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ABSTRACT 
 
The need for high availability and performance in data 
management systems has been fueling a long running interest in 
database replication from both academia and industry. However, 
academic groups often attack replication problems in isolation, 
overlooking the need for completeness in their solutions, while 
commercial teams take a holistic approach that often misses 
opportunities for fundamental innovation. This has created over 
time a gap between academic research and industrial practice. 

This paper aims to characterize the gap along three axes: 
performance, availability, and administration. We build on our 
own experience developing and deploying replication systems in 
commercial and academic settings, as well as on a large body of 
prior related work. We sift through representative examples from 
the last decade of open-source, academic, and commercial 
database replication systems and combine this material with case 
studies from real systems deployed at Fortune 500 customers. We 
propose two agendas, one for academic research and one for 
industrial R&D, which we believe can bridge the gap within 5-10 
years. This way, we hope to both motivate and help researchers in 
making the theory and practice of middleware-based database 
replication more relevant to each other. 

Categories and Subject Descriptors 
C.2.4 [Distributed Systems]: Distributed databases; H.2.4 
[Systems]: Distributed databases 

General Terms 
Performance, Design, Reliability. 

Keywords 
Middleware, database replication, practice and experience. 

 

1. INTRODUCTION 
 
Despite Gray’s warning on the dangers of replication [18] over a 
decade ago, industry and academia have continued building repli-
cation systems for databases. The reason is simply that replication 
is the only tried-and-true mechanism for scaling performance and 
availability of databases across a wide range of requirements. 
There exist replication “solutions” for every major DBMS, from 
Oracle RAC™, Streams™ and DataGuard™ to Slony-I for 
Postgres, MySQL replication and cluster, and everything in-
between. The naïve observer may conclude that such variety of 
replication systems indicates a solved problem; the reality, 
however, is the exact opposite. Replication still falls short of 
customer expectations, which explains the continued interest in 
developing new approaches, resulting in a dazzling variety of 
offerings. 
Even the “simple” cases are challenging at large scale. We 
deployed a replication system for a large travel ticket brokering 
system at a Fortune-500 company faced with a workload where 
95% of transactions were read-only. Still, the 5% write workload 
resulted in thousands of update requests per second, which 
implied that a system using 2-phase-commit, or any other form of 
synchronous replication, would fail to meet customer performance 
requirements (thus confirming Gray’s prediction [18]). This 
tradeoff between availability and performance has long been a 
hurdle to developing efficient replication techniques. 
In practice, the performance/availability tradeoff can be highly 
discontinuous. In the same ticket broker system mentioned above, 
the difference between a 30-second and a one-minute outage 
determines whether travel agents retry their requests or decide to 
switch to another broker for the rest of the day (“the competition 
is one click away”). Compounded across the hundreds of travel 
agencies that connect to the broker system daily for hotel 
bookings, airline tickets, car rentals, etc., the impact of one minute 
of downtime comes close to that of a day-long outage. The 
replication system needs to be mindful of the implied failover 
requirements, and obtaining predictable behavior is no mean feat. 
Our premise is that, by carefully observing real users’ needs and 
transforming them into research goals, the community can bridge 
the mismatch between existing replication systems and customers’ 
expectations within the coming decade. We sift through the last 
decade of database replication in academic, industrial, and open-
source projects. Combining this analysis with 45 person-years of 
experience building and deploying replicated database systems, 
we identify the unanswered challenges of practical replication. 
We find that a few “hot topics” (e.g., reliable multicast and lazy 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
SIGMOD’08, June 9–12, 2008, Vancouver, BC, Canada. 
Copyright 2008 ACM  978-1-60558-102-6/08/06...$5.00. 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147945350?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 2 

replication [21]) attract the lion’s share of academic interest, while 
other equally important aspects (e.g., availability and 
management) are often forgotten—this limits the impact research 
systems can have on the real world. Motivated by these findings, 
we draft possible agendas for academic and industrial research. 
This paper concentrates exclusively on middleware-based1 
replication for OLTP workloads. The prevalent architecture is 
shared-nothing, where cluster nodes use local disks to store data. 
We make two contributions. First, we identify gaps between 
database research and practice on four different levels: RDBMS 
engine, SQL language, middleware, and system management. We 
show how overlooking seemingly small details can undermine 
replication systems. Second, we distill a few research topics that 
provide low-hanging fruit for closing these gaps, in the realms of 
middleware design, consistency models, availability, and system 
evaluation. We also describe what we believe industry ought to do 
with respect to interfaces, transaction abstractions, system 
management, and dynamic upgrades. As this paper is not intended 
to serve as an area survey, the reference list is by no means 
exhaustive. Rather, we choose representative examples that help 
us characterize the academia/industry gap and its consequences.  
The rest of the paper is structured as follows: Section 2 describes 
the replication schemes presently favored in the field. Section 3 
surveys representative academic proposals for replication. Section 
4 discusses in detail the practical challenges we have encountered 
while deploying numerous middleware-based replication systems 
at customers ranging from small startups to Fortune 500 
companies. Section 5 distills the main challenges and outlines 
roadmaps for both academic research and industrial R&D that can 
bridge the identified gaps. Section 6 concludes the paper. 
 

2. REPLICATION IN PRACTICE 
 
There are two main reasons to employ database replication: to 
improve performance and to increase availability. Section 2.1 
discusses commonly used architectures for performance-focused 
deployments, while Section 2.2 describes availability-focused 
solutions. 
 

2.1 Improving Performance via Replication 
 
Database replication is typically used to improve either read 
performance or write performance, while improving both read and 
write performance simultaneously is a more challenging task. 
Figure 1 depicts master-slave replication, a popular technique 
used to improve read performance. In this scenario, read-only 
content is accessed on the slave nodes and updates are sent to the 
master. If the application can tolerate loose consistency, any data 
can be read at any time from the slaves given a freshness 
guarantee. As long as the master node can handle all updates, the 
system can scale linearly by merely adding more slave nodes. 
Examples of commercial products providing asynchronous 
master-slave replication are Microsoft SQL Server replication, 
Oracle Streams, Sybase Replication Server, MySQL replication, 
IBM DB2 DataPropagator, GoldenGate TDM platform, and 
Veritas Volume Replicator.  
                                                                    
1 By middleware we mean the software layer that lies between an 

application and the database replicas. 

A special instance of read throughput improvement relates to 
legacy databases: often an old DB system is faced with increased 
read performance requirements, that it can no longer satisfy, yet 
replacing the DB is too costly. Recently emerged strategies, such 
as satellite databases [29], offer a migration path for such cases. In 
the case of  an e-commerce application, the main legacy database 
is preserved for all critical operations, such as orders, but less 
critical interactions, such as catalog browsing, can be offloaded to 
replicas. Such configurations typically use partial replication—all 
orders could be solely on the main legacy database, while only the 
catalog content is replicated. As an application might also be 
using multiple database instances inside the same RDBMS, the 
user can choose to replicate only specific database instances. 
 

