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Abstract In this paper, we propose an extensible
architecture for database engines where satellite data-
bases are used to scale out and implement additional
functionality for a centralized database engine. The
architecture uses a middleware layer that offers con-
sistent views and a single system image over a clus-
ter of machines with database engines. One of these
engines acts as a master copy while the others are read-
only snapshots which we call satellites. The satellites are
lightweight DBMSs used for scalability and to provide
functionality difficult or expensive to implement in the
main engine. Our approach also supports the dynamic
creation of satellites to be able to autonomously adapt
to varying loads. The paper presents the architecture,
discusses the research problems it raises, and validates
its feasibility with extensive experimental results.
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1 Introduction

Databases are facing important challenges in terms of
functionality, scalability, and extensibility. This is partic-
ularly true for many new applications: genomics, sensor
networks, mobile objects, etc. From our experience with
data repositories for astrophysics [33], we find that a big
obstacle in using databases within the information infra-
structure for these novel applications is that it is difficult
to extend a database engine. Also, many of these new
applications require a degree of scalability difficult to
provide with centralized engines.

To address this problem, in this paper we describe
Ganymed, a novel architecture for extending and open-
ing up database engines. Ganymed is based on what we
call satellite databases. The idea is to extend a central-
ized database engine with additional processing capacity
(by offloading queries to satellites) or additional func-
tionality (implemented as external data blades in the
satellites) while maintaining a single system image and
avoiding adding extra load to the main database engine.

1.1 Extensibility

An example of a Ganymed-based system is shown in
Fig. 1. The figure shows several lightweight satellite
DBMSs that contain data from two independent mas-
ter DBMSs. Each satellite is assigned to exactly one
master. These satellites are then used to extend the mas-
ters for performance purposes (by replicating data on
the satellites; in the paper we discuss how to do this
using full replication) or for functionality purposes (by
implementing functionality at the satellites that is not
available at the masters; we provide results for skyline
queries and text keyword search). Any given satellite is
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Fig. 1 Example of a Ganymed system configuration

kept consistent with its master at all times, using a lazy
replication scheme. Transaction dispatchers make sure
that clients always see a consistent state [we use snap-
shot isolation (SI) as correctness criteria] and that the
system enforces strong consistency guarantees (a client
always sees its own updates and it is guaranteed to work
with the latest snapshot available). Finally, satellites do
not necessarily need to be permanently attached to a
master. In the paper we explore how to create satel-
lites dynamically (by using spare machines in a pool) to
react to changes in load or load patterns. This opens up
the possibility of offering database storage as a remote
service as part of a data grid.

1.2 Consistency

A key difference between our system and existing rep-
lication solutions (open source and commercial) is that
clients always see correct data according to SI [34]. SI,
implemented in, e.g., Oracle [27], PostgreSQL [29], and
Microsoft SQL Server 2005 [25], avoids the ANSI SQL
phenomena P1–P4 [7]. It also eliminates conflicts be-
tween reads and writes. Read-only transactions get a
snapshot of the database (a version) as of the time the
transaction starts. From then on, they run unaffected by
writers.

For correctness purposes, we differentiate between
update (there is at least one update operation in the
transaction) and read-only transactions (or queries).
Transactions do not have to be sent by clients as a block
(unlike in, e.g., [19,26]), they can be processed statement
by statement. Update transactions are forwarded to the
master. Read-only transactions will, whenever possible,
be sent to one of the satellites and executed with SI.
The same snapshot (on the same satellite) is used for
all statements in the transaction, thereby ensuring that

a client’s read-only transactions always see a consistent
state of the database over their whole execution time.

Queries are executed only after the assigned satellite
has applied all the master’s updates up to the time the
transaction starts. Hence, a client always sees its own
updates and all the snapshots it sees are consistent in
time. To enforce this requirement on the satellites, we
resort to transaction tagging. Obviously, if updates do
not get applied fast enough on the satellites, then readers
must be delayed until the necessary snapshot becomes
available.

1.3 Validation

The system described in the paper has been fully imple-
mented. We describe here only a proof of concept imple-
mentation that demonstrates the feasibility of the idea.
We do not claim that ours is the most optimal imple-
mentation. We also do not claim that we have solved all
problems and issues that arise in this context. Rather,
the objective is to show the potential of our architecture
by analyzing their behavior under a variety of contexts
and applications.

For the experiments performed, there is an over-
whelming number of design variables to consider. There
are also many product-specific tools, interfaces, and solu-
tions that would not only significantly boost the perfor-
mance of our system but also detract from its generality.
Consequently, in the paper we use only generic solu-
tions instead of product-specific optimizations. This is
of particular relevance in regard to update extraction
from the master, application of updates at the satellites,
and the dynamic creation of copies, all of which can
be performed more efficiently by using product-specific
solutions.

Also note that we discuss two potential applications:
full replication satellites and specialized satellites. Imple-
menting full replication satellites across heterogeneous
databases is very complex. However, most of the tech-
niques necessary to implement full replication satellites
also apply to specialized satellites. We use full replication
satellites as a worst case scenario for analyzing our
system. The lessons learned from this experience help
in implementing specialized satellites which may prove
to be the most interesting application. The advantage
of specialized satellites is that most of the difficulties
involved in creating and operating satellites disappear.
Thus, specialized satellites may not only be more useful,
they are also easier to implement. Yet, the purpose of the
paper is to explore the entire design space so we include
the full replication experiments to show the capabilities
and limitations of the idea we propose.
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Note that none of the middleware-based replication
solutions recently proposed ([5,10,23,26]) can cope with
partial replication, let alone specialized satellites.

1.4 Contributions

In this paper, we propose a novel replication architec-
ture to extend databases. We also propose novel
execution strategies for some applications over this
architecture. The main contributions of the architecture
and the paper are:

– The use of satellites acting as external data blades
for database engines, in homogeneous and hetero-
geneous settings.

– We show how satellites can used to extend data-
base engines with conventional replication and with
specialized functionality that may not be available in
the original master DBMS. This external data blade
approach allows the addition of extensions with-
out modification of the original database engine and
without affecting its performance.

– We provide clients with a consistent view of the data-
base using a technique that we have introduced in an
earlier paper [28]. We are not aware of any imple-
mented solution, open source or commercial, that
provides the consistency levels we provide (much
less with the performance our system exhibits).

– We support dynamic creation of satellites. This oper-
ation is intrinsically very expensive for full replica-
tion but can be used to great effect with specialized
satellites that only need a fraction of the master’s
data to be created.

1.5 Paper organization

The rest of this paper is organized as follows: first, we
describe the Ganymed system architecture (Sect. 2).
This is followed by a description of the details of SI and
the system’s underlying transaction routing algorithm
(Sect. 3). In the following Sects. 4 and 5 we describe
the problems that have to be handled in heterogeneous
setups. Then, in Sect. 6, we describe the experimental
evaluation of our system.

To demonstrate the more advanced possibilities of
the system, namely, specialized satellites, we then show
in Sect. 7 how we used PostgreSQL satellites to extend
an Oracle master with a skyline query facility [9,11].
As another possibility, we also show how we used the
Ganymed system to implement a full text keyword
search based on satellite databases. The objective of
these experiments is to show how satellites can be used
to implement new operators that require heavy

computation without affecting the master. In Sect. 8 we
then explore the behavior of the system when satellites
are dynamically created. We include experiments on the
cost of dynamic satellite creation (as well as a discussion
on how this is done) and experiments on dynamic sky-
line satellites. The paper ends with a discussion of related
work (Sect. 9) and conclusions.

2 System architecture

2.1 Design criteria

One of the main objectives of Ganymed is to offer
database extensibility while maintaining a single system
image. Clients should not be aware of load balancing,
multiple copies, failing satellites, or consistency issues.
We also do not want to make use of relaxed consistency
models – even though we internally use a lazy repli-
cation approach, clients must always see a consistent
state. Unlike existing solutions (e.g., [5,10,35]) that rely
on middleware for implementing database replication,
we neither depend on group communication nor imple-
ment complex versioning and concurrency control at the
middleware layer.

This point is a key design criterion that sets Ganymed
apart from existing systems. The objective is to have a
very thin middleware layer that nevertheless offers con-
sistency and a single system image. Unlike [23,35], we
do not want to use group communication to be able to
provide scalability and fast reaction to failures. Avoiding
group communication also reduces the footprint of the
system and the overall response time. As recent work
shows [23], group communication is also no guaran-
tee for consistency. Although not stated explicitly, the
design in [23] offers a trade-off between consistency –
clients must always access the same copy – and single
system image – at which point clients are not guaranteed
to see consistent snapshots. We also want to avoid dupli-
cating database functionality at the middleware level.
Ganymed performs neither high level concurrency con-
trol (used in [10], which typically implies a significant
reduction in concurrency since it is done at the level
of table locking ) nor SQL parsing and version control
(used in [5], both expensive operations for real loads
and a bottleneck once the number of versions starts
to increase and advanced functionality like material-
ized views is involved). The thin middleware layer is
a design objective that needs to be emphasized as the
redundancy is not just a matter of footprint or efficiency.
We are not aware of any proposed solution that dupli-
cates database functionality (be it locking, concurrency
control, or SQL parsing) that can support real database
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Fig. 2 Data flows between the dispatcher, the master and the satellites

engines. The problem of these designs is that they
assume that the middleware layer can control every-
thing happening inside the database engine. This is not
a correct assumption (concurrency control affects more
than just tables, e.g., recovery procedures, indexes). For
these approaches to work correctly, functionality such
as triggers, user-defined functions and views would have
to be disabled or the concurrency control at the mid-
dleware level would have to work at an extremely con-
servative level. In the same spirit, Ganymed imposes no
data organization, structuring of the load, or particular
arrangements of the schema (unlike, e.g., [18]).

In terms of the DBMSs that the architecture should
support, the objective is flexibility and, thus, we do not
rely on engine specific functionality. The design we pro-
pose does not rely on the existence of special features
or modifications to the underlying DBMS.

2.2 Overview

The system works by routing transactions through a dis-
patcher over a set of backend databases. For a given
dispatcher, the backends consist of one master and a
set of satellites. The objective is to use the satellites to
extend the master according to two principles: clients
see a consistent database at all times and the master can
take over if the satellites cannot deal with a query.

The latter point is crucial to understanding the design
of the system. In the worst case, our system behaves as
a single database: the master. When in doubt, the dis-
patcher routes the traffic to the master. We also rely
on the master to provide industrial strength (e.g., crash
recovery and fault tolerance). The idea is that the satel-
lites extend the functionality or capacity of the master
but neither replace it nor implement redundant func-
tionality. This same principle applies to the problem
of replicating triggers, user-defined functions, etc. Our
system is not meant to extend that functionality. Thus,

transactions that involve triggers or user-defined func-
tions are simply sent to the master for execution there.

