
University of Mississippi University of Mississippi

eGrove eGrove

Electronic Theses and Dissertations Graduate School

2019

Design and Investigation of Genetic Algorithmic and Design and Investigation of Genetic Algorithmic and

Reinforcement Learning Approaches to Wire Crossing Reductions Reinforcement Learning Approaches to Wire Crossing Reductions

for pNML Devices for pNML Devices

Alexander Keith Gunter
University of Mississippi

Follow this and additional works at: https://egrove.olemiss.edu/etd

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Gunter, Alexander Keith, "Design and Investigation of Genetic Algorithmic and Reinforcement Learning
Approaches to Wire Crossing Reductions for pNML Devices" (2019). Electronic Theses and Dissertations.
1597.
https://egrove.olemiss.edu/etd/1597

This Thesis is brought to you for free and open access by the Graduate School at eGrove. It has been accepted for
inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more information,
please contact egrove@olemiss.edu.

https://egrove.olemiss.edu/
https://egrove.olemiss.edu/etd
https://egrove.olemiss.edu/gradschool
https://egrove.olemiss.edu/etd?utm_source=egrove.olemiss.edu%2Fetd%2F1597&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=egrove.olemiss.edu%2Fetd%2F1597&utm_medium=PDF&utm_campaign=PDFCoverPages
https://egrove.olemiss.edu/etd/1597?utm_source=egrove.olemiss.edu%2Fetd%2F1597&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:egrove@olemiss.edu

DESIGN AND INVESTIGATION OF GENETIC ALGORITHMIC AND REINFORCEMENT

LEARNING APPROACHES TO WIRE CROSSING REDUCTIONS FOR PNML DEVICES

A Thesis

presented in partial fulfillment of requirements

for the degree of Master of Science in Engineering

Science with Emphasis in Electrical Engineering

The University of Mississippi

by

ALEXANDER GUNTER

December 2018

Copyright © 2018 by Alexander Gunter

All rights reserved

ii

ABSTRACT

Perpendicular nanomagnet logic (pNML) is an emerging post-CMOS technology which

encodes binary data in the polarization of single-domain nanomagnets and performs operations

via fringing field interactions. Currently, there is no complete top-down workflow for pNML.

Researchers must instead simultaneously handle place-and-route, timing, and logic minimization

by hand. These tasks include multiple NP-Hard subproblems, and the lack of automated tools for

solving them for pNML precludes the design of large-scale pNML circuits.

In this thesis we investigate potential solutions to the problem of wire crossing reduction

in pNML circuits. Although pNML permits 3D architectures, planar designs are still preferred

for the ease of fabrication; and reducing out-of-plane nanomagnets reduces risks of fabrication

effects. We have found no existing work on this problem in pNML, and existing work for related

technologies does not consider variations of the wire crossing problem that are specific to

pNML. We present and evaluate two algorithms designed to address this research gap. The first

is a genetic algorithm utilizing a multi-chromosome encoding of graph embedding, and the

second is a deep reinforcement learning algorithm utilizing a similar encoding and Q-Learning.

We also present a naïve NP-time randomized search algorithm for use as a baseline. The

presented reinforcement learning algorithm proved unacceptably slow and ineffective, but our

genetic algorithm removed significantly more wire crossings than the random search did on the

ISCAS ’85 combinational benchmarks.

iii

ACKNOWLEDGEMENTS

I would like to first thank my partner, Wil Adamec, for his constant support and

reassurance throughout the past two years, without which I would not have been able to complete

this degree. Similarly, I thank my mother, Kim Gunter, my father, Greg Gunter, and my brother,

Ian Gunter, for all their advice and encouragement and for giving me an upbringing that enabled

me to pursue these studies. I thank my advisor, Dr. Matthew Morrison, for his patience and

guidance and for all the opportunities he opened for me over the past four years; and I thank my

labmates George Humphrey, Maisha Sadia, and James Haywood for their feedback and

friendship. I would also like to thank my committee members, Dr. Yixin Chen and Dr. Richard

Gordon, for their time and input on this thesis; and I thank Drs. Dawn Wilkins, Conrad

Cunningham, Naeemul Hassan, Sandra Spiroff, and Bing Wei for putting up with all my weird

questions. I also thank Dr. Kevin Beach for initially introducing me to QCA and thus giving me

the very first nudge towards this project. Finally, I thank the Department of Electrical

Engineering, the Department of Computer and Information Science, and the Honors College for

funding my studies and providing facilities that have been invaluable to my work.

iv

TABLE OF CONTENTS

ABSTRACT .. ii

ACKNOWLEDGMENTS ... iii

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

CHAPTER I: INTRODUCTION ...1

CHAPTER II: BACKGROUND ...3

II.1: Principles of QCA ..3

II.2: Electric QCA ..5

II.3: Magnetic QCA and In-Plane NML ..7

II.4: Perpendicular NML ..9

II.5: pNML EDA ..12

II.6: Previous Work in Crossing Reduction in QCA ...14

II.7: Genetic Algorithms ..15

II.8: Reinforcement Learning Algorithms ...17

II.9: Graph Embeddings ...20

II.10: The Apache Spark Framework...23

CHAPTER III: PROBLEM ANALYSIS AND REPRESENTATION25

III.1: Representation of pNML Wire Crossing Reduction.....................................25

III.2: Verilog Parser and Netlist ...27

III.3: Magnet Layout ..29

v

III.4: Graph Encoded Map ...32

CHAPTER IV: GENETIC ALGORITHM IMPLEMENTATION35

IV.1: Genome Representation and Processing...35

IV.2: Core Genetic Algorithm ..40

IV.3: Spark Implementation...44

IV.4: Genetic Algorithm Results ...49

CHAPTER V: REINFORCEMENT LEARNING IMPLEMENTATION........................50

V.1: State and Action Representation ..50

V.2: State and Action Encoding...51

V.3: Neural Network Topology ...53

V.4: Training and Execution ..53

V.5: Reinforcement Learning Results ..54

CHAPTER VI: RANDOM SEARCH IMPLEMENTATION ...56

VI.1: Adaptation of Genetic Algorithm ...56

VI.2: Random Search Results ..57

CHAPTER VII: CONCLUSIONS AND FUTURE WORK ...59

VII.1: Conclusions and Analysis ...59

VII.2: Future Work ..60

BIBLIOGRAPHY ..62

LIST OF APPENDICES ..66

vi

APPENDIX A: TESTS FOR GENETIC ALGORITHM67

APPENDIX B: TESTS FOR RANDOM SEARCH WITH STOP RATE CAP ...78

APPENDIX C: TESTS FOR RANDOM SEARCH WITH ITERATION CAP ..89

VITA ..100

vii

LIST OF TABLES

TABLE PAGE

Table 1: Truth Table for a Majority Voter Gate ... 4

Table 2: Hyperparameters Set for Genetic Algorithm .. 49

Table 3: Final Results for Genetic Algorithm... 49

Table 4: Hyperparameters Set for Reinforcement Learning Algorithm 55

Table 5: Final Results for Reinforcement Learning Algorithm .. 55

Table 6: Final Results for Random Search Algorithm with Stop Rate ... 58

Table 7: Final Results for Random Search Algorithm with Max Iterations 58

viii

LIST OF FIGURES

FIGURE PAGE

Figure 1: The Majority Gate and Its Boolean Expression .. 4

Figure 2: EQCA Cells and Basic Logic Gates .. 6

Figure 3: EQCA Clocking .. 7

Figure 4: iNML Nanomagnets and Basic Logic Gates ... 9

Figure 5: pNML Nanomagnets and Coupling .. 11

Figure 6: pNML Basic Logic Gates .. 12

Figure 7: Embeddings of K4 ... 21

Figure 8: Orbits in Embeddings .. 23

Figure 9: Digraph Representation of a Planar pNML Full-Adder .. 26

Figure 10: Allowed and Disallowed Nanomagnet Geometries .. 27

Figure 11: Verilog Sample Files ... 28

Figure 12: Magnet Layout for a Full-Adder ... 31

Figure 13: Basic Graph Encoded Maps .. 34

Figure 14: Adding to an Origin’s Orbit .. 37

Figure 15: Adding to a Destination’s Orbit .. 38

Figure 16: Joining Disconnected GEMs ... 39

Figure 17: Identifying Disallowed Edge Embeddings .. 40

Figure 18: Order Crossover Example ... 42

Figure 19: Partially-Matched Crossover Example .. 43

Figure 20: Creation and Scoring of a Spark Genome Population ... 46

Figure 21: Selection of Parent Genomes .. 47

Figure 22: Recombination and Mutation of Child Genomes .. 48

Figure 23: Genetic Results for ISCAS Test c17 ... 68

Figure 24: Genetic Results for ISCAS Test c432 ... 69

Figure 25: Genetic Results for ISCAS Test c880 ... 70

Figure 26: Genetic Results for ISCAS Test c499 ... 71

ix

Figure 27: Genetic Results for ISCAS Test c1355 ... 72

Figure 28: Genetic Results for ISCAS Test c1908 ... 73

Figure 29: Genetic Results for ISCAS Test c2670 ... 74

Figure 30: Genetic Results for ISCAS Test c3540 ... 75

Figure 31: Genetic Results for ISCAS Test c6288 ... 76

Figure 32: Genetic Results for ISCAS Test c5315 ... 77

Figure 33: Random Search with Stop Rate Results for ISCAS Test c17 79

Figure 34: Random Search with Stop Rate Results for ISCAS Test c432 80

Figure 35: Random Search with Stop Rate Results for ISCAS Test c880 81

Figure 36: Random Search with Stop Rate Results for ISCAS Test c499 82

Figure 37: Random Search with Stop Rate Results for ISCAS Test c1355 83

Figure 38: Random Search with Stop Rate Results for ISCAS Test c1908 84

Figure 39: Random Search with Stop Rate Results for ISCAS Test c2670 85

Figure 40: Random Search with Stop Rate Results for ISCAS Test c3540 86

Figure 41: Random Search with Stop Rate Results for ISCAS Test c6288 87

Figure 42: Random Search with Stop Rate Results for ISCAS Test c5315 88

Figure 43: Random Search Results for ISCAS Test c17 with 31 Iterations 90

Figure 44: Random Search Results for ISCAS Test c432 with 76 Iterations 91

Figure 45: Random Search Results for ISCAS Test c880 with 88 Iterations 92

Figure 46: Random Search Results for ISCAS Test c499 with 96 Iterations 93

Figure 47: Random Search Results for ISCAS Test c1355 with 119 Iterations 94

Figure 48: Random Search Results for ISCAS Test c1908 with 131 Iterations 95

Figure 49: Random Search Results for ISCAS Test c2670 with 136 Iterations 96

Figure 50: Random Search Results for ISCAS Test c3540 with 161 Iterations 97

Figure 51: Random Search Results for ISCAS Test c6288 with 292 Iterations 98

Figure 52: Random Search Results for ISCAS Test c5315 with 192 Iterations 99

CHAPTER I

INTRODUCTION

Quantum-dot cellular automata (QCA) is a class of emerging post-CMOS technologies

which promise ultra-low power consumption, persistent state in the absence of power, and

intrinsic pipelining [1-3]. These circuits attain these objectives by encoding binary data in the

state of bistable cells which are coupled by fringing electric or magnetic fields [1]. An adiabatic

clocking field drives data propagation through the circuit and supplies power gain to prevent

signal degradation. One of these technologies, magnetic QCA (MQCA) or nanomagnet logic

(NML) implements these cells as nanomagnets [3]. Resultantly, NML is radiation-hard and easy

to fabricate compared to most electric QCA implementations.

Perpendicular NML (pNML) is an implementation of NML with irregularly shaped cells

which do not require clocking zones [4]. This technology is advantageous because its

nanomagnets are planar and polarize perpendicularly, and support ferromagnetic and

antiferromagnetic coupling [12]. Each nanomagnet has an artificial nucleation center (ANC)

functioning as an input contact. Unlike conventional QCA, pNML clocking fields do not directly

require intermediate metastable states due to the ANCs directing data propagation.

Many currently-existing QCA design automation techniques are not applicable due to the

irregularly shaped cells and the finer-grained pipelining permitted by pNML. Along with QCA’s

potential for ultra-low power operation, pNML circuits are inherently radiation hard and may

enable 3D architectures that are easier to fabricate and have clocking systems with reduced

1

clocking tree overhead. Successful design and implementation of pNML circuits would allow for

a low-power and reliable solution for high-altitude flight for military, commercial and space

applications, nuclear reactors, and deep-well drilling. One NP-Hard optimization problem that

remains unaddressed is wire crossing reduction in pNML circuits. This is notable because the

problem is almost independent of the design rule set used, but it still has unusual constraints due

to the behavior of pNML nanomagnets.