 
Figure 1. Database scale-out scenario 

 
Multi-master replication allows each replica owning a full copy 
of the database to serve both read and write requests. The 
replicated system then behaves as a centralized database, which  
theoretically does not require any application modifications. 
Replicas, however, need to synchronize in order to agree on a 
serializable execution order of transactions, so that each replica 
executes the update transactions in the same order. Also, 
concurrent transactions might conflict, leading to aborts and 
limiting the system’s scalability [18]. Even though real 
applications generally avoid conflicting transactions, there are still 
significant research efforts trying to solve this problem in the 
replication middleware layer. The volume of update transactions, 
however, remains the limiting performance factor for such 
systems. As every replica has to perform all updates, there is a 
point beyond which adding more replicas does not increase 
throughput, because every replica is saturated applying updates. 
Examples of commercial multi-master architectures include 
Continuent uni/Cluster and Xkoto Gridscale for middleware 
replication, and MySQL Cluster and DB2 Integrated Cluster for 
database in-core implementations. Shared-disk architectures, such 
as Oracle RAC, are out of the scope of this paper. 
Finally, data partitioning techniques can be used to address write 
scalability. Figure 2 shows an example where data is logically 
split into 3 different partitions, each one being replicated. 
Common partitioning criteria are based on a table primary key and 
include techniques such as range partitioning, list partitioning and 
hash partitioning. The benefits of this approach are similar to 
RAID-0 for disks: updates can be done in parallel to partitioned 
data segments. Read latency can also be improved by exploiting 
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intra-query parallelism and executing the sub-queries in parallel 
on each partition.  
 

 
Figure 2. Database partitioning for increased write 

performance 
 

2.2 Increasing Availability via Replication 
 
High availability requires low downtime. Planned downtime is 
incurred during all software and hardware maintenance 
operations, while unplanned downtime can strike at any time and 
is due to predictable or unpredictable failures (hardware failures, 
software bugs, human error, etc.). Downtime is usually the 
primary metric being optimized for, with performance relegated to 
a secondary role (although, in practice, both are desired). 
A system’s availability is the ratio of its uptime to total time. In 
practice, it is computed as the ratio between the expected time of 
continuous operation between failures to total time, or 
 

 
where MTTF is mean-time-to-failure and MTTR is mean-time-to-
repair. Since MTTF >> MTTR, the unavailability (ratio of 
downtime to total time) is approximately MTTR/MTTF. 
The goal of replication, together with failover and failback, is to 
reduce MTTR and thus reduce unavailability. Failover is the 
capability of switching users of a database node over to another 
database node containing a replica of the data, whenever the node 
they were connected to fails. Failback is the reverse and occurs 
when the original replica recovered from its failure and users are 
re-allocated to it. 
Hot standby is the most commonly deployed configuration using 
database replication in both open-source and commercial 
databases. Whether it uses single-master or multi-master 
techniques, the end goal remains the same: to provide fast 
recovery from node failures. A node serves all queries and, upon 
failure, the workload is transferred to the hot standby node.  
Figure 3 shows a hot standby setup using Slony-I for PostgreSQL 
[31]. There are two replicas, one acting as a master and the other 
as a slave. The application connects to a simple load balancer that 
directs the requests to the master and, when the master’s failure is 
detected, requests are rerouted to the slave. 

The hot standby or slave node, either local or at a remote site, has 
computing capabilities similar to the master node. It applies 
updates as they arrive from the master. As soon as the master fails 
(detected by a simple heartbeat mechanism), the load is shifted to 
the slave node. Various techniques can be used for this, such as 
virtual IP [10] or reconfiguration of the driver or application.  

 
Figure 3. Hot standby configuration 

 
Determining which transactions are lost when the master fails 
remains a manual procedure that requires careful inspection of the 
master’s transaction log (when it is available). The best guarantee 
that is usually offered is 1-safe (i.e., transactions commit at the 
master without consulting the slave) with an upper-bound time 
window (e.g., at most all transactions committed in the past 5 
minutes have been lost). These guarantees are usually considered 
weak, but good enough for maintaining uptime in the face of 
single faults. 2-safe database replication forces the master to 
commit only when the backup has also confirmed receipt of the 
update (even though the backup may not have written to disk 
immediately). This avoids transaction loss, but increases latency. 
In order to not completely waste the slave’s computing resources 
under normal operation, the slave is typically used for read-only 
reporting tasks that run in batch mode. In a heavily loaded 
production system, however, the lag between the master and slave 
node can become significant. Our customers report several hours 
of downtime when commercial databases failover clients from a 
master to a hot-standby slave node. The reason is typically that the 
trailing updates are applied serially at the slave, whereas the 
master processes them in parallel. The “solution” is usually to 
slow down the master (during normal operation) so as to keep the 
slave synchronized to within a small time window.  
WAN replication is the gold standard for sustaining availability in 
the face of disasters that would affect an entire cluster 
(earthquakes, floods, etc.). In the case of disaster recovery, unlike 
regular failover, clients’ requirements for synchronization 
windows are less stringent. Replicating data asynchronously 
between sites, possibly by interconnecting middleware replication 
solutions, usually involves both data partitioning and multi-way 
master/slave replication (i.e., each site is master for its local 
geographical data)—see Figure 4. 
Major challenges in WAN replication are partitions resulting from 
network failure or datacenter infrastructure failures. Although 
some companies can afford their own data centers interconnected 
by dedicated leased lines, most use professional hosting centers, 
to reduce costs. Hosting centers emphasize efficient multiplexing 
and management of resources so, even if individual applications 
are not demanding in terms of resources, there are often hundreds 
or thousands of them running on various combinations of software 
stacks in one datacenter. In such dense environments, one 
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problem can have domino effects. Our experience with an 
academic GRID (600 CPUs) and a number of smaller clusters (10-
100 nodes) indicates that, on average, one fatal failure (software 
or hardware) occurs per day per 200 processors, not including air 
conditioning or power outages. Thus, keeping replicas in sync can 
be challenging when failures are frequent.  
 

 
Figure 4. Worldwide multi-way master/slave replication 

 

3. ACADEMIC APPROACHES TO 
MIDDLEWARE-BASED REPLICATION 
 
In this section, we describe some of the leading architectures 
adopted by modern academic prototypes, as well as the major 
points of research interest. Many academic proposals have not 
(yet) made their way into practice because of practical challenges 
we describe later on (Section 4).  
 

3.1 System Design 
 
Most of middleware-based replication research focuses on multi-
master replication. Master-slave implementations are either in-
core implementations or third-party tools that extract database 
binlogs and ship them to another database. Slony-I [31] and 
Ganymed [28] for PostgreSQL are among the few middleware 
solutions that provide direct master-slave replication capabilities. 
With suitable load balancers, multi-master systems like C-JDBC 
[8] or Tashkent [14] can also be used in master-slave mode. 
Postgres-R [20] was the first significant academic research 
prototype to provide a fully functional database replication 
mechanism for an open source database. Even though not 
implemented 100% in middleware, the replication mechanism 
interacts with mostly unmodified database core components 
(subsequently, Middle-R [27] implemented Postgres-R concepts 
in middleware). As illustrated in Figure 5, the database 
client/server communication is untouched and the replication only 
happens behind the scenes, by coordinating the different database 
engines. 
The major advantage of this approach is that it does not require 
any change on the client side; it does require, however, integration 

with the database engine. This restricts the ability of different 
database engines (or even different versions of the same engine) 
to interact with each other. For this approach to be viable in 
practice, the replication APIs must be adopted and integrated in 
the main development line of the database engine itself. In the 
case of Postgres-R, the failure to transfer the complex piece of 
replication code to the PostgreSQL core team led to a gradual 
divergence, eventually rendering Postgres-R obsolete.  In the case 
of closed source databases, this is an even greater challenge.  
 

 
Figure 5. Query interception at the database engine level 

 

Figure 6 shows another approach, that intercepts queries directly 
at the database native protocol level; a prototype intercepting the 
PHP/MySQL protocol to route queries is described in [3]. 
Proxying queries at the DBMS native protocol level is elegant, 
because the middleware is not coupled to the database system and 
can evolve independently. This approach, however, does not work 
if the protocol is protected by copyright, licensing or patent 
restrictions. It also does not support more than one DB engine at 
the low level.  
 

