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Summary

Brevity is the soul of wit
William Shakespeare

The first part of the thesis presents an overview of the existing theories and
practices of modeling and simulation of multiprocessor systems-on-chip. The
systematic categorization of the plethora of existing programming models at
various levels of abstraction is the main contribution here which is the first such
attempt in the published literature.

The second part of the thesis deals with the issues related to the development
of system-level design methodologies for networked multiprocessor systems-on-
chip at various levels of design abstraction with special focus on the modeling
and design of wireless integrated sensor networks which are an emerging class
of networked embedded computer systems.

The work described here demonstrates how to model multiprocessor systems-
on-chip at the system level by abstracting away most of the lower-level details
albeit retaining the parameters most relevant at the system-level. The multi-
processor modeling framework is then extended to include models of networked
multiprocessor systems-on-chip which is then employed to model wireless sensor
networks both at the sensor node level as well as the wireless network level.

In the third and the final part, the thesis covers the issues related to the design,
implementation and testing of a system-on-chip-based wireless sensor node de-
velopment platform, specifically, for the Hogthrob project. This part also deals
with the cycle-accurate model of the multiprocessor system-on-chip and its pos-



ii

sible extensions to the transaction-level model.

The thesis, as a whole makes contributions by describing a design methodology
for networked multiprocessor embedded systems at three layers of abstraction
from system-level through transaction-level to the cycle accurate level as well
as demonstrating it practically by implementing a wireless sensor node design.



Resumé

Denne afhandling indledes med en præsentation af eksisterende teoretiske og
praktiske metoder til modellering og simulering af multiprocessor system-on-
chip designs. Det primære formål er - for første gang i litteraturen - at danne et
samlet overblik over de mange programmeringsmodeller, der findes p̊a forskellige
abstraktionsniveauer.

I det følgende afsnit behandles problemstillinger omkring udvikling af system-
level design metodikker for netværksbaserede multiprocessor system-on-chip de-
signs. Der fokusers især p̊a modellering og design af tr̊adløse integrerede sensor-
baserede netværk, som finder større og større anvendelse i embeddede computer
systemer.

Dette arbejde demonstrerer, hvorledes et multiprocessor system-on-chip design
kan modelleres p̊a systemniveau ved at ignorere de detaljer og parametre, der
har mindre afgørende betydning for den overordnede funktion. Dette simple
framework kan derefter udvides ved at inkludere modeller af netværksbaserede
system-on-chip designs. P̊a dette grundlag kan der uadarbejdes modeller for
generelle wireless sensor netværk, b̊ade p̊a sensor node niveau og p̊a det tr̊adløse
netværks niveau.

I afhandlingens tredie og sidste del beskrives først design, derp̊a implementer-
ing og endelig test af en system-on-chip baseret tr̊adløst sensor udviklingsplat-
form beregnet for Hogthrob projektet. Afslutningsvist omtales en cycle-accurate
model af multiprocessor system-on-chip design og de tilhørende udvidelsesmu-
ligheder for en tilsvarende model p̊a transaction-level.

Afhandlingen beskriver metoder til design af netværksbaserede embeddede mul-
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tiprocessor systemer p̊a tre abstraktionsniveauer: System-, transaction-, og
cycle-accurate niveau, og demonstrerer endvidere en praktisk implementering
af et tr̊adløst sensor node design.
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Chapter 1

Introduction

The most profound technologies are those that disappear.
Mark Weiser, Xerox, PARC (USA) 1991

1.1 System-Level Modeling of Networked Em-

bedded Computer Systems

As more embedded computer systems are being integrated into system-on-chip
(SoC) designs and as the interactions of concurrent (and, possibly, real-time)
software with embedded parallel and distributed computing platforms becomes
more complex, the embedded computer systems designers must reason about:

• computing platform design for programmability,

• co-execution of hardware-like and software-like system-level behaviors,

• system-level performance impacts of hardware architectures that execute
the software functionality.

Many of the critical system-level design decisions are those that involve the
anticipation of hardware/software interactions; as hardware is loaded with the
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software functionality, software is deployed onto a variety of hardware resources
(architectures) and parts of a system (mixed hardware and software) must in-
teract with the yet-to-be-designed rest of the system (which may also include
mixed hardware and software).

Modeling systems in the large is an important trend in systems engineering
and it plays a central role there. The purpose of modeling is to build models
of systems which satisfy given requirements. The use of models can profitably
replace experimentation on actual systems with incomparable advantages such
as:

• enhanced modifiability of the model and its parameters;

• ease of construction by integration of models of heterogeneous components;

• generality by using genericity, abstraction, and behavioral non-determinism,

• enhanced observability and controllability, especially, avoidance of the
probe effect and of disturbances due to experimentation;

• possibility of analysis and predictability by the application of formal meth-
ods.

Building system-level models which faithfully represent complex systems is a
non-trivial problem and a pre-requisite to the application of formal analysis
techniques. Usually, modeling techniques are applied at the early phases of
system development and at a higher level of abstraction. The need for a unified
view of the various lifecycle activities of an embedded computer system and of
their interdependencies have motivated the so-called model-based system design
approaches which rely heavily on the use of modeling methods and tools to
provide support and guidance for system development and validation.

GP Processor

IP


(ASIC, Memory)


Programmable


Logic


(FPGA, CPLD)


Custom/


CoProcessor


(DSP, NP)


Communication Network


Figure 1.1: A typical Multiprocessor System-on-Chip architecture

Most of the future embedded computer systems are likely to be designed for
real-time applications that execute on multiple processors (Figure 1.1). Modern
embedded computer systems also exhibit an increasingly large quantity of com-
munication capabilities. The communication infrastructures in a multiprocessor
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embedded computer system may comprise either local, internal communication
infrastructures (e.g., in a multiprocessor computer system, the processing ele-
ments can be connected through shared memory, dedicated communication links
or a communication network) or global, external communication infrastructures
(e.g., an interface to an external network which can either have wired or wireless
links) or both.

This gives rise to two possible categories of such systems:

• Embedded Network Systems
This category of embedded computer systems are characterized by the
fact that they have a communication network embedded in them for han-
dling internal communications. The codesign of these systems requires
modeling of not only the hardware and software parts of the embedded
computer system but also the embedded communication network which,
essentially, involves modeling of the network geometry1. Networks on Chip
are an emerging example of this class of parallel multiprocessor computer
systems-on-chip.

