500 research outputs found

    OpenCL + OpenSHMEM Hybrid Programming Model for the Adapteva Epiphany Architecture

    Full text link
    There is interest in exploring hybrid OpenSHMEM + X programming models to extend the applicability of the OpenSHMEM interface to more hardware architectures. We present a hybrid OpenCL + OpenSHMEM programming model for device-level programming for architectures like the Adapteva Epiphany many-core RISC array processor. The Epiphany architecture comprises a 2D array of low-power RISC cores with minimal uncore functionality connected by a 2D mesh Network-on-Chip (NoC). The Epiphany architecture offers high computational energy efficiency for integer and floating point calculations as well as parallel scalability. The Epiphany-III is available as a coprocessor in platforms that also utilize an ARM CPU host. OpenCL provides good functionality for supporting a co-design programming model in which the host CPU offloads parallel work to a coprocessor. However, the OpenCL memory model is inconsistent with the Epiphany memory architecture and lacks support for inter-core communication. We propose a hybrid programming model in which OpenSHMEM provides a better solution by replacing the non-standard OpenCL extensions introduced to achieve high performance with the Epiphany architecture. We demonstrate the proposed programming model for matrix-matrix multiplication based on Cannon's algorithm showing that the hybrid model addresses the deficiencies of using OpenCL alone to achieve good benchmark performance.Comment: 12 pages, 5 figures, OpenSHMEM 2016: Third workshop on OpenSHMEM and Related Technologie

    An Automated Design-flow for FPGA-based Sequential Simulation

    Get PDF
    In this paper we describe the automated design flow that will transform and map a given homogeneous or heterogeneous hardware design into an FPGA that performs a cycle accurate simulation. The flow replaces the required manually performed transformation and can be embedded in existing standard synthesis flows. Compared to the earlier manually translated designs, this automated flow resulted in a reduced number of FPGA hardware resources and higher simulation frequencies. The implementation of the complete design flow is work in progress.\u

    Application-Specific Heterogeneous Network-on-Chip Design

    Get PDF
    Cataloged from PDF version of article.As a result of increasing communication demands, application-specific and scalable Network-on-Chips (NoCs) have emerged to connect processing cores and subsystems in Multiprocessor System-on-Chips. A challenge in application-specific NoC design is to find the right balance among different tradeoffs, such as communication latency, power consumption and chip area. We propose a novel approach that generates latency-aware heterogeneous NoC topology. Experimental results show that our approach improves the total communication latency up to 27% with modest power consumption. © 2013 The Author 2013. Published by Oxford University Press on behalf of The British Computer Society

    Mapeo estático y dinámico de tareas en sistemas multiprocesador, basados en redes en circuito integrado

    Get PDF
    RESUMEN: Las redes en circuito integrado (NoC) representan un importante paradigma de uso creciente para los sistemas multiprocesador en circuito integrado (MPSoC), debido a su flexibilidad y escalabilidad. Las estrategias de tolerancia a fallos han venido adquiriendo importancia, a medida que los procesos de manufactura incursionan en dimensiones por debajo del micrómetro y la complejidad de los diseños aumenta. Este artículo describe un algoritmo de aprendizaje incremental basado en población (PBIL), orientado a optimizar el proceso de mapeo en tiempo de diseño, así como a encontrar soluciones de mapeo óptimas en tiempo de ejecución, para hacer frente a fallos de único nodo en la red. En ambos casos, los objetivos de optimización corresponden al tiempo de ejecución de las aplicaciones y al ancho de banda pico que aparece en la red. Las simulaciones se basaron en un algoritmo de ruteo XY determinístico, operando sobre una topología de malla 2D para la NoC. Los resultados obtenidos son prometedores. El algoritmo propuesto exhibe un desempeño superior a otras técnicas reportadas cuando el tamaño del problema aumenta.ABSTARCT: Due to its scalability and flexibility, Network-on-Chip (NoC) is a growing and promising communication paradigm for Multiprocessor System-on-Chip (MPSoC) design. As the manufacturing process scales down to the deep submicron domain and the complexity of the system increases, fault-tolerant design strategies are gaining increased relevance. This paper exhibits the use of a Population-Based Incremental Learning (PBIL) algorithm aimed at finding the best mapping solutions at design time, as well as to finding the optimal remapping solution, in presence of single-node failures on the NoC. The optimization objectives in both cases are the application completion time and the network's peak bandwidth. A deterministic XY routing algorithm was used in order to simulate the traffic conditions in the network which has a 2D mesh topology. Obtained results are promising. The proposed algorithm exhibits a better performance, when compared with other reported approaches, as the problem size increases

