial attributed transducers. Inform.
Process. Letters, 73:175-180, 2000.

[14] Z. Fülöp and L. Muzamel. Decomposition Results for Pebble Macro Tree
Transducers. Technical Report TUD-FI05-13, Technical University of Dresden,
2005.

[15] Z. Fülöp and L. Muzamel. Circularity and Decomposition Results for Pebble
Macro Tree Transducers, submitted, 2006.

[16] Z. Fülöp and H. Vogler. Syntax-Directed Semantics — Formal Models Based on
Tree Transducers. Monographs in Theoretical Computer Science, An EATCS
Series. Springer-Verlag, 1998.

[17] F. Gécseg and M. Steinby. Tree Automata. Akadémiai Kiadó, Budapest, 1984.

[18] F. Gécseg and M. Steinby. Tree languages. In G. Rozenberg and A. Salomaa,
editors, Handbook of Formal Languages, volume 3, pages 1-68. Springer-Verlag,
1997.

[19] D. E. Knuth. Semantics of context-free languages: Correction. Math. Systems
Theory, 5(l):95-96, 1971. Errata of [20].

450 Loránd Muzamel

[20] D.E. Knuth. Semantics of context-free languages. Math. Systems Theory,
2:127-145, 1968.

[21] T. Milo, D. Suciu, and V. Vianu. Typechecking for XML transformers. J. of
Comp. Syst. Sci., 66:66-97, 2003.

[22] A. Muscholl, M. Samualides, and L. Segoufin. Complementing deterministic
tree-walking automata. Information Processing Letters, 99:33-39, 2006.

[23] G. Slutzki. Alternating tree automata. Theoretical Computer Science, 41:305-
318, 1985.

[24] J. W. Thatcher and J.B. Wright. Generalized finite automata theory with
application to a decision problem of second-order logic. Math. Systems Theory,
2(1):57—81, 1968.

Acta Cybernetica 18 (2008) 451-450.

Robust Clustering - Based Realtime Vowel
Recognition

Dénes Paczolay* András Bánhalmi* and András Kocsor*t

Abstract

In the therapy of the hearing impaired one of the key problems is how
to deal with the lack of proper auditive feedback which impedes the devel-
opment of intelligible speech. The effectiveness of the therapy relies heavily
on accurate phoneme recognition. Because of the environmental difficulties,
simple recognition algorithms may have a weak classification performance, so
various techniques such as normalization and classifier combination are ap-
plied to raising the overall recognition accuracy. In earlier work we came to
realise that the classification accuracy is higher on a database that is man-
ually clustered according to the gender and age of the speakers. This paper
examines what happens when we cluster the database into a few groups auto-
matically and then we train separate classifiers for each cluster. The results
shows that this two-step method can increase the recognition performance by
severed percent.

Keywords: speech recognition, speech therapy, two-step classification
method

1 Introduction
In the therapy of the hearing impaired one of the central problems is how to deal
with the lack of proper auditive feedback tha t hinders the development of intelli-
gible speech. Our Phonological Awareness Teaching System, the " SpeechMaster"
package, seeks to apply speech recognition technology to speech therapy. It pro-
vides a visual phonetic feedback to supplement the insufficient auditive feedback
of the hearing impaired. Our computer-aided training software package uses an
effective phoneme recognizer and provides a realtime visual feedback in the form
of flickering letters positioned over calling pictures.

•Research Group on Artificial Intelligence of the Hungarian Academy of Sciences and Uni-
versity of Szeged H-6720 Szeged, Aradi vértanúk tere 1., Hungary, E-mail: {pdenes, banhalmi,
kocsor}®inf.u-szeged.hu

tMachine Intelligence Laboratory NPC., Petőfi S. Sgt. 43., H-6725 Szeged, Hungary,
Applied Intelligence Laboratory Ltd., Petőfi S. Sgt. 43., H-6725 Szeged, Hungary,
E-mail: kocsoraail .hu

452 Denes Paczolay et. a 1.

Since the system should work reliably for children of different ages and teachers
as well, the recognizer has to be trained with the voices of users of both genders and
of practically any age. The task is also special because the system has to recognize
isolated phones, so it cannot rely on language models. Consequently, there is a
heavy burden on the acoustic classifier, and we need to apply any helpful trick that
might improve the overall performance.

During our previous work we found that the classification accuracy is generally
higher on a homogeneous database (one whose gender and age are homogeneous)
than a mixed database. This is probably because the variance of a homogeneous
database is better than a mixed one. To train the latest version of SpeechMaster
we applied training databases that were manually clustered according to speaker
gender and age because we wished to achieve a higher recognition performance.
This paper describes what happens when we cluster the database into several groups
automatically and then train a separate classifier for each of these groups.

This paper is organized as follows. In the following section we will present our
speech therapy system, then in Section 3 we will describe our previous study and
experiences gained from it. In the next two sections we provide a brief description
of the clustering and classification algorithms used in our tests. Section 6 then
compares the performance of the various recognition methods. Lastly, we give
some brief conclusions and ideas for the future.

2 Our t h e r a p y sys tem: the S p e e c h M a s t e r

The SpeechMaster package was developed for speech impediment therapy and
teaching reading. The system is based on automatic speech recognition (machine
learning [1, 3, 10]) and advanced signal processing methods. The developers co-
operated with speech therapeutists and elementary school teachers, and tested the
system with children in real environments. In the therapy of the hearing impaired
one of the key problems is how to deal with the lack of proper auditive feedback -
which, of course, impedes the development of intelligible speech. The idea is really
to make the vocal sounds 'visible' for the hearing impaired. This way they are
able to check their pronunciation by sight, that is, their hearing is supplemented

(a) (b) (c)

Figure 1: Screenshots from "SpeechMaster"

Robust Clustering - Based Realtime Vowel Recognition 453

by visual input. The speech therapy of the hearing impaired traditionally requires
enormous patience and the continuous presence of a teacher since, during the fixa-
tion of the correct sound-formation, a large amount of repetition and correction by
the teacher are both needed. This automation process is significantly speeded up
and simplified with our software, and also allows the students to practice on their
own or with the teacher. In speech impediment therapy, at the beginning of the
development of oral competence, it is recommended that young children concen-
trate mainly on their own voicing. This is supported by the creation of the many
playful sound formation exercises. For each drill, skill and acceptance levels can
be adjusted with a potentiometer. The software package also contains many useful
features: customisable profiles, easily extendable word and image lists with sample
utterances, half-speed sound replay, a web-camera serving as a "phonetic mirror"
and so on. The program is available at our website and may be downloaded free of
charge.

2.1 Learning the pronunciation of vowels
It is experimentally known [5] that the training of the utterance of vowels is more
difficult than that of consonants because their phonation is not so easy to explain.
The key feature of the therapy of the hearing impaired is the refined pronuncia-
tion of vowels in order to attain articulate/intelligible speech. It would be a real
help in therapy if the computer were able to provide an objective rating of the
quality of the uttered vowels. If it were reliable and matched the subjective opin-
ion of the therapist, it would relieve teachers of the burden of the tedious work
they have with traditional therapy. In SpeechMaster the role of effective real-time
vowel recognition is essential. Real-time visual feedback helps improve the stu-
dent's articulation because it aids the damaged or missing auditory feedback. The
software package provides clear and simple forms of real-time visual feedback. It
also has many feedback configurations: it can display the best individual vowel,
all the vowels, diagrams and so on. The student can use a web-camera as a "pho-
netic mirror" to check his/her own articulation or compare his/her utterance with
that of the teacher. The student's utterances are stored in separate directories in
chronological order for analysis at same later time.

(a) (b) (c)

Figure 2: Screenshots of the learning the vowel pronunciation with SpeechMaster

454 Denes Paczolay et. a 1.

2.2 Computer-aided therapy in practice
SpeechMaster has several target environments: (nursery) school, therapy and home.
In most cases the children and the therapeutist use the recogniser during therapy in
the following way: the therapeutist presents a vowel (word) and the child repeats
it. The level of acceptance can be varied for each vowel separately and so the
therapeutist can maintain the pupil's motivation. At home the child can play
back the sample utterance and practice it. The child can work with his parents
too, if he or she wishes. These activities require real-time "speaker adaptation, or
normalization" techniques or a good user-independent recogniser.

3 The manually clustered vowel database
The variance of the data over the clusters of a database is smaller than that of the
full database. Because of this, the classification error over the clusters is usually
smaller. This gave us the idea of using a two-step recognition method where the
first step identifies the cluster of the data item, and the second step classifies it us-
ing the cluster-specific classifier. This way if the error rate of clustering on unseen
data is small enough, the final recognition performance can be increased. When
we recorded the vowel database for SpeechMaster, we stored utterances separately
according to the gender and age of the speakers. This manually clustered database
was applied for training vowel recognition in the latest version of SpeechMaster.
Table 1 shows the classification accuracies measured on the non-clustered and the
clustered databases together with the results for each cluster. It is clear that the
performance on the clusters "Men", "Women", "Children" as well as the perfor-
mance of the two-step method were both better than that of the original one-step
method (no pre-clustered). The results below were obtained from a database of 200
speakers [7] (CSCS 2004). We recorded the utterances of healthy hearing children,
because wanted to like teach the hearing impaired to speak and not simply to al-
low them to recognise their vowels. Each speaker uttered 9 clearly formatted and
pronounced, sustained, voiced Hungarian vowels. This task is easier than a general
phoneme recognition task.

Speakers Accuracy
M e n 90.81 %

W o m e n 91.32 %
Children 96.11 %

M e t h o d Accuracy
1 - s tep (N o clusters) 88.32 %
2-s tep (3 clusters) 91.16 %

Table 1: Recognition accuracy for a manually clustered vowel database

As one can see, the 2-step method outperforms the 1-step classification when
the clusters correspond to the manually clustered "Men", "Women", "Children"
labels of the database. In the following we shall examine what happens when the
clusters are created automatically. The clustering method here uses speaker-space
vectors [6]. These vectors contains the mean feature vectors of 9 Hungarian vowels.

Robust Clustering - Based Realtime Vowel Recognition 455

4 Clustering methods
Data clustering is a commonly applied technique in statistical data analysis. Clus-
tering is a process where a data set is partitioned into subsets (clusters) so that
the data in each subset (ideally) share some common trait - often approximately
based on some pre-defined distance measure. Machine learning typically treats
data clustering as a form of unsupervised learning. Actually there are two types
of data clustering algorithms: hierarchical ones and partitioning ones. Hierarchi-
cal algorithms create successive clusters using previously established clusters, while
partition algorithms find all clusters simultaneously. Hierarchical algorithms can be
agglomerative (bottom-up) or divisive (top-down). Agglomerative algorithms start
by considering each element as a separate cluster and successively merge them into
larger clusters. Divisive algorithms start with the whole set and proceed to divide
it into successively smaller clusters. In our experiments we investigated a partition
clustering method and a bottom-up hierarchical clustering method.

4.1 K-Means
K-means clustering is an iterative partitional algorithm [1] the clusters the data
points into K disjoint subsets Sj(j = 1,..., K) by minimizing the sum-of-squares
criteria

K

Y! lXi

j=1 i€Sj

where Xi is a vector representing the ith data point and /Xj is the geometric centroid
of the data points in Sj.

The method consists of the following steps:

1. Randomly generate K clusters and determine the cluster centres, or directly
generate K seed points as cluster centres.

2. Assign each point to the nearest cluster centre.

3. Recompute the new cluster centres.

4. Repeat until some convergence criterion is met (e.g. the assignment does not
change). It is guaranteed to stop, because number of ways the dataset can be
partitioned is finite and the algorithm decreases the error criterion in every
step.

This algorithm has two significant advantages that allows it to be useable on
large datasets, namely its simplicity and speed. Its main disadvantage is that it does
not yield the same results with each run, since the resulting clusters depend on the
initial random assignments. It maximises inter-cluster (or minimises intra-cluster)
variance, but does not guarantee that each result will have a global minimum
variance. An improved version of the algorithm is described in [2] which refines

456 Denes Paczolay et. a 1.

the initial points. We did not try this improved version, because our database was
quite small (only 300 speakers). We performed the partition several times with the
base algorithm, and then selected the best partitions.

4.2 Unweighted Pair-Group Method with Arithmetic Mean
This is a simple hierarchical agglomerative (bottom-up) algorithm used in bioinfor-
matics to create phylogenetic trees [4]. At each step this iterative algorithm merges
the two nearest clusters and recalculates their distances from the remaining ones.
The new distances can be calculated using the formula:

N- N•
= +

where the distance between the ith and jth cluster is Ditj and the ith cluster contains
Ni data points.

This method often leads to a degenerate tree (cluster), so we decided to intro-
duce an extra criterion: we fuse the ith and jth clusters if and only if, for a given i
and j , Ni or Nj, is less than some given threshold.

5 Classifiers
The classification problem is a supervised learning task. The learner is required
to learn (to approximate the behaviour of) a function which chooses, for a sample
represented by a feature vector, the right class by looking at several input-output
examples of the function.

5.1 Artificial Neural Networks
Artificial Neural Networks (ANNs) is a well-known machine learning method. The
basic idea behind ANNs is that many simple functional units (neurons) when com-
bined in parallel produce effective models for learning [1]. A unit receives its input
from several other units, or perhaps from an external source. Each input has an
associated weight w, which can be modified so as to model synaptic learning. The
unit next computes some function / of the weighted sum of its inputs:

netj = Wijyi
i

Vj = /(netj)

The function / is the activation function of the unit. A commonly used activa-
tion function is the Sigmoid function:

1
1 + e~net

Robust Clustering - Based Realtime Vowel Recognition 457

The input, output and hidden layer(s) contain many individual units and can
model any function. The neurons on each layer are usually fully interconnected
with other neurons on an adjacent layer (see Fig. 3). The ANN then learns by
modifying the weights in the sigmoid unit. The back-propagation learning rule finds
a local, but not necessarily global error minimum [1]. During the classification task
the input will be the feature vector. The index belonging to the maximum value
of the output vector will be the index returned as the class of the input sample.

5.2 Core Vector Machine
The Core Vector Machine (CVM) method [9] is a variant of the Support Vector
Machine (SVM) [10] approach. The Support Vector Machine performs the follow-
ing task: it maps the input vectors into a high dimensional feature space through a
non-linear mapping. In this space a linear decision surface has high generalization
ability. The standard Support Vector Machine training algorithm is of 0(n3) in
time complexity and 0(n2) in space complexity, where n is the size of the training
database. CVM only approximates the optimal solution via an iterative algorithm,
but it has 0(n) time complexity and its space complexity is independent of n. The
basic aim here is to find, using the notion of core sets, an efficient approximation for
the solution of the minimum enclosing ball (MEB) problem (see Fig. 4). This iter-
ative algorithm works by selecting the furthest point outside the current estimated
ball until all the points are covered. The CVM technique essentially combines the
method of core sets and nonlinear kernels.

6 Experiments and evaluation
Firstly we will describe the corpus and the feature extraction technique, followed
by the clustering and classifier algorithms used in the tests. After that we will
specify the task of the recognition test, and list the results in tables.

(a) A sigmoid unit (b) A three layered network

Figure 3: A sigmoid unit and a full ANN

458 Denes Paczolay et. a 1.

(a) The MEB problem (b) e approximation

Figure 4: Solving the MEB problem by an efficient approximation.

6.1 Conditions
• Corpus: For training and testing purposes we recorded samples from 300

speakers, namely 75 women, 75 men, 75 girls and 75 boys. (The ages of the
children were between 6 and 9.) The speech signals were recorded and stored
at a sampling rate of 22050 Hz in 16-bit quality. Each speaker uttered all
the Hungarian vowels, one after the other, separated by a short pause. Since
we decided not to discriminate their long and short versions, we only worked
with 9 vowels altogether.

• Feature set: The signals were processed in 10 ms frames, the log-energies
of 24 critical-bands being extracted by using FFT and triangular weighting
[8]. The energy of each frame was normalized separately, so only the spectral
shape was used for classification.

• Speaker-space: The speaker-space database contained the 24 critical-bands
of the 9 vowels for each speaker. Hence the dimension of the speaker-space
was 9x24.

• The K-Means clustering method: We tested it with values of k between
3 to 6. In the evaluation k — 4 was chosen because this is the maximum value
of k for which the size of the clusters did not become unusably small. The
applied distance metric was the Euclidean one.

• The U P G M A clustering method: We used the modified UPGMA
method with a threshold value of 10. It produced 3 clusters. During ex-
periments we applied the Euclidean distance as a distance metric.

Robust Clustering - Based Realtime Vowel Recognition 459

• The A N N classifier: We employed the well-known three-layer feed-forward
MLP networks trained with the back-propagation learning rule. The number
of hidden neurons was 16, which performing some preliminary tests.

• The C V M classifier: For the CVM we used the Radial Basis Function

where m is the size of the train set.

6.2 The recognition tests

The experiments were conducted as follows. First we divided the database into
train and test sets. The ratio of the data in the train and test sets was 80% to 20%,
keeping the ratio of boys, girls, men and women the same in each set.

We clustered the training part of the speaker-space into k blocks using K-Means
and UPGMA. Since the speaker-space was not available for the test set (because the
features of speaker-space contains all 9 vowel), an ANN (CVM) learner (denoted
by Mo) was trained to separate the clusters of the speakers. The training of the
the Mo was then performed on the vowel training database. The speaker clusters
defined a clustering of this database at the same time. K separate ANNs (CVMs)
learners (denoted Mi...^) were afterwards trained to classify the vowels within each
cluster.

The testing was performed only on a previously unseen vowel database. In
the first step the Mo machine learner chose the proper cluster for each test data
(features of a single vowel). The test items were then classified by the corresponding
M 1 < = i < = f c learner. In this part classifier combination methods were be used as well.

7 The test results

7.1 Recognition accuracy on the clusters M\„M

Table 2 shows that the vowel classification accuracy over the automatically formed
clusters "ifi.,4", "E/1 . .3" of the data sets turned out to be better than that over the
manually clustered "Men", "Women", "Girls", "Boys", "Children" data sets. But
the reader should note that this classification accuracy was calculated on the train
set, and over-learning may influence the results.

with

460 Denes Paczolay et. a 1.

K - M e a n s U P G M A

Accuracy
Cluster ANN CVM

Kx 96.76% 100.00%
98.26% 100.00%

K3 97.74% 99.83%
K4 98.64% 100.00%

Accuracy
Cluster ANN CVM

Ui 97.99% 99.87%
1/2 97.12% 100.00%
u3 97.35% 99.94%

Manually

Accuracy
Cluster ANN CVM
Women 90.12% 91.13%

Men 92.84% 92.51%
Girls 99.51% 98.01%
Boys 92.83% 92.54%

Children 96.05% 95.59%

Table 2: Vowel recognition accuracy on the clusters M\,_k expressed in percentage
terms.

7.2 . Clustering accuracy on the train database (M0)

Table 3 shows the results of the cluster identification test on the train database using
the MQ machine learner. The classification accuracy of the clusters was between
93% and 96%.

Accuracy
M e t h o d # c l u s t . A N N C V M

Basel ine* 1 100.00% 100.00%
Manually 3 94.12% 94.48%
Manually 4 93.32% 94.24%
K-Means 4 94.25% 95.63%
U P G M A 3 93.53% 93.70%

*This corresponds to the original, one-step recognition method

Table 3: Cluster classification accuracy on the train database MQ (in percent)

7.3 Recognition accuracy on the test database

Table 4 lists the final test results, that is the vowel classification accuracy on the test
database. As can be seen, the performance of the two-phase recogniser was better
than that of the original one-step method. On the other hand the performance
of the ANN and the CVM methods were quite similar. Still, we found that this
database was not large enough to show the full advantages of using CVM.

Robust Clustering - Based Realtime Vowel Recognition 461

Accuracy
M e t h o d # c l u s t . A N N C V M
Basel ine 1 89.57% 90.58%

Manual ly 3 92.03% 92.48%
Manual ly 4 90.97% 91.01%
K - M e a n s 4 92.59% 93.26%
U P G M A 3 91.33% 90.97%

Table 4: Vowel classification accuracy on the test database (in percent)

8 Conclusions and future suggestions
This paper described a computer-aided speech therapy system where, of course,
effective real-time vowel recognition is essential. We presented a simple idea for
increasing the recognition performance based on our previous experiences that the
training part is more efficient when the database is homogeneous in some way.
During our study we found that the classification accuracy was higher when we used
a database that was separated according to speaker gender and age than when it
was not. This suggested the idea of using a two-step recognition method where the
data is automatically clustered, and separate classifiers are trained over the clusters.
We found experimentally that the classification error over these clusters is actually
smaller than that over the full database. In the proposed two-step recognition
process the algorithm first identifies the cluster of the data item, and then, in
the second step, the item is classified by applying the cluster-specific classifier.
We found that with this method the recognition performance improved, so the
clustering step can indeed improve the recognition performance. However, the error
from the clustering part (namely, that of the learner Mo) during testing seemed to
cause a significant loss in performance. Hence, in the future, we plan to do more
experiments to find a better method for choosing the right kind of cluster.

9 Acknowledgements
The project described in paper was financially support by the Hungarian Ministry
of Education.

References
[1] Bishop, C. M. Neural Networks for Pattern Recognition. Oxford University

Press, 1995.

[2] Bradley, P. S. and Fayyad, U. M. Refining initial points for K-Means clustering.
In Proc. 15th International Conf. on Machine Learning, pages 91-99. Morgan
Kaufmann, San Francisco, CA, 1998.

462 Denes Paczolay et. a 1.

[3] Duda, R. 0. , Hart, P. E., and Stork, D. G. Pattern Classification. John Wiley
and Son, New York, 2001.

[4] Fitch, W. M. and Margoliash, E. Construction of phylogenetic trees. Science,
155:279-284, 1967.

[5] Hégely, G. and Kocsor, A. A vizuális beszédértékelés alkalmazásának magyar
vonatkozású történeti áttekintése a hallássérültek beszédoktatásában. Alka-
lmazott Nyelvtudomány, 2005.

[6] Hu, Z., Barnard, E., and Vermeulen, P. Speaker normalization using cor-
relations among classes. In Image, Speech, Signal Processing and Robotics,
volume II, pages 223—228, The Chinese University of Hong Kong, Hong Kong,
1998.

[7] Paczolay, D., Felföldi, L., and Kocsor, A. Classifier combination schemes in
speech impediment therapy systems. Submitted to Periodica Polytechnica
Electrical Engineering, 2005.

[8] Rabiner, L. R. and Juang, B. H. Fundamentals of Speech Recognition. Engle-
wood Cliffs, NJ, Prentice Hall, 1993.

[9] Tsang, I. W.,- Kwok, J. T., and Cheung, P. Core vector machines: Fast svm
training on very large data sets. The Journal of Machine Learning Research,
6:363-392, 2005.

[10] Vapnik, V. N. Statistical Learning Theory. John Wiley and Son, 1998.

Acta Cybernetica 18 (2008) 463-450.

Sentence Alignment of Hungarian-English Parallel
Corpora Using a Hybrid Algorithm

Krisztina Tóth, Richárd Farkas, and András Kocsor*

Abstract

We present an efficient hybrid method for aligning sentences with their
translations in a parallel bilingual corpus. The new algorithm is composed of
a length-based and anchor matching method that uses Named Entity recog-
nition. This algorithm combines the speed of length-based models with the
accuracy of anchor finding methods. The accuracy of finding cognates for
Hungarian-English language pair is extremely low, hence we thought of using
a novel approach that includes Named Entity recognition. Due to the well
selected anchors it was found to outperform the best two sentence alignment
algorithms so far published for the Hungarian-English language pair.

Keywords : sentence segmentation, sentence alignment, length-based align-
ment, hybrid method, Named Entity recognition, anchor, cognates, dynamic
programming

1 Introduction
In the last few years parallel corpora have become evermore important in natural
language processing. There are many applications which could benefit from parallel
texts like (i) automatic translation programs (as machine learning algorithms) that
are used as training databases, (ii) translation support tools that can be obtained
from them (translation memories, bilingual dictionaries) and (iii) Cross Language
Information Retrieval methods. These applications require a high-quality corre-
spondence of text segments like sentences. Sentence alignment establishes relations
between sentences of a bilingual parallel corpus. This relation may not have just a
one-to-one correspondence between sentences; there could be a many-to-zero (in the
case of insertion or deletion), many-to-one (if there is a contraction or an expansion)
or even many-to-many alignments.

Various methods have been proposed to solve the sentence alignment task.
These are all derived from two main classes: length-based and lexical methods,

* Research Group on Artificial Intelligence of the Hungarian Academy of Sciences and Uni-
versity of Szeged H-6720 Szeged, Aradi vértanúk tere 1., Hungary, E-mail: {tothkr, rfarkas,
kocsor}0inf.u-szeged.hu

464 Krisztina, Tóth, Richárd Farkas, and András Kocsor

but the most successful are combinations of them (hybrid algorithms). Algorithms
using the sentence length are just based on statistical information given in the
parallel text. The common statistical strategies all use the number of characters
like Gale & Church's [8] or words like Brown et. al.'s method [1] of sentences
which models the relationship between sentences to find the best correspondence.
These algorithms are not so accurate if sentences are deleted, inserted or there are
many-to-one or many-to-many correspondences between sentences. Lexical-based
methods [2] [10] utilise the fact that if the words in a sentence pair correspond to
each other, then the sentences are also probably translations of each other. Length-
based methods align sentences quickly and the alignment is moderately accurate,
while the lexical based methods are more accurate but much slower than sentence
length-based alignment techniques.

Many applications combine methods which allow the generation of a fast and
accurate alignment [4, 13]. These hybrid algorithms utilize various kind of anchors
to enhance the quality of the alignment such as numbers, date expressions, various
symbols, auxiliary information (like session numbers and the names of speakers in
the Hansard corpus1) or cognates. Cognates are pairs of tokens of historically re-
lated languages with a similar orthography and meaning like parlament/parliament
in the case of the English-French language pair. Several methods have also been
published to identify cognates. Simard et. al. [20] considered words as cognates,
i.e. those that had a correspondence with at least four initial letters, so pairs like
government-gouvernement should be excluded. McEnery and Oakes [12] did the
calculation of the similarity of two words using Dice's coefficient. These cognate-
based methods work well for Indo-European languages, but languages belonging
to different families (like Hungarian-English) or with different character sets the
number of cognates found is low.

The newest generation of algorithms uses both the length and lexical information
but they are based on the Machine Learning paradigm [3, 6]. These approaches
requires a great and precise (manually labeled) training corpus which is not present
for English-Hungarian at the moment.

Methods have been published for Hungarian-English language pair by Pohl [15]
and Varga et. al. [23]. These are also hybrid methods that use a length-based
model, but to increase the accuracy Pohl uses an anchor-finding method and the
algorithm developed by Varga (called Hunalign) based on a word-translation ap-
proach.

In this paper we will introduce an efficient hybrid algorithm for sentence align-
ment based on sentence length and anchor matching methods that incorporate
Named Entity recognition. This algorithm combines the speed of length-based
models with the accuracy of the anchor-finding methods. Our algorithm here ex-
ploits the fact that Named Entities cannot be ignored from any translation pro-
cess, so a sentence and its translation equivalent contain the same Named Entities.
With Named Entity recognition the problem of cognate low hits for the. Hungarian-
English language pair can be resolved. To the best of our knowledge this work is

1http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC95T20

http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC95T20

Sentence Alignment of Hungarian-English Parallel Corpora. 465

among approaches for any language pair, the first sentence alignment method that
uses Named Entities as anchors.

To handle the problem of sentence alignment an efficient sentence segmentation
method and an accurate parallel corpus Eire needed. We will introduce our expert
rule based sentence segmentation and our parallel corpus as well. The recently built
corpus contains over 5000 sentences per language and seeks to represent normal
everyday language.

In Section 2 the sentence segmentation problem is presented, then Section 3
is devoted to sentence alignment. Section 4 introduces our reference corpus for
sentence segmentation for the Hungarian-English language pair along with experi-
ments carried out using our algorithms and several other algorithms. Our results on
sentence segmentation and sentence alignment will be discussed here as well. Lastly
in Section 5 we provide a short summary and some suggestions for the future.

