11 research outputs found

    Extending DBMSs with satellite databases

    Get PDF
    In this paper, we propose an extensible architecture for database engines where satellite databases are used to scale out and implement additional functionality for a centralized database engine. The architecture uses a middleware layer that offers consistent views and a single system image over a cluster of machines with database engines. One of these engines acts as a master copy while the others are read-only snapshots which we call satellites. The satellites are lightweight DBMSs used for scalability and to provide functionality difficult or expensive to implement in the main engine. Our approach also supports the dynamic creation of satellites to be able to autonomously adapt to varying loads. The paper presents the architecture, discusses the research problems it raises, and validates its feasibility with extensive experimental result

    Middleware-based Database Replication: The Gaps between Theory and Practice

    Get PDF
    The need for high availability and performance in data management systems has been fueling a long running interest in database replication from both academia and industry. However, academic groups often attack replication problems in isolation, overlooking the need for completeness in their solutions, while commercial teams take a holistic approach that often misses opportunities for fundamental innovation. This has created over time a gap between academic research and industrial practice. This paper aims to characterize the gap along three axes: performance, availability, and administration. We build on our own experience developing and deploying replication systems in commercial and academic settings, as well as on a large body of prior related work. We sift through representative examples from the last decade of open-source, academic, and commercial database replication systems and combine this material with case studies from real systems deployed at Fortune 500 customers. We propose two agendas, one for academic research and one for industrial R&D, which we believe can bridge the gap within 5-10 years. This way, we hope to both motivate and help researchers in making the theory and practice of middleware-based database replication more relevant to each other.Comment: 14 pages. Appears in Proc. ACM SIGMOD International Conference on Management of Data, Vancouver, Canada, June 200

    Just-in-time Data Distribution for Analytical Query Processing

    Get PDF
    Distributed processing commonly requires data spread across machines using a priori static or hash-based data allocation. In this paper, we explore an alternative approach that starts from a master node in control of the complete database, and a variable number of worker nodes for delegated query processing. Data is shipped just-in-time to the worker nodes using a need to know policy, and is being reused, if possible, in subsequent queries. A bidding mechanism among the workers yields a scheduling with the most efficient reuse of previously shipped data, minimizing the data transfer costs. Just-in-time data shipment allows our system to benefit from locally available idle resources to boost overall performance. The system is maintenance-free and allocation is fully transparent to users. Our experiments show that the proposed adaptive distributed architecture is a viable and flexible alternative for small scale MapReduce-type of settings

    Just-In-Time Data Distribution for Analytical Query Processing

    Get PDF
    Distributed processing commonly requires data spread across machines using a priori static or hash-based data allocation. In this paper, we explore an alternative approach that starts from a master node in control of the complete database, and a variable number of worker nodes for delegated query processing. Data is shipped just-in-time to the worker nodes using a need to know policy, and is being reused, if possible, in subsequent queries. A bidding mechanism among the workers yields a scheduling with the most efficient reuse of previously shipped data, minimizing the data transfer costs. Just-in-time data shipment allows our system to benefit from locally available idle resources to boost overall performance. The system is maintenance-free and allocation is fully transparent to users. Our experiments show that the proposed adaptive distributed architecture is a viable and flexible alternative for small scale MapReduce-type of settings

    A formal characterization of SI-based ROWA replication protocols

    Full text link
    Snapshot isolation (SI) is commonly used in some commercial DBMSs with a multiversion concurrency control mechanism since it never blocks read-only transactions. Recent database replication protocols have been designed using SI replicas where transactions are firstly executed in a delegate replica and their updates (if any) are propagated to the rest of the replicas at commit time; i.e. they follow the Read One Write All (ROWA) approach. This paper provides a formalization that shows the correctness of abstract protocols which cover these replication proposals. These abstract protocols differ in the properties demanded for achieving a global SI level and those needed for its generalized SI (GSI) variant ¿ allowing reads from old snapshots. Additionally, we propose two more relaxed properties that also ensure a global GSI level. Thus, some applications can further optimize their performance in a replicated system while obtaining GSI. © 2010 Elsevier B.V. All rights reserved.The authors wish to thank the reviewers for their valuable comments that helped us to greatly improve the quality and readability of this paper. This work has been supported by the Spanish Government under research grant TIN2009-14460-C03. Besides, the authors wish to thank the reviewers for their valuable comments that helped us to greatly improve the quality and readability of this paper.Armendáriz-Iñigo, J.; Juárez-Rodríguez, J.; González De Mendívil, J.; Garitagoitia, J.; Irún Briz, L.; Muñoz Escoí, FD. (2011). A formal characterization of SI-based ROWA replication protocols. Data and Knowledge Engineering. 70(1):21-34. doi:10.1016/j.datak.2010.07.012S213470