 
Figure 6. Query interception at the DBMS protocol level 

 
It is also possible to intercept the native protocol on the client 
side, to reuse existing native drivers and remap the calls to a 
standard API, such as JDBC or ODBC. Myosotis [26], for 
instance, intercepts MySQL and PostgreSQL protocols and 
remaps them to the Sequoia/JDBC protocol [30]. This enables the 
use of Sequoia-specific drivers on supported platforms and the use 
of native libraries or drivers for other platforms or for accessing 
non-clustered databases. 
Most contemporary academic prototypes nowadays are based on 
the JDBC proxying concept introduced by C-JDBC [8], depicted 
in Figure 7. This approach typically requires the database driver to 
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be replaced in the client application. This should normally not 
require any application code changes, since the new driver 
implements the same interface as the old one (JDBC, ODBC, 
etc.). In addition, this approach allows the replication system to 
span heterogeneous database systems. Some examples of systems 
designed in this fashion are Tashkent [14], Ganymed [28], and 
Middle-R [27]. 

 
Figure 7. Query interception in JDBC-based replication 

 

3.2 Load Balancing 
 
A replicated database built for high availability must eliminate all 
single points of failure (SPOF). Often, projects focusing on 
performance overlook the replication needs of core components, 
such as load balancers or certifiers. Even though such redundancy 
is technically feasible, achieving it is more than mere engineering, 
because it affects the replication middleware substantially.  
To our knowledge, there is no off-the-shelf load balancer for 
databases, mostly because load balancing is intrinsically tied to 
the replication middleware. Load balancing can be implemented 
at the connection level, transaction level or query level. 
Connection-level load balancing allocates new client connections 
to replicas according to a specified policy; all transactions and 
requests on that connection go to the same replica until the 
connection is closed. This approach is simple, but offers poor 
balancing when clients use connection pools or persistent 
connections. Transaction-level or query-level load balancing 
perform finer grain load balancing by directing queries on a 
transaction or query basis, respectively.  
As an example, Tashkent+ [13] provides transaction-level load 
balancing and exploits knowledge of the working sets of 
transactions to allow in-main-memory execution at every replica. 
The result is an improved throughput of more than 50% over 
previous techniques; however, the approach uses a centralized 
load balancer that is not replicated. A failure of this component 
brings down the entire system. The recovery procedure requires 
retrieving state from every replica to rebuild the load balancer’s 
soft state. Similar issues would be observed for a certifier failure.  
It is possible to achieve near-optimal load balancing with a 
stateful, centralized load balancer. A failure of the load balancer, 
however, not only causes all in-flight transactions to be lost, but 
also causes a complete system outage. Replicating a stateful load 
balancer or certifier requires extra communication and 
synchronization that significantly impacts performance. 
Unfortunately, recovery procedures are rarely described and 

almost never evaluated in terms of the overhead they introduce in 
system performance and recovery time. 
 

3.3 Data Consistency 
 
Much of today’s research chooses snapshot isolation (SI) for 
enforcing consistency in the database. SI, introduced by [6], is a 
weaker transactional guarantee than one-copy serializability 
(1SR), the original standard correctness criterion for replicated 
data. SI does not offer serializability, but decouples reads from 
updates to increase concurrency. Each transaction operates on its 
own copy of data (a snapshot), allowing read-only transactions to 
complete without blocking. 
Postgres-R [20] originally proposed an eager replication protocol 
equivalent to “strong” SI. Various proposed protocols, such as 
DISCOR and NODO, aim at optimizing performance in this 
context [19] and are also implemented in Middle-R [27]. [22] 
extends that work and provides 1-copy SI, also called global 
strong SI. Ganymed [28] also provides a form of global strong SI 
called “replicated snapshot isolation with primary copy” 
(RSI-PC), but it focuses on master/slave architectures and satellite 
databases. Tashkent [14] relies on generalized snapshot isolation 
(GSI) and implements prefix-consistent SI (PCSI). [11] proposes 
global weak SI and evaluates it using simulation. C-JDBC [8] 
provides pluggable consistency protocols and uses 1SR by 
default. 
 

3.4 Prototype Evaluation 
 
Evaluation of research prototypes mostly relies on benchmarks 
from the Transaction Processing Council [33]. TPC-W or 
RUBiS [2] are used for web-related workloads (see Tashkent [14], 
Ganymed [28], C-JDBC [8]). Micro-benchmarks are also widely 
used to measure replicated system performance (see 
Postgres-R [20], Middle-R [27]). System performance is 
evaluated in terms of throughput (transactions per second, web 
interactions per seconds, etc.) and latency. If the system under test 
forms a closed-loop system with the load generator(s), then 
latency can be directly inferred from throughput. 
Scalability measurements almost always use a scaled load to find 
the best achievable performance (e.g., 5 times more requests for a 
system with 5 replicas). This usually hides the system overhead at 
low or constant load. As most production systems operate at less 
than 50% load, it would be interesting to know how the proposed 
prototypes perform when under-loaded. To the best of our 
knowledge, management operations such as backup/restore or 
adding a node to the system are practically never measured either. 
Availability aspects of replication are usually not evaluated in 
academic prototypes; even recent papers on adaptive 
middleware [25] focus on performance adaptation in case of 
workload variations, but do not address adaptation in the presence 
of failures. In fact, important parameters for evaluating database 
replication systems (such as mean-time-between-failure, mean-
time-between-system-abort, or mean-time-between-critical-
failure) are not used, despite them being well explained in the 
literature. MTTR and MTTF would also seem to be natural 
metrics for the evaluation of recovery effectiveness. We propose 
further options in Section 5.1 
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4. PRACTICAL CHALLENGES 
 
Why, given so many well-explained, thoroughly evaluated 
academic proposals, is database replication still such a challenge 
in practice? In this section, we use a bottom-up approach to 
describe the various challenges we have encountered in the field 
that we believe constitute the primary hurdles in bringing 
sophisticated replication to real systems. Figure 8 shows the main 
domains we have identified. 

 
Figure 8. Layering of practical challenges 

 
We begin with RDBMS-related issues (§4.1), then look at SQL-
specific issues (§4.2), middleware-level challenges (§4.3), and 
finally analyze the management/administration of replicated 
databases (§4.4). 
 

4.1 RDBMS-level Challenges 
 
There are numerous challenges faced at the level of the database 
engine itself. The ones we have encountered most frequently are 
queries spanning multiple database instances, lack of flexibility in 
isolation levels, problems introduced by cluster heterogeneity, the 
handling of temporary tables, and suitable access control. 

4.1.1 Multi-Database Queries 
An RDBMS can manage multiple database instances (as created 
by CREATE DATABASE) and queries can span instances. 
Triggers, for example, are often used to perform reporting tasks 
and may update a different reporting database instance. Research 
efforts, however, focus primarily on replicating independent 
database instances [17] and have led to the concept of virtual 
databases. Virtualization of an entire RDBMS has not been 
addressed, so queries spanning multiple databases are usually not 
handled correctly by replication that works on a per-database-
instance basis. Furthermore, RDBMSes generally lack 
mechanisms for taking a consistent snapshot of multiple 
databases. 
Databases are sometimes also used as substitutes for schemas (as 
in CREATE SCHEMA). Some systems do not support the notion 
of schema at all (like MySQL), while for others, isolating data in 
different database instances is preferable over schemas for 
performance or security reasons. 
Managing databases and schemas in replicated systems can 
sometimes be solved with engineering tweaks, but novel 
algorithms are still required when synchronizing multiple 
databases, in order to prevent synchronization of all databases 
according to a single total serializable order. Only cross-database 
accesses must be synchronized, but separating these from the 
overall workload requires the middleware to have a complete 
view of all database instance accesses. 