2 The segmentation problem
The success of sentence alignment depends on the location of sentence boundaries.
A common definition of a sentence is: A sentence is a syntactically autonomous se-
quence of words, terminated by a sentence-end punctuation. The term sentence-end
punctuation includes full-stops ('.'), exclamation marks ('!') and question marks
(' ?'), but a sentence ending might be denoted by a colon (':') or semicolon (';'), pro-
vided the sentence can stand on its own syntactically (be syntactically autonomous).
This definition works well if the text contains sentences in the narrowest sense. But
in cases where the input contains structured elements (like tables or enumerations)
this definition becomes useless because it requires that a sentence always end with
a sentence-end marker. Thus we chose to redefine the meaning of a sentence from
our computer linguistic perspective: A character-stream is regarded as a sentence
if it is a sentence in the narrowest sense, a title, an item of an enumeration or a
cell in a table.

Segmenting a text into sentences is a non-trivial task since all end-of-sentence
punctuation marks are ambiguous. The most ambiguous sentence-end-punctuation
is the full-stop. A full-stop could be a part of a date, denote an ordinal number in
Hungarian, an abbreviation, be the end of a sentence, or even an abbreviation at
the end of a sentence. The following sentence contains full-stops that have different
roles:

A Szamos u. 16. alatt található XX. században épült kb. 20 mé-
ter magas épületet 2005. 06. 05. és 2006. 06. 05. között
az XY. Kft. újította fel.
This sentence would probably be segmented into 12 sections by a sentence segmen-
tation application that identifies a sentence boundary after each full-stop. This
example and the following statistics demonstrate that the problem of sentence seg-
mentation is worth spending some time on in order to come up with a solution.
In the Brown corpus 10% of the full-stops denote abbreviations [7]. According to

466 Krisztina, Tóth, Richárd Farkas, and András Kocsor

[11], 47% of the full-stops in the Wall Street Journal lie inside an abbreviation and
in scientific texts it is even more: from 54.7% to 92.8% [14]. Like the full-stop an
exclamation mark or a question mark can be inside a sentence e.g. when they occur
within quotation marks or parentheses, as in the following sentence:

"Látok!" - mondta a vak (aki lehet, hogy nem is vak!?)
To handle these problems we used the following rule based system. We collected
two lists; special characters that are different types of quotations and parentheses,
and potential sentence-end-marks that are full-stops, exclamation marks, question
marks, colons and dots.

The algorithm has three steps:
Step 1 The first step of our segmentation process is the removal of special

characters from the front and the end of every word.
Step 2 The word ending with a potential-sentence-end-marker (candidate) is

analyzed: it could be an ordinal number, an abbreviation or a simple word. It has
then to decide whether the candidate is an ordinal number. As for whether the
word is an abbreviation or a simple word, it checks it against a look-up abbreviation
list.

Step 3 The candidate's environment (the word following it) is analyzed:

(a) If there is no subsequent word, the sentence boundary has been identified.

(b) If the candidate is a simple word, and is followed by a word that is a number
or begins with a capital letter, we identify a sentence boundary; otherwise
there is no boundary.

(c) If the token is an abbreviation we do not segment because the abbreviation
might be followed by number (like 'ca. 30'), or an abbreviation (Prof, or Dr.)
or a proper name (Dr. Miiller).

(d) If the candidate is an ordinal number, and it is the first token in the sentence,
we do not identify a sentence boundary (but with this method we can identify
rows of tables). If the ordinal number is followed by a number, or a word has

. a lower case first letter we do not identify a sentence boundary.

(e) A special case of the sentence-end-markers is the colon. In cases after the colon
a sentence in the narrowest sense is sought: we identify a sentence boundary
after a colon (as in 'Az EU alábbi intézményei a következő feladatokat látják
el: Az EU Bíróság bírál.') Otherwise the colon is followed by an enumeration
(like 'Halihó Malacka, vegyél nekem: mézet, kenyeret, szalonnát.') then we
recognize it as one sentence.

3 The hybrid model
After the sentence boundaries are determined - using the decision process described
above - for Hungarian and English we need to perform a sentence alignment in a
paragraph.

Sentence Alignment of Hungarian-English Parallel Corpora. 467

Figure 1 outlines our model. As input we have two texts, a Hungarian and
its translation in English. In the first step the texts will be sentence segmented,
and then paragraph aligned. We look for the best possible alignment within each
paragraph. For each Hungarian-English sentences we determine the cost of the
sentence alignment with the help of dynamic programming. At each step we know

Figure 1: The overview of the alignment system

the cost of the previous alignment path, and the cost of the next step can be
calculated via the length-based method and anchors (including Named Entities) -
as described later in detail - for each possible alignment originating from the current
point (from one-to-one up to three-to-three). The base cost of an alignment is A
(see Section 3.1), which is increased by punishing for many-to-many alignments.
Without this punishment factor the algorithm would easily choose, for example, a
two-to-two alignment instead of the correct two consecutive one-to-one alignments.
This base cost is then modified by the matched anchors. The normalized form of
the numbers, the special characters collected from the current sentences and each
matching anchor together reduce the base cost by 10%. The cost is also reduced
by 10% if the sentences have the same number of Named Entities.

The problem of finding the path with minimal cost (after the cost of each
possible step has been determined) is solved by dynamic programming. The search
begins from the first sentences of the two languages and must terminate in the last
sentences of each language text. For this we used the well known forward-backward
method in dynamic programming.

468 Krisztina, Tóth, Richárd Farkas, and András Kocsor

3.1 Length-based alignment
This module exploits the fact that sentence lengths axe correlated. The measure
of a sentence length is the number of characters in a sentence, just like that in the
Gale and Church [8] algorithm.

We will assume that the ratio, between the length of the source sentence and
target sentence, has a normal distribution (independent and identically distributed
from sentence to sentence). The mean and standard deviation of each can be
calculated from our new Hungarian-English parallel corpus (introduced in Section
4.2.1): E{l\/l2) & 1.1 and V{l\/l2) ~ 7.9, where l\ is the number of characters in
a Hungarian sentence and l2 is the number of characters in its translation.

Just like [8] we define 8 to be (l2 — hE(li/l2)) /\/hV{li/l2) so that it has a
normal distribution with zero mean and a variance of one (at least when the two
sentences in question are actually the translations equivalents of each other). The
base cost of the alignment (for two sentences with length l\ and l2) respectively will
be A = —logP (match\6(li,l2)). The log has been introduced here so that adding
costs will produce desirable results.

3.2 Anchors
The published approaches for a Hungarian-English language pair judged the words
containing capital letters or digits of equal amount in the text to be the most trusted
anchors, but any mistakenly assigned anchors have to be filtered. Unlike other
algorithms our novel method needs no filtering of anchors because the alignment
works with the help of exact anchors like Named Entities. The following example
illustrates the difference between using capitalized words as anchors against using
Named Entities as anchors:

Az új európai dinamizmus és a változó geopolitikai helyzet arra
késztetett három országot, név szerint Olaszországot, Hollandiát
és Svédországot, hogy 1995. január l-jén csatlakozzon az Európai
Unióhoz.
The new European dynamism and the continent's changing geopolitics
led three more countries - Italy, Netherlands and Sweden - to join
the EU on 1 January 1995.

In the Hungarian sentence there are 5 capitalized words (Olaszországot, Hollandiát,
Svédországot, Európai, Unióhoz), unlike its English equivalent which contains 7
ones (European, Italy, Netherlands and Sweden, EU, January) so using this feature
as an anchor would give false results, but an accurate Named Entity recognizer
could help it. This example demonstrates as well that cognates cannot be used for
a Hungarian-English language pair.

Thus we suggest modifying the base cost of a sentence alignment with the help of
the following anchors: special characters, the normalized form of the numbers and
Named Entity recognition instead of a bilingual dictionary of anchor words or the

Sentence Alignment of Hungarian-English Parallel Corpora. 469

number of capital letters in the sentences. These result in a text-genre independent
anchor method that does not require any anchor filtering at all.

3.2.1 Named Entit ies

Instead of using capitalized words present in the sentences we use the Named En-
tity Recognition module. It is used because in English more words are written
with a capital letter than their Hungarian equivalents. Some examples from the
Hungarian-English parallel corpus indeed demonstrate this fact:

• I (én) personal pronoun

• Nationality names: ír söröző = Irish pub

• Location terms: Kossuth Street/Road/Park

• When repeating an expression, the expressions become shorter: pi: European
Union = Unió

• Names of countries: Soviet Union = Szovjetunió

• The names of months and days are written with capital letters.

The identification and classification of proper nouns in a plain text is of key
importance in numerous natural language processing applications. It is useful in
sentence alignment because Named Entities cannot be ignored in any translation
process, so a sentence and its translation equivalent contains the same number
(and types) of Named Entities. As far as we know our work is the first sentence
alignment method for a language pair that uses Named Entities as anchors.

A slightly modified version of the multilingual Named Entity recognition system
described in [22] was used here in this work. This system (which appears to be
currently the only statistical Named Entity recognition for Hungarian) achieved an
accuracy2 of over 98.7% on unknown documents in Hungarian (Szeged NE corpus
[21]) and 97% for documents in English (CoNNL 2003 shared task [18]). The main
aim of [22] was to recognize Named Entities and place them into one of four classes
(person, organization, location and miscellaneous). The accessible tagged dataseis
concentrated on the business domain, unlike our parallel texts which dealt with a
wide range of domains. Because of the lack of a suitable training corpora we chose
an easier problem, namely recognizing Named Entity phrases (a multiword chain)
without classification.
Our statistical approach worked as follows:

1. It extracts features from a tagged train corpora. We collected various types of
numerically uncodable information describing each term and its surroundings.
A subset of the features used tried to capture the orthographical regularities of
proper nouns like capitalization, inner-word punctuation and so on. Another

Considering the two class (named entity/non named entity) phrase level evaluation metric

470 Krisztina, Tóth, Richárd Farkas, and András Kocsor

set of attributes described the role of the word and its neighboring words in
the sentence. The remaining parameters were various lists of trigger words
and ratios of capitalized and lowercase words in large corpora.

2. In this way the problem could be treated as a supervised (more precisely, a
two-class classification) task. The C4.5 decision tree [16] with pruning and
AdaBoost [19] after 30 iterations was trained on Hungarian and English texts.
Different models were learned for the two languages but they were based on
the same feature set.

3. The learned models tagged the Named Entity phrases in the input parallel
texts. Because the correct tagging was not known we could not measure the
accuracy of this tagging, but the experiments described in Section 4.2 revealed
that it was definitely helpful.

3.2.2 Special characters

We used the special characters in the sentences like %, §, $. & as anchors,
because they may be present in the source language and a target language sentence
in the same form. Other special characters are used as anchors in the literature
as well (like quotation, exclamation mark, question mark [9]), but they were not
included because they can confuse the program in the Hungarian-English alignment
task.

Take the following examples:

angol = I wish I had a bike,
magyar = Barcsak lenne egy biciklim!

The Hungarian exclamation mark is usually (90% in our Hungarian-English
parallel corpora) replaced by a full-stop in its English counterpart. As the next
example shows, there are differences in the usage of the apostrophes and quotations
in the English and Hungarian sentences. In most cases Hungarian quotations have
an apostrophe equivalent in an English sentence, and vice versa.

"Tibi!" .- mondtam az uramnak.

'Tibi!' - I said to my husband.

3.2.3 Normalized form of numbers

Our efficient sentence alignment method treats the normalized form of Arabic or
Roman digits. During the normalisation of the digits all characters that are not
digits are deleted then we get a digit in a normalized form. With this method
we got a language independent form (1.2 = 1,2) that can be compared during the
alignment process.

Sentence Alignment of Hungarian-English Parallel Corpora. 471

4 Experiments
In this section our results on sentence segmentation and on sentence alignment are
presented, and the reference algorithms and corpora are given.

4.1 Sentence segmentation
Here the reference corpora for Hungarian and English and the baseline algorithms
are introduced for evaluating our expert rule-based sentence segmentation ap-
proach.

4.1.1 Reference corpora

The test corpus for Hungarian sentence segmentation was compiled from sentences
that came from three subcorpora of the Szeged Treebank3 [5] (Népszabadság, Nép-
szava and Heti Világgazdaság). The first two subcorpora were chosen here because
a sentence segmentation algorithm will be used on general texts and these truly
mirror everyday language. The third is written in business language, and can be
used for testing our algorithm on a harder text genre.

The English sentence track evaluation was carried out on the Wall Street Journal
Corpus4, which contains articles from the Wall Street Journal, and consists of 5000
randomly selected sentences. We choose this corpus because we wanted to test
our algorithm on articles similar to Hungarian ones, and it was written in normal
everyday language.

4.1.2 Baseline algorithms

We compared our algorithm against two algorithms. The first was the baseline
algorithm that labels each punctuation mark as a sentence boundary. The descrip-
tion of the second one - called Huntoken - has not yet been published, but some
of its results has been used in our three subcorpora[17],

4.1.3 Results

To assess the quality of sentence segmentation precision, recall and F-measure scores
of correct segmentations were used.

Tables 1 below list the results of the segmentation on the three subcorpora
compared with the results of the first baseline algorithm. We could not compare
our results in such detail with Huntoken because only the precision scores have
been published so far.

Our expert rule-based algorithm performs significantly better on all subcorpora
than the baseline algorithm. These experiments highlight the effect of meaning

3The Szeged Treebank is a manually annotated natural language corpus. This is the largest
manually processed Hungarian database that can be used as a reference materied for research in
natural language processing

4http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2000T43

http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2000T43

472 Krisztina, Tóth, Richárd Farkas, and András Kocsor

Algorithm Correct Incorr. All f. Etalon prec. rec. Fß=1
Baseline 6450 697 7147 7797 0.9009 0.8216 0.8593

Expert Rule b. 7781 17 7798 7797 0.9980 0.9981 0.9980

Table 1: The three subcorpora together

differences of potential punctuation marks as well. The baseline algorithm achieved
poor precision and recall scores on the Heti Világgazdaság corpus (which contains
economic texts) but our algorithm gave much the same results as those for the
two other corpora. This is probably due to the higher frequency of abbreviations,
ambiguous sentence boundaries and special punctuation marks.

Table 2 lists the precision scores of the three algorithms. Our results turned out
to be similar to those published in [17]. The difference can be said to be significant
only on the economy texts (a 66% error reduction)

Algorithm Népszabadság Népszava Heti Világgazdaság all
Baseline 0.9133 0.9113 0.8780 0.9009

Huntoken 0.9976 0.9977 0.9937 0.9963
Expert Rule based 0.9976 0.9985 0.9979 0.9980

Table 2: Precision of the three sentence segmentation algorithm

To evaluate the English text, the first baseline algorithm were used. With the
English test corpora the baseline method performed very badly, but our algorithm
kept the error rate below 1% (see Table 3). The reason for this is that in this corpus
there were a lot of parentheses and quotation maxks in the words, and there were
also quite a few abbreviation and ordinal numbers.

Algorithm Correct Incorr. All f. Etalon prec. rec. Fs=i
Baseline 3152 3257 6409 5021 0.4918 0.6278 0.5515

Expert Rule b. 4972 38 5010 5021 0.9924 0.9902 0.9913

Table 3: English results

These results demonstrate that our effective sentence segmentation algorithm
generates errors of 1% or less on both Hungarian and English texts. This achiev-
ment means that our approach is competitive with the best published results for
Hungarian and English to date.

4.2 Sentence alignment
Soon we will discuss the results of experiments on our alignment algorithms. But
first we need to elaborate on the built corpora and two baseline algorithms from
Hungarian literature.

Sentence Alignment of Hungarian-English Parallel Corpora. 473

4.2.1 The corpora for sentence alignment

Parallel corpus Currently, there are two sentence-level-aligned Hungarian-English
parallel corpora at our disposal. One of them is the so-called Orwell corpus5 that is
based on Georg Orwell's novel 1984 and the other one is a Hunglish corpus 6. These
corpora often contain special words, phrases and jargon, that is why we decided to
build our own corpus.

With high quality translation and representability in mind, in the course of
Hungarian-English parallel corpus building the following texts were collected:

o Language book sentences: This subcorpus includes detached parallel sen-
tences from Devaine Angeli Mariann's Angol nyelvtani gyakorlatok and Dohar
Peter's Kis angol nyelvtan. These books were compiled for students preparing
for a language exam and therefore their wording is not very realistic. There
are sentences which truly represent present-day English but, at the same
time, there are some overly artificial, 'fabricated' sentences too. These books
were written to represent the characteristics of English and not present-day
parlance. This subcorpus currently contains over 5000 sentences.

o Texts on the EU: These texts were gathered from an official EU website
http://europa.eu.int. Under the title Europe in 12 lessons there are 13 general
descriptions about the EU. This subcorpus is a general Hungarian-English
text collection.

o Bilingual magazines: This subcorpus is comprised of articles taken from
the magazines of Malev Horizon and Mav Intercity.

o Speech corpus of the Multext-East: The Multext-East corpus consists
of 40 items of 5-sentence long units. The 5 sentences of a unit are correlated
and they are available in written form in both Hungarian and English. Text
units include topics written in everyday parlance, tell one how to order a taxi,
find a restaurant, or call a customer service end so on.

Named Entity training corpora. To train our model on Hungarian texts, we
used a a sub-corpus of the Szeged Treebank [21] where the correct classification
of Named Entities had also been added7. It contains business news articles taken
from 38 NewsML topics (9600 sentences) ranging from acquisitions to stock market
changes or the opening of new industrial plants.

The Named Entity system for English was trained on a sub-corpus of the Reuters
Corpus, consisting of newswire articles from 1996 provided by Reuters Inc. (-the
shared task of the CoNLL 2003 Named Entity challenge). It contains texts from
domains ranging from sports news to politics and the economy.

5http://nl.ijs.si/ME/CD/docs/1984.html
6 http: //mokk.bme.hu / resources/hunglishcorpus
7Both Hungarian and English datasets can be downloaded free of charge for research purposes.

http://europa.eu.int
http://nl.ijs.si/ME/CD/docs/1984.html

474 Krisztina, Tóth, Richárd Farkas, and András Kocsor

4.2.2 Reference alignment methods

Hunglish, translation- and length-based alignment In the first step the algo-
rithm loads the English-Hungarian dictionary that was based on a unified version
of the Vony6 and H6koto dictionaries8. The first step of the aligning algorithm
provides a rough translation of the Hungarian sentence by substituting each word
with its most frequently occurring dictionary translation or, when absent, with the
word itself. Then this rough translation is compared, sentence by sentence, with
the actual target text.

The similarity rate between sentences is found by looking at the number of mu-
tual occurrences (the very frequent words having been removed from both the raw
translation and the original English text) and the sentence length which is mea-
sured in characters, but the algorithm also specifically recognizes numbers written
in numerical form. The task is then solved with the help of dynamic programming
methods [23].

Length- and anchor matching-based alignment of Pohl The other sentence-
synchronizing algorithm was worked out by Pohl [15]. The implemented algorithm
was built on Gale & Church's sentence-length alignment, and it also included dy-
namic programming techniques to determine the sentences to be aligned. The only
real difference from the original algorithm was that it had to take into considera-
tion the cost of anchor-synchronisation when calculating the overall costs. When
running it uses a heuristic method to calculate the gain, which helps it to recognize
sentence insertions and deletions in the text. The gain is defined here as follows.
It is the number of common anchors in text units divided by the total number of
anchors in the text units, then this fraction is divided by the number of text units
involved. Pohl regards on the other hand the number of words containing numbers
or capital letters as the most reliable anchors. He employed the method published
by Ribeiro et. al. to filter out the mistaken anchors. It defines two statistical
filters, both of which apply a linear regression margin calculated on the basis of the
anchor-candidate's position in the text. In the first step the points outside a certain
range - determined using an adaptive histogram-based filter applied around the lin-
ear regression margin - were disregarded, then the points outside the confidence
bracket of the regression margin were found.

4.2.3 Results

Our hybrid algorithm was compared with Pohl's length- and anchor matching-
based one and with the Hunglish's dictionary- and sentence length-based hybrid
ones. Pohl's algorithm also had to be reimplemented. The comparison was not
complete, but it used just one-to-one, two-to-one and one-to-two alignment types.

The first row shows what kind of alignments are possible in the reference align-
ment, like one-to-one, one-to-two or many-to-many. There is no one-to-zero align-
ment in our parallel corpus even through there could be. The second row shows

8http://almos.vein.hu/ vonyoa/SZOTAR.HTM

http://almos.vein.hu/

Sentence Alignment of Hungarian-English Parallel Corpora. 475

1:1 1:2&2:1 2:2 N:M
suggested alignment 4875 415 0 0

correct of sugg. align. 4556 165 0 0

Table 4: Pohl's Results

how талу of these alignment types were found by Pohl's algorithm, and the last
row shows how many of the suggested alignments were correct. Table 5 gives the
corresponding results for our algorithm, which, as the reader will notice, are not so
different.

1:1 1:2&2:1 2:2 N:M
suggested alignment 4957 339 3 1

correct of sugg. align. 4698 252 1 0

Table 5: Our Results

The algorithm of Pohl's chose one-to-two and two-to-one alignments with a poor
precision (just 39%). Our hybrid algorithm on the other hand was more accurate
in these cases and it even handles two-to-two and n:m alignments as well. In the
one-to-one alignment task they achieved similar results. Our algorithm was better
here as well, but this is probably only due to Pohl choosing too many one-to-two
alignments instead of more one-to-one alignments.

Table 6 summaries the results of the three hybrid methods. Precision and
recall are the commonly accepted metrics for evaluating the quality of a suggested
alignment with respect to a test corpus. We employ the F-measure here as well,
which combines these metrics into a single efficiency measure:

. . number of correct alignments precision = — number of proposed alignments

number of correct alignments recall — — — number of reference alignments

recall * precision
-f/3=i = 2 — —— recall + precision

Algorithm Precision Recall Fß=i
Pohl hybrid 0.9016 0.9016 0.9016

Hunalign 0.8993 0.9786 0.9370
NE-based 0.9341 0.9456 0.9398

Table 6: Results of Hungarian hybrid methods

The high recall of the hybrid dictionary-based method is largely due to the
dictionary (it offers a huge number of one-to-one alignments), but it did not attain

476 Krisztina, Tóth, Richárd Farkas, and András Kocsor

a 90% precision score. Contrary to our algorithm, it has a recall and precision of
over 90 % thanks to the good choice of anchors.

After a manual analysis, we found that the bigger part of the errors come from
paragraphs where there are not any anchor (neither Named Entities, numbers nor
punctuation) in the sentences. On the other hand the recognition of Named Entities
is far from perfect, its error is propagated to the alignment. If a larger and more
general Named Entity training corpus will be available a more accurate recogniser
model could be trained and different types of entities could be used which could
further improve our results.

Viewed overall, our new hybrid algorithm is approximately 4% better than the
approach which inspired our study (Pohl's anchor matching based algorithm) and
it achieved slightly better results than those for Hunalign. The real advantage over
Hunalign is its speed of alignment. We used a very fast (in alignment time) Named
Entity recognizer that did not need to search through a huge database dictionary.

5 Conclusions and future work
In this paper we introduced a language independent, expert rule-based sentence seg-
mentation method (which we found has a typical error rate of < 1%), a Hungarian-
English parallel corpus containing everyday language - which was designed for
machine translation - and a novel Named Entity-based hybrid sentence alignment
method (the first step of machine translation) that combines accuracy (a roughly
6% error rate) with speed.

The results of the previous section demonstrate that our system is competi-
tive with other sentence alignment methods published for the Hungarian-English
language pair. The reason for our good results is that, with the help of Named
Entity recognition, more anchors can be matched so the problem of low hits of the
cognate pairs for a Hungarian-English language pair is effectively solved. The use
of multilingual Named Entity recognition systems also provides a way of finding
appropriate anchors for language pairs even when they belong to distinct language
families.

In the future it would be useful to build and to learn on a Named Entity corpus
that incorporates everyday language. Then the advantage of using a Named Entity
classifier would probably become apparent and it should improve the precision of
Named Entity anchors. In addition, we would like to test our system on diverse
text sources to see how well it performs.

References

[1] Brown, P. F., Lai, J. C., and Mercer, R. L. Aligning sentences in parallel
corpora. In Meeting of the Association for Computational Linguistics, pages
169-176, 1991.

Sentence Alignment of Hungarian-English Parallel Corpora. 477

[2] Chen, S. F. Aligning sentences in bilingual corpora using lexical information. In
Proceedings of the 31st Annual Meeting of the Association for Computational
Linguistics, pages 9 - 16. Columbus, Ohio, 1993.

[3] Chuang, Thomas C. and Chang, Jason S. Adaptive bilingual sentence align-
ment. In AMTA '02: Proceedings of the 5th Conference of the Association for
Machine Translation in the Americas on Machine Translation: From Research
to Real Users, pages 21-30, London, UK, 2002. Springer-Verlag.

[4] Collier, N., Ono, K., and Hirakawa, H. An experiment in hybrid dictionary
and statistical sentence alignment. In COLING-ACL, pages 268-274, 1998.

[5] Csendes, D., Csirik, J., and Gyim6thy, T. The szeged corpus: A pos tagged
and syntactically annotated hungarian natural language corpus. In Proceedings
of the 7th International Conference on Text, Speech and Dialogue (TSD 2004),
pages 41-47, 2004.

[6] Fattah, Mohamed Abdel, Ren, Fuji, and Kuroiwa, Shingo. Probabilistic neural
network based english-arabic sentence alignment. In CICLing, pages 97-100,
2006.

[7] Francis, W. and Kucera, H. Frequency analysis of English usage: Lexicon and
grammar. Houghton Mifflin, Boston, 1982.

[8] Gale, W. A. and Church, K. W. A program for aligning sentences in bilingual
corpora. In Meeting of the Association for Computational Linguistics, pages
177-184, 1991.

[9] Hofland, K. and Johansson, S. The translation corpus aligner: A program
for automatic alignment of parallel texts. In Johansson, S. and Oksefjell, S.,
editors, Corpora and Cross-linguistic Research: Theory, Method, and Case
Studies, pages 87-100. Amsterdam: Rodopi, 1998.

[10] Kay, M. and Roscheisen, M. Text-translation alignment, volume 19, pages
121-142, 1993.

[11] Liberman, M. Y. and Church, K. W. Text analysis and word pronunciation in
text-to-speech synthesis. In Sadaoki Furui and Man Mohan Sondhi, editors,
Advances in Speech Signal Processing, pages 791-831. Marcel Dekker, Inc.,
1992.

[12] McEnery, A. M. and Oakes, M. P. Cognate extraction in the crater project. In
S. Armstrong-Warwick and E. Tzoukerman (eds.), Proceedings of the EACL-
SIGDAT Workshop (Dublin), pages 77 - 86, 1995.

[13] Moore, R. C. Fast and accurate sentence alignment of bilingual corpora. In
AMTA '02: Proceedings of the 5th Conference of the Association for Machine
Translation in the Americas on Machine Translation: From Research to Real
Users, pages 135-144, London, UK, 2002. Springer-Verlag.

478 Krisztina, Tóth, Richárd Farkas, and András Kocsor

[14] Muller, H., Amerl, V., and Natalis, G. Worterkennungsverfahren als Grund-
lage einer Universalmethode zur automatischen Segmentierung von Texten in
Sätze. Ein Verfahren zur maschinellen Satzgrenzenbestimmung im Englischen.
Sprache und Datenverarbeitung, 1. 1980.

[15] Pohl, G. Szövegszinkronizációs módszerek, hibrid bekezdés- és mondatszinkro-
nizációs megoldás. In Proceedings of Magyar Számítógépes Nyelvészeti Kon-
ferencia (MSZNY 2003), pages 254-259, 2003.

[16] Quinlan, J. R. C4-5: Programs for machine learning. Morgan Kaufmann,
1993.