A basic assumption we make is that we can achieve a
perfect partition of the load between master and
satellites. However, unlike previous work [10,26], we do
not require the data to be manually partitioned across
nodes. For the purposes of this paper, the loads we con-
sider involve full replication and specialized function-
ality (skyline queries and keyword search). For fully
replicated satellites, the master executes all write opera-
tions while the satellites execute only queries (read-only
transactions). In the case of specialized functionality the
satellites execute skyline queries and keyword searches,
all other transactions are done at the master. We also
assume that queries can be answered within a single
satellite.

2.3 Main components

The main components of the system are as follows (see
Fig. 2). The dispatcher is responsible for routing trans-
actions to the master and satellites. It acts as front end
for clients. The system is controlled and administered
from a management console. Communication with the
backend DBMSs always takes place through adapters,
which are thin layers of software installed on the DBMS
machines.

In terms of database machines, we consider three
types: masters, primary satellites, and secondary satel-
lites. Primary satellites are optional and used for
dynamic creation of satellites. The purpose of primary
satellites is to be able to create new satellites without hit-
ting the master for all the data necessary to spawn a new
satellite. When implementing dynamic satellites, there
is always one primary satellite attached to the master.
Secondary satellites are those created dynamically.1

1 In Fig. 2, PITR stands for the technique we use in our prototype
to dynamically create satellites. Please refer to Sect. 8.
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The current Ganymed prototype, implemented in
Java, does not support multiple, in parallel working
dispatchers, yet it is not vulnerable to failures of the
dispatcher. If a Ganymed dispatcher fails, it can imme-
diately be replaced by a standby dispatcher. The deci-
sion for a dispatcher to be replaced by a backup has
to be made by the manager component. The manager
component, running on a dedicated machine, constantly
monitors the system. The manager component is also
responsible for reconfigurations. It is used, e.g., by the
database administrator to add and remove replicas.
Interaction with the manager component takes place
through a graphical interface. In the following sections,
we describe each component in more detail.

2.4 Transaction dispatcher

The transaction dispatcher (see Fig. 3) acts as the gate-
way to services offered by the master database and
the satellite engines. As its interface we have imple-
mented the PostgreSQL protocol specification.2 This is
a significant departure from existing replication projects
(e.g., [5,6,10,26,28]) that rely on proprietary interfaces
with limited support for programming languages and OS
platforms.

The dispatcher is mainly in charge of routing trans-
actions across the system. Routing has three main com-
ponents: assigning transactions to the correct backend
DBMS, load balancing if more than one DBMS is able
to answer a request and transaction tagging to enforce
consistent views of the available data.

However, before a client can send transactions, it first
needs to authenticate the current session. The dispatcher
has no internal user database, rather it relies on the
adapters to verify locally whether the given credentials
are correct. On the satellites, for simplicity, we assume
that the same users exist as on the master DBMS. Access
control to tables is therefore always performed locally
by the backend DBMS that is executing a transaction.

In an authenticated session, assigning transactions
involves deciding where to execute a given transaction.
Typically, updates go to the master, queries to the satel-
lites. Since the dispatcher needs to know if a transaction
is of type update or read only, the application code has
to communicate this.3

If an application programmer forgets to declare a
read-only transaction, consistency is still guaranteed, but

2 Therefore, the dispatcher can be accessed from any plat-
form/language for which a PostgreSQL driver has been written
[e.g., C#, C/C++, Java (JDBC), Perl, Python, etc.].
3 For example, a Java client would have to use the standard JDBC
Connection.setReadonly() method.

Fig. 3 Example of a dispatcher that is connected to two adapters
running on an Oracle master and a PostgreSQL satellite

reduced performance will result due to the increased
load on the master replica. On the satellites, all transac-
tions will always be executed in read-only mode. There-
fore, if a programmer erroneously marks an update
transaction as read only, it will be aborted by the satel-
lite’s DBMS upon the execution of the first update
statement.

In the case of multiple equivalent satellites, the dis-
patcher also performs load balancing as a part of the
routing step. Different policies can be selected by the
administrator, currently round-robin, least-pending-
requests-first, or least-loaded are offered. The latter is
determined based upon load information in the meta
data sent by the adapters that is piggy backed on query
results (see Sect. 2.7).

As explained above, satellites always contain consis-
tent snapshots of the master. Transactions that work on



662 C. Plattner et al.

the master can use whatever isolation levels are offered
by that database. On the satellites, however, queries are
answered by using SI. To be able to produce fresh snap-
shots, the satellites consume writesets [21,28] from the
master. Each produced writeset relates to an update
transaction and contains all the changes performed by
that transaction. Writesets are applied on the satellites
in the order of the corresponding commit operations
on the master, thereby ensuring that the satellites con-
verge to the same state as the master. The application
of writesets is done under SI: updates from the mas-
ter and queries from the clients do not interfere in the
satellites.

The adapter on the master is responsible for assign-
ing increasing numbers (in the order of successful com-
mit operations) to all produced writesets. Every time
a transaction commits on the master, the dispatcher is
informed, along with the successfulCOMMIT reply, about
the number of the produced writeset. The number n
of the highest produced writeset WSn so far is then
used by the dispatcher to tag queries when they start,
before they are sent to the satellites. When a satellite
starts working on a query, it must be able to assign
a snapshot at least as fresh as WSn. If such a snap-
shot cannot be produced, then the start of the trans-
action is delayed until all needed writesets have been
applied. Note that transactions that are sent to the mas-
ter are never tagged, since they always see the latest
changes.

Since only a small amount of state information must
be kept by a Ganymed dispatcher, it is even possible
to construct parallel working dispatchers. This helps to
improve the overall fault tolerance. In contrast to tra-
ditional eager systems, where every replica has its own
scheduler that is aware of the global state, the exchange
of status information between a small number of RSI-
PC dispatchers can be done very efficiently. Even in the
case that all dispatchers fail, it is possible to reconstruct
the overall database state: a replacement dispatcher can
be used and its state initialized by inspecting all available
replicas.

In the case of failing satellites, a Ganymed dispatcher
simply ignores them until they have been repaired by an
administrator. However, in the case of a failing master,
things are a little bit more complicated. By just elect-
ing a new master the problem is only halfway solved.
The dispatcher must also make sure that no updates
from committed transactions get lost, thereby guaran-
teeing ACID durability. This objective can be achieved
by only sending commit notifications to clients after
the writesets of update transactions have successfully
been applied on a certain, user-defined amount of
replicas.

2.5 Master DBMS

The master DBMS, typically a commercial engine, is
used to handle all update transactions in the system. We
also rely on the master for availability, consistency, and
persistence. Since all update traffic in the system is han-
dled by the master, all conflict handling and deadlock
detection are done there.

A critical point in our design is update extraction from
the master. This is a well-known problem in database
replication that has been approached in many different
ways. In general, there are three options: propagating
the SQL statements from the dispatcher, using triggers
to extract the changes, and reading the changes from
the log. Log analysis is commonly used in commercial
solutions. Triggers are preferred in open source repli-
cation systems [13]. SQL propagation is mostly used in
research systems [6,19,26]. There is also the option of
using product-specific tools (Oracle, e.g., has numerous
interfaces that could be used for this purpose).

For generality, we use trigger-based extraction and
SQL propagation (which we call the generic approach,
see Sect. 4). Nevertheless, both introduce problems of
their own. Triggers are expensive and lower the per-
formance of the master. SQL propagation does not af-
fect the master but has problems with non-determinis-
tic statements and creates SQL compatibility problems
across heterogeneous engines. In terms of update extrac-
tion, there is really no perfect solution, and focusing on
a single type of master rather than aiming for generality
will always yield a better solution. Since, as already indi-
cated, the purpose is to have a proof of concept imple-
mentation, the two options we explore provide enough
information about the behavior of the system. We leave
the evaluation of other options and tailoring to specific
engines to future work.

2.6 Satellites

The main role of the satellites is to extend the master.
The satellites have to be able to appear and disappear
at any time without causing data loss. There might be
work lost but the assumption in our system is that any
data at the satellites can be recreated from the master.

Satellites apply incoming writesets to an FIFO order.
For specialized satellites (e.g., with aggregations or com-
binations of the master’s tables), writesets have to be
transformed before they are applied (e.g., combining
source columns into new tables, or performing aggrega-
tion by combining writesets with the tablespace data).
In general, the transformation is based on two parame-
ters: the incoming writeset WSk and the satellite’s latest
snapshot Sk−1 (see Sect. 3.1).
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Fig. 4 The management
console

2.7 Adapters

Adapters (see Figs. 2, 3) are used for gluing the different
components of the system together. The dispatcher and
the management console never talk directly to any back-
end DBMS; communication is always with an adapter.
Adapters form a common abstraction of database
engines and offer services like writeset handling and
load estimation. Apart from these tasks, adapters also
send information to the dispatcher (piggyback on the
query results) on CPU and I/O load,4 latest applied
writeset, COMMIT numbers, etc. This information is also
used by the management console, to decide if the system
has the appropriate number of satellites to handle the
current load.

Adapters are also used to solve problems that arise in
heterogeneous environments, mainly SQL dialect differ-
ences between engines. For the experiments in this
paper, we have implemented translation modules for
adapters, which can, to a certain extent, dynamically
translate queries from the master’s SQL dialect to the
one used by the satellite on which the adapter is run-
ning. As an example, these translators help to execute
Oracle TOP-N queries based on the ROWNUM con-
struct on a PostgreSQL satellite database which in turn
offers the LIMIT clause. In general, such query rewrit-
ing is a typical O(n2) problem for n database engines.

4 The actual measurement of CPU and I/O usage does not intro-
duce additional load as we simply collect the needed statistics from
the Linux proc file system, similar to the vmstat utility.

Nevertheless, note that query rewriting is necessary only
for full replication satellites but not for specialized sat-
ellites. The assumption we make is that if the notion of
satellite databases takes hold and full replication satel-
lites are implemented, there will be enough motivation
to develop such query rewriters, at least for the more
important database engines.

2.8 Management console

The manager console (see Fig. 4 for a screenshot) is
responsible for monitoring the Ganymed system. On
the one hand, it includes a permanently running process
which monitors the load of the system and the failure
of components. On the other hand, it is used by the
administrator to perform configuration changes.

While replica failure can directly be handled by the
dispatcher (failed satellites are simply discarded, failed
masters are replaced by a satellite, if possible), the fail-
ure of a dispatcher is more critical. In the event that a dis-
patcher fails, the monitor process in the manager console
will detect this and is responsible for starting a backup
dispatcher.5 Assuming fail stop behavior, the connec-
tions between the failing dispatcher and all replicas will
be closed, all running transactions will be aborted by
the assigned replicas. The manager will then inspect all
replicas, elect a master and configure the new dispatcher

5 As part of our prototype implementation we have also created
a modified PostgreSQL JDBC driver that will detect such failures
and try to find a working dispatcher according to its configuration.
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so that transaction processing can continue. The
inspection of a replica involves the detection of the last
applied writeset, which can be done by the same soft-
ware implementing the writeset extraction.