In this thesis, we present our investigation into the potential for genetic and reinforcement

learning algorithms to solve this problem. In Chapter II we review the current literature with

emphasis on the principles of Quantum-dot Cellular Automata (QCA) and its subcategories of

Electric QCA, Magnetic QCA, and perpendicular Nanomagnet Logic (pNML). We also describe

the state of electronic design automation for pNML and review topics in genetic algorithms,

reinforcement learning, graph embeddings, and the Apache Spark Framework. In Chapter III we

derive our approach to the problem including our representation of pNML circuits with graph

embeddings. We then describe the software necessary to convert combinational Verilog circuits

into pNML circuits. In Chapter IV we present our genetic algorithm by explaining our genome

representation of a graph embedding, our algorithm to identify nonplanar edges, how we

distribute the algorithm using Spark, and the final results of our experiments. Chapter V does the

same with our reinforcement learning algorithm by explaining our representation of the problem

as a Markov Decision Process, the topology of our neural network, our training algorithm, and

our results for its performance. Chapter VI explains our implementation of a random search

algorithm for use as a baseline. We close with Chapter VII where we analyze our results and

present future research avenues that could improve upon or supplement our work.

2

CHAPTER II

BACKGROUND

II.1. Principles of QCA

Quantum-dot Cellular Automata (QCA) is a transistorless processor technology

comprised of discrete field-coupled cells [5]. These cells are engineered to have a bistable

internal state, usually implemented as an electric or magnetic dipole via ensembles of electric

charges or electron spins. These dipoles necessarily generate an external field and respond to

changes in that field. Two dipoles can thus interact with each other via their fringing fields. By

carefully engineering the cells, we can restrict the number of stable states for the internal dipoles

to just two where each state produces a different fringing field. An ambient field can then bias a

cell towards one of these states.

QCA circuits are regulated by controlling this ambient field in a manner that lets cells

determine the states of their neighbors. We do this with a clocking field that acts to lower the

energy barrier between the two states, letting cells switch to the state induced by their neighbors

according to a consistent schedule. For implementations with very simple cells, the clocking

field serves as a mechanism for controlling the direction data propagates in. Oscillating the

clocking field adiabatically minimizes error rates and dynamic energy dissipation. Per-cell power

dissipation typically reaches the nano- and picowatt ranges, making QCA an inherently ultra-low

power technology [35, 36].

3

Because electromagnetic fields combine additively, we can implement majority logic

using ensembles of cells. Usually these logic gates are 3-input MAJ gates, which output a 1 when

at least two of the inputs are 1 as per Table 1. This gate is notable because all three of its inputs

are treated symmetrically. Using any one of them as a control signal toggles the gate between a

2-input AND or a 2-input OR gate. QCA implementations also support NOT gates, so they are

functionally complete.

Figure 1. The Majority Gate and Its Boolean Expression

Table 1: Truth Table for a Majority Voter Gate

C A B Y

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

4

II.2. Electric QCA

Electric QCA (EQCA) is the original formulation of QCA by Lent, Taugaw, and Porod

[6]. It uses electric dipoles and electric fields. Generally, its cells are implemented as

quantum-dots where electrons may or may not reside. These dots are arranged into a square and

are close enough to be tunnel-coupled, so the electrons can tunnel between them. This

arrangement is bistable because the Coulomb force between the two electrons drives them to

maximize the distance between each other, and this corresponds to the two diagonals of the

square. Because of the tunnel-coupling, the cell’s state can change in response to the ambient

electric field.

These cells are the simple kind that we referred to in Section I.1. They have no internal

mechanism for directing data propagation, so the clocking system must control that. Otherwise

signals would propagate as a random walk through the circuit and could in fact travel backwards

and drastically slow down the circuit’s operation [7, 8]. To prevent this, the circuit must be

partitioned into clocking zones. These are small contiguous ensembles of cells, usually

comprised of only three to five cells, which experience the same clocking signal at the same

time. This clocking signal must also be designed such that it forces the cells into a neutral

METASTABLE state. Clocking zones are activated in a rolling multi-phase fashion, so a given

zone’s outputs are always reset while it is reading from its inputs. This prevents signals from

propagating backwards and gives EQCA circuits zone-level pipelining. Each zone can only store

one signal at a time, but multiple signals can propagate across the circuit’s zones at once. This

process is illustrated in Figure 3.

5

(a)

(b) (c)

Figure 2. EQCA Cells and Basic Logic Gates. (a) Schematics of EQCA cells. Two are
polarized, and the third is in a METASTABLE state. (b) An EQCA majority voter
where the inputs are in blue, and the output is in purple. (c) An EQCA inverter.

EQCA is most notable for its small feature sizes and potential switching speeds. This is

because currently-proposed designs use cells fabricated from individual molecules or even

arrangements of dangling bonds. Atomic Silicon Quantum Dots currently permit the fabrication

of cells with dots 2 nm apart with switching frequencies in the GHz range [9]. The theoretical

limit for these could feature cells with dots separated by only 2.3 Å and switching frequencies in

the THz range [9]. Design rules for EQCA circuits can be relatively simple as well due to the

consistency of EQCA cells. The rule set primarily needs to specify the width of and distances

between cells. It might also specify the resolution with which cells can be placed, permitting

off-center cells. However, these performance-oriented characteristics make EQCA circuits

extremely difficult to fabricate. This is both because of the difficulty of placing the cells and the

difficulty of creating a clocking system that is both powerful enough to control the circuit but

compact enough to fit on the chip.

6

(a)

(b)

(c)

(d)

(e)

Figure 3. EQCA Clocking. (a) A four-zone wire segment in its initial state with no zones
activated. (b) Activate the first zone. (c) Activate the second zone. (d) Activate the
third zone and deactivate the first zone. This reevaluates the first zone without
reading the second zone, and the wire segment now stores two signals
simultaneously. (e) Activate the fourth zone and deactivate the second zone. This
reevaluates the second zone by reading the first and without reading the third.

II.3. Magnetic QCA and In-Plane NML

Magnetic QCA, also called nanomagnet logic (NML), is currently separated into two

very different implementations. These are called in-plane NML (iNML) and perpendicular NML

(pNML), referring to the axis along which the nanomagnets polarize. In both technologies, its

cells are implemented as single-domain nanomagnets whose anisotropy drives them to polarize

in one of two directions [10]. Nanomagnets can either couple ferromagnetically or

antiferromagnetically, so inverters are extremely compact [10, 11]. This in turn means both NML

types are more easily modeled in terms of minority logic, and it makes the NAND and NOR

gates more compact than AND and OR.

7

iNML is characterized by the use of rectangular nanomagnets which polarize in the

fabrication plane [12]. By convention, nanomagnets are longer along their y-axis, so they

polarize either UP or DOWN [10]. The coupling between two such nanomagnets depends on

their relative position. Using the UP/DOWN convention, vertically aligned nanomagnets will

couple ferromagnetically; so a nanomagnet in the UP state will bias its neighbor towards the UP

state. Horizontally aligned nanomagnets will couple antiferromagnetically, so a nanomagnet in

the UP state will bias its neighbor towards the DOWN state. Inverters are implemented as pairs

of horizontally-aligned nanomagnets [12]. iNML minority gates use the same cross-shaped

intersection as EQCA majority gates as shown in Figure 4.

Like EQCA cells, iNML nanomagnets do not have an internal mechanism for directing

data propagation; so iNML circuits are also partitioned into clocking zones [13]. The main

difference here is that the METASTABLE state is a horizontal polarization, so the clocking field

must be strong enough to overcome the anisotropy of the nanomagnets. The clocking behavior is

otherwise identical to that of EQCA; and its design rules are also very similar to EQCA’s.

Because the nanomagnets are considerably larger, often in the realm of 50-100 nm long [10, 12],

the clocking system is much easier to fabricate than in EQCA. However this size means iNML is

much lower performance, offering clocking frequencies in the MHz range [14]. iNML also

suffers from the same strong coupling between layout and timing where changing the placement

of cells can significantly alter signal timing [10]. While EQCA circuits’ reliance on small

numbers of charges makes them sensitive to ionizing radiation, iNML’s nanomagnets use a large

number of electron spins, making them inherently resistant to this.

8

(a) (b) (c)

Figure 4. iNML Nanomagnets and Basic Logic Gates. (a) Nanomagnets illustrating iNML
coupling. The horizontal pair couples antiferromagnetically, and the vertical pair
couples ferromagnetically. (b) A pair of nanomagnets implementing an iNML
inverter. (c) An iNML minority gate.

II.4. Perpendicular NML

pNML circuits are notably different from both EQCA and iNML circuits. Their

nanomagnets are fabricated from layered nanofilms which produce structures that polarize

perpendicularly to the fabrication plane [15]. This perpendicular anisotropy is largely

independent of the magnetic domain’s shape, so pNML nanomagnets are not restricted to a

single shape such as a square or rectangle. While iNML nanomagnets change states very

smoothly and without splitting into multiple domains, pNML nanomagnets nucleate [16]. When

the ambient field is strong enough and polarized in the opposite direction, regions of the

nanomagnet swap polarization, and the inversion propagates throughout the nanomagnet as a

domain wall. To control this nucleation, pNML nanomagnets are fabricated with an Artificial

Nucleation Center (ANC) [17]. This is created by irradiating a miniscule region of the

nanomagnet to slightly intermix the layers of its substrate. This reduces the anisotropy of that

9

region, making it more sensitive to ambient magnetic fields than the rest of the nanomagnet. The

ANC thus becomes the seed point for nucleation.

The ANC makes pNML’s behavior unique from other QCA implementations because

they make every nanomagnet behave as a diode [18]. By calibrating the clocking field and the

anisotropy of the ANCs, we can make pNML circuits where the ambient magnetic field is never

strong enough to nucleate nanomagnet bodies. When correctly calibrated, ANCs only nucleate

when both the nearby nanomagnets and the clocking field induce the opposite polarization. That

is, pNML nanomagnets only change polarizations when that is the logically correct state, and the

clocking field is polarized in that direction. This means that the clocking system is not

responsible for controlling the direction of data propagation; that is handled internally by the

cells themselves. Then the circuit does not need to be partitioned into clocking zones, and the

clocking signal does not need to push the nanomagnets into a METASTABLE state.

pNML circuits thus have six notable advantages over iNML circuits. (1) They have

cell-level pipelining because each nanomagnet behaves like a diode, so their states are all

evaluated independently. (2) Each nanomagnet behaves like a register because their states are

never erased by the clocking signal. This produces advantage (3), which is that pNML minority

gates with an even number of inputs have well defined behavior in the event of a tie. The tie

means that the ambient field produced by the inputs is near-zero, and the nanomagnet does not

change its state because the clocking field alone is not strong enough to nucleate its ANC. (4)

Because the nanomagnets can have nearly any shape, we can route signals without altering the

circuit’s timing so long as the clocking field’s frequency gives every nanomagnet enough time to

invert. (5) Because the clocking field is a global field that just oscillates between UP and

10

(a) (b) (c)

Figure 5. pNML Nanomagnets and Coupling. (a) A schematic of a simple nanomagnet as
presented in [18] with the ANC colored in purple. (b) Coplanar pNML nanomagnets
always couple antiferromagnetically (c) pNML nanomagnets couple
ferromagnetically when the input’s body is directly below the output’s ANC.

DOWN, the clocking circuitry is considerably simpler. Even if a circuit chooses to have clocking

zones, these zones can be the size of an entire component; so the clocking system does not have

to be nearly as densely packed as the QCA cells. (6) Because the nanomagnets are made from

nanofilms, pNML permits multiple fabrication planes and create 3D architectures. Nanomagnets

which reside in the same plane or are not vertically aligned will couple antiferromagnetically,

while vertically aligned nanomagnets in separate planes will couple ferromagnetically.

The main disadvantage of pNML compared to iNML is that EDA tools have to

synthesize the geometry of each nanomagnet because pNML does not specify any particular

nanomagnet shapes. This makes design rules for pNML inherently more sophisticated than those

for EQCA and iNML as they have to be capable of generating compact geometry and must

support pathing but without compromising circuit reliability. This also introduces a tradeoff

between clocking frequency and circuit latency as permitting longer paths means domain walls

require more time to reach their outputs.

11

(a) (b)

Figure 6. pNML Basic Logic Gates. (a) A pNML inverter. (b) A pNML minority gate.

II.5. pNML EDA

Compared to other QCA implementations, work on design automation of pNML circuits

is sparse. Prior work in general QCA that pNML inherits primarily consists of majority logic

synthesis. One of the first scalable automated approaches presented in [19] begins by

decomposing the logic network into gates of at-most three inputs and uses Karnaugh maps to

either identify majority voters or decompose gates into multilayer majority voter networks. This

approach has been augmented several times to further reduce the number of majority gates [20]

and utilize majority gates with more than three inputs [21]. Alongside this approach have been

genetic algorithms as in [22] and manipulation of tree-like data structures as in [23] and [24].