4.1.2 Isolation Level 
Database replication research has been largely addressing 
snapshot isolation (SI) and its variations (GSI, strong SI, weak SI, 
strong session SI, etc. [22]) in order to provide client applications 
with a behavior as close to 1-copy serializability as possible. SI is 
provided by Oracle (strongest isolation), DB2, PostgreSQL and, 
more recently, Microsoft SQL Server 2005. Database systems, 
such as Sybase or MySQL, do not provide SI. Nevertheless, the 
default setting in all DBMS is the weaker read-committed form, 
which most production applications use for performance reasons. 
Applications try to avoid transaction aborts with SI or deadlocks 
when using multi-version concurrency control (MVCC) at all 
costs. Enhancing current replication frameworks to support 
multiple isolation levels efficiently under a weaker isolation 
assumption is still an open area of research. 
Related to isolation, the handling of request failures is different in 
the various implementations. The reasons why a request might fail 
range from malformed SQL to integrity constraint violations. 
PostgreSQL, for instance, aborts a transaction as soon as an error 
occurs, whereas MySQL continues the transaction until the client 
explicitly rolls back or aborts. To the best of our knowledge, no 
study has investigated error handling in replicated databases. This 
is a real problem in practice, especially when errors are combined 
with database updates that cannot be rolled back (DDL, auto-
incremented keys, sequences, etc.). 

4.1.3 Heterogeneous Clustering 
Hardware heterogeneity is a fact of life in clusters of replicated 
databases. Heterogeneity, along with the ensuing unpredictability 
and performance disparity, inevitably occurs over time, because 
hardware components have limited lifetimes and replacing a piece 
of hardware by the same model 6 months later is difficult and not 
cost-effective. Heterogeneity issues can sometimes be addressed 
using dynamic load balancing techniques, such as LPRF [8]. 
Even when the cluster’s hardware is homogeneous, the larger it is 
and the longer it has been in operation, the higher the variance in 
hardware and software performance, the higher the skew in data 
layout affecting disk throughput, workload asymmetries, etc. A 
few examples: a RAID controller with battery-backed write-back 
caches suddenly becomes 2x slower when the battery fails, and 
the OS rarely finds out; when a disk is replaced in a RAID-5, 
reconstruction severely impacts array performance; if a single 
strand in an Ethernet cable is crimped, throughput can drop from 1 
Gbps to 100 Mbps. These anomalies are not addressed or 
evaluated by research focusing on load balancing strategies [4]. 
Software heterogeneity can be of 2 kinds: (1) It might be 
necessary to run multiple versions of the same database engine 
(more on this under software upgrades—see Section 4.4.3), or 
(2) aggregate data may be stored in two different database 
engines.  
The first scenario usually happens during a migration phase, or 
when a legacy application that cannot be updated requires an older 
version of the database engine. As different versions of the 
database might require different drivers, either the application or 
the replication middleware have to ensure the proper driver is 
used in accordance with the accessed replica. Moreover, new 
functionality must be properly identified, so that queries using 
new features are only forwarded to capable replicas. Replication 
systems based on log shipping using binary formats have to 
handle all versions of storage formats and operate appropriate 
conversions.  
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The second scenario (aggregating data from multiple 
heterogeneous sources) is often seen when consolidating data 
from different departments of a company. Another common case 
occurs when companies are merged and databases have to be 
accessed from applications as a single data source. Replication 
adds complexity to these use cases, that already bring their own 
challenges. One option is for the application to use the smallest 
common denominator for all databases involved. Even pure ANSI 
SQL 92 compliant queries might not be able to execute similarly 
on all databases. Furthermore, some applications use middleware 
or object relational mappers that generate the queries on their 
behalf for a given database. In that case, the replicated database 
has to present itself as a data source of a specific kind (e.g., 
database engine A) and the replication middleware adapts 
automatically queries for database engines of other types. This 
adaptation can take the form of on-the-fly query rewriting, like in 
C-JDBC [8]. Also, Ganymed [29] scales a master database with 
different satellite databases that can possibly have a different 
schema and run different queries than the master. 

4.1.4 Temporary Tables 
Temporary tables are often used to simplify queries and store 
processed data between requests or transactions. The visibility of 
a temporary table varies between databases. In some cases, it is 
global, requiring a unique name, whereas in other 
implementations it is only visible to the current transaction or 
connection. Sybase, for instance, does not authorize the use of 
temporary tables within transactions. This forces the replication 
middleware to keep track of temporary tables so that connections 
stick to the same replica while using a given temporary table. 
Temporary tables are not always persistent and are rarely backed 
up, even though they can persist across transaction boundaries. 
Management operations dealing with database backup/restore 
operations to bring new replicas online must make sure that no 
temporary tables are in use when a snapshot is taken, because this 
information cannot be made part of the snapshot. 
The lack of conventions on temporary tables makes it difficult for 
the replication middleware to detect the true lifespan of a 
temporary table. Most applications do not explicitly delete 
temporary tables, but rather drop the connection, allowing the 
database to automatically free the corresponding resources on its 
own. Other implementations free temporary tables at commit 
time. Such drastic differences make it nearly impossible to 
implement a generally applicable middleware replication solution 
for temporary tables. 

4.1.5 Access Control 
Every connection starts with an authentication phase. Over time, 
databases have accommodated popular authentication 
mechanisms supporting a wide variety of access control methods. 
Middleware-based replication systems that intercept connections 
necessarily tamper with the database authentication mechanisms 
by hiding the original location of the client. However, it is 
necessary to capture client information, so that requests are 
replayed on behalf of the right user; as each user may have their 
own set of triggers, the same SQL statement might have a 
different impact, depending on which user is executing it. 
The lack of user information standardization in the DBMS results 
in ad-hoc configurations and settings for each implementation. 
Despite the recent trend to store user data in the database 
information schema, access control information is often 
considered orthogonal to database content. This is a major 

problem when databases need to be cloned (even more so when it 
is a complete RDBMS with multiple database instances). Backup 
tools typically capture only data, without user-related information, 
raising issues when trying to clone a replica. Note that triggers 
and stored procedures are also rarely backed up (e.g., in ETL—
Extraction, Transformation and Loading—tools, that focus mainly 
on data transformation without addressing user-related 
information). 
 

4.2 SQL-level Challenges 
 
In this section we discuss two main challenges induced by SQL 
semantics: stored procedures and large objects. 

4.2.1 Stored Procedures 
Stored procedures were initially introduced by Sybase and have 
been heavily used since then, with many legacy applications 
relying on stored procedures. The integration of Microsoft SQL 
Server 2005 with the .NET CLR has expanded the use of stored 
procedures [32] by allowing them to access thousands of pre-built 
classes and routines of the .NET Framework Base Class Library 
(BCL). Replication of stored procedures, however, raises several 
issues. 
Statement replication can only broadcast calls to stored 
procedures, so stored procedure execution must be deterministic, 
to prevent cluster divergence. As there is no schema describing 
the behavior of a stored procedure, it is usually impossible to 
know which tables it accesses, thereby limiting concurrency 
control options for the middleware. Moreover, by replicating a 
stored procedure call, all the read queries will be executed by all 
nodes, resulting in no speedup and thus a waste of resources. 
As stored procedures are often used to manipulate large amounts 
of data without transferring it to the client, performing writeset2 
extraction in such a context would be expensive in terms of 
resources, thus making it impractical in many cases. 
Stored procedure replication is a domain that has been mostly 
overlooked by the research community. Even in a master/slave 
context, most databases have significant limitations on stored 
procedure replication and require the user to expand the stored 
procedure definition with ad-hoc extensions. Similar issues can be 
observed with user-defined functions. 