[17] és Kommunikáció Tanszék Média Oktató és Kutató Központ, BME Szoci-
ológia. Hunglish cd-rom, http://szotar.mokk.bme.hu/hunglish/search/corpus.
2006.

[18] Sang, E. F. Tjong Kim and Meulder, F. De. Introduction to the conll-2003
shared task: Language-independent named entity recognition. In Daelemans,
Walter and Osborne, Miles, editors, Proceedings of CoNLL-2003, pages 142-
147. Edmonton, Canada, 2003.

[19] Schapire, Robert E. The Strength of Weak Learnability, volume 5. 1990.

[20] Simard, M., Foster, G., and Isabelle, P. Using cognates to align sentences in
bilingual corpora. In Proceedings of the Fourth International Conference on

• Theoretical and Methodogical Issues in Machine translation (TMI92), (Mon-
treal), pages 67-81, 1992.

[21] Szarvas, Gy., Farkas, R., Felföldi, L., Kocsor, A., and Csirik, J. A highly
accurate named entity corpus for hungarian. In Proceedings of LREC2006,
2006.

[22] Szarvas, Gy., Farkas, R., and Kocsor, A. A Multilingual Named Entity Recog-
nition System Using Boosting and C4-5 Decision Tree Learning Algorithms.
Springer-Verlag, 2006.

[23] Varga, D., Halacsy, P., Kornai, A., Nagy, V., Nemeth, L., and Tron, V. Parallel
corpora for medium density languages, pages 590 - 596. Borovets, Bulgaria,
2005.

http://szotar.mokk.bme.hu/hunglish/search/corpus

REGULAR PAPERS

Á

Acta Cybernetica 18 (2008) 481-450.

A New Concept of Effective Regression Test
Generation in a C + + Specific Environment

Mihály Biczó* Krisztián Pócza* István Forgács} and
Zoltán Porkoláb*

Abstract
During regression testing test cases from an existing test suite are run

against a modified version of a program in order to assure that the underlying
modifications do not cause any side effects that would demolish the integrity
and consistency of the system. Since the ultimate goal of a regression test set
is to effectively test all modifications and reveal errors in the earliest possible
stage, the maintenance of a relevant test set containing effective test cases
is of utmost importance. In this paper we present an efficient, C + + specific
framework to automatically manage the regression test suite. Our two main
contributions are a new interpretation of reliable test cases and a dynamic
forward impact analyzer method that eases the transformation of existing
tests to meet the definition of reliability. Using this approach we complement
the test set with test cases that pass through a modification and have an
impact on at least one output. Our approach is designed to be applicable to
large-scale applications.

Keywords: regression testing, dynamic impact analysis, software mainte-
nance, C + +

1 Introduction
Regression testing is an important tool of software engineers to successfully manage
issues rising during the evolution of software systems. During the lifetime of large
systems numerous modifications are performed over possibly many years, yet it is
of vital importance tha t none of these modifications is allowed to remain untested,
or cause unwanted and undiscovered side effects to other previously tested parts.

In order to achieve this goal, a regression test set t ha t covers the whole sys-
tem has to be maintained and adjusted according to the modifications performed.
Therefore, it is desirable to find a test selection method tha t selects those and only

* Eötvös Loránd University, Fac. of Informatics, Dept. of Prog. Languages and Compilers,
Pázmány Péter sétány 1/C. H-1117, Budapest, Hungary E-mail: mihaly.biczoflt-online.hu,
kpoczaSkpocza.net, gsdflelte.hu

U D SOFT Ltd. Telepy u. 24. H-1212, Budapest, Hungary E-mail: forgacsS4dsoft.hu

482 Mihály Biczó, Krisztián Pócza, István Forgács and Zoltán Porkoláb

those test cases that might reveal an error [6]. However, it is equally important to
re-use and transform existing test cases so that the coverage of the modified system
would not be affected.

An important subset of regression tests contains modification revealing tests for
which the original and modified programs give different output. All modification
revealing tests are modification traversing, they reach at least one modified state-
ment. Consequently, the set of modification traversing tests also contains all error
revealing test cases [16]. Unfortunately, the reverse case is not true: a modifi-
cation traversing test is not necessarily modification revealing. Existing methods
consider a test case successful if the outputs of the original and modified programs
are identical. As it can be seen easily, using this approach it is not assured that
the modification is really tested. In other words, the test case is not necessarily
reliable.

In this paper we alter the existing definition of reliability: the definition of
a reliable test pair will be established. According to this definition, we develop
an approach that eases the generation of reliable test pairs in a C++ specific
environment. We will not cover test data generation techniques, related work can
be found in [2, 3, 9, 10]. Instead, we identify those input variables from the whole
state space on which the new generation process can be started. For the generation
process, the method described in [17] can be used initiated on a reduced input
variable set.

Our main contribution is a simple forward dynamic impact analyzer algorithm
which, if there is a given modification, will efficiently select the set of influencing
input variables and help boost the performance of the test pair generation process.
As opposed to existing methods [14], instead of directly comparing the output of
the original and modified programs for a given test case, the modified program and
the underlying test case are considered. The test suite will be extended with a
reliable test pair that is derived from the original test. This test pair will assure
that the modification is tested and that some output statements are affected in the
modified version of the program. An additional benefit of our approach is that it is
designed to work for real C++ based systems, since many C + + specific constructs
are covered including pointers and function pointers, as well as object-oriented
constructs and paradigms like classes, inheritance and polymorphism.

The structure of the paper is the following: Section 2 defines the problem we
are going to solve and presents the general overview of the generator framework
through simple examples. We also give an insight into test categorization methods
we are going to employ.

In Section 3 we discuss some related work and research directions we are aware
of. We will primarily focus on the motivating ideas behind existing techniques.

In Section 4 an overview of the used notations and necessary language specific
instrumentation mechanism will be described in detail.

In Section 5 and Section 6 the two stages of the dynamic forward input analyzer
algorithm that detects affecting input variables will be discussed. While the first
stage of the algorithm categorizes test cases and identifies affected statements; the
second stage selects the underlying input variables based on the results of the

A New Concept of Effective Regression Test Generation in a C++ Spec. Env. 483

first phase.
In Section 7 a full example of our approach will be presented in C++.
In Section 8 we summarize our results and discuss the limitations of the approach

as well as some possible research directions.

2 Framework overview
2.1 The necessity of a concept change
As we have mentioned in the introductory section, traditional regression testing ap-
proaches categorize test cases based on the outcome of the test case run against the
original and the modified programs. However, numerous anomalies might prevent
this comparison from being a good filter of errors.

The fundamental issue is that if a modification traversing test gives identical
output for the original and modified programs, this does not mean that any of the
modifications have really been tested. This is the case when the given modification
does not affect any output statements. The reverse case - when the outcome of the
original and modified programs differs - can also be problematic, because the test
might not be modification traversing for a given modification. As a consequence, if
there are more than one modifications (which is typically the case), classical modifi-
cation revealing tests might not be effective, and once again untested modifications
might lurk in the source code. A further example for different output is when the
mistakenly modified statement is a predicate, and the test takes another execution
branch, although it should go along the original path.

Listing 1 Three versions of a simple program
int mainO {
double a,b,c, d;

int mainO {
double a,b,c, d;

int mainO {
double a,b,c, d;

cin » a;
HaO .

cin » a;
b=2;

cin » a;
//Mod. #1: b=2;

c-3; c=3 ; b°3;
c=3;

d=a+c; //Hod. #1 : d=a+c;
d°a-c; d=a+c;

if (a>0)
cout « b « endl;

else
cout « c « endl;

if(a>0) if(a>0) if (a>0)
cout « b « endl;

else
cout « c « endl;

cout « b « endl; cout « b « endl;
if (a>0)
cout « b « endl;

else
cout « c « endl; else else //Hod. #2

if (a>0)
cout « b « endl;

else
cout « c « endl; cout « c « endl; cout « c+2 « endl;

//Use d... //Use d... //Use d...
exit(O);

> exit(O); exit(O); exit(O);
> > >

Let's consider the three different versions of a simple program in Listing 1. If
the input of the program (the test case) is a=l , then the outcome of the original
program is that 2 is printed on the screen. The second version still prints 2 for
a= l , which is a modification traversing test case, and is successful even though no

484 Mihály Biczó, Krisztián Pócza, István Forgács and Zoltán Porkoláb

modifications have been tested. In the third version there are two modifications.
Although for a = l the outcome of the original and modified programs differs, the
test case is still not modification traversing for Modification #2. Although these
simple examples show only two possible anomalies, theoretically, there are four of
them: if the test case does not traverse any modifications, the output cannot be
affected (SO). The other three types of the same output symptom are coincidental
correctness (Si); predicate-only symptom, e.g. the modification influences (either
directly or indirectly) only a predicate (S2); or the modified statement does not
affect any output (S3).

2.2 The changed concept
In order to overcome the above mentioned shortcomings, we have to introduce a
new regression testing concept and criterion. Our goal is to test each modification in
such a way that - if possible - after the test traverses the location of the modification
at least one output statement would be affected. Of course the original test suite
might not contain tests that meet this criterion, so it is desirable to establish a
method that transforms all possibly usable regression test cases. This way, errors
can be revealed with a much higher probability and in an earlier stage.

In order to detect a faulty modification, the underlying test case has to

1. reach the fault (it has to be modification traversing with respect to the faulty
modification)

2. the inner state of the program has to be erroneous (the behavior of the pro-
gram has to differ from the expected)

3. the fault has to reach an output statement resulting in a failure (after the
traversal through the erroneous statement, an output statement should be
reached)

Common methods consider a test case successful if the outputs of the original
and modified programs are identical. The biggest concept change is that we fulfill
these requirements using a pair of test cases derived from the original test case
instead of just one test and these tests should affect output statements.

2.3 The test generator framework
We build our framework around the above set of criteria. We have had a strong
cooperation with an industrial partner, and the framework we present in this paper
is part of their project.

In order to fulfill the first requirement, modification traversing test cases have
to be selected for a given (possibly erroneous) modification. Different techniques
can be found in [5, 7, 8]. Identifying modification traversing test cases requires two
steps:

A New Concept of Effective Regression Test Generation in a C++ Spec. Env. 485

1. The modification needs to be detected

2. Appropriate test cases have to be identified

Of course in the case of real systems extending over possibly millions of lines
of code, it is far from being trivial to identify each modification in source code.
Our industrial partner has a static analyzer solution that identifies modifications
within due time for millions of lines of code. Although the algorithm and the imple-
mentation is part of a commercial application (which means that it is copyrighted
and cannot be published), for publicly accessible implementation the Columbus
framework [11] could be used.

In order to fulfill the second requirement, we establish the following definition
of reliable test cases:

Definition (Reliable test pair). Let GI={Ij, I2, ... IM} the set of input
variables, I C {1, ...M}, I={ix,i2,...i„}, J C {1, ...M}, J={ji,...jk} index sets.
Consider the following test cases: ti:=Ci*i, ¡¿2, ••• kn>, t2'-=<iji,ij2,~-ijk>, where
iti) i i2v iin, iji, ij2, ••• ij/c are the values of the corresponding input variables. A
pair (ti, t2) of test cases is a reliable test pair with respect to statement sq (where
sq represents the qth execution of statement s) if ti and travels along the same
execution path until sq, the result of s9 differs for t i and t2, and ti and t2 are 'close'
to each other (for numeric values the difference should be minimized according to
some metric).

Informally, the above definition states that a test case is reliable with respect to
a given modification if and only if the two test cases generate the same execution
path as far as s?, both of them have an influence on at least one output statement,
and the result of the output statements differ for the two test cases. Besides this,
their difference should be minimized according to the following rule: the number of
common variables in set I and J should be minimized, and for the common variables,
the difference between them should be minimized according to some metric. For
the Eucledian metric, this would be

As for the third requirement, we will assume that all test cases in this case reach
a modification. Some of them will have an influence on the output, some of them
will not. However, in both cases it is highly desirable to transform them to a test
pair that meets the definition of reliability.

For the effective generation of test cases that meet the definition of our regression
testing criterion, we need a reduced set of input variables. This is the main task we
solve in this paper: according to the altered definition of reliable test cases (reliable
test pair), we are to reduce the set of input variables to so-called influencing input
variables. These are input variables that can be used to generate reliable test pairs
based on a modification traversing test case.

Our suggested solution for finding influencing input variables is a two stage
process. In the first stage the symptom (the anomaly, previously categorized as

486 Mihály Biczó, Krisztián Pócza, István Forgács and Zoltán Porkoláb

S0-S3) is determined. In the second phase the set of influencing input variables
are identified which can be used to turn the underlying test case to a reliable
test pair. Both stages of the algorithm are based on forward dynamic impact
analysis. Consequently, there is no need for large data structures in memory, and
all results can be obtained on-the-fly. The high-level structure of the framework is
the following:

1. Identify modifications

2. Select modification traversing test cases from the original test suite

3. For each selected test case

a) Identify symptom (Si, S2, S3)
b) Identify reduced set of influencing input variables

4. Generate a test pair in the reduced variable space using influencing input
variables

Our main contributions are 3a and 3b. The schematic structure can be seen in
the following figure (Our contributions are in the dark rectangle).

3 R e l a t e d work , research d i rect ions

In this section we present related work that motivated our research. Paper [18] deals
with the empirical comparison of test selection techniques. Besides the commonly
used but rather desperate random and retest all techniques, minimization, dataflow
and safe test selection families are also covered in that article. Our suggested
approach has common properties with dataflow techniques that require that every
definition-use pair that is deleted, changed, or inserted into the changed program
should be tested. In [19] Harrold and Sofia select test cases that exercise the
definition-use pairs affected by the modification. Our approach is quite similar with
the important remark that we employ test pairs that are safer in case of predicates

A New Concept of Effective Regression Test Generation in a C++ Spec. Env. 487

and require not only the testing of the modification, but also the employment of at
least one output statement.

The two most relevant papers that motivated our research are [15] and [16].
The first paper deals with slicing algorithms [4] that do not use traditional data
structures, only dependence analysis to calculate program slices. The second paper
categorizes regression test cases based on their effect on the program output. We
compose and further simplify these approaches to reduce the set of input variables
on which new reliable regression test case generation can be based.

3.1 Graph-less dynamic slicing and impact analysis
In [15] a new approach of producing dynamic program slices is proposed. The
main idea of the work is to apply dependence analysis to dynamic slicing [1, 13,
12] instead of employing traditional techniques that usually require a graph-based
representation and might seriously confine application possibilities due to memory
consumption. The dynamic dependences that are tracked are the same as in the
case of the graph representation, but instead of one huge graph, various smaller
data structures are maintained.

Besides introducing alternative dependence-based methods, slicing scenarios
are categorized [4] based on slicing direction, processing direction and global or
demand-driven nature of the algorithm. Our impact analysis that will be pre-
sented in Section 5 relate closely to the forward, demand driven algorithm in [15].
The difference between the two approaches lies in the fact that we will not produce
dynamic slices; therefore different data structures will be maintained. The reason
why we do not apply dynamic slicing is that we need only a set of variables, and
not a slice of the entire program.

3.2 Mutation-based regression testing
Paper [16] deals with regression test generation. The generation process has two
stages: in the first stage existing test cases are categorized similarly to the previ-
ously mentioned (SO, Si, S2, S3) cases. Based on the outcome of the first stage, a
new test case will be generated that effectively tests a modification. Our work is
derived from that article; however, there are a few important improvements. First
of all, we allow more than one modification to occur in the source code, and gen-
erate not only a test case, but a test pair. The test pair should match the changed
definition of reliability.

4 Tools and notations
In order to perform dynamic impact analysis, the source code has to be carefully in-
strumented. During the execution of the instrumented code each traversal through
a previously inserted sensor is registered. We will show that it is not necessary to
maintain a log file (which again can grow huge) and log the registered traversal.

488 Mihály Biczó, Krisztián Pócza, István Forgács and Zoltán Porkoláb

The relatively complex instrumentation that is required for real C++ code can
be performed using various tools, like the Columbus framework [11]. In the follow-
ing we briefly describe the used notations and information that instrumentation
must provide. We are going to employ sequence-point level instrumentation, which
means that sensors are inserted after each sequence point. This might imply that
the trace can grow too large to handle, however, as we will see, it can be produced
and processed on the fly.

For the identification of types, their fully qualified name is used

(namespacel::namespace2::...::Classl::Class2..).

All typedefs have to be resolved so that their corresponding type that can be
identified.

For the unique identification of variables, we use the following notation:

D(v, s, q, A„; Ap),

where v is the fully qualified name of the variable, s is the identification number
of the statement which runs the qth time, and v appears in the qth run of s. Since
C++ support pointer types, we have to distinguish between the memory location
where the variable resides, and the memory location it points to in case it is a
pointer. A„ represents the memory location of the variable, and Ap is the pointed
memory location (for non-pointer typed variables, A„ and Ap are equivalent). A
variable can be either global, static, local, or member variable. For the latter the

DD (.^object > ̂ member)

notation is used. Let's consider the example when there is a class named Foo
and there is a Bar typed member variable called b. When we instantiate an object
of Foo at a uniquely identified program location, both members of the DD pair can
be filled in.

(s, q): Foo f;

Let's suppose we would like to describe member b. Then the following entry
will be generated:

DD(D(Foo::f, s, q, 0xl3217ffa4, 0xl3217ffa4),
D(Bar::b, s, q, 0xl322a4c28, 0xl322a4c28))

Static, local or global variables can also be described this way with Dobject being
NULL in these cases.

For local variables the fully qualified name has to be integrated with the exact
block number where the local variable is defined. Pointer and function pointer
variables can be described similarly.

A New Concept of Effective Regression Test Generation in a C++ Spec. Env. 489

At each sequence point along the execution path we have to record the defined
(DEF) and used (USE) variables, and each variable has to be identified with the
above specified granularity. (Both of them contain variables that are identified
using the DD notation above.)

At each function we store the exact signature along with the source code location
in the call stack.

C++ rigorously defines destructors to be run deterministically when execution
leaves scope, or when an explicit delete is requested. Destructors should be instru-
mented just like ordinary functions, but with virtual or estimated line or column
number.

Another instrumentation requirement is in connection with the lazy evaluation
strategy of C++. Only those variables should appear in the instrumentation log
that are really used or defined. In the following we will refer to these variables as
actually defined/actually used variables.

5 Forward symptom analyzer algorithm
In this section we present our forward dynamic impact analyzer algorithm.

As we have shown previously, it is possible to identify memory locations for
each variable. Consequently, it is not necessary to start our algorithm from the
beginning of the program, rather from the location of the first occurrence of the
modified statement. However, this approach implicitly implies that the execution
history of the test case is the same for the original and modified programs until
the first occurrence of the modification. Unfortunately, the execution history can
be too large to log and to keep in memory, and the solution would not have a
significant advantage over dynamic slicing.

To overcome this difficulty, it is also possible to start the algorithm from the
very beginning of the program, and employ an online algorithm that processes log
entries on-the-fly. By online we mean that the instrumentation sensors write the
log entries to a buffered stream, and the impact analyzer fetches them on-the-
fly. Although this way a slight performance loss occurs, but we gain significant
advantage in the field of storage and memory consumption, which are usually the
critical factors.

Therefore, the input of the algorithm is not the execution history, rather a
test case that has previously been selected. The algorithm will identify both the
same-output symptom (S1/S2/S3) and the affected output statement or predicate
(P)-

Along the execution path, all variables have to be meticulously identified and
tracked in order to easily maintain the DEF and USE sets at each sequence point.
To achieve this goal, all kinds of assignment operations between variables need to
be described in terms of the above notations. Originally, we treated simple (built-
in) and user-defined types separately, but it turned out that it is not necessary to
make distinction between the two categories. Since these two elements take the
same form, we explain only the assignment of simple (local) variables. Different

490 Mihály Biczó, Krisztián Pócza, István Forgács and Zoltán Porkoláb

cases are shown in Table 1. In the first column the possible types of underlying
variables and the location of their definition is shown. The second column contains
the assignment operations again with the location, while in the third column the
instrumentation entry can be seen. The format of the entry is in the following form:
L stands for assignment location, R for actually referenced variable, D for defined
variable. Please note that the location means a sequence point.

Variable types
and locations

Assignment location/
operation

Instrumentation
entry

(Si.Qi) int i;
(Sj,Qj) int j;

(S,Q) i= j; L
R
D

(S,Q)
D(j, Sj, Qj, Avj, Avj)
D(i, Si, Qi, Avi, Avi)

(Si,Qi) int *i;
(Sj.Qj) int *j;

(S,Q): i = j; L
R
D

(S,Q)
D(j, Sj, Qj, Avj, Apj)
D(i, Si, Qi, Avi, Apj)

(Si,Qi) int *i;
(Sj.Qj) int j;

(S,Q): i = &j; L
R
D

(S,Q)
D(j, Sj, Qj,.Avj, Avj)
D(i, Si, Qi, Avi, Avj)

(Si,Qi) int *i;
(Sj.Qj) *j;
int a;

(S,Q): i = j+2+a; L
R
D
A

(S,Q)
D(j, Sj, Qj, Avj, Apj)
D(i, Si, Qi, Avi,

pj+sizeof(*j) *(2+a))
(Si,Qi) int *i;
(Sj,Qj) int *j;

(S,Q): *i =• *j; L
R
D

(S,Q)
D(], Sj, Qj, Avj, Apj)
D(i, Si, Qi, Avi, Api)

(Si,Qi) int *i;
(Sj,Qj) int j;

(S,Q): *i = j; L
R
D

(S,Q)
D(j, Sj, Qj, Avj, Avj)
D(i, Si, Qi, Avi, Api)

(Si,Qi) int *i; (S, Q): i = new int; L
R
D

(S,Q)

D(i, Si, Qi, Avi, Api-New)

Table 1: Assignment of primitive types

As we have previously mentioned, the assignment of primitive types can be
applied to user-defined types as well, although there are some important extensions.
C++ allows programmers to overload default operators, including the assignment
operator. If there is no explicit user defined assignment operator in a class, then
the default assignment operator (member-wise assignment) will be applied. On the
other hand, if there is a custom assignment operator, its effect has to be preserved
in the execution history.

At this point we have all of the necessary information to describe the intra-
procedural version of the forward dynamic symptom analyzer algorithm. Later, it
will be extended to its final inter-procedural form.

The input of the algorithm is the test case, the location of the modification,

A New Concept of Effective Regression Test Generation in a C++ Spec. Env. 491

and the set of variables that axe defined at the modified statement. Because the
set of defined variables at the modification is not known, and generating the whole
execution trace is not acceptable, the values of the actually defined variables have
to be calculated in a preprocessing step.

The preprocessing step requires the introduction of a set that stores variables of
interest along the execution path. This set will be referred to as Varstore. Varstore
is set to empty. At each variable assignment the defined variable calculated based
on rules listed in is added to Varstore. When execution leaves the scope, all local
variables will be removed. The same case holds when an explicit delete operation
is requested. When we reach the first occurrence of the modified statement, the
memory location of the actually defined variables can be calculated, and the set
Varstore can be deleted. The introduction of Varstore is important because of
the pointer typed variables of C + + . Consider the example in Listing 2. All three
variables (n, ip, jp) will be added to Varstore, and at the predicate we can detect
that we refer to the same variable that was modified.

Listing 2 Pointer example
i n t n = 2;

int *ip = *jp = &n;

//modification:

*ip = 3; //original: *ip = 6;

if(* jp > 5)

After the initialization step we introduce a set called Affect for storing vari-
ables that are directly or indirectly affected by variables defined at the modified
statement. The main steps of our algorithm without the preprocessing step are the
following.

1. Affect is initialized with variables that are defined at the modified statement
imod and refer to the same memory location (based on Varstore), starting
point is Set tO imod-

2. From imod we traverse over statements (ig) along the execution path according
to test case T, and based on the type of this statement, we take one of the
following actions:

a) If ig is an output statement (in other words it is not a predicate and does
not define variables), and there is at least one used variable from Affect,

492 Mihály Biczó, Krisztián Pócza, István Forgács and Zoltán Porkoláb

then the underlying symptom is trivially Si, and the affected statement
is sq, in addition the algorithm can safely terminate.

b) If iq is a predicate, then all actually used variables are considered. If the
intersection of this set and Affect is not empty, then S2 is identified, and
the affected statement is i9. When predicate igis the modified statement
then S2 is also identified at the modified statement.

c) If i, is an assignment, then for each w variable used at iq the presence
of the variable in Affect is checked. If a w variable is in Affect then the
defined variables in i9 axe added to Affect The statement defining w is
marked as effective.
For each w variable in Affect it is checked if the w variable is defined at
i, and the last definition of w is not at ig. If the previous condition is
true then w is removed from Affect, moreover if the last definition is not
effective the S3 is identified.

In order to successfully extend this algorithm to the inter-procedural case, we
have to address parameter passing methods, and return values as well.

Method Modelling
By value
The same as (int i=j)

D(j, Sj, Qj, Avj, Avj)
D(i, Si, Qi, Avi, Avi)

By address
The same as (int *i=&j)
OR
(int *i=j) if j is a pointer

D(j, Sj, Qj, Avj, Avj)
D(i, Si, Qi, Avi, Avj)
OR
D(j, Sj, Qj, Avj, Apj)
D(i, Si, Qi, Avi, Api)

By reference D(j, Sj, Qj, Avj, Avj)
D(i, Si, Qi, Avj, Avj)

Table 2: Parameter passing methods and their representation

In C + + parameters can be passed via one of the following methods: by value,
by address, and by reference.

Within a function any assignment to a parameter that has previously been
passed by reference will not take effect outside the function, yet these assignments
can alter the execution path through the return value of the function. A parameter
passing by value can be modeled as an assignment to a local variable.

Parameter passing by address means the passing of pointer variables. Any
assignment to a pointer variable within a function will not cause any side effect
outside. Nevertheless, with the modification of the pointed memory location via
dereference (*) operator side effects may occur. Passing by address can be thought
of as introducing a new local pointer variable originally set to the same memory
location as the pointed memory location of the actual parameter.

Since a reference can be regarded as the synonym of a memory location, any
modification to a parameter passed by reference will take effect outside the function.

A New Concept of Effective Regression Test Generation in a C++ Spec. Env. 493

Algorithm 1 Symptom analyzer
Function SymptomAndLocation(T, S, P)

Affect={i mod. Def}
S = Nothing
for each statement i9 in ExecutionPath(T) from imod to iiast do

if i9 is output and i9.UseflAffect / 0 then
S = SI;
P = i,;
terminate;

end if
if iq is predicate and (i?.UseflAffect ^ 0 or i, is the modified statement)
then

S = S2;
P = i,;
terminate;

end if
if i, is definition or function return then

for each w € iq.Use do
if w G Affect then

Affect=Affect U i,.Def
mark dw as effective

end if
end for
for each w € Affect do

if w G i,.Def and d™ ^ ig then
Affect=Affect\{w}
if d™ is not effective then

S=S3
P=iq

end if
end if

end for
end if
if iq is function call then

AssignParams(i9)
end if

end for

The three cases are summarized in Table 2 using the previously introduced
notation. Please note that j represents the actual parameter, while i is the formal
parameter.

In order to complete our extension, we have to cover the handling of return
values. The return statement can also be substituted by a virtual assignment.

494 Mihály Biczó, Krisztián Pócza, István Forgács and Zoltán Porkoláb

Namely, return I; can be exchanged to the actaLretvar=I assignment operation.
This way we can trace back the problem of return values to different parameter
passing methods.

The pseudo-code of the inter-procedural algorithm (which is basically the same
as the intra-procedural version) can be seen in Algorithm Listing 1.

6 Finding influencing input variables
In theory, we could either apply a backward or a forward algorithm to find those
input variables that have an influence on the statement that causes ineffectiveness.
However, since in the first step we developed and applied a forward method, it
would be more comfortable to extend that and keep the key concept. As we will
see, with very little adjustment the previous algorithm can be tuned to solve our
second problem. Consequently, the two stages can share the same implementation.

The main steps of the algorithm include:

1. Finding variable definitions of input variables. An input variable can be a
constant definition, data read from standard input/file, any parameter of
main, or a default parameter of a function.

