
University of Mississippi University of Mississippi 

eGrove eGrove 

Electronic Theses and Dissertations Graduate School 

2019 

Design and Investigation of Genetic Algorithmic and Design and Investigation of Genetic Algorithmic and 

Reinforcement Learning Approaches to Wire Crossing Reductions Reinforcement Learning Approaches to Wire Crossing Reductions 

for pNML Devices for pNML Devices 

Alexander Keith Gunter 
University of Mississippi 

Follow this and additional works at: https://egrove.olemiss.edu/etd 

 Part of the Electrical and Computer Engineering Commons 

Recommended Citation Recommended Citation 
Gunter, Alexander Keith, "Design and Investigation of Genetic Algorithmic and Reinforcement Learning 
Approaches to Wire Crossing Reductions for pNML Devices" (2019). Electronic Theses and Dissertations. 
1597. 
https://egrove.olemiss.edu/etd/1597 

This Thesis is brought to you for free and open access by the Graduate School at eGrove. It has been accepted for 
inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more information, 
please contact egrove@olemiss.edu. 

https://egrove.olemiss.edu/
https://egrove.olemiss.edu/etd
https://egrove.olemiss.edu/gradschool
https://egrove.olemiss.edu/etd?utm_source=egrove.olemiss.edu%2Fetd%2F1597&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=egrove.olemiss.edu%2Fetd%2F1597&utm_medium=PDF&utm_campaign=PDFCoverPages
https://egrove.olemiss.edu/etd/1597?utm_source=egrove.olemiss.edu%2Fetd%2F1597&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:egrove@olemiss.edu


DESIGN AND INVESTIGATION OF GENETIC ALGORITHMIC AND REINFORCEMENT 

LEARNING APPROACHES TO WIRE CROSSING REDUCTIONS FOR PNML DEVICES 

 

 

 

 

 

 

 

A Thesis 

presented in partial fulfillment of requirements 

for the degree of Master of Science in Engineering 

Science with Emphasis in Electrical Engineering 

The University of Mississippi 

 

 

 

 

 

 

 

 

 

by 

ALEXANDER GUNTER 

December 2018 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 2018 by Alexander Gunter 

All rights reserved



ii 

 

ABSTRACT 

 

Perpendicular nanomagnet logic (pNML) is an emerging post-CMOS technology which 

encodes binary data in the polarization of single-domain nanomagnets and performs operations 

via fringing field interactions. Currently, there is no complete top-down workflow for pNML. 

Researchers must instead simultaneously handle place-and-route, timing, and logic minimization 

by hand. These tasks include multiple NP-Hard subproblems, and the lack of automated tools for 

solving them for pNML precludes the design of large-scale pNML circuits. 

In this thesis we investigate potential solutions to the problem of wire crossing reduction 

in pNML circuits. Although pNML permits 3D architectures, planar designs are still preferred 

for the ease of fabrication; and reducing out-of-plane nanomagnets reduces risks of fabrication 

effects. We have found no existing work on this problem in pNML, and existing work for related 

technologies does not consider variations of the wire crossing problem that are specific to 

pNML. We present and evaluate two algorithms designed to address this research gap. The first 

is a genetic algorithm utilizing a multi-chromosome encoding of graph embedding, and the 

second is a deep reinforcement learning algorithm utilizing a similar encoding and Q-Learning. 

We also present a naïve NP-time randomized search algorithm for use as a baseline. The 

presented reinforcement learning algorithm proved unacceptably slow and ineffective, but our 

genetic algorithm removed significantly more wire crossings than the random search did on the 

ISCAS ’85 combinational benchmarks. 
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CHAPTER I 

INTRODUCTION 

Quantum-dot cellular automata (QCA) is a class of emerging post-CMOS technologies           

which promise ultra-low power consumption, persistent state in the absence of power, and             

intrinsic pipelining [1-3]. These circuits attain these objectives by encoding binary data in the              

state of bistable cells which are coupled by fringing electric or magnetic fields [1]. An adiabatic                

clocking field drives data propagation through the circuit and supplies power gain to prevent              

signal degradation. One of these technologies, magnetic QCA (MQCA) or nanomagnet logic            

(NML) implements these cells as nanomagnets [3]. Resultantly, NML is radiation-hard and easy             

to fabricate compared to most electric QCA implementations. 

Perpendicular NML (pNML) is an implementation of NML with irregularly shaped cells            

which do not require clocking zones [4]. This technology is advantageous because its             

nanomagnets are planar and polarize perpendicularly, and support ferromagnetic and          

antiferromagnetic coupling [12]. Each nanomagnet has an artificial nucleation center (ANC)           

functioning as an input contact. Unlike conventional QCA, pNML clocking fields do not directly              

require intermediate metastable states due to the ANCs directing data propagation. 

Many currently-existing QCA design automation techniques are not applicable due to the            

irregularly shaped cells and the finer-grained pipelining permitted by pNML. Along with QCA’s             

potential for ultra-low power operation, pNML circuits are inherently radiation hard and may             

enable 3D architectures that are easier to fabricate and have clocking systems with reduced              
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clocking tree overhead. Successful design and implementation of pNML circuits would allow for             

a low-power and reliable solution for high-altitude flight for military, commercial and space             

applications, nuclear reactors, and deep-well drilling. One NP-Hard optimization problem that           

remains unaddressed is wire crossing reduction in pNML circuits. This is notable because the              

problem is almost independent of the design rule set used, but it still has unusual constraints due                 

to the behavior of pNML nanomagnets.  

In this thesis, we present our investigation into the potential for genetic and reinforcement              

learning algorithms to solve this problem. In Chapter II we review the current literature with               

emphasis on the principles of Quantum-dot Cellular Automata (QCA) and its subcategories of             

Electric QCA, Magnetic QCA, and perpendicular Nanomagnet Logic (pNML). We also describe            

the state of electronic design automation for pNML and review topics in genetic algorithms,              

reinforcement learning, graph embeddings, and the Apache Spark Framework. In Chapter III we             

derive our approach to the problem including our representation of pNML circuits with graph              

embeddings. We then describe the software necessary to convert combinational Verilog circuits            

into pNML circuits. In Chapter IV we present our genetic algorithm by explaining our genome               

representation of a graph embedding, our algorithm to identify nonplanar edges, how we             

distribute the algorithm using Spark, and the final results of our experiments. Chapter V does the                

same with our reinforcement learning algorithm by explaining our representation of the problem             

as a Markov Decision Process, the topology of our neural network, our training algorithm, and               

our results for its performance. Chapter VI explains our implementation of a random search              

algorithm for use as a baseline. We close with Chapter VII where we analyze our results and                 

present future research avenues that could improve upon or supplement our work.  
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CHAPTER II 

BACKGROUND 

II.1. Principles of QCA 

Quantum-dot Cellular Automata (QCA) is a transistorless processor technology         

comprised of discrete field-coupled cells [5]. These cells are engineered to have a bistable              

internal state, usually implemented as an electric or magnetic dipole via ensembles of electric              

charges or electron spins. These dipoles necessarily generate an external field and respond to              

changes in that field. Two dipoles can thus interact with each other via their fringing fields. By                 

carefully engineering the cells, we can restrict the number of stable states for the internal dipoles                

to just two where each state produces a different fringing field. An ambient field can then bias a                  

cell towards one of these states. 

QCA circuits are regulated by controlling this ambient field in a manner that lets cells               

determine the states of their neighbors. We do this with a clocking field that acts to lower the                  

energy barrier between the two states, letting cells switch to the state induced by their neighbors                

according to a consistent schedule. For implementations with very simple cells, the clocking             

field serves as a mechanism for controlling the direction data propagates in. Oscillating the              

clocking field adiabatically minimizes error rates and dynamic energy dissipation. Per-cell power            

dissipation typically reaches the nano- and picowatt ranges, making QCA an inherently ultra-low             

power technology [35, 36]. 
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Because electromagnetic fields combine additively, we can implement majority logic          

using ensembles of cells. Usually these logic gates are 3-input MAJ gates, which output a 1 when                 

at least two of the inputs are 1 as per Table 1. This gate is notable because all three of its inputs                      

are treated symmetrically. Using any one of them as a control signal toggles the gate between a                 

2-input AND or a 2-input OR gate. QCA implementations also support NOT gates, so they are                

functionally complete. 

 

 
Figure 1. The Majority Gate and Its Boolean Expression 
 
 
 

Table 1: Truth Table for a Majority Voter Gate 
 

C A B Y 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 1 

1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 1 
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II.2. Electric QCA 

Electric QCA (EQCA) is the original formulation of QCA by Lent, Taugaw, and Porod              

[6]. It uses electric dipoles and electric fields. Generally, its cells are implemented as              

quantum-dots where electrons may or may not reside. These dots are arranged into a square and                

are close enough to be tunnel-coupled, so the electrons can tunnel between them. This              

arrangement is bistable because the Coulomb force between the two electrons drives them to              

maximize the distance between each other, and this corresponds to the two diagonals of the               

square. Because of the tunnel-coupling, the cell’s state can change in response to the ambient               

electric field.  

These cells are the simple kind that we referred to in Section I.1. They have no internal                 

mechanism for directing data propagation, so the clocking system must control that. Otherwise             

signals would propagate as a random walk through the circuit and could in fact travel backwards                

and drastically slow down the circuit’s operation [7, 8]. To prevent this, the circuit must be                

partitioned into clocking zones. These are small contiguous ensembles of cells, usually            

comprised of only three to five cells, which experience the same clocking signal at the same                

time. This clocking signal must also be designed such that it forces the cells into a neutral                 

METASTABLE state. Clocking zones are activated in a rolling multi-phase fashion, so a given              

zone’s outputs are always reset while it is reading from its inputs. This prevents signals from                

propagating backwards and gives EQCA circuits zone-level pipelining. Each zone can only store             

one signal at a time, but multiple signals can propagate across the circuit’s zones at once. This                 

process is illustrated in Figure 3. 
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(a) 

 

 

 

(b) (c) 

 

 

Figure 2. EQCA Cells and Basic Logic Gates. (a) Schematics of EQCA cells. Two are             
polarized, and the third is in a METASTABLE state. (b) An EQCA majority voter              
where the inputs are in blue, and the output is in purple. (c) An EQCA inverter. 

 
EQCA is most notable for its small feature sizes and potential switching speeds. This is               

because currently-proposed designs use cells fabricated from individual molecules or even           

arrangements of dangling bonds. Atomic Silicon Quantum Dots currently permit the fabrication            

of cells with dots 2 nm apart with switching frequencies in the GHz range [9]. The theoretical                 

limit for these could feature cells with dots separated by only 2.3 Å and switching frequencies in                 

the THz range [9]. Design rules for EQCA circuits can be relatively simple as well due to the                  

consistency of EQCA cells. The rule set primarily needs to specify the width of and distances                

between cells. It might also specify the resolution with which cells can be placed, permitting               

off-center cells. However, these performance-oriented characteristics make EQCA circuits         

extremely difficult to fabricate. This is both because of the difficulty of placing the cells and the                 

difficulty of creating a clocking system that is both powerful enough to control the circuit but                

compact enough to fit on the chip. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

Figure 3. EQCA Clocking. (a) A four-zone wire segment in its initial state with no zones              
activated. (b) Activate the first zone. (c) Activate the second zone. (d) Activate the              
third zone and deactivate the first zone. This reevaluates the first zone without             
reading the second zone, and the wire segment now stores two signals            
simultaneously. (e) Activate the fourth zone and deactivate the second zone. This            
reevaluates the second zone by reading the first and without reading the third. 