4.2.2 Large Objects 
Large objects, whether text (CLOB) or binary (BLOB), are 
implemented differently in different database engines (like many 
SQL data types). Object-relational DBMSes provide object 
identifiers (OIDs) and an API to retrieve an object’s content. 
If the replication middleware relays request and results, it must 
track resources properly to prevent the stream from remaining 
open indefinitely upon user program errors or failures. Moreover, 
certain drivers provide fake streaming APIs and require the 
application to have enough memory to hold the entire object in 
memory. Hence, multiple large objects, when streamed 
simultaneously, may quickly overwhelm the replication 
middleware.  

                                                                    
2 Writeset: the set of data W updated by a transaction T, such that 

applying W to a replica is equivalent to executing T on it. 
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4.2.3 Sequences 
Database sequences, used to generate unique or auto-incremented 
keys, have only been standardized in SQL-2003 [12]. Even if, in 
most implementations, sequences can be retrieved as part of the 
database schemas, these objects are not persisted in the 
transactional log. This results in the need for workarounds to 
backup and restore sequences consistently with the other data. 
Additionally, sequences are non-transactional database objects, so 
they cannot be rolled back. Sequence numbers generated for a 
failed query or transaction are lost and generate “holes” in the 
sequence of numbers. Moreover, sequence semantics vary 
significantly among implementations; in most implementations, 
they bypass isolation mechanisms such as MVCC and are subject 
to subtle ordering problems. 
 

4.3 Middleware-level Challenges 
 
Middleware-based replication uses a middleware layer between 
the application and the database engines to implement replication, 
and there are multiple design choices for how to intercept client 
queries and implement replication across multiple nodes. We 
describe the most common alternatives with their pros and cons. 

4.3.1 Intercepting Queries 
Query interception needs may force driver changes on the 
application side as database protocols evolve over time. A new 
driver on the application side might offer new functionality, such 
as support for transparent failover or load balancing. Moreover, 
protocol version implementation may vary from one platform and 
language to another. For example, each MySQL JDBC, ODBC 
and Perl driver has its own bugs and ways to interpret the 
protocols. The Microsoft SQL Server JDBC driver and the 
FreeTDS open source implementation also exhibit different 
behavior, even though they are based on the exact same TDS 
protocol, originally designed by Sybase. Hence, it is difficult for 
the middleware to infer the application’s intentions from the 
various implementations of a protocol in different drivers. In 
addition, some drivers exploit loopholes in the protocols to carry 
information for database extensions, such as geographic 
information services (GIS). This makes it even more difficult for 
the middleware to distinguish illegitimate input from 
undocumented extensions. 
Updating drivers on the client side can be a real showstopper for 
sites with large clusters of application servers. If a customer has, 
e.g., 500 client machines accessing a cluster of 4 database server 
nodes, updating the driver is orders of magnitude more complex 
than upgrading the four nodes. 
While JDBC and ODBC cover a large portion of database access 
methods for most recent applications, native APIs are still widely 
used by PHP and legacy applications. Supporting all APIs on all 
platforms quickly becomes unrealistic; for example, MySQL 
provides 14 main programming APIs for a database engine that is 
used on 16 different platforms (14 x 16 = 224 combinations). 

4.3.2 Statement vs. Transaction Replication 
Multi-master replication can be implemented either by 
multicasting every update statement (i.e., statement replication) or 
by capturing transaction writesets and propagating them after 
certification (i.e., transaction replication). Both approaches face 
significant challenges when put in production with real 
applications. 

Non-deterministic queries are an important challenge: statement-
based replication requires that the execution of an update 
statement produce the same result on each replica. However, SQL 
statements may legitimately produce different results on different 
replicas if they are not pre-processed before being issued. 
Time-related macros such as ‘now’ or ‘current_timestamp’ are 
likely to produce a different result, even if the replicas are 
synchronized in time. Simple query rewriting techniques can 
circumvent the problem by replacing the macro with a hard-coded 
value that is common to all replicas. Of course, all replicas must 
still be time-synchronized and set in the same timezone, so that 
read queries provide consistent results. 
Other macros, such as ‘random’ or ‘rand’, cannot always be 
replaced by a statically computed random number. Consider a 
statement like ‘UPDATE t SET x=rand()’—a database engine 
would assign a different random value to each row of table t. 
Rewriting the query to hardcode a value like ‘UPDATE t SET 
x=5’ assigns the same value to each row, which was evidently not 
the programmer’s intention. In this case, transaction replication 
would do the right thing, while statement replication would not. 
Other queries may have non-deterministic results. For example, 
SELECT … LIMIT can create non-deterministic results in 
UPDATE statements. In ‘UPDATE FOO SET KEYVALUE=‘x’ 
WHERE ID IN (SELECT ID FROM FOO WHERE KEYVALUE 
IS NULL LIMIT 10)’, the SELECT does not have an ORDER BY 
with a unique index. Therefore, broadcasting such a statement can 
cause each replica to update a different set of rows leading to 
divergence in the cluster. 
Writeset extraction is usually implemented using triggers, to 
prevent database code modifications. This requires declaring 
additional triggers on every database table, as well as changing 
triggers every time the database schema is altered. This can be 
problematic both from an administrative as well as a performance 
standpoint when applications use temporary tables. If the 
application already uses triggers, writeset extraction through 
triggers might require an application rewrite. Materialized views 
also need special handling, to avoid duplicate writeset extraction 
by the triggers on the view and those on the underlying tables. 
Writeset extraction does not capture changes like auto-
incremented keys, sequence values, or environment variable 
updates. Queries altering such database structures change the 
replica they execute on and can contribute to cluster divergence. 
Moreover, most of these data structures cannot be rolled back (for 
instance, an auto-incremented key or sequence number 
incremented in a transaction is not decremented at rollback time).  
Statement-based replication, at least, ensures that all these data 
structures are updated in the same order at all replicas. With 
transaction replication, if no coordination is done explicitly from 
the application, the cluster can end up in an endless effort to 
converge conflicting key values from different replicas. 
Locking and performance are harder issues in statement-based 
replication. In particular, locking granularity is usually at the table 
level, as table information can be obtained through simple query 
parsing; however, this limits performance. Finer granularity (i.e., 
row level) would require re-implementing a large fraction of the 
database logic inside the middleware. Moreover, the middleware 
locking regime might not be compatible with the underlying 
database locking, leading to distributed deadlocks between the 
databases and the middleware. 
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4.3.3 Failover 
Failover requires one or more failure detection mechanisms, so 
that everyone in the system can identify the same set of faulty 
components. Most problems are related to network timeouts 
(explained in Section 4.3.4). The state-of-the-art in failover has 
surprisingly not evolved much during the past decade. Even if 
failover does not require a system reconfiguration with automated 
reconnection mechanisms, in-flight sessions are still lost.  
MySQL provides automatic reconnection inside its drivers, and 
application servers, like WebLogic [5], use multiple connection 
pools (multipools) for failover purposes. These techniques, or the 
one proposed in [22], offer session failover, but not failover of the 
transactional context. To the best of our knowledge, Sequoia [30] 
(the continuation of the C-JDBC project) is the only middleware 
that provides transparent failover without losing transactional 
context. Failover code is available in the middleware to handle a 
database failure, and additional code is available in the client 
driver to handle a middleware failure. Fully transparent failover 
requires consistently replicated state kept at all components, and is 
more easily achieved using statement-based rather than 
transaction-based replication. In the latter case, the transaction is 
only executed at a single replica; if the replica fails, the entire 
transaction has to be replayed at another replica, which cannot 
succeed without the cooperation of the application. 
Even though a replicated database could handle internal 
component failures transparently to the clients, there is currently 
no API to pause, transfer and resume transaction contexts. 
Phoenix/COM+ [24] enhances the .NET runtime to serialize 
ODBC connection state in the database and allows COM-based 
applications to recover and failover transparently. Application 
server clusters typically operate on top of a replicated database; in 
the case when an application server replica fails, there is no way 
for the other replicas to retrieve the database connections of the 
failed replica and continue its transactions—even though the 
underlying database is capable of transparent failover. This is a 
manifestation of the more fundamental problem of failures being 
treated in isolation by each tier in a multi-tier architecture. 
Systems need to define user sessions and transaction contexts that 
cross tier boundaries, in order to treat failover issues globally and 
to ensure transparent failover throughout the system. 
Connection pools are usually a major issue for failback. At failure 
time, all connections to a bad replica will be reassigned to another 
replica, or just removed from the pool. When the replica recovers 
from its failure, it requires the application to reconnect explicitly 
to that replica; this can only happen if the client connection pool 
recycles aggressively its connections, but this defeats the 
advantages of a connection pool. Most database APIs do not 
provide information on the endpoint of a database connection. 
Therefore, it is not possible for the connection pool to distinguish 
between connections to different replicas. In order to implement 
new load balancing and failover/failback strategies in connection 
pools, more contextual information on database connections is 
needed through standard database APIs. 