• Networked Embedded Systems
In this category of embedded computer systems, each computing platform
forms a node that has access to a communication network for handling
communications external to the computing platform. So the network in-
terface becomes a part of the node design. The nodes and the network are
together embedded in the environment. The design of such a distributed
multiprocessor computer system is not only focused on a particular net-
work device but also on consideration of the interactions between the nodes
because it is very important to be able to predict, measure and verify the
real-time attributes of the entire distributed multiprocessor computer sys-
tem. When the prediction or extrapolation of such real-time attributes
is impossible (due to the complexity of the system, its non deterministic
nature, etc.) the availability of a proper model can make the difference.
Therefore, in addition to hardware/software partitioning step described
above for embedded network systems, the codesign of such systems de-
mands another hierarchical partitioning step which involves:

1. node-level modeling
2. network-level modeling

In addition, a model of the environment with which the networked em-
bedded system interacts, can serve to verify and, possibly, validate the
involved algorithms and architectures. The modeling domain dichotomy

1network geometry comprises network topology (network hardware) as well as network
protocols (network software).
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arising between the inherently continuous environment models and the
essentially discrete networked embedded system models, can, possibly, be
alleviated through hybrid systems modeling.

Wireless Sensor Networks constitute a typical example of this class of
distributed multiprocessor computer systems-on-chip.

Orthogonal to the above categorization, an alternate classification of embedded
computer systems can be as:

• multifunction systems - that can concurrently operate across multiple ap-
plication domains, e.g., mobile multimedia terminals can capture video
data, process audio streams, browse the web simultaneously, or

• multimode systems - that can operate in several alternative modes of op-
eration, e.g., mobile phones can accommodate several communication pro-
tocols [4], or

• hybrid systems - that are both multifunction as well as multimode.

For the sake of completion, it is worth mentioning that, as a flexible variation
of the embedded computer systems categorized above, adaptive embedded
computer systems tend to achieve optimum computation and/or communi-
cation load distribution either through an internal reconfigurable network (to
meet varying computation load requirements - as in reconfigurable computer
systems) or through an external reconfigurable network (to meet varying com-
munication requirements - as in mobile ad hoc networks) or both.

In modeling parallel and distributed multiprocessor computer systems, the op-
erating systems have a major role. A parallel multiprocessor system is tightly
coupled so that the global status and workload information on all processors
can be kept current at a low cost. The system may use a centralized scheduler.
When each processor has its own scheduler, the decisions and actions of the
schedulers of all the processors are coherent. In contrast, a distributed multi-
processor system is loosely coupled. In such a system, it is costly to keep the
global status and workload information current. The schedulers on different
processors may make scheduling and resource access control decisions indepen-
dently. As a consequence, their decisions may be incoherent as a whole.

This thesis report attempts to describe the work carried out during the Ph.D.
project that attempts to show how to model and evaluate parallel and dis-
tributed multiprocessor computer systems in their completeness at various levels
of abstraction as well as at different levels of hierarchy.

SystemC has been selected as the modeling language to model hardware, soft-
ware as well as network geometry. Since SystemC is based on C++, it is possible
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to formulate an executable specification of the modeled system which is, essen-
tially, a program that behaves in the same way as the SystemC specification
of the system. This avoids inconsistencies and errors and helps to ensure com-
pleteness of the specification.

1.1.1 Modeling Multiprocessor Systems on Chip

The embedded computer system designers, usually, use processor-based tem-
plates to build today’s system-on-chip (SoC) designs, which contain one or more
processor cores with considerable on-chip memory and sophisticated communi-
cation infrastructures. Because on-chip processor cores are often either legacy
or third-party components, the designers need correct functional models to ac-
curately track the interaction of processor core(s) with the rest of the embedded
system.

The embedded hardware designers use Hardware Description Language (HDL)
simulators to validate their work, but these simulators model the processor
micro-architecture in too much detail to efficiently simulate complex proces-
sor cores. The embedded software designers, on the other hand, routinely use
cross-development toolkits containing a cross-compiler and an instruction-set
simulator (ISS) to validate functionality and assess application performance.
Thus, exploring and validating a complex SoC design requires a single, inte-
grated hardware-software cosimulation platform. The academic research groups,
as well as the electronic design automation vendors, have developed numerous
such platforms.

Traditional cosimulation design environments use multi-language system de-
scriptions - HDL for hardware and C (or similar languages) for software - to
construct an efficient link between event-driven hardware simulators to cycle-
based ISS’s.

Therefore, there has been a need for a system design language that describes
the functionality of both hardware and software. It must allow the system to be
defined, first without making assumptions about the implementation, and then
to be refined into the exact implementation with hardware and software com-
ponents. It is also important to be able to use standard models of computation
(MOCs) at the initial design stages. Further, one may not wish to concretely
specify the communication mechanisms and instead leave it to be defined by the
underlying operational semantics of the MOCs being deployed.

More recently, using C/C++ for hardware design descriptions and design flows
has gained popularity because using the same language for describing hardware
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and software can, potentially, bridge the gap between hardware and software de-
scription languages. Using the same language also makes it possible to simulate
the entire system within a single simulation engine.

SystemC is the leader in system-level modeling with C++. The SystemC ap-
proach consists of a progressive refinement of specifications. SystemC allows
both applications and platforms to be expressed at sufficiently high levels of
abstraction while, at the same time, enabling the linkage to hardware imple-
mentation and verification. SystemC has the potential to provide a full-fledged
description of an execution platform which can serve as the target of a codesign
methodology. Thus, SystemC is a viable intermediate representation language.

SystemC describes the functionality of both hardware and software inside a
unified specification language based on C++. At a high level of abstraction,
SystemC allows the use of a common language for software and hardware spec-
ifications and simulation of the whole system. However, one of the problems
encountered with SystemC 2.0 is the lack of features to support embedded soft-
ware modeling. For some classes of applications modeled with SystemC, it is
not, currently, possible to completely model the software behavior of the tar-
geted architecture.

The availability of RTOS models is becoming strategic inside HW/SW (hard-
ware/software) co-design environments. Apart from providing some assurances
about the timely performance of tasks, an RTOS provides a very useful ab-
straction interface between applications with hard real-time requirements and
the target system architecture. Indeed, for the simulation of software modules,
such as preemption and/or priority-based scheduling, generally present in any
RTOS, the SystemC simulator does not offer all the necessary functionalities.
This is because, during simulation, the RTOS scheduler, responsible for deter-
mining which thread will run next, manages both software and hardware threads
identically. It means that systems with hard real-time constraints requiring an
RTOS (Real-Time Operating System) based on a preemptive priority-based ker-
nel cannot be modeled in a natural manner. As a consequence, a joint refinement
of the software and hardware parts is a tedious task in SystemC 2.0.