The manager console is also used by administrators
that need to change the set of attached replicas to a dis-
patcher, or need to reactivate disabled replicas. While
the removal of a replica is a relatively simple task, the
attachment or re-enabling of a replica is a more chal-
lenging task. Syncing-in a replica is actually performed
by copying the state of a running replica to the new one.
At the dispatcher level, the writeset queue of the source
replica is also duplicated and assigned to the destina-
tion replica. Since the copying process uses a SERIAL-
IZABLE read-only transaction on the source replica,
there is no need for shutting down this replica during
the duplicating process. The new replica cannot be used
to serve transactions until the whole copying process is
over. Its writeset queue, which grows during the copy
process, will be applied as soon as the copying has fin-
ished. Although from the viewpoint of performance this
is not optimal, in the current prototype the whole copy-
ing process is done by the dispatcher under the control
of the manager console.

Besides its role as the central administrative interface,
the management console hosts a monitoring component
that watches the whole setup, and performs, if neces-
sary, reconfiguration according to the policy set by the
administrator. Based on those policies, the monitor com-
ponent can take machines out of a spare machine pool
and assign them as a secondary satellite to a primary, or
it can remove and put them back into the pool. In our
prototype, policies are implemented as Java plugins.6

3 Consistency guarantees in ganymed

As indicated, Ganymed uses SI as the correctness cri-
terium for replica management. In this section, we give
a short introduction to SI and then extend the notion
of SI to apply it to replicated databases. The result is
the transaction routing algorithm we use in our system:
Replicated SI with primary copy (RSI-PC).

3.1 Snapshot isolation

Snapshot isolation [7,32] is a multiversion concurrency
control mechanism used in databases. Popular database

6 The following is a basic example of the logic contained in such
a policy: “If the average CPU load on primary satellite X is more
than 90% during more than 10 s, then start adding a new second-
ary satellite to X. If the load on X is less than 20% during more
than 10 s, then remove a secondary satellite.”

engines7 that are based on SI include Oracle [27] and
PostgreSQL [29]. One of the most important properties
of SI is the fact that readers are never blocked by writers,
similar to the multiversion protocol in [8]. This prop-
erty is a big win in comparison to systems that use two
phase locking (2PL), where many non-conflicting upd-
aters may be blocked by a single reader. SI completely
avoids the four extended ANSI SQL phenomena P0–P3
described in [7], nevertheless it does not guarantee seri-
alizability. As shown in [16,15] this is not a problem
in real applications, since transaction programs can be
arranged in ways so that any concurrent execution of
the resulting transactions is equivalent to a serialized
execution.

For the purposes of this paper, we will work with the
following definition of SI (slightly more formalized than
the description in [7]):

SI: A transaction Ti that is executed under SI gets
assigned a start timestamp start(Ti) which reflects
the starting time. This timestamp is used to define a
snapshot Si for transaction Ti. The snapshot Si con-
sists of the latest committed values of all objects of
the database at the time start(Ti). Every read oper-
ation issued by transaction Ti on a database object
x is mapped to a read of the version of x which is
included in the snapshot Si. Updated values by write
operations of Ti (which make up the writeset WSi of
Ti) are also integrated into the snapshot Si, so that
they can be read again if the transaction accesses
updated data. Updates issued by transactions that
did not commit before start(Ti) are invisible to the
transaction Ti. When transaction Ti tries to com-
mit, it gets assigned a commit timestamp commit(Ti),
which has to be larger than any other existing start
timestamp or commit timestamp. Transaction Ti can
only successfully commit if there exists no other com-
mitted transaction Tk having a commit timestamp
commit(Tk) in the interval {start(Ti), commit(Ti)}
and WSk

⋂
WSi �= {}. If such a committed transaction

Tk exists, then Ti has to be aborted (this is called the
first-committer-wins rule, which is used to prevent
lost updates). If no such transaction exists, then Ti

can commit (WSi gets applied to the database) and
its updates are visible to transactions which have a
start timestamp which is larger than commit(Ti).

A sample execution of transactions running on a data-
base offering SI is given in Fig. 5. The symbols B, C and

7 The new Microsoft SQL Server 2005 [25] implements a hybrid
approach, offering SI along with traditional concurrency control.
However, for the SI part of this paper we focus on pure SI DBMSs.
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Fig. 5 An example of
concurrent transactions
running under SI

A refer to the begin, commit and abort of a transaction.
The long running transaction T1 is of type readonly, i.e.,
its writeset is empty: WS1 = {}. T1 neither will be blocked
by any other transaction, nor will it block other transac-
tions. Updates from concurrent updaters (like T2, T3, T4,
and T6) are invisible to T1. T2 will update the database
element X, it does not conflict with any other transac-
tion. T3 updates Y, it does not see the changes made by
T2, since it started while T2 was still running. T4 updates
X and Y. Conforming to the first-committer-wins rule it
cannot commit, since its writeset overlaps with that from
T3 and T3 committed while T4 was running. The trans-
action manager has therefore to abort T4. T5 is readonly
and sees the changes made by T2 and T3. T6 can success-
fully update Y. Due to the fact that T4 did not commit,
the overlapping writesets of T6 and T4 do not impose a
conflict.

As will be shown in the next section, practical systems
handle the comparison of writesets and the first-com-
mitter-wins rule in a different, more efficient way. Both,
Oracle and PostgreSQL, offer two different ANSI SQL
isolation levels for transactions: SERIALIZABLE and
READ COMMITTED. An extended discussion regard-
ing ANSI SQL isolation levels is given in [7].

3.1.1 The SERIALIZABLE isolation level

Oracle and PostgreSQL implement a variant of the SI
algorithm for transactions that run in the isolation level
SERIALIZABLE. Writesets are not compared at trans-
action commit time, instead this process is done progres-
sively by using row level write locks. When a transaction
Ti running in isolation level SERIALIZABLE tries to
modify a row in a table that was modified by a con-
current transaction Tk which has already committed,
then the current update operation of Ti gets aborted
immediately. Unlike PostgreSQL, which then aborts the
whole transaction Ti, Oracle is a little bit more flexible:
it allows the user to decide if he wants to commit the
work done so far or if he wants to proceed with other
operations in Ti. If Tk is concurrent but not commit-
ted yet, then both products behave the same: they block
transaction Ti until Tk commits or aborts. If Tk com-
mits, then the same procedure gets involved as described
before, if however Tk aborts, then the update operation

of Ti can proceed. The blocking of a transaction due to a
potential update conflict can of course lead to deadlocks,
which must be resolved by the database by aborting
transactions.

3.1.2 The READ COMMITTED isolation level

Both databases offer also a slightly less strict isolation
level called READ COMMITTED, which is based on
a variant of SI. READ COMMITTED is the default
isolation level for both products. The main difference
to SERIALIZABLE is the implementation of the snap-
shot: a transaction running in this isolation mode gets
a new snapshot for every issued SQL statement. The
handling of conflicting operations is also different than
in the SERIALIZABLE isolation level. If a transac-
tion Ti running in READ COMMITTED mode tries
to update a row which was already updated by a con-
current transaction Tk, then Ti gets blocked until Tk
has either committed or aborted. If Tk commits, then
Ti’s update statement gets reevaluated again, since the
updated row possibly does not match a used selection
predicate anymore. READ COMMITTED avoids phe-
nomena P0 and P1, but is vulnerable to P2 and P3 (fuzzy
read and phantom).

3.2 RSI-PC

For simplicity in the presentation and without loss of
generality, we will describe RSI-PC, the dispatcher’s
transaction routing algorithm, assuming that the objec-
tive is scalability through replication for a single master
DBMS. When the satellite databases implement special-
ized functionality, the routing of the load at the middle-
ware layer will take place according to other criteria
(such as keywords in the queries, tables being accessed,
etc.).

The RSI-PC algorithm works by routing transactions
through a middleware dispatcher over a set of back-
end databases. There are two types of backend data-
bases: one master, and a set of satellites. From the client
view, the middleware behaves like an ordinary database.
Inconsistencies between master and satellite databases
are hidden by the dispatcher. The dispatcher differen-
tiates between update and read-only transactions. Note
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that “update transaction” does not necessarily mean a
transaction consisting of pure update statements, update
transactions may contain queries as well. Transactions
do not have to be sent by clients in a single block (unlike
in, e.g., [19,26]), they are processed by the dispatcher
statement by statement. However, the client must spec-
ify at the beginning of each transaction whether it is a
read only or an update. Otherwise they are handled as
update transactions by the dispatcher.

In Ganymed, update transactions are always
forwarded to the master and executed with the isolation
level specified by the client (e.g., in the case of Oracle
or PostgreSQL this is either READ COMMITTED or
SERIALIZABLE). Read-only transactions will, when-
ever possible, be sent to one of the satellites and exe-
cuted with SI in the SERIALIZABLE mode. Therefore,
the same snapshot (on the same satellite) will be used for
all statements in the transaction, ensuring that a client’s
read-only transactions see always a consistent state of
the database over their whole execution time. To keep
the satellites in sync with the master, so-called write-
set extraction is used [19]. Every update transaction’s
writeset (containing the set of changed objects on the
master) is extracted from the master and then sent to
FIFO queues on the satellites. Writesets are applied on
the satellites in the order of the corresponding commit
operations on the master, thereby guaranteeing that the
satellites converge to the same state as the master. The
application of writesets is done under SI: readers and
writers do not interfere. This speeds up both the reading
while the satellite is being updated, and the propagation
of changes – as their application is not slowed down by
concurrent readers.

3.3 Properties of RSI-PC

If required, RSI-PC can be used to provide different
consistency levels. This has no influence on update trans-
actions, since these are always sent to the master and
their consistency is dictated by the master, not by our
system. For instance, if a client is not interested in the
latest changes produced by concurrent updates, then it
can run its read-only transactions with session consis-
tency. This is very similar to the concept of strong ses-
sion 1SR introduced in [14]. On this consistency level,
the dispatcher assigns the client’s read-only transac-
tions a snapshot which contains all the writesets pro-
duced by that client, though it is not guaranteed that the
snapshot contains the latest values produced by other
clients concurrently updating the master. By default,
however, all read-only transactions are executed with
full consistency. This means that read-only transactions
are always executed on a satellite that has all the updates

performed up to the time the transaction starts. The
actual selection of a satellite is implementation specific
(e.g., round-robin, least-pending-requests-first, etc.).
Obviously, if writesets do not get applied fast enough
on the satellites, then readers might be delayed. If the
master supports SI and has spare capacity, the dispatcher
routes readers to the master for added performance.