2. We perform the previously described impact analysis with the difference that
we also keep track of effective input variables and omit those parts of the
algorithm that identify symptoms. Since we are unaware of at which predicate
should the execution path be altered, we monitor each predicate.

In the following we detail only the intra-procedural version of the algorithm,
since the inter-procedural version remains unchanged.

• The set Affect will contain variables directly or indirectly affected by any
input variables. We index the elements of Affect with the input variable
that has an influence on that specific variable. This means that Affect might
contain the same variable multiple times with different indices related to input
variables.

• Traverse along the execution path from the first statement, and consider each
statement iq. Based on the type of iq., the behavior of the algorithm differs.

• If i,. is an input statement, and variable d will be assigned at i9 , then d^ €
Affect

• If ig. is a predicate, then only actually executed conditions should be evalu-
ated. For each actually executed condition and for each actually used variable
if u(v) £ Affect, then v is added to effective input variable set of the predicate

• If ig. is an assignment statement, then the defined variable is deleted from
Affect with all indices. If some input variables are used, then the defined
variable is added to Affect indexed with the input variable. If a j non-input
variable is used, for which j(lJ) € Affect, then d(„) is added to Affect.

A New Concept of Effective Regression Test Generation in a C++ Spec. Env. 495

The influencing input variables can be calculated as the the union of effective
input variable sets of the predicates.

Algorithm 2 Influencing inputs
Function FindInfluencingInputs(T, V)

Affect={}
for each statement \q in ExecutionPath(T) from \fiT3t to \iast do

if i, is input statment then
Affect=Affect U iq.Def (iq.Dej)

end if
if i, is predicate then

for each u G i9.ExecConditions.Use do
if U(„) e Affect then

V(i,)=V(i,) U V
end if

end for
end if
if i, is definition or function return then

for each d G ig.Def do
for each d(„) G Affect do

Affect=Affect \ d(„)
end for

end for
for each j G i,.Use fl Affect.Indices do

Affect=Affect U {ig.Def(j)}
end for
for each w G i9.Use do

for each WQJ G Affect do
Affect=Affect U {iq.Def(:))}

end for
end for

end if
if iq is function call then

AssignParams(ig)
end if

end for

7 Full example
In order to present the usability of the proposed solution, we show the two stages
in work through a fully C++ compliant example.

496 Mihály Biczó, Krisztián Pócza, István Forgács and Zoltán Porkoláb

The example deals with arithmetic operations. A general operation is repre-
sented as an abstract class, and all specific operations derive from this class. In
this simplified source we use two operations: addition and multiplication.
1. «include <iostream>
2. «include <Btring>
3. «include <stdlib.h>

4. using namespace std;

5. namespace MathOperation
6. {
7. class Operation //base class
8. {
9. public:
10. //Pure virtual function
11. virtual int DoOperation(int x,int y)=0;
12. virtual string 0pNajae()B0;
13. >;

14. //Derived class 1
15. class AddOperation: public Operation
16. {
17. public:
18. int DoOperationCint x, int y)

{return x + y;}
19. string OpNameO {return "Add";>
20. >;

21. //Derived class 2
22. class NulOperation: public Operation
23. {
24. public:
25. int DoOperation(lnt x, int y)

{return x * y;}
26. string OpNameO {return "Mul";>
27. };
28. >

29. class ClmpactAnal
30. {
31. public:
32. void QueryMethodO
33. {
34. int oplocal;
35. cin » oplocal;
36. this->opcode = oplocal;
37. >
38. void DoCalculationCint x, int y)
39. {
40. MathOperation::Operation top = HULL;
41. //original: int opcode2=opcode;
42. int opcode2aopcode-l;
43. if(opcode2 > 1)

op = new MathOperation::AddOperationO;
44. else

op = new MathOperation::MulOperationC);
45. lastOp = op;
46. cout « " Result: " «

op->DoOperation(xl y) « endl;'
47. >
48. void LastOperationO
49. {

cout « "Last op: " «
las10p->0pNameO « endl;
delete lastOp;

50. >

A New Concept of Effective Regression Test Generation in a C++ Spec. Env. 497

51. private:
52. int opcode;
53. MathOperation::Operation »lastOp;
54. >;
55. int mainCint argc, char* argv[])
56. {
57. CImpactAnal *ia = new CImpactAnalO;
58. int x = 2;
59. int y = 3;
60. ia->QueryMethodO;
61. ia->DoCalculation(x, y);
62. ia->LastOperation();
63. return 0;
64. >

The client code executes an arithmetic operation on two constants based on user
input. According to our previous definition, the program has three input variables:
x, y, and op local. Remember that an input variable is either a constant definition,
data read from standard input/file, any parameter of main, or a default parameter
of a function, x and y are constants (might be either parameters of the main
function), oplocal is user input.

For the sake of clarity, we present an example with exactly one modification,
which takes place at line no. 42. The modification affects an assignment statement,
because opcode2=opcode was changed to opcode2=opcode-1. (In case of more than
one modification, the same procedure applies until the first occurrence of the first
modification.)

In the following part we review the stages of the previously introduced algorithm
in order to identify test-case critical input variables.

The first section of the first stage is the preprocessing step. During this stage
the aim is to identify those variables that possibly get a new value at the modified
statement. In the current example the preprocessing step works as follows: The
entry point of the algorithm is set to the first line of the main function (to the
beginning of the program).

The Varstore set that stores variables of interest in the preprocessing step is
initialized to empty. After traversing line no. 57, there would be two entries in the
set Varstore. One of them represents the object pointer variable ia, and the other
the member variable opcode of type int. Then variables x and y are added during
the traverse over lines 58 and 59.

At line 60 there is a call to the QueryMethod member function of the CIm-
pactAnal class. When we reach line no. 34, the local variable oplocal is also added
to the Varstore set. At line 35 the value of oplocal is redefined, but its memory
location is unaffected, therefore there is no need to update its entry in the Varstore
set. At line 36 the value of class member variable opcode is set therefore it should
be added to Varstore. Since oplocal introduced at line 34 is a local variable, and
we leave the scope of this definition at line no. 37, at that point it is removed from
Varstore. Then execution returns to line no. 61, where there is a call to DoCal-
culation. At line 40 variable op, at line 42 variable opcode2 is added to Varstore.
At line 42 we reach the modified statement for the first time. The actually defined
variables can be calculated (in this case it is only opcode2). If there are any pointer

498 Mihály Biczó, Krisztián Pócza, István Forgács and Zoltán Porkoláb

variables in Varstore, we have to check whether these variables point to some used
variables.

The next stage is the symptom analyzer algorithm. Variable opcode2 will be
added to the set Affect, and the algorithm is started from the modified statement.
Since the modified statement is an assignment, the used variables should be removed
from Affect, but opcode is not in Affect, so this step is not required. After that step
variables that are defined at the underlying statement, but the last definition did
not take place at the current statement, are removed from Affect. This step now
does not execute because the previously mentioned conditions do not hold. Now
the algorithm advances to the next statement that takes places at line 43, and is a
predicate. Because the intersection of the used variables and the set Affect is not
empty, the modification has an influence on this predicate, so S2 is identified, and
the algorithm terminates.

The last step before automatic test generation is the identification of influencing
input variables. This stage starts at the beginning of the program. At each input
variable definition, the variable will be added to Affect indexed by itself. In our
example that means that x^j , y^j , and oplocal(opioca;) are added to Affect during
execution. At line 35 variable oplocal is redefined, there is no need to change Affect.
When we reach line 36, opcode(opjocai) is also added to Affect After leaving method
Query Method and entering DoCalculation we reach line 40 where the definition of
op resides. There is no need to add it to Affect because it does not depend on any
variables of Affect. As we previously mentioned there is an entry opcode(op;oca;)
in Affect therefore when we reach line 42 defining opcode2 based on opcode, the
opcode2(op;ocai) is added to Affect. Now we reached the modified statement where
the used variable is only opcode2 indexed by oplocal therefore we can establish that
the only influencing input variable is oplocal.

At this point we know that the identified symptom is S2, in other words the
modification influences a predicate in line 43. We have also managed to identify
the only input variable that influences that predicate.

The whole framework would then choose a regression test from the test suite
that reaches the modification. From this test a pair of test cases will be created
using a dataflow based generation algorithm. The variables that are allowed to
modify are the ones that have an influence on the predicate, in our case 'oplocal'.
The values of 'oplocal' should be close to each other, and close to that value where
the predicate evaluates to different values (the test case should be sharp regarding
the influenced predicate).

8 Conclusion
In this paper we introduced a changed concept of regression testing that was mo-
tivated by the shortcomings of existing techniques. We have shown that classical
modification traversing and modification revealing regression tests are not neces-
sarily error revealing. The new concept focuses on the reliability of test cases, it
tries to assure that each test that reaches a modification has an influence on at

A New Concept of Effective Regression Test Generation in a C++ Spec. Env. 499

least one output statement.
In order to achieve this goal, existing test case£> have to be filtered, and those that

are usable, should be transformed. So the main task is automated test generation
that is appropriate for the changed regression testing concept. Test generation can
be thought of as a search in a space spanned by the input variables of the program.
Unfortunately, the dimension of this search space can grow over the limits where
a search can be comfortably managed. Consequently, our goal was to reduce the
dimension of this search space, and find only input variables that have an influence
on the modification for a given test case.

Instead of dynamic program slicing, we applied a custom dynamic impact anal-
ysis which is more appropriate for this problem. Besides operating in a forward
manner, the algorithm is also superior to dynamic slicing in memory consumption,
which can be a critical factor when dealing with large applications.

All of our methods have been developed to work in a C++ specific language en-
vironment. Therefore, many C++ constructs have been covered in detail including
both procedural and object oriented constructs like pointers and function point-
ers, different parameter passing methods, classes, member and object variables and
inheritance. Since C++ exposes a wider range of language constructs and gives
more freedom to the programmer than most modern object oriented languages, we
believe that the proposed approach can be successfully adjusted to work in other
environments as well. The relative simplicity of the dynamic impact analyzer algo-
rithm is due to a complex instrumentation mechanism. The instrumentation step is
supported by the Columbus framework [11]. Since Columbus is currently not able
to handle all requirements we described, first we should extend that tool. A further
technical limitation is the handling of different C++ dialects. Although the ANSI
standard is adopted by nearly all compilers that are used for production systems,
many of them support additional features that do not comply with the standard.
Consequently, the instrumentation step has to prepare for differences.

In order to fully cover the potential of C++, we also have to address issues
related to the template mechanism. Technically, it is a must to be able to insert
the instrumentation stage after the preprocessing step has been completed.

References
[1] A. Beszedes, T. Gergely, Zs. M. Szabo, J. Csirik, T. Gyimothy. Dynamic slicing

method for maintenance of large C programs. CSMR 2001, pages 105-113.

[2] B. Korel, Ali M. Al-Yami. Automated Regression Test Generation. ISSTA
1998: 143-152

[3] B. Korel. Automated Test Data Generation for Programs with Procedures.
ISSTA 1996: 209-215

[4] F. Tip. A survey of program slicing techniques. Journal of Programming
Languages, 3(3):121-189, Sept. 1995.

500 Mihály Biczó, Krisztián Pócza, István Forgács and Zoltán Porkoláb

[5] G. Rothermel and M.J. Harrold. A safe, efficient algorithm for regression test
selection. Proceedings of the International Conference on Software Mainte-
nance, pp. 358-367, September 1993.

[6] G. Rothermel and M.J. Harrold. Selecting tests and identifying test coverage
requirements for modified software. Proceedings of the International Sympo-
sium on Software Testing and Analysis, pp. 169-184, August 1994.

[7] G. Rothermel and M. Harrold. Analyzing regression test selection techniques.
IEEE Transactions on Software Engineering, 22(8):529-551, August 1996.

[8] G. Rothermel, M. J. Harrold, and J. Dedhia. Regression test selection for C + +
software. Journal of Software Testing, Verification and Reliability, 10(2), June
2000.

[9] I. Forgacs and A Hajnal. An Applicable Test Data Generation Algorithm for
Domain Errors. In Proceedings of the ACM/SIGSOFT International Sympo-
sium on Software Testing and Analysis, Clearwater Beach, Florida, March,
1998.

[10] Pargas, R. P., Harrold, M. J., and Peck, R. R. Test data generation using ge-
netic algorithms. The Journal of Software Testing, Verification and Reliability
9 (1999), 263-282.

[11] R. Ferenc, A. Beszedes and T. Gyimothy. Extracting Facts with Columbus
from C + + Code. In Tool Demonstrations of the 8th European Conference on
Software Maintenance and Reengineering (CSMR 2004), Tampere, Finland,
pages 4-8, March 24-26, 2004.

[12] R. Gupta, M. Harrold, M. Soffa. An approach to regression testing using
slicing. Conference on Software Maintenance, 1992, pp. 299-308.

[13] T. Gyimothy, A. Beszedes, and I. Forgacs. An efficient relevant slicing method
for debugging. In Proceedings of ESEC/FSE'99, number 1687 in Lecture Notes
in Computer Science, pages 303-321. Springer-Verlag, Sept. 1999.

[14] W. Wong, J. Horgan, S. London, and H. Agrawal. A study of effective regres-
sion testing in practice. In Proceedings of the Eighth International Symposium
on Software Reliability Engineering, pages 230-238, Nov. 1997. 10.

[15] A. Beszedes, T. Gergely and T. Gyimothy. Graph-Less Dynamic Dependence-
Based Dynamic Slicing Algorithms. In Proceedings of the 6th IEEE Int'l
Workshop on Source Code Analysis and Manipulation, pages 21-30. IEEE
Computer Society, 2006.

[16] I. Forgacs, E. Takacs. Mutation-Based Regression Testing. Conference pro-
ceedings. Tenth International Software Qualiti Week 1997. San Francisco,
1997. Vol. 2. San Francisco, Software Res. Inst., 1997.

A New Concept of Effective Regression Test Generation in a C++ Spec. Env. 501

[17] N. Gupta, A. Mathur, M. Soffa. Automated Test Data Generation Using
an Iterative Relaxation Method. Foundations of Software Engineering, pages
231-244, 1998.

[18] Graves, T. L., Harrold, M. J., Kim, J., Porter, A., and Rothermel, G. An
empirical study of regression test selection techniques. ACM Transactions on
Software Engineering and Methodology. 10, 2 pages 184-208, 2001.

[19] M. Harrold and M. Soffa. An incremental approach to unit testing during
maintenance. In Proceedings of the Conference on Software Maintenance,
pages 362-367, Oct. 1988.

Received 10th October 2006

Acta Cybernetica 18 (2008) 503-527.

Two New Approximation Algorithms for the
Maximum Planar Subgraph Problem*

Timo Poranent

Abstract

The maximum planar subgraph problem (MPS) is defined as follows: given
a graph G, find a largest planar subgraph of G. The problem is jVP-hard
and it has applications in graph drawing and resource location optimization.
Calinescu et al. [J. Alg. 27, 269-302 (1998)] presented the first approximation
algorithms for MPS with nontrivial performance ratios. Two algorithms were
given, a simple algorithm which runs in linear time for bounded-degree graphs
with a ratio 7/18 and a more complicated algorithm with a ratio 4/9. Both
algorithms produce outerplanar subgraphs.

In this article we present two new versions of the simpler algorithm. The
first new algorithm still runs in the same time, produces outerplanar sub-
graphs, has at least the same performance ratio as the original algorithm,
but in practice it finds larger planar subgraphs than the original algorithm.
The second new algorithm has similar properties to the first algorithm, but it
produces only planar subgraphs. We conjecture that the performance ratios
of our algorithms are at least 4/9 for MPS.

We experimentally compare the new algorithms against the original simple
algorithm. We also apply the new algorithms for approximating the thickness
and outerthickness of a graph. Experiments show that the new algorithms
produce clearly better approximations than the original simple algorithm by
Calinescu et al.

Keywords: maximum planar subgraph, maximum outerplanar subgraph,
thickness, outerthickness, triangular cactus heuristic, approximation algo-
rithm

1 Introduction
A graph is planar if it admits a plane drawing where no two distinct edges intersect
apart from their endpoints, otherwise the graph is non-planar. Let G = (V, E) be a

'Work funded by the Tampere Graduate School in Information Science and Engineering (TISE)
and supported by the Academy of Finland (Project 51528). The results of this paper have origi-
nally published in the PhD thesis [32] of the author.

^Department of Computer Sciences, P.O. Box 607, FIN-33014 University of Tampere, Finland,
E-mail: tpfflcs.uta.fi

504 Timo Poranen

graph without loops and parallel edges. If a graph G' — (V, E') is a planar subgraph
of G such that every graph G" obtained from G' by adding an edge from E\E'
is non-planar, then G' is called a maximal planar subgraph of G. Let G' = (V, E')
be a maximal planar subgraph of G. If there is no planar subgraph G" = (V, E")
of G with \E"\ > \E'\, then G' is a maximum planar subgraph. A maximal planar
subgraph is maximal in the sense that adding edges is not possible and a maximum
planar subgraph is maximal with respect to the cardinality of its edge set.

A planar graph is outerplanar if it admits a plane drawing where all its vertices
lie on the same face and no two distinct edges intersect apart from their endpoints.
Maximal and maximum outerplanar subgraphs are defined analogously.

Maximum planar subgraphs have applications in facility layout [17] and graph
drawing [20, 22]. The problems of finding a maximum planar subgraph or a maxi-
mum outerplanar subgraph are denoted respectively throughout this work by MPS
and MOPS. Both problems are known to be NP-hard [26, 38]. Therefore, heuristic
algorithms are needed to find good approximations. Several methods for approx-
imating MPS are given in the literature, see for example a survey by Liebers [25]
and the references given there.

The performance ratio of an approximation algorithm for a maximization prob-
lem is the worst case ratio of solutions obtained to the cost of optimal solution. The
performance ratio measures the solution quality of an approximation algorithm, the
closer to 1 the ratio is, the better solutions the algorithm guarantees. A simple way
to find an approximation for MPS is to produce a spanning tree for the input graph.
Since a spanning tree of an n-vertex graph contains n — 1 edges and a maximum
planar subgraph could contain at most 3n — 6 edges, the performance ratio of this
method is 1/3 [10].

Calinescu et al. [5] presented the first approximation algorithms with non-
trivial performance ratios for MPS and MOPS. Their method, triangular cactus
heuristic, gives a performance ratio of 4/9 for MPS and 2/3 for MOPS. These
approximations can be achieved by a complicated algorithm having a running time
of 0(mz/2n log6 n) for a graph with n vertices and m edges. There is no known
implementation of this algorithm. Calinescu et al. also presented a simple version of
their algorithm having performance ratios 7/18 and 7/12 respectively. The simple
algorithm runs in linear time for bounded-degree graphs.

In this paper we introduce two new algorithms based on the simple version of
the algorithm presented by Calinescu et al. for MPS and MOPS. Our first algo-
rithm also runs in linear time for bounded-degree graphs and it has at least the
same performance ratio as the original simple algorithm. The second algorithm
has properties similar to those of the first algorithm, but it produces only planar
subgraphs. We conjecture that the new algorithms have at least the same perfor-
mance ratio as the more complicated algorithm. Our experiments show that the
new algorithms produce clearly better approximations than the original simple al-
gorithm. Since the better algorithm by Calinescu et al. is difficult to implement,
it is not included in our experiments.

The thickness of a graph is the minimum number of planar subgraphs into which
the graph can be decomposed. The outerthickness of a graph is the minimum

Two New Approximation Algorithms for the Maximum Planar.. 505

number of outerplanar subgraphs into which the graph can be decomposed. The
thickness and outerthickness are topological invariants that measure the graph's
embeddability into the plane. Determining the thickness of a graph plays an im-
portant role in VLSI circuit design: the minimum number of planar subgraphs
whose union is the graph corresponding to an electronic circuit provides an effi-
cient way to find a decomposition for the distinct layers of the circuit [30].

Determining the thickness of a given graph is NP-hard [28] but the complexity
status of determining the outerthickness is not known. The thickness is known for
hypercubes [23], complete graphs [1, 2] and complete bipartite graphs [3]. Similar
results for outerthickness have been reported by Guy and Nowakowski [14, 15].

Only one method to obtain approximations for thickness has been introduced
in the literature: extract maximal planar subgraphs from the original graph until
the remaining graph is planar [8, 30]. All earlier algorithms apply planarity tests
to construct large planar subgraphs.

A new approach presented here for approximating the thickness of a graph is
to extract planar subgraphs in such a way that the extracted graph is constructed
without using planarity testing algorithms. In this paper we apply the simple al-
gorithm by Calinescu et al. [5] with our new algorithms for approximating the
thickness and outerthickness of a graph. Our experiments show that the new algo-
rithms give better approximations than the original simple algorithm.

The rest of this paper is organised as follows. Next we give graph theoretical
definitions and introduce a greedy algorithm for MPS with the extraction algorithm
for the thickness problem. We also describe the triangular cactus heuristic. The
new algorithms and their theoretical properties are discussed in Section 3. The
experimental comparison of the algorithms for MPS is presented in Section 4 and
then the algorithms are applied to the thickness problem in Section 5. The last
section concludes our paper.

2 Preliminaries

2.1 Graph-theoretical definitions
For the basic graph-theoretical definitions, we refer to Harary [16]. Throughout
this work we assume that graphs are simple and connected. An m x n grid graph is
the product of paths of length m and n and contains mn vertices and 2mn — n — m
edges.

A triangular structure is a graph in which every cycle is a triangle. A triangular
cactus is a triangular structure in which every edge is in some cycle. A triangular
structure is outerplanar, since the graph cannot contain a subdivision of K,i or

A maximal outerplanar graph (mop) is an outerplanar graph such that inserting
any edge produces a non-outerplanar graph. Next we present a useful characteri-
zation for mops [4] having at least three vertices.

506 Timo Poranen

Definition 2.1. Mops having at least three vertices can be defined recursively as
follows:

1. K3 is a mop.

2. If G is a mop which is embedded in the plane so that every vertex lies on the
outer face and G' is obtained by joining a new vertex to two vertices of an
edge on the outer face of G, then G' is a mop.

3. H is a mop if and only if it can be obtained from K3 by a finite sequence of
applications of statement (2).

2.2 A greedy algorithm for MPS
Throughout this work, all algorithms for MPS return a subgraph of the input
graph. The cost of a solution is the number of edges in the returned approximation.
Thickness algorithms return a partition of the edges of the input graph. The cost
of a solution is the number of subsets in the partition.

A greedy algorithm to search for a maximal planar subgraph is to apply a pla-
narity testing algorithm and to add as many edges as possible to a planar subgraph.
See Algorithm 2.1 (GRE) for a detailed description of this edge adding method.
The performance ratio of GRE is 1/3 for MPS [10].

GRE (G = (V,E),G' = (V,E'))
1 E" — E\ E'\
2 while there is an edge (u, v) in E"
3 do E' E'U {(u, w)}, E" <- E" \ {(u, *;)};
4 if (V, E') is not planar
5 then E' E' \ {(u, v)};
6 return {y,E')\

Algorithm 2.1: GRE for MPS.

GRE takes as input a graph G = (V,E) and its planar subgraph G' = (V, E').
The algorithm returns a maximal planar subgraph containing the input graph as a
subgraph. Our reason for assuming that a planar subgraph is given as input to the
algorithm is that then we can apply GRE to improve solutions of other heuristics.
This approach is described in Section 3. The running time of GRE heuristic is
0 (| VH^I) if a linear time planarity testing algorithm [18] is applied at Step 4.

2.3 The thickness heuristic
Next we describe the basic approach to obtain approximations for thickness. The
extraction method was first studied by Cimikowski [8] and Mutzel et al. [30]. For

Two New Approximation Algorithms for the Maximum Planar.. 507

a detailed description of the extracting method see Algorithm 2 . 2 (T H I C K) . Step 3
of the algorithm is usually given as "find a maximal/maximum planar subgraph"
instead of finding just a planar subgraph.

T H I C K (G = (V,E))
1 P «- 0 ; t <- 1;
2 while E Ï 0
3 do find a planar subgraph G' = (V, Et) of G;
4 E < - E \ E f ,
5 P <— PU {Et}',
6 t*-t+1;
7 re tu rn P;

Algorithm 2.2: Basic structure of the extraction algorithm for the thickness prob-
lem.

T H I C K takes as input a graph G = (V, E) and it returns a partition of the
edges into subsets inducing planar subgraphs. The running time of Algorithm 2.2
depends heavily on the method used in Step 3. If a maximal planar subgraph
is recognised from the input graph by applying GRE, the running time of the
algorithm is 0(|V| 2 |£ |) .

2.4 Triangular cactus heuristics
Next we introduce the triangular cactus algorithms for MPS and MOPS [5]. Given
a connected graph G = (V, E), the triangular cactus heuristic is based on finding
a subgraph G' = (V, E') whose components are triangular cacti. The subgraph is
constructed in the following way: E' is initialized to be empty. Triangles having all
vertices in different components in G' are searched from G and added to E'. After
all suitable triangles have been added to G', the subgraph is connected by adding
edges until the resulting graph is a connected triangular structure. See Algorithm
2.3 (CA) for a detailed description of the triangular cactus heuristic. Steps 2 and 3
are called Phase 1 (the construction phase of a triangular cactus) and Steps 4 and
5 are called Phase 2 (the connection phase) of the algorithm.

Algorithm CA can be implemented to run in linear time as shown by Calinescu
et al. [5], provided that the maximum degree of the graph is bounded by a constant.
The theorem below concludes the properties of CA.

Theorem 2.2. [5] CA runs in linear time for bounded-degree graphs. The perfor-
mance ratio of CA for MPS is 7/18 and for MOPS 7/12.

If a maximum triangular cactus is searched for in Phase 1 instead of the trian-
gular cactus of CA, the performance ratio increases to 4/9 for MPS and 2/3 for
MOPS [5]. The algorithm is denoted by CAM-

508 Timo Poranen

CA(G = (V,E))
1 E'«- 0 ;

2 while there is a triangle (̂ 1,112,113) in G such that
vi, V2 and 1/3 belong to different components of (V,E')

3 do E' E' U {(v1,v2),(v2,v3)i{v3,v1)y,
4 while there is an edge (ui, 6 E such that v\ and v2 belong to

different components in (V,E')
5 do E'<r-E'u{{vuv2)};
6 re tu rn (V,E')-t

Algorithm 2.3: CA for MPS and MOPS.

All the known algorithms for finding a maximum triangular structure are very
complicated. The method proposed by Calinescu et al. [5] was based on reducing
the problem of finding a maximum triangular structure to a graphic matroid parity
problem [27] and then solving it with an algorithm by Gabow and Stallman [11].
This method leads to running time 0(m3 /2 log6 n). There are no known imple-
mentations of the algorithm. The following theorem formulates the properties of
CA M-

Theorem 2.3. [5] The performance ratio of CAM for MPS is 4/9 and for MOPS
2/3. CAm runs in 0(m 3 / 2 log6 ra) for a graph with m edges and n vertices.

3 New algorithms for MPS and MOPS
In this section we introduce first, our new algorithms, CA1 for MPS and MOPS
and CA2 for MPS. We also study the theoretical properties of the algorithms and
compare them with CA and CAM-

When a triangle is found in CA, it always connects three vertices from differ-
ent components of the subgraph. It is easy to see that not all the vertices of a
triangle need belong to different components. It is enough to have two vertices
vi and V2 joined by an edge (vi,v2) in one component and the third vertex V3 in
another component forming a triangle (^1,^2,^3)- When triangles are added using
this principle whenever possible, and otherwise requiring that the vertices of the
triangle belong to different components, the planarity is not violated. If any trian-
gle is added with this new principle, the resulting graph is no longer a triangular
structure. To ensure that the constructed "Subgraph is also outerplanar, it is nec-
essary and sufficient to demand that (vi,v2) belongs to at most two triangles at
the same time. The algorithm applying this restriction and producing outerplanar
subgraphs is denoted by CAl, and the algorithm without the restriction is denoted
by CA2. The properties of CAl are studied first. The exact description of CAl
is given in Algorithm 3.1.