The Majority-Inverter Graph presented in [24] is especially notable for its use of a well-defined

algebra which has yielded significant reductions in delay and area over other tools.

The most fundamental tool for pNML is the Object Oriented MicroMagnetic Framework

(OOMMF). The framework performs high-fidelity simulation of magnetic materials [25]. This

12

enables the creation and exploration of novel magnetic technologies at small scales, provided the

engineer knows the material’s magnetic properties and geometry. Ju et al. used this tool in [16]

to demonstrate the switching and coupling behavior of Co/Pt nanomagnets for use as pNML

cells.

Despite its accuracy and versatility, OOMMF only immediately helps characterize a

given geometry and does not include tools to search for geometries which correctly perform a

given function. To this end, Notre Dame has presented a machine-learning approach based on

least squares regression [11]. In this approach, the algorithm is given an initial circuit design

which nearly implements a known function. The algorithm then uses OOMMF to simulate the

circuit and compares the simulated outputs to the expected ones. The algorithm then uses linear

regression to correlate geometric parameters to the correctness of the circuit. This correlation

becomes a heuristic for searching the physical design space.

The closest existing thing to a traditional top-down workflow for pNML is the MagCAD

program [26], which supports the manual placement of pNML nanomagnets. The tool can export

these designs to its sister-tool ToPoliNano which can simulate the circuit using VHDL. Although

ToPoliNano can synthesize VHDL descriptions of iNML circuits, it currently cannot do this for

pNML. It is also unclear whether existing scalable simulation techniques enable analysis of

timing concerns specific to pNML.

II.6. Previous Work in Crossing Reduction in QCA

When designing circuits, we usually want to work in a top-down fashion. We want to

specify high-level behavior and have design automation software convert that specification to an

13

optimized circuit design ready for fabrication. We should be able to verify that the design

behaves as expected, verify that the expected behavior actually completes the desired task, and

verify that the design satisfies any performance requirements we may have.

This process begins with the circut’s behavior and high-level architecture specified with a

hardware description language (HDL) such as Verilog. This is what the design engineer

primarily creates and maintains. This HDL must then be synthesized into a netlist of wires and

logic gates. Then the EDA software should simplify this netlist to minimize the number of

components required, removing redundant components or improving suboptimal structures.

Once the logic has been minimized, it must be synthesized into physical components which

occupy space. These components must be placed on the substrate, and the wires connecting them

have to be routed such that data signals do not interfere with each other. These components must

also be arranged in a manner that reduces the area and difficulty of fabricating the circuit.

Because physical signals take time to propagate, all components must also be arranged such that

all signals are correctly synchronized and propagate quickly enough to meet performance

requirements.

This entire process entails solving multiple NP-Hard problems, such as logic

minimization and place-and-route with constraints. The process also requires knowledge about

the specific technology being used as this directly impacts the nature of all geometric and timing

constraints. Thus, although many such workflows exist for a multitude of different

transistor-based technologies, these workflows cannot be directly ported to pNML. One of the

subproblems of the place-and-route stage is the minimization of wire crossings in the circuit.

These structures require either 3D structures that are hard to fabricate or complex arrangements

14

of logic gates that reduce performance. This subproblem is itself an NP-Complete problem, even

when taken in isolation from the other NP-Hard tasks in the top-down workflow.

There has been work on crossing reduction in EQCA circuits, and iNML circuits by

extension; and some of this is applicable to pNML. Node duplication techniques as in [37]

duplicate substructures in the circuit to bypass obstructions. Purpose-built gates like the

UQCALG presented in [38] offer the flexibility to construct combinational structures that can be

fabricated with very few crossings. Such gates are used by algorithms like the one presented in

[39]. There are also heuristic methods based on channel routing [40]. The problem with the first

three is that they only synthesize logic in a manner that reduces the minimum-possible number of

crossings. Another algorithm still has to perform the placement. The channel routing methods

take care of this, but they do not currently account for the unusual geometric constraints that

come with pNML.

II.7. Genetic Algorithms

Genetic algorithms are a class of algorithms inspired by the mechanics of biological

evolution [27]. They are fundamentally characterized by the representation of candidate solutions

in a way that permits the recombination of candidates into new candidates. They also presume

that, on average, the random recombination of good candidates yields more good candidates.

These candidates are encoded as genomes which are comprised of one or more chromosomes.

Each chromosome is a sequence of tokens or values which represent specific characteristics of

the candidates solution. At each iteration, the algorithm takes a population of genomes and

chooses pairs of them using a selection algorithm and according to a fitness function. These pairs

15

are recombined to create a new population, and those new genomes are then tweaked with a

mutation algorithm.

Decoding a genome into a form usable outside the genetic algorithm should be more or

less efficient, certainly polynomial-time; but priority is given to optimizing the functions for

fitness evaluation, selection, recombination, and mutation. The fitness evaluation function is

responsible for scoring the quality of a genome and is used by the selection algorithm. Usually

the algorithm tries to maximize this akin to “survival of the fittest,” but it’s possible to minimize

it instead. Given a population of genomes, the selection algorithm uses the fitness function to

create a distribution of genome-pairs from the population. It then selects pairs of genomes

according to this distribution for recombination.

Recombination, also called crossover, is the process of intermixing two genomes to

create a new one. A multitude of algorithms for this exist, each being applicable to different

kinds of problems. For example, problems in which each chromosome element is an independent

parameter might randomly choose which parameters to inherit from which parent.

Combinatorial, order-sensitive chromosomes might instead be recombined using an

order-preserving algorithm. The end result is a new genome which inherits characteristics of both

parent genomes, much like in biology.

Genetic algorithms also pull the concept of mutation from biology. These algorithms are

applied to genomes after they’ve been created from recombination. These are designed to

slightly perturb the population, making the process less prone to converging to local optima.

Examples of mutation algorithms include adding small random deviations to chromosome

16

elements or swapping the order of two elements. Usually the mutation algorithm is randomly

selected from a set of such algorithms.

There are a variety of ways to begin and end the evolutionary process. Usually the initial

population is generated according to a distribution suitable to the problem. The termination

condition can be based on any metric for the procedure’s performance. This can be as simple as

the population satisfying some fitness threshold, or it can be a limit on the number of iterations.

It’s also possible to track the quality of the population and stop when the rate of improvement

falls below a given threshold. The final output can be decided in a number of ways too, such as

the best solution in the last generation or the best across all generations. It could also be selected

from the last generation according to a distribution based on the fitness values. The output could

even be the last generation as a whole, and a problem-specific process can reduce that to a final

solution.

II.8. Reinforcement Learning Algorithms

Reinforcement learning algorithms begin with an Environment/Actor model of the

problem [28]. The Environment has an internal state, and the Actor can choose an action to apply

to the state. Given the current state and chosen action, the Environment uses a Markov Decision

Process (MDP) to determine the next state, as well as a reward. The Actor takes this new state

and reward and chooses a new action, and the cycle continues until the system reaches a terminal

state. This process produces a sequence of state-action-reward triples according to a distribution.

The goal of reinforcement learning is to train the Actor to choose actions which maximize the

total reward received.

17

The environment is usually derived from the problem, often by “gamifying” it. It requires

a state representation that can be efficiently modified based on chosen actions. This might be a

game board with movable pieces placed on a grid, or it could be a distribution that never

changes. It also must dispense rewards based on both the current state and chosen action, so the

Actor has goals to achieve and can identify them. For example, moving a board piece left might

capture a resource and yield a high reward; or it might push the piece out of bounds and yield a

negative reward. Because actions are applied over time, the system can also have a concept of a

future reward; and this introduces a trade-off between immediate and future rewards. Typically

the Environment encodes this as a hyperparameter called the reward discount, which is a scaling

factor between 0 and 1 applied to a reward based on how many steps away it is.

Actors in reinforcement learning algorithms usually have two critical components: a

policy π(A | S) and a value function. The policy is responsible for choosing an action based on

the total reward the Actor can expect to receive afterwards, and it is in fact a distribution of

actions.

π(A | S) is thus the probability of choosing action A given state S. The value function can

either be a state-value function Vπ(S) or an action-value function Qπ(S, A). The state-value

function predicts the expected total reward that the Actor will receive if it begins in a particular

state S and follows policy π afterwards. The action-value function predicts the expected total

reward if the Actor begins in state S, takes action A, and then follows policy π from then on.

Each of these options has advantages worth considering. Specifically, the state-value function

typically requires less memory to store because it has a smaller domain; but the action-value

function is easier to modify because doing so does not require checking all actions applicable to

18

S. Reinforcement learning is about using the interdependence of the policy and value function to

iteratively train a skilled Actor.

Initially the value function will be highly inaccurate and produce bad predictions for

expected returns. This will drive the policy to choose bad actions very frequently. However, in

doing so, the Actor will sample rewards from the Environment; and it can use those samples to

update its value function’s predictions. This in turn can alter the policy, so it chooses better

actions. If the value function’s predictions for each state or each state-action pair are calculated

independently, such as by being stored in a lookup table, then this process will eventually

converge to optimal behavior by the Policy Improvement Theorem [28].

One of the most commonly used training algorithms is Q-Learning. This approach uses

an action-value function and takes the learning rate α as a hyperparameter, alongside the reward

discount γ from the Environment. At each step, the Actor begins with the current state S and the

current value function Q. It derives a policy π from Q and chooses an action A according to π(S).

It passes A along to the Environment and receives the reward R and the new state S’. To update

Q, it calculates and scales the error in its prediction and then adds that error to its current

estimate. This update function is

(S, A) ←Q(S, A) α[R max Q(S , a) Q(S, A)]Q + + γ a ′ − (1)

where γ is the reward discount. Thus Q is pushed towards the actually received. In the limit

where every state-action pair is tested infinitely many times, Q will exactly predict the expected

total reward for every state-action pair.

19

II.9. Graph Embeddings

A fundamental component of this work is the graph embedding, which can be thought of

as the drawing of a finite graph on some surface. Ordinarily we encounter these any time we see

a graph drawn on paper, but the idea can be generalized using topology and combinatorics.

Depending on the properties of interest, different representations may be more useful.

We can begin deriving these representations by identifying unhelpful information stored

in the naive representation of an embedding - a drawing on the coordinate plane. This

representation, which we call a spatial embedding, is highly detailed with each vertex being

assigned to a unique point. Each edge is assigned to a simple curve whose endpoints are the

points representing the edge’s vertices, and the curve’s interior points never represent vertices.

For this section, we also assume curves that intersect only intersect at most at one point. This

simplifies our analysis without loss of generality.

We can see that this representation stores more information than necessary for identifying

intersecting edges because we can move vertices slightly without changing the crossings in the

graph. All that changes is the position of the vertex and some distances between edges. Thus we

can infer that some equivalence class of embeddings exists such that all of its members have the

same crossings as the embedding we have on-hand. A representation of that equivalence class

should be simpler and more well-suited for identifying edge crossings.

Topology provides the tools for identifying this equivalence class. A plane is a surface of

genus 0, as is the surface of a sphere [29]; and we can map a circular region of a plane onto the

surface of a sphere with a continuous function. Let an embedding in a coordinate plane be

bounded by a circle of radius ε centered at the origin such that no vertex or edge touches the

20

(a) (b) (c)

Figure 7. Embeddings of K4 . (a) The straight-line planar embedding of K4 . (b) An alternative
embedding that is equivalent to the first one. This embedding is made by
transforming the first embedding with f, rotating the resulting sphere embedding by
approximately 180°, and applying f -1. (c) An embedding with an unnecessary
crossing. The crossing is unnecessary because the yellow-red edge could be routed
through the outer face.

circle. Then all points in the circle have polar coordinates of the form (r, θ) for r ∈ [0, ε). Then

we can map each point (r, θ) to the surface of a sphere of radius ε using the function

(r, θ) (2 , θ, 2r) f = √r(ε)− r (2)

where the right-hand side is in cylindrical coordinates. For all cylindrical coordinates (r’, θ, z)

where z ∈ [0, 2ε), we can invert this with Equation 3.

(r , θ, z) 0.5z, θ)f −1 ′ = ((3)

This spherical representation makes many transformations more clearly irrelevant to edge

crossings. For example, rotating the spherical embedding has no effect on the relative position of

any vertices or edges and thus cannot affect crossings. Continuously expanding or contracting a

region on the sphere similarly has no effect on crossings. As long as these transformations don’t

move a vertex or edge to the coordinate (0, 0, 2ε), we can map the spherical embeddings to

planar embeddings and obtain planar drawings that are drastically different but have the same

crossings.