4.3.4 Networking 
Replicated databases are a distributed system, so they have to deal 
with network communication and related problems. As data loss is 
not acceptable during normal operation, it is necessary to have 
reliable communication channels. Reliable failure detectors are 
critical for failover and failback.  

4.3.4.1 Group Communication 
A large body of research has been devoted to group 
communication protocols (a survey appears in [17]). Database 
replication requires reliable multicast with total order to ensure 
that each replica applies updates in the same order. Even though 
various optimizations have been developed, the group 
communication layer is an intrinsic scalability limit for such 
systems. 
Group communication performance varies according to a large 
number of parameters [1], making configuration and tuning a real 
headache in practice. Even the developers of Spread, the most 
widely used group communication toolkit, admit that tuning UDP-
based group communication is challenging even to a specialist. 
There is a subtle multi-dimensional tradeoff between ease of 
configuration (static vs. dynamic group membership), 
performance (UDP multicast vs. TCP performance in network 
switches, UDP multicast parallelism vs. TCP packet duplication, 
etc.), flow control (TCP flow control vs. credit-based flow control 
on UDP) and reliability (TCP in-kernel implementation with 
KeepAlive timeouts vs. UDP user-space error management 
implementations with tunable timeouts). Even though some issues 
can and must be addressed at the group communication level, 
cooperation with the replication middleware is key. For example, 
it is inefficient to perform state transfers when a new replica joins 
a cluster using group communication, because of the large amount 
of state to transfer. 
Recent efforts have tried to extend multi-master replication to 
WAN environments [23]. The network latency and unreliability of 
long distance links are still making it impractical to have any 
reasonable production implementation of fast reliable multicast. 
Even though bandwidth availability is greatly improving, latency 
is unlikely to evolve dramatically on worldwide distances due to 
physical limitations. In practice, asynchronous replication is 
preferred over long distance links when replicating data between 
remote sites. Applications are usually partitioned and written 
using ad-hoc techniques to work around current technology 
limitations. 
It is unlikely that group communication alone will be able to solve 
the database replication problem over WAN. 1-copy-
serializability is unlikely to be successful in the WAN by 
extending existing LAN techniques. New data access models will 
have to be proposed to address the fundamental differences that 
one has to face when replicating in a WAN environment.  

4.3.4.2 TCP/IP Communication 
Database drivers currently communicate with DBMSes through 
TCP connections, because TCP offers reliable communication 
with flow control that is efficiently implemented in the operating 
system kernel. However, TCP relies on timeouts to detect 
connection failures. Even though it is technically feasible to set up 
TCP timeouts on a per-connection basis, all drivers we know of 
rely on the default system-wide settings.  
Upon a network failure, the TCP communication is blocked until 
the keep-alive timeout expires. This results in unacceptably long 
failure detection (ranging from 30 seconds to 2 hours, depending 
on the system defaults). Even though external heartbeat 
mechanisms are used to detect node failures, connections remain 
blocked on the client or server or both sides until the TCP 
timeouts expire. It is impractical to devise failover solutions for 
in-flight transactions over TCP, unless the underlying OS can be 
configured for each installation. 
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Altering operating system settings for the TCP KeepAlive value 
affects all applications running on that machine, and that is 
usually undesirable. A shorter TCP KeepAlive value generates 
false positives under heavy load by classifying slow connections 
as failed. Database drivers must either not rely on TCP for 
database communication, or have a built-in heartbeat mechanism 
for reliable and timely detection of connection failures. 

4.3.4.3 Network Partitions 
The issue of network partitions or “split brain” has been addressed 
by the research community mostly at a theoretical level; typically 
quorum-based solutions [19] are used. In practice, however, nodes 
often fail simultaneously (e.g., due to a rack-level power outage, 
or a network switch failure). If the remaining quorum does not 
constitute a majority, the system must shut down and make the 
customer unhappy. 
The “CAP Principle” [15] states that a distributed storage system 
can favor any two of Consistency, high Availability, or resilience 
to Partitions. Systems such as search engines usually favor A and 
P over C, whereas a replicated database necessarily must favor C 
and A over P. The most common approach to handling network 
partitions is, therefore, to try and avoid them. If a network 
partition occurs, detecting it can be challenging, especially if the 
partition was due to a transient failure. When the system is 
partitioned, updating each partition independently leads to replica 
divergence. Some ETL and reconciliation tools do exist for fixing 
this [7], but the process remains largely manual; reconciliation 
policies are typically ad-hoc and application-dependent. 
Partitions over WAN configurations usually require manual 
intervention of the human administrators at the various sites. If the 
network is indeed down, phone calls are usually used to diagnose 
the failure accurately and to coordinate a plan of action. The 
failover procedure usually has a wider scope than just the database 
replication system and typically involves DNS failover and other 
network-related reconfigurations. 
 

4.4 System Management-level Challenges 
 
Performing backups and adding/removing replicas are standard 
management operations for replicated databases. However, many 
customers desire at least 5 nines of availability for their database 
replication systems (99.999% availability, or at most 5 minutes of 
downtime per year), including all planned and unplanned 
downtime—this places tremendous pressure on the administrators. 
In this section we highlight some of the main challenges in 
managing replicated database systems: backup (§4.4.1), 
adding/removing replicas (§4.4.2), software upgrades (§4.4.3), 
routine maintenance (§4.4.4), and performance evaluation 
(§4.4.5). 

4.4.1 Backup 
Backup is part of normal database system operation, but is also 
fundamental in a replicated system, because backups are used to 
bring new replicas up-to-date. For most problematic backup and 
restore operations, databases can be taken offline (cold backup). 
ETL tools usually use database-specific extensions to access 
information such as user access rights, stored procedure or trigger 
definitions. Hot backup techniques exist, but they are still limited, 
because they only provide a read-consistent copy of the database, 
without handling active transactions. Database performance is 
typically degraded during backup. For example, in Oracle, when a 

database block is modified for the first time since the backup 
started, the entire block is written into the online redo logs. Under 
normal operation, only the changed bytes are written. 
Since backup operations can take several hours, depending on 
how large the database is, it is important for hot backups and 
incremental backups to interplay with the replication middleware. 
It is unreasonable to expect applications that use large databases 
with high update rates to rely on cold backups with replication, 
since the backup time is not only the time it takes for the data to 
be dumped, but also the time needed to resynchronize the replica 
by reapplying all updates missed while doing the backup.  
Thus, it is necessary for the replication middleware to collaborate 
with the replica and the backup tool, to make sure that the dumped 
data is consistent with respect to the entire cluster. This means 
that the middleware must be aware of exactly which transactions 
are contained in the dump and which ones must be replayed (or 
have their writesets applied), to properly resynchronize a backend. 
Replication middleware that supports partial replication affords a 
variety of optimizations for backup/restore. 