To support the designers of single chip-based embedded systems (which includes
multiprocessor platforms running dedicated RTOS’s) to easily simulate various
hardware/software configurations, at high-level, as a part of this Ph.D. project,
we have successfully developed an abstract RTOS modelling environment based
on SystemC by abstracting the real-time operating system features at the system
level. In our abstract RTOS modeling framework, we deal with generalized
abstract tasks and processing elements. Our abstract RTOS system model deals
with the analysis of the execution behaviour of real-time applications running
on a heterogeneous multiprocessor computing platform. In our model, such an
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application is represented as a multi-threaded application comprising a set of
abstract tasks with certain essential execution parameters. Each task can either
execute independently or precede a given set of other tasks. Moreover, each
task also excludes a given set of other tasks for the use of shared resources.

RTOS


Application


τ

1


τ

3


τ

2


Allocator


Scheduler


Synchronizer


Clock


Figure 1.2: Abstract RTOS Model

Based on the principle of composition, three distinct but closely-related RTOS
services have been modeled, namely, task scheduling, execution synchroniza-
tion, and resource allocation (Figure 1.2). The scheduler is modelled around
the priority-based preemptive scheduling policy which is one of the most pre-
ferred scheduling policies for the execution of tasks in real-time systems due to
its higher schedulability. In our scheduler model, which supports, RM schedul-
ing, EDF scheduling or other variants, whenever a task becomes ready or finishes
execution, the scheduler is invoked and it then looks for a ready task with max-
imal priority to continue execution. In our synchronizer model, synchronization
is regarded as a means to prevent undesirable task interleavings by the sched-
uler. Our synchronizer model is responsible for establishing the correctness of
the results computed by the multiprocessor platform and it implements the Di-
rect Synchronization (DS) protocol. Unfortunately, most mechanisms used in
the basic RTOS services are not compositional in nature. Even if a mechanism
can provide assurances individually to each task, there is no systematic way to
provide assurances for an aggregate of two except in trivial cases. One manifes-
tation of this problem is priority inversion. To partly offset this problem, the
resource allocator model is based on the priority inheritance protocol.
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The results have shown that simulation overhead introduced by the RTOS model
is negligible while providing modeling accuracy.

1.1.2 Modeling Networks on Chip

With the growing complexity of embedded systems and the capacity of modern
silicon technology, there is a trend towards heterogeneous architectures consist-
ing of several programmable and dedicated processors, implemented on a single
chip, known as a System-on-Chip (SoC). As an increasing portion of applica-
tions is implemented in software which, in turn, is growing larger and more
complex, dedicated operating systems will have to be introduced as an interface
layer between the application software and the hardware platform. On the other
hand, the hardware platform will either be developed as a part of the design
process or configured from an existing reconfigurable platform, which allows for
the implementation of parts of an application as dedicated processors (ASIC’s).

Modern silicon technologies, with minimum device geometries in the nanometer
range (<100nm), have made it possible to integrate hundreds of processors on a
single chip. In these deep submicron technologies, the on-chip interconnection
fabric is a major source of delay and power consumption which is challenging the
on-chip communication infrastructure and forcing a change from device-centric
to interconnect-centric design methodologies. Traditionally, on-chip communi-
cation has either been conducted via dedicated point-to-point links or by shared
media like a bus. Neither is very suitable for generalized communication han-
dling in large systems. A promising solution is to have a dedicated, segmented,
and, possibly, packet-switched network fabric on the chip, a Network-on-Chip
(NoC) [1].

Hence, when mapping an application onto its target platform, hardware/software
codesign aspects [5] have to be taken into account. These include mapping of
tasks onto software, hardware, or a combination of both, as well as task depen-
dencies on the communication infrastructure. In order to do so, accurate mod-
eling of the systems and all the interrelationships among the diverse processors,
software processes and physical interfaces and interconnections, is needed. One
of the the primary goals of system-level modeling is to formulate a model within
which a broad class of designs can be developed and explored. To support the
designers of single-chip based embedded systems, which includes multiprocessor
platforms running dedicated real-time operating systems (RTOS’s) as well as
the effects of on-chip interconnect network, a system-level modeling/simulation
environment is required to support an analysis of the:

• consequences of different mappings of tasks to processors (software or
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hardware),

• network performance under different traffic and load conditions,

• effects of different RTOS selections, including various scheduling, synchro-
nization and resource allocation policies.

As a part of this Ph.D. project, we have developed a NoC modeling environment
based on SystemC which can provide the SoC designers a software-like, system-
level abstraction of the computing platform as well as supporting the three
requirements mentioned above for system-level design-space exploration.
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Figure 1.3: NoC Model

The multiprocessor SoC model developed earlier has been extended to handle
the effects of on-chip interconnection infrastructure, i.e., network-on-chip (Fig-
ure 1.3). We model a generic multi-threaded application, running on a multi-
processor computing platform under the control of one or more abstract RTOS’s
and extend the model with a model of an on-chip communication network which
can provide provisions for run-time inspection and observation of the on-chip
communication. Instead of dealing with each specific application and system
architecture, we deal with generalized abstract tasks, processing elements, and
communication infrastructures. This not only broadens the applicability of our
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modeling framework, but also leads to a better understanding of the problem
at hand. Using this system-level design approach, implementations of the most
promising network alternatives can be prototyped and characterized in terms of
performance and overhead. Taking communication into account during hard-
ware/software mapping is essential in order to obtain optimized solutions.

We have also demonstrated the capabilities of our modeling framework by mod-
eling and simulating an example of a multifunction embedded network system
which has a hand-held multimedia terminal application mapped on a heteroge-
neous 4-processor SoC architecture interconnected through a torus on-chip net-
work topology. It is worth mentioning, however, that our system-level modeling
framework supports more sophisticated scheduling policies and NoC topologies.
Moreover, features like including the effects of the network interface and mem-
ory accesses as well as dynamic load balancing support can be built upon by
adding more components to the existing framework components.

1.1.3 Modeling Wireless Sensor Networks

Over the 50 years of modern computing, a new class of computers has emerged
about once a decade, progressing through mainframe computers, mini com-
puters, personal computers, and mobile hand-held computers. Each successive
computing paradigm has relied upon technological advances, especially levels of
integration governed by Moore’s law, to make computing available in a form
factor not previously possible. Each has ushered in new uses for computer
technology. Each succeeding generation is smaller, more plentiful and more in-
timately associated with personal activity than the generation that preceded
it. However, the new trend in modern computing is not only how to keep pace
with Moore’s law but also how to deal with the consequences of its decades-long
reign.