Another possible consistency level is based on the age
of snapshots, similar to [31]. The age of a snapshot is the
difference between the time of the latest commit on the
master and the time the snapshot’s underlying commit
operation occurred. A client requesting time consistency
always gets a snapshot which is not older than a certain
age specified by the client. Time consistency and session
consistency can be combined: read-only snapshots then
always contain a client’s own updates and are guaran-
teed not to be older than a certain age.

Due to its simplicity, there is no risk of a dispatcher
implementing the RSI-PC algorithm becoming the bot-
tleneck in the system. In contrast to other middleware
based transaction schedulers, like the ones used in [6,10],
this algorithm does not involve any SQL statement pars-
ing or concurrency control operations. Also, no row or
table level locking is done at the dispatcher level. The
detection of conflicts, which by definition of SI can only
happen during updates, is left to the database running on
the master replica. Moreover, (unlike [10,18]), RSI-PC
does not make any assumptions about the transactional
load, the data partition, organization of the schema, or
answerable and unanswerable queries.

3.4 Fine grained routing of single queries

For the common case of read-only transactions in auto
commit mode (i.e., single queries), our algorithm is more
selective. Upon arrival of such a query, the dispatcher
parses the SQL SELECT statement to identify the tables
that the query will read. If this is possible (e.g., no func-
tion invocations with unknown side effects or depen-
dencies are detected), it then chooses a satellite where
all the necessary tables are up to date. This optimiza-
tion is based on the observation that, in some cases, it
is perfectly legal to read from an older snapshot. One
only has to make sure that the subset of data read in the
older snapshot matches the one in the actual requested
snapshot.

Parsing of single queries also makes it possible to
implement partial replication. In the case of ordinary
read-only transactions, it is not possible to determine in
advance which objects will be touched during a transac-
tion. Therefore, snapshots always have to be created on
satellites which hold all objects. For single queries this
is different: the required tables can be identified and a
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snapshot can be created on a satellite which holds only
those tables. This opens the possibility of dynamically
creating satellites that hold only hot spot tables and even
materialized views.

4 Update extraction

Unfortunately, writeset extraction, which is needed on
the master replica, is not a standard feature of data-
base systems. Therefore, additional programming effort
is needed for every attached type of master. Currently,
our prototype supports the following databases:

PostgreSQL: This open source DBMS can be used
both as master and satellite. PostgreSQL is very flexible,
it supports the loading of additional functionality dur-
ing runtime. Our writeset support consists of a shared
library written in C which can be loaded at runtime. The
library enables the efficient extraction of writesets based
on capturing triggers; All changes to registered tables,
be it changes through ordinary SQL statements, user-
defined triggers or user-defined functions and stored
procedures, will be captured. The extracted writesets
are table row based, they do not contain full disk blocks.
This ensures that they can be applied on a replica which
uses another low level disk block layout than the master
replica.

Oracle: Similar to PostgreSQL, we have implemen-
ted a trigger-based capturing mechanism. It consists of
a set of Java classes that are loaded into the Oracle
internal JVM. They can be accessed by executing calls
through any of the available standard Oracle interfaces
(e.g., OCI). The software is able to capture the changes
of user executed DML (data manipulation language)
statements, functions and stored procedures. A limi-
tation of our current approach is the inability to reli-
ably capture changes as a result of user defined trig-
gers. To the best of our knowledge it is not possible to
specify the execution order of triggers in Oracle. It is
thus not guaranteed that our capturing triggers are al-
ways the last ones to be executed. Hence, changes could
happen after the capturing triggers. A more robust ap-
proach would be to use the Oracle change data capture
feature [27].

DB2: We have developed support for DB2 based
on loadable Java classes, similar to the approach cho-
sen for Oracle. As before, we use triggers to capture
changes and a set of user-defined functions which can
be accessed through the standard DB2 JDBC driver to
extract writesets. Due to the different ways in which
DB2 handles the JVM on different platforms, the code
works on Windows but not on DB2 for Linux. A more
complete implementation would be based on using DB2

log extraction. Due to the incompleteness of our DB2
support for Linux, and to maintain fairness in the
comparisons, we used the generic approach, described
next, to connect to DB2.

4.1 Generic capturing of updates

Our generic approach is similar to that used on replica-
tion systems, e.g., [5,10]. We parse a transaction’s incom-
ing statements at the middleware and add all
statements that possibly modify the database to its write-
set. Of course, this type of writeset extraction (actually
more a form of writeset collection) is not unproblem-
atic: the execution of SELECT statements with side
effects (e.g., calling functions that change rows in tables)
is not allowed. The distribution of the original DML
statements instead of extracted writesets also leads to a
variety of difficulties. As an example take the following
statement:

INSERT INTO customer (c_id, c_first_login)
VALUES (19763, current_timestamp)

The execution of this statement on different repli-
cas might lead to different results. Therefore, in the
generic approach, the middleware replaces occurrences
of current_timestamp, current_date, current_time, sys-
date, random and similar expressions with a value
before forwarding the statement. Our current prototype
for use with TPC-W does this by search-and-replace. A
full blown implementation would have to be able to
parse all incoming DML statements into tokens and
then apply the substitution step. In the case of que-
ries, an alternative would be to send specialized state-
ments to the master and forward to the satellites only
those that do not involve any transformation. As men-
tioned before, our system provides at least the function-
ality and performance of the master. If the application
is willing to help, then the satellites can be used with
the corresponding gains. This is not different from cli-
ents providing hints to the optimizer, or writing queries
optimized for an existing system. Although it can be
kept completely transparent, the maximum gains will
be obtained when queries are written taking our system
into account. It should nevertheless be noted that even
though the generic approach has obvious limitations,
it is still suitable for many common simple database
applications which do not rely on database triggers or
(user-defined) functions with side effects. This problem
does not appear either if the satellite databases imple-
ment functionality that is different from that of the
master.
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Table 1 Overhead of capturing triggers

PostgreSQL Insert 126%
Update 120%
Delete 122%

Oracle Insert 154%
Update 161%
Delete 160%

4.2 Trigger overhead

Our two extensions for PostgreSQL and Oracle make
use of capturing triggers. Therefore, the question arises
as to how much overhead these mechanisms add. To find
out, we measured the difference of performing changes
in the databases with and without the capturing soft-
ware. For both systems, we made measurements where
we determined the overhead for each single update state-
ment. Three types of transactions were tested: one con-
taining an INSERT operation, one with an UPDATE
and one with a DELETE statement. No other load was
present to obtain stable results.

Table 1 shows that the overhead per update statement
can be as high as 61%. These figures, however, need to
be prorated with the overall load as the overhead is per
update statement. In the next section, we show that the
proportion of update transactions in TPC-W is never
more than 25% of the total load, and they do not solely
consist of update statements. Hence, the actual trigger
overhead is much less (see the experiments). In addition,
our system reduces the load at the master, thereby leav-
ing more capacity to execute updates and the associated
triggers in an efficient manner.

4.3 Update propagation

Ganymed applies writesets on the satellites in the com-
mit order at the master. Similar to the writeset extrac-
tion problem, there is no general interface which could
be used to efficiently get notified of the exact commit
order of concurrent commit operations. Since our initial
intention is to prove the concept of satellite databases,
we currently use a brute force approach: commits for
update transactions are sent in a serialized order from
the master adapter to the master database. However,
this can be done more efficiently, since all involved com-
ponents in this time critical process reside on the same
machine.

5 SQL compatibility

Every DBMS available today features extensions and
modifications to the SQL standard. Moreover, even if

all DBMSs would understand the same dialect of SQL,
it would not be guaranteed that the optimal formulation
of a query on one DBMS would also lead to an optimal
execution on another DBMS. To illustrate these prob-
lems, we use two examples from TPC-W.

5.1 TOP-N queries

In the TPC-W browsing workload (see later section), a
TOP-N query is used in the New Products Web Interac-
tion. The query itself returns a list of the 50 most recently
released books in a given category. One possible way to
implement this in Oracle is as follows:

SELECT * FROM (
SELECT i_id, i_title, a_fname, a_lname
FROM item, author
WHERE i_a_id = a_id
AND i_subject = ’COOKING’
ORDER BY i_pub_date DESC, i_title
) WHERE ROWNUM <= 50

The TOP-N behavior is implemented by surrounding
the actual query with a “SELECT * FROM (. . .) WHERE
ROWNUM <= n” construct. The database then not only
returns at most n rows, but the query planner can also
use that knowledge to optimize the execution of the
inner query.

Unfortunately, since ROWNUM is a virtual column
specific to Oracle, the query does not work on Post-
greSQL or DB2. However, it can easily be modified to
be run on those systems: in the case of PostgreSQL, tak-
ing the inner query and adding aLIMIT 50 clause to the
end of the query leads to the same result. For DB2, the
approach is very similar, the corresponding clause that
has to be appended is called FETCH 50 ROWS ONLY.

5.2 Rewriting as optimization

As a second example, we look at the query that is
used in TPC-W for the “Best Sellers Web Interaction”.
Amongst the 3,333 most recent orders, the query per-
forms a TOP-50 search to list a category’s most popular
books based on the quantity sold. Again, we show the
SQL code that could be used with an Oracle database:

SELECT * FROM (
SELECT i_id, i_title, a_fname, a_lname,
SUM(ol_qty) AS orderkey
FROM item, author, order_line
WHERE i_id = ol_i_id AND i_a_id = a_id
AND ol_o_id >
(SELECT MAX(o_id)-3333 FROM orders)
AND i_subject = ’CHILDREN’
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GROUP BY i_id, i_title, a_fname,
a_lname

ORDER BY orderkey DESC
) WHERE ROWNUM <= 50

This query has the same problem as the previous
TOP-N query. However, at least in the case of Post-
greSQL, replacing the ROWNUM construct with a
LIMIT clause is not enough: although the query works,
the performance would suffer. The reason is the use
of the MAX operator in the SELECT MAX(o_id)-3333
FROM orders subquery. Many versions of PostgreSQL
cannot make use of indexes to efficiently execute this
subquery due to the implementation of aggregating
operators. When specified using the MAX operator, the
subquery leads to a sequential scan on the (huge) orders
table. To enable the use of an index set on the o_id col-
umn of the orders table, the subquery must be rewritten
as follows:

SELECT o_id-3333 FROM orders
ORDER BY o_id DESC LIMIT 1

At first glance, sorting the orders table in descending
order looks inefficient. However, the use of the LIMIT 1
clause leads to an efficient execution plan which simply
looks up the highest o_id in the orders table by peeking
at the index set on the o_id column8.