21

We observe that, sufficiently close to a vertex, the cyclic order of its incident edges is

invariant under these continuous transformations. Thus we can instead use a combinatorial

representation of an embedding rather than a spatial one. One such representation is the rotation

system [30]. To construct a rotation system, we first split the graph’s edges into darts, or

half-edges. In the case of undirected graphs, these are simply the two orientations an edge can

have, (a, b) or (b, a) for vertices a and b. Thus we map each edge to a pair of darts . ei d , d)(i,1 i,2

Then we construct the permutation θ such that such that and for each (d)θ i,1 = di,2 (d)θ i,2 = di,1

edge . We then construct the permutation according to the clockwise ordering of darts about ei σ

their shared origins. That is, for dart , returns the dart clockwise to d about its a, b)d = ((d)σ

origin vertex a. The rotation system is defined as the pair (θ, σ) and completely characterizes an

equivalence class of spatial embeddings.

Given a rotation system, we can formally define orbits in an embedding. We have already

encountered vertex orbits. They are the cycles in σ and, as stated before, are the cyclic orderings

of darts about shared origins. Face orbits are similarly defined as the cycles in the composite

permutation σθ. In the case of straight-line planar embeddings with no crossings, face orbits

correspond to the counter-clockwise cyclic orderings of darts about the polygons on their left

sides. Each rotation system also has an inverse system which reverses these orderings. This can

be thought of as either reflecting a spatial embedding or swapping the convention for vertex

orbits to be counter-clockwise orderings. This inverse system features the same crossings.

22

(a) (b)

Figure 8. Orbits in Embeddings. (a) A vertex orbit. (b) A face orbit.

II.10.The Apache Spark Framework

The Apache Spark Framework is a framework for distributed computing on the Java

Virtual Machine and is based on Hadoop’s MapReduce model [31]. The framework’s

fundamental data structure is the Resilient Distributed Dataset (RDD). This is an ordered list of

elements that is split into partitions. These partitions are distributed to the available Spark

compute nodes. Each partition is itself ordered, as is the list of partitions. Spark operates on

RDDs using transformations, filters, and aggregators. When these operations are commutative

and associative, compute nodes can operate independently and asynchronously. Such operations

can thus scale extremely well with minimal networking overhead. Spark also supports distributed

versions of more complex algorithms such as sorting, grouping, products, and filtering unique

elements. These operations require considerably more overhead because they trigger shuffle

operations, requiring all nodes to share and trade partitions with each other; but this greatly

expands the scope of algorithms supported by Spark.

Spark also has another data structure built on top of the RDD, called the Dataset. This

represents an unordered collection of elements, although it technically has an indeterminate order

23

due to its basis on the RDD. The main advantage of this data structure is its SQL-like API that

lets programs process data in the same manner as a relational database. Thus its elements are

organized into rows and labelled columns. The Dataset hides most of the implementation details

of the RDD but automatically optimizes the processing pipeline and simplifies the API.

To achieve the best possible optimization, Spark uses lazy evaluation and task pipelines

to build RDDs. Thus, while the programmer treats an RDD or Dataset as a collection of

elements, the instance itself will actually be encoded as the series of operations which compute

it. These operations, or tasks, are arranged into a directed acyclic graph (DAG) according to their

dependencies and divided into fully parallelizable execution stages. This makes Datasets

consumable structures that are computed from scratch whenever needed, offering performance

benefits in cases where the Dataset is needed only once. Spark also provides a caching feature in

case the Dataset is needed multiple times. When computing the contents of a Dataset using a

DAG, Spark will substitute and rearrange tasks to minimize the networking overhead and

maximize parallelization. This is a feature currently unique to Spark and makes the MapReduce

model far more accessible, applicable, and effective. Programmers simply have to design their

algorithms around a standard relational database structure, and they mainly need to be mindful of

which operations consume input Datasets and trigger shuffle operations.

24

CHAPTER III

PROBLEM ANALYSIS AND REPRESENTATION

III.1 Representation of pNML Wire Crossing Reduction

Given the variability of pNML design rules, we must inspect existing research for

common characteristics and restrictions on pNML geometry. Our first observation is that all

designs published to date have exactly one ANC per nanomagnet. This makes sense because

conflicting signals, combined with process variations, would likely render the magnet’s behavior

indeterminate. Such designs would require a guarantee that multi-ANC nanomagnets would

never receive conflicting signals. Verifying this guarantee would in turn require an NP-Hard

analysis of the relevant circuit components. Thus we can assume that future pNML design rules

will restrict nanomagnets to one ANC.

Because of this restriction, we can relate pNML circuits to transistor-based digital circuits

by treating ANCs as register-like components connected by wires. Specifically, we model each

ANC as a threshold gate with an output register whose state can persist between clocking cycles.

This gate can have as many input signals as the design rules permit, and those signals may or

may not be inverted based on the magnetic coupling between an input magnet and the ANC. In

this model, the wires are the bodies of the nanomagnets, and they only transmit data in one

direction as per pNML’s behavior. This means we can model pNML connectivity as a directed

graph where vertices represent ANCs, and a vertex’s outbound edges represent the

corresponding nanomagnet body. Then a planar embedding of this graph represents the physical

25

(a) (b)

Figure 9. Digraph Representation of a Planar pNML Full-Adder. (a) The physical circuit

design presented in [18] with ANCs in purple and nanomagnet bodies in brown and
yellow. (b) A digraph representation of the same circuit.

paths along which the nanomagnets transmit data, and a design rule set can synthesize geometry

along those paths. Then we can reduce pNML wire crossings by reducing edge crossings in a

planar graph embedding.

Because we have related the circuit’s geometry to the graph embedding’s edges, we incur

two variations on the standard crossing reduction problem. The first is a relaxation on the

problem: edges with a common origin can cross or even overlap. This is because they correspond

to the same nanomagnet body, and a nanomagnet cannot intersect with itself. Then our algorithm

must either avoid embeddings which have such crossings, or it must not count them towards the

total number of crossings.

The other variation is an unusual restriction that is our motivation for exploring

non-standard approaches to wire crossing reduction. Inspecting existing pNML designs reveals

that ANCs are almost completely surrounded by their inputs, regardless of the number of inputs.

There is only one direction the ANC’s body can extend in before branching out to connect to its

outputs. This is because the input magnets must occupy a large area near the ANC to produce a

26

(a) (b)

Figure 10. Allowed and Disallowed Nanomagnet Geometries. (a) A permitted structure and its
associated embedding. (b) A structure that is disallowed because the outbound edges
are not adjacent to one another in the vertex orbit.

strong enough signal to influence it. Altering this restriction to permit bidirectional domain wall

propagation is conceivable, but this would require making the ANC more sensitive and thus less

robust. It would also be difficult to reliably make all inputs have the same signal strength as

inputs might be partitioned into clusters of different sizes. The result is that edges with a

common origin in a permitted graph embedding must all occupy a contiguous subsequence of

their origin’s orbit, as illustrated in Figure 10.

III.2 Verilog Parser and Netlist

The lowest-level circuit representation for the presented program is the Verilog file. This

encodes a description of the logical behavior of the circuit. For now we limit these files to very

basic syntax that includes wires, buffers, inverters, and n-input AND, NAND, OR, NOR, XOR,

and XNOR gates. This is enough to process the combinational ISCAS Verilog benchmarks [32].

To load Verilog files, we first parse them with an external C++ program. This program

uses Ben Marshall’s Verilog parser [33] to construct the netlist specified by the Verilog file. The

parsing program works by identifying module Wires and then Gates. Wires can either be input

27

(a) (b) (c)

Figure 11. Verilog Sample Files. (a) A sample Verilog file specifying a series of non-trivial
gates. (b) The Verilog Netlist derived from the sample file. Integer IDs for wires and
gates are omitted for legibility. (c) The .vgraph file for ISCAS benchmark c17.

ports, output ports, or internal wires; and the parser identifies Wire types. Gates can be any of the

eight types listed above and can have multiple input Wires and one output Wire. The parser also

retrieves the names for all Wires and Gates and records which Wires are connected to a given

Gate. After retrieving this labelling and connectivity information, it assigns a unique integer ID

to each Wire and to each Gate. It then writes the netlist to a file using our .vgraph format

illustrated in Figure 11. It consists of two lists, one specifying the set of Wires and the other

specifying the set of Gates. Each wire is encoded as a space-separated triple consisting of its ID,

name, and an integer denoting its type. A gate is similarly encoded by its ID, name, its list of

input wires as a comma-separated list of IDs, its output wire ID, and an integer denoting its type.

This format is designed to be trivial to parse in any language using elementary file iteration and

string operations.

28

These .vgraph files encode Verilog Netlists and are the proper entry point for our

algorithms. To load one of these, we iterate over its lines, split each into its component tokens,

construct a Wire or Gate from these tokens, and add each constructed instance to either the list of

Wires or the list of Gates. These two lists comprise a Verilog Netlist and contain all the

information necessary to analyze and characterize the circuit.

III.3 Magnet Layout

The Magnet Layout class sits on top of the Verilog Netlist. It is specifically designed to

represent the connectivity information of a pNML circuit. This includes the list of magnets, the

magnets each outputs to, the states each magnet can polarize in, and whether two coupled

magnets align ferromagnetically or antiferromagnetically. This information is independent of the

design rule set and is sufficient to characterize the logic and timing of the circuit.

This data structure is organized similarly to the Verilog Netlist. Constructing it requires a

list of Magnets and an adjacency list specifying their connectivity. Each magnet has a unique

integer ID, a state of 1 or -1, to represent UP or DOWN polarization, and a set of permitted states

{-1}, {1}, or {-1, 1} to denote whether its state can change or not. Magnets with only one

possible state are constant-state ancillary inputs to the circuit. The adjacency list for the magnets’

connectivity consists of magnet-ID pairs assigned to integer values. Positive values denote

ferromagnetic coupling, and negative values denote antiferromagnetic coupling. The magnitude

of the value corresponds to the weight of the input magnet's signal in the threshold gate function.

Using this information, we can identify circuit features. Circuit inputs are magnets which

have no incoming edges in the adjacency list. Variable circuit inputs are circuit inputs with

29

permitted states {-1, 1}, and ancillary circuit inputs have the permitted state {-1} or {1}. Circuit

outputs are the inverse and are magnets which have no outgoing edges in the magnet layout.

Wires are paths in the graph specified by the adjacency list, and inverteres are edges with

negative weights. Threshold gates are magnets which have multiple inputs, and a threshold gate

might also be a circuit output.

To create a Magnet Layout from a Verilog Netlist, we have to use a synthesis algorithm.

This is the point where a pNML EDA workflow could apply logic minimization. We use a very

simple one that naively maps Verilog logic gates to majority voter logic and removes duplicate

signals. It uses uses a standard hierarchical approach where high-level structures described by the

Verilog Netlist are reduced to low-level pNML ensembles and connected to each other. At the

lowest level is the Magnet. We define one Magnet for each Wire defined by the Verilog Netlist,

and a Wire and its corresponding Magnet share the same ID. This lets us easily compare a

Verilog Netlist and its corresponding Magnet Layout. Alongside this is the buildSimpleWire()

function, which connects two given Magnets with a weight of either 1 or -1. All logical

operations can be decomposed into a series of Magnet instantiations and connections.

To create a pNML minority gate, we use the buildMinorityGate() function. This accepts

three input Magnets and one output magnet. All three inputs are connected to the output with

edge weight -1 to denote inverting connections. We also define the buildHalfAdder() function

which creates a half-adder based on the design presented in [18]. This function accepts three

input Magnets and an output Magnet as well, but it has to instantiate five additional Magnets for

internal connections. These are all given unique IDs, and the nine magnets are connected using

minority gates and simple wires.

30

Figure 12. Magnet Layout for a Full-Adder. The full-adder presented in [18] and shown in
Figure 9, represented as a Magnet Layout. Edge weights are not shown, but all of
them are -1. The circuit inputs are assumed to have ANCs.

The buildSimpleWire(), buildMinorityGate(), and buildHalfAdder() functions for the

basis for synthesizing the Verilog Netlist’s logic. Buffers and inverters are translated into calls to

buildSimpleWire(). 2-input NAND and NOR gates are minority gates with ancillary inputs, and

2-input XOR and XNOR gates are half-adders with ancillary inputs. These ancillary inputs do

not correspond to wires explicitly defined by the Verilog Netlist, so we instantiate them as

needed with unique IDs. 2-input AND and OR gates can be created by adding a new magnet

after a NAND or NOR gate, connected with weight -1.

To construct n-input gates, we use the standard pairing of 2-input gates to create a

cascade of O(log n) layers. This is also where we apply some basic logic reduction by inspecting

the gate’s inputs for duplicate wire IDs. Removal of these duplicates is necessary to ensure that

we do not assign multiple conflicting weights to the same edge in the Magnet Layout, and it has

the added benefit of reducing the size of the gate. We define specific functions for n-input AND,

NAND, OR, NOR, XOR, and XNOR operations.