With each passing year, a given computing capacity becomes exponentially
smaller and cheaper because the prolonged exponential growth in the semi-
conductor process technology has enabled the number of transistors on a cost-
effective semiconductor chip and, therefore, the processing or storage capacity
of that chip, doubles every year or two, following Moore’s law. While it has pro-
vided ever more computing power, this technology is now being applied in ways
that enable a new computing paradigm - proactive computing (Figure 1.4). The
proactive computer systems are a class of networked embedded computer
systems which are pervasively coupled with the the environments in which
they are embedded using sensors and actuators to both monitor and shape their
physical surroundings.
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(a) (b)

Figure 1.4: A comparison of computing paradigms [8, 3].

The semiconductor manufacturing techniques that underlie this miniaturization
can also be exploited to build micro-mechanical structures that can sense forces
and fields in the physical world as well as exceptionally small radio transceivers.
These inexpensive, low-power sensing, computing and communication devices
can be deployed throughout a physical space, enabling sensing, processing and
wirelessly communicating this information. Combining these hardware capa-
bilities with the system software technology that forms the Internet makes it
possible to narrow the gap between the physical and the virtual spaces with
increasing fidelity.

The density of instrumentation made possible by a shift to mass-produced intel-
ligent sensors and the use of pervasive networking technology gives these wireless
sensor networks a new kind of scope that can be applied to a wide range of uses.
These applications can be roughly categorized into:

• space monitoring,

• object monitoring, and

• monitoring the interactions of objects with each other and the encompass-
ing space.

The first application category includes environmental and habitat monitoring,
precision agriculture, indoor climate control, surveillance, treaty verification,
and intelligent alarms. The second includes structural monitoring, ecophysiol-
ogy, condition-based equipment maintenance, medical diagnostics, and urban
terrain mapping. The most dramatic applications involve monitoring complex
interactions, including wildlife habitats, livestock behavior, disaster manage-
ment, emergency response, ubiquitous computing environments, asset tracking,
healthcare, and manufacturing process flow.
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However, bridging the gap between the hardware technology’s raw potential
and the broad range of applications presents a systems design challenge[2]. The
individual devices in a wireless sensor network (WSN) are inherently resource
constrained: they have limited processing speed, storage capacity, and com-
munication bandwidth. These devices have substantial processing capability
in the aggregate, but not individually, so their many vantage points on the
physical phenomena must be combined within the network itself such that the
aggregate performs sophisticated functions. The network must allocate limited
hardware to multiple concurrent activities, such as sampling sensors, processing,
and streaming data.

Because they are so closely coupled to a changing physical space, the sensor
nodes forming the network will experience wide variations in connectivity and
will be subject to potentially harsh environmental conditions. Their dense de-
ployment, generally, means that there will be a high degree of interaction be-
tween the sensor nodes, both positive and negative. The potential intercon-
nections between devices must be discovered and information routed effectively
from where it is produced to where it is consumed. Each of these factors further
complicates the design of wireless networking protocols.

There must also be a means of programming the ensemble. Because manually
configuring large networks of small devices is impractical, the sensor nodes must
organize themselves and provide a means of programming and managing the
network as an ensemble, rather than administering individual devices. Despite
these operational factors, deploying and maintaining the sensor nodes must
remain inexpensive.

To realize the opportunity offered by this new computing paradigm, the informa-
tion technology must address a new collection of challenges. The wireless sensor
networks merge a wide range of information technology that spans hardware,
systems software, networking, and programming methodologies (Figure 1.5).

A wireless sensor node’s hardware consists of sensors, analog-to-digital convert-
ers (ADCs), a microprocessor, data storage, a data transceiver, device controllers
that tie the pieces together, and an energy source. Recently, a new operating
point has emerged that suits all these components. As semiconductor circuits
become smaller, they consume less power for a given clock frequency and fit in
a smaller area. In simple microcontrollers, process scaling increases efficiency
rather than adding functionality, allowing them to operate near one milli-watt
while running at about ten MHz. Most of the circuits can be powered off, so
the standby power can be about one micro-watt. If such a device is active one
percent of the time, its average power consumption is just a few micro-watts.

However, low-power microprocessors have limited storage, typically, less than
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Figure 1.5: Wireless Sensor Node

10 Kbytes of RAM for data and less than 100 Kbytes of ROM for program
storage - or about 10,000 times less storage capacity than a portable computer
has. This limited amount of memory consumes most of the chip area and much
of the power budget. Typically, larger amounts of flash storage is incorporated,
perhaps, a megabyte, on a separate chip.

Sensors and actuators have undergone a revolution with the emergence of mi-
croelectromechanical systems (MEMS) technology. Micro-Electro-Mechanical
Systems (MEMS) can sense a wide variety of physical phenomena cheaply and
efficiently. The processes for etching transistors on silicon can be used to carve
out tiny mechanical structures, such as a microscopic springboard within an
open cavity. Gravitational forces or acceleration can deflect this cantilevered
mass, causing powerful internal forces that cause changes in material properties
or delicate alignments, which can be amplified and digitized. The sensed signal
is, typically, in the form of a voltage signal which is converted by an ADC into
a binary number that a microcontroller can store or process. The first major
commercial MEMS sensor, the accelerometer, has been used by automotive man-
ufacturers to trigger automotive airbag release. Whereas high-precision piezo-
electric accelerometers cost hundreds of dollars, MEMS-based sensors provided
sufficient precision for a few dollars. Once the devices entered mass produc-
tion, they could ride the CMOS technology growth of modern chips to become
increasingly accurate while remaining inexpensive. A wide variety of MEMS
devices can sense various forces, chemical concentrations, and environmental
factors.Many more sophisticated structures have been developed to detect other
phenomena. These structures consume a few milli-watts and only need to be
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turned on a fraction of the time. Extremely efficient ADCs have been developed
so that the sensor subsystem has an energy profile similar to the processor.

WSN radio transceivers consume about 20 milli-watts and their range, typically,
is measured in tens of meters. For small devices to cover long distances, the
network must route the information hop by hop through nodes, much as routers
move information across the Internet. Even so, communication remains one of
the most energy-consuming operations, with each bit costing as much energy as
about 1,000 instructions. Thus, WSNs process data within the network wherever
possible. In addition to that, to minimize energy consumption, just like most
of the device’s components, the radio transceiver will likely be turned off most
of the time.

Nevertheless, the scale of power typically consumed by all the subsystems of
the device described above can be obtained in many ways. Batteries remain the
primary energy storage devices and there have been substantial improvements
in battery technology with improved storage density, form factor, and recharg-
ing. A typical cubic-centimeter battery stores about 1,000 milliamp-hours, so
centimeter-scale devices can run almost indefinitely in many environments. Al-
though the energy storage technology has advanced substantially it has not im-
proved at the pace associated with silicon-based processing, storage, and sensing.
However, the emergence of alternative storage devices, such as ultracapacitors
and miniaturized fuel cells with high energy density is promising. Moreover, en-
ergy harvesting mechanisms are being actively developed. Solar cells generate
about 10 milli-watts per square centimeter outdoors and 10 to 100 micro-watts
per square centimeter indoors. Mechanical sources of energy, such as the vibra-
tion of windows and air conditioning ducts, can generate about 100 micro-watts.
In most deployment settings, the network must operate for long periods of time
and, as the sensor nodes are wireless, so the available energy resources - whether
batteries, energy harvesting, or both - limit their overall operation.