5.3 Rewriting SQL on the fly

These last two examples illustrate the problems of het-
erogeneous setups. Since we assume that the client soft-
ware should not be changed (or only in a very narrow
manner), obviously the incoming queries need to be
rewritten by the middleware (more exactly, in the adapt-
ers). We propose two ways to perform the translation
step:

Generic rewriting: Depending on the DBMS (Ora-
cle, DB2, . . .) a query was originally formulated for, and
the effective place of execution (a satellite with pos-
sibly a different DBMS), a set of specific modules in
the middleware could rewrite the query. There are two
ways to structure this: one is defining a common inter-
mediate representation and set of in- and out- mod-
ules. The other possibility is to have direct translation
modules for every supported pair of master/satellite
DBMS. These solutions need no support from the client
application programmer, but are hard to develop from
the perspective of the middleware designer. Yet, if the

8 In newer PostgreSQL versions (8.0+) this particular problem
has been resolved. If the database detects the use of the MAX
operator as explained, it will rewrite the query execution plan
using the LIMIT operator.

idea of satellite databases becomes widely used, such
modules will certainly be incrementally developed.

Application-specific plug-ins: If the query diversity
is very limited (the generic rewriting approach would
be too much overhead), or if a certain generic rewrit-
ing approach for a set of master/satellites is not avail-
able, it would make sense to allow the administrator
to be able to add custom rewriting rules. At the cost
of additional maintenance, a more flexible and possibly
more efficient integration of applications and new mas-
ter/satellite DBMS pairs would be possible. Of course,
the two approaches can also be mixed: for some transla-
tions the generic modules could be used, for others the
system could call user specified translation plug-ins.

Our current prototype is mainly used with TPC-W
databases, and so the query load is well known. Since
the rules needed for TPC-W query rewriting are rather
simple, we have chosen to use specific plug-ins which
can be loaded into the adapters. The plug-ins use string
replacement which only works for our TPC-W loads but
with negligible overhead.

6 Experimental evaluation

To verify the validity of our approach we performed sev-
eral tests. We start with a worst case scenario intended to
provide a lower bound on what can be done with satellite
databases: satellites that contain full replicas of a mas-
ter database. This is a worst case scenario because of the
amount of data involved (the entire database) and the
issues created by heterogeneity (of the engines and the
dialects of SQL involved). Yet, the experiments show
that satellite databases can be used to provide a signifi-
cant degree of scalability in a wide range of applications.

6.1 Experiments performed

First, we did extensive scalability measurements for
homogeneous setups consisting only of fully replicated
PostgreSQL databases. We used a load generator that
simulates the transaction traffic of a TPC-W application
server. Additionally, we tested the behavior of Ganymed
in scenarios where database replicas fail. The failure of
both, satellites and masters, was investigated.

In a later section, we present measurements for more
complex setups, namely, heterogeneous Ganymed sys-
tems implementing full replication for Oracle and DB2
masters with attached PostgreSQL satellites. Again, we
measured the achievable performance by using different
TPC-W loads.
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6.2 The TPC-W load

The TPC benchmark W (TPC-W) is a transactional
web benchmark from the Transaction Processing Coun-
cil [12]. TPC-W defines an internet commerce envi-
ronment that resembles real world, business oriented,
transactional web applications. The benchmark also de-
fines different types of workloads which are intended to
stress different components in such applications
[namely, multiple on-line browser sessions, dynamic
page generation with database access, update of con-
sistent web objects, simultaneous execution of multi-
ple transaction types, a backend database with many
tables with a variety of sizes and relationships, trans-
action integrity (ACID) and contention on data access
and update]. The workloads are as follows: primarily
shopping (WIPS), browsing (WIPSb) and web-based
ordering (WIPSo). The difference between the different
workloads is the ratio of browse to buy: WIPSb consists
of 95% read-only interactions, for WIPS the ratio is 80%
and for WIPSo the ratio is 50%. WIPS, being the primary
workload, is considered the most representative one.

For the evaluation of Ganymed we generated data-
base transaction traces with a running TPC-W instal-
lation. We used an open source implementation [24]
that had to be modified to support a PostgreSQL back-
end database. Although the TPC-W specification allows
the use of loose consistency models, this was not used
since our implementation is based on strong consistency.
The TPC-W scaling parameters were chosen as follows:
10,000 items, 288,000 customers and the number of EBs
was set to 100.

Traces were then generated for the three different
TPC-W workloads: shopping mix (a trace file based on
the WIPS workload), browsing mix (based on WIPSb)
and ordering mix (based on WIPSo). Each trace consists
of 50,000 consecutive transactions.

6.3 The load generator

The load generator is Java based. Once started, it loads
a trace file into memory and starts parallel database
connections using the configured JDBC driver. After all
connections are established, transactions are read from
the in-memory tracefile and then fed into the database.
Once a transaction has finished on a connection, the load
generator assigns the next available transaction from the
trace to the connection.

For the length of the given measurement interval,
the number of processed transactions and the average
response time of transactions are measured. Also, to
enable the creation of histograms, the current number

of processed transactions and their status (committed/
aborted) are recorded every second.

6.4 Experimental setup

For the experiments, a pool of machines were used to
host the different parts of the Ganymed system. For
every component (load generator, dispatcher, databas-
es (master and satellites)) of the system, a dedicated
machine was used. All machines were connected
through a 100 MBit Ethernet LAN. Java software was
run with the Blackdown-1.4.2-rc1 Java 2 platform. All
machines were running Linux with a 2.4.22 kernel. The
load generator ran on a dual Pentium-III 600 MHz
machine with 512 MB of RAM. The dispatcher and
the webservice ran on dual Pentium-IV machines with
3 GHz and 1 GB of main memory. Using identical
machines (Dual AMD Athlon 1400 MHz CPU, 1 GB
RAM, 80 GB IBM Deskstar harddisk) we installed sev-
eral PostgreSQL (8.0.0), one Oracle (10G) and one DB2
(8.1) database. For the full replication experiments, each
database contained the same set of TPC-W tables (scal-
ing factor 100/10K [12]). All databases were configured
using reasonable settings and indexes; however, we do
not claim that the databases were configured in the
most optimal manner: in the case of Oracle we used
automatic memory management and enabled the cost-
based optimizer. DB2 was configured using the graphi-
cal configuration advisor. Additional optimizations were
done manually. The PostgreSQL satellites were config-
ured to not use fsync, which enables fast application
of writesets. The disabling of the fsync on the satel-
lites is not problematic (in terms of durability), since
the failure of a satellite would involve a re-sync any-
way and durability is guaranteed by the master. Before
starting any experiment, all databases were always reset
to an initial state. Also, in the case of PostgreSQL, the
VACUUM FULL ANALYZE command was executed.
This ensured that every experiment started from the
same state.

6.5 Homogeneous full replication

First, we describe our experimental results that result
from a Ganymed system used to implement homoge-
neous full replication with a set of PostgreSQL data-
bases. We did extensive scalability measurements by
comparing the performance of different multiple satel-
lite configurations with a single PostgreSQL instance.
Second, we describe the behavior of Ganymed in sce-
narios where databases fail. The failure of both satellites
and masters was investigated.
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6.5.1 Performance and scalability

The first part of the evaluation analyzes performance
and scalability. The Ganymed prototype was compared
with a reference system consisting of a single
PostgreSQL instance. We measured the performance
of the Ganymed dispatcher in different configurations,
from 0 up to 5 satellites. This gives a total of seven exper-
imental setups (called PGSQL and SAT-n, 0 ≤ n ≤ 5),
each setup was tested with the three different TPC-W
traces.

The load generator was then attached to the database
(either the single instance database or the dispatcher,
depending on the experiment). During a measurement
interval of 100 s, a trace was then fed into the system
over 100 parallel client connections and at the same time
average throughput and response times were measured.
All transactions, read only and updates, were executed
in the SERIALIZABLE mode. Every experiment was
repeated until a sufficient, small standard deviation was
reached.

Figure 6 shows the results for the achieved through-
put (transactions per second) and average transaction
response times, respectively. The ratio of aborted trans-
actions was below 0.5% for all experiments.

Figure 7 shows two example histograms for the
TPC-W ordering mix workload: on the left side the ref-
erence system, on the right side SAT-5. The sharp drop
in performance in the SAT-5 histogram is due to mul-
tiple PostgreSQL replicas that did checkpointing of the
WAL (write ahead log) at the same time. The replicas
were configured to perform this process at least every
300 s; this is the default for PostgreSQL.

Based on the graphs, we can prove the lightweight
structure of the Ganymed prototype. In a relay
configuration, where only one replica is attached
to the Ganymed dispatcher, the achieved performance
is almost identical to the PostgreSQL reference sys-
tem. The performance of the setup with two replicas,
where one replica is used for updates and the other
for read-only transactions, is comparable to the sin-
gle replica setup. This clearly reflects the fact that the
heavy part of the TPC-W loads consists of complex
read-only queries. In the case of the write intensive
TPC-W ordering mix, a two replica setup is slightly
slower than the single replica setup. In the setups where
more than two replicas are used, the performance com-
pared to the reference system could be significantly
improved. A close look at the response times chart
shows that they converge. This is due to the RSI-PC
algorithm which uses parallelism for different transac-
tions, but no intra-parallelism for single transactions.
A SAT-5 system, for example, would have the same
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Fig. 6 Ganymed performance for TPC-W mixes
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Fig. 7 Example histograms for the TPC-W ordering mix

performance as a SAT-1 system when used only by a
single client.

One can summarize that in almost all cases a nearly
linear scale-out was achieved. These experiments show
that the Ganymed dispatcher was able to attain an
impressive increase in throughput and reduction of
transaction latency while maintaining the strongest
possible consistency level.

It must be noted that in our setup all databases were
identical. By having more specialized index structures
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Fig. 8 Ganymed reacting to a satellite failure

on the satellites the execution of read-only transactions
could be optimized even more. We are exploiting this
option as part of future work.

6.5.2 Reaction to a failing satellite replica

In this experiment, the dispatcher’s reaction to a failing
satellite replica was investigated. A SAT-3 system was
configured and the load generator was attached with the
TPC-W shopping mix trace.

After the experiment was run for a while, one of the
the satellite replicas was stopped, by killing the Post-
greSQL processes with a kill (SIGKILL) signal. It must
be emphasized that this is different from the usage of
a SIGTERM signal, since in that case the PostgreSQL
software would have had a chance to catch the signal
and shutdown gracefully.

Figure 8 shows the generated histogram for this exper-
iment. In second 56, a satellite replica was killed as
described above. The failure of the satelite replica led
to an abort rate of 39 read-only transactions in second
56; otherwise no transaction was aborted in this run.
The arrows in the graph show the change of the average
transaction throughput per second. Clearly, the system’s
performance degraded to that of a SAT-2 setup. As can
be seen from the graph, the system recovered immedi-
ately. Transactions running on the failing replica were
aborted, but otherwise the system continued working
normally. This is a consequence of the lightweight struc-
ture of the Ganymed dispatcher approach: if a replica
fails, no costly consensus protocols have to be executed.
The system just continues working with the remaining
replicas.