    MPSoCBench : um framework para avaliação de ferramentas e metodologias para sistemas multiprocessados em chip

    Get PDF
    Orientador: Rodolfo Jardim de AzevedoTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Recentes metodologias e ferramentas de projetos de sistemas multiprocessados em chip (MPSoC) aumentam a produtividade por meio da utilização de plataformas baseadas em simuladores, antes de definir os últimos detalhes da arquitetura. No entanto, a simulação só é eficiente quando utiliza ferramentas de modelagem que suportem a descrição do comportamento do sistema em um elevado nível de abstração. A escassez de plataformas virtuais de MPSoCs que integrem hardware e software escaláveis nos motivou a desenvolver o MPSoCBench, que consiste de um conjunto escalável de MPSoCs incluindo quatro modelos de processadores (PowerPC, MIPS, SPARC e ARM), organizado em plataformas com 1, 2, 4, 8, 16, 32 e 64 núcleos, cross-compiladores, IPs, interconexões, 17 aplicações paralelas e estimativa de consumo de energia para os principais componentes (processadores, roteadores, memória principal e caches). Uma importante demanda em projetos MPSoC é atender às restrições de consumo de energia o mais cedo possível. Considerando que o desempenho do processador está diretamente relacionado ao consumo, há um crescente interesse em explorar o trade-off entre consumo de energia e desempenho, tendo em conta o domínio da aplicação alvo. Técnicas de escalabilidade dinâmica de freqüência e voltagem fundamentam-se em gerenciar o nível de tensão e frequência da CPU, permitindo que o sistema alcance apenas o desempenho suficiente para processar a carga de trabalho, reduzindo, consequentemente, o consumo de energia. Para explorar a eficiência energética e desempenho, foram adicionados recursos ao MPSoCBench, visando explorar escalabilidade dinâmica de voltaegem e frequência (DVFS) e foram validados três mecanismos com base na estimativa dinâmica de energia e taxa de uso de CPUAbstract: Recent design methodologies and tools aim at enhancing the design productivity by providing a software development platform before the definition of the final Multiprocessor System on Chip (MPSoC) architecture details. However, simulation can only be efficiently performed when using a modeling and simulation engine that supports system behavior description at a high abstraction level. The lack of MPSoC virtual platform prototyping integrating both scalable hardware and software in order to create and evaluate new methodologies and tools motivated us to develop the MPSoCBench, a scalable set of MPSoCs including four different ISAs (PowerPC, MIPS, SPARC, and ARM) organized in platforms with 1, 2, 4, 8, 16, 32, and 64 cores, cross-compilers, IPs, interconnections, 17 parallel version of software from well-known benchmarks, and power consumption estimation for main components (processors, routers, memory, and caches). An important demand in MPSoC designs is the addressing of energy consumption constraints as early as possible. Whereas processor performance comes with a high power cost, there is an increasing interest in exploring the trade-off between power and performance, taking into account the target application domain. Dynamic Voltage and Frequency Scaling techniques adaptively scale the voltage and frequency levels of the CPU allowing it to reach just enough performance to process the system workload while meeting throughput constraints, and thereby, reducing the energy consumption. To explore this wide design space for energy efficiency and performance, both for hardware and software components, we provided MPSoCBench features to explore dynamic voltage and frequency scalability (DVFS) and evaluated three mechanisms based on energy estimation and CPU usage rateDoutoradoCiência da ComputaçãoDoutora em Ciência da Computaçã
    corecore