Energy constraints dominate algorithm and system design trade-offs for small
devices. Therefore, to make the networked embedded node an effective vehi-
cle for developing algorithms and applications, a modular, structured runtime
environment should provide the scheduling, device interface, networking, and
resource management primitives on which the programming environments rest.
It must support several concurrent flows of data from sensors to the network
to controllers. Moreover, microsensor devices and low-power networks operate
bit by bit (or in a few cases, byte by byte), so software must do much of the
low-level processing of these flows and events.

During the growth in capability and complexity of these devices, several dis-
tinct operating systems approaches have emerged to make application design
more manageable. The traditional approach to controller design has been to
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hand-code scheduling loops to service the collection of concurrent flow events,
but this yields brittle, single-use firmware that has poor adaptability. A more
general-purpose solution is to provide fine-grain multithreading. This approach
has been extensively researched for general-purpose computation and it can be
effectively extended to the tiny, networked sensor regime, because the execution
threads that must be interleaved are simple. These requirements have led to a
component-based tiny operating system environment which provides a frame-
work for dealing with extensive concurrency and fine-grain power management
while providing substantial modularity for robustness and application-specific
optimization. The TinyOS[7] framework establishes the rules for constructing
reusable components that can support extensive concurrency on limited pro-
cessing resources.

The data compression and communication scheduling techniques can also con-
serve energy at lower protocol layers. Some protocol overhead is associated
with data communication to maintain routing structures, manage contention,
and enhance reliability. The wireless sensor networks can avoid explicit protocol
messages by piggybacking control information on data messages and by over-
hearing packets destined for other nodes. They can use pre-scheduled time to
reduce contention and the time the radio transceiver remains live. This can be
coordinated with the high-level application behavior by, for example, periodic
low-rate data sampling. Alternatively, the network could implement energy con-
servation, generically, within lower protocol layers by, for example, time division
multiple access.

In the spatial dimension, the network can assign specific responsibilities to cer-
tain sensor nodes, such as re-transmission or aggregation. Finally, the network
can reject uninteresting packets by turning off the radio transceiver after re-
ceiving only a portion. However, because these many optimizations can be
mutually conflicting, a rich and growing body of research literature employs
different combinations of techniques under different application and platform
assumptions.

In order to efficiently utilize the extremely limted resources of wireless sensor
nodes, accurate modeling of the key aspects of wireless sensor networks is neces-
sary so that system-level design decisions can be made. the design of the sensor
nodes requires a deep understanding of their various constituent components,
their underlying technologies and the interactions between those components.
The wireless sensor network design space consists of the choice of different soft-
ware components - application code and real-time operating system - hardware
components - processor, memory, radio transceiver, A/D converter, sensors,
battery and application-specific devices - and network parameters - network
topology, network protocols, number of nodes, their role, etc. Such components
may be either common-off-the-shelf or subject to the design process. To al-
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low modeling of the whole sensor node architecture, these components should
be representable through models. The modeling languages should be specific
for the different components to ease their representation, re-use, synthesis, and
validation. Furthermore, it is desirable to have a uniform modeling language
to provide joint cross-layer optimization of the different parts of the system
required by the challenging constraints of wireless sensor networks described
above.
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Figure 1.6: Wireless Sensor Node Model

To provide the wireless sensor network designers a system-level abstraction of
the sensor network for system-level design-space exploration, we have extended
our earlier work on SystemC-based abstract multiprocessor SoC modeling frame-
work and developed a modeling framework that enables system-level modeling
of sensor network behavior by modeling the applications, real-time operating
system, sensors, processor, and radio transceiver at the sensor node level and
environmental phenomena, including radio signal propagation, at the sensor net-
work level. The concepts of SystemC hierarchical channels have been employed
to develop a methodology for modeling the radio and sensor channels that can
accurately model the wireless sensor network-related phenomena like radio ir-



1.1 System-Level Modeling of Networked Embedded Computer Systems 17

regularity and radio interference. In order to make a seamless transition from
a system-level sensor node model to an implementation-level (cycle-accurate)
sensor node model, the concepts for a bridging model have been developed that
makes use of Transaction-Level Modeling (TLM) at Level 1 (TL1) for model-
ing the various serial bus protocols common on wireless sensor node platform
designs. The bridging model refines the HW/SW partitioning by modeling the
processor using an instruction set simulator (ISS) which interacts with the RTOS
services model. Finally, cycle-accurate implementation-level models have been
developed using HW/SW codesign for the processor and its interfaces in VHDL,
the MEMS-based accelerometer in VHDL-AMS and the custom hardware block
for Kalman Filtering in Matlab/VHDL. The system-level modeling framework
is more generic while the bridging model and the cycle-accurate models are
specific to the Hogthrob Project described in the following sub-section.
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Figure 1.7: Wireless Sensor Network Model

WSNs appear to represent a new class of computing. They follow the trends
of size, number, and cost, but have a markedly different function. Rather than
being devoted to personal productivity tasks, WSNs make it possible to perceive
what takes place in the physical space in ways not previously possible. In
addition to offering the potential to advance many scientific research pursuits,
they also provide a vehicle for enhancing larger forms of productivity, such as
manufacturing, agriculture, construction, and transportation.

As the technology that is commercially available today becomes established
enough to warrant greater investment, straightforward engineering efforts will
yield complete devices with sensing, processing, storage and communication
functions that fit in much less than a cubic centimeter of space and cost just a
few euros.

Looking forward, the technology will likely evolve into a much less distinct and
visible form. Instead of being housed in many small devices, these elements
will likely become part of the manufacturing process for various materials and
objects. These sensors will tend to operate within the ambient energy sources
of their intended environment and be placed at key junctures where analysis
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is most critical. As this vision evolves, so will the need for fundamentally new
information technology architectures, from signal-processing algorithms to pro-
gramming languages.