31

To convert a Verilog Netlist to a Magnet Layout, we thus begin by instantiating a Magnet

for each Wire. We then iterate over the Gates in the netlist. Each Gate stores its type, a list of

input Wires, and an output Wire. Buffers and inverters have one input and are mapped to the

buildIDENT() and buildNOT() functions respectively. These are simply wrappers around the

buildSimpleWire() function. The remaining gate types are n-input gates where n is the length of

the list of unique inputs for the gate. Each operation is mapped to the associated n-input builder

function where duplicate signals are removed, and additional Magnets are created as needed. The

resulting list of Magnets and adjacency list is then used to instantiate a Magnet Layout.

III.4 Graph Encoded Map

Rotation systems are compact, but they are somewhat removed from graph embeddings

and make it difficult to structurally modify the embedding. They also obfuscate “unnecessary”

crossings like the one in Figure 7c. The Graph Encoded Map (GEM) is one solution to this. The

GEM contains the same information as a rotation system, but it explicitly stores structural

features by simultaneously representing the rotation system’s permutations θ, σ, and σθ.

We begin constructing a GEM from a spatial embedding by splitting each edge into two

darts. We then equip each dart with two nodes drawn near the origin, one on the left and the

other on the right. Thus each edge is equipped with four nodes where two are positioned at each

vertex and two on either side of the edge. Each of these nodes is equipped with three colored

edges. The first edge, colored red in Figure 13, crosses the parent edge to connect to the other

node associated with the same parent dart. The second, colored blue, connects to the node that is

in the same face as the parent edge but is associated with the other dart. The third edge, green,

32

connects to the node associated with the same vertex and the same face. If that vertex only has

the given edge in its orbit, then the green and red edges will connect to the same node. Otherwise

the green edge connects to a node associated with an edge adjacent in the vertex orbit. To

traverse a vertex orbit, we begin at a node in the orbit and traverse the cycle that alternates

between green and red. Traversing the cycle that alternates between green and blue will instead

traverse a face orbit. Thus we can reconstruct a rotation system from a GEM by traversing the

vertex orbits and extracting the sequences of darts encountered.

To implement a GEM with object-oriented programming, we define a high-level object

called an Encoding Edge. This encodes a directed edge in a digraph and stores references to its

origin and destination vertices. It also stores pointers to its two constituent Darts, as well as the

four nodes that represent it in the GEM. We call these Encoding Nodes. These nodes are referred

to as the left-origin node, right-origin node, left-destination node, and right-destination node

according to their positions in the GEM relative to the Encoding Edge’s direction. A Dart also

stores references to its origin and destination, except one Dart in an Encoding Edge has these

reversed due to its pointing in the opposite direction. The Dart pointing in the same direction as

the Encoding Edge is called the origin-dart, and the other is called the destination-dart. The Dart

also has a reference back to its parent Encoding Edge, so we can retrieve its sibling Dart or the

Dart pointing in the same direction as its parent Encoding Edge. Darts also store references to the

Encoding Nodes in the same manner as an Encoding Edge, except that the nodes are referenced

with respect to the Dart’s direction rather than the parent Encoding Edge’s direction.

While Encoding Edges and Darts record the GEM’s relation to the original graph,

Encoding Nodes strictly record the ordering of their associated edges. They more directly relate

33

(a) (b)

Figure 13. Basic Graph Encoded Maps. (a) A GEM representing a single edge. (b) A GEM
representing a square graph. When constructing the square from individual edges,
we only modify the green edges.

to the rotation system. Each Encoding Node has a reference back to its parent Encoding Edge, a

reference to the vertex it is adjacent to, and a Boolean flag denoting which side of its parent edge

that it is on. To implement the colored edges, we give each Encoding Node three named

references to other Encoding Nodes. These are the vertex-orbit-node, face-orbit-node, and

cross-node corresponding to green, blue, and red edges respectively. These references are

initialized as shown in Figure 13 but can be modified later to construct arbitrary embeddings.

34

CHAPTER IV

GENETIC ALGORITHM IMPLEMENTATION

IV.1. Genome Representation and Processing

By definition, our genetic algorithm requires a genome to represent different graph

embeddings. This genome is typically a set of series of numbers that encode various properties of

a solution instance. In the case of graph embeddings, we have a candidate for this already:

rotation systems.

However, rotation systems are not immediately conducive to identifying edge crossings,

and it would be prohibitively difficult to enforce the rules specific to pNML during the

recombination and mutation stages. Our solution to this, based on the approach from [34], is to

use a genome that encodes a permutation of the edges in the graph. We pair this with a

purpose-built algorithm for constructing a GEM from a permutation of edges. Together these let

us identify crossings while limiting ourselves to valid embeddings without having to use a

verification or filtering step.

To create a genome, we begin with the observation that all Magnets in a Magnet Layout

have a unique ID, and they all have a set of outbound edges. Then the set of edges with a shared

origin Magnet can be permuted. The set of Magnets itself can also be permuted. Then for a

Magnet Layout with magnets, we can create a genome consisting of chromosomes. M || M || + 1

The first chromosome is a permutation of the magnet IDs. For the remaining chromosomes, we

first assign unique IDs for every edge and use the same ID mapping for all genomes associated

35

with this Magnet Layout. For Magnet m, we then define chromosome m + 1 as a permutation of

the edges with Magnet m as their origin. Thus the first chromosome can be viewed as a

permutation of the remaining chromosomes. We can construct a permutation of all the edges M ||

by appending the edge-chromosomes to each other in the order specified by the

magnet-chromosome. This always produces a permutation where edges with the same origin are

adjacent in the permutation.

To construct a GEM from an edge permutation, we observe that manipulating the vertex

orbits or face orbits never changes blue or red edges. Only green edges are affected. Thus we can

add edges to a GEM by inserting them into the cyclically-linked lists described by the red-green

cycles, and this only requires modifying the green edges.

Construction of a GEM begins with creating an unlinked Encoding Edge for each edge in

the permutation. We also create two lookup tables. The first records the leading-dart for each

vertex orbit. If it exists, this is the edge that a new edge will be placed clockwise to. The other

table maps each vertex to its set of connected vertices. This lets us efficiently identify vertices

that belong to the same connected component.

We iterate over the Encoded Edges and run into one of five cases on each iteration, the

first three being rather trivial. In Case 1, neither the origin nor the destination for the new edge

have been added yet. Then none of the Encoding Nodes need modification. We record this

edge’s darts as the leading-dart for both vertices. We also record both vertices as belonging to

the same 2-vertex connected component.

In Case 2, the origin has been added but not the destination. Then we retrieve the origin’s

leading-dart and add the new edge’s origin-dart clockwise to it. We do this by modifying the

36

(a) (b) (c)

Figure 14. Adding to an Origin’s Orbit. (a) The initial orbit with the leading dart in red. (b) The
orbit after adding the new dart to the clockwise to the leading dart. (c) Marking the
new dart as the leading dart for its origin.

green edges for the two darts. We then mark the new edge’s darts as the leading-darts for the

origin and destination, and we add the destination to the origin’s connected component. In Case

3, we instead have already added the destination; and the origin is new. Then we follow the same

procedure as in Case 2, but with the roles of the origin and destination reversed.

At this point, we pause to observe the kinds of orbits and graphs representable using only

these three cases. Specifically, they are sufficient to embed trees. Inspecting these trees, we also

find that the clockwise ordering of vertex orbits always matches the corresponding subsequences

of edges in the original permutation. Because edges sharing the same origin are adjacent in the

permutation, they are thus adjacent in the vertex orbits. This is one of the primary restrictions

imposed by pNML, and we are guaranteeing its satisfaction without additional work. The

remaining two cases will let us handle any graph while continuing to satisfy this requirement.

Case 4 occurs when both the origin and destination have been embedded, but they are

disconnected. Then we have to pick a face in each component and merge them into one. We

choose the face of the right of the leading-dart of each vertex, called the leading face. We then

insert the edge to the right of both leading darts, modifying eight vertex-orbit-nodes to change

37

(a) (b) (c)

Figure 15. Adding to a Destination’s Orbit. (a) The initial orbit with the leading dart in red. In
this example, we have already embedded all of the destination’s outbound edges. (b)
The orbit after adding the new dart to the clockwise to the leading dart. (c) Marking
the new dart as the leading dart for its destination.

four green edges in the GEM. We mark the new edge’s darts as the leading darts for both

vertices and combine the sets denoting the two connected components.

Case 5 occurs when the origin and destination are already connected. Where Case 4 can

be thought of as the case that induces crossings, Case 5 is where we identify and record them.

Thus we have subcases 5a and 5b, corresponding to whether we can or cannot add the edge in

the plane. To check this, we first get the origin’s leading face as we did in Case 4, and check if

the destination is in that face. If it is, then we need to inspect its vertex orbit to make sure the

new edge will not split its outbound edges. If both of these are satisfied, then we have Case 5a

and can add the edge. Otherwise we have Case 5b.

In Case 5a, we add the edge as usual, updating four green GEM edges by changing eight

vertex-orbit-node pointers. The vertices are already connected, so we do not need to update the

connected component sets. We record the new dart as the leading dart of the origin, but we do

not change the leading dart of the destination. This is to make debugging and verification

simpler. In Case 5b, we record the edge as a failed edge and skip adding it.

38

(a) (b)

Figure 16. Joining Disconnected GEMs. (a) The origin and destination are in separate
components. We will add the new edge to the clockwise to both leading darts. (b) In
this example, we merged the inner face of the left component with the outer face of
the right component.

We find that Cases 4 and 5 still maintain our requirements. In Case 4, we add the new

edge clockwise to the leading-dart of both vertices. Thus, when isolated from Case 5, Cases 1

through 4 cannot break the ordering of outbound edges or make them nonconsecutive. For Case

5a, we add the edge clockwise to the origin’s leading dart; so its outbound edge order must

match the edge permutation. We also only reach Case 5a if the new edge will not split the

destination’s outbound edges. The destination vertex’s outbound edges are either already in order

or have not been added yet, so adding the new edge does not invalidate its orbit.

The end result of this algorithm is a GEM embedded on a plane with no crossings and a

list of failed edges. The GEM’s vertex orbits are unambiguously determined by the genome, and

all embedded outbound edges are both in the same order as in the genome and are all adjacent in

the embedding. We can use the number of failed edges as a cost function for the genome.

39

(a) (b)

Figure 17. Identifying Disallowed Edge Embeddings. (a) The new edge is allowed because
routing the edge through the leading face does not split the destination’s outbound
edges, shown in purple. (b) The new edge is disallowed and will be omitted. This is
because the destination’s outbound edges would be separated.

IV.2. Core Genetic Algorithm

Given our choice of genome and cost function, we use a standard genetic

cost-minimization algorithm Each iteration begins with a population of genomes, with the P ||

first generation being randomly generated. We evaluate the cost of each genome and sort them in

ascending order. To choose candidates for recombination, we filter the population using

tournament selection. Given a selection pressure p, provided as a hyperparameter, we choose

genomes randomly with replacement. At each selection, a given genome will be chosen.5|P |0

with probability

 (1)p − p i (4)

where i is its index in the sorted list. The genome with the fewest failed edges has index ; i = 0

and the genome with the most has index . From this selected population, we choose P |i = | − 1

40

first-parents and second-parents independently and uniformly randomly. Each of theseP || P ||

 pairs will be recombined to create one new genome.P ||

We use two recombination functions, chosen with probability 0.5 for each chromosome

in each pair of parents. These functions are order-crossover (OX) and partially-matched

crossover (PMX). In both cases, we randomly choose a slice of the first parent to preserve. As

stated in [34] and as indicated by our own algorithm for constructing an embedding from a

genome, the later edges in the permutation are more influential on crossings than the earlier ones.

Thus we adapt their approach for choosing the left and right indices of this preserved slice. For

the left index, we use a normal distribution centered at with standard deviation .5|C |μ = 0

where is the length of the chromosome. For the right index, we insteadax(1, 0.1|C |)σ = m C ||

use . We truncate each distribution to , normalize its curve to have area 1, and C |μ = | 0, |C |)[

partition the domain into bins to ensure the output is a valid index.C ||

For the OX algorithm illustrated in Figure 18, we begin with the chosen slice and copy

those elements from the first parent. We then copy the leftover elements from the second parent,

beginning with the first unadded element after the slice and placing it in the first unfilled space in

the new chromosome. We traverse the second parent chromosome to the right, wrapping around

to the first element. We add each new element encountered to the next open space in the new

chromosome, wrapping around to the first slot. We stop when we have added all elements.