6.5.3 Reaction to a failing master replica

In the last experiment, the dispatcher’s behavior in the
case of a failing master replica was investigated. As in
the previous experiment, the basic configuration was a
SAT-3 system fed with a TPC-W shopping mix trace.
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Fig. 9 Ganymed reacting to a master failure

Again, a SIGKILL signal was used to stop PostgreSQL
on the master replica.

Figure 9 shows the resulting histogram for this exper-
iment. Transaction processing is normal until in second
45 the master replica stops working. The immediate
move of the master role to a satellite replica leaves
a SAT-2 configuration with one master and two satel-
lite replicas. The failure of the master led to an abort
of two update transactions; no other transactions were
aborted during the experiment. As before, the arrows
in the graph show the change of the average transaction
throughput per second.

This experiment shows that Ganymed is also capable
of handling failing master replicas. The system reacts
by reassigning the master role to a different, still work-
ing satellite. It is important to note that the reaction
to failing replicas can be done by the dispatcher with-
out intervention from the manager console. Even with
a failed or otherwise unavailable manager console the
dispatcher can still disable failed replicas and, if needed,
move the master role autonomously.

6.6 Heterogeneous full replication

In this section, we discuss several experiments per-
formed using Oracle and DB2 master databases. In both
cases we attached a dispatcher and a varying set of Post-
greSQL satellite databases. Again, we used the three
TPC-W workloads to measure the performance. How-
ever, this time we also added a fourth load which is
used to demonstrate the capability of the heterogeneous
systems to handle peaks of read-only transactions: 200
concurrent clients were attached to the system, having
100 clients sending TPC-W ordering transactions and
100 clients sending read-only transactions. The read-
only transaction load was created by taking a TPC-W
browsing trace and eliminating all update transactions.

For all experiments, the dispatcher was configured to
execute read-only transactions with full consistency. We
did not make use of loose consistency levels or partial
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replication possibilities (as these benefit our approach).
The assignment of read-only transactions to satellites
was done using a least-pending-requests-first strategy.
Since Oracle offers SI, we also assigned readers
(using isolation level read only) to the master when
readers would have been otherwise blocked (due to the
unavailability of the requested snapshot on the satel-
lites). In the case of DB2 the master could not be used
to offer SI for readers. Therefore, in the worst case, read-
only transactions were delayed until a suitable snapshot
on a satellite was ready.

To get an idea of the design space, we tested Oracle
with update extraction using triggers (table level trig-
gers) and using the generic approach (SQL propaga-
tion). DB2 was tested only with the generic approach,
since we have not implemented a trigger-based approach
yet.

6.6.1 Oracle using triggers

In our first series of experiments we tested a dispatcher
that uses triggers to do writeset extraction on Oracle.
First we measured performance by attaching the load
generator directly to Oracle without triggers. Then, we
attached the dispatcher and installed the writeset extrac-
tion features on the Oracle master for the remaining
measurements. The results, relative throughput in terms
of transactions per second (TPS) and response times, are
shown in Fig. 10. For both graphs the first experiment,
labeled ORA, represents Oracle without triggers and
without our system. The second column, SAT-0, shows
the performance when putting the dispatcher between
the load generator and the master but no satellite da-
tabases. The next columns show the results of having
attached additional 1–5 PostgreSQL satellite databases
to the dispatcher (SAT-1 until SAT-5).

As the graphs show, the system provides substantial
scalability both in throughput and response time for
loads with enough read operations. In addition, using
the master for blocked readers has interesting conse-
quences. While in the browsing workload readers almost
never have to be delayed, the shopping workload pro-
duces many readers that need a snapshot which is not
yet available on the satellites. As a result, the shopping
workload can be scaled better for small numbers of repli-
cas, since the resources on the master are better utilized.
Second, the trigger approach and commit order seriali-
zation adds a certain overhead. Thus, if clients execute
many update transactions (as in the ordering workload)
scale-out is reduced and performance is dominated by
the master. However, scale-out is only reduced from
the viewpoint of clients that execute updates: the mixed
workload is able to achieve a very good scale-out, even
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Fig. 10 Measurement results for Oracle with the trigger-based
approach

though the number of clients is doubled in comparison
to the ordering workload. The system is therefore able
to handle peaks of readers.

6.6.2 Oracle using the generic approach

Since our used TPC-W workload does not use any stored
procedures, it can also be used with the generic writeset
extraction. This eliminates the overhead of the captur-
ing triggers. In the second experiment series we tested
such a configuration, again with Oracle. The results are
shown in Fig. 11.

Obviously, as can be seen by comparing ORA and
SAT-0, the overhead of the dispatcher approach is now
very small. However, commit order detection is still
in place, which has an impact on update transactions.
Again, the graphs show that the system is able to scale
well for read dominated loads.

6.6.3 DB2 using the generic approach

Using DB2 with generic writeset capturing we per-
formed the same experiments as before. However, some
modifications had to be introduced. Since DB2 offers
no SI, the system was configured to block such trans-
actions until the snapshot became available. Also, our
first trial experiments with DB2 suffered from the same
problem as those with Oracle, that is to say, serialized
commits lead to limited scale-out for update intensive
workloads. In the case of DB2, we then optimized the
database engine configuration to speed-up commits.

The results based on DB2 are shown in Fig. 12. As
before, our system offers very good scalability. One can
also observe that the optimized commit at the master
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Fig. 11 Measurement results for Oracle with the generic
approach
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Fig. 12 Measurement results for DB2 with the generic approach

pays off: the performance of the shopping workload
approaches that of the mixed workload. An interesting
point is the scale-out of the browsing workload, which is
less than expected. The reason is the slightly different set
of indexes and queries which we used on the DB2 and
PostgreSQL engines. As a consequence, PostgreSQL
could more efficiently handle the read-only transac-
tions in the shopping and order workloads, while DB2
performed better when executing the (more complex)
mix of read-only transactions in the browsing workload.
Since the objective of the experiments was to prove the
feasibility of the approach, we did not proceed any fur-
ther with optimizations and tuning on both master and
satellites.

6.6.4 Interpretation of heterogeneous results

The main conclusion from these experiments is that sat-
ellites can provide significant scalability (both in terms
of throughput and response time) as long as there is
enough reads in the load. The differences in behavior
between the three set-ups are due to low level details of
the engines involved. For instance, with Oracle we need
to commit transactions serially (only the commit, not
the execution of the operations) to determine the write-
set sequence. This causes a bottleneck at the master
that lowers the scalability for the shopping and ordering
traces (the ones with most updates). We also execute
queries at the master when there are many updates,
thereby also increasing the load at the master and hence
enhancing the bottleneck effect for traces with high
update ratios. In DB2 we have a more efficient mecha-
nism for determining commit order and we never
execute queries on the master. This leads to better sca-
lability for the shopping and ordering traces. As another
example, the browsing trace scales worse with DB2 as
master than with Oracle as master. The reason is the
slightly different set of indexes and queries which we
used on the DB2 and PostgreSQL engines. As a con-
sequence, PostgreSQL could more efficiently handle
the read-only transactions in the shopping and ordering
workloads, while DB2 performed better when executing
the (more complex) mix of read-only transactions in the
browsing workload.

When the overhead is dominated by queries (brows-
ing mix), assigning readers to a single satellite does not
yield any performance gain. Two satellites are needed to
increase the read capacity in the system – this is also the
case for Oracle, since the master is used only for blocked
queries.

For all set-ups, even when there is a significant update
load at the master, the system provides good scalability.
This can be seen in the mixed workload (100 ordering +
100 read-only clients) which has twice as many clients
as in the other workloads. These results are encourag-
ing in that they demonstrate the potential of satellite
databases. They also point out to the many issues in-
volved in implementing full replication in satellites. One
such issue is the trade off between loading the master or
not loading it (the Oracle set-up achieves slightly better
response times although the throughput is reduced due
to the bottleneck effect mentioned). Other issues that
are beyond the scope of this paper include: SQL incom-
patibilities, overhead of update extraction, and engine-
specific optimizations. Most of these problems are to a
large extent engineering issues that need to be resolved
in a product-specific manner. This is why we see these
results as a form of lower bound in terms of what can
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be achieved rather than as an absolute statement of the
performance of full replication satellites.

7 Specialized satellites

The third set of experiments explore the performance of
specialized satellites. The objective here is to show the
true potential of satellite databases in a setting that turns
out to be much easier to implement and less constrained
than full replication satellites. We show satellites imple-
menting skyline queries as an extension to an Oracle
master and satellites implementing an extra table for
keyword search as an extension to a DB2 master.

7.1 Skyline satellites

As a first example of specialized satellites, we use
PostgreSQL satellites to extend an Oracle master with
skyline queries [9,11]. The objective is to show how sat-
ellites can be used to implement new operators that
require heavy computation without affecting the master
(unlike, e.g., data blades). Our implementation of the
skyline operator for PostgreSQL databases is based on
the Block Nested Loop (BNL) algorithm [9]. Clients can
execute queries of the following form:

SELECT ... FROM ... WHERE ...
GROUP BY ... HAVING ... ORDER BY ..
SKYLINE OF c1 [MIN|MAX] {, cN [MIN|MAX]}

These statements are distinctive and can easily be
detected by the dispatcher, which forwards them to the
satellites. Any other update or query is sent to the mas-
ter. The routing policy in the dispatcher is least-pending-
requests-first.

For the experiments, we used Oracle as master and
1 to 8 PostgreSQL satellites (only replicating the orders
and order_line tables). We performed two experiments,
one with no updates at the master and one with updates
at the master (50 NewOrder transactions per second
from the TPC-W benchmark). We measured through-
put and response times for various numbers of skyline
clients. All results are given relatively to the perfor-
mance of a single client connected to a system with a
single satellite (we cannot compare with a master since
the master does not support the skyline operator). Each
client constantly sends read-only transactions contain-
ing the following skyline query to the system, with no
thinking time between transactions:

SELECT o_id, o_total, SUM (ol_qty) AS qty_sum
FROM orders, order_line
WHERE o_id = ol_o_id AND ol_o_id >

(SELECT o_id-500 FROM orders
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Fig. 13 Skyline performance results

ORDER BY o_id DESC LIMIT 1)
GROUP BY o_id, o_total ORDER BY o_total
SKYLINE OF o_total MAX qty_sum MIN

7.1.1 Results: skyline satellites

The results are shown in Fig. 13 (the axis represent sca-
lability in percentage versus number of clients submit-
ting skyline queries, the lines in each graph correspond
to the different number of satellites). Overall, adding
additional satellites supports more clients at a higher
throughput. It also improves the response time as clients
are added, thereby contributing to the overall scalability
of the resulting system. One can also observe that the
system starts saturating when the number of clients is
twice the number of satellites – which corresponds to
the two CPUs present in each satellite machine. This is a
consequence of the BNL-based skyline operator which
is very CPU intensive – a client that constantly sends
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queries is able to almost saturate one CPU. This also
explains why the response time increases linearly with
the number of clients. The important aspect here is that,
as the experiments show, we have extended an Oracle
database with scalable support for skyline queries with
little overhead on the original master.