Two New Approximation Algorithms for the Maximum Planar.. 509

CA1(G=(V,E))
1 E' « - 0 ;
2 repeat while there is a triangle (^1,^2,^3) in G such that (vi,v2) belongs

to exactly one triangle in E' and U3 to a different component of
(V,E')

3 doE'<-E'U {(v2,v3), (v3,i>i)};
4 if there is a triangle (v\,v2,v3) in G such that v2 and v3

belong to different components of (V, E')
5 then E' <- E' U {(vi,v2),(v2,v3),(v3,v1)}\
6 until the number of edges in E' does not increase during the loop;
7 while there is an edge (vi,v2) € E such that v\ and V2 belong to

different components in (V,E')
8 do E' <- E' U{(ui,u2)};
9 return (V,E');

Algorithm 3.1: CA1 for MPS and MOPS.

. CA1 was inspired by the recognition algorithm for maximal outerplanar graphs
proposed by Mitchell [29]. The algorithm was based on extracting degree 2 vertices
from the graph. In CA1, vertices of degree 2 are added to an outerplanar subgraph.

Figure 1 provides an illustration of the behaviour of CA and CA1 for the graph
cimi-g4 [9], which is a non-planar graph with 10 vertices and 22 edges. A maximum
planar subgraph of this graph contains 20 edges. The triangles are numbered in the
order they are found. This order depends on the implementation of the algorithm
and the representation of the graph. CA first finds four triangles and then it
connects one remaining vertex with the rest of the subgraph. The planar subgraph
contains 13 edges. CA1 finds first one triangle, then it adds 5 triangles that increase
the number of edges by 2 and finally a triangle with three new edges is added. The
size of the planar subgraph is now 16.

Next we show that CA1 can be implemented to run in linear time, if the max-
imum degree of the input graph is bounded by a constant.

Lemma 3.1. CA1 runs in linear time for bounded-degree graphs.

Proof: To establish that CAl runs in linear time, it is sufficient to note that the
steps where a triangle connecting two vertices from the same component and one
vertex from another component take in total linear time provided that the degree of
the graph is bounded. The total time for all other operations is linear for bounded-
degree graphs by Theorem 2.2.

Suppose that the degree of a graph is bounded by a constant d. Each time an
edge (i: 1,1)2) is considered in Step 2, it takes at most d2 time to check the adjacency
lists of v\ and V2 to recognise a triangle. Since it is enough to consider each edge
only once in the first while loop, CAl runs in time 0(n) for bounded-degree graphs.

510 Timo Poranen

CA

CA1 CA2

Figure 1: Illustrations of planar subgraphs for graph cimi-g4 found by CA, CA1
and CA2. Triangles are enumerated in the order they have been found in a sample
run.

•
To show that the performance ratio of CA1 for MPS is at least 7/18 and for

MOPS at least 7/12, the original proof of Theorem 2.2 can be applied directly. We
only outline the important property of CA1 that makes it possible to apply the
proof technique introduced by Calinescu et al. [5].

Lemma 3.2. The performance ratio of CAl for MPS is at least 7/18 and for
MOPS at least 7/12.

Proof. Let GCA and GCAI be the planar subgraphs produced by CA and CAl after
Phase 1 respectively. No triangle was added to GcA if two of its vertices were in
the same component. The same holds for GCAI'- there is no triangle in the input

Two New Approximation Algorithms for the Maximum Planar.. 511

graph with its vertices in different components in GQAI- The original proof was
based on this observation, and therefore, it follows that CA1 has at least the same
performance ratio as CA. •

The proof of the upper bound given by Calinescu et al. [5] for the performance
ratio of CA cannot be applied to CA1, but it is clear that the ratio cannot exceed
1/2, as shown by the following constructive proof.

Lemma 3.3. The performance ratio of CA1 for MPS is at most 1/2.

Proof. Let G be an n x n grid graph with n > 2. The graph has in total n2 vertices
and 2n2 — 2n edges. Since G is planar, the maximum planar subgraph is the graph
itself. CA1 finds a planar subgraph with n2 — 1 edges by constructing a spanning
tree of G. The ratio between the number of edges found by CA1 and the number
of edges in G is

n 2 - l
2n2 — 2n'

The limit of the ratio is 1/2 as n tends to infinity.
•

Next we present a sample graph which shows that the performance ratio of CA1
for MOPS is at most 2/3.

Lemma 3.4. The performance ratio of CA1 for MOPS is at most 2/3.

Proof. Let G be a 2 x n grid graph. G has in total 2n vertices and 3n — 2 edges.
Since G is outerplanar, the maximum outerplanar subgraph is the graph itself.
CA1 finds an outerplanar subgraph with 2n — 1 edges by constructing a spanning
tree of G. The ratio between the number of edges found by CA1 and the number
of edges in G is

2 n — 1

3n - 2'

The limit of the ratio is 2/3 as n tends to infinity. •

We can now conclude the properties of CA1 for MPS and MOPS.
Theorem 3.5. The performance ratio of CA1 for MPS is at least 7/18 and at
most 1/2. The performance ratio of CA1 for MOPS is at least 7/\2 and at most
2/3. The algorithm runs in linear time for bounded-degree graphs.

There is a gap between the lower and upper bounds of the performance ratios
of CA1 for MPS and MOPS, and the exact performance ratio is left open. One
way to confirm or refute that the performance ratio is at least 4/9 for'MPS is to
show that a subgraph produced by CA1 has always at least the same number of
edges as a maximum triangular structure of a graph. We present conjecture for the
performance ratio of CA1 for MPS and MOPS. The computational experiments
reported in the next section support the conjecture.

512 Timo Poranen

Conjecture 3.6. The performance ratio of CA1 for MPS is at least 4/9 and for
MOPS exactly 2/3.

Next we study CA2. From the condition in the first while loop of C A l it follows
that at the end of the algorithm an edge of G' belongs at most to two triangles.
It is not necessary in the case of planar subgraphs to require that one edge should
belong to at most two triangles at the same time. The restriction "(vi,v2) belongs
to exactly one triangle in E'" of the while loop of CAl can be changed to u{vi,v2)
belongs to E'u. This observation leads to Algorithm CA2. Now outerplanarity is
violated if at the end of the algorithm any edge belongs to more than two triangles
(a forbidden subgraph K3j2 is created [16]). The subgraph remains planar. In
Figure 1, there is an illustration of the behaviour of CA2. Note that the edge
(/ , i) belongs to three triangles and hence, outerplanarity is violated. The planar
subgraph found by CA2 contains 16 edges.

CA2 (G = (y , £))
1 £ ' ^ 0 ;
2 repeat while there is a triangle (^1,^2,^3) in G such that (v\,v2) belongs

to E' and V3 to a different component of (V, E')
3 doE' U {(̂ 2,-U3>, (^3, vi)};
4 if there is a triangle [vi,v2, v3) in G such that

v\, v2 and V3 belong to different components in (V,E')
5 then E' <- E' U {(v1,v2),(v2,v3), (v3,vi)};
6 until the number of edges in E' does not increase during the loop;
7 while there is an edge {v\,v2) € E such that Vi and v2 belong to

different components in (V, E')
8 doE'
9 return (V, E')\

Algorithm 3.2: CA2 for MPS.

The linear running time of CA2 for bounded-degree graphs follows directly by
Theorem 2.2 for CA and by Lemma 3.1 for C A l . The bounds for the performance
ratio of CA2 are the same as they are for C A l . The following theorem concludes
the properties of CA2.

Theorem 3.7. The performance ratio of CA2 for MPS is at least 7/18 and at
most 1/2, and the algorithm runs in linear time for bounded-degree graphs.

We give a similar conjecture for the performance ratio of CA2 as for C A l . This
conjecture is also supported by the experiments reported in the next section.

Conjecture 3.8. The performance ratio of CA2 for MPS is at least 4/9.

Next we present three simple corollaries that describe the properties of the
algorithms.

Two New Approximation Algorithms for the Maximum Planar.. 513

A difference between CA1, CA2, CA and CAM is that CA1 and CA2 recognise
maximal outerplanar graphs. This follows directly from Definition 2.1, which gave
a recursive method to construct a maximal outerplanar graph.

Corollary 3.9. CA1 and CA2 recognise maximal outerplanar graphs.

The second corollary yields a graph class for which CAl and CA2 find better
approximations than CAJM.

Corollary 3.10. There are graphs for which the limit of the ratio of the solutions
of CAl (or CA2) and CA M is 4/3.

Proof. Let G be a maximal outerplanar graph with n vertices. G has 2n — 3 edges.
Since CAl (CA2) finds all edges of a maximal outerplanar graph and a maximum
triangular structure of a maximal outerplanar graph contains — 1)/2J edges [5],
the ratio of the solutions of CAl (CA2) and CAM is 4/3 as n tends to infinity. •

Our third corollary describes the differences between CA2 and CAl (CA«).

Corollary 3.11. There are graphs for which the limit of the ratio of the solutions
of CA2 and CAl (or C A M) is 2.

Proof. Let G be a graph with a single triangle containing vertices vi, v2 and v3.
Add to G a new vertex Vi, where i > 3, and two edges (vi, vi) and (vi, v2). Continue
this process and denote the graph by G'. If G' has k vertices, it has 2(fc — 2) + 1
edges. Since CA2 finds all edges of G' and CAl (CAM) finds k + 1 (k) edges, the
ratio of the solutions of CA2 and CAl (CAM) is 2 as n tends to infinity. •

CA, CAl and CA2 can be made greedy by giving the subgraph constructed in
Phase 1 as input to GRE. These greedy versions are denoted by GCA, GCAl and
GCA2. Since GRE connects the subgraph, at least the same number of edges is
added as in Phase 2 of CA, CAl and CA2. Therefore, GCA, GCAl and GCA2
have the same performance ratios as CA, CAl and CA2 respectively.

4 MPS experiments
In this section, different algorithms for MPS are compared. More detailed compar-
ison statistics for the algorithms can be found in [32].

4.1 MPS algorithms and comparison measures
We implemented the following algorithms for MPS: CA, CAl, CA2 and their
greedy versions GCA, GCAl and GCA2 with the pure greedy algorithm GRE.
The results of CA and CAl are valid for MOPS.

Algorithms CA, CAl and CA2 were randomized by always choosing the edges
and start vertices randomly. The greedy heuristics were randomized by handling
the edges in a random order.

514 Timo Poranen

Table 1: Test graph statistics for MPS.
Graph data The best solutions

graph \v\ \E\ ub CA CAI CA2 GRE GCA GCA1 GCA2
cimi-gl 10 21 19* 11 13 13 19 19 19 19
cimi-g2 60 166 165* 88 117 117 165 165 165 165
cimi-g3 28 75 73* 38 49 49 73 73 73 73
cimi-g4 10 22 20* 13 16 16 20 20 20 20
cimi-g5 45 85 82* 59 73 73 82 82 82 82
cimi-g6 43 63 59* 42 42 42 59 59 59 59
glO 25 71 69* 36 47 47 69 69 69 69
g l l 25 72 69* 36 47 47 69 69 69 69
gl2 25 90 69* 36 47 47 67 66 67 67
gl3 50 367 144 73 97 97 119 120 128 125
gl4 50 491 144 73 97 97 127 132 134 133
gl5 50 582 144* 73 97 97 133 136 138 137
gl6 100 451 294 137 162 167 175 193 200 196
gl7 100 742 294 147 194 196 196 224 237 229
gl8 100 922 294 147 197 197 210 230 244 239
gl9 150 1064 444 218 274 283 266 305 326 323
rglOO.l 100 261 260 119 124 125 150 157 157 157
rgl00.2 100 271 270 118 125 127 151 160 162 162
rgl00.3 100 297 294 120 128 128 153 163 163 164
rgl00.4 100 334 294 126 136 140 155 172 175 174
rgl00.5 100 373 294 137 153 153 162 186 186 186
rgl50.1 150 387 386 171 174 175 214 222 223 223
rgl50.2 150 402 401 176 182 182 213 224 225 226
rgl50.3 150 453 444 171 179 179 221 237 230 232
rgl50.4 150 473 444 180 190 190 217 236 241 238
rgl50.5 150 481 444 178 185 185 221 237 236 236
rg200.1 200 514 513 222 227 227 270 278 283 280
rg200.2 200 519 518 216 219 219 268 274 277 277
rg200.3 200 644 594 235 243 244 280 303 306 309
rg200.4 200 684 594 237 254 261 282 308 317 317
rg200.5 200 701 594 235 251 253 285 311 314 314
rg300.1 300 814 813 324 330 330 390 402 406 407
rg300.2 300 1159 894 355 376 377 412 455 461 461
rg300.3 300 1176 894 360 376 378 411 457 461 464
rg300.4 300 1474 894 389 422 426 432 497 508 509
rg300.5 300 1507 894 400 428 430 438 504 5Í5 512
tglOO.l 100 300 294* 138 188 197 292 292 294 290
tgl00.3 100 324 294* 142 191 197 .264 290 284 283
tgl00.5 100 344 294* 138 187 197 251 262 268 272
tgl00.7 100 364 294* 138 191 197 236 255 262 276
tgl00.9 100 384 294* 140 189 196 226 260 263 272
tg200.1 200 604 594* 275 375 397 582 594 592 594
tg200.3 200 624 594* 279 382 397 558 579 592 586
tg200.5 200 644 594* 275 373 397 515 551 569 578
tg200.7 200 664 594* 275 372 397 492 552 578 589
tg200.9 200 684 594* 279 377 397 487 543 558 566

* Upper bound is known to be optimal.

Two New Approximation Algorithms for the Maximum Planar.. 515

All algorithms were written in C++ and their source codes are available as
part of the the program apptopinv [31]. LEDA 4.3 [24] was used for the planarity
test. All test runs were executed on a computer (1992 BogoMips) which has one
AMD Athlon 1 GHz processor with 256 Megabytes memory running under Linux
Mandrake 8.1.

CA, CA1, CA2, GRE, GCA, GCA1 and GCA2 were repeated 100 times for
graphs with no more than 100 edges and 25 times for larger graphs.

To compare the algorithms, we concentrated on studying the running time and
performance differences between the algorithms. Methods and measures for the
experimental analysis of the heuristics used in this work are mainly given by Golden
and Stewart [12].

Running times for the algorithms were obtained by running all test runs as
background processes and performing the time command to obtain the total run-
ning time. Finally, this total running time was divided by the number of repeats
to obtain the average running time of a run.

For each algorithm, it is easy to select the best solution from all repeats for
a test instance. We can then count the total number of best solutions for each
algorithm, that is, an algorithm is awarded 1 point, if it obtained the best or tied
the best solution for a test instance among all the algorithms.

Another measure is the total number of points for an algorithm: a heuristic is
awarded p points, if it obtained the pth best solution for an instance. The average
rank of an algorithm is the total number of points divided by the number of test
instances.

4.2 Test graph set for MPS
Since MPS is a much studied optimization problem, there is already a wide variety
of suitable test graphs. We mainly used the same test graph set as Resende and
Ribeiro [35].1

The test graph set used in this work contains 46 graphs. Statistics for the graphs
are given in Table 1. For all graphs we have listed the name of the graph (graph)
and the number of vertices (|V|) and edges (|i?|). Then we give the upper bound
for MPS (ub). If the upper bound is known to be optimal, it is marked with a star
(*). Finally, the best solution found over all runs for the heuristics is given.

For graphs with an unknown optima, the upper bound was obtained by applying
Euler's polyhedron formula [16]. If the number of edges was less than the bound
obtained from the formula, the upper bound is the number of edges decreased by
one for non-planar graphs.

The first six graphs (cimi-gl - cimi-g6) in Table 1 were taken from the experi-
ments of Cimikowski [7]. These graphs have relevance to applications or have their
origin in other research papers. Graphs cimi-g4, cimi-g5 and cimi-g6 were intro-
duced originally in [19], [21] and [37] respectively. Graph cimi-g6 does not contain

1The graphs can be downloaded from http://www.research.att.com/-mgcr/data/
planar-data.tar.gz (April 27, 2006).

http://www.research.att.com/-mgcr/data/

516 Timo Poranen

any triangles. Graphs glO - gl9 are Hamiltonian graphs constructed by Goldsmith
and Takvorian [13].

Graphs rglOO.l - rg300.5 are random graphs with the number of vertices varying
between 100 and 300 and the number of edges varying between 261 and 1507. Table
1 also contains graphs with a planar subgraph of maximum size (tglOO.l - tg200.9).
The graphs were generated by Cimikowski [7].

4.3 Comparison of CA, CAl and CA2 for MPS
The best solutions for the heuristics are reported in Table 1. The difference in
the performance of the fast algorithms is clear. CAl and CA2 find quite similar
solutions, and they outperform CA with a clear margin. For all 46 test instances,
algorithm CA2 finds the best solution, and CAl finds the same solution as CA2
for 22 graphs. The solutions of CA are inferior to those of CAl and CA2 for
graphs that contain triangles. The only graph for which all the algorithms found
the same solution was cimi-g6. The average rank of the heuristics is 2.96 for CA,
1.52 for CAl and 1.00 for CA2. The comparison statistics are collected in Table
2.

Table 2: Comparison of the performance of the fast MPS heuristics.

CA CAl CA2
Number of times heuristic is
the best or tied for the best 1 22 46
Average rank 2.96 1.52 1.00

Figure 2 shows the average running times of one run for CA, CAl and CA2
as a function of the number of edges. For graphs having more than 1600 edges,
the running times are taken from the graphs used in the thickness algorithms com-
parison given in Section 5. Further, Figure 2 has the average running times of the
greedy heuristics to illustrate the running time differences.

The running times of CA, CAl and CA2 are less than one tenth of a second
for all graphs up to 1600 edges. For the largest graphs, r9 with 449550 edges, used
in the thickness comparison, we obtained the following average running times for
the heuristics: 4.2, 5.8 and 6.5 seconds for CA, CAl and CA2 respectively.

The running time differences between CA, CAl and CA2 are in general very
small. Only with graphs having more than 10000 edges can it be seen that CA is
slightly faster than the other two algorithms. The sharp turns in the curve are the
influence of the different ratios of the number of vertices and edges in a test graph.
All three heuristics run faster for a sparse graph than for a dense graph with the
same number of edges.

To further compare CA2 and CA we studied the relative differences of their
solutions. See Figure 3 for the ratios of the poorest solutions (see [32] for these
results) of CA2 and the best solutions of CA. The worst solutions by CAl and CA2

Two New Approximation Algorithms for the Maximum Planar.. 517

1000
tn
I 100 o <D
.E 10
<D
E
« 1
c 'c
§ 0.1 ®
O) CÖ
g> 0.01 <

10 100 1000 104 105 106

Edges

Figure 2: Average running times of MPS heuristics. Notice that the axes are
logarithmic.

were always at least as good as the best solution by CA. The greatest improvement
was for tg200.1 with a 1.44 times better solution when CA2 was used instead of
CA. In general, the greatest improvements were obtained for graphs containing a
planar subgraph of maximum size (tglOO.l - tg200.9). The solutions of CA2 were
on average 20 percentages better than those of CA.

The worst case ratios of CA solutions and the optimal (marked with a dot) or
the best known (marked with a circle) solution [32] are shown in Figure 4. Our
experiments give evidence on the conjectured performance ratio 4/9 for the new
algorithms: the solutions by CA1 and CA2 were never more than 4/9 away from
the optima. For the ratios of the poorest found solutions and the optimal or the
best known solution for CA2, see Figure 5. The solutions of CA1 and CA2 were
never less than 0.61 and 0.65 times the optima respectively.

4.4 Comparison of GRE, GCA, GCAl and GCA2 for MPS

It is clear that when a greedy method to add edges is applied instead of just
connecting the subgraphs in Phase 2 of CA, CAl and CA2, the solutions remain
at least the same. The main questions are, thus, how much the greedy approach
improves the solutions, how much longer running time is needed, and if there are
graphs for which CA, CAl or CA2 outperform GRE.

As shown in Subsection 4.3, CA2 outperformed CAl, but when the greedy
algorithms were considered, GCAl produced approximations similar to GCA2.

518 Timo Poranen

<
2 1-5
g 1.4 CÛ
Z 1-3
S 1-2

g 1.1
I 1
5 0.9

; ; •
j i i i i i ' i i i

200 400 600 800
Edges

1000
J I

1200 1400 1600

Figure 3: Ratios of the worst solutions of CA2 and the best solutions of CA.

1
0.9
0.8
0.7
0.6
1/2

8/18
7/18

Q. 0.3

T 1 1 1 1 r

• 9j0 O O°° g® %

i, . . .Ï <3

i 1 T "I 1 1 1 r

Optimal solution • Best Known solution »
J I I I I I I I I I I I i i i

0 200 400 600 800 1000 1200 1400 1600
Edges

Figure 4: Ratios of the worst solutions of CA and the optimal or the best known
solution.

GCA1 found the best or the tied best solution for 30 and GCA2 for 31 from 46
test instances, but the average ranks for these two heuristics were both 1.37. One
explanation for the success of GCA1 is that the method of constructing a solution
in Phase 1 of CA2 is greedier than that in CAl. The solution of CA2 could
contain more edges than that of CAl, but it is more difficult to insert additional
edges into the subgraph. GCA and GRE found the best or tied best solutions
for 13 and 9 graphs and the average ranks were 2.41 and 3-41 respectively. These
results are listed in Table 3.

Table 3: Comparison of the performance of the greedy MPS heuristics.

GRE GCA GCA1 GCA2
Number of times heuristic is
the best or tied for the best 9 13 30 31
Average rank 3.41 2.41 1.37 1.37

The running time differences of the greedy heuristics are in general very small as
shown in Figure 2. For graphs with fewer than 1600 edges, GCA1 and GCA2 are

Two New Approximation Algorithms for the Maximum Planar.. 519

8 0.9
0.8

o 0.7
2 0.6 o
" 1/2
« 8/18
E 7/18

0.3

•> V. •

"I 1 1 1 r ~I 1 1 1 1 r
o "o
• ••I

I I I
o o

Optimal solution • Best known solution »
J I . I I I I I I I I I I I i i

200 400 600 800 1000 1200 1400 1600
Edges

Figure 5: Ratios of the worst solutions of CA2 and the optimal or the best known
solution.

the fastest heuristics and their average running time curves coincide. For the larger
graphs (running times are taken from graphs used in the thickness comparison),
GRE seems to be the fastest by a small margin.

We recognised test instances for which the new algorithms outperformed GRE.
CA1 and CA2 found better solutions for graph gl9. This shows that CA, CA1 and
CA2 can find better solutions for large and sparse graphs than GRE in significantly
shorter computation time. This coincides with the theoretical properties of CA1,
CA2 and GRE.

CA did not find better solutions than GRE in our tests, but it has been reported
that CA sometimes achieves better approximations for graphs with density varying
between 0.03 and 0.15 when the algorithms are applied for MOPS [33].

GCA2 improves the solutions of CA2 on average by 30 percent. The same
holds for GCA and GCA1.

5 Thickness experiments

5.1 Thickness algorithms and their implementation

For the thickness problem, we tested the extraction algorithm THICK by applying
in Step 4 algorithms CA, CA1, CA2, GCA, GCA1, GCA2 and GRE. Also,
we implemented an ST heuristic which in each iteration extracts the set of tree-
edges found by a depth-first search. In what follows, these algorithms are simply
denoted by the name of the extraction method. All these algorithms approximate
thickness, but algorithms ST, CA and CA1 directly produce approximations for
outerthickness.

ST, CA, CA1 and CA2 were repeated 25 times for graphs with fewer than
2000 edges, 10 times for graphs having more than 2000 edges but not more than
250000 edges and 5 times for larger graphs. Greedy heuristics for the thickness
were applied only for graphs with 79800 edges or less. The number of repetitions
was 25 for graphs with fewer than 2000 edges and 10 times for graphs with fewer

520 Timo Poranen

Table 4: Test graph statistics for the thickness problem.
Graph data The best solutions

graph |V| \E\ lb ST CA CAI CA2 ' GRE GCA GCA1 GCA2
K10 10 45 3* 5 4 3 4 ' 3 3 3 3
KL5 15 105 3* 8 7 5 5 4 4 4 4
K20 20 190 4* 11 9 7 6 5 5 5 5
if 30 30 435 6* 16 13 10 9 8 7 7 7
KTO 40 780 7* 21 18 12 12 11 9 9 9
K50 50 1225 9* 27 22 15 15 13 12 11 11
KEO 60 1770 11* 32 27 18 18 0 16 14 13 13
K70 70 2415 12* 38 32 21 21 19 16 15 15
KSO 80 3160 14* 43 36 24 24 1 21 19 17 17
KG 0 90 4005 16* 48 41 27 27 1 24 21 19 20
K100 100 4950 17* 54 45 30 31 1 27 23 21 22
K150 150 11175 26* 81 69 45 45 1 42 39 35 34
2̂00 200 19900 34* 108 91 60 60 1 56 52 47 47

300 44850 51* 164 137 92 90 1 84 79 71 72
K4OO 400 79800 67* 217 183 121 120 1 112 105 96 98
K 500 500 124750 84* 271 230 152 149

1
- - -

K"soo 600 179700 101* 334 277 185 186 ' - - _
K 700 700 244650 117* 379 320 210 218

1
- -

8̂00 800 319600 134* 437 366 247 250
1

- - -

K 900 900 404550 151* 490 412 276 281
1

- - -

K1000 1000 499500 167* 551 456 303 315
1

- - -

»"20,92 20 92 2* 6 4 4 4 ! 2 3 3 3
'"40,311 40 311 3 9 7 6 5 1 4 5 4 4
'"eo.sss 60 556 4 10 8 7 7 1 6 5 5 5
»"80,939 80 939 5 13 10 8 8 1 7 7 6 6
'"100,1508 100 1508 5 17 13 10 10 1 9 8 8 8
r0 1000 14985 6 17 15 14 14 I 14 12 12 12
rl 1000 49950 17 53 43 32 31 36 30 27 27
r2 1000 99900 34 103 89 57 57 - - . -

r3 1000 149850 51 160 130 82 83 - -

r4 1000 199800 67 213 177 108 110
1

- _ _
r5 1000 '249750 84 264 224 133 138 _ _ _
r6 1000 299700 101 312 270 158 170 - - _
r7 1000 349650 117 363 316 184 198

1
- - _

r8 1000 399600 134 413 361 209 230
1

- -

r9 1000 449550 151 465 411 235 261
1

- - -

rrl 1000 5000 2 6 6 6 6 ' 5 5 5 5
rr2 1000 25000 9 26 22 19 19 20 17 16 16
rr3 1000 50000 17 51 43 32 31 36 30 27 27
rr4 1000 75000 26 76 65 44 44 50 43 37 37
rr5 1000 100000 34 101 88 57 57

1
- . _

rr6 1000 125000 42 126 112 69 70 ' - - _
rr7 1000 150000 51 151 136 82 83

1 _ _
rr8 1000 175000 59 176 160 94 96

1
- _

rr9 1000 200000 67 201 184 107 108
1 _ _ _

rrlO 1000 225000 76 226 209 119 121
1

- - _
rrl 1 1000 250000 84 251 233 132 134 ! - - -

* Lower bound is known to be optimal.
The algorithm is not applied for this graph.

than 5000 edges. For larger graphs only one run was performed. The comparison
measures given in Section 4 also hold for the thickness experiments.

5.2 Test graph set for thickness
Algorithms for the thickness problem are compared in the literature using complete
graphs, complete bipartite graphs and random graphs [8, 30, 34]. We use mainly the

Two New Approximation Algorithms for the Maximum Planar.. 521

same graphs as in the earlier experiments, but we have included larger complete and
random graphs to the test graph set. Since CA, CA1 and CA2 behave similarly to
ST for graphs without triangles, bipartite graphs are excluded from the comparison.
Only ST, CA, CA1 and CA2 are run for the largest graphs. In previous works,
graphs with fewer than 5000 edges have been used, while in this work the largest
graph considered has 499500.