4.4.2 Adding/Removing Replicas 
Over time, replicas have to be removed from the system, usually 
for maintenance operations. If the replica is removed from the 
system due to a failure, a recovery operation is needed. Many 
systems, like MySQL cluster, require the entire cluster to be shut 
down and all replicas to be synchronized offline when adding new 
replicas. This implies long downtimes and unhappy customers.  
Other solutions, like Emic Networks m/cluster, systematically use 
an active replica, bring it offline to transfer its state to the added 
replica, and then apply to both replicas the updates that occurred 
during transfer. This has the disadvantage of bringing the system 
down when only one replica is left in the system. Also, a node has 
to be taken offline when adding a new replica, which reduces 
performance during the operation. If the new replica is added with 
the intention of boosting performance, the operation has to be 
carefully planned, since overall system performance drops for the 
whole duration of the synchronization. 
Sequoia [30] uses a recovery log that records all update statements 
executed by the system. When a node is removed from the cluster, 
a checkpoint is inserted, pointing to the last update statement 
executed by the removed node. When the node is re-added to the 
system, the recovery log is replayed from the checkpoint on. 
Offline nodes that have been properly checkpointed by the system 
can also be backed up. The resulting data dump can be used to 
initialize new replicas and resynchronize them from the recovery 
log, without having to use resources of active replicas.  
Minimizing the cost of a cluster-wide checkpoint, while 
respecting transaction boundaries, is still an unsolved problem. 
Replaying the recovery log to resynchronize a replica requires the 
extraction of parallelism from the log to prevent reapplying 
updates serially, in which case a new replica may never catch up 
if the workload is update-heavy. Once a replica has replayed the 
entire recovery log, it is also necessary to enact a global barrier, to 
ensure that no in-flight request is missed by the newly-added 
replica. A large body of optimizations could be operated on 
replica synchronization, to minimize the resources and the time 
necessary to get to the online state. 
Failures could often be recovered relatively easily. E.g., a replica 
might stop working because its log is full or its data partition ran 
out of space. However, the replication middleware has often no 
information on which transactions committed successfully prior to 
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the failure; this information is only known to the database. As 
there is no standard API to query a database about the status of 
transactions, usually a full recovery has to be performed— in 
large production databases, this means hours of dump/restore and 
resynchronization. Fast resynchronization of failed nodes is as of 
yet still a hard problem. 
Autonomic provisioning of database replicas [9] depends to a 
large extent on the system’s ability to add and remove replicas. 
Being able to model and predict replica synchronization time and 
its associated resource cost is key to efficient autonomic 
middleware-based replicated databases. Determining the relevant 
metrics and exporting accurate resource usage predictions are 
challenges that need solutions before we can expect major 
breakthroughs in the area of autonomic replicated databases. 

4.4.3 Software Upgrades 
Software upgrades are part of planned maintenance operations. In 
a replicated database, there are three different types of 
components that can be upgraded: the engine itself, the replication 
middleware, and the drivers (database driver, middleware driver, 
or both, depending on the design). 
Database upgrade. Database upgrades are usually relatively easy 
between minor releases, where a simple patch can be applied. 
Upgrades between major version numbers often require migration 
tools for both configuration and data files. If the replication 
middleware requires database modifications or extensions, it 
might not be possible to upgrade databases one by one without 
bringing the entire cluster down. A database upgrade while 
keeping the system online requires the replication middleware to 
support (at least temporarily) a heterogeneous cluster 
configuration, possibly using different driver versions for old and 
new database versions.  
Middleware upgrade. As any software component, the replication 
middleware itself must be upgraded. If all components are 
replicated, it might be possible to upgrade them one by one, 
relying on standard failover techniques to handle the online 
upgrade. However, the protocols between replicated components 
must remain compatible, so that the old version of an upgraded 
component can still communicate with the newer version during 
the upgrade. This might require additional engineering, like one-
time migration protocols, to allow upgrades between major 
versions of the replication middleware. If the replication 
middleware relies on a group communication library, upgrading 
the library requires protocol compatibility between versions. 
Driver upgrade. Driver upgrades are rarely viewed as part of the 
database upgrade problem. However, it is quite common to have 
large web sites with tens or hundreds of application servers 
connecting to the same replicated database system. In such cases, 
upgrading the drivers is a much more complex issue than the 
database upgrade itself, which only affects a small number of 
machines and configurations.  

4.4.4 Routine Maintenance 
When running a production system, logs have to be purged, 
indexes have to be rebuilt, optimizer statistics need to be updated 
(vacuum-like operations), backups have to be made, etc. These 
operations have a significant impact on database performance 
both during and after their execution. Significant engineering 
efforts have gone into simplifying and automating database 
maintenance, but most of these efforts target centralized 
databases, leaving many open issues for replicated databases. 

So far, there are no accepted “best practices” for performing 
maintenance on a replicated database system. What operations 
must be executed sequentially or in parallel? What is the impact 
on load balancing policies? Is it better to execute operations 
online or on an offline replica? 
The vast majority of production systems have a monitoring 
infrastructure. Failures can be detected and reported by different 
sensors. It is not clear what interactions the database management 
framework should have with this global monitoring infrastructure. 
Whose responsibility is it to trigger an automatic replica repair 
operation when a failure is detected? A classification of replicated 
management operations is necessary in order to define the needed 
sensors, actuators, and to implement good management policies. 

4.4.5 Performance Prediction 
Database replication is often envisaged as a solution for 
performance issues. However, database replication usually only 
provides scalability, that is, if one adds resources proportionally to 
the load increase, the performance perceived per client will 
remain constant. Furthermore, the replication middleware itself 
imposes an overhead that often deteriorates query latency. 
More insight is needed into the latency deterioration induced by 
moving from a single database to a replicated system, when the 
load could be handled without contention by the resources of a 
single database. We have observed that, when faced with 
workloads that have little parallelism, replicated databases usually 
perform poorly when load is low, because low latency is critical to 
the performance of sequential (non-parallel) queries. For example, 
a sequential batch update script will usually run much slower on a 
replicated database than on a single-instance database. OLTP-
style sub-millisecond queries suffer the most from latency 
overheads imposed by the replication middleware, more so than 
heavyweight queries that take seconds or minutes to execute.  
The lack of tools for accurately predicting the performance of a 
replicated database makes it difficult to properly size a system 
(“capacity planning”) or to estimate the scalability limits of a 
system. As a result, database clusters tend to be small, between 
2-4 replicas, rarely going up to 8 replicas. When it comes to 
OLTP databases, users feel safer to invest in fewer powerful 
machines than several less powerful machines. This helps limit 
complexity, as well as save on licensing and maintenance costs. 
 

5. BRIDGING THE GAP 
 
We now suggest a number of directions and areas for both 
academic research and industrial R&D, where innovative 
solutions could have a significant practical impact.  
 