1.1.4 Hogthrob Project - A Practical Approach to Wire-

less Sensor Network Modeling & Design

Apart from myriads of applications being proposed for wireless sensor networks,
their low cost and size, ease of deployment, and autonomous operation make
them a viable and non-intrusive solution for livestock monitoring applications.
Extensive automated methods for detecting oestrus2 and health disorders have
been developed within many livestock production systems. In dairy cows, traits
like milk yield, body temperature, walking activity, etc. have been used for the
detection of oestrus and health disorders. For group housed sows, automated
methods for oestrus detection are based on sows’ activity measurements using
infrared sensors or accelerometers.

Today’s Danish farms for pig production are using RFID tags for sow identifica-
tion and controlling their food consumption. However, these tags have proven to
be quite impractical to locate sows in large pens. Moreover, they are not flexible
enough to be useful in contexts other than controlling the food consumption.
For example, the pig farmers have to manually monitor the key aspects of a
sow’s lifecycle such as the onset of oestrus or farrowing - the phenomena that
have a profound effect on pig production.

In this context, the Hogthrob Project[6] aims at developing a cheap, robust
and energy-efficient wireless sensor network technology adapted to the require-
ment of sow monitoring. The goal is to develop wireless sensor nodes that can be
tagged onto the sows (in replacement of the RFID tags they wear today), a wire-
less sensor network infrastructure and the software application allowing farmers
to track changes in the activity of loose group housed sows prior to oestrus to
mate sows at an optimal time. Such wireless sensor nodes should combine sens-
ing, processing and communication abilities on a chip, must be low-cost (costing
no more than a couple of Euros), small-sized (small enough, when packaged, to
be worn as an ear tag) and low-energy (a few months’ autonomy is a minimum).

The project started with the design and development of a wireless sensor node
prototype to be used in field experiments (Figure 1.8). In parallel, a model

2oestrus or heat period is the period when a livestock animal can be bred and it lasts for a
short time only. If an animal is not bred during its first oestrus, it is considered unproductive
from the commercial point of view since it normally returns to oestrus about 3 weeks later
and needs to be fed and housed meanwhile.
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of the wireless sensor network has been developed to explore the design space.
Input from the field experiments on the wireless sensor node and the wireless
sensor network model should lead to a progressive refinement of the wireless
sensor network design till it is feasible for a system-on-chip production.

Figure 1.8: Motherboard of the Hogthrob Sensor Node Hardware

This project is a consortium between the following partners:

• LIFE/KU
The Department of Large Animal Sciences of the Faculty of Life Sciences
(LIFE) at the University of Copenhagen (KU) focuses on monitoring and
modeling the behavior of group housed sows for the purpose of detect-
ing behavioral deviations caused by oestrus. (development of automated
methods for oestrus detection)

• IMM/DTU
The Department of Informatics and Mathematical Modeling (IMM) at
the Technical University of Denmark (DTU) focuses on the modeling and
design of the wireless sensor nodes and on the high-level modeling of the
wireless sensor network infrastructure.

• DIKU/KU
The Department of Computing Sciences (DIKU) at the University of
Copenhagen (KU) focuses on the development of the application software
and its interaction with the wireless sensor node hardware.

• I/O Technologies A/S
The I/O Technologies A/S is responsible for the prototyping of the wireless
sensor node hardware in collaboration with the IMM/DTU and DIKU/KU.
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• Danish Pig Production Council
The Danish Pig Production Council is the customer of the technology
to be developed and it partly finances the field experiments and assists
LIFE/KU in data acquisition.

The acceleration data acquired during the field experiments constitute the basis
for the development of a method for classifying the activity of sows as well as
for the development of the oestrus detection application model.

Numerous sensor network research projects have designed sensor nodes with
various microprocessors (from Atmel, Hitachi, Intel, etc). However, none of the
sensor node architectures, reported so far in the literature, approach the sensor
node design from a hardware/software codesign perspective. During this Ph.D.
project we have developed a system-level model for modeling wireless sensor
networks as well as designed a sensor node development platform in order to
explore the design-space both in terms of hardware and software.

1.2 An Outline of the Thesis

This Ph.D. thesis comprises twelve chapters including the introduction (Chap-
ter 1) and the conclusions (Chapter 12). Of the remaining ten chapters, eight
chapters (Chapters 2-6 and Chapters 8-10) consist solely of research publications
resulting from the work carried out during the Ph.D. project with each research
publication forming a chapter. Each research publication is fairly self-contained
to justify such an organization for the thesis. Two chapters (Chapter 7 and
Chapter 11) have been written exclusively for this Ph.D. thesis and their con-
tents have not been already published elsewhere. These chapters are intended
to fill the continuity gaps between the eight research publication-based chapters.

The following sections give an overview of the work carried out through the
duration of this Ph.D. project which is described here and the contributions
made to the field of research.

1.2.1 System-Level Modeling - Theories and Practices

One of the the primary goals of system-level modeling is to formulate a model
within which a broad class of designs can be developed and explored. The
first part of this thesis comprises Chapter 2 which presents an overview of
the existing theories and practices of modeling and simulation of multiprocessor
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systems-on-chip. A systematic categorization of the plethora of existing pro-
gramming models at various levels of abstraction is the main contribution here
which is the first such attempt in the published literature.

1.2.2 System-Level Modeling of Wireless Sensor Networks

The second part of this thesis comprises Chapter 3 to Chapter 6 and deals with
the issues related to the development of system-level design methodologies for
networked multiprocessor systems-on-chip at various levels of design abstraction
with special focus on the modeling and design of wireless integrated sensor
networks which are an emerging class of networked embedded computer systems.

Owing to their small form-factors, ad-hoc deployment and the requirements of
extended periods of unattended operation, wireless sensor networks form an ex-
tremely resource- and energy-constrained, sensing, computation and communi-
cation environment which makes the design and optimization of these systems
a complex task. In particular, the design of wireless sensor nodes requires a
deep understanding of their diverse constituent components, their underlying
technologies and the interactionsbetween those components.

Therefore, to support the designers of sensor networks and, in particular, sensor
nodes, a system-level modeling/simulation environment is required to support
an analysis of the consequences of different mappings of application tasks to
processors (software or hardware); effects of different communication- and rout-
ing protocols, and the effects of different RTOS selections, including various
scheduling, synchronization and resource allocation policies.

In order to be able to explore the design space at very early stages in the design
process, it is important to have an accurate system-level model of the sensor net-
work capturing all the inter-relationships among the diverse processors, software
processes and radio- and sensor interfaces.

Chapter 3 describes a SystemC-based abstract RTOS (Real-Time Operating
System) modeling framework for system-on-chip platform modeling. The ab-
stract RTOS modeling framework has been developed at the system level by
abstracting away most of the lower-level details of a real-time operating system
albeit retaining the parameters most relevant at the system-level.