7.2 Keyword search satellites

As a second example of specialized satellites, we use
a PostgreSQL-based full text search that extends the
TPC-W schema deployed in a DB2 master. The objec-
tive here is to show how satellites can be used to add
new tables (or, e.g., materialized views, indexes, etc.)
to an existing database without inflicting the cost of
maintaining those tables on the master.

The keyword search facility consists of a keyword
table (holding 312,772 triples consisting of a keyword,
book id and weight) and an index to speed-up look-
ups. The keywords are generated by extracting words
from the i_desc field in the item table. The keyword
search facility is not static: we assigned weights to the
keywords which correlate with the last 3,333 orders in
the order_line table.

The challenge is how to keep the keyword table
up-to-date. In terms of the load, maintaining the table
has two consequences: first, the read-load increases due
to the need to read the data to compute the table. Sec-
ond, there is an additional load caused by the logic that
computes the table.

The approach we have tested is one in which the table
is re-built periodically on the satellite by additional Java
code that is hooked into the adapter. It scans the descrip-
tions of all books in the item table and builds a keyword
table with regard to the latest orders. This is, of course,
not the most efficient solution to this problem but it is
quite representative of a wide range of applications that
use such external programs to maintain derived data.

7.3 Results: keyword search satellites

Figure 14 shows the results of this experiment with
two sets of measurements: throughput (solid columns)
and build time (shaded columns).
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Fig. 14 Rebuilding the keyword table

For throughput, the base line is DB2 running 100
TPC-W shopping clients (100% performance). The mid-
dle solid column (main engine, loaded) shows what
happens to the throughput of those 100 clients when
the table is rebuilt: it drops to 74%. The rightmost solid
column shows the throughput for a DB2 master with
one PostgreSQL satellite that is used to store the table
(and replicate the item and order_line tables) and keep
it up-to-date. Throughput goes back to 100% since the
master does not see the overhead of updating the table.

For build time, we use as base line the time it takes to
rebuild the table in DB2 when DB2 is not loaded (30 s,
taken as 100% in the figure). When we try to rebuild the
table but DB2 is loaded with the 100 TPC-W shopping
clients, the rebuild time is almost five times longer than
when DB2 is idle (140 s, or 472% of the base line). Once
the rebuild happens in the satellite, the rebuild time goes
down to 103% even with the master loaded with the 100
TPC-W shopping clients.

7.4 Discussion: specialized satellites

The two experiments show that specialized satellites can
be used to extend an existing master database without
affecting performance at the master. This new function-
ality can be, e.g., operators that are not supported at
the master (like the skyline queries) or additional tables
derived from already existing data (like the keyword
search). In both cases, the experiments show that sat-
ellites can easily support such extensions in a scalable,
non-intrusive manner.

Overall, it is in this type of applications where sat-
ellites may prove most valuable. On the one hand, the
complex issues around full replication satellites are not
present in specialized satellites, thereby simplifying the
implementation. On the other hand, the fact that our
satellites are open source databases offers an open plat-
form in which to implement new functionality. This is
particularly important for many scientific applications.
The only downside is that satellites are static and may
not always be needed. The obvious next step is to be
able to add such specialized satellites dynamically.

8 Dynamic creation of satellites

In this section, we describe our approach to dynamically
create satellites. First, we describe the basic available
options. Then, we describe the differences between the
so-called logical and physical copy approach. Next, we
describe our PITR (point-in-time recovery) based phys-
ical copy approach that we use in Ganymed. We also
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provide several experiments that show the flexibility of
our PITR-based prototype.

8.1 Basic options

We have identified three basic techniques that could
be used to dynamically create satellites; they can actu-
ally be combined (all of them similar to crash recovery
procedures):

Copy: To create a satellite, one can simply copy the
latest snapshot from the master. If another satellite is
already available, one can copy the data from the satel-
lite instead. Also, during the copy process, the writeset
queue of the new satellite is already being populated.
However, these writesets can only be applied after the
satellite has successfully finished the copying process.
When adding the first satellite to a master, this is the
only possible approach. If the master does not support
SI (as DB2), then this means that updates have to be
blocked until the initial satellite has been set up (for
instance by using table level locks). However, this hap-
pens only once, since further satellites can be generated
by taking a snapshot from existing satellites.

Writeset replay: This approach is feasible if we have
an old checkpoint of the master. For instance, this could
be useful when a satellite is taken out of a Ganymed
setup and then later added again. If the contained data
are not too stale, then the middleware can apply just the
writesets which are needed to bring it to the latest state.
Of course, this involves keeping a history of writesets
– either on the master or on the primary satellite. The
maximum acceptable staleness is therefore dependant
upon the space assigned for keeping the history.

Hybrid: A more fine grained approach is to decide
for each table object which of the two above approaches
is more appropriate. Note that the availability of the
writeset replay approach for a certain table does not
imply that the copying approach has to be disregarded.
For example, in the case of a small table, copying is
probably cheaper than applying a large set of updates.

Even though the writeset reply and hybrid approaches
offer interesting possibilities, we have so far only imple-
mented the copy approach in our prototype.

8.2 Logical or physical copy

There are two options for implementing the copy
approach, one has to consider two options: logical copy
and physical copy. By logical copy we refer to the mech-
anism of extracting and importing data using queries,
while physical copy refers to directly transferring DBMS
table space files from machine to machine. In our proto-

type we use a variant of the physical copy approach to
spawn new satellites given an existing primary satellite.

The big advantage of the logical copy approach is high
flexibility. Table data can be replicated between different
types of DBMSs through well-defined interfaces, e.g.,
using a DBMS’s import/export tools or JDBC.9 Using
logical copies, partial replication is straightforward (one
could replicate, e.g., only the customer table or Euro-
pean customers). However, the price for this flexibility
is speed. First, copying at the logical level is more expen-
sive, and second, indexes have to be rebuilt after the
corresponding table data have been copied.

The main advantage of the physical copy approach
is speed. Throughput is only limited either by disk con-
trollers or available network bandwidth. Also, indexes
do not have to be rebuilt, they are just copied the same
way as the table data. The downside of the approach is
the limited use in heterogeneous setups. Yet, when using
the same DBMS type across machines, physical copy is
often only possible by copying the full DBMS installa-
tion, even though only a subset of the tables is needed.
Therefore, enhancing a running replica with additional
tables is not straightforward. Another problem arises
when the source machine does not allow to copy the
tablespaces while the DBMS is online. Then, depend-
ing on the capabilities of the used DBMS software, it
might be that the source DBMS has to be stopped (and
therefore its writesets have to be queued), as long as
the copying process is ongoing. This leads to a tempo-
rary decrease in performance, since one less satellite
can work on read-only transactions. Also, the copied
data cannot be accessed until all data have been trans-
ferred, since only then the new DBMS replica can be
started up. This is in contrast to the incremental nature
of the logical copy approach: there, as soon as pending
writesets have been applied, consistent access to tables
is possible – even though indexes and other tables may
not yet be ready.

To demonstrate the difference in terms of perfor-
mance of the two alternatives, we have performed mea-
surements based on the replication of the order_line
table defined in TPC-W. The table has three indexes
and was populated in two versions: small and big (which
corresponds to the TPC-W scaling factors 10,000 and
100,000). The measurements were done using two Post-
greSQL satellites, the results are shown in Table 2.

As expected, the physical copy approach is faster,
even though much more data have to be transferred.
Yet, the logical copy approach allows to create a satel-
lite in minutes, which is already acceptable in many

9 Octopus [30], for example, is a popular transfer tool based on
JDBC.
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Table 2 Logical versus physical copy performance for the TPC-W order_line table

Logical copy Physical copy

Small Big Big
Small Small Big Big

Small

Tuples 777,992 7,774,921 9.99 777,992 7,774,921 9.99
Transfer data size bytes 65,136,692 658,239,572 10.11 95,608,832 953,860,096 9.98
Data Copy Time s 22.86 234.80 10.27 8.96 83.39 9.31
Data Transfer Speed MB/s 2.72 2.67 0.98 10.18 10.91 1.07
Sum of Indexes Size bytes 45,506,560 453,607,424 9.97 45,506,560 453,607,424 9.97
Indexes Creation/CopyTime s 10.58 358.94 33.93 4.67 41.49 8.88
Indexes Transfer Speed MB/s NA NA NA 9.29 10.43 1.12
Total time s 33.44 593.74 17.76 13.63 124.88 9.16

applications. One could further reduce this cost by using
checkpoints and the hybrid approach discussed before.
Note, however, the result for the index recreation time
using logical copies: even though the ratio of tuples is
approximately 10:1, the ratio of index recreation times is
about 34:1. This is due to the involved sorting algorithm
which is needed to rebuild the indexes.

8.3 Physical copy: The PITR approach

In our prototype we create new satellites by physically
copying an existing satellite to a fresh, empty satellite.
As already said, the main advantage over a logical copy-
ing process (e.g., dump-and-restore) is the time saved
by not having to re-create any data structures (like in-
dexes). We assume that the master has one primary
satellite permanently attached to it. In heterogenous set-
ups, it is the job of the administrator to create an initial
primary satellite when setting up a Ganymed system.
New, secondary satellites are then created from the pri-
mary satellite, not from the master. Reading the needed
data from the primary satellite allows us to minimize the
impact on the master and removes the problems created
by the heterogeneity between master and satellites.

The main problem we face during the creation of
new satellites is the initialization phase. We need to get
a copy of the primary, install it in the secondary, apply
any additional changes that may have occurred in the
meantime, and start the secondary. And all this without
interrupting the clients that are operating on the sys-
tem. The solution we propose is based on a technique
called PITR (point-in-time-recovery). The PITR support
in PostgreSQL (only available starting with the beta
releases of version 8) allows the creation of a satellite by
using the REDO log files from the primary. We extend
this technique so that the rest of the transactions can be
obtained from the adapter that resides at the master.