For the PMX algorithm illustrated in Figure 19, we also copy the first parent’s selected

slice. We then focus on those unassigned elements in the second parent that occupy those same

indices. To resolve the collisions, we use a recursive function to assign the collided elements. To

do this, we consider element e with index i in the second parent. The first parent has element f at

41

Parent 1:

1 2 3 4 5 6 7 8 9

Parent 2:

9 3 7 8 2 6 5 1 4

(a)

 4 5 6 7

(b)

 4 5 6 7 1

(c)

 4 5 6 7 1 9

(d)

3 8 2 4 5 6 7 1 9

Figure 18. Order Crossover Example. (a) We begin by copying the selected slice of Parent 1.
(b) We insert elements into the child chromosome, beginning with the first new
element in Parent 2 after the slice. (c) We skip elements that were included in the
slice. (d) We wrap around to the beginning of the child chromosome and fill the
remaining locations.

index i, and f is at index j in the second parent. If j is an index in the preserved slice, then we

repeat this lookup with element g at index j in the first parent. When we reach an unassigned

index, we copy e to that location in the new chromosome. All remaining elements are then

copied directly from the second parent without changing their locations.

After recombining all chromosomes in all genome pairs, we apply mutations to perturb

the population. For every chromosome in the newly generated population, we choose one of four

mutation functions with probability m or apply no mutation with probability 1 - m, where m is a

hyperparameter for the probability of a mutation occurring. The four possible mutation types are

an Invert, Scramble, Swap, or Insert mutation; and all four are equally probable. All four require

choosing a left and right index, and we choose these according to the same distributions used by

the OX and PMX algorithms. The Invert and Scramble mutations operate on the slice specified

by those indices. As the names imply, the Invert mutation reverses the order of the slice; and the

42

Parent 1:

1 2 3 4 5 6 7 8 9

Parent 2:

9 3 7 8 2 6 5 1 4

(a)

 4 5 6 7

(b)

 4 5 6 7 8

(c)

 2 4 5 6 7 8

(d)

9 3 2 4 5 6 7 1 8

Figure 19. Partially-Matched Crossover Example. (a) We begin by copying the selected slice of
Parent 1. (b) 8 is the first unmapped element in Parent 2 that is in the slice. In Parent
1, 4 occupies that location. In Parent 2, 4 is not in the slice; so we place 8 in that
location. (c) We repeat this with 2, but Parent 2’s copy of 5 is also in the slice. So we
check 7’s location and use it. (d) We copy the remaining elements of Parent 2 to the
same locations.

Scramble mutation randomly shuffles it. The Swap mutation swaps the positions of the two

specified elements. In our implementation, the Insert mutation takes the right element and inserts

it to the left of the left element, shifting elements one space to the right to fill the gap.

Because we generally do not know the minimum possible number of failed edges or the

number of generations necessary for the population to converge, we use an indirect method of

deciding when to terminate the genetic algorithm. First, we require a minimum number of

iterations

⎦ if |E| 00, 30 otherwise Imin = ⎣√|E| ≥ 9 (5)

where is the number of edges in the circuit’s graph. After iterations, we use a smoothed E|| Imin

rate of change in the sequence of best solutions so far. This smoothing is done using an

exponential average with the smoothing parameter defined as Equation 6.

43

s = √|E|
 −1

(6)

The equation that we smooth is

(i) (i) (i)b = − Δi
ΔB(i) = B − 1 − B (7)

where B(i) is the number of failed edges in the best solution up to generation i. Because we are

minimizing B(i), we negate to ensure that b(i) is positive when the algorithm finds better B(i)Δ

solutions. This makes the termination logic and user interface more intuitive. Equation 8 is the

final recursive equation that we monitor after iterations.Imin

(i) b(i) 1) T (i) for i ; T (0)T = s + (− s − 1 > 0 = 0 (8)

The algorithm terminates when T(i) falls below a user-defined threshold and after at least

iterations. Figure 31 in Appendix A plots T(i) for an experiment using ISCAS circuit c6288,Imin

alongside the algorithm’s performance for the test case.

IV.3. Spark Implementation

One of the biggest advantages of genetic algorithms is that they are extremely

parallelizable. Each genome fitness or cost is an independent calculation, as is the recombination

of every pair of selected chromosomes, and every chromosome mutation. We opted to take

advantage of this by implementing our algorithm using Spark. To fit the table-like model of its

Datasets, we slightly reorganized the standard genetic algorithm and fragmented genomes to

improve parallelization. Each iteration works with a pipeline comprised of eight primary

Datasets: the magnets, edges, population, scored population, selected population, parent pairings,

new population, and new scored population.

44

The magnets and edges Datasets are foundational lookup tables to ensure we always have

a well-defined link back to the original Magnet Layout. The magnets Dataset records the list of

magnet IDs alongside how many outbound edges each has. The edges Dataset records an

enumeration of the origin-destination magnet ID pairs in the Magnet Layout’s adjacency list.

Both of these are invariant throughout the evolutionary algorithm execution and are used to

create the initial population.

To create the initial population Dataset, we first create a population RDD consisting of

one genome. To maximize parallelization, each row in the RDD will be a single chromosome.

Thus the key that identifies a chromosome is a genome ID paired with a chromosome ID. We

compute the first chromosome by adding the chromosome ID column to the magnets Dataset,

with all chromosome IDs being 0. Similarly, we add a chromosome ID column to the edges

Dataset, except the ID given to an edge is its origin magnet ID, plus one. We select just the

chromosome and manget/edge ID columns from both tables and take the union of the resulting

two-column RDDs. This produces a single RDD of chromosome-element ID pairs. To produce

the first genome, we group all of these pairs by chromosome ID, turn each group into a

chromosome ID paired with a list of element IDs, and add a constant-0 genome ID column. To

turn this into a complete population of size , we map each chromosome to P || P ||

randomly-shuffled copies of itself, enumerate the resulting RDDs, and take the union of them all.

The result is an RDD with uniquely-keyed permutations of every chromosome, and we P ||

convert this into a Dataset. This is shown in Figure 20.

Before beginning the evolutionary process, we use our cost function to score the initial

population. This modification to the standard genetic algorithm makes it easier to monitor the

45

Figure 20. Creation and Scoring of a Spark Genome Population. We create the initial

population by transforming the Magnets and Edges Datasets, joining them into a
single genome, and reshuffling that genome. We then assign scores to each genome
by processing the chromosomes.

algorithm’s performance without putting monitoring functionality directly in the algorithm itself.

To use our cost function, we simply group the population’s chromosomes by their genome IDs.

We then aggregate the groups into mappings between chromosome IDs and chromosomes. This

representation is isomorphic to our discussed 2D-array representation of a genome and can be

converted into a permutation of edge IDs using the associated algorithm. We then use the edges

Dataset to map edge IDs to pairs of magnet IDs and apply our cost function to the permutation of

origin-destination paris. This results in independent calculations distributed automatically P ||

across the Spark cluster. The final result is a Dataset where each element is a genome ID paired

with the number of failed edges.

Each iteration of the genetic algorithm begins with the magnets, edges, population, and

scored population Datasets. The algorithm does not make use of the magnets Dataset, but we

keep it for verification purposes as it contributes negligibly to the total memory costs of the

algorithm. To perform a single iteration, we perform tournament selection on the population,

randomly select parent pairings, recombine parents using crossover functions, mutate the

resulting genomes to produce the next population, and evaluate the costs for the new population.

46

(a)

(b)

Figure 21. Selection of Parent Genomes. (a) We use tournament selection to sample from the
current population. We then sample from that selected population to choose two sets
of parent genome IDs. (b) We use the parent genome IDs to filter the population’s
chromosomes to obtain the parent chromosomes.

To perform tournament selection we sort the scored population Dataset by the cost

column convert to an RDD, and enumerate the rows according to their order with the best

genome having index 0 and the worst having index . We then map this index i to the P || − 1

tournament selection probability where p is the given selection pressure. From this (1)p − p i

RDD, we select genomes using distributed weighted random sampling with replacement..5|P |0

The result is an RDD comprised of genome IDs, and Figure 21a illustrates the pipeline..5|P |0

We need two such RDDs of length to create our parent pairings, and we can do this P ||

by using distributed uniform sampling with replacement on the selected population. We

47

Figure 22. Recombination and Mutation of Child Genomes. We join the parent chromosome
Datasets and use recombination to produce the Dataset of child chromosomes. We
then mutate these chromosomes to obtain the next population and score it as in
Figure 20.

enumerate both sets of samples and join them back to the population Dataset to retrieve the

selected chromosomes, as shown in Figure 21b. This gives us two Datasets where each row is a

selection index, a genome ID, a chromosome ID, and a chromosome. We can then join these

together by joining on the selection index and chromosome ID columns.

Because recombination and mutation are per-chromosome operations, our chromosome

pairings are in a Dataset that lets Spark maximally parallelize generation of the next population.

To do this, we simply transform each pairing using a function that randomly picks and applies a

crossover function to generate a child genome. We then transform each child genome using a

function that randomly picks and applies a mutation function. Thus each pair of parents from the

current population is mapped to mutated child genome in the next population, and each child can

use the parent-pair’s selection index as its genome ID. We then score this new population using

the same algorithm used to score the initial population, and we have completed a single iteration

of the distributed genetic algorithm. We can return the new population, new scored population,

magnets, and edges Datasets for analysis and use in the next iteration.

48

IV.4. Genetic Algorithm Results

For our genetic algorithm, we have to set four hyperparameters. These are the stop rate,

population size, selection pressure, and mutation probability. We set these to the values shown in

Table 2. Table 3 shows the final results, and Figures 23-32 in Appendix A show per-generation

results for each experiment where the first plot shows scoring statistics for each generation, and

the second shows the value of the termination function at each generation. All circuits are

combinational circuits taken from the ISCAS Verilog benchmarks. We ran these on an Amazon

EC2 c5d.4xlarge instance with 12 cores and 25 GiB of RAM allocated to Spark.

Table 2: Hyperparameters Set for Genetic Algorithm

Parameter Name Symbol Value

Stop Rate r 0.1

Population Size P | | 100

Selection Pressure p 0.2

Mutation Probability m 0.3

Table 3: Final Results for Genetic Algorithm

Test Name Num Edges Num
Iterations

Exec Time Initial Num
Crossings

Final Num
Crossings

Crossing
Reduction

c17 24 31 00:01:12 0 0 0%

c432 892 76 00:06:28 140 119 15.00%

c880 1619 88 00:10:20 207 184 11.11%

c499 1754 96 00:10:32 302 271 10.26%

c1355 2202 119 00:16:13 270 235 12.96%

c1908 2970 131 00:22:24 383 348 9.14%

c2670 4455 136 00:33:11 478 444 7.11%

c3540 6371 161 00:56:04 946 893 5.60%

c6288 9824 292 02:24:43 1390 1298 6.62%

c5315 10142 192 01:48:50 1442 1384 4.02%

49

CHAPTER V

REINFORCEMENT LEARNING IMPLEMENTATION

V.1. State and Action Representation

For our reinforcement learning algorithm, we keep the same combinatorial approach as

we used for the genetic algorithm. Recall that reinforcement learning algorithms model their

problems as Markov Decision Processes (MDPs), paired with a learning actor. Both of these

have to process system states and actions applied to those states. Thus we begin by designing the

representation of states and actions.

We first consider the kinds of operations we want to permit on a graph embedding. Given

our understanding of GEMs, we choose to permit perturbation of either a vertex orbit or the

ordering of those orbits. To reuse terminology from our genetic algorithm, we will let the actor

modify one of the chromosomes by moving an element to the right by one position. If the agent

chooses the rightmost element, that element will be moved to the leftmost position. Thus, if we

reuse the same genome representation of a permutation of edges, an action is a pair of indices

denoting the chromosome to modify and the element to move. The result is a deterministic MDP

that accepts a 2D array and index pair and outputs a 2D array with one row modified as we have

described.

We also research the cost function from our genetic algorithm because we use the same

representation for graph embeddings in both approaches. To calculate the reward for an action,

50

we simply pass the state to our construction algorithm, count the number of failed edges, and

return the negative of the square of that count. Returning a negative reward on each step will

encourage the actor to minimize crossings quickly, and using the square of the number of failed

edges more strongly emphasizes the cost of bad solutions.

V.2. State and Action Encoding

Because we plan to use a neural network to choose actions based on system states, we

have to encode system states and actions in a way that is suitable for a neural network. This

means our input signals should be in the range [-1, 1], and our actions have to be indexed. We

also need these to be as compact as possible, so the network is smaller.

We do this by recognizing that not every chromosome can be modified. Many of them

are empty or only have one element. In these cases, we do not need to implement any actions.

Those chromosomes also are invariant across states, so there is nothing for the neural network to

learn from them. We can omit these chromosomes from the vectorized state. Thus, given the list

of chromosomes, we will first filter out those that have fewer than two elements.