Chapter 5 describes an extension of the SystemC-based abstract RTOS model-
ing framework for system-on-chip platform modeling to multiprocessor system-
on-chip platforms and demonstrates the capabilities of the multiprocessor mod-
eling framework by mapping the task graphs of a multimedia application to the
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abstract models of various processing elements and simulating the whole system
to check if the tasks meet their local and/or end-to-end deadlines under prece-
dence and resource constraints. This work has also formed the basis for other
system-level modeling-related research activities such as networks-on-chip and
reconfigurable computing platforms.

Chapter 6 describes a further extension of our earlier work on SystemC-based
multiprocessor system-on-chip modeling framework which can provide the wire-
less sensor network designers a system-level abstraction of the sensor network
for system-level design-space exploration to meet the requirements mentioned
above.

Though our aim has been to develop a general sensor network modeling envi-
ronment, we have actually been driven by a real-life sensor network application
− the Hogthrob project which, as described above, is concerned with the devel-
opment of a wireless sensor network infrastructure for sow monitoring.

In our SystemC-based modeling framework, a sensor network model is designed
following the principle of composition. We model a sensor network at two levels:
the sensor network level and the sensor node level.

At the sensor node level, a sensor node platform model is split into two sections:
the software section - for functional simultion of the sensor node platform and
the hardware section - to enable estimation of the energy consumption of the
sensor node platform.

The software section of the sensor node platform model consists of the applica-
tion model, comprising a set of task models and the RTOS model, composed of
a set of RTOS services.

At the sensor network level, a sensor node platform model is embedded in an
environment model that models the environmental phenomena to be sensed by
the sensor network application.

To bridge the abstraction gap between the system-level abstract sensor network
model (mentioned above) and the implementation-level, cycle-accurate sensor
node model (mentioned later), we have introduced an intermediate-level bridg-
ing model based on transaction-level modeling concepts that attempts to connect
the top-level and the bottom-level models in a consistent manner. This model
is described in Chapter 6.
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1.2.3 Wireless Sensor Node Design & Test and Cycle-

Accurate Modeling

The third and final part of this thesis covers the issues related to the design, im-
plementation and testing of a system-on-chip-based wireless sensor node devel-
opment platform, specifically, for the Hogthrob project. This part also describes
the various design-space exploration approaches followed through hardware-
software codesign on a cycle-accurate model of the wireless sensor node. How-
ever, the details of the various components of this cycle-accurate model are split
accross the chapters comprising this part.

Chapter 8 describes the design of the wireless sensor node development plat-
form for the Hogthrob project. It also describes some details of the cycle-
accurate model of the wireless sensor node, especially, the microprocessor model.
The architectural design space of the wireless sensor node development platform
is explored from a hardware/software codesign perspective to end up with a
complete wireless sensor node implemented on a single chip.

Chapter 9 describes the testing of the wireless sensor node development plat-
form for the Hogthrob project. Designing wireless sensor nodes for wireless
sensor networks is an error-prone and, hence, an iterative process because of
the inherent intricacies of designing a wireless communication-oriented, mixed-
signal, distributed embedded system. Therefore, it is imperative to follow a
systematic design methodology coupled with an efficient test approach to sat-
isfy all the design requirements for the target application.

We have developed a hierarchical, at-speed, functional test methodology and
applied it successfully to test the custom-built Hogthrob wireless sensor node
development platform. This test methodology, though unique in its approach,
extends earlier work in this area and can be applied, in general, for testing
all types of wireless sensor nodes. A significant contribution of our work is a
unified test methodology for wireless sensor nodes that combines, as well as,
extends various component-level and board-level test techniques and exploits
the on-board programmable logic for implementing a Test Controller that has a
strategic access to all the board-level and component-level interfaces. This chap-
ter also describes the cycle-accurate models of the Flash memory programmer
and the various communication interfaces on the Hogthrob platform.

Chapter 10 describes a cycle-accurate model of an acceleration sensor using
a mixed-signal extension of VHDL - VHDL-AMS. As a further contribution to
the Hogthrob project, we have proposed a model-driven MEMS-based micro-
sensor design methodology which is more than a combination of the existing
top-down and bottom-up design approaches as it enables MEMS-based micro-
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sensor design, validation, and optimization in a consistent, step-by-step manner
and is compatible with the existing embedded system design methodologies. We
have illustrated the capabilities of our proposed MEMS design methodology by
applying it to design, simulate, and optimize a microaccelerometer. The work
carried out in this regard gives a good insight into the system-level modeling
of microsystems which can stimulate ideas about hybrid systems modeling and
verification, especially, in the context of the emerging new area of wireless inte-
grated sensor networks.

Chapter 11 gives the details of a cycle-accurate model of a coprocessor for
Kalman filtering. Kalman Filter is the standard DSP tool for combining the
information from many sensors as well as low-pass filtering, amplification, etc.
A properly-designed Kalman Filter allows one to observe only a few quantities,
or measured outputs, and then reconstruct or estimate the full internal state of
a system.

In the Hogthrob project, accelerometer data from the field experiments on sows
were analyzed for acceleration patterns and an automatic classification method
based on a Multi-Process Kalman Filter was implemented by the KVL research
group.

However, the practical implementation of such analysis method poses problems
because Kalman Filter implementation for real-time applications is computation-
intensive in software and resource-demanding in hardware due to matrix multi-
plication and inversion operations.

Therefore, we have developed a design flow for design-space exploration using
HW/SW Codesign to select the optimum implementation and implemented an
FPGA-based cycle-accurate model of a coprocessor block for the Kalman Filter.

1.3 An Overview of the Published Research Work

The following research publications are included in the thesis and they should
be read in the sequence that they appear.

1.3.1 Overview of Multiprocessor System-on-Chip Plat-

form Modeling & Simulation

The publication included here gives an overview of the state of the art in mod-
eling and simulation of multiprocessor system-on-chip platforms for embedded
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systems and forms the basis for the research conducted and described in the
second part of this thesis.

A: Kashif Virk and Jan Madsen. Computing Platforms - Multiprocessor
Modeling and Simulation. The ARTIST Roadmaps for Research and
Development. (Editors: Bruno Bouyssounouse and Joseph Sifakis). Lec-
ture Notes in Computer Science, Volume 3436, 2005. Section 29, Pages:
388-406. Springer Scientific Publishers. Published.

1.3.2 SEND Modeling Environment

A SystemC-based System-level Modeling Framework, named SEND (System-
level Modeling Framework for Embedded Networked Devices) has been devel-
oped during the Ph.D. project. The following set of publications describe the
concepts developed and the techniques employed during the progressive evolu-
tion of the modeling framework.