 
II.3. Magnetic QCA and In-Plane NML 

Magnetic QCA, also called nanomagnet logic (NML), is currently separated into two            

very different implementations. These are called in-plane NML (iNML) and perpendicular NML            

(pNML), referring to the axis along which the nanomagnets polarize. In both technologies, its              

cells are implemented as single-domain nanomagnets whose anisotropy drives them to polarize            

in one of two directions [10]. Nanomagnets can either couple ferromagnetically or            

antiferromagnetically, so inverters are extremely compact [10, 11]. This in turn means both NML              

types are more easily modeled in terms of minority logic, and it makes the NAND and NOR                 

gates more compact than AND and OR. 
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iNML is characterized by the use of rectangular nanomagnets which polarize in the             

fabrication plane [12]. By convention, nanomagnets are longer along their y-axis, so they             

polarize either UP or DOWN [10]. The coupling between two such nanomagnets depends on              

their relative position. Using the UP/DOWN convention, vertically aligned nanomagnets will           

couple ferromagnetically; so a nanomagnet in the UP state will bias its neighbor towards the UP                

state. Horizontally aligned nanomagnets will couple antiferromagnetically, so a nanomagnet in           

the UP state will bias its neighbor towards the DOWN state. Inverters are implemented as pairs                

of horizontally-aligned nanomagnets [12]. iNML minority gates use the same cross-shaped           

intersection as EQCA majority gates as shown in Figure 4. 

Like EQCA cells, iNML nanomagnets do not have an internal mechanism for directing             

data propagation; so iNML circuits are also partitioned into clocking zones [13]. The main              

difference here is that the METASTABLE state is a horizontal polarization, so the clocking field               

must be strong enough to overcome the anisotropy of the nanomagnets. The clocking behavior is               

otherwise identical to that of EQCA; and its design rules are also very similar to EQCA’s.                

Because the nanomagnets are considerably larger, often in the realm of 50-100 nm long [10, 12],                

the clocking system is much easier to fabricate than in EQCA. However this size means iNML is                 

much lower performance, offering clocking frequencies in the MHz range [14]. iNML also             

suffers from the same strong coupling between layout and timing where changing the placement              

of cells can significantly alter signal timing [10]. While EQCA circuits’ reliance on small              

numbers of charges makes them sensitive to ionizing radiation, iNML’s nanomagnets use a large              

number of electron spins, making them inherently resistant to this. 
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(a) (b) (c) 

 

Figure 4. iNML Nanomagnets and Basic Logic Gates. (a) Nanomagnets illustrating iNML          
coupling. The horizontal pair couples antiferromagnetically, and the vertical pair          
couples ferromagnetically. (b) A pair of nanomagnets implementing an iNML          
inverter. (c) An iNML minority gate. 

 

II.4. Perpendicular NML 

pNML circuits are notably different from both EQCA and iNML circuits. Their            

nanomagnets are fabricated from layered nanofilms which produce structures that polarize           

perpendicularly to the fabrication plane [15]. This perpendicular anisotropy is largely           

independent of the magnetic domain’s shape, so pNML nanomagnets are not restricted to a              

single shape such as a square or rectangle. While iNML nanomagnets change states very              

smoothly and without splitting into multiple domains, pNML nanomagnets nucleate [16]. When            

the ambient field is strong enough and polarized in the opposite direction, regions of the               

nanomagnet swap polarization, and the inversion propagates throughout the nanomagnet as a            

domain wall. To control this nucleation, pNML nanomagnets are fabricated with an Artificial             

Nucleation Center (ANC) [17]. This is created by irradiating a miniscule region of the              

nanomagnet to slightly intermix the layers of its substrate. This reduces the anisotropy of that               
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region, making it more sensitive to ambient magnetic fields than the rest of the nanomagnet. The                

ANC thus becomes the seed point for nucleation. 

The ANC makes pNML’s behavior unique from other QCA implementations because           

they make every nanomagnet behave as a diode [18]. By calibrating the clocking field and the                

anisotropy of the ANCs, we can make pNML circuits where the ambient magnetic field is never                

strong enough to nucleate nanomagnet bodies. When correctly calibrated, ANCs only nucleate            

when both the nearby nanomagnets and the clocking field induce the opposite polarization. That              

is, pNML nanomagnets only change polarizations when that is the logically correct state, and the               

clocking field is polarized in that direction. This means that the clocking system is not               

responsible for controlling the direction of data propagation; that is handled internally by the              

cells themselves. Then the circuit does not need to be partitioned into clocking zones, and the                

clocking signal does not need to push the nanomagnets into a METASTABLE state. 

pNML circuits thus have six notable advantages over iNML circuits. (1) They have             

cell-level pipelining because each nanomagnet behaves like a diode, so their states are all              

evaluated independently. (2) Each nanomagnet behaves like a register because their states are             

never erased by the clocking signal. This produces advantage (3), which is that pNML minority               

gates with an even number of inputs have well defined behavior in the event of a tie. The tie                   

means that the ambient field produced by the inputs is near-zero, and the nanomagnet does not                

change its state because the clocking field alone is not strong enough to nucleate its ANC. (4)                 

Because the nanomagnets can have nearly any shape, we can route signals without altering the               

circuit’s timing so long as the clocking field’s frequency gives every nanomagnet enough time to               

invert. (5) Because the clocking field is a global field that just oscillates between UP and 
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(a) (b) (c) 

  

Figure 5. pNML Nanomagnets and Coupling. (a) A schematic of a simple nanomagnet as            
presented in [18] with the ANC colored in purple. (b) Coplanar pNML nanomagnets             
always couple antiferromagnetically (c) pNML nanomagnets couple       
ferromagnetically when the input’s body is directly below the output’s ANC. 

 
DOWN, the clocking circuitry is considerably simpler. Even if a circuit chooses to have clocking               

zones, these zones can be the size of an entire component; so the clocking system does not have                  

to be nearly as densely packed as the QCA cells. (6) Because the nanomagnets are made from                 

nanofilms, pNML permits multiple fabrication planes and create 3D architectures. Nanomagnets           

which reside in the same plane or are not vertically aligned will couple antiferromagnetically,              

while vertically aligned nanomagnets in separate planes will couple ferromagnetically. 

The main disadvantage of pNML compared to iNML is that EDA tools have to              

synthesize the geometry of each nanomagnet because pNML does not specify any particular             

nanomagnet shapes. This makes design rules for pNML inherently more sophisticated than those             

for EQCA and iNML as they have to be capable of generating compact geometry and must                

support pathing but without compromising circuit reliability. This also introduces a tradeoff            

between clocking frequency and circuit latency as permitting longer paths means domain walls             

require more time to reach their outputs. 
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(a) (b) 

 

 

 

 

 

 

 
Figure 6. pNML Basic Logic Gates. (a) A pNML inverter. (b) A pNML minority gate. 
 
 

II.5. pNML EDA 

Compared to other QCA implementations, work on design automation of pNML circuits            

is sparse. Prior work in general QCA that pNML inherits primarily consists of majority logic               

synthesis. One of the first scalable automated approaches presented in [19] begins by             

decomposing the logic network into gates of at-most three inputs and uses Karnaugh maps to               

either identify majority voters or decompose gates into multilayer majority voter networks. This             

approach has been augmented several times to further reduce the number of majority gates [20]               

and utilize majority gates with more than three inputs [21]. Alongside this approach have been               

genetic algorithms as in [22] and manipulation of tree-like data structures as in [23] and [24].                

The Majority-Inverter Graph presented in [24] is especially notable for its use of a well-defined               

algebra which has yielded significant reductions in delay and area over other tools. 

The most fundamental tool for pNML is the Object Oriented MicroMagnetic Framework            

(OOMMF). The framework performs high-fidelity simulation of magnetic materials [25]. This           
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enables the creation and exploration of novel magnetic technologies at small scales, provided the              

engineer knows the material’s magnetic properties and geometry. Ju et al. used this tool in [16]                

to demonstrate the switching and coupling behavior of Co/Pt nanomagnets for use as pNML              

cells. 

Despite its accuracy and versatility, OOMMF only immediately helps characterize a           

given geometry and does not include tools to search for geometries which correctly perform a               

given function. To this end, Notre Dame has presented a machine-learning approach based on              

least squares regression [11]. In this approach, the algorithm is given an initial circuit design               

which nearly implements a known function. The algorithm then uses OOMMF to simulate the              

circuit and compares the simulated outputs to the expected ones. The algorithm then uses linear               

regression to correlate geometric parameters to the correctness of the circuit. This correlation             

becomes a heuristic for searching the physical design space. 

The closest existing thing to a traditional top-down workflow for pNML is the MagCAD              

program [26], which supports the manual placement of pNML nanomagnets. The tool can export              

these designs to its sister-tool ToPoliNano which can simulate the circuit using VHDL. Although              

ToPoliNano can synthesize VHDL descriptions of iNML circuits, it currently cannot do this for              

pNML. It is also unclear whether existing scalable simulation techniques enable analysis of             

timing concerns specific to pNML. 

 

II.6. Previous Work in Crossing Reduction in QCA 

When designing circuits, we usually want to work in a top-down fashion. We want to               

specify high-level behavior and have design automation software convert that specification to an             
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optimized circuit design ready for fabrication. We should be able to verify that the design               

behaves as expected, verify that the expected behavior actually completes the desired task, and              

verify that the design satisfies any performance requirements we may have. 

This process begins with the circut’s behavior and high-level architecture specified with a             

hardware description language (HDL) such as Verilog. This is what the design engineer             

primarily creates and maintains. This HDL must then be synthesized into a netlist of wires and                

logic gates. Then the EDA software should simplify this netlist to minimize the number of               

components required, removing redundant components or improving suboptimal structures.         

Once the logic has been minimized, it must be synthesized into physical components which              

occupy space. These components must be placed on the substrate, and the wires connecting them               

have to be routed such that data signals do not interfere with each other. These components must                 

also be arranged in a manner that reduces the area and difficulty of fabricating the circuit.                

Because physical signals take time to propagate, all components must also be arranged such that               

all signals are correctly synchronized and propagate quickly enough to meet performance            

requirements. 

This entire process entails solving multiple NP-Hard problems, such as logic           

minimization and place-and-route with constraints. The process also requires knowledge about           

the specific technology being used as this directly impacts the nature of all geometric and timing                

constraints. Thus, although many such workflows exist for a multitude of different            

transistor-based technologies, these workflows cannot be directly ported to pNML. One of the             

subproblems of the place-and-route stage is the minimization of wire crossings in the circuit.              