To ensure our states use signals in the range [-1, 1], we use a one-hot encoding. To do

this, we treat each element’s location as a bin and tell that bin which element it contains using a

one-hot encoding of the element. A naive encoding might use one-hot vector of length equal to

the number of elements in the filtered genome, but this would waste a huge amount of space. A

given bin will only ever hold one of the elements of its associated chromosome, so the vectors it

receives should be the same length as that chromosome. To pick the exact encoding for an

element, we sort its chromosome and assign it to its index in the resulting sorted list. This index

51

will be the index of the 1 in its one-hot vector. To create the final state vector, we first vectorize

the chromosomes by mapping each element to its one-hot vector and concatenating those vectors

in the order specified by the chromosome. We then concatenate the vectorized chromosomes in

order to create a single binary vector.

To encode our actions, we recall that each action moves the element at a location to the

right. This corresponds to the index of one of the bins. This indexing can be defined by

concatenating the non-vectorized chromosomes to create a single vector of decimals. This

implies a bijection between chromosome-element index pairs and vector indices.

Decoding these indices to get a chromosome-element index pair, an unencoded action, is

somewhat tricky. If every chromosome was the same length l, we could just use

where % denotes a modulus. However our chromosomes are of varying(i) (⌊i / l⌋, i % l) f =

lengths. Let C’ be the set of chromosomes with two or more elements and let them be ordered so

that ck is the kth chromosome to be encoded. If chromosome ck has length l k , then we use

Equation 8 to compute the base offset for a chromosome.

(c) ok = o k = ∑
k−1

i=0
lk (8)

Then we create lookup tables and where is the the index of the (k) oM co = k (i) kM oc = i ki

chromosome containing the ith bin, which we can use to identify chromosome . Then given cki

an action encoded as the scalar value , we decode it with Equation 9.As

M (A), A (A))A = (oc s s − M oc s (9)

To encode action as a scalar, we use Equation 10.k, b)A = (

(k)As = M co + b (10)

52

V.3. Neural Network Topology

These encoding schemes determine the dimensions of our neural networks input and

output layers. The input vector has length where C’ is the set of chromosomes with two ∑

c ∈ C ′
lc

2

or more elements, and lc is the length of chromosome c. Thus we need that many nodes in the

input layer. For the output layer, we note that we will implement an action-value function; so we

need a node for each allowed action. This gives us output nodes.∑

c ∈ C ′
lc

The remainder of the topology is largely up to the engineer. The network will be learning

a regression, so we opted to use Identity activations on the output layer. All other layers use the

Leaky ReLU activation function with a slope of 0.01 for negative input signals. We only used

one deep layers of length which is the same size as the output layer. All layers were ∑

c ∈ C ′
lc

fully connected to their neighboring layers. We initialized the weights using Xavier initialization

and used the Nesterov’s momentum to update them. The loss function applied to the output

signal was Mean Squared Error. We implemented all of this using the DeepLearning4J library

[41].

V.4. Training and Execution

We used Q-Learning with experience replay as our core learning procedure. Recall that at

every step, we have the current state S. Given S and our current value function Q, our policy π(S)

returns an action A with expected scalar reward Q(S, As). We implement Q using the neural

network from the previous section, and we use an epsilon-greedy policy for choosing A. Given

53

the vector output by Q(S), π returns a random action with probability ε. Otherwise it returns the

action with the highest predicted total return. This chosen action As is the scalar representation of

the action and must be decoded to get the usable representation A. We send (S, A) to the

environment to receive the reward R and the next state S’. The result is a tuple (S, A, R, S’) which

we call a Replay. We save this tuple to a buffer for use in offline training.

For each episode, we run steps where is the number of edges in the graph. At |E|2 E||

the end of each episode, we sample 20% of the replays from the buffer without replacement and

train on them. Given the replay (S, A, R, S’), we want to update our predicted value Q(S, As). To

do this, we first compute the next action A’ as A’ = π(S’). Our new estimate for R is then given

by

(S, A) Q(S, A) (R (S , A) (S, A))Q+ s = s + α + Q ′ s′ − Q s (11)

where α is the learning rate. This is the same Q-Learning update function as Equation 1, except

we use a discount of γ = 1 here. Then our training vector’s elements are for (S, A) Q+ s
*

and otherwise. We update the neural net using this training vector and theAs
* = As (S, A)Q s

Nesterov’s momentum update algorithm with the Mean Squared Error.

We use the same type of termination algorithm as we did for the genetic algorithm. That

is, we track the total reward at the end of each episode and are interested in episodes that yield a

better global maximum. We stop running episodes when the exponential average of the

current-best value drops below a given threshold, with a minimum of thirty episodes.

54

V.5. Reinforcement Learning Results

Our reinforcement learning algorithm has 3 hyperparameters: The stop rate, the learning

rate, and the policy’s exploration probability. We set these to the values shown in Table 4. We

only ran tests for circuit c432 as this was the smallest non-trivial test case. Its twelve-hour

execution time was sufficient to forego further testing. The other benchmark circuits would have

taken far longer to train and would have learned even more slowly. Table 5 shows the final

results. The final number of crossings is determined as the number of crossings output by the last

episode because this was the episode with the most-trained network.

Table 4: Hyperparameters Set for Reinforcement Learning Algorithm

Parameter Name Symbol Value

Stop Rate r 0.1

Learning Rate α 0.2

Exploration Probability ε 0.2

Table 5: Final Results for Reinforcement Learning Algorithm

Test Name Num Edges Num
Iterations

Exec Time Initial Num
Crossings

Final Num
Crossings

Crossing
Reduction

c432 892 30 12:12:07 132 694 -425.76%

55

CHAPTER VI

RANDOM SEARCH IMPLEMENTATION

VI.1. Adaptation of Genetic Algorithm

A significant limitation of the ISCAS benchmarks is that we do not know their minimum

number of crossings possible under pNML’s constraints because the problem is NP-Complete;

and pNML’s variation of it is effectively unexplored. In the absence of a target lower-bound, we

need control cases that our genetic and reinforcement learning algorithms can try to improve

upon. The natural candidate for this, given that the problem is NP-Complete, is the random

search. If our algorithms perform similarly to a random search, then we can conclude that they

were unsuccessful without knowing the optimal solutions. We implemented the random search

by slightly modifying the genetic algorithm. Instead of iteratively applying the selection,

recombination, and mutation algorithms, we generate a new “initial” population from scratch

according to a uniform distribution. This makes the algorithm useful as a blind-search baseline as

it only incorporates the knowledge necessary to produce valid embeddings.

We used two different termination conditions. The first was the exact same condition as

the previous two algorithms, based on the rate of improvement. The second set a maximum

number of iterations. We use the latter to test the scenario where the random search generated the

same number of samples as the genetic algorithm, so we can better compare execution times.

56

VI.2. Random Search Results

Both experiments with the random search had the population size as a hyperparameter.

The experiment where the termination condition was a minimum rate of improvement had that

minimum rate as a hyperparameter as well. The experiment that instead used a maximum

number of iterations had that number as a hyperparameter instead.

Both experiments used settings that matched the genetic algorithm’s experiment detailed

in Tables 2 and 3. The first experiment used a population size of 100 and a stop-rate of 0.1. The

second experiment also used a population size of 100. The maximum number of iterations for

each test case was set to match the number used by the corresponding test case for the genetic

algorithm, given by the Num Iterations column in Table 3. Table 6 and Figures 33-42 in

Appendix B show the final results for the ISCAS benchmarks using the minimum rate of

improvement termination condition. Table 7 and Figures 43-52 in Appendix C show the results

while using the maximum number of iterations termination condition. The figures in Appendix C

include plots of T(n) for comparison against the figures in Appendices A and B.

57

Table 6: Final Results for Random Search Algorithm with Stop Rate

Test Name Num Edges Num
Iterations

Exec Time Initial Num
Crossings

Final Num
Crossings

Crossing
Reduction

c17 24 31 00:00:41 0 0 0%

c432 892 31 00:01:31 139 137 1.44%

c880 1619 41 00:03:06 207 199 3.86%

c499 1754 55 00:03:48 304 295 2.96%

c1355 2202 47 00:04:20 273 266 2.56%

c1908 2970 66 00:07:55 383 367 4.18%

c2670 4455 67 00:12:18 481 473 1.66%

c3540 6371 80 00:22:12 946 932 1.48%

c6288 9824 100 00:40:40 1393 1377 1.15%

c5315 10142 123 01:00:07 1447 1422 1.73%

Table 7: Final Results for Random Search Algorithm with Max Iterations

Test Name Num Edges Num
Iterations

Exec Time Initial Num
Crossings

Final Num
Crossings

Crossing
Reduction

c17 24 31 00:00:42 0 0 0%

c432 892 76 00:03:18 145 135 6.90%

c880 1619 88 00:05:28 201 197 1.99%

c499 1754 96 00:05:27 300 288 4.00%

c1355 2202 119 00:08:43 273 263 3.66%

c1908 2970 131 00:12:22 377 371 1.59%

c2670 4455 136 00:18:54 478 462 3.35%

c3540 6371 161 00:38:44 936 929 0.75%

c6288 9824 292 01:32:41 1390 1374 1.15%

c5315 10142 192 01:16:43 1442 1423 1.32%

58

CHAPTER VII

CONCLUSIONS AND FUTURE WORK

VII.1. Conclusions and Analysis

Our genetic algorithm shows promise. We see that it consistently performed significantly

better than a random NP search. Even more importantly, we see the population’s average cost

fluctuating with the population’s lowest cost. The downward slopes shown early in each of the

test cases illustrated in Appendix A demonstrates that the population evolved and improved as

good substructures propagated via selection and recombination. This indicates that the problem

has a learnable substructure, despite its unusual constraints.

Based on our analysis of the simulation results, we conclude that deep reinforcement

learning is not the ideal solution for this problem. Our single test case for this algorithm required

more execution time than all of the other presented test cases combined, but the actor barely

began to explore the available actions. This was because the system state’s size was linear in

terms of the number of magnets , so the vectorized state fed into the neural network was M ||

quadratic in length. This resulted in a three-layer neural net that had weights to adjust, (|M |)O 4

making the algorithm far too intensive to be practical. We also recognize that, if the training

algorithm had worked, the resulting AI would have only been able to optimize the circuit it

trained on. This is because each circuit corresponds to a different MDP, featuring different

allowed states, different available actions, and a different distribution of rewards. Although

different circuits are different instances of the pNML wire crossing problem, reinforcement

59

learning models them in a way that makes each a distinct system to learn. Designing an AI that

can simultaneously learn multiple systems and generalize knowledge gleaned from each of them

is an open problem in machine learning.

VII.2. Future Work

Our convergence results for the genetic algorithm indicate that the problem has a

learnable substructure. We can explore this in the future by using different recombination

algorithms or a more sophisticated selection algorithm. The primary challenge here is in making

the algorithm more robust against local minima. In our tests, the population responded almost

immediately to improvements in the best genomes; and this likely limited our algorithm’s

performance.

There is still limited potential for deep reinforcement learning in solving this problem. A

state representation based on a spatial embedding could be far more compact than our

combinatorial approach without introducing much nonlinearity. This representation would likely

be a series of coordinate pairs for each vertex, and the rotation system could be recovered from

these coordinates using trigonometry. Such a representation would likely require a policy

gradient method of reinforcement learning, which is distinct from the value function class of

methods we based our approach on. Policy gradient methods are notable for their ability to

handle both continuous- and discrete-valued actions. However an AI trained with this approach

would still be unable to learn to optimize multiple different circuits without significant advances

in machine learning.

60

The pNML wire crossing problem is also only a small component of a complete EDA

workflow for pNML, and it interacts with the other place-and-route subproblems. Development

of just one design rule set for pNML would be a highly valuable contribution to this workflow as

this is a prerequisite to several optimizations, especially for minimizing circuit area and

maximizing clocking frequency. This would also permit holistic approaches that optimize

multiple characteristics simultaneously.

61

BIBLIOGRAPHY

62

[1] C. S. Lent, B. Isaksen, "Clocked molecular quantum-dot cellular automata," in IEEE
Transactions on Electron Devices, vol. 50, no. 9, pp. 1890-1896, Sept. 2003.

[2] E. Varga et al., "Non-volatile and reprogrammable MQCA-based majority gates," 2009
Device Research Conference, University Park, PA, 2009, pp. 1-2.

[3] M. T. Niemier et al., “Nanomagnet logic: progress toward system-level integration,” J.
Phys.: Condense. Matter, vol. 23, no. 23, Nov. 2011.

[4] R. Perricone, X. S. Hu, J. Nahas, M. Niemier, "Design of 3D nanomagnetic logic circuits:
A full-adder case study," 2014 Design, Automation & Test in Europe Conference &
Exhibition (DATE), Dresden, 2014, pp. 1-6.R. Perricone, X.

[5] C.S. Lent, G. L. Snider, “The Development of Quantum-Dot Cellular Automata,” Field
Coupled Nanocomputing, 2014.C.S. Lent, G. L. Snider, “The Development of
Quantum-Dot Cellular Automata,” Field Coupled Nanocomputing, 2014.