    Effizienz in Cluster-Datenbanksystemen - Dynamische und Arbeitslastberücksichtigende Skalierung und Allokation

    Get PDF
    Database systems have been vital in all forms of data processing for a long time. In recent years, the amount of processed data has been growing dramatically, even in small projects. Nevertheless, database management systems tend to be static in terms of size and performance which makes scaling a difficult and expensive task. Because of performance and especially cost advantages more and more installed systems have a shared nothing cluster architecture. Due to the massive parallelism of the hardware programming paradigms from high performance computing are translated into data processing. Database research struggles to keep up with this trend. A key feature of traditional database systems is to provide transparent access to the stored data. This introduces data dependencies and increases system complexity and inter process communication. Therefore, many developers are exchanging this feature for a better scalability. However, explicitly managing the data distribution and data flow requires a deep understanding of the distributed system and reduces the possibilities for automatic and autonomic optimization. In this thesis we present an approach for database system scaling and allocation that features good scalability although it keeps the data distribution transparent. The first part of this thesis analyzes the challenges and opportunities for self-scaling database management systems in cluster environments. Scalability is a major concern of Internet based applications. Access peaks that overload the application are a financial risk. Therefore, systems are usually configured to be able to process peaks at any given moment. As a result, server systems often have a very low utilization. In distributed systems the efficiency can be increased by adapting the number of nodes to the current workload. We propose a processing model and an architecture that allows efficient self-scaling of cluster database systems. In the second part we consider different allocation approaches. To increase the efficiency we present a workload-aware, query-centric model. The approach is formalized; optimal and heuristic algorithms are presented. The algorithms optimize the data distribution for local query execution and balance the workload according to the query history. We present different query classification schemes for different forms of partitioning. The approach is evaluated for OLTP and OLAP style workloads. It is shown that variants of the approach scale well for both fields of application. The third part of the thesis considers benchmarks for large, adaptive systems. First, we present a data generator for cloud-sized applications. Due to its architecture the data generator can easily be extended and configured. A key feature is the high degree of parallelism that makes linear speedup for arbitrary numbers of nodes possible. To simulate systems with user interaction, we have analyzed a productive online e-learning management system. Based on our findings, we present a model for workload generation that considers the temporal dependency of user interaction.Datenbanksysteme sind seit langem die Grundlage für alle Arten von Informationsverarbeitung. In den letzten Jahren ist das Datenaufkommen selbst in kleinen Projekten dramatisch angestiegen. Dennoch sind viele Datenbanksysteme statisch in Bezug auf ihre Kapazität und Verarbeitungsgeschwindigkeit was die Skalierung aufwendig und teuer macht. Aufgrund der guten Geschwindigkeit und vor allem aus Kostengründen haben immer mehr Systeme eine Shared-Nothing-Architektur, bestehen also aus unabhängigen, lose gekoppelten Rechnerknoten. Da dieses Konstruktionsprinzip einen sehr hohen Grad an Parallelität aufweist, werden zunehmend Programmierparadigmen aus dem klassischen Hochleistungsrechen für die Informationsverarbeitung eingesetzt. Dieser Trend stellt die Datenbankforschung vor große Herausforderungen. Eine der grundlegenden Eigenschaften traditioneller Datenbanksysteme ist der transparente Zugriff zu den gespeicherten Daten, der es dem Nutzer erlaubt unabhängig von der internen Organisation auf die Daten zuzugreifen. Die resultierende Unabhängigkeit führt zu Abhängigkeiten in den Daten und erhöht die Komplexität der Systeme und der Kommunikation zwischen einzelnen Prozessen. Daher wird Transparenz von vielen Entwicklern für eine bessere Skalierbarkeit geopfert. Diese Entscheidung führt dazu, dass der die Datenorganisation und der Datenfluss explizit behandelt werden muss, was die Möglichkeiten für eine automatische und autonome Optimierung des Systems einschränkt. Der in dieser Arbeit vorgestellte Ansatz zur Skalierung und Allokation erhält den transparenten Zugriff und zeichnet sich dabei durch seine vollständige Automatisierbarkeit und sehr gute Skalierbarkeit aus. Im ersten Teil dieser Dissertation werden die Herausforderungen und Chancen für selbst-skalierende Datenbankmanagementsysteme behandelt, die in auf Computerclustern betrieben werden. Gute Skalierbarkeit ist eine notwendige Eigenschaft für Anwendungen, die über das Internet zugreifbar sind. Lastspitzen im Zugriff, die die Anwendung überladen stellen ein finanzielles Risiko dar. Deshalb werden Systeme so konfiguriert, dass sie eventuelle Lastspitzen zu jedem Zeitpunkt verarbeiten können. Das führt meist zu einer im Schnitt sehr geringen Auslastung der unterliegenden Systeme. Eine Möglichkeit dieser Ineffizienz entgegen zu steuern ist es die Anzahl der verwendeten Rechnerknoten an die vorliegende Last anzupassen. In dieser Dissertation werden ein Modell und eine Architektur für die Anfrageverarbeitung vorgestellt, mit denen es möglich ist Datenbanksysteme auf Clusterrechnern einfach und effizient zu skalieren. Im zweiten Teil der Arbeit werden verschieden Möglichkeiten für die Datenverteilung behandelt. Um die Effizienz zu steigern wird ein Modell verwendet, das die Lastverteilung im Anfragestrom berücksichtigt. Der Ansatz ist formalisiert und optimale und heuristische Lösungen werden präsentiert. Die vorgestellten Algorithmen optimieren die Datenverteilung für eine lokale Ausführung aller Anfragen und balancieren die Last auf den Rechnerknoten. Es werden unterschiedliche Arten der Anfrageklassifizierung vorgestellt, die zu verschiedenen Arten von Partitionierung führen. Der Ansatz wird sowohl für Onlinetransaktionsverarbeitung, als auch Onlinedatenanalyse evaluiert. Die Evaluierung zeigt, dass der Ansatz für beide Felder sehr gut skaliert. Im letzten Teil der Arbeit werden verschiedene Techniken für die Leistungsmessung von großen, adaptiven Systemen präsentiert. Zunächst wird ein Datengenerierungsansatz gezeigt, der es ermöglicht sehr große Datenmengen völlig parallel zu erzeugen. Um die Benutzerinteraktion von Onlinesystemen zu simulieren wurde ein produktives E-learningsystem analysiert. Anhand der Analyse wurde ein Modell für die Generierung von Arbeitslasten erstellt, das die zeitlichen Abhängigkeiten von Benutzerinteraktion berücksichtigt