These structures require either 3D structures that are hard to fabricate or complex arrangements              
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of logic gates that reduce performance. This subproblem is itself an NP-Complete problem, even              

when taken in isolation from the other NP-Hard tasks in the top-down workflow. 

There has been work on crossing reduction in EQCA circuits, and iNML circuits by              

extension; and some of this is applicable to pNML. Node duplication techniques as in [37]               

duplicate substructures in the circuit to bypass obstructions. Purpose-built gates like the            

UQCALG presented in [38] offer the flexibility to construct combinational structures that can be              

fabricated with very few crossings. Such gates are used by algorithms like the one presented in                

[39]. There are also heuristic methods based on channel routing [40]. The problem with the first                

three is that they only synthesize logic in a manner that reduces the minimum-possible number of                

crossings. Another algorithm still has to perform the placement. The channel routing methods             

take care of this, but they do not currently account for the unusual geometric constraints that                

come with pNML. 

 

II.7. Genetic Algorithms 

Genetic algorithms are a class of algorithms inspired by the mechanics of biological             

evolution [27]. They are fundamentally characterized by the representation of candidate solutions            

in a way that permits the recombination of candidates into new candidates. They also presume               

that, on average, the random recombination of good candidates yields more good candidates.             

These candidates are encoded as genomes which are comprised of one or more chromosomes.              

Each chromosome is a sequence of tokens or values which represent specific characteristics of              

the candidates solution. At each iteration, the algorithm takes a population of genomes and              

chooses pairs of them using a selection algorithm and according to a fitness function. These pairs                
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are recombined to create a new population, and those new genomes are then tweaked with a                

mutation algorithm. 

Decoding a genome into a form usable outside the genetic algorithm should be more or               

less efficient, certainly polynomial-time; but priority is given to optimizing the functions for             

fitness evaluation, selection, recombination, and mutation. The fitness evaluation function is           

responsible for scoring the quality of a genome and is used by the selection algorithm. Usually                

the algorithm tries to maximize this akin to “survival of the fittest,” but it’s possible to minimize                 

it instead. Given a population of genomes, the selection algorithm uses the fitness function to               

create a distribution of genome-pairs from the population. It then selects pairs of genomes              

according to this distribution for recombination. 

Recombination, also called crossover, is the process of intermixing two genomes to            

create a new one. A multitude of algorithms for this exist, each being applicable to different                

kinds of problems. For example, problems in which each chromosome element is an independent              

parameter might randomly choose which parameters to inherit from which parent.           

Combinatorial, order-sensitive chromosomes might instead be recombined using an         

order-preserving algorithm. The end result is a new genome which inherits characteristics of both              

parent genomes,  much like in biology. 

Genetic algorithms also pull the concept of mutation from biology. These algorithms are             

applied to genomes after they’ve been created from recombination. These are designed to             

slightly perturb the population, making the process less prone to converging to local optima.              

Examples of mutation algorithms include adding small random deviations to chromosome           
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elements or swapping the order of two elements. Usually the mutation algorithm is randomly              

selected from a set of such algorithms. 

There are a variety of ways to begin and end the evolutionary process. Usually the initial                

population is generated according to a distribution suitable to the problem. The termination             

condition can be based on any metric for the procedure’s performance. This can be as simple as                 

the population satisfying some fitness threshold, or it can be a limit on the number of iterations.                 

It’s also possible to track the quality of the population and stop when the rate of improvement                 

falls below a given threshold. The final output can be decided in a number of ways too, such as                   

the best solution in the last generation or the best across all generations. It could also be selected                  

from the last generation according to a distribution based on the fitness values. The output could                

even be the last generation as a whole, and a problem-specific process can reduce that to a final                  

solution. 

 

II.8. Reinforcement Learning Algorithms 

Reinforcement learning algorithms begin with an Environment/Actor model of the          

problem [28]. The Environment has an internal state, and the Actor can choose an action to apply                 

to the state. Given the current state and chosen action, the Environment uses a Markov Decision                

Process (MDP) to determine the next state, as well as a reward. The Actor takes this new state                  

and reward and chooses a new action, and the cycle continues until the system reaches a terminal                 

state. This process produces a sequence of state-action-reward triples according to a distribution.             

The goal of reinforcement learning is to train the Actor to choose actions which maximize the                

total reward received. 
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The environment is usually derived from the problem, often by “gamifying” it. It requires              

a state representation that can be efficiently modified based on chosen actions. This might be a                

game board with movable pieces placed on a grid, or it could be a distribution that never                 

changes. It also must dispense rewards based on both the current state and chosen action, so the                 

Actor has goals to achieve and can identify them. For example, moving a board piece left might                 

capture a resource and yield a high reward; or it might push the piece out of bounds and yield a                    

negative reward. Because actions are applied over time, the system can also have a concept of a                 

future reward; and this introduces a trade-off between immediate and future rewards. Typically             

the Environment encodes this as a hyperparameter called the reward discount, which is a scaling               

factor between 0 and 1 applied to a reward based on how many steps away it is. 

Actors in reinforcement learning algorithms usually have two critical components: a           

policy π(A | S) and a value function. The policy is responsible for choosing an action based on                  

the total reward the Actor can expect to receive afterwards, and it is in fact a distribution of                  

actions.  

π(A | S) is thus the probability of choosing action A given state S. The value function can                  

either be a state-value function Vπ(S) or an action-value function Qπ(S, A). The state-value              

function predicts the expected total reward that the Actor will receive if it begins in a particular                 

state S and follows policy π afterwards. The action-value function predicts the expected total              

reward if the Actor begins in state S, takes action A, and then follows policy π from then on.                   

Each of these options has advantages worth considering. Specifically, the state-value function            

typically requires less memory to store because it has a smaller domain; but the action-value               

function is easier to modify because doing so does not require checking all actions applicable to                
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S. Reinforcement learning is about using the interdependence of the policy and value function to               

iteratively train a skilled Actor. 

Initially the value function will be highly inaccurate and produce bad predictions for             

expected returns. This will drive the policy to choose bad actions very frequently. However, in               

doing so, the Actor will sample rewards from the Environment; and it can use those samples to                 

update its value function’s predictions. This in turn can alter the policy, so it chooses better                

actions. If the value function’s predictions for each state or each state-action pair are calculated               

independently, such as by being stored in a lookup table, then this process will eventually               

converge to optimal behavior by the Policy Improvement Theorem [28]. 

One of the most commonly used training algorithms is Q-Learning. This approach uses             

an action-value function and takes the learning rate α as a hyperparameter, alongside the reward               

discount γ from the Environment. At each step, the Actor begins with the current state S and the                  

current value function Q. It derives a policy π from Q and chooses an action A according to π(S).                   

It passes A along to the Environment and receives the reward R and the new state S’. To update                   

Q, it calculates and scales the error in its prediction and then adds that error to its current                  

estimate. This update function is 

(S, A) ←Q(S, A) α[R  max Q(S , a) Q(S, A)]Q   +  + γ a ′  −   (1) 

where γ is the reward discount. Thus Q is pushed towards the actually received. In the limit                 

where every state-action pair is tested infinitely many times, Q will exactly predict the expected               

total reward for every state-action pair. 
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II.9. Graph Embeddings 

A fundamental component of this work is the graph embedding, which can be thought of               

as the drawing of a finite graph on some surface. Ordinarily we encounter these any time we see                  

a graph drawn on paper, but the idea can be generalized using topology and combinatorics.               

Depending on the properties of interest, different representations may be more useful. 

We can begin deriving these representations by identifying unhelpful information stored           

in the naive representation of an embedding - a drawing on the coordinate plane. This               

representation, which we call a spatial embedding, is highly detailed with each vertex being              

assigned to a unique point. Each edge is assigned to a simple curve whose endpoints are the                 

points representing the edge’s vertices, and the curve’s interior points never represent vertices.             

For this section, we also assume curves that intersect only intersect at most at one point. This                 

simplifies our analysis without loss of generality. 

We can see that this representation stores more information than necessary for identifying             

intersecting edges because we can move vertices slightly without changing the crossings in the              

graph. All that changes is the position of the vertex and some distances between edges. Thus we                 

can infer that some equivalence class of embeddings exists such that all of its members have the                 

same crossings as the embedding we have on-hand. A representation of that equivalence class              

should be simpler and more well-suited for identifying edge crossings. 

Topology provides the tools for identifying this equivalence class. A plane is a surface of               

genus 0, as is the surface of a sphere [29]; and we can map a circular region of a plane onto the                      

surface of a sphere with a continuous function. Let an embedding in a coordinate plane be                

bounded by a circle of radius ε centered at the origin such that no vertex or edge touches the  
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Figure 7. Embeddings of K4 . (a) The straight-line planar embedding of K4 . (b) An alternative               
embedding that is equivalent to the first one. This embedding is made by             
transforming the first embedding with f, rotating the resulting sphere embedding by            
approximately 180°, and applying f -1. (c) An embedding with an unnecessary            
crossing. The crossing is unnecessary because the yellow-red edge could be routed            
through the outer face. 

 
circle. Then all points in the circle have polar coordinates of the form (r, θ) for r ∈ [0, ε). Then                     

we can map each point (r, θ) to the surface of a sphere of radius ε using the function 

(r, θ) (2 , θ, 2r)  f  =  √r(ε )− r   (2) 

where the right-hand side is in cylindrical coordinates. For all cylindrical coordinates (r’, θ, z)               

where z ∈ [0, 2ε), we can invert this with Equation 3. 

(r , θ, z) 0.5z, θ)f  −1 ′   = (  (3) 

This spherical representation makes many transformations more clearly irrelevant to edge           

crossings. For example, rotating the spherical embedding has no effect on the relative position of               

any vertices or edges and thus cannot affect crossings. Continuously expanding or contracting a              

region on the sphere similarly has no effect on crossings. As long as these transformations don’t                

move a vertex or edge to the coordinate (0, 0, 2ε), we can map the spherical embeddings to                  

planar embeddings and obtain planar drawings that are drastically different but have the same              

crossings. 
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We observe that, sufficiently close to a vertex, the cyclic order of its incident edges is                

invariant under these continuous transformations. Thus we can instead use a combinatorial            

representation of an embedding rather than a spatial one. One such representation is the rotation               

system [30]. To construct a rotation system, we first split the graph’s edges into darts, or                

half-edges. In the case of undirected graphs, these are simply the two orientations an edge can                

have, (a, b) or (b, a) for vertices a and b. Thus we map each edge to a pair of darts .                ei       d , d )( i,1  i,2  

Then we construct the permutation θ such that such that and for each          (d )θ i,1 = di,2  (d )θ i,2 = di,1    

edge . We then construct the permutation according to the clockwise ordering of darts about ei       σ          

their shared origins. That is, for dart , returns the dart clockwise to d about its       a, b)d = (   (d)σ          

origin vertex a. The rotation system is defined as the pair (θ, σ) and completely characterizes an                 

equivalence class of spatial embeddings. 