Information on the test graphs is collected in Table 4. For all graphs, we have
listed the name of the graph (graph) and the number of vertices (|V|) and edges
(\E\). Then the lower bound for thickness (lb) is given. If the lower bound is known
to be optimal, it is marked with a star (*). For graphs with unknown optimum,
the lower bound is obtained by applying Euler's polyhedron formula [16].

The total number of test graphs is 47.2 The first 21 graphs in Table 4 are
complete graphs with the number of vertices varying between 10 and 1000. The
next five graphs are random graphs with the number of vertices varying between
20 and 100 and the number of edges varying between 92 and 1508. Graphs rO -
r9 are random graphs with 1000 vertices and the number of edges varying between
5000 and 449500. Graphs rrl - r r l l are random regular graphs generated with an
algorithm by Steger and Wormald [36]. The degree of the vertices varies between
10 and 500.

5.3 Comparison of ST, CA, CAl and CA2 for thickness
The total number of test graphs for the fast algorithms was 47. The best solutions
for the fast heuristics and the greedy heuristics are listed in Table 4.

CAl and CA2 outperformed ST and CA by a clear margin. CAl and CA2
found the best solution for 39 and 27 graphs and the average ranks were 1.17 and
1.43 respectively. CA and ST respectively found only once and twice tied best
solutions and their average ranks were 2.87 and 3.91. These comparison results are
collected in Table 5. The reason for the relative performance of CA2 and CAl
seems to be that CA2 adds many triangles with a common edge, and therefore it
constructs planar graphs with large degree. This means that the vertices that are
added later get smaller degree. For large regular graphs, it seems to be a better
strategy to extract subgraphs that are as regular as possible. CAl found better
solutions for large complete graphs oo ~ -ftaooo) and dense random graphs (r3
- r9 and rr6 - rrl l) . For complete graphs with fewer than 600 vertices and sparse
random graphs (rl - r2 and rrO - rr5), CA2 obtained approximations at least as
good as CAl.

The running time difference of the heuristics is clear. The relative order of
the algorithms from the slowest to the fastest is CA, CAl, CA2 and ST. The
explanation for the relative order of CA and CAl (CA2) is that CAl (CA2)
extracts larger planar subgraphs and therefore the number of edges in the remaining
graph decreases faster. See Figure 6 for the average running times in seconds of

2The random graphs can be downloaded from http: / /ht tp: / /www.cs .uta . f i / - tp /apptopinv
(April 27, 2006). The other graphs can be constructed by giving the command line parameters
for apptopinv [31].

522 Timo Poranen

Table 5: Comparison of the performance of ST, CA, CAl and CA2 for thickness.

ST CA CAl CA2
Number of times heuristic is
the best or tied for the best 1 2 39 27
Average rank 3.91 2.87 1.17 1.43

(0 T3 c o o O) </}

CD
E
O) c 'c c 3
CL) O) <0 ®
> <

10 100 1000 104 105 106

Edges

Figure 6: Average running times of ST, CA, CAl, CA2, GCAl and GRE for
thickness. Notice that the axes are logarithmic.

CA, CAl, CA2 and ST as a function of the number of the edges. The sharp turns
in the curves are due to the influence of the random test graphs. The running
time is higher for a random graph containing the same number of edges than for
a complete graph. The average running times of GRE and GCAl are drawn to
illustrate the running time differences of the heuristics.

5.4 Comparison of GRE, GCA, GCAl and GCA2 for thick-
ness

The greedy algorithms achieved significantly better approximations than their non-
greedy variants. For example, GCAl decreased the solutions of CAl to 30 per-
centages: CAl got a solution of 27 for Kgo, but the GCAl solution was only 19.
The average improvements were about 15 - 20 percentages.

GCAl and GCA2 respectively found 24 and 21 times a best solution whereas
GCA and GRE respectively found a best solution only 9 and 6 times. The average

Two New Approximation Algorithms for the Maximum Planar.. 523

Iteration Iteration

Figure 7: Sizes of the extracted planar subgraphs as a function of the number of
iterations for all heuristics. In the left there are traces for ^350 and in the right for
rl.

Table 6: Comparison of the performance of GRE, GCA, GCA1 and GCA2 for
thickness.

GRE GCA GCAl GCA2
Number of times heuristic is
the best or tied for the best 6 9 24 21
Average rank 3.27 2.23 1.08 1.19

ranks for the heuristics were 3.27 for GRE, 2.23 for GCA, 1.08 for GCA1 and 1.19
for GCA2. These statistics are collected in Table 6.

The running times of the heuristics were very close to that of GRE, although
GCAl ran slightly faster in the case of the largest graphs. The average running
times of GCAl and GRE are illustrated in Figure 6. The running time differences
between the greedy and fast heuristics are considerable: GCAl runs 10 to 100

524 Timo Рогапеп

times slower than CA1.
There were graphs for which CAl and CA2 outperformed GRE. CA1 and

CA2 found better approximations for graphs rl, rr2, rr3 and rr4. These results are
not very reliable, since for these graphs GRE was run only once. One explanation
for the better performance of CAl and CA2 against GRE for large random graphs
is that the sizes of the extracted planar subgraphs are larger than they are with
GRE. This is illustrated in Figure 7, where there are sample traces of ST, CA,
CAl, CA2, GRE and GCA1 for a complete graph with 350 vertices (not included
in the test graph set) and for rl . For K350, GCA1 found the best solution and GRE
found the second best solution. The extracted planar subgraphs are of maximum
size in the beginning of the runs for both heuristics, but the number of edges in
the extracted subgraphs of GRE decreases more rapidly than that of GCA1. The
sizes of the extracted subgraphs of CA, CAl and CA2 do not vary as much as with
GRE and GCA1. The solutions of CAl and CA2 are of the same quality, and
the solutions of ST are slightly poorer. For the random graph r l in the figure on
the right, CAl and CA2 extracts in the beginning much larger planar subgraphs
than GRE. Now CAl and CA2 yielded better approximations. The solutions of
CA are worse than the solutions of GRE, but clearly better than the solutions of
ST. The sizes of the extracted planar subgraphs of GCA1 were much larger at the
beginning than those of CAl and CA2 and the final solution of GCA1 was the
best.

6 Conclusions

We presented two new approximation algorithms, CAl and CA2, for the maximum
planar subgraph problem and showed that the performance ratio of both algorithms
is at least 7/18. The new algorithms run in linear time for bounded-degree graphs.
We conjectured that the performance ratio of CAl and CA2 is at least 4/9. All
experiments performed support the conjecture. A clear goal for future research is
to solve the performance ratios of CAl and CA2. Moreover, the status of the
relative performance of the better triangular cactus algorithm by Calinescu et al.
[6] and the new algorithms is open.

Calinescu et al. applied their triangular cactus approach for approximating
weighted MPS and MOPS. Whether our new algorithms are applicable for the
weighted case remains an open question.

Acknowledgements

The author thanks the anonymous referees for their valuable comments.

Two New Approximation Algorithms for the Maximum Planar.. 525

References
[1] Alekseev, V.B. and Gonchakov, V.S. Thickness for arbitrary complete graphs.

Mat. Sbornik., 143:212-230, 1976.

[2] Beineke, L.W. and Harary, F. The thickness of the complete graph. Can. J.
Math, 17:850-859, 1965.

[3] Beineke, L.W., Harary, F., and Moon, J.W. On the thickness of the complete
bipartite graphs. Proc. Camb. Phil. Soc., 60:1-5, 1964.

[4] Beyer, T., Jones, W., and Mitchell, S. Linear algorithms for isomorphism of
maximal outerplanar graphs. J. ACM, 26(4):603-610, 1979.

[5] Calinescu, G., Fernandes, G.G., Finkler, U., and Karloff, H. A better approxi-
mation algorithm for finding planar subgraphs. J. Algorithms, 27(2):269-302,
1998.

[6] Calinescu, G., Fernandes, C.G., Karloff, H., and Zelikovsky, A. A new approxi-
mation algorithm for finding heavy planar subgraphs. Algorithmica, 36(2):179-
205, 2003.

[7] Cimikowski, R. An analysis of heuristics for the maximum planar subgraph
problem. In Proceedings of the 6th ACM-SIAM Symposium on Discrete Algo-
rithms, pages 322-331, 1995.

[8] Cimikowski, R. On heuristics for determining the thickness of a graph. Info.
Sci., 85:87-98, 1995.

[9] Cimikowski, R. An analysis of heuristics for graph planarization. J. Inf. Opt.
Sci., 18(l):49-73, 1997.

[10] Cimikowski, R. and Coppersmith, D. The sizes of maximal planar, outerplanar,
and bipartite planar subgraphs. Discr. Math., 149:303-309, 1996.

[11] Gabow, H.N. and Stallmann, M. Efficient algorithms for graphic matroid
intersections and parity. In Automata, Languages and Programming: 12th
Colloquium, volume 194 of Lecture Notes in Computer Science, pages 210-
220, 1985.

[12] Golden, B.L. and Stewart, W.R. Empirical analysis of heuristics. In Lawler,
E.L. and Lenstra, J.K., editors, The Traveling Salesman Problem, pages 207-
249. John Wiley k Sons, 1985.

[13] Goldschmidt, O. and Takvorian, A. An efficient graph planarization two-phase
heuristic. Networks, 24:69-73, 1994.

[14] Guy, R.K. and Nowakowski, R.J. The outerthickness and outercoarseness of
graphs I. The complete graph & the n-cube. In Bodendiek, R. and Henns,
R., editors, Topics in Combinatorics and Graph Theory: Essays in Honour of
Gerhard Ringel, pages 297-310. Physica-Verlag, 1990.

526 Timo Poranen

[15] Guy, R.K. and Nowakowski, R.J. The outerthickness and outercoarseness of
graphs II. The complete bipartite graph. In Bodendiek, R., editor, Contempo-
rary Methods in Graph Theory, pages 313-322. B.I. Wissenchaftsverlag, 1990.

[16] Harary, F. Graph Theory. Addison-Wesley, 1971.

[17] Hasan, M. and Osman, I.H. Local search algorithms for the maximal planar
layout problem. Int. Trans. Oper. Res., 2(1):89-106,1995.

[18] Hopcroft, J. and Tarjan, R.E. Efficient planarity testing. J. ACM, 21:549-568,
1974.

[19] Jayakumar, R., Thulasiraman, K., and Swamy, M.N.S. 0{n2) algorithms for
graph planarization. IEEE Trans. Comp.-Aided Design, 8(3):257-267, 1989.

[20] Jünger, M. and Mutzel, P. Maximum planar subgraphs and nice embeddings:
Practical layout tools. Algorithmica, 16:33-59, 1996.

[21] Kant, G. An 0(n2) maximal planarization algorithm based on PQ-trees. Tech-
nical Report RUU-CS-92-03, Utrecht University, Department of Computer Sci-
ence, 1992.

[22] Kant, G. Augmenting outerplanar graphs. J. Algorithms, 21:1-25, 1996.

[23] Kleinert, M. Die Dicke des n-dimensionale Würfel-Graphen. J. Comb. Theory,
3:10-15, 1967.

[24] LEDA version 4.3 (commercial). Available at http://www.
algorithmic-solutions.com.

[25] Liebers, A. Planarizing graphs - a survey and annotated bibliography. JGAA,
5(1):1—74, 2001.

[26] Liu, P.C. and Geldmacher, R. On the deletion of nonplanar edges of a graph.
In Proceedings of the 10th Southeastern Conference on Combinatorics, Graph
Theory, and Computing, pages 727-738, 1977.

[27] Lovász, L. and Plummer, M.D. Matching Theory. Elsevier, 1986.

[28] Mansfield, A. Determining the thickness of graphs is NP-hard. Math. Proc.
Camb. Phil. Soc., 93:9-23, 1983.

[29] Mitchell, S.L. Linear algorithms to recognize outerplanar and maximal outer-
planar graphs. Inf. Proc. Lett., 9(5):177-189, 1979.

[30] Mutzel, P., Odenthal, T., and Scharbrodt, M. The thickness of graphs: a
survey. Graphs Comb., 14:59-73, 1998.

[31] Poranen, T. Apptopinv - user's guide. Technical Report A-2003-3, University
of Tampere, Department of Computer Sciences, 2003.

http://www

Two New Approximation Algorithms for the Maximum Planar.. 527

[32] Poranen, T. Approximation Algorithms for Some Topological Invariants of
Graphs. PhD thesis, University of Tampere, 2004.

[33] Poranen, T. Heuristics for the maximum outerplanar subgraph problem. J.
Heuristics, 11:59-88, 2005.

[34] Poranen, T. A simulated annealing algorithm for determining the thickness of
a graph. Info, Sci., 172:155-172, 2005.

[35] Resende, M.G.C. and Ribeiro, C.C. A GRASP for graph planarization. Net-
works, 29:173-189, 1997.

[36] Steger, A. and Wormald, N.C. Generating random regular graphs quickly.
Comb. Probab. Comput., 8:377-396, 1999.

[37] Tamassia, R., Di Battista, G., and Batini, C. Automatic graph drawing and
readability of diagrams. IEEE Trans. Syst. Man Cybern., 18(l):61-79, 1988.

[38] Yannakakis, M. Node- and edge-deletion NP-complete problems. In Proceed-
ings of the 10th Annual ACM Symposium on Theory of Computing, pages
253-264, 1978.

Received 10th January 2005

Acta Cybernetica 18 (2008) 529-527.

Keys and Armstrong Databases in Trees with
Restructuring

Attila Sali* and Klaus-Dieter Schewet

Abstract
The definition of keys, antikeys, Armstrong-instances are extended to com-

plex values in the presence of several constructors. These include tuple, list,
set and a union constructor. Nested data structures axe built using the var-
ious constructors in a tree-like fashion. The union constructor complicates
all results and proofs significantly. The reason for this is that it comes along
with non-trivial restructuring rules. Also, so-called counter attributes need
to be introduced. It is shown that keys can be identified with closed sets of
subattributes under a certain closure operator. Minimal keys correspond to
closed sets minimal under set-wise containment. The existence of Armstrong
databases for given minimal key systems is investigated. A sufficient condition
is given and some necessary conditions are also exhibited. Weak keys can be
obtained if functional dependency is replaced by weak functional dependency
in the definition. It is shown, that this leads to the same concept. Strong keys
are defined as principal ideals in the subattribute lattice. Characterization
of antikeys for strong keys is given. Some numerical necessary conditions for
the existence of Armstrong databases in case of degenerate keys axe shown.
This leads to the theory of bounded domain attributes. The complexity of
the problem is shown through several examples.

1 Introduction
The relational datamodel gave rise to theoretical research in several directions.
Dependency structures were investigated as first-order logical sentences tha t are
supposed to hold for all database instances [3]. On the other hand, their combina-
torial investigations were fruitful resulting in nice problems, concepts, even as far
topics as design and coding theory [8, 9, 12, 5].

The relational model has been extended or generalized to nested relational
model [19], object oriented models [23], and object-relational models. The impor-
tan t s tructures of all these were captured by the higher-order Entity-Relationship

*Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest, P.O.B. 127,
H-1364 Hungary, E-mail: sal iarenyi .hu

t Massey University, Information Science Research Centre & Department of Information Sys-
tems, Private Bag 11 222, Palmerston North, New Zealand, E-mail: k.d.scheveOmassey.ac.nz

530 Attila Sali and Klaus-Dieter Schewe

model [24, 25]. The semi-structured data and XML treated in [1] can also be
considered as an object-oriented model.

The major new structure in all these models is the introduction of constructors
that allow us to form complex data values from simpler ones. The dependencies
of the relational model can be generalized to these higher-order models, and the
axiomatization of certain dependencies was carried out in [13, 15, 16, 18, 14]. On
the other hand, the induced combinatorial structures have not been investigated
thoroughly yet. It is important from the point of view of schema design, to identify
what kind of attributes can form key systems. The aim of the present paper is to
continue the investigations started in [20, 21], thus generalizing the work of [6, 7, 8].

In Section 2 the necessary definitions are recalled. In Section 3 keys and an-
tikeys are defined and it is shown that they correspond to closed subsets of the
subattribute lattice under a certain closure operator. This is in sharp contrast with
the Relational Datamodel (RDM), where any subset of the attributes could be a
key for an appropriate system of functional dependencies. Section 4 deals with
question of existence of Armstrong-instances. This question was first investigated
by Armstrong [4] and Demetrovics [6] for functional dependencies in the RDM.
Later Fagin [10] gave a necessary and sufficient condition for general dependencies
in the relational context. Fagin's results are quite general, if types of dependen-
cies are considered, however, they are only valid for relational databases, as the
conditions he gave depend on direct products of relations.

In the present paper we treat functional dependencies in the higher order data-
model and a sufficient condition is given for the existence of Armstrong instance.
In addition, we illustrate the complexity of the problem through several examples.
Section 5 is devoted to strong keys, that are the closest analogs of keys in the RDM.
Finally, Section 6 contains some inequalities of parameters that give necessary con-
ditions for the existence of Armstrong-instances.

2 Preliminaries
In this section we define our model of nested attributes, which covers the gist of
higher-order datamodels including XML. In particular, we investigate the structure
of the set S(X) of subattributes of a given nested attribute X. We show that
we obtain a non-distributive Brouwer algebra, i.e. a non-distributive lattice with
relative pseudo-complements.

2.1 Nested Attributes
We start with a definition of simple attributes and values for them.

Definition 1. A universe is a finite set U together with domains (i.e. sets of
values) dom(A) for all A € U. The elements of It are called simple attributes.

For the relational model a universe was enough, as a relation schema could be
defined by a subset R C U. For higher-order datamodels, however, we need nested

Keys and Armstrong Databases in Trees with Restructuring 531

attributes. In the following definition we use a set £ of labels, and tacitly assume
that the symbol A is neither a simple attribute nor a label, i.e. A ^ "U U£, and that
simple attributes and labels are pairwise different, i.e. IX fl £ = 0.

Definition 2. Let IX be a universe and £ a set of labels. The set N of nested
attributes (over U and £) is the smallest set with A G N, II C N, and satisfying the
following properties:

• for X G £ and X[,...,X'n G >T we have X{X[,. . . . I ^ j e N ;

• for X G £ and X' G X we have X{X'} G Ji, X[X'} G W, and X(X') G N;

• for X j , . . . , Xn G £ and X[,... ,X'n G N we have Xi(X"i)ffi- • -®Xn(X^) 6 N.

We call A a null attribute, X(X'l,... ,X'n) a record attribute, X{X'} a set at-
tribute, X[X'} a list attribute, X{X') a multiset attribute and Xi(X()©- • -®Xn(X^)
a union attribute. As record and set attributes have a unique leading label, say X,
we often write simply X to denote the attribute.

We can now extend the association dom from simple to nested attributes, i.e.
for each X G N we will define a set of values dom(X).

Definition 3. For each nested attribute X G N we get a domain dom(X) as
follows:

• dom(X) = {T};

• dom(X(X'i,...,X'n)) = {(yi,...,vn) | Vi G dom{X\[) for i = 1, . . . ,n}\

• dom(X{X'}) — {{^i, . . . | k e N and Vi G dom(X') for i = 1 , . . . , A;}, i.e.
each element in dom(X{X'}) is a finite set with (pairwise different) elements
in dom{X')\

• dom{X[X']) = {[ui, . . . , Vk] | & G N and vi G dom(X') for i = 1 , . . . , k}, i.e.
each element in dom{X[X'\) is a finite (ordered) list with (not necessarily
different) elements in dom(X');

• dom(X(X')) = {(i>i, ...,vk)\keN and Vi G dom(X') for i = 1 , . . . , A;}, i.e.
each element in dom(X(X')) is a finite multiset with elements in dom(X'),
or in other words each v G dom(X') has a multiplicity m(v) G N in a value in
dom(X{X')y,

• dom(Xi(X'1) © • • • © Xn{X'n)) = {(Xi : «¡) | vt G dom(Xt') for i = 1 , . . . ,n}.

Note that the relational model is covered, if only the tuple constructor is used.
Thus, instead of a relation schema R we will now consider a nested attribute X,
assuming that the universe It and the set of labels £ are fixed. Instead of an R-
relation r we will consider a finite set r C dom(X). An element of r is called a
tuple or complex value. The following example includes several constructors.

532 Attila Sali and Klaus-Dieter Schewe

Example 4. The nested attribute Concert allows to define an instance that con-
tains data of a (rock-)concert.

Concert(Band(Bname(BandName),Members{Musician(
Name(MusicianName),Role(Instrument(InstrumentName)©Vocal(Voice)))}),
Played(Songs[SongTitle]),Evaluation(Grade)).

Here BandName, MusicianName, InstrumentName, Voice, SongTitle and Grade are
simple attributes, while Concert, Band, Bname,Members, Musician, Name, Role,
Instrument, Vocal, Played and Evaluation are labels. An element of the domain of
nested attribute Concert could be the following tuple:

(0,{ (Greg Howe,(Instrument ¡Guitar)),
(Victor Wooten,(Instrument:Bassguitar)),
(Dennis Chambers,(Instrument:Drums)),}
[Tease, Contigo, Proto Cosmos], 10).

Note that this trio of jazz musicians plays under no specific band name.
In the following, we will need a bit more caution regarding syntax in order

to avoid ambiguity. For this we mark the set label in an attribute of the form
© • • • © Xn(X'n)} to indicate the inner union attribute, i.e. we should

use -X"^...^} (or even instead of X. As long as we are not dealing
with subattributes of the form ^{i,...,fc} {A}, the additional index does not add any
information and thus can be omitted to increase readability. The same applies to
the multiset- and the list-constructor. The reason for introducing these indices will
become apparent after Definition 6.

2.2 Subattributes
In the dependency theory for the relational model we considered the powerset T(i?)
for a relation schema R. 7{R) is a Boolean algebra with order C, intersection D,
union U and the difference —.

We will generalize these operations for nested attributes starting with a par-
tial order >. However, this partial order will be defined on equivalence classes of
attributes. We will identify nested attributes, if we can identify their domains.

In the relational model a functional dependency X —* Y for X, Y C R C U
is satisfied by an ii-relation r iff any two tuples ii,t2 6 r that coincide on all the
attributes in X also coincide on the attributes in Y. Crucial to this definition is
that we can project R-tuples to subsets of attributes.

Therefore, in order to define FDs on a nested attribute X e N we need a notion
of subattribute. For this we define a partial order > on nested attributes in such a
way that whenever X > Y holds, we obtain a canonical projection ity : dom(X) —>
dom(Y). However, this partial order has to be defined on equivalence classes of
attributes, as some domains may be identified.

Definition 5. = is the smallest equivalence relation on N satisfying the following
properties:

Keys and Armstrong Databases in Trees with Restructuring 533

• A = X();

• -^(-^li • • • i X„) = X(X'lt... ,X'n, A);

• X(X[,..., X'n) = X{X'c^y..., X'a(n)) for any permutation a € S„;

• X ^) © • • • © Xn{X'n) = Xvll)(X'all)) © • • • © X<n)(X'a{n)) for any permu-
tation a £ Sn ;

• X(X[, ...,X'n) = X(yu ... ,Yn) if X'i = Yi for all i = 1 n;

• Xi(Xi)©-' s X1{Y1)®-• -©Xn(yn) if Xi = Yi for all i = 1 , . . . , n;

• i f fX ' = Y;

• X[X'\ = X[y] iff X' = Y;

• X(X') = X(Y) iff X' = Y\

. X(X[..., Y^Y{) © • • • © Ym(Y^),..., X'n) = YiiXi,..., Y{,..., X'n) © • • • ©
Ym{X[,..., Y^,,..., X^);

. x{x!(x{)©• • • © = X(X1{X[},...,xn{i;});

Basically, the first four cases in this equivalence definition state that A in record
attributes can be added or removed, and that order in record and union attributes
does not matter. The last three cases in Definition 5 cover restructuring rules,
two of which were already introduced in [2]. Obviously, if we have a set of labeled
elements with up to n different labels, we can split this set into n subsets, each
of which contains just the elements with a particular label, and the union of these
sets is the original set. The same holds for multisets. Of course, we can also split
a list of labeled elements into lists containing only elements with the same label,
thereby preserving the order, but in this case we cannot invert the splitting and
thus cannot claim an equivalence.

In the following we identify X with the set N/= of equivalence classes. In
particular, we will write = instead of =, and in the following definition we should
say that Y is a subattribute of X iff X > Y holds for some X = X and Y = Y.

Definition 6. For X, Y € N we say that Y is a subattribute of X, iff X > Y holds,
where > is the smallest partial order on N/= satisfying the following properties:

• X > A for all X 6 X;

• X(Yi,..., V„) > X(X'a{1),..., X'a{rn)) for some injective a : {1, . . . , m}
{1, . . . , n} and Y„(i) > X f o r all i = 1 , . . . , m;

• Xi(Yi) © • • • © X n(y n) > © • • • © X a („)pr ; (n)) for some permu-
tation a e S„ and Yi > X'i for all i = 1 , . . . , n;

534 Attila Sali and Klaus-Dieter Schewe

• J>f{Y} > X{X'} i f f y > X'\

• > X\X'] iff Y > X'\

• X(Y)> X(X') iff Y > X'\

• x{1 „}pfi(xi) © • • • © XnTO] > xixtixi],... ,x„[x;]);

• x{l * } [Xi (Xi)©-• •©* ,№)] > X{1 i }[A'1(Xi)®-"©X i(Jfi)] for fc > e-,

. X(Xil{X),...,Xik{X})>X{ilt...tik}{X};

. X(Xit (A),..., Xik (A)) > ti}(A);

. X(X i l[A], . . . IX i f c[A])>X{ i l tfc}[A].

Attributes of types ^ ¿ ^ . . . ^ { A } , and ifc}[A] are called
counter attributes.

Note that the last four cases in Definition 6 cover further restructuring rules
due to the union constructor. Obviously, if we are given a list of elements labeled
with X\,..., Xn, we can take the individual sublists - preserving the order - that
contain only those elements labeled by Xx and build the tuple of these lists. In this
case we can turn the label into a label for the whole sublist. This explains the first
of the last four subattribute relationships.

For the other restructuring rules we have to add a little remark on nota-
tion here explaining why we use additional indices. As we identify X { X i ©
• • • ©Xn(X4)} with } , . . . , ATn{X4}), we obtain subattributes of the form
X{Xil{X'il},...,Xijx.'j) for each subset I = {»i,...,»*} C { l , . . . , n} . How-
ever, restructuring requires some care with labels. If we simply reused the label X
in the third last property in Definition 6, we would obtain

XiX^Xi) © X2(X'2)} =X(X1{X[},X2{X^}) >

However, the last step here is wrong, as the left hand side is an indicator for
the subset containing the elements with label Xi being empty or not, whereas the
right hand side is the corresponding indicator for the whole set, i.e. elements with
labels X\ or X2. No such mapping can be claimed. However, if we mark the set
label in an attribute of the form © • • • © Xn{X'n)} to indicate the inner
union attribute, the ambiguity problem disappears.

Further note that due to the restructuring rules in Definitions 5 and 6 we may
have the case that a record attribute is a subattribute of a set attribute and vice
versa. This cannot be the case, if the union-constructor is absent. However, the
presence of the restructuring rules allows us to assume that the union-constructor
only appears inside a set-constructor or as the outermost constructor. This will be
frequently exploited in our proofs.

Obviously, X > Y induces a projection map 7Ty : dom(X) —> dom(Y). For
X = Y we have X > Y and Y > X and the projection maps 7Ty and are
inverse to each other.

Keys and Armstrong Databases in Trees with Restructuring 535

Example 7. Let X - Balls{red(Number) © blue(Number) © green(Number)}.
A complex value in dom(X) represents a set of coloured balls carrying numbers,
with the colours red, green and blue being available. Examples of such values are
vx = {(red : 11), (red : 12), (green : 11), (blue : 6), (blue : 1)}, v2 = {(red : 5), (red :
7), (blue : 3)}, and v3 = {(green : 8)}.