    From cluster databases to cloud storage: Providing transactional support on the cloud

    Get PDF
    Durant les últimes tres dècades, les limitacions tecnològiques (com per exemple la capacitat dels dispositius d'emmagatzematge o l'ample de banda de les xarxes de comunicació) i les creixents demandes dels usuaris (estructures d'informació, volums de dades) han conduït l'evolució de les bases de dades distribuïdes. Des dels primers repositoris de dades per arxius plans que es van desenvolupar en la dècada dels vuitanta, s'han produït importants avenços en els algoritmes de control de concurrència, protocols de replicació i en la gestió de transaccions. No obstant això, els reptes moderns d'emmagatzematge de dades que plantegen el Big Data i el cloud computing—orientats a millorar la limitacions pel que fa a escalabilitat i elasticitat de les bases de dades estàtiques—estan empenyent als professionals a relaxar algunes propietats importants dels sistemes transaccionals clàssics, cosa que exclou a diverses aplicacions les quals no poden encaixar en aquesta estratègia degut a la seva alta dependència transaccional. El propòsit d'aquesta tesi és abordar dos reptes importants encara latents en el camp de les bases de dades distribuïdes: (1) les limitacions pel que fa a escalabilitat dels sistemes transaccionals i (2) el suport transaccional en repositoris d'emmagatzematge en el núvol. Analitzar les tècniques tradicionals de control de concurrència i de replicació, utilitzades per les bases de dades clàssiques per suportar transaccions, és fonamental per identificar les raons que fan que aquests sistemes degradin el seu rendiment quan el nombre de nodes i / o quantitat de dades creix. A més, aquest anàlisi està orientat a justificar el disseny dels repositoris en el núvol que deliberadament han deixat de banda el suport transaccional. Efectivament, apropar el paradigma de l'emmagatzematge en el núvol a les aplicacions que tenen una forta dependència en les transaccions és fonamental per a la seva adaptació als requeriments actuals pel que fa a volums de dades i models de negoci. Aquesta tesi comença amb la proposta d'un simulador de protocols per a bases de dades distribuïdes estàtiques, el qual serveix com a base per a la revisió i comparativa de rendiment dels protocols de control de concurrència i les tècniques de replicació existents. Pel que fa a la escalabilitat de les bases de dades i les transaccions, s'estudien els efectes que té executar diferents perfils de transacció sota diferents condicions. Aquesta anàlisi contínua amb una revisió dels repositoris d'emmagatzematge de dades en el núvol existents—que prometen encaixar en entorns dinàmics que requereixen alta escalabilitat i disponibilitat—, el qual permet avaluar els paràmetres i característiques que aquests sistemes han sacrificat per tal de complir les necessitats actuals pel que fa a emmagatzematge de dades a gran escala. Per explorar les possibilitats que ofereix el paradigma del cloud computing en un escenari real, es presenta el desenvolupament d'una arquitectura d'emmagatzematge de dades inspirada en el cloud computing la qual s’utilitza per emmagatzemar la informació generada en les Smart Grids. Concretament, es combinen les tècniques de replicació en bases de dades transaccionals i la propagació epidèmica amb els principis de disseny usats per construir els repositoris de dades en el núvol. Les lliçons recollides en l'estudi dels protocols de replicació i control de concurrència en el simulador de base de dades, juntament amb les experiències derivades del desenvolupament del repositori de dades per a les Smart Grids, desemboquen en el que hem batejat com Epidemia: una infraestructura d'emmagatzematge per Big Data concebuda per proporcionar suport transaccional en el núvol. A més d'heretar els beneficis dels repositoris en el núvol en quant a escalabilitat, Epidemia inclou una capa de gestió de transaccions que reenvia les transaccions dels clients a un conjunt jeràrquic de particions de dades, cosa que permet al sistema oferir diferents nivells de consistència i adaptar elàsticament la seva configuració a noves demandes de càrrega de treball. Finalment, els resultats experimentals posen de manifest la viabilitat de la nostra contribució i encoratgen als professionals a continuar treballant en aquesta àrea.Durante las últimas tres décadas, las limitaciones