Given a rotation system, we can formally define orbits in an embedding. We have already               

encountered vertex orbits. They are the cycles in σ and, as stated before, are the cyclic orderings                 

of darts about shared origins. Face orbits are similarly defined as the cycles in the composite                

permutation σθ. In the case of straight-line planar embeddings with no crossings, face orbits              

correspond to the counter-clockwise cyclic orderings of darts about the polygons on their left              

sides. Each rotation system also has an inverse system which reverses these orderings. This can               

be thought of as either reflecting a spatial embedding or swapping the convention for vertex               

orbits to be counter-clockwise orderings. This inverse system features the same crossings. 
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Figure 8. Orbits in Embeddings. (a) A vertex orbit. (b) A face orbit. 
 
 

II.10.The Apache Spark Framework 

The Apache Spark Framework is a framework for distributed computing on the Java             

Virtual Machine and is based on Hadoop’s MapReduce model [31]. The framework’s            

fundamental data structure is the Resilient Distributed Dataset (RDD). This is an ordered list of               

elements that is split into partitions. These partitions are distributed to the available Spark              

compute nodes. Each partition is itself ordered, as is the list of partitions. Spark operates on                

RDDs using transformations, filters, and aggregators. When these operations are commutative           

and associative, compute nodes can operate independently and asynchronously. Such operations           

can thus scale extremely well with minimal networking overhead. Spark also supports distributed             

versions of more complex algorithms such as sorting, grouping, products, and filtering unique             

elements. These operations require considerably more overhead because they trigger shuffle           

operations, requiring all nodes to share and trade partitions with each other; but this greatly               

expands the scope of algorithms supported by Spark. 

Spark also has another data structure built on top of the RDD, called the Dataset. This                

represents an unordered collection of elements, although it technically has an indeterminate order             
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due to its basis on the RDD. The main advantage of this data structure is its SQL-like API that                   

lets programs process data in the same manner as a relational database. Thus its elements are                

organized into rows and labelled columns. The Dataset hides most of the implementation details              

of the RDD but automatically optimizes the processing pipeline and simplifies the API. 

To achieve the best possible optimization, Spark uses lazy evaluation and task pipelines             

to build RDDs. Thus, while the programmer treats an RDD or Dataset as a collection of                

elements, the instance itself will actually be encoded as the series of operations which compute               

it. These operations, or tasks, are arranged into a directed acyclic graph (DAG) according to their                

dependencies and divided into fully parallelizable execution stages. This makes Datasets           

consumable structures that are computed from scratch whenever needed, offering performance           

benefits in cases where the Dataset is needed only once. Spark also provides a caching feature in                 

case the Dataset is needed multiple times. When computing the contents of a Dataset using a                

DAG, Spark will substitute and rearrange tasks to minimize the networking overhead and             

maximize parallelization. This is a feature currently unique to Spark and makes the MapReduce              

model far more accessible, applicable, and effective. Programmers simply have to design their             

algorithms around a standard relational database structure, and they mainly need to be mindful of               

which operations consume input Datasets and trigger shuffle operations.  
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CHAPTER III 

PROBLEM ANALYSIS AND REPRESENTATION 

III.1 Representation of pNML Wire Crossing Reduction 

Given the variability of pNML design rules, we must inspect existing research for             

common characteristics and restrictions on pNML geometry. Our first observation is that all             

designs published to date have exactly one ANC per nanomagnet. This makes sense because              

conflicting signals, combined with process variations, would likely render the magnet’s behavior            

indeterminate. Such designs would require a guarantee that multi-ANC nanomagnets would           

never receive conflicting signals. Verifying this guarantee would in turn require an NP-Hard             

analysis of the relevant circuit components. Thus we can assume that future pNML design rules               

will restrict nanomagnets to one ANC. 

Because of this restriction, we can relate pNML circuits to transistor-based digital circuits             

by treating ANCs as register-like components connected by wires. Specifically, we model each             

ANC as a threshold gate with an output register whose state can persist between clocking cycles.                

This gate can have as many input signals as the design rules permit, and those signals may or                  

may not be inverted based on the magnetic coupling between an input magnet and the ANC. In                 

this model, the wires are the bodies of the nanomagnets, and they only transmit data in one                 

direction as per pNML’s behavior. This means we can model pNML connectivity as a directed               

graph where vertices represent ANCs, and a vertex’s outbound edges represent the            

corresponding nanomagnet body. Then a planar embedding of this graph represents the physical  
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Figure 9. Digraph Representation of a Planar pNML Full-Adder. (a) The physical circuit           

design presented in [18] with ANCs in purple and nanomagnet bodies in brown and              
yellow. (b) A digraph representation of the same circuit. 

 
paths along which the nanomagnets transmit data, and a design rule set can synthesize geometry               

along those paths. Then we can reduce pNML wire crossings by reducing edge crossings in a                

planar graph embedding. 

Because we have related the circuit’s geometry to the graph embedding’s edges, we incur              

two variations on the standard crossing reduction problem. The first is a relaxation on the               

problem: edges with a common origin can cross or even overlap. This is because they correspond                

to the same nanomagnet body, and a nanomagnet cannot intersect with itself. Then our algorithm               

must either avoid embeddings which have such crossings, or it must not count them towards the                

total number of crossings. 

The other variation is an unusual restriction that is our motivation for exploring             

non-standard approaches to wire crossing reduction. Inspecting existing pNML designs reveals           

that ANCs are almost completely surrounded by their inputs, regardless of the number of inputs.               

There is only one direction the ANC’s body can extend in before branching out to connect to its                  

outputs. This is because the input magnets must occupy a large area near the ANC to produce a  
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Figure 10. Allowed and Disallowed Nanomagnet Geometries. (a) A permitted structure and its           
associated embedding. (b) A structure that is disallowed because the outbound edges            
are not adjacent to one another in the vertex orbit. 

 
strong enough signal to influence it. Altering this restriction to permit bidirectional domain wall              

propagation is conceivable, but this would require making the ANC more sensitive and thus less               

robust. It would also be difficult to reliably make all inputs have the same signal strength as                 

inputs might be partitioned into clusters of different sizes. The result is that edges with a                

common origin in a permitted graph embedding must all occupy a contiguous subsequence of              

their origin’s orbit, as illustrated in Figure 10. 

 

III.2 Verilog Parser and Netlist 

The lowest-level circuit representation for the presented program is the Verilog file. This             

encodes a description of the logical behavior of the circuit. For now we limit these files to very                  

basic syntax that includes wires, buffers, inverters, and n-input AND, NAND, OR, NOR, XOR,              

and XNOR gates. This is enough to process the combinational ISCAS Verilog benchmarks [32]. 

To load Verilog files, we first parse them with an external C++ program. This program               

uses Ben Marshall’s Verilog parser [33] to construct the netlist specified by the Verilog file. The                

parsing program works by identifying module Wires and then Gates. Wires can either be input  
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Figure 11. Verilog Sample Files. (a) A sample Verilog file specifying a series of non-trivial             
gates. (b) The Verilog Netlist derived from the sample file. Integer IDs for wires and               
gates are omitted for legibility. (c) The .vgraph file for ISCAS benchmark c17. 

 
ports, output ports, or internal wires; and the parser identifies Wire types. Gates can be any of the                  

eight types listed above and can have multiple input Wires and one output Wire. The parser also                 

retrieves the names for all Wires and Gates and records which Wires are connected to a given                 

Gate. After retrieving this labelling and connectivity information, it assigns a unique integer ID              

to each Wire and to each Gate. It then writes the netlist to a file using our .vgraph format                   

illustrated in Figure 11. It consists of two lists, one specifying the set of Wires and the other                  

specifying the set of Gates. Each wire is encoded as a space-separated triple consisting of its ID,                 

name, and an integer denoting its type. A gate is similarly encoded by its ID, name, its list of                   

input wires as a comma-separated list of IDs, its output wire ID, and an integer denoting its type.                  

This format is designed to be trivial to parse in any language using elementary file iteration and                 

string operations. 
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These .vgraph files encode Verilog Netlists and are the proper entry point for our              

algorithms. To load one of these, we iterate over its lines, split each into its component tokens,                 

construct a Wire or Gate from these tokens, and add each constructed instance to either the list of                  

Wires or the list of Gates. These two lists comprise a Verilog Netlist and contain all the                 

information necessary to analyze and characterize the circuit. 

 

III.3 Magnet Layout 

The Magnet Layout class sits on top of the Verilog Netlist. It is specifically designed to                

represent the connectivity information of a pNML circuit. This includes the list of magnets, the               

magnets each outputs to, the states each magnet can polarize in, and whether two coupled               

magnets align ferromagnetically or antiferromagnetically. This information is independent of the           

design rule set and is sufficient to characterize the logic and timing of the circuit. 

This data structure is organized similarly to the Verilog Netlist. Constructing it requires a              

list of Magnets and an adjacency list specifying their connectivity. Each magnet has a unique               

integer ID, a state of 1 or -1, to represent UP or DOWN polarization, and a set of permitted states                    

{-1}, {1}, or {-1, 1} to denote whether its state can change or not. Magnets with only one                  

possible state are constant-state ancillary inputs to the circuit. The adjacency list for the magnets’               

connectivity consists of magnet-ID pairs assigned to integer values. Positive values denote            

ferromagnetic coupling, and negative values denote antiferromagnetic coupling. The magnitude          

of the value corresponds to the weight of the input magnet's signal in the threshold gate function. 

Using this information, we can identify circuit features. Circuit inputs are magnets which             

have no incoming edges in the adjacency list. Variable circuit inputs are circuit inputs with               
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permitted states {-1, 1}, and ancillary circuit inputs have the permitted state {-1} or {1}. Circuit                

outputs are the inverse and are magnets which have no outgoing edges in the magnet layout.                

Wires are paths in the graph specified by the adjacency list, and inverteres are edges with                

negative weights. Threshold gates are magnets which have multiple inputs, and a threshold gate              

might also be a circuit output. 

To create a Magnet Layout from a Verilog Netlist, we have to use a synthesis algorithm.                

This is the point where a pNML EDA workflow could apply logic minimization. We use a very                 

simple one that naively maps Verilog logic gates to majority voter logic and removes duplicate               

signals. It uses uses a standard hierarchical approach where high-level structures described by the              

Verilog Netlist are reduced to low-level pNML ensembles and connected to each other. At the               

lowest level is the Magnet. We define one Magnet for each Wire defined by the Verilog Netlist,                 

and a Wire and its corresponding Magnet share the same ID. This lets us easily compare a                 

Verilog Netlist and its corresponding Magnet Layout. Alongside this is the buildSimpleWire()            

function, which connects two given Magnets with a weight of either 1 or -1. All logical                

operations can be decomposed into a series of Magnet instantiations and connections. 