5.1 An Agenda for Academic Research 
 
Tradeoffs for portability, upgradability, and performance vary 
across different designs for intercepting queries at the middleware 
level. Statement and transaction-based replication offer tradeoffs 
between performance, availability, and intrusiveness into the 
application or the RDBMS engine. Availability aspects, such as 
single points of failure cannot be overlooked. Failover and 
failback are tightly coupled with the usual networking issues and 
the black art of tuning timeouts. Performance is usually limited by 
group communication or writesets propagation. We see ample 
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opportunities for optimization in systems operating under partial 
load or capacity, or at low consistency levels. A practical, 
deployment-worthy solution must address all these issues. 
Research prototypes have mainly focused on performance, largely 
ignoring other system aspects. Every additional functionality, 
however, impacts the replication middleware’s design, so the 
practicality of proposed concepts can only be assessed in a global 
context. 
Middleware design. Database replication requires new 
abstractions in order to replicate more than one database instance 
at once. A RDBMS may host multiple database instances that 
appear as a single logical unit to the application or the customer. 
RDBMS replication poses new challenges for inter-database 
queries and cross-database management operations. 
Partial replication is also a challenge: tables cannot be arbitrarily 
replicated, since queries might span over multiple tables and 
require distributed joins to perform select or update operations. 
Database backup is a complex distributed operation, since it might 
require multiple replicas to obtain a full consistent snapshot. 
Adding or removing partial replicas while still offering 
availability and service continuity is a completely open problem.  
Stored procedure execution should be handled by the replication 
middleware. New algorithms are needed for optimizing the 
cluster-wide execution of stored procedures. If stored procedures 
were compiled in the middleware instead of the DBMS, queries 
and transactions could be better scheduled and balanced.  
Consistency. SI and its variations attract substantial attention, as 
they improve performance over 1SR. Most probably, new 
optimizations or consistency models will be developed to address 
different needs. These new models, such as eventual 
consistency [34], could also require applications to be written 
differently, to better cooperate with the database and with new 
architectures, such as computing clouds. We ought to extract from 
past work the necessary interfaces and abstractions needed from 
both the replication middleware and the DBMS and to make these 
protocols pluggable in a replicated system. This would both 
encourage industry to provide standard APIs for replication and 
foster new research into other consistency models (e.g., targeting 
the very common read-committed transaction isolation level). 
WAN environments impose both latency and availability 
constraints that are different from geographically centralized 
clusters. New consistency models for the WAN that are less strict 
than 1SR or SI, but stronger than fully asynchronous replication, 
require new protocols and probably programming paradigms.  
SPOF and Availability. Production systems cannot tolerate any 
single points of failure, since service continuity is key. All 
management operations (e.g., backups or adding a replica) should 
be doable without service interruption. This requires fully 
transparent failover and failback that go beyond standard 
application/database boundaries. Availability might have to be 
thought of more globally, so that all failure detection mechanisms 
can synchronize to take proper coordinated actions. Connections 
and transactions should be addressed globally, so they can be 
transferred or failed over. Recovery procedures, distributed 
checkpointing, and replica state reconstruction are vast areas to 
investigate. Research on autonomic replicated databases ought to 
expand beyond performance, to tackle all aspects of availability. 
Software upgrades are inevitable. All components including 
driver, middleware and database engine, must be upgradeable 
without service interruption. New solutions are required to allow 

such upgrades and to minimize the duration of these operations. A 
system with 5 nines of availability can be unavailable for no more 
than 5.26 minutes per year—this number marks the sole 
acceptable upper bound when evaluating new availability 
techniques. Similarly, metrics such as MTTF and MTTR should 
be considered when evaluating a design and/or prototype. 
Evaluation. As database replication is about more than peak 
throughput, it is necessary to assess performance in the presence 
of failures, in degraded modes, as well as under low loads. 
Another area of performance that is not evaluated is the impact of 
management operations and faults on the system. New availability 
metrics should be defined, or combined with performance metrics, 
to better assess true overall performance. 
To this end, researchers need new benchmarks that are not 
necessarily closed-loop systems, that could integrate fault 
injection or management operations. It would be interesting to 
have a wider variety of workloads, or to be able to capture 
workloads from existing applications. Even though it is possible 
to capture in various logs the execution of a workload, we know 
of no way yet to replay that exact same workload: the inherent 
parallelism in the original workload implies non-determinism in 
the execution order that is decided by the DBMS. Replaying a 
statistically equivalent workload is possible, but replaying the 
exact original workload at the same level of parallelism while still 
providing the same execution order requires instruction-level 
hardware simulation, which is still very expensive. 
 

5.2 An Agenda for Industrial R&D 
 
Database-agnostic middleware replication is challenging in 
practice, due to database implementation discrepancies. We have 
identified variations at the RDBMS level in transactional 
behavior, SQL semantics (e.g., temporary tables, stored 
procedures, large objects) and access control mechanisms. Despite 
efforts such as the GORDA project [16], the lack of 
standardization also affects management operations as well as 
recovery procedures. Hardware and software upgrades without 
service interruption lead to temporarily heterogeneous clustering 
and require innovative solutions. 
Integration. Innovation in middleware-based replication with 
commercial databases has been limited to interactions using 
publicly available APIs. Workarounds, such as triggers for 
writeset extraction, have been implemented, but industry 
standards should be defined to better integrate with middleware 
replication. New mechanisms have to be developed to allow 
replication middleware to plug its own replacement for non-
deterministic functions (e.g., time or random number functions). 
Transaction abstraction. The notion of transaction as currently 
exposed by databases should be expanded to provide additional 
meta-information, such as readset and writeset, lock set, execution 
cost, etc. Having such information would allow for higher 
diagnosability at recovery time, would enable more efficient 
caches at the middleware level, and would improve decisions on 
which transactions to abort. Transactions are currently tightly 
coupled with driver connections—when the connection is lost, the 
transaction is lost; this precludes failover. It is currently not 
possible to pause a transaction, serialize and transfer transaction 
state to another connection, and resume a transaction. 
Management. Backup/restore operations have to be improved to 
capture a consistent snapshot of a database without limiting 
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themselves to data content. User information, access rights, views, 
triggers, and stored procedures must also be captured if a replica 
is to be properly cloned. The lack of standardization in this area 
thwarts further development of heterogeneous clustering with 
different database engines.  
Software upgrades. Finally, software upgrades are not only a 
problem for the database engine itself, but for all applications 
requiring a driver upgrade. New language runtimes, such as recent 
Java virtual machines, allow on-the-fly replacement of classes’ 
implementations. This offers an infrastructure for dynamically 
upgrading drivers at the client side. The complexity of driver and 
database deployment could be considerably reduced by rethinking 
the driver lifecycle. Drivers used by client applications could be 
reduced to a minimum bootstrap, the database server providing 
the appropriate driver code at the first connection. Similar 
approaches could be used for database or middleware drivers. 
 

6. CONCLUSION 
 
In this paper, we reported challenges faced by middleware-based 
replication systems when deployed in production settings at real 
customers. We identified performance, availability and 
management issues that are insufficiently (or not at all) addressed 
by academic prototypes. Availability, in particular, poses several 
unsolved problems, from reliable failure detection to transparent 
failover/failback. Common management operations such as 
backups and hardware/software upgrades require the focused 
attention of the research community, to provide innovative 
solutions and optimizations. Database performance is not an issue 
that can be separated from availability and management issues. 
We proposed four main themes to be investigated by academic 
research: replication middleware design, consistency, availability 
and evaluation. We also suggested new approaches to industrial 
R&D: improving the integration of databases with replication 
middleware, rethinking the way in which transactions are exposed 
to applications, standardizing management operations, and 
simplifying software upgrades.  
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