tecnológicas (por ejemplo la capacidad de los dispositivos de almacenamiento o el ancho de banda de las redes de comunicación) y las crecientes demandas de los usuarios (estructuras de información, volúmenes de datos) han conducido la evolución de las bases de datos distribuidas. Desde los primeros repositorios de datos para archivos planos que se desarrollaron en la década de los ochenta, se han producido importantes avances en los algoritmos de control de concurrencia, protocolos de replicación y en la gestión de transacciones. Sin embargo, los retos modernos de almacenamiento de datos que plantean el Big Data y el cloud computing—orientados a mejorar la limitaciones en cuanto a escalabilidad y elasticidad de las bases de datos estáticas—están empujando a los profesionales a relajar algunas propiedades importantes de los sistemas transaccionales clásicos, lo que excluye a varias aplicaciones las cuales no pueden encajar en esta estrategia debido a su alta dependencia transaccional. El propósito de esta tesis es abordar dos retos importantes todavía latentes en el campo de las bases de datos distribuidas: (1) las limitaciones en cuanto a escalabilidad de los sistemas transaccionales y (2) el soporte transaccional en repositorios de almacenamiento en la nube. Analizar las técnicas tradicionales de control de concurrencia y de replicación, utilizadas por las bases de datos clásicas para soportar transacciones, es fundamental para identificar las razones que hacen que estos sistemas degraden su rendimiento cuando el número de nodos y/o cantidad de datos crece. Además, este análisis está orientado a justificar el diseño de los repositorios en la nube que deliberadamente han dejado de lado el soporte transaccional. Efectivamente, acercar el paradigma del almacenamiento en la nube a las aplicaciones que tienen una fuerte dependencia en las transacciones es crucial para su adaptación a los requerimientos actuales en cuanto a volúmenes de datos y modelos de negocio. Esta tesis empieza con la propuesta de un simulador de protocolos para bases de datos distribuidas estáticas, el cual sirve como base para la revisión y comparativa de rendimiento de los protocolos de control de concurrencia y las técnicas de replicación existentes. En cuanto a la escalabilidad de las bases de datos y las transacciones, se estudian los efectos que tiene ejecutar distintos perfiles de transacción bajo diferentes condiciones. Este análisis continua con una revisión de los repositorios de almacenamiento en la nube existentes—que prometen encajar en entornos dinámicos que requieren alta escalabilidad y disponibilidad—, el cual permite evaluar los parámetros y características que estos sistemas han sacrificado con el fin de cumplir las necesidades actuales en cuanto a almacenamiento de datos a gran escala. Para explorar las posibilidades que ofrece el paradigma del cloud computing en un escenario real, se presenta el desarrollo de una arquitectura de almacenamiento de datos inspirada en el cloud computing para almacenar la información generada en las Smart Grids. Concretamente, se combinan las técnicas de replicación en bases de datos transaccionales y la propagación epidémica con los principios de diseño usados para construir los repositorios de datos en la nube. Las lecciones recogidas en el estudio de los protocolos de replicación y control de concurrencia en el simulador de base de datos, junto con las experiencias derivadas del desarrollo del repositorio de datos para las Smart Grids, desembocan en lo que hemos acuñado como Epidemia: una infraestructura de almacenamiento para Big Data concebida para proporcionar soporte transaccional en la nube. Además de heredar los beneficios de los repositorios en la nube altamente en cuanto a escalabilidad, Epidemia incluye una capa de gestión de transacciones que reenvía las transacciones de los clientes a un conjunto jerárquico de particiones de datos, lo que permite al sistema ofrecer distintos niveles de consistencia y adaptar elásticamente su configuración a nuevas demandas cargas de trabajo. Por último, los resultados experimentales ponen de manifiesto la viabilidad de nuestra contribución y alientan a los profesionales a continuar trabajando en esta área.Over the past three decades, technology constraints (e.g., capacity of storage devices, communication networks bandwidth) and an ever-increasing set of user demands (e.g., information structures, data volumes) have driven the evolution of distributed databases. Since flat-file data repositories developed in the early eighties, there have been important advances in concurrency control algorithms, replication protocols, and transactions management. However, modern concerns in data storage posed by Big Data and cloud computing—related to overcome the scalability and elasticity limitations of classic databases—are pushing practitioners to relax some important properties featured by transactions, which excludes several applications that are unable to fit in this strategy due to their intrinsic transactional nature. The purpose of this thesis is to address two important challenges still latent in distributed databases: (1) the scalability limitations of transactional databases and (2) providing transactional support on cloud-based storage repositories. Analyzing the traditional concurrency control and replication techniques, used by classic databases to support transactions, is critical to identify the reasons that make these systems degrade their throughput when the number of nodes and/or amount of data rockets. Besides, this analysis is devoted to justify the design rationale behind cloud repositories in which transactions have been generally neglected. Furthermore, enabling applications which are strongly dependent on transactions to take advantage of the cloud storage paradigm is crucial for their adaptation to current data demands and business models. This dissertation starts by proposing a custom protocol simulator for static distributed databases, which serves as a basis for revising and comparing the performance of existing concurrency control protocols and replication techniques. As this thesis is especially concerned with transactions, the effects on the database scalability of different transaction profiles under different conditions are studied. This analysis is followed by a review of existing cloud storage repositories—that claim to be highly dynamic, scalable, and available—, which leads to an evaluation of the parameters and features that these systems have sacrificed in order to meet current large-scale data storage demands. To further explore the possibilities of the cloud computing paradigm in a real-world scenario, a cloud-inspired approach to store data from Smart Grids is presented. More specifically, the proposed architecture combines classic database replication techniques and epidemic updates propagation with the design principles of cloud-based storage. The key insights collected when prototyping the replication and concurrency control protocols at the database simulator, together with the experiences derived from building a large-scale storage repository for Smart Grids, are wrapped up into what we have coined as Epidemia: a storage infrastructure conceived to provide transactional support on the cloud. In addition to inheriting the benefits of highly-scalable cloud repositories, Epidemia includes a transaction management layer that forwards client transactions to a hierarchical set of data partitions, which allows the system to offer different consistency levels and elastically adapt its configuration to incoming workloads. Finally, experimental results highlight the feasibility of our contribution and encourage practitioners to further research in this area

    A Versatile Tuple-Based Optimization Framework

    Get PDF
    This thesis describes a versatile tuple-based optimization framework. This framework is capable of optimizing traditional imperative codes (such as sparse matrix computations) as well as declarative codes (such as database queries). In the first part of this thesis, the vertical integration of database applications is discussed. Using the described framework it is possible to represent the application codes as well as the declarative database queries within the same intermediate representation, unlocking many optimization opportunities. The second part of this thesis explores the optimization of irregular codes using this framework. It is shown that by expressing irregular codes within the presented framework, many different variants of this code using different data structures can be generated automatically.Computer Systems, Imagery and Medi

    Extending DBMSs with satellite databases

    No full text
    ISSN:1066-8888ISSN:0949-877
    corecore