To create a pNML minority gate, we use the buildMinorityGate() function. This accepts             

three input Magnets and one output magnet. All three inputs are connected to the output with                

edge weight -1 to denote inverting connections. We also define the buildHalfAdder() function             

which creates a half-adder based on the design presented in [18]. This function accepts three               

input Magnets and an output Magnet as well, but it has to instantiate five additional Magnets for                 

internal connections. These are all given unique IDs, and the nine magnets are connected using               

minority gates and simple wires. 
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Figure 12. Magnet Layout for a Full-Adder. The full-adder presented in [18] and shown in             
Figure 9, represented as a Magnet Layout. Edge weights are not shown, but all of               
them are -1. The circuit inputs are assumed to have ANCs. 

 
The buildSimpleWire(), buildMinorityGate(), and buildHalfAdder() functions for the        

basis for synthesizing the Verilog Netlist’s logic. Buffers and inverters are translated into calls to               

buildSimpleWire(). 2-input NAND and NOR gates are minority gates with ancillary inputs, and             

2-input XOR and XNOR gates are half-adders with ancillary inputs. These ancillary inputs do              

not correspond to wires explicitly defined by the Verilog Netlist, so we instantiate them as               

needed with unique IDs. 2-input AND and OR gates can be created by adding a new magnet                 

after a NAND or NOR gate, connected with weight -1. 

To construct n-input gates, we use the standard pairing of 2-input gates to create a               

cascade of O(log n) layers. This is also where we apply some basic logic reduction by inspecting                 

the gate’s inputs for duplicate wire IDs. Removal of these duplicates is necessary to ensure that                

we do not assign multiple conflicting weights to the same edge in the Magnet Layout, and it has                  

the added benefit of reducing the size of the gate. We define specific functions for n-input AND,                 

NAND, OR, NOR, XOR, and XNOR operations. 
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To convert a Verilog Netlist to a Magnet Layout, we thus begin by instantiating a Magnet                

for each Wire. We then iterate over the Gates in the netlist. Each Gate stores its type, a list of                    

input Wires, and an output Wire. Buffers and inverters have one input and are mapped to the                 

buildIDENT() and buildNOT() functions respectively. These are simply wrappers around the           

buildSimpleWire() function. The remaining gate types are n-input gates where n is the length of               

the list of unique inputs for the gate. Each operation is mapped to the associated n-input builder                 

function where duplicate signals are removed, and additional Magnets are created as needed. The              

resulting list of Magnets and adjacency list is then used to instantiate a Magnet Layout. 

 

III.4 Graph Encoded Map 

Rotation systems are compact, but they are somewhat removed from graph embeddings            

and make it difficult to structurally modify the embedding. They also obfuscate “unnecessary”             

crossings like the one in Figure 7c. The Graph Encoded Map (GEM) is one solution to this. The                  

GEM contains the same information as a rotation system, but it explicitly stores structural              

features by simultaneously representing the rotation system’s permutations θ, σ, and σθ. 

We begin constructing a GEM from a spatial embedding by splitting each edge into two               

darts. We then equip each dart with two nodes drawn near the origin, one on the left and the                   

other on the right. Thus each edge is equipped with four nodes where two are positioned at each                  

vertex and two on either side of the edge. Each of these nodes is equipped with three colored                  

edges. The first edge, colored red in Figure 13, crosses the parent edge to connect to the other                  

node associated with the same parent dart. The second, colored blue, connects to the node that is                 

in the same face as the parent edge but is associated with the other dart. The third edge, green,                   
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connects to the node associated with the same vertex and the same face. If that vertex only has                  

the given edge in its orbit, then the green and red edges will connect to the same node. Otherwise                   

the green edge connects to a node associated with an edge adjacent in the vertex orbit. To                 

traverse a vertex orbit, we begin at a node in the orbit and traverse the cycle that alternates                  

between green and red. Traversing the cycle that alternates between green and blue will instead               

traverse a face orbit. Thus we can reconstruct a rotation system from a GEM by traversing the                 

vertex orbits and extracting the sequences of darts encountered. 

To implement a GEM with object-oriented programming, we define a high-level object            

called an Encoding Edge. This encodes a directed edge in a digraph and stores references to its                 

origin and destination vertices. It also stores pointers to its two constituent Darts, as well as the                 

four nodes that represent it in the GEM. We call these Encoding Nodes. These nodes are referred                 

to as the left-origin node, right-origin node, left-destination node, and right-destination node            

according to their positions in the GEM relative to the Encoding Edge’s direction. A Dart also                

stores references to its origin and destination, except one Dart in an Encoding Edge has these                

reversed due to its pointing in the opposite direction. The Dart pointing in the same direction as                 

the Encoding Edge is called the origin-dart, and the other is called the destination-dart. The Dart                

also has a reference back to its parent Encoding Edge, so we can retrieve its sibling Dart or the                   

Dart pointing in the same direction as its parent Encoding Edge. Darts also store references to the                 

Encoding Nodes in the same manner as an Encoding Edge, except that the nodes are referenced                

with respect to the Dart’s direction rather than the parent Encoding Edge’s direction. 

While Encoding Edges and Darts record the GEM’s relation to the original graph,             

Encoding Nodes strictly record the ordering of their associated edges. They more directly relate  
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Figure 13. Basic Graph Encoded Maps. (a) A GEM representing a single edge. (b) A GEM              
representing a square graph. When constructing the square from individual edges,           
we only modify the green edges. 

 
to the rotation system. Each Encoding Node has a reference back to its parent Encoding Edge, a                 

reference to the vertex it is adjacent to, and a Boolean flag denoting which side of its parent edge                   

that it is on. To implement the colored edges, we give each Encoding Node three named                

references to other Encoding Nodes. These are the vertex-orbit-node, face-orbit-node, and           

cross-node corresponding to green, blue, and red edges respectively. These references are            

initialized as shown in Figure 13 but can be modified later to construct arbitrary embeddings. 
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CHAPTER IV 

GENETIC ALGORITHM IMPLEMENTATION 

IV.1. Genome Representation and Processing 

By definition, our genetic algorithm requires a genome to represent different graph            

embeddings. This genome is typically a set of series of numbers that encode various properties of                

a solution instance. In the case of graph embeddings, we have a candidate for this already:                

rotation systems. 

However, rotation systems are not immediately conducive to identifying edge crossings,           

and it would be prohibitively difficult to enforce the rules specific to pNML during the               

recombination and mutation stages. Our solution to this, based on the approach from [34], is to                

use a genome that encodes a permutation of the edges in the graph. We pair this with a                  

purpose-built algorithm for constructing a GEM from a permutation of edges. Together these let              

us identify crossings while limiting ourselves to valid embeddings without having to use a              

verification or filtering step. 

To create a genome, we begin with the observation that all Magnets in a Magnet Layout                

have a unique ID, and they all have a set of outbound edges. Then the set of edges with a shared                     

origin Magnet can be permuted. The set of Magnets itself can also be permuted. Then for a                 

Magnet Layout with magnets, we can create a genome consisting of chromosomes.   M ||          M || + 1   

The first chromosome is a permutation of the magnet IDs. For the remaining chromosomes, we               

first assign unique IDs for every edge and use the same ID mapping for all genomes associated                 
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with this Magnet Layout. For Magnet m, we then define chromosome m + 1 as a permutation of                  

the edges with Magnet m as their origin. Thus the first chromosome can be viewed as a                 

permutation of the remaining chromosomes. We can construct a permutation of all the edges    M ||            

by appending the edge-chromosomes to each other in the order specified by the             

magnet-chromosome. This always produces a permutation where edges with the same origin are             

adjacent in the permutation. 

To construct a GEM from an edge permutation, we observe that manipulating the vertex              

orbits or face orbits never changes blue or red edges. Only green edges are affected. Thus we can                  

add edges to a GEM by inserting them into the cyclically-linked lists described by the red-green                

cycles, and this only requires modifying the green edges. 

Construction of a GEM begins with creating an unlinked Encoding Edge for each edge in               

the permutation. We also create two lookup tables. The first records the leading-dart for each               

vertex orbit. If it exists, this is the edge that a new edge will be placed clockwise to. The other                    

table maps each vertex to its set of connected vertices. This lets us efficiently identify vertices                

that belong to the same connected component. 

We iterate over the Encoded Edges and run into one of five cases on each iteration, the                 

first three being rather trivial. In Case 1, neither the origin nor the destination for the new edge                  

have been added yet. Then none of the Encoding Nodes need modification. We record this               

edge’s darts as the leading-dart for both vertices. We also record both vertices as belonging to                

the same 2-vertex connected component. 

In Case 2, the origin has been added but not the destination. Then we retrieve the origin’s                 

leading-dart and add the new edge’s origin-dart clockwise to it. We do this by modifying the  
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(a) (b) (c) 

 

Figure 14. Adding to an Origin’s Orbit. (a) The initial orbit with the leading dart in red. (b) The                 
orbit after adding the new dart to the clockwise to the leading dart. (c) Marking the                
new dart as the leading dart for its origin. 

 
green edges for the two darts. We then mark the new edge’s darts as the leading-darts for the                  

origin and destination, and we add the destination to the origin’s connected component. In Case               

3, we instead have already added the destination; and the origin is new. Then we follow the same                  

procedure as in Case 2, but with the roles of the origin and destination reversed. 

At this point, we pause to observe the kinds of orbits and graphs representable using only                

these three cases. Specifically, they are sufficient to embed trees. Inspecting these trees, we also               

find that the clockwise ordering of vertex orbits always matches the corresponding subsequences             

of edges in the original permutation. Because edges sharing the same origin are adjacent in the                

permutation, they are thus adjacent in the vertex orbits. This is one of the primary restrictions                

imposed by pNML, and we are guaranteeing its satisfaction without additional work. The             

remaining two cases will let us handle any graph while continuing to satisfy this requirement. 

Case 4 occurs when both the origin and destination have been embedded, but they are               

disconnected. Then we have to pick a face in each component and merge them into one. We                 

choose the face of the right of the leading-dart of each vertex, called the leading face. We then                  

insert the edge to the right of both leading darts, modifying eight vertex-orbit-nodes to change  
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(a) (b) (c) 

 

Figure 15. Adding to a Destination’s Orbit. (a) The initial orbit with the leading dart in red. In                
this example, we have already embedded all of the destination’s outbound edges. (b)             
The orbit after adding the new dart to the clockwise to the leading dart. (c) Marking                
the new dart as the leading dart for its destination. 

 
four green edges in the GEM. We mark the new edge’s darts as the leading darts for both                  

vertices and combine the sets denoting the two connected components. 

Case 5 occurs when the origin and destination are already connected. Where Case 4 can               

be thought of as the case that induces crossings, Case 5 is where we identify and record them.                  

Thus we have subcases 5a and 5b, corresponding to whether we can or cannot add the edge in                  

the plane. To check this, we first get the origin’s leading face as we did in Case 4, and check if                     

the destination is in that face. If it is, then we need to inspect its vertex orbit to make sure the                     

new edge will not split its outbound edges. If both of these are satisfied, then we have Case 5a                   

and can add the edge. Otherwise we have Case 5b. 