Adding a dynamic satellite works in several stages.
First, an copy of the primary installation is pushed into
the secondary. Then, a marker transaction is submitted,

which becomes part of the REDO log files at the pri-
mary. It marks those transactions executed between the
time the copy of the primary was made and the time the
marker was submitted (i.e., the time it took to place the
copy on the secondary). In the next step, the REDO log
files from the primary are copied to the new satellite and
PITR is used to recover up to the marker transaction.
What is left to apply are the transactions that were exe-
cuted after the marker transaction. This is done by the
adapter of the new satellite, which reads the contents
written by the marker transaction. There, among other
things, it finds the number of the latest applied writeset.
It then uses this information to ask the adapter at the
master for the missing writesets. Since the master keeps
a (limited) history of writesets, the fresh satellite can
ask for slightly older writesets. If the time between the
marker transaction and the startup of the adapter is too
long, the needed writesets may not exist on the master
anymore and the whole operation fails. The length of
the history kept at the master is a parameter that can be
set at configuration time and largely depends on what
type of satellites are being created.

Therefore, the history on the master has to be kept
not too small, and the last steps (copying of the latest
REDO files, PITR recovery and startup of the adapter)
shall be as efficient as possible. The main task of the
process, namely, the copying of the datafiles, is not time
critical; however, it can lead to increased amounts of
REDO information depending on the current update-
load and the total copying time.

8.4 Results: dynamic satellites

We have performed two sets of experiments to evaluate
the dynamic creation of satellites. In a first experiment,
we measure the time it takes to create a new satellite
from a given idle primary. We use two different sizes for
the primary: a small TPC-W database (scaling factors
100/10 K, with a database size of 631 MB) and a big-
ger one (100/1 M, requiring 1.47 GB). The results are
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shown in Fig. 15: we can create a new satellite for the
large primary in about 3 min., for the small primary the
process only takes 1.5 min. As the times for each phase of
the satellite creation indicate, the largest cost consists of
the physical copying of the database. This time is directly
determined by the available network bandwidth.

In a second experiment, we evaluated the overhead
caused at the primary by dynamic satellite creation. To
measure this, we loaded a primary satellite with a con-
stant load of 50 TPC-W promotion Related transactions
per second and measured the response times at the pri-
mary during the creation of a new satellite. Fig. 16 shows
the results. As can be seen, the response times degrade
for a short time (data copying took place from seconds
0 to 89) but quickly revert to normal once the copy has
been made.

8.5 Experiment details: dynamic skyline satellites

Once we have established that satellites can be dynami-
cally created, we need to look at the effects of
dynamic creation over specialized satellites. For this
purpose we ran an experiment with dynamic skyline
satellites (characteristics identical to the ones described
above).

In the experiment, an Oracle master is extended with
a PostgreSQL primary satellite configured to offer the
skyline facility over a subset of the TPC-W data (order
and order_line tables). The system was loaded with a
varying number of skyline query clients over time.
Additionally, the master database was loaded with
50 TPC-W NewOrder update transactions per second,
hence, each running satellite also had to consume 50
writesets per second. The management console was con-
figured with a pool of spare satellite machines which it
activates according to the policy described in the foot-
note in Sect. 2.8 (the exact nature of the policy is not
relevant for the purposes of this paper). Response times

were measured relative to the results of a single client
working on the primary satellite. Note that our current
implementation can only create one secondary satellite
per primary satellite at a time.

8.6 Results: dynamic skyline satellites

The results are shown in Fig. 17. The figure shows how
the number of clients varies over time (with two peaks of
12 clients), the number of satellites spawned by the man-
agement console in response to the load, and the actual
response time observed by the clients (on average over
all clients). In the first peak that has a slow increase of cli-
ents, the system can respond well by gradually increasing
the number of satellites so that the response time slowly
converges to the initial one with only one client. In the
second peak, there is a surge of clients that saturate the
system. As a result, the copying of the source tables is
slower than before. Nevertheless, the system eventually
manages to create enough satellites to cope with the new
load.

As shown, the dynamic process not only spawns new
satellites, it also removes the ones no longer needed.

8.7 Discussion: dynamic satellites

These experiments demonstrate that satellites can be
created dynamically. The time it takes to create new
satellites is dominated by the size of the data to be cop-
ied, the available network bandwidth, and the load at
the primary. Again, this favors specialized satellites that
do not need to copy as much data as full replication
satellites. Together with the results we show for static
specialized satellites, the conclusion is that satellites can
be used to great advantage to extend the functionality of
existing database engines and to do so dynamically, on
demand. This ability opens up several interesting appli-
cations for satellites such as database services within a
data grid, dynamic database clusters and autonomic sca-
lability by dynamically spawning specialized satellites.

As in the case of full replication, the basic proce-
dure described here can be optimized in many different
ways. For instance, the machines used for creating satel-
lites could already store an old version of the database.
Then dynamic creation would only involve replaying
the log. Also, many modern computer clusters have sev-
eral networks, thereby providing more bandwidth. The
slow reaction observed when new satellites are created
from a saturated system can be avoided by using a more
aggressive policy for creating satellites. Also, for very
large increases in load, several satellites could be cre-
ated simultaneously, rather than one at a time. We leave
these optimizations for future work.
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9 Related work

Work in Ganymed has been mainly influenced by
C-JDBC [10], an open source database cluster middle-
ware based on a JDBC driver. C-JDBC is meant mainly
for fault tolerance purposes and it imposes several
limitations in the type of load that can be run. It offers
variants of the Read-One Write-All approach with
consistency guaranteed through table level locking.
C-JDBC differs from Ganymed in that it duplicates
database functionality at the middleware level, includ-
ing locking and writeset extraction and propagation.

Daffodil Replicator [13] is an open source tool that
allows data extraction from several database engines
and replication in heterogeneous engines. It is based on
triggers and stored procedures but does not provide any
degree of consistency to the client. Clients must also
connect exclusively either to the master or to a replica
and therefore do not see a single database.

Distributed versioning and conflict aware scheduling
is an approach introduced in [5,6]. The key idea is to
use a middleware-based scheduler which accepts trans-
actions from clients and routes them to a set of replicas.
Consistency is maintained through the bookkeeping of
versions of tables in all the replicas. Every transaction
that updates a table increases the corresponding version
number. At the beginning of every transaction, clients
have to inform the scheduler about the tables they are
going to access. The scheduler then uses this information
to assign versions of tables to the transactions. Similar
to the C-JDBC approach, SQL statements have to be
parsed at the middleware level for locking purposes.

Group communication has been proposed for use in
replicated database systems [3,2,20]; however only a
few working prototypes are available. Postgres-R and
Postgres-R(SI) [21,35] are implementations of such a
system, based on modified versions of PostgreSQL (v6.4
and v7.2). The advantage of these approaches is the
avoidance of centralized components. Unfortunately, in
the case of bursts of update traffic, this becomes a dis-
advantage, since the system is busy resolving conflicts
between the replicas. In the worst case, such systems are

slower than a single instance database and throughput
increases at the cost of a higher response time. A solution
to the problem of high conflict rates in group communi-
cation systems is the partition of the load [18]. In this ap-
proach, although all replicas hold the complete data set,
update transactions cannot be executed on every replica.
Clients have to predeclare for every transaction which
elements in the database will be updated (so called con-
flict classes). Depending on this set of conflict classes, a
so-called compound conflict class can be deduced. Every
possible compound conflict class is statically assigned
to a replica, replicas are said to act as master site for
assigned compound conflict classes. Incoming update
transactions are broadcasted to all replicas using group
communication, leading to a total order. Each replica
decides then if it is the master site for a given transac-
tion. Master sites execute transactions, other sites just
install the resulting writesets, using the derived total
order. Recently, the work has been extended to deal
with autonomous adaption to changing workloads [26].

In contrast to this work [6,10,26], Ganymed does not
involve table level locking for updates, nor does it force
the application programmer to pre-declare the struc-
ture of each transaction or to send transactions as full
blocks. Furthermore, Ganymed supports partial repli-
cation, something that would be very difficult to do
with the systems mentioned. Much of such existing work
applies exclusively to full replication [5,23,26,31,35].

Recent work has demonstrated the possibility of cach-
ing data at the edge of the network [1,4,17,22] from a
centralized master database. This work, however, con-
centrates on caching at the database engine level and
it is very engine specific. Some of these approaches are
not limited to static cache structures; they can react to
changes in the load and adapt the amount of data kept
in the cache. To local application servers, the caches
look like an ordinary database system. In exchange with
decreased response times, full consistency has to be
given up.

In terms of the theoretical framework for Ganymed,
the basis for consistency in the system is the use of
snapshot isolation [7]. SI has been identified as a more
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flexible consistency criteria for distribution and
federation [32]. It has also been studied in conjunc-
tion with atomic broadcast as a way to replicate data
within a database engine [19]. This work was the first to
introduce the optimization of propagating only write-
sets rather than entire SQL statements. The first use
and characterization of snapshot isolation for database
replication at the middleware level is our own work [28].
In that early system, SI was used as a way to utilize lazy
replication (group communication approaches use ea-
ger replication and, thus, enforce tight coupling of all
databases) and to eliminate the need for heavy process-
ing at the middleware level (be it versioning, locking,
or atomic broadcast functionality). The level of consis-
tency introduced by Ganymed (clients always see their
own updates and a consistent snapshot) was indepen-
dently formalized as strong session consistency in [14],
although those authors emphasize serializability. Never-
theless, note that Ganymed provides a stronger level of
consistency in that clients do not only get strong session
consistency, they get the latest available snapshot. More
recently, [23] have proposed a middleware-based repli-
cation tool that also uses SI. Conceptually, the system
they describe is similar to the one described in [28]. The
differences arise from the use of group communication
and the avoidance of a central component in [23] and
the corresponding limitations that this introduces: load
balancing is left to the clients, partial replication is not
feasible, and the middleware layer is limited to the sca-
lability of the underlying atomic broadcast implementa-
tion. More importantly, unless clients always access the
same replica, [23] does not provide strong session con-
sistency as clients are not guaranteed to see their own
updates. Clients are not even guaranteed to see increas-
ing snapshots as time travel effects are possible when
consecutive queries from the same client are executed
on different replicas that are not equally up-to-date.

A possible extension of our system is to implement a
solution similar to that proposed in [31], where clients
can request to see a snapshot not older than a given
time bound. In our system, this can be achieved by using
satellites that lag behind in terms of snapshots.

10 Conclusions

This paper has presented the design, implementation,
and evaluation of a database extension platform (Gany-
med). The core of the platform is what we call satel-
lite databases: a way to extend and scale out existing
database engines. Satellite databases are lightweight
databases that implement either copies of the master

database or specialized functionality that is not
available at the master database. In the paper, we
describe the architecture of the system and its imple-
mentation. We also provide extensive experiments that
prove the feasibility of the idea by showing how satellite
databases perform in a wide variety of settings: full rep-
lication, specialized functionality (skyline queries and
keyword search), dynamic creation of satellites, and the
overall performance of the system.
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