[6] C. S. Lent, P. D. Tougaw, W. Porod, “A bistable quantum cell for cellular automata,” in
International Workshop Computational Electronics, pp. 163–166, 1992.

[7] C. S. Lent, P. D. Tougaw, "A device architecture for computing with quantum dots," in
Proceedings of the IEEE, vol. 85, no. 4, pp. 541-557, April 1997.

[8] V. Vankamamidi, M. Ottavi, F. Lombardi, "Clocking and Cell Placement for QCA," 2006
Sixth IEEE Conference on Nanotechnology, Cincinnati, OH, USA, 2006, pp. 343-346.

[9] R. A. Wolkow, et al., “Silicon Atomic Quantum Dots Enable Beyond-CMOS Electronics,”
Field Coupled Nanocomputing, 2014.

[10] I. Palit, X. S. Hu, J. Nahas, M. Niemier, "Systematic design of Nanomagnet Logic
circuits," 2013 Design, Automation & Test in Europe Conference & Exhibition (DATE),
Grenoble, France, 2013, pp. 1795-1800.

[11] R. Perricone, Y. Zhu, K. M. Sanders, X. S. Hu, M. Niemier, "Towards systematic design of
3D pNML layouts," 2015 Design, Automation & Test in Europe Conference & Exhibition
(DATE), Grenoble, 2015, pp. 1539-1542.

[12] A. Orlov, et al., “Magnetic Quantum-Dot Cellular Automata: Recent Developments and
Prospects,” J. Nanoelectronics and Optoelectronics, 2008.

[13] D. Giri, M. Vacca, G. Causapruno, W. Rao, M. Graziano, M. Zamboni, "A standard cell
approach for MagnetoElastic NML circuits," 2014 IEEE/ACM International Symposium on
Nanoscale Architectures (NANOARCH), Paris, 2014, pp. 65-70.

[14] W. Liu, et al., “Security Issues in QCA Circuit Design - Power Analysis Attacks,” Field
Coupled Nanocomputing, 2014.

[15] O.Donzelli, et al., “Perpendicular Magnetic Anisotropy and Stripe Domains in Ultrathin
Co/Au Sputtered Multilayers,” J. Appl. Phys., 2003.

[16] X. Ju et al., "Nanomagnet Logic from Partially Irradiated Co/Pt Nanomagnets," in IEEE
Transactions on Nanotechnology, vol. 11, no. 1, pp. 97-104, Jan. 2012.

[17] W. Kaiser, M. Kiechle, G. Žiemys, D. Schmitt-Landsiedel, S. Breitkreutz-von Gamm,
"Engineering the Switching Behavior of Nanomagnets for Logic Computation Using 3-D
Modeling and Simulation," in IEEE Transactions on Magnetics, vol. 53, no. 6, pp. 1-4,
June 2017.

[18] S. Breitkreutz et al., "Experimental Demonstration of a 1-Bit Full Adder in Perpendicular
Nanomagnetic Logic," in IEEE Transactions on Magnetics, vol. 49, no. 7, pp. 4464-4467,
July 2013.

63

[19] R. Zhang, P. Gupta, N. K. Jha, "Majority and Minority Network Synthesis With
Application to QCA-, SET-, and TPL-Based Nanotechnologies," in IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 26, no. 7, pp. 1233-1245,
July 2007.

[20] S. Rai, "Majority Gate Based Design for Combinational Quantum Cellular Automata
(QCA) Circuits," 2008 40th Southeastern Symposium on System Theory (SSST), New
Orleans, LA, 2008, pp. 222-224.

[21] P. Wang, M. Y. Niamat, S. R. Vemuru, M. Alam, T. Killian, "Synthesis of
Majority/Minority Logic Networks," in IEEE Transactions on Nanotechnology, vol. 14, no.
3, pp. 473-483, May 2015.

[22] M. R. Bonyadi, S. M. R. Azghadi, N. M. Rad, K. Navi, E. Afjei, "Logic Optimization for
Majority Gate-Based Nanoelectronic Circuits Based on Genetic Algorithm," 2007
International Conference on Electrical Engineering, Lahore, 2007, pp. 1-5.

[23] L. Amarú, P. E. Gaillardon, G. De Micheli, "BDS-MAJ: A BDD-based logic synthesis tool
exploiting majority logic decomposition," 2013 50th ACM/EDAC/IEEE Design Automation
Conference (DAC), Austin, TX, 2013, pp. 1-6.

[24] L. Amarú, P. E. Gaillardon, G. De Micheli, "Majority-Inverter Graph: A novel
data-structure and algorithms for efficient logic optimization," 2014 51st
ACM/EDAC/IEEE Design Automation Conference (DAC), San Francisco, CA, 2014, pp.
1-6.

[25] M. J. Donahue et al., “Oommf user’s guide, version 1.0,” National Institute of Standards
and Technology, Gaithersburg, MD, USA, Tech. Rep. NISTIR 6376, September 1999.

[26] F. Riente, U. Garlando, G. Turvani, M. Vacca, M. Ruo Roch, M. Graziano, "MagCAD:
Tool for the Design of 3-D Magnetic Circuits," in IEEE Journal on Exploratory Solid-State
Computational Devices and Circuits, vol. 3, pp. 65-73, Dec. 2017.

[27] M. Mitchell, “An Introduction to Genetic Algorithms,” 5th ed. Cambridge, MA: MIT
Press, 1999.

[28] R. S. Sutton, A. G. Barto, “Introduction to reinforcement learning,” Cambridge, Mass, MA:
MIT Press, 1998.

[29] S. K. Lando, A. K. Zvonkin, “Graphs on surfaces and their applications,” Berlin: Springer,
2004.

[30] J. L. Gross, S. R. Alpert, “The topological theory of current graphs,” Journal of
Combinatorial Theory, Series B, vol. 17, no. 3, pp. 218–233, 1974.

[31] “RDD Programming Guide,” Apache Spark™ - Unified Analytics Engine for Big Data.
[Online]. Available: https://spark.apache.org/docs/2.3.1/rdd-programming-guide.html.
[Accessed: 16-Nov-2018].

[32] F. Brglez, H. Fujiwara, "A Neutral Netlist of 10 Combinational Benchmark Circuits", Proc.
IEEE Int'l Symp. Circuits and Systems, pp. 695-698, 1985.

[33] B. Marshall, "Verilog Parser," GitHub, MIT License.
https://github.com/ben-marshall/verilog-parser.

[34] B. M. Neta, G. H. Araújo, F. G. Guimarães, R. C. Mesquita, P. Y. Ekel, “A fuzzy genetic
algorithm for automatic orthogonal graph drawing,” Applied Soft Computing, vol. 12, no. 4,
pp. 1379–1389, 2012.

[35] J. Timler, C. S. Lent, “Power gain and dissipation in quantum-dot cellular automata,”
Journal of Applied Physics, vol. 91, no. 2, pp. 823–831, 2002.

64

[36] M. Niemier et al., "Clocking structures and power analysis for nanomagnet-based logic
devices," Proceedings of the 2007 international symposium on Low power electronics and
design (ISLPED '07), Portland, OR, 2007, pp. 26-31.

[37] W. j. Chung, B. Smith, S. k. Lim, "Node duplication and routing algorithms for
quantum-dot cellular automata circuits," in IEE Proceedings - Circuits, Devices and
Systems, vol. 153, no. 5, pp. 497-505, October 2006.

[38] B. Sen, A. Sengupta, M. Dalui, B. K. Sikdar, "Design of universal logic gate targeting
minimum wire-crossings in QCA logic circuit," 2010 53rd IEEE International Midwest
Symposium on Circuits and Systems, Seattle, WA, 2010, pp. 1181-1184.

[39] R. K. Nath, B. Sen, B. K. Sikdar, "Optimal synthesis of QCA logic circuit eliminating
wire-crossings," in IET Circuits, Devices & Systems, vol. 11, no. 3, pp. 201-208, 5 2017.

[40] W. J. Chung, B. Smith, S. K. Lim, "QCA physical design with crossing minimization," 5th
IEEE Conference on Nanotechnology, 2005., 2005, pp. 108-111 vol. 1.

[41] Eclipse Deeplearning4j Development Team. “Deeplearning4j: Open-source distributed
deep learning for the JVM,” Apache Software Foundation License 2.0.
http://deeplearning4j.org.

65

LIST OF APPENDICES

66

APPENDIX A: TESTS FOR GENETIC ALGORITHM

67

Figure 23. Genetic Results for ISCAS Test c17.

68

Figure 24. Genetic Results for ISCAS Test c432.

69

Figure 25. Genetic Results for ISCAS Test c880.

70

Figure 26. Genetic Results for ISCAS Test c499.

71

Figure 27. Genetic Results for ISCAS Test c1355.

72

Figure 28. Genetic Results for ISCAS Test c1908.

73

Figure 29. Genetic Results for ISCAS Test c2670.

74

Figure 30. Genetic Results for ISCAS Test c3540.

75

Figure 31. Genetic Results for ISCAS Test c6288.

76

Figure 32. Genetic Results for ISCAS Test c5315.

77

APPENDIX B: TESTS FOR RANDOM SEARCH WITH STOP RATE CAP

78

Figure 33. Random Search with Minimum Stop Rate 0.1 for ISCAS Test c17.

79

Figure 34. Random Search with Minimum Stop Rate 0.1 for ISCAS Test c432.

80

Figure 35. Random Search with Minimum Stop Rate 0.1 for ISCAS Test c880.

81

Figure 36. Random Search with Minimum Stop Rate 0.1 for ISCAS Test c499.

82

Figure 37. Random Search with Minimum Stop Rate 0.1 for ISCAS Test c1355.

83

Figure 38. Random Search with Minimum Stop Rate 0.1 for ISCAS Test c1908.

84

Figure 39. Random Search with Minimum Stop Rate 0.1 for ISCAS Test c2670.

85

Figure 40. Random Search with Minimum Stop Rate 0.1 for ISCAS Test c3540.

86

Figure 41. Random Search with Minimum Stop Rate 0.1 for ISCAS Test c6288.

87

Figure 42. Random Search with Minimum Stop Rate 0.1 for ISCAS Test c5315.

88

APPENDIX C: TESTS FOR RANDOM SEARCH WITH ITERATION CAP

89

Figure 43. Random Search Results for ISCAS Test c17 with 31 Iterations.

90

Figure 44. Random Search Results for ISCAS Test c432 with 76 Iterations.

91

Figure 45. Random Search Results for ISCAS Test c880 with 88 Iterations.

92

Figure 46. Random Search Results for ISCAS Test c499 with 96 Iterations.

93

Figure 47. Random Search Results for ISCAS Test c1355 with 119 Iterations.

94

Figure 48. Random Search Results for ISCAS Test c1908 with 131 Iterations.

95

Figure 49. Random Search Results for ISCAS Test c2670 with 136 Iterations.

96

Figure 50. Random Search Results for ISCAS Test c3540 with 161 Iterations.

97

Figure 51. Random Search Results for ISCAS Test c6288 with 292 Iterations.

98

Figure 52. Random Search Results for ISCAS Test c5315 with 192 Iterations.

99

VITA

Alexander Gunter grew up in Jackson, Mississippi and entered Ole Miss for computer

science and mathematics in 2012. He worked as a lab assistant for the Department of Computer

and Information Science before becoming an assistant network administrator for the department.

During this time he joined the Ole Miss VLSI System Research Design Laboratory to research

behavioral modelling of nanomagnet logic devices, and he investigated marker tracking with the

Ole Miss High Fidelity Virtual Environments Lab. He was awarded the 2015-2016 T.A.

Bickerstaff Scholarship for achievement in the Department of Mathematics and the 2016-2017

Richard E. Grove Award for service to the Department of Computer and Information Science.

He graduated magna cum laude from the University of Mississippi in December of 2016,

receiving the degree of Bachelor of Science in Computer Science. He entered the Graduate

School at the University of Mississippi in 2017 to continue his research with the Department of

Electrical Engineering. He worked as a teaching assistant while developing design automation

techniques for perpendicular nanomagnet logic.

Publications and Presentations
● A Framework for Verification of Signal Propagation Through Sequential Nanomagnet

Logic Devices. Undergraduate thesis at the University of Mississippi.
● Design and Analysis of Sequential Reversible Logic Structures Using Nanomagnet Logic.

Works-in-Progress poster and presentation at DAC 2015.
● Real-Time Marker Tracking with Microsoft Kinect. Poster and presentation at

ICAT-EGVE 2016.
● Behavioral Verification and Crossing Reduction Algorithms for pNML Devices. Poster

and presentation at DAC 2018.

100

	Design and Investigation of Genetic Algorithmic and Reinforcement Learning Approaches to Wire Crossing Reductions for pNML Devices
	Recommended Citation

	tmp.1569246484.pdf.DerCf