In Case 5a, we add the edge as usual, updating four green GEM edges by changing eight                 

vertex-orbit-node pointers. The vertices are already connected, so we do not need to update the               

connected component sets. We record the new dart as the leading dart of the origin, but we do                  

not change the leading dart of the destination. This is to make debugging and verification               

simpler. In Case 5b, we record the edge as a failed edge and skip adding it. 
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(a) (b) 

 

Figure 16. Joining Disconnected GEMs. (a) The origin and destination are in separate           
components. We will add the new edge to the clockwise to both leading darts. (b) In                
this example, we merged the inner face of the left component with the outer face of                
the right component. 

 
We find that Cases 4 and 5 still maintain our requirements. In Case 4, we add the new                  

edge clockwise to the leading-dart of both vertices. Thus, when isolated from Case 5, Cases 1                

through 4 cannot break the ordering of outbound edges or make them nonconsecutive. For Case               

5a, we add the edge clockwise to the origin’s leading dart; so its outbound edge order must                 

match the edge permutation. We also only reach Case 5a if the new edge will not split the                  

destination’s outbound edges. The destination vertex’s outbound edges are either already in order             

or have not been added yet, so adding the new edge does not invalidate its orbit. 

The end result of this algorithm is a GEM embedded on a plane with no crossings and a                  

list of failed edges. The GEM’s vertex orbits are unambiguously determined by the genome, and               

all embedded outbound edges are both in the same order as in the genome and are all adjacent in                   

the embedding. We can use the number of failed edges as a cost function for the genome. 

  

39 



 
 

(a) (b) 

 

Figure 17. Identifying Disallowed Edge Embeddings. (a) The new edge is allowed because           
routing the edge through the leading face does not split the destination’s outbound             
edges, shown in purple. (b) The new edge is disallowed and will be omitted. This is                
because the destination’s outbound edges would be separated. 

 
 

IV.2. Core Genetic Algorithm 

Given our choice of genome and cost function, we use a standard genetic             

cost-minimization algorithm Each iteration begins with a population of genomes, with the         P ||     

first generation being randomly generated. We evaluate the cost of each genome and sort them in                

ascending order. To choose candidates for recombination, we filter the population using            

tournament selection. Given a selection pressure p, provided as a hyperparameter, we choose             

genomes randomly with replacement. At each selection, a given genome will be chosen.5|P |0              

with probability  

 (1 )p − p i (4) 

where i is its index in the sorted list. The genome with the fewest failed edges has index ;                  i = 0  

and the genome with the most has index . From this selected population, we choose        P |i = | − 1        
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first-parents and second-parents independently and uniformly randomly. Each of theseP ||    P ||          

 pairs will be recombined to create one new genome.P ||  

We use two recombination functions, chosen with probability 0.5 for each chromosome            

in each pair of parents. These functions are order-crossover (OX) and partially-matched            

crossover (PMX). In both cases, we randomly choose a slice of the first parent to preserve. As                 

stated in [34] and as indicated by our own algorithm for constructing an embedding from a                

genome, the later edges in the permutation are more influential on crossings than the earlier ones.                

Thus we adapt their approach for choosing the left and right indices of this preserved slice. For                 

the left index, we use a normal distribution centered at with standard deviation          .5|C |μ = 0    

where is the length of the chromosome. For the right index, we insteadax(1, 0.1|C |)σ = m    C ||              

use . We truncate each distribution to , normalize its curve to have area 1, and C |μ = |       0, |C |)[           

partition the domain into  bins to ensure the output is a valid index.C ||  

For the OX algorithm illustrated in Figure 18, we begin with the chosen slice and copy                

those elements from the first parent. We then copy the leftover elements from the second parent,                

beginning with the first unadded element after the slice and placing it in the first unfilled space in                  

the new chromosome. We traverse the second parent chromosome to the right, wrapping around              

to the first element. We add each new element encountered to the next open space in the new                  

chromosome, wrapping around to the first slot. We stop when we have added all elements. 

For the PMX algorithm illustrated in Figure 19, we also copy the first parent’s selected               

slice. We then focus on those unassigned elements in the second parent that occupy those same                

indices. To resolve the collisions, we use a recursive function to assign the collided elements. To                

do this, we consider element e with index i in the second parent. The first parent has element f at  
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Parent 1: 

1 2 3 4 5 6 7 8 9 

 
Parent 2: 

9 3 7 8 2 6 5 1 4 

 
 
 
 
 

(a) 

   4 5 6 7   

 
(b) 

   4 5 6 7 1  

 
(c) 

   4 5 6 7 1 9 

 
(d) 

3 8 2 4 5 6 7 1 9 

 

Figure 18. Order Crossover Example. (a) We begin by copying the selected slice of Parent 1.              
(b) We insert elements into the child chromosome, beginning with the first new             
element in Parent 2 after the slice. (c) We skip elements that were included in the                
slice. (d) We wrap around to the beginning of the child chromosome and fill the               
remaining locations. 

 
index i, and f is at index j in the second parent. If j is an index in the preserved slice, then we                       

repeat this lookup with element g at index j in the first parent. When we reach an unassigned                  

index, we copy e to that location in the new chromosome. All remaining elements are then                

copied directly from the second parent without changing their locations. 

After recombining all chromosomes in all genome pairs, we apply mutations to perturb             

the population. For every chromosome in the newly generated population, we choose one of four               

mutation functions with probability m or apply no mutation with probability 1 - m, where m is a                  

hyperparameter for the probability of a mutation occurring. The four possible mutation types are              

an Invert, Scramble, Swap, or Insert mutation; and all four are equally probable. All four require                

choosing a left and right index, and we choose these according to the same distributions used by                 

the OX and PMX algorithms. The Invert and Scramble mutations operate on the slice specified               

by those indices. As the names imply, the Invert mutation reverses the order of the slice; and the  
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Parent 1: 

1 2 3 4 5 6 7 8 9 

 
Parent 2: 

9 3 7 8 2 6 5 1 4 

 
 
 
 
 

(a) 

   4 5 6 7   

 
(b) 

   4 5 6 7  8 

 
(c) 

  2 4 5 6 7  8 

 
(d) 

9 3 2 4 5 6 7 1 8 

 

Figure 19. Partially-Matched Crossover Example. (a) We begin by copying the selected slice of            
Parent 1. (b) 8 is the first unmapped element in Parent 2 that is in the slice. In Parent                   
1, 4 occupies that location. In Parent 2, 4 is not in the slice; so we place 8 in that                    
location. (c) We repeat this with 2, but Parent 2’s copy of 5 is also in the slice. So we                    
check 7’s location and use it. (d) We copy the remaining elements of Parent 2 to the                 
same locations. 

 
Scramble mutation randomly shuffles it. The Swap mutation swaps the positions of the two              

specified elements. In our implementation, the Insert mutation takes the right element and inserts              

it to the left of the left element, shifting elements one space to the right to fill the gap. 

Because we generally do not know the minimum possible number of failed edges or the               

number of generations necessary for the population to converge, we use an indirect method of               

deciding when to terminate the genetic algorithm. First, we require a minimum number of              

iterations 

⎦ if  |E| 00, 30 otherwise  Imin = ⎣√|E| ≥ 9  (5) 

where is the number of edges in the circuit’s graph. After iterations, we use a smoothed E||            Imin       

rate of change in the sequence of best solutions so far. This smoothing is done using an                 

exponential average with the smoothing parameter defined as Equation 6. 
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s = √|E|
 −1

(6) 

The equation that we smooth is 

(i) (i ) (i)b =  − Δi
ΔB(i) = B − 1 − B (7) 

where B(i) is the number of failed edges in the best solution up to generation i. Because we are                   

minimizing B(i), we negate to ensure that b(i) is positive when the algorithm finds better    B(i)Δ             

solutions. This makes the termination logic and user interface more intuitive. Equation 8 is the               

final recursive equation that we monitor after  iterations.Imin  

(i)  b(i) 1 ) T (i ) for i ; T (0)T = s + ( − s − 1 > 0  = 0 (8) 

The algorithm terminates when T(i) falls below a user-defined threshold and after at least              

iterations. Figure 31 in Appendix A plots T(i) for an experiment using ISCAS circuit c6288,Imin                 

alongside the algorithm’s performance for the test case. 

 

IV.3. Spark Implementation 

One of the biggest advantages of genetic algorithms is that they are extremely             

parallelizable. Each genome fitness or cost is an independent calculation, as is the recombination              

of every pair of selected chromosomes, and every chromosome mutation. We opted to take              

advantage of this by implementing our algorithm using Spark. To fit the table-like model of its                

Datasets, we slightly reorganized the standard genetic algorithm and fragmented genomes to            

improve parallelization. Each iteration works with a pipeline comprised of eight primary            

Datasets: the magnets, edges, population, scored population, selected population, parent pairings,           

new population, and new scored population. 
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The magnets and edges Datasets are foundational lookup tables to ensure we always have              

a well-defined link back to the original Magnet Layout. The magnets Dataset records the list of                

magnet IDs alongside how many outbound edges each has. The edges Dataset records an              

enumeration of the origin-destination magnet ID pairs in the Magnet Layout’s adjacency list.             

Both of these are invariant throughout the evolutionary algorithm execution and are used to              

create the initial population. 

To create the initial population Dataset, we first create a population RDD consisting of              

one genome. To maximize parallelization, each row in the RDD will be a single chromosome.               

Thus the key that identifies a chromosome is a genome ID paired with a chromosome ID. We                 

compute the first chromosome by adding the chromosome ID column to the magnets Dataset,              

with all chromosome IDs being 0. Similarly, we add a chromosome ID column to the edges                

Dataset, except the ID given to an edge is its origin magnet ID, plus one. We select just the                   

chromosome and manget/edge ID columns from both tables and take the union of the resulting               

two-column RDDs. This produces a single RDD of chromosome-element ID pairs. To produce             

the first genome, we group all of these pairs by chromosome ID, turn each group into a                 

chromosome ID paired with a list of element IDs, and add a constant-0 genome ID column. To                 

turn this into a complete population of size , we map each chromosome to        P ||       P ||  

randomly-shuffled copies of itself, enumerate the resulting RDDs, and take the union of them all.               

The result is an RDD with uniquely-keyed permutations of every chromosome, and we      P ||         

convert this into a Dataset. This is shown in Figure 20. 

Before beginning the evolutionary process, we use our cost function to score the initial              

population. This modification to the standard genetic algorithm makes it easier to monitor the  
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Figure 20. Creation and Scoring of a Spark Genome Population. We create the initial            

population by transforming the Magnets and Edges Datasets, joining them into a            
single genome, and reshuffling that genome. We then assign scores to each genome             
by processing the chromosomes. 

 
algorithm’s performance without putting monitoring functionality directly in the algorithm itself.           

To use our cost function, we simply group the population’s chromosomes by their genome IDs.               

We then aggregate the groups into mappings between chromosome IDs and chromosomes. This             

representation is isomorphic to our discussed 2D-array representation of a genome and can be              

converted into a permutation of edge IDs using the associated algorithm. We then use the edges                

Dataset to map edge IDs to pairs of magnet IDs and apply our cost function to the permutation of                   

origin-destination paris. This results in independent calculations distributed automatically     P ||      

across the Spark cluster. The final result is a Dataset where each element is a genome ID paired                  

with the number of failed edges. 