Counter subattributes of X axe X\ = Ballsred,green{A}, X2 = Ballssreen{A},
and X3 = BallSfciue{A}. Projecting a value v € dom(X) to X\ would give a non-
empty set {T} iff v contains red or green balls. Analogously, the projection to X2
or X3 results in {T} iff v contains green or blue balls, respectively. For instance,
we obtain

* $ №) = { T > = m < (« 0 = {T}
M = {T} («2) = 0 7T& («2) = {T}

We use the notation S(X) = {Z G N | X > Z} to denote the set of subattributes
of a nested attribute X. Figure 2 shows the subattributes of X{X\{A) © X2(B) ©
X3(C)} = X(XI{A},X2{B},X3{C}) together with the relation > on them.

Note that the subattribute X{A} would not occur, if we only considered the
record-structure, whereas other subattributes such as X{X\ {A}) would not occur,
if we only considered the set-structure. This is a direct consequence of the restruc-
turing rules.

Example 8. Consider the following subattributes of the nested attribute Concert
of Example 4. Subattribute

Concert(Band(Members{Musician(Name(MusicianName))}))

represents the set of names of musicians performing at the concert. The projec-
tion of the tuple shown in Example 4 to this subattribute is the following complex
value:

(({(Greg Howe),(Victor Wooten),(Dennis Chambers)})).

The subattribute Concert(Played(Songs[A])) shows the number of songs played dur-
ing the concert. The projection of the tuple of Example 4 to this subattribute is
the tuple (([T, T,T])) showing that three songs were played. Finally, subattribute
Concert(Band(Members{Musician(Role{vocai}(A))})) shows whether a singer per-
formed at the concert. Projecting the tuple of Example 4 to this subattribute the
tuple (({(0)})) is obtained that shows that only instrumental music was played.

Let us now investigate the structure of S(X). We obtain a non-distributive
lattice with relative pseudo-complements.

Definition 9. Let £ be a lattice with zero and one, partial order <, join U
and meet l~l. Z has relative pseudo-complements iff for all Y,Z e £ the infimum
Y <- Z = r\{U | U U y > Z} exists. Then Y <- 1 (1 being the one in L) is called
the relative complement of Y.

536 Attila Sali and Klaus-Dieter Schewe

If we have distributivity in addition, we call -C a Brouwer algebra. In this case
the relative pseudo-complements satisfy U > (Y <— Z) iff (U U Y > Z), but if we
do not have distributivity this property may be violated though relative pseudo-
complements exist.

Proposition 10. The set S(X) of subattributes carries the structure of a lattice
with zero and one and relative pseudo-complements, where the order > is as defined
in Definition 6, and A and X are the zero and one, respectively.

It is easy to determine explicit inductive definitions of the operations n (meet),
LJ (join) and <— (relative pseudo-complement). This can be done by boring technical
verification of the properties of meets, joins and relative pseudo-complements and
is therefore omitted here.

Example 11. Let X = X{Xi(A) © X2(B)} with S(X), as shown in Figure 1.
Furthermore let Yx = X{l i2}{A}, Y2 = X(X2{B}), and Z = X(Xi{A}). Note that
U is the least common upper bound, while l~l is the largest common lower bound in
the subattribute poset. Then we have

Z H {YL U Y2) = n (X{1,2}{A} U * № { £ })) =
X(* i{A}) n X(Xi{A}, X2{B}) = X(*i{A}) £ A = A U A =

n X{\}) U (I f t I A }) n X(X 2 {B})) = (ZH YI) u (z n Y2) .

This shows that S(X) in general is not a distributive lattice. Furthermore, Y'UZ >
Yi holds for all Y' except A, X(Xi{A}) and J ^ X ^ }) . So Z Yi = A, but not
all Y' > A satisfy Y'UZ> Yx.

2.3 Functional Dependencies
Let us now define functional and weak functional dependencies on S(X) and de-

rive some sound derivation rules. The first thought would be to consider single
nested attributes, as in the RDM U corresponds to the union U, and n to the in-
tersection fl. However, if we treat functional dependencies in this way, we cannot
obtain a generalization of the extension rule. Therefore, we have to consider sets
of subattributes.

Definition 12. Let X 6 N. A functional dependency (FD) on S(X) is an expres-
sion y —» Z with y, Z C S(X). A weak functional dependency (wFD) on S(X) is an
expression ^ —̂• Z{ \ i £ / J with an index set I and ^i, Zi C S(X).

In the following we consider finite sets r C dom(X), which we will call simply
instances of X.

Definition 13. Let r be an instance of X. We say that r satisfies the FD y —• Z
on S(X) (notation: r \= y Z) iff for all ti,t2 £ r with 7r£(ii) = w$(t2) for all
Y G y we also have 7r£(ii) = 7rf (i2) for all Z G Z.

r satisfies the wFD ^ Z< | i G I \ on S(X) (notation: r f= Zi | i G I})
iff for all i i , t2 G r there is some i £ I with {ii, t2} |= —> Zi.

Keys and Armstrong Databases in Trees with Restructuring 537

Figure 1: The lattice § (I { I i (4) ® I 2 (B) })

According to this definition we identify a wfD —> ZJ-, i.e. the index set
contains exactly one element, with the "ordinary" FD y —* Z.

2.4 Coincidence Ideals
The study of FDs and wFDs depends heavily on the notion of "coincidence ideal",
i.e. sets of subattributes, on which two complex values coincide. For our purposes
in this paper it is sufficient to take this as the definition.

In the following we investigate sets of subattributes, on which two complex
values coincide. It is rather easy to see that these turn out to be ideals in the
lattice S(X), i.e. they are non-empty and downward-closed. Therefore, we will call
them coincidence ideals. However, there are many other properties that hold for
coincidence ideals.

Definition 14. Two subattributes Y,Zs §(X) are called reconcilable iff one of
the following holds:

1. Y > Z or Z > Y;

2. X = X[X'), Y = X[Y'), Z = X[Z'\ and Y',Z' e S (X ') are reconcilable;

3. X = ,*„), Y = X(YU...,YN), Z = X{ZX,...,ZN) a n d YT,ZI G
§(Xj) are reconcilable for all i = 1 , . . . ,n;

538 Attila Sali and Klaus-Dieter Schewe

Figure 2: The lattice S(X{Xi(A) © X2(B) © X3(C)})

Keys and Armstrong Databases in Trees with Restructuring 539

A. X = XX{X{) © • • • ® XN{X'N), Y = XI(Y{) © • • • © XN{Y¿), Z = X^Z'J ©
• • • © XN(Z'N) and Y¡, Z[G S(X{) are reconcilable for all i = 1 , . . . ,n;

5. X = © • • • © XN{X'N)\, Y = X(YU ...,YN) with Y¿ = X<[Y¡\ or
YI = A = Y/, Z = X[XI(Z¡) © • • • © XN{Z'N)], and Y/, Z[are reconcilable for
all i = 1 , . . . , n.

Note that for the set- and multiset-constructor we can only obtain reconcilability
for subattributes in a >-relation.

Example 15. Consider S(X{X"i(A) ®X2(B) ©X3(C)}) shown on Figure 2. Here
t h e s u b a t t r i b u t e s X{XL{A},X2{B}) a n d X p ^ f A } , X 2 { X } , X 3 { C } a r e r econc i l -
able. Indeed, X (X I { A } , X 2 { S }) = X(XX{A},X2{B}, A) and XX {A} > X I { A } ,
X2{B} > X2{\}, A < X3{C}; thus the components of the two subattributes are
pairwise comparable in the subattribute lattice S(X), thus they are reconcilable
by 1. of Definition 14. Applying 3. of the same definition the reconciliabiliy of
X(X!{A},X2{B}) and X (X I { A } , X 2 { A } , X 3 { C } is obtained.

On the other hand, X(XI{A},X2{B}) and X(X{li3}{A}) are not reconcilable.

The following definition of coincidence ideals looks formally self-referential.
However, it is not hard to see that a rank of a nested attribute can be defined via
the recursive construction as follows. The rank of a simple attribute is 0. When a
nested attribute is constructed using some constructor, like record, set, list, multi-
set or disjoint union, then the rank of the new attribute is one plus the maximum
rank of the parts it is constructed from. In this setting, whenever a coincidence
ideal or defect coincidence ideal is referred to in the definition of coincidence ideal,
then it is of subattributes of a nested attribute of strictly lower rank, hence there
is no circularity in the definition.

Definition 16. A coincidence ideal on S(X) is a subset 7 C S(J\T) with the
following properties:

1. A G

2. if Y G 3" and Z G S(X) with Y > Z, then Z G

3. if Y, Z 6 7 are reconcilable, then Y U Z G J ;

4. a) if X/{A} G 3" and Xj{A} £ J for I C¡ J, then
X(XH {X^ } , . . . , XIK {X'IK}) G 3" f o r / = { ¿ i , . . . , i k } ;

b) if X/{A} G J and X(Ar¿{A}) ^ 7 for all i G / , then there is a partition
I = h Ú I2 with X7l{A} i 3, Xh{\} i 3 and X/<{A} G 3" for all V C I
with / ' D h / 0 / ' n I2\

c) if X{1 n}{A) G 7 and -Xj-{A} £ J (for = {i G { l , . . . , n } |
X(X¿{A}) (£ 5"}), then there exists some i G I+ = {i G {1,.. . ,n} j
X(X¿{A}) G 3"} such that for all J C I~ X Ju{ i}{A} G J holds;

540 Attila Sali and Klaus-Dieter Schewe

d) if -Xj{A} i 3" and X{ j}{A} £ 7 for all j £ J and for all i £ I there
is some JI C J with X j . y ^ ^ A } ^ 7, then X/uj{A} ^ 7, provided
/ FL J = 0;

e) if Xj-{A} £ 7 and I' C I+ such that for all i £ I' there is some
J C 7" with X / U { I } { A } $ 7, then XIluj,{\} £ 7 for all J' C I~ with
* j ' {A} i 7;

5. a) if X/{A} £ 7 and Xj{A} G 7 with / n J = 0, then X 7 u J {A} G 7;
b) if X/[A] 6 7 and X j [A] e 7 with ID J = 0, then X/UJ[A] € 7;

c) if XJ(X) £ 7 and XJ{A) £ J with I n J = 0, then XIUJ{\) £ 7\

d) if X/[A] £ 7 and XJ[X] £ 7 with J CI, then A] G 7;
e) if X/(A) G 7 and XJ(A) G J with J CI, then Xj_j(A) G J ;
f) if X/[A] G 7 and Xj[A] € then -X/nj[A] € 5" iff X (/ _ J) U (J - /) [A] € 7\
g) if XI(X) £ 7 and XJ{\) £ 7, then XINJ(X) £ 7 iff X(/_./)u(.7-/)(A) £ 7;

6. a) for X = X{X{X!(Xi)e• • •®Xn(X;)}}, whenever I C {1 , . . . ,n}, there
is a partition I = I~ U U1+ U /_ such that

i. X { X { i } { A } } e 7 i f f i £ / - ,
ii. X{X/'{A}} € 7, whenever I' n J+ ^ 0,

iii. X{X/-{A}} G 7 iff X i X ^ n ^ u z - ^ A } } G J , whenever V C /+_ U
I~ U /_ ;

b) for X = - • whenever J C { 1 n}, there
is a partition I = I~ U U1+ U I - such that

i. x (% { A }) e J i f f i f r ,
ii. X(X/'{A}) £ 7, whenever I'01+^ 0,

iii. X(X/'{A}) € 7 iff X(Xrn{I+_u/-){A}) € 7, whenever I' C /+_ U
I~ UI

7. a) if X = X (X [, . . . , X'N), then 7< = {Y £ S(Xt') | X(X,..., YIT..., A) G 7}
is a coincidence ideal;

b) if X = X[X'\, such that X' is not a union, attribute, and 7 ^ {A}, then
S = {Y G S(X') | X[Y] G 7} is a coincidence ideal;

c) If X = XIIX'J © • • • © XN{X'N) and 7 ± {A}, then the set 7{ = {Y £
1{X[) | XI(X) © • • • © XI(YI) © • • • © XN(X) £ 7} is a coincidence ideal;

d) if X — X{X'}, such that X' is not a union attribute, and 7 / {A}, then
S = {Y £ S{X') | X{Y} £ 7} is a defect coincidence ideal;

e) if X = X(X'), such that X' is not a union attribute, and 7 ^ (A), then
g = {Y £ B(X') | X(Y) £ 7} is a defect coincidence ideal.

A defect coincidence ideal on §(X) is a subset 7 C S(X) satisfying properties
1, 2, 4(a)-(d), 6(a),(b), 7(d)-(e) and

Keys and Armstrong Databases in Trees with Restructuring 541

8. a) if X = X(X[,.. thenJi = {Y e S(X{) | X(A,. . . , Vi, • • •, A) G 3"}
is a defect coincidence ideal;

b) if X — such that X' is not a union attribute, and 7 / {A}, then
9 = {Y G S(X') | X\Y] G 7} is a defect coincidence ideal;

c) If X = © • • • © Xn{X'n) and 7 ^ {A}, then the set ^ = {Yi G
S(Xt') | Xi(A) © • • • © Xi{Yi) © • • • © Xn(A) € 7} is a defect coincidence
ideal.

The name "coincidence ideal" was chosen, because these ideals characterize sets
of subattributes, on which two complex values coincide. This is formally shown in
the following theorem. In [16, 20] the term "SHL-ideal" was used instead; in [17]
in a restricted setting the term "HL-ideal" was used. Note that in all these cases
not all the conditions from Definition 16 were yet present.

For the purposes of the present paper the following three statements from [22]
are important and not the particular details of the definition above.

Theorem 17 (Theorem 3.1 in [22]). Let X G N be a nested attribute. For complex
values ti,t2 £ dom{X) let J = { 7 £ S(X) 17r£(ti) = (i2)} C S(X) be the set of
subattributes, on which they coincide. Then 7 is a coincidence ideal.

Theorem 18 (Theorem 3.2 in [22]). Let S Q S(X) be a defect coincidence ideal
for the nested attribute such that the union constructor appears in X only
directly inside a set-, list or multiset-constructor. Then the following holds:

1. There exist two finite sets Si,£2 Q dom(X) such that {7Ty(r) | r G Si} =
{7Ty (r) | r G S2} holds i f f Y £ S- For S ^ {A} both sets are non-empty.

2. There exist two finite multisets Mi,M2 C dom(X) such that (ITY(t) I r €
Mi) = (7r£(r) I r G M2> holds i f f Y G S- For 5 / {A} both multisets are
non-empty.

Theorem 19 (Central Theorem,Theorem 3.3 in [22]). Let 7 C S(X) be a coinci-
dence ideal for the nested attribute X G N such that the union constructor appears
in X only directly inside a set-, list or multiset-constructor. Then there exist two
complex values ti,t2 G dom(X) such that 7Ty (ii) = TTy (¿2) holds i f f Y G 7.

The long and technical proofs of the above theorems are included in [22].

3 Keys and Antikeys
In this section we assume that a set E of functional dependencies is given over
S(X) and every statement is understood as "with respect to £". Since functional
dependencies are defined between sets of subattributes, the following is a natural
generalization of the concept of keys to the higher-order datamodel.

542 Attila Sali and Klaus-Dieter Schewe

Definition 20. X C S(X) is a key (with respect to E) if E |= 3C —> S(X) holds.
In other words, if r is an instance of S(X) satisfying E, then for any two distinct
complex valued tuples t\,t2 G r there exists K € X such that ^ (¿ j) ^ 7r^(i2)
holds.

The following closure operation is important in the chaxacterization of minimal
key systems.

Definition 21. The closure of a set ^ C S(X) is defined as the intersection of all
coincidence-ideals containing

cl(V) p| J. (1)
? i a a c o i n c i d e n c e - i d e a l DCJ

The idea behind Definition 21 is simple. We are interested in the following:
assume that two tuples agree on a set of subattributes, where do they need to agree
besides those? Since it was proved in [22] that the set of subattributes where two
tuples coincide form a coincidence ideal, if n*(ti) = (t2) for all Y G y, then y
is a subset of the set of subattributes where t\,t2 coincide, which is a coincidence
ideal. Because cl(y) is a subset of that ideal, ti,t2 coincide on all Z G cl(y).

Proposition 22. The operator cl is a closure operator, that is

1.y C c/GO;

2. I f y c Z, then cl{y) C cl(Z);

3. cl{cl{y)) = cl(y).

Clearly, if X is a key and 3C C !K, then "K is a key, as well. In particular, the
closure of a key is also a key. The interesting fact is that the converse also holds.

Theorem 23. X C %{X) is a key i f f cl(X) is a key.

Proof. According to the previous note, only the implication ucl(X) is a key X
is a key" needs to be proven. Suppose that DC is not a key, that is E ^ X —* S{X).
Thus, there exists an instance r of S(X) satisfying E and two complex-valued tuples
ti ¿t2mr such that VK G X: 7r£(ti) = tt$(i2) holds. Let J = {Z | 7rf (h) =
TT^(t2)}. Since 7 is a coincidence-ideal that contains X, cl(X) C 5" holds. This
implies, that cl(X) is not a key either.

•
Antikeys are defined in the relational model as any subset of attributes that are

not keys. Here, the same works.

Definition 24. A subset A C S(X) is an antikey (with respect to E), if E ^
A —> S(X). In other words, there exists an instance r of S(X) satisfying E and two
complex-valued tuples t\ ^ t2\nr such that VA G A: 7r^(ii) = 7r*(i2) holds.

Keys and Armstrong Databases in Trees with Restructuring 543

It is clear, that if A is an antikey, and 25 C A, then CB is an antikey, as well. In
particular, if cl(A) is an antikey, then so is A, as well. Again, the interesting fact
is that the converse is also true follows from Theorem 23.

Corollary 25. A C S(X) is an antikey, iff cl(A) is an antikey.

Theorem 23 and Corollary 25 allow considering only closed sets as keys or
antikeys. "K is closed if IK = cZ(IK). Indeed, if we have a key X, then its closure
cl{X) is also a key and every X' with cl(X') = cl(X) is a key. as well. This means
that the system of closed sets that are keys uniquely determines the system of all
keys. Thus, we concentrate on only closed sets in the following.

We are interested in minimal keys and maximal antikeys, where minimal
and maximal is with respect (set-wise) containment. Given E, the system Jft =
{3Ci,... ,Xk} of all minimal keys forms a Sperner system or antichain of sets of
subattributes, that is for every pair of indices i and j Xi ^ Xj holds. Analogously,
maximal antikeys form a Sperner system 21 = {Ai, . . . ,A a} of sets of subattributes.

Proposition 26. The system of minimal keys and the system of maximal antikeys
mutually determine each other.

Proof. Consider the poset of closed subsets of S(X) ordered by (set-wise) inclu-
sion. Keys form an up-set, or filter, that is a subset KC!)3 such that if X G K and
X C !H, then J i g K . Similarly, antikeys form a down-set, or ideal, that is a subset
A C i p such that if A e A and 3 C A, then 3 e A. Most importantly, K U A = <P
and K fl A = 0. The system of minimal keys is the set of minimal elements of K,
while the system of maximal antikeys is the set of maximal elements of A.

•
Proposition 26 allows the following notation. If R is the system of minimal keys,

then the corresponding system of maximal antikeys 21 is denoted by as well.
Observe, that this notation can be extended to any Sperner-system 6 of closed
sets by S - 1 being the collection of the maximal elements of the ideal that is the
complement in ij? of the filter § generated by 6 .

4 Armstrong Instances
The principal interest of the present paper is to investigate which Sperner systems
of closed subsets of S(X) can occur as systems of minimal keys for some suitable
family of functional dependencies E. The idea of Armstrong instance is that given
a family of constraints (e.g. functional dependencies) and a subset E of that family,
one looks for a model (database) that satisfies only those constraints in E and no
others. The practical use of this concept is that during conceptual schema design,
the designer is able to check whether some constraints are logical consequences
of the constraints of the design by obtaining an Armstrong instance and checking
what dependencies are satisfied besides the ones designed. For the relational model,
there are even software packages constructing Armstrong instances.

544 Attila Sali and Klaus-Dieter Schewe

In the relational model Armstrong [4] and Demetrovics [6] proved that every
Sperner system arises as set of minimal keys, i.e., has an Armstrong instance.
Later Fagin [10] gave necessary and sufficient conditions for constraints that can
be described by Horn clauses, to have Armstrong instance in the framework of
the relational datamodel. However, in [21] it was shown that in the higher-order
datamodel, although in the restricted "counter-free" case, the same statement does
not hold.

Definition 27. Let r be an instance of a nested attribute X, with subattribute
lattice S(X). A subset X C S(X) is key with respect to r, if r |= X —*• S(X),
i.e., there exist no two distinct complex-valued tuples ti,t2 G r such that ViC G
X: 7r^(ii) = n^fe) holds, r is an Armstrong-instance for a Sperner system £ of
closed subsets of S(X), if the system of minimal keys with respect to r is exactly
SL

A simple characterization can be given for Armstrong instances.

Proposition 28. Let &bea Sperner system of closed subsets ofS(X). An instance
r is Armstrong-instance for minimal key system £ iff

[Key] For all X £ R and any two complex-valued tuples £i, t2 G r there exists
K G DC such that ^ 7 R £ (I 2) holds.

[Antikey] For all A G -ft -1 there exists two complex-valued tuples tx ^ t2 in r
such that VA G A: ir$(ti) = TT$(t2) holds.

•
The [Antikey] property of Proposition 28 gives an immediate necessary condi-

tion for existence of an Armstrong-instance. Indeed, every maximal antikey must
be a coincidence ideal. This is a real restriction, since not all closed sets are coin-
cidence ideals. For example, consider S(X{Xi(A) © X2(B) © X3(C)}) of Figure 2.
For the sake of convenience the principal ideal {Y G S(X) | Y < Z} of S(X) gen-
erated by Z G S(X) is denoted by Z\. The principal ideal 3 = X(Xj{A}, X2{A})|
is closed see Proposition 37, but not a coincidence ideal, since it violates prop-
erty 4(a) of Definition 16. Taking K C ip be the set of closed subsets of S(X) that
do not contain 3, we obtain that the unique maximal antikey corresponding to the
key system K is 3. However, since J is not a coincidence ideal, K cannot have an
Armstrong-instance.

On the other hand, minimal keys can indeed be closed sets that are not coin-
cidence ideals. Consider again S(X{Xi(A) © X2(B) © X3(C)}) of Figure 2. Let
A = X(Xi{A})J.. It is not hard to see that A is a coincidence ideal. Indeed, proper-
ties 1-3 of Definition 16 are trivially satisfied by any principal ideal. Property 4(a)
is satisfied, because the only possible choice of I that satisfies the conditions is
I = {1}. Conditions in points (b), (c), and (e) of property 4 do not apply to A,
while 4(d) is satisfied trivially. Finally, the conditions in properties 5-7 do not
apply to A, hence by the Central Theorem (Theorem 19) there exists two tuples

Keys and Armstrong Databases in Trees with Restructuring 545

ti, i2 € dom(X) with tt* (fi) = 7r*(i2) iff A £ A In fact the proof of the Central
Lemma constructs the tuples ti = 0 and t2 — {(Xi : ai)}. X = X(Xi{A}, -^{A})!
is a minimal key with respect to the instance r = {£1, ^2}-

The trouble with Armstrong-instances are caused by degenerate keys.

Definition 29. A key X is called degenerate, if every K GOC is constructed using
only A, set-constructor, record-constructor and union-constructor. That is, K does
not contain simple attributes, multiset- or list-constructors.

Similar question was considered by Fagin and Vardi for the relational model in
[11], where functional dependencies with non-empty left hand side were called stan-
dard, and the problems of working with non-standard functional dependencies were
investigated. The following theorem gives a sufficient condition for the existence of
Armstrong-instance.

Theorem 30. Let ^ = {Xi \ i = 1 ,2 , . . . , k} be a Sperner system of closed subsets
of S(AT). There exists an Armstrong-instance r for £ as system of minimal keys
provided the following two conditions hold:

1. ^ does not contain degenerate keys;

2. Each element o/2l = .ft-1 is a coincidence ideal.

Proof. Let = {.Ai,... ,yifc}. The restructuring rules allow us to assume that
the union-constructor only appears inside a set-constructor or as the outermost
constructor, hence Theorem 19 provides complex values tQ,t\ i = 1,2,... ,k such
that

TTy(io) =7ry(*i) <=» Y e A i . (2)

This ensures that Ai is an antikey for all i. On the other hand, we have to show
that each Xi € .ft is a key. In order to do so, the complex valued tuples will be
modified preserving (2) so that if (tl

a) = 7 (t J
b) for some Z G S(X), a, b G {0,1},

and 1 < i < j < k, then Z cannot contain simple attributes or list or multiset
subattributes. Hence no two complex values can agree on every subattribute in 3CS
for all s, which implies that each Xs is a key. Note, that the number of complex
values in this Armstrong instance is exactly 2 |^ - 1 | .

The modification of the tuples is as follows. For simple attributes we have to
take care of that during the inductive construction of the tuples the constants from
the domains of simple attributes used for Ai must be distinct from those used for
Aj if i j. This ensures that values constructed for Ai and those constructed for
Aj for i j cannot agree on subattributes containing a simple attribute.

For the list attribute case if one of is {A}, then we have only one coincidence
ideal by the Sperner property, so there is nothing to prove. Otherwise, consider the
inductive construction of the tuples t}),t\ for Ai. We modify that in a sequential
order for i = 2 ,3 , . . . , k. When we encounter a list subattribute X[X'\, (X' could
be a union) the proof of Theorem 19 constructs two tuples £q , t t h a t are of the
form t„ = [t%a\, a — 0,1. Let to be the largest multiplicity of any element in any

546 Attila Sali and Klaus-Dieter Schewe

list in f¿ and í j , j = 1 ,2 , . . . , i - 1. Now, we replace tj,', ij' with i** = [{™ + 1) • £"].
i.e. tl* is a list with m 4- 1 occurrences of the same element tl¿'. This modification
ensures that multiplicities inside lists cannot agree in tuples constructed for distinct
.A¿'s while preserving the property (2). The multiset attribute case is similar.

•

4.1 The Case § (X{Xi(Ai) © X2(A2) © • • • © Xn(An)})
In the present section we study a special case, which is archetypical. This nested
attribute exhibits most of the problems with respect to Armstrong-instances,
thus showing the complexity of the problem. We believe that effective treat-
ment of this case would lead to general insight of the nature of Armstrong-
instances of nested attributes. As a beginning in that direction, a character-
ization is given for the existence of such instances. Let r be an instance of
S (X{Xi(Ai) © X2(A2) © • • • ffi -X„(An)}). According to Definition 5, complex
value t £ r can be considered as a tuple t = (Xi : a i , . . . , Xn : an) , where a¿
is a finite subset of the domain of Ai for i = 1 ,2 , . . . ,n. The pattern of t is an
n-tuple pt of +'s and —'s, such that the ¿th coordinate of pt is +, if a¿ ^ 0, and —,
if at = 0.

Proposition 31. Let r be an instance of X{Xi(Ai) © X2(A2) © • • • © Xn(An)},
and let & = {3Ci,..., 3Cfc} be the system of minimal keys with respect to r. If there
exists an i such that DQ is degenerate, then r contains at most one complex valued
tuple of each possible pattern. Consequently, |r| < 2".

Proof. Attributes in a degenerate key can only have the form -X/{A} for some
I C { l , 2 , . . . , n} or -X^Xj^A^-Xi^A},.. .Xia{A}). The projection of a complex-
valued tuple t to such an attribute is determined by which coordinates of t are
non-empty, hence depend only on the patter pt.

•
Any two subattributes that are not of type -X/{A} for some | / | > 1 are recon-

cilable since the possible ¿th components of a tuple are A,X¿{A} and XÍ{AÍ} that
are pairwise comparable, that is reconcilable. Thus, a coincidence ideal A contains
the U of any pair of non-counter attributes belonging to A. It follows then that A
consists of a principal ideal of non-counter attributes extended with some counter
attributes of type X/{A}. Recall, that a principal ideal generated by an element K
in a lattice consists of all elements ¡i of that lattice with n < k.

Take a Sperner system of closed sets ñ = {3Cj,..., DC*} and the Sperner system
= 21 = {.Ai,... ,A m } as candidates for minimal keys and maximal antikeys,

respectively. Assuming that each Ai is a coincidence ideal, a pair of tuple patterns is
obtained via Theorem 19 for each Ai, together with a constraint tp^ A.. .Atpib, where
<Pij requires = or ^ on common +-component ij. Indeed, let X{Y\,Y2,..., Yn) be
the largest (generator) element of the principal ideal part of If both tuple
patterns contain + in component ij, then either Y¿j = Xij{A} or Yij — Xij{Aij}.
In the first case the tuples that agree on exactly must contain different nonempty

Keys and Armstrong Databases in Trees with Restructuring 547

sets in the i j th component giving tp^ being Note that the tuples cannot agree
on Xij {Aij} in this case. On the other hand, if Yij = Xi j {Aij}, then the ijth
component of the tuples must contain the same non-empty set, thus <Pij is =.

Proposition 32. The pair of patterns and the constraints are uniquely determined
by the counter attributes contained in A e 21, provided the pair consists of distinct
patterns.

Proof. Assume that A = X{Yx,Y2,... ,yn)|.U{X/ | / 6 1 } where Yt is either A,
Xj{A} or Xi{Ai). Furthermore, assume that two complex valued tuples t\ = (Xi :
a i , . . . , Xn : an) and t2 = (A î : bi,..., Xn : bn) agree exactly on subattributes of A.
It means that if Yi = A, then one of ai and hi is empty and the other is nonempty,
if Yi = Xj{A), then ai ^ bi and both are nonempty, while if Yl ~ Xi{Ai}, then
either ai = bi and both are nonempty, or both are empty. Thus, patterns of t\ and
t2 have the same symbol in coordinate j where Yj = Xt {Aj} or Yj = X,{A}, and
opposite symbols for Yj = A. -X/{A} € A for | / | > 1 means that both t\ and t2
have a nonempty coordinate whose index is in / , where the nonempty coordinates
of t\ and t2 showing Xj{\} € A need not have the same index. Let us assume that
Yi0 = A and ii has empty ¿oth coordinate. If {A} E A, then the jth coordinate
of t\ is nonempty. On the other hand, if ^ A, then jth coordinate of ti
is empty. In both cases the ,jth coordinate of pattern of t2 is uniquely determined,
as well.

The remaining case is when none of Yi s is A. In this case, using the same
argument as before, the patterns of ii and t2 are the same.

•
For example, if Ai = X2{A})} U{AT/ | 7 n {1,2} / 0}, then the

values {(Xi : vi),(X2 : v2)} and {(Xi : vi),{X2 : v'2),(X3 : v3),...,(Xn :.un)}
coincide exactly on Ai.

The corresponding pair of tuple patterns is {(+, +, — . . . , —), (+, + , . . . , +)},
and the constraints are : = i , tp2: 7̂ 2-

Construct a graph on 2n vertices with vertex set V being all possible patterns.
Add a green edge between the two patterns given by Ai labeled with the appropriate
constraint, for each candidate antikey Ai. For each pair of patterns ^ defines (a
more complicated) constraint on the patterns. That is, each Xj need to have an
element K where the two tuples corresponding to the pair of patterns have distinct
projections. For each K, a disjunction of conjuncts can be formulated, and the
disjunction of these formulae expresses that Xj is a key. Finally, the constraint
on the pair of patterns defined by £ is $1 A . . . A Add red edge between two
patterns labeled by the appropriate constraint.

Theorem 33. Let ^ = {DCi,..., Xk] be a Sperner system of closed sets that con-
tains a degenerate key and assume that .ft-1 = 21 = {^li , . . . , Arn} consists of coin-
cidence ideals. Let G be the graph on the patterns with green and red labeled edges
as constructed above. A has an Armstrong-instance iff the subgraph G' spanned
by the green edges has edge labels (both green and red), that can be simultaneously
satisfied by a set r of tuples that contain tuples of each pattern of G'.

548 Attila Sali and Klaus-Dieter Schewe

Red edge with label FALSE

Green edge with label = and t on + coordinates

Figure 3: Pattern graph

Proof. If fi. = {3Ci,... ,DCfc} has an Armstrong-instance r, then the patterns of
tuples in r satisfy each edge constraint. On the other hand, assume that the edge
labels of the subgraph G' spanned by the green edges are simultaneously satisfiable,
let r be a set of tuples that satisfy all constraints in G'. Since there is a degenerate
candidate key in AT(ATi{A}, ^ { A } , . . . , ATn{A}) cannot be contained in any of
the candidate antikeys, hence by Proposition 32 there is a unique green edge with
label for each Ai. The pair of tuples corresponding to the endpoints of the edge
agree exactly on subattributes of Ai, showing that it is an antikey. The red edge
labels make sure that each 3Q is a key. Since =21, we have that 8. is the
system of minimal keys, 21 is the system of maximal antikeys with respect to r.

•
Example 34. Let n = 4. For all four choices of 1 < i < j < k < 4 let R
consist of the principal ideals X(Xj{A},Xj{A},Xfc{A})J.. Then = 21 consist of
Aij = X(X i{A i},X i{A})|U{X / | ln{i,j} ± 0} for all six choices of 1 < i < j < 4.
The pattern graph for M and 21 is shown on Figure 3.

For instance, between + + + + and h+ we have a green edge with label
<P3 A </?4 given by (fi3 :=3 and <P4 This edge originates from j4.3i4. Between
—b + + and 1—I- we get a red edge with label FALSE, because the key % =

Keys and Armstrong Databases in Trees with Restructuring 549

X(XI{A},X2{A},X3{A})1 with K = X (X I { A } , X 2 { A } , X 3 { A }) will always yield
inequality for the second component. Similarly, between 1- and 1— we get
a red edge with label TRUE, because each key X i j k = ^{A},X f c{A})|
contains K = X(X3{A}) or K = X(X4{A}), so we know the required inequality
will be satisfied.

The red (dotted) edges with constraint label TRUE are not drawn. They axe
between pairs of vertices that have at least two coordinates where one of them is
+ and the other is -, that is exactly the complement of the drawn dotted graph.
It is easy to see that the labels on the subgraph induced by the green (continuous
line) edges are satisfiable, r = {(Xi : a, X2 : b, X3 : c, X4 : d), (Xi : a, X2 : b'), (Xi :
a, X3 : c'), (Xi : a, X4 : d'), (X2 :b,X3: c'), (Xa : b,XA : d'), (X3 :c,X4: d')} is an
Armstrong-instance.

Note that the Armstrong instance constructed in Example 34 contains a value
for each of the edges in the subgraph of the pattern graph spanned by the green
edges. This is the construction used in the proof of Theorem 33.

4.1.1 Some Negative Results.

In [21] some examples were shown that did not have Armstrong-instance in the
counter-free case. The proofs there were sometimes quite involved, which was
caused by not considering the counter attributes. If those are taken into account,
the proofs can be shortened, since the counter attributes contained in the maximal
antikeys sort of determine the patterns of possible complex values in an Armstrong-
instance.

Example 35. This example is from [21], but the proof is much shorter. Let
X = X{X1{A1)®X2{A2)@XZ{AZ)®X4(<A4)} and consider S(X). Let the Sperner
system 6 of closed sets consist of the principal ideals generated by

X(Xi{Ai}, X ^ }) for 1 < i < j < 4,
I f l i ^ } , ! ^ } , ! , ^ }) ,
AXXi iAhX^J .Xfc iA}) ,
X(Xi{A}, X,{A}, Xk{Ak}) for 1 < i < j < k < 4 and
X(X1{A},X2{A},X3{A},X4{A}).

The system of maximal antikeys is the set of coincidence-ideals

X p Q M J . X ^ H u p i : / I |/| > 1} fori ^ j, i,j G {1,2,3,4} and
X(Xi{A},Xj{A},Xfe{A})lU{X/ | |J| > 1} for1 < i < j < k < 4.

The patterns belonging to X(Xi{Ai}, X2{A})|U{X/ | | / | > 1} are (+, +, +, -) and
(+, +, —, +), the edge constraints are <p\: =1, ip2'- /2- The same pair of patterns
belong to X(X"2{i42},Xi{A})|U{X/ | |J| > 1}, however the edge constraints are
<Pi • 7̂ 1, <P2 • =2- These two sets of constraints are clearly contradictory, hence by
Theorem 33 there exists no Armstrong-instance for &.

550 Attila Sali and Klaus-Dieter Schewe

The next example shows that there is a significant difference between the
counter-free case and the general case.

Example 36. Consider again X = X { X i (A i) ® ^ (^ © ^ (y ^ © ^ ^) } and
S(X). Let R be the Sperner system of the following closed sets of subattributes. R =
{X(Xi{A}, X2{A})1, X3{X})1, X(X2{\}, X4{A})|, X(X3{\}, X4{A})|}.

R'1 consists of (X { X 2 { A 2 } , X 3 { A 3 }) | and X(X1{A1},X4{A4}) I in the
counter-free case. It is easy to see that the following three tuples (Xx : a,X2 :
b,X3 : c,X4 : d),(X2 : b,X3 : c),(Xi : a,x4 : d) form an Armstrong-instance.
However, in the general case the maximal antikeys are

Ax = X(X2{A2},X3{A3})lU{X! | \I\ > 1}

and
>12 = X(Xi{A1}1X4{i44}Hu{^/ I I'l > !}•

The pair of patterns determined by A2 is (+ ,—,+,+) and (+ , + , - , +) , while
A\ gives (- , + , + , +) and (+,+,+,—)• However, tuples of patterns (+ ,+ ,—,+)
and (+ , + , + , —), respectively, agree on the key X(XI{A},X2{A})|.. Thus, .ft does
not have an Armstrong-instance in the case of counter attributes being considered.

4.2 Structural induction?
Most of the proofs about higher-order datamodels exploit structural induction.
Some of the constructors allow lifting an Armstrong-instance. Consider the list con-
structor, for example. Let X[X'\ be a nested attribute, and let R = {3Ci,..., 3Cm}
be a candidate key system in S(X') that has an Armstrong-instance r = { i i , . . . , ts}.
Then it is easy to see that r = {[ii], . . . , [i3]} is an Armstrong instance for
the candidate key system R = {[3Ci],..., [3Cm]} of S(X). We use the notation
[0Ci] = {[K] \KeXi}.

However, the reverse is obviously not true. Consider X = X[X'{Xi{Ax) ©
X2(A2) © ^"3(^3) © X4(A4)}] and the candidate key system 6 consisting of
XiX'iXiiAi^XjiAj})] i , 1 < i < j < 4, ^ ' (^ { A ^ ^ i A } , * * ^ })] | ,
^'(^{AJ.^iA^.X^A})]!, ^[^'(^{Aj.^iAj.XfciAfc})]! 1 < i < j <
k < 4, and X[A"'(Xi{A},X2{A},X"3{A},X4{A})]J.. This system consists of non-
degenerate keys, thus by Theorem 30 it has an Armstrong-instance. Indeed, A is a
maximal antikey for the candidate key system in Example 35 iff [A] is a maximal
antikey for &. Since A is a coincidence ideal, according to property 5(b) of Defini-
tion 16 [A] is a coincidence ideal as well, thus both conditions of Theorem 30 axe
satisfied. If R denotes the candidate key system in Example 35, then & = [£]. 6
has Armstrong-instance, but R does not.

This example shows that there is no hope for deciding about Armstrong-instance
using structural induction. Another example of the same flavor can be given us-
ing the record constructor. Consider X = X(X'{X\(Ax) © X2{A2) © X3(A3) ©
X4(A4)},y[5]) and the subattribute lattice S(X). As before, let R denote the
candidate key system in Example 35, and let.Sac = {X{K,Y[B]) \ K 6 DC}. The

Keys and Armstrong Databases in Trees with Restructuring 551

Sperner system £} = {Sx | 3C € .£} consists of non-degenerate candidate keys. Q. 1

consists of X^X'IX^AI) © X2(A2) © X3(A3) © X4(A4)}, Y[A])J. and X(A, Y[5])J.,
where A e .ft -1. These are coincidence ideals, thus by Theorem 30 Q has an
Armstrong-instance. However, the projection of £3 to the first component is ex-
actly the system in Example 35.

5 Strong Keys
Keys correspond to ideals of the subattribute lattice with some additional prop-
erties. Principal ideals form an important subclass of ideals. Another reason for
considering principal ideals is that in the relational datamodel each candidate key
that is a closed set is a principal ideal.

Proposit ion 37. Let y = Y{ be a principal ideal of the subattribute lattice S(AT)
of a nested attribute X. Then y is closed.

Proof. One has to show that

y= n (3)
7 i s a c o i n c i d e n c e - i d e a l

S)C3-

or in other words, if y C J for a coincidence ideal 7 and Z £ 5\y, then there
exists a coincidence ideal S with y C S and Z S- If V is not a coincidence ideal
itself, then it violates some of the properties of Definition 16. However, a principal
ideal can only violate 2(a)-(e). These always give choice that either one or another
subattribute must be in a coincidence ideal. Thus to construct S one only has to
avoid adding Z, when there is a choice. Since S(X) is finite, after finitely many
extensions the coincidence ideal S is obtained.

•
Proposition 37 states that principal ideals are candidate keys. Thus, the next

definition is meaningful.

Definition 38. A Sperner system of closed sets of S(X) is called a strong candidate
key system if it consists of principal ideals.

Note that in case of record constructor only, that is in the relational datamodel,
all keys are strong.

5.1 Record attributes with only one set component
Consider the following restricted record constructor: attribute Y{Y\,..., Yn), where
Y\ — while Yi is not a set attribute for i > 1. Let X be obtained by repeated
applications of this constructor. If % is a degenerate strong candidate key, then it
is X(Yfc{A}, A,. . . , A)| for some k, where Yfc{A} stands for Y{Y'{Y"{- • • {A} • • •}
with k being the nesting depth of set constructors. Let 6 = {OCi,..., 3Cm} be

552 Attila Sali and Klaus-Dieter Schewe

a strong candidate key system that contains a degenerate candidate key Xi =
X(Yfc{A}, A,. . . , A)|. By the Sperner property, 3Q = X(Y"{A}, Yj,..., with
ji < k for i > 1. Let i; = ¿0 > ¿1 > . . . > tp be the set of distinct values of ji's
i = 1 ,2 , . . . , n. Furthermore, let X' be the nested attribute X'(Y2, Y 3 , . . . , Y„), that
is the "set-free" component of X. Let &im be the set of principal ideals in S(X')
defined by &im — {X'(Y2, • • •, Y^)|| ji — im}- Since 6 is a Sperner system, Rim is
a Sperner system, as well. Also, if if < ig, then for all X G &if and X' G &i9 we
have that X ^ X ' holds.

Let A G © - 1 be a maximal candidate antikey. Since X(Yk{A}, A,. . . , A)j is a
candidate key, every subattribute in A must have first component of form Yh{A}
for some h < k. Suppose that X(Yh{A}, Y2 , . . . , Yn) and X ^ ' f A } , Y2 ' , ..., Y£) are
two elements of A. Using that A is an ideal we obtain that

X(Yh{A}, A,. . . , A), X(Yh'{\}, A,. . . , A) £ A

holds. Clearly X ^ ^ A } , Y2 , . . . , Yn) and X(Yh'{\},\,..., A) are reconcilable,
and so are ^ Y ^ A } , Y2 ' , ..., Y^) and X(Yh{A}, A,. . . , A). Thus by property 1 of
Definition 16

X(Yh{A}, Y 2 , . . . , Yn) U X{Yh' {A}, A,. . . , A) = X(Ym^h'h'^{X}, Y2 , . . . , Yn) G A

holds. X(Ymax(/l>/l'){A},Y2
/,...,Yii) G A is obtained by the same argument.

Thus, the first components of the maximal elements of A are uniquely determined.

Proposit ion 39. Let Y^A} be this unique first component of maximal elements
of A. Then h = ij — 1 for some 0 < j < p.

Proof Let us assume in contrary, that Zj+i < h < ij — 1 for some j, and let
A ^ Y ^ A } , Y 2 , . . . , Y N) be a maximal element of A. Since Y A { A } > Y1™ { A } for all -
m > j+1, X ' (Y 2 , . . . , Y N) cannot be larger than any element of Thus, denoting
the projection of A onto the last n — 1 components by A!, then it is a candidate
antikey (not necessarily maximal) for the -(not necessarily Sperner) candidate key
system j ^ U . . However, if A is enlarged by adding X (Y ^ _ 1 { A } , Y 2 , . . . , Y N)

and elements that must also be added by the ideal property for all maximal element
X (Y ' L { A } , Y 2 , . . . , Yn) of A, then by the observation above, the coincidence ideal
obtained remains a candidate antikey, in contradiction with the maximality of A.

•
Proposition 39 gives a list of candidate antikeys of S that contains all maximal

candidate antikeys. For 0 < j < p take a system of maximal candidate antikeys of
U . . . U A3

mi,... then extend each with first coordinate Y t j - 1{A},
finally add all elements of S(X) that are under some of the obtained maximal
elements.

Since X(Yfc{A}, A,. . . , A)], is a candidate key, in an Armstrong-instance any two
complex values must have distinct projections onto X(Y^{A}, A,. . . , A) that allows
2k tuples at most.

Keys and Armstrong Databases in Trees with Restructuring 553

6 Numerical Conditions
In the combinatorial investigation of Armstrong-instances of the relational model
the following fundamental inequality of comparing the minimal size of Armstrong-
instance for a minimal key system K, and the size of the set of maximal antikeys
A — K.'1 was proven by Demetrovics and Katona [7].

Lemma 40. . Let R = (R\,..., Rn) be a relational schema, K. be Sperner system
of subsets of R. The minimum number of tuples s(K.) in an Armstrong-instance of
minimal key system K. satisfies

IK,~l\ < and s(/C) < IK"11 + 1. (4)

The analog for the higher-order datamodel was given in [21] for the counter-
free case. The same can be stated in the present general case, the similar proof is
omitted. Let S(X) be the subattribute lattice of a nested attribute X. Furthermore
let R be a Sperner system of closed subsets of §(X). If R has an Armstrong-instance
as minimal key system, then s(R) denotes the minimum number of complex values
in an Armstrong-instance of Otherwise, set s(£) = oo.

Lemma 41.
I*-»| < (S (f) (5)

Using Theorem 30 an upper bound can be given in the case when R does not
contain degenerate keys.

Proposition 42. Let S(X) be the subattribute lattice of a nested attribute X, and
let R be a Sperner system of closed subsets ofS(X). Furthermore, assume that the
conditions of Theorem 30 are satisfied. Then

s(R) < 2 |^_ 1 | . (6)

Proof. The proof of Theorem 30 constructs two complex-valued tuples for each
maximal antikey in

•

6.1 Only degenerate keys
Having a degenerate key in the candidate key system gives a finite upper bound on

the possible number of complex-valued tuples. If the candidate key system consists
of only degenerate keys, then a lower bound for the number of maximal antikeys
can be established. These two give necessary conditions for the existence of an
Armstrong instance via Lemma 41.

Let us consider § © X2(A2) © • • • © Xn(An)}) and let R be a Sperner
system of closed sets, with R = {X(X„{A} | v € ¿3)J. | E £ (£}, where <E is a Sperner
system of subsets of {1,2, . . . ,} .

554 Attila Sali and Klaus-Dieter Schewe

Theorem 43. Let X = X{X\{Ax)® X2{A2) © • • • ®Xn{An) and let R be defined
as above. If R has an Armstrong-instance, then

. / \ /omin(|E|: EE<£)
£ m a x (2 « - l ^ - l I l) < (2

 2
V m a x i m aJ independent act ol \ hypcrgrnph ({1,2 n},£)

Proof. In the proof of Proposition 32 it was shown that maximal candidate antikeys
in S(X{Xi(Ai) © X2(A2) © • • • ffiXn(,4n)) consist of principal ideals extended with
some counter attributes. Thus, the system of candidate maximal antikeys
consists of coincidence ideals of type AJ

V = X(XV{AV} \ v G V) 1 U{X/ | I e
J}. Here V is a maximal independent vertex set of the hypergraph (set system)
({1,2,... ,n}, £) and J is a set of at least two-element subsets of {1,2,. . . ,n}.
Indeed, Ay contains X(X„{A} | v G E)| iff E C V. According to property 4(b) of
Definition 16 | v G V) | has a coincidence ideal extension Ay for.all non-
trivial partition of I~ into two parts, provided | J - | > 1. Since \I~ \ = n — \ V\, the
number of such partitions is 2 n - l v l - 1 — 1. Thus, the left hand side of (7) is a lower
bound of the number of candidate maximal antikeys. A key X(X„{A} | v E E){
allows at most distinct tuples. Applying Lemma 41, (7) follows.

•

7 Conclusions
In the present paper we investigated keys and antikeys in the presence of various
constructors in the higher order datamodel. We proved that keys, as well as an-
tikeys, correspond to certain ideals with additional closure properties. Thesè are
closed sets, that is intersections of coincidence ideals defined in [21], subsets of
the subattribute lattice. We showed that the system of minimal keys correspond
to Sperner system of closed sets and exhibited a sufficient condition when such a
Sperner system occurs as a system of minimal keys. The candidate key systems
not covered by the sufficient condition of Theorem 30 are the ones containing de-
generate keys. A characterization when Armstrong-instance exists for such key
systems is given in the (possibly) most important special case. Strong keys are also
introduced. Some interesting combinatorial problems arose and we are intended to
continue our investigations, in that direction, as well. Another future direction of
research is to refine the existing necessary, or sufficient conditions for Armstrong-
instances, preferably to find characterizations in important special cases.

References
[1] Abiteboul, Serge, Buneman, Peter, and Suciu, Dan. Data on .the Web: From

Relations to Semistructured Data and XML. Morgan Kaufmann Publishers,
2000.

Keys and Armstrong Databases in Trees with Restructuring 555

Abiteboulj Serge and Hull, Rick. Restructuring hierarchical database objects.
Theoretical Computer Science, 62(1-2):3-38, 1988.

Abiteboul, Serge, Hull, Rick, and Vianu, Victor. Foundations of Databases.
Addison-Wesley, 1995.

Armstrong, W. W. Dependency structures of database relationships. Infor-
mation Processing, pages 580-583, 1974.

Brightwell, G. and Katona, G.O.H. A new type of coding theorem. Studia
Scientiarum Mathematicarum Hungarica, 38:139-147, 2001.

Demetrovics, J. On the equivalence of candidate keys with Sperner systems.
Acta Cybernetica, 4:247-252, 1979.

Demetrovics, J. and Katona, G.O.H. Extremal combinatorial problems in
relational data base. In Fundamentals of Computing Theory (FCT 1981),
number 117 in LNCS, pages 110-119. Springer-Verlag, Berlin, 1981.

Demetrovics, J., Katona, G.O.H., and Sali, A. The characterization of branch-
ing dependencies/ Discrete Applied Mathematics, 40:139-153, 1992.

Demetrovics, J., Katona, G.O.H., and Sali, A. Design type problems motivated
by database theory. Journal of Statistical Planning and Inference, 72:149-164,
1998.

Fagin, Ronald. Horn clauses and database dependencies. Journal of the Asso-
ciation for Computing Machinery, 29(4):952-985, 1982.

Fagin, Ronald and Vardi, M. Y. Armstrong databases for functional and
inclusion dependencies. Information Processing Letters, 16:13-19, 1983.

Ganter, B., Gronau, H.-D. O. F., and Mullin, R. C. On orthogonal double
covers of kn. Ars Combinatoria, 37:209-221, 1994.

Hartmann, S. and Link, S. Reasoning about functional dependencies in an
abstract data model. Electronic Notes in Theoretical Computer Science, 84,
2003.

Hartmann, Sven, Hoffmann, Anne, Link, Sebastian, and Schewe, Klaus-Dieter.
Axiomatizing functional dependencies in the higher-order entity relationship
model. Information Processing Letters, 87(3): 133-137, 2003.

Hartmann, Sven, Link, Sebastian, and Schewe, Klaus-Dieter. Reasoning about
functional and multi-valued dependencies in the presence of lists. In Seipel, Di-
etmar and Turull Torres, José Maria, editors, Foundations of Information and
Knowledge Systems, volume 2942 of Springer LNCS. Springer Verlag, 2004.

556 Attila Sali and Klaus-Dieter Schewe

[16] Hartmann, Sven, Link, Sebastian, and Schewe, Klaus-Dieter. Weak functional
dependencies in higher-order datamodels. In Seipel, Dietmar and Turull Tor-
res, José Maria, editors, Foundations of Information and Knowledge Systems,
volume 2942 of Springer LNCS. Springer Verlag, 2004.

[17] Hartmann, Sven, Link, Sebastian, and Schewe, Klaus-Dieter. Functional de-
pendencies over XML documents with DTDs. Acta Cybernetica, 17(1): 153-171,
2005.

[18] Hartmann, Sven, Link, Sebastian, and Schewe, Klaus-Dieter. Axiomatisation
of functional dependencies in the presence of records, lists, sets and multisets.
Theoretical Computer Science, 355:167-196, 2006.

[19] Paredaens, J., De Bra, P., Gyssens, M., and Van Gucht, D. The Structure of
the Relational Database Model. Springer-Verlag, 1989.

[20] Sali, Attila. Minimal keys in higher-order datamodels. In Seipel, Dietmar and
Turull Torres, José Maria, editors, Foundations of Information and Knowledge
Systems, volume 2942 of Springer LNCS. Springer Verlag, 2004.

[21] Sali, Attila and Schewe, Klaus-Dieter. Counter-free keys and functional de-
pendencies in higher-order datamodels. Fundamenta Informaticae, 70:277-301,
2006.

[22] Sali, Attila and Schewe, Klaus-Dieter. Weak functional dependen-
cies on trees with restructuring. Technical Report 4/2006, Massey
University, Department of Information Systems, 2006. available from
http://infosys.massey.ac.nz/research/rs_techreports.html.

[23] Schewe, Klaus-Dieter and Thalheim, Bernhard. Fundamental concepts of ob-
ject oriented databases. Acta Cybernetica, ll(4):49-85, 1993.

[24] Thalheim, Bernhard. Foundations of entity-relationship modeling. Annals of
Mathematics and Artificial Intelligence, 6:197-256, 1992.

[25] Thalheim, Bernhard. Entity-Relationship Modeling: Foundations of Database
Technology. Springer-Verlag, 2000.

Received 6th October 2006

http://infosys.massey.ac.nz/research/rs_techreports.html

CONTENTS

Conference of PhD Students in Computer Science 363
Preface 365
Péter Balázs: On the Ambiguity of Reconstructing hv-Convex Binary Matri-

ces with Decomposable Configurations 367
András Bánhalmi and András Kocsor. An On-line Speaker Adaptation

Method for HMM-based Speech Recognizers 379
Róbert Busa-Fekete and András Kocsor. Extracting Human Protein Informa-

tion from MEDLINE Using a Full-Sentence Parser 391
Gergely Dévai: Programming Language Elements for Correctness Proofs . . . 403
Lóránd Muzamel: Pebble Alternating Tree-Walking Automata and Their Rec-

ognizing Power 427
Dénes Paczolay, András Bánhalmi, and András Kocsor. Robust Clustering -

Based Realtime Vowel Recognition 451
Krisztina Tóth, Richárd Farkas, and András Kocsor. Sentence Alignment of

Hungarian-English Parallel Corpora Using a Hybrid Algorithm 463

Regular Papers 479
Mihály Biczó, Krisztián Pócza, István Forgács, and Zoltán Porkoláb: A New

Concept of Effective Regression Test Generation in a C++ Specific Envi-
ronment 481

Timo Poranen: Two New Approximation Algorithms for the Maximum Pla-
nar Subgraph Problem 503

Attila Sali and Klaus-Dieter Scheme: Keys and Armstrong Databases in Trees
with Restructuring 529

ISSN 0324—721 X

Felelős szerkesztő és kiadó: Csirik János