Each iteration of the genetic algorithm begins with the magnets, edges, population, and             

scored population Datasets. The algorithm does not make use of the magnets Dataset, but we               

keep it for verification purposes as it contributes negligibly to the total memory costs of the                

algorithm. To perform a single iteration, we perform tournament selection on the population,             

randomly select parent pairings, recombine parents using crossover functions, mutate the           

resulting genomes to produce the next population, and evaluate the costs for the new population. 
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(a) 

 

(b) 

 

Figure 21. Selection of Parent Genomes. (a) We use tournament selection to sample from the             
current population. We then sample from that selected population to choose two sets             
of parent genome IDs. (b) We use the parent genome IDs to filter the population’s               
chromosomes to obtain the parent chromosomes. 

 
To perform tournament selection we sort the scored population Dataset by the cost             

column convert to an RDD, and enumerate the rows according to their order with the best                

genome having index 0 and the worst having index . We then map this index i to the         P || − 1          

tournament selection probability  where p is the given selection pressure. From this (1 )p − p i  

RDD, we select  genomes using distributed weighted random sampling with replacement..5|P |0  

The result is an RDD comprised of  genome IDs, and Figure 21a illustrates the pipeline..5|P |0  

We need two such RDDs of length to create our parent pairings, and we can do this       P ||            

by using distributed uniform sampling with replacement on the selected population. We  

47 



 
 

 

Figure 22. Recombination and Mutation of Child Genomes. We join the parent chromosome           
Datasets and use recombination to produce the Dataset of child chromosomes. We            
then mutate these chromosomes to obtain the next population and score it as in              
Figure 20. 

 
enumerate both sets of samples and join them back to the population Dataset to retrieve the                

selected chromosomes, as shown in Figure 21b. This gives us two Datasets where each row is a                 

selection index, a genome ID, a chromosome ID, and a chromosome. We can then join these                

together by joining on the selection index and chromosome ID columns. 

Because recombination and mutation are per-chromosome operations, our chromosome         

pairings are in a Dataset that lets Spark maximally parallelize generation of the next population.               

To do this, we simply transform each pairing using a function that randomly picks and applies a                 

crossover function to generate a child genome. We then transform each child genome using a               

function that randomly picks and applies a mutation function. Thus each pair of parents from the                

current population is mapped to mutated child genome in the next population, and each child can                

use the parent-pair’s selection index as its genome ID. We then score this new population using                

the same algorithm used to score the initial population, and we have completed a single iteration                

of the distributed genetic algorithm. We can return the new population, new scored population,              

magnets, and edges Datasets for analysis and use in the next iteration. 
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IV.4. Genetic Algorithm Results 

For our genetic algorithm, we have to set four hyperparameters. These are the stop rate,               

population size, selection pressure, and mutation probability. We set these to the values shown in               

Table 2. Table 3 shows the final results, and Figures 23-32 in Appendix A show per-generation                

results for each experiment where the first plot shows scoring statistics for each generation, and               

the second shows the value of the termination function at each generation. All circuits are               

combinational circuits taken from the ISCAS Verilog benchmarks. We ran these on an Amazon              

EC2 c5d.4xlarge instance with 12 cores and 25 GiB of RAM allocated to Spark. 

 
Table 2: Hyperparameters Set for Genetic Algorithm 

 
Parameter Name Symbol Value 

Stop Rate r 0.1 

Population Size P |  |  100 

Selection Pressure p 0.2 

Mutation Probability m 0.3 

 

Table 3: Final Results for Genetic Algorithm 
 

Test Name Num Edges Num 
Iterations 

Exec Time Initial Num 
Crossings 

Final Num 
Crossings 

Crossing 
Reduction 

c17 24 31 00:01:12 0 0 0% 

c432 892 76 00:06:28 140 119 15.00% 

c880 1619 88 00:10:20 207 184 11.11% 

c499 1754 96 00:10:32 302 271 10.26% 

c1355 2202 119 00:16:13 270 235 12.96% 

c1908 2970 131 00:22:24 383 348 9.14% 

c2670 4455 136 00:33:11 478 444 7.11% 

c3540 6371 161 00:56:04 946 893 5.60% 

c6288 9824 292 02:24:43 1390 1298 6.62% 

c5315 10142 192 01:48:50 1442 1384 4.02% 
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CHAPTER V 

REINFORCEMENT LEARNING IMPLEMENTATION 

V.1. State and Action Representation 

For our reinforcement learning algorithm, we keep the same combinatorial approach as            

we used for the genetic algorithm. Recall that reinforcement learning algorithms model their             

problems as Markov Decision Processes (MDPs), paired with a learning actor. Both of these              

have to process system states and actions applied to those states. Thus we begin by designing the                 

representation of states and actions. 

We first consider the kinds of operations we want to permit on a graph embedding. Given                

our understanding of GEMs, we choose to permit perturbation of either a vertex orbit or the                

ordering of those orbits. To reuse terminology from our genetic algorithm, we will let the actor                

modify one of the chromosomes by moving an element to the right by one position. If the agent                  

chooses the rightmost element, that element will be moved to the leftmost position. Thus, if we                

reuse the same genome representation of a permutation of edges, an action is a pair of indices                 

denoting the chromosome to modify and the element to move. The result is a deterministic MDP                

that accepts a 2D array and index pair and outputs a 2D array with one row modified as we have                    

described. 

We also research the cost function from our genetic algorithm because we use the same               

representation for graph embeddings in both approaches. To calculate the reward for an action,              
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we simply pass the state to our construction algorithm, count the number of failed edges, and                

return the negative of the square of that count. Returning a negative reward on each step will                 

encourage the actor to minimize crossings quickly, and using the square of the number of failed                

edges more strongly emphasizes the cost of bad solutions. 

 

V.2. State and Action Encoding 

Because we plan to use a neural network to choose actions based on system states, we                

have to encode system states and actions in a way that is suitable for a neural network. This                  

means our input signals should be in the range [-1, 1], and our actions have to be indexed. We                   

also need these to be as compact as possible, so the network is smaller. 

We do this by recognizing that not every chromosome can be modified. Many of them               

are empty or only have one element. In these cases, we do not need to implement any actions.                  

Those chromosomes also are invariant across states, so there is nothing for the neural network to                

learn from them. We can omit these chromosomes from the vectorized state. Thus, given the list                

of chromosomes, we will first filter out those that have fewer than two elements. 

To ensure our states use signals in the range [-1, 1], we use a one-hot encoding. To do                  

this, we treat each element’s location as a bin and tell that bin which element it contains using a                   

one-hot encoding of the element. A naive encoding might use one-hot vector of length equal to                

the number of elements in the filtered genome, but this would waste a huge amount of space. A                  

given bin will only ever hold one of the elements of its associated chromosome, so the vectors it                  

receives should be the same length as that chromosome. To pick the exact encoding for an                

element, we sort its chromosome and assign it to its index in the resulting sorted list. This index                  
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will be the index of the 1 in its one-hot vector. To create the final state vector, we first vectorize                    

the chromosomes by mapping each element to its one-hot vector and concatenating those vectors              

in the order specified by the chromosome. We then concatenate the vectorized chromosomes in              

order to create a single binary vector. 

To encode our actions, we recall that each action moves the element at a location to the                 

right. This corresponds to the index of one of the bins. This indexing can be defined by                 

concatenating the non-vectorized chromosomes to create a single vector of decimals. This            

implies a bijection between chromosome-element index pairs and vector indices. 

Decoding these indices to get a chromosome-element index pair, an unencoded action, is             

somewhat tricky. If every chromosome was the same length l, we could just use              

where % denotes a modulus. However our chromosomes are of varying(i) (⌊i / l⌋, i % l)  f =               

lengths. Let C’ be the set of chromosomes with two or more elements and let them be ordered so                   

that ck is the kth chromosome to be encoded. If chromosome ck has length l k , then we use                   

Equation 8 to compute the base offset for a chromosome. 

(c ) ok = o k =  ∑
k−1

i=0
lk (8) 

Then we create lookup tables and where is the the index of the     (k) oM co =  k   (i) kM oc =  i   ki        

chromosome containing the ith bin, which we can use to identify chromosome . Then given            cki
   

an action encoded as the scalar value , we decode it with Equation 9.As  

M (A ), A (A ))A = ( oc s  s − M oc s (9) 

To encode action  as a scalar, we use Equation 10.k, b)A = (   

(k)As = M co + b (10) 
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V.3. Neural Network Topology 

These encoding schemes determine the dimensions of our neural networks input and            

output layers. The input vector has length where C’ is the set of chromosomes with two       ∑
 

c ∈ C ′
lc

2           

or more elements, and lc is the length of chromosome c. Thus we need that many nodes in the                   

input layer. For the output layer, we note that we will implement an action-value function; so we                 

need a node for each allowed action. This gives us  output nodes.∑
 

c ∈ C ′
lc  

The remainder of the topology is largely up to the engineer. The network will be learning                

a regression, so we opted to use Identity activations on the output layer. All other layers use the                  

Leaky ReLU activation function with a slope of 0.01 for negative input signals. We only used                

one deep layers of length which is the same size as the output layer. All layers were     ∑
 

c ∈ C ′
lc              

fully connected to their neighboring layers. We initialized the weights using Xavier initialization             

and used the Nesterov’s momentum to update them. The loss function applied to the output               

signal was Mean Squared Error. We implemented all of this using the DeepLearning4J library              

[41]. 

 

V.4. Training and Execution 

We used Q-Learning with experience replay as our core learning procedure. Recall that at              

every step, we have the current state S. Given S and our current value function Q, our policy π(S)                   

returns an action A with expected scalar reward Q(S, As ). We implement Q using the neural                 

network from the previous section, and we use an epsilon-greedy policy for choosing A. Given               
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the vector output by Q(S), π returns a random action with probability ε. Otherwise it returns the                 

action with the highest predicted total return. This chosen action As is the scalar representation of                

the action and must be decoded to get the usable representation A. We send (S, A) to the                  

environment to receive the reward R and the next state S’. The result is a tuple (S, A, R, S’) which                     

we call a Replay. We save this tuple to a buffer for use in offline training. 

For each episode, we run steps where is the number of edges in the graph. At     |E|2    E||           

the end of each episode, we sample 20% of the replays from the buffer without replacement and                 

train on them. Given the replay (S, A, R, S’), we want to update our predicted value Q(S, As ). To                     

do this, we first compute the next action A’ as A’ = π(S’). Our new estimate for R is then given                     

by 

(S, A ) Q(S, A ) (R (S , A ) (S, A ))Q+  s =   s + α + Q ′  s′ − Q  s (11) 

where α is the learning rate. This is the same Q-Learning update function as Equation 1, except                 

we use a discount of γ = 1 here. Then our training vector’s elements are for               (S, A ) Q+  s
*   

and otherwise. We update the neural net using this training vector and theAs
* = As   (S, A )Q  s              

Nesterov’s momentum update algorithm with the Mean Squared Error. 

We use the same type of termination algorithm as we did for the genetic algorithm. That                

is, we track the total reward at the end of each episode and are interested in episodes that yield a                    

better global maximum. We stop running episodes when the exponential average of the             

current-best value drops below a given threshold, with a minimum of thirty episodes. 
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V.5. Reinforcement Learning Results 

Our reinforcement learning algorithm has 3 hyperparameters: The stop rate, the learning 

rate, and the policy’s exploration probability. We set these to the values shown in Table 4. We 

only ran tests for circuit c432 as this was the smallest non-trivial test case. Its twelve-hour 

execution time was sufficient to forego further testing. The other benchmark circuits would have 

taken far longer to train and would have learned even more slowly. Table 5 shows the final 

results. The final number of crossings is determined as the number of crossings output by the last 

episode because this was the episode with the most-trained network. 

 

Table 4: Hyperparameters Set for Reinforcement Learning Algorithm 

Parameter Name Symbol Value 

Stop Rate r 0.1 

Learning Rate α 0.2 

Exploration Probability ε 0.2 
 

Table 5: Final Results for Reinforcement Learning Algorithm 

Test Name Num Edges Num 
Iterations 

Exec Time Initial Num 
Crossings 

Final Num 
Crossings 

Crossing 
Reduction 

c432 892 30 12:12:07 132 694 -425.76% 
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CHAPTER VI 

RANDOM SEARCH IMPLEMENTATION 

VI.1. Adaptation of Genetic Algorithm 

A significant limitation of the ISCAS benchmarks is that we do not know their minimum               

number of crossings possible under pNML’s constraints because the problem is NP-Complete;            

and pNML’s variation of it is effectively unexplored. In the absence of a target lower-bound, we                

need control cases that our genetic and reinforcement learning algorithms can try to improve              

upon. The natural candidate for this, given that the problem is NP-Complete, is the random               

search. If our algorithms perform similarly to a random search, then we can conclude that they                

were unsuccessful without knowing the optimal solutions. We implemented the random search            

by slightly modifying the genetic algorithm. Instead of iteratively applying the selection,            

recombination, and mutation algorithms, we generate a new “initial” population from scratch            

according to a uniform distribution. This makes the algorithm useful as a blind-search baseline as               

it only incorporates the knowledge necessary to produce valid embeddings. 

We used two different termination conditions. The first was the exact same condition as              

the previous two algorithms, based on the rate of improvement. The second set a maximum               

number of iterations. We use the latter to test the scenario where the random search generated the                 

same number of samples as the genetic algorithm, so we can better compare execution times. 
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VI.2. Random Search Results 

Both experiments with the random search had the population size as a hyperparameter.             

The experiment where the termination condition was a minimum rate of improvement had that              

minimum rate as a hyperparameter as well. The experiment that instead used a maximum              

number of iterations had that number as a hyperparameter instead. 

Both experiments used settings that matched the genetic algorithm’s experiment detailed           

in Tables 2 and 3. The first experiment used a population size of 100 and a stop-rate of 0.1. The                    

second experiment also used a population size of 100. The maximum number of iterations for               

each test case was set to match the number used by the corresponding test case for the genetic                  

algorithm, given by the Num Iterations column in Table 3. Table 6 and Figures 33-42 in                

Appendix B show the final results for the ISCAS benchmarks using the minimum rate of               

improvement termination condition. Table 7 and Figures 43-52 in Appendix C show the results              

while using the maximum number of iterations termination condition. The figures in Appendix C              

include plots of T(n) for comparison against the figures in Appendices A and B. 
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Table 6: Final Results for Random Search Algorithm with Stop Rate 
 

Test Name Num Edges Num 
Iterations 

Exec Time Initial Num 
Crossings 

Final Num 
Crossings 

Crossing 
Reduction 

c17 24 31 00:00:41 0 0 0% 

c432 892 31 00:01:31 139 137 1.44% 

c880 1619 41 00:03:06 207 199 3.86% 

c499 1754 55 00:03:48 304 295 2.96% 

c1355 2202 47 00:04:20 273 266 2.56% 

c1908 2970 66 00:07:55 383 367 4.18% 

c2670 4455 67 00:12:18 481 473 1.66% 

c3540 6371 80 00:22:12 946 932 1.48% 

c6288 9824 100 00:40:40 1393 1377 1.15% 

c5315 10142 123 01:00:07 1447 1422 1.73% 

 
 

Table 7: Final Results for Random Search Algorithm with Max Iterations 
 

Test Name Num Edges Num 
Iterations 

Exec Time Initial Num 
Crossings 

Final Num 
Crossings 

Crossing 
Reduction 

c17 24 31 00:00:42 0 0 0% 

c432 892 76 00:03:18 145 135 6.90% 

c880 1619 88 00:05:28 201 197 1.99% 

c499 1754 96 00:05:27 300 288 4.00% 

c1355 2202 119 00:08:43 273 263 3.66% 

c1908 2970 131 00:12:22 377 371 1.59% 

c2670 4455 136 00:18:54 478 462 3.35% 

c3540 6371 161 00:38:44 936 929 0.75% 

c6288 9824 292 01:32:41 1390 1374 1.15% 

c5315 10142 192 01:16:43 1442 1423 1.32% 
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CHAPTER VII 

CONCLUSIONS AND FUTURE WORK 

VII.1. Conclusions and Analysis 

Our genetic algorithm shows promise. We see that it consistently performed significantly            

better than a random NP search. Even more importantly, we see the population’s average cost               

fluctuating with the population’s lowest cost. The downward slopes shown early in each of the               

test cases illustrated in Appendix A demonstrates that the population evolved and improved as              

good substructures propagated via selection and recombination. This indicates that the problem            

has a learnable substructure, despite its unusual constraints. 

Based on our analysis of the simulation results, we conclude that deep reinforcement             

learning is not the ideal solution for this problem. Our single test case for this algorithm required                 

more execution time than all of the other presented test cases combined, but the actor barely                

began to explore the available actions. This was because the system state’s size was linear in                

terms of the number of magnets , so the vectorized state fed into the neural network was      M ||            

quadratic in length. This resulted in a three-layer neural net that had weights to adjust,            (|M | )O 4     

making the algorithm far too intensive to be practical. We also recognize that, if the training                

algorithm had worked, the resulting AI would have only been able to optimize the circuit it                

trained on. This is because each circuit corresponds to a different MDP, featuring different              

allowed states, different available actions, and a different distribution of rewards. Although            

different circuits are different instances of the pNML wire crossing problem, reinforcement            
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learning models them in a way that makes each a distinct system to learn. Designing an AI that                  

can simultaneously learn multiple systems and generalize knowledge gleaned from each of them             

is an open problem in machine learning. 

 

VII.2. Future Work 

Our convergence results for the genetic algorithm indicate that the problem has a             

learnable substructure. We can explore this in the future by using different recombination             

algorithms or a more sophisticated selection algorithm. The primary challenge here is in making              

the algorithm more robust against local minima. In our tests, the population responded almost              

immediately to improvements in the best genomes; and this likely limited our algorithm’s             

performance. 

There is still limited potential for deep reinforcement learning in solving this problem. A              

state representation based on a spatial embedding could be far more compact than our              

combinatorial approach without introducing much nonlinearity. This representation would likely          

be a series of coordinate pairs for each vertex, and the rotation system could be recovered from                 

these coordinates using trigonometry. Such a representation would likely require a policy            

gradient method of reinforcement learning, which is distinct from the value function class of              

methods we based our approach on. Policy gradient methods are notable for their ability to               

handle both continuous- and discrete-valued actions. However an AI trained with this approach             

would still be unable to learn to optimize multiple different circuits without significant advances              

in machine learning. 
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The pNML wire crossing problem is also only a small component of a complete EDA               

workflow for pNML, and it interacts with the other place-and-route subproblems. Development            

of just one design rule set for pNML would be a highly valuable contribution to this workflow as                  

this is a prerequisite to several optimizations, especially for minimizing circuit area and             

maximizing clocking frequency. This would also permit holistic approaches that optimize           

multiple characteristics simultaneously. 
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APPENDIX A: TESTS FOR GENETIC ALGORITHM 
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Figure 23. Genetic Results for ISCAS Test c17. 
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Figure 24. Genetic Results for ISCAS Test c432. 
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Figure 25. Genetic Results for ISCAS Test c880. 
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Figure 26. Genetic Results for ISCAS Test c499. 
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Figure 27. Genetic Results for ISCAS Test c1355. 
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Figure 28. Genetic Results for ISCAS Test c1908. 
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Figure 29. Genetic Results for ISCAS Test c2670. 
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Figure 30. Genetic Results for ISCAS Test c3540. 
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Figure 31. Genetic Results for ISCAS Test c6288. 
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Figure 32. Genetic Results for ISCAS Test c5315.  
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APPENDIX B: TESTS FOR RANDOM SEARCH WITH STOP RATE CAP  
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Figure 33. Random Search with Minimum Stop Rate 0.1 for ISCAS Test c17.  
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Figure 34. Random Search with Minimum Stop Rate 0.1 for ISCAS Test c432. 
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Figure 35. Random Search with Minimum Stop Rate 0.1 for ISCAS Test c880. 
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Figure 36. Random Search with Minimum Stop Rate 0.1 for ISCAS Test c499. 
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Figure 37. Random Search with Minimum Stop Rate 0.1 for ISCAS Test c1355. 
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Figure 38. Random Search with Minimum Stop Rate 0.1 for ISCAS Test c1908. 
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Figure 39. Random Search with Minimum Stop Rate 0.1 for ISCAS Test c2670. 
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Figure 40. Random Search with Minimum Stop Rate 0.1 for ISCAS Test c3540. 
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Figure 41. Random Search with Minimum Stop Rate 0.1 for ISCAS Test c6288. 
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Figure 42. Random Search with Minimum Stop Rate 0.1 for ISCAS Test c5315. 
  

88 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX C: TESTS FOR RANDOM SEARCH WITH ITERATION CAP 
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Figure 43. Random Search Results for ISCAS Test c17 with 31 Iterations. 
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Figure 44. Random Search Results for ISCAS Test c432 with 76 Iterations. 
 

91 



 
 

 

Figure 45. Random Search Results for ISCAS Test c880 with 88 Iterations. 
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Figure 46. Random Search Results for ISCAS Test c499 with 96 Iterations. 
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Figure 47. Random Search Results for ISCAS Test c1355 with 119 Iterations. 
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Figure 48. Random Search Results for ISCAS Test c1908 with 131 Iterations. 
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Figure 49. Random Search Results for ISCAS Test c2670 with 136 Iterations. 
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Figure 50. Random Search Results for ISCAS Test c3540 with 161 Iterations. 
 

97 



 
 

 

Figure 51. Random Search Results for ISCAS Test c6288 with 292 Iterations. 
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Figure 52. Random Search Results for ISCAS Test c5315 with 192 Iterations. 
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