B: Jan Madsen, Kashif Virk and Mercury Jair Gonzalez. A System-level
Multiprocessor System-on-Chip Modeling Framework. Proceedings of
the IEEE International Symposium on System-on-Chip, 2003. (SoC’03),
November 2003. Pages 147-150. Published.

C: Jan Madsen, Shankar Mahadevan, Kashif Virk and Mercury Gonzalez.
Network-on-Chip Modelling for System-Level Multiprocessor Simulation.
Proceedings of the IEEE Real-Time Systems Symposium (RTSS 2003),
December 2003. Pages: 265-274. Published.

D: Kashif Virk and Jan Madsen. A System-Level Multiprocessor System-
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Abstract—Models of Computing Platforms are extremely im-
portant but different models that correspond to various view-
points must be integrated. Multiprocessor Computing Platforms
can be tightly or loosely coupled and the abstraction level of their
models can vary from the specification to the physical level.In
addition to the abstraction level, there exist various modeling
domain dichotomies (continuous or discrete, synchronous or
asynchronous, event-triggered or time triggered, etc.) that all
have their merits within thier respective application areas. The
modeling of reactive multiprocessor systems, usually, demands
simultaneous invocation of models across the various domains.
Reconciliation of these models is a major research topic.

In this paper, we present a survey of the state of the art in
the modeling of multiprocessor computing platforms.

I. M OTIVATION

As more computer systems are being integrated into system-
on-chip (SoC) designs and as the interactions of concur-
rent (and, possibly, real-time) software with multiprocessing
and distributed computing platforms becomes more complex,
computer systems designers must reason about: computing
platform design for programmability, the modeling aspects
of software schedulers, the co-execution of hardware-like
and software-like system-level behaviors, and the system-level
performance impacts of hardware architectures that execute
the software functionality. Many of the critical system-level
design decisions are those that involve the anticipation of
hardware/software interactions; as hardware is loaded with
the software functionality, software is deployed onto a variety
of hardware resources (architectures) and parts of a system
(mixed hardware and software) must interact with the yet-
to-be designed rest of the system (which may also include
mixed hardware and software). Modeling systems in the large
is an important trend in software and systems engineering.
The purpose of modeling is to build models of software and
systems which satisfy given requirements. Modeling plays
a central role in systems engineering. The use of models
can profitably replace experimentation on actual systems with
incomparable advantages such as:

• Enhanced modifiability of the model and its parameters.
• Ease of construction by integration of models of hetero-

geneous components.
• Generality by using genericity, abstraction, and behav-

ioral non-determinism

• Enhanced observability and controllability, especially,
avoidance of the probe effect and of disturbances due
to experimentation.

• Possibility of analysis and predictability by the applica-
tion of formal methods.

Building models which faithfully represent complex systems
is a non-trivial problem and a pre-requisite to the application of
formal analysis techniques. Usually, modeling techniquesare
applied at early phases of system development and a higher
level of abstraction. Nevertheless, the need of a unified view of
the various lifecycle activities and of their interdependencies
have motivated the so-called model-based approaches which
rely heavily on the use of modeling methods and tools to
provide support and guidance for system development and
validation.

II. L ANDSCAPE

A. Classification of Computation Platforms

Computation Platforms may be classified into transforma-
tional, interactive, reactive and proactive systems.

• Transformational computation platforms compute re-
sults with the input data available right from the start
of the application without any timing constraints. The
computed results are usable as and when required at any
given instance.

• Interactive computation platforms operate on the
environment-produced data without any timing con-
straints which are expected by already executing tasks.
The results computed by those tasks are input to other
tasks.

• Reactive computation platforms execute tasks that pro-
duce results at the times determined by the controlled
process dynamics.

• Proactive computation platforms capture and may act on
data without user intervention.

Computation platforms are structured in layers. They all
contain operating systems for the basic management of the
processor, virtual memory, interrupt handling, and communi-
cation [1].

Most of the future embedded computing platform appli-
cations are likely to be real-time applications that will run



on multiprocessor SoC’s which are, essentially, distributed
computing systems. In a multiprocessor or a distributed com-
puting platform, the processing elements can be connected
through shared memory, dedicated communication links or a
communication network [2].

A major dividing line inevitably exists between thediscrete
embedded computing platforms and the, essentially,continu-
ous physical environments in which they are embedded. The
discrete embedded computing platforms (comprising both the
hardware and the software), in turn, contribute to a number
of additional dichotomies at the stage of their mathematical
modeling.

The early embedded computing platforms were, essentially,
sequentialcomputing platforms but, as they are extended and
become more complex, a need for the concepts of hierarchy
and information sharing between their sub-systems arises
(as in concurrent systems). To mathematically characterize
these concepts, a global notion of a computation step is
considered. Thus, the dichotomy between thesynchronousand
the asynchronouscomputation models appears. Moreover, to
model the behavior of an embedded computing platform in
response to changes in inputs (as in reactive systems) can
be described in either anevent-triggeredor a time-triggered
fashion. In addition, timeliness can be a central issue apart
from the correct functioning (as inreal-timesystems) requiring
the explicit inclusion of time in the computation model.

Furthermore, the application domains contribute additional
modeling preferences to the discrete embedded computing
platforms. A major such division is between the control-
oriented applications, leading tocontrol-flow or state-based
computation model (where the complexity arises due to the
massive numbers of control locations in a computation),
and data-oriented applications, leading todata-flow compu-
tation model (where there is much structure in the data on
which a large number of operations can be performed in
a few control locations). Most of the discrete embedded
computing platforms are composed of sub-systems that are
designed according to some or all of the various types of
computation models mentioned above. Therefore, some or
all of the above-mentioned dichotomies have to be recon-
ciled in the same discrete embedded computation platform
using appropriate meta-models. That is, the embedded com-
puting platforms composed of continuous/discrete, sequen-
tial/concurrent, synchronous/asynchronous, state-based/data-
flow, event-triggered/time-triggered, real-time/non real-time
components have to be methodically developed based on well-
defined underlying semantics.

In addition, no matter how the individual sub-systems are
modeled and analyzed on their own, eventually, the composed
system has to be subject to analysis to ascertain that the system
exhibits the desired behaviors only in a physical environment.
Thus, a very natural way to model an embedded computing
platform is by including the elements of the continuous state
and the discrete state in the samehybrid computation model.

Another major challenge is to combine the existing analysis
techniques from the various paradigms and to devise a coher-

ent verification methodology for multi-paradigm systems. In
particular, to ascertain which aspects of the analysis benefit
from the existing capabilities of each paradigm.

B. Models of Concurrent Systems (Parallel & Distributed
Computing Platforms)

Despite an apparent trend towards parallel computers being
composed of nodes of independent processor-memory pairs
connected by some interconnection network, it is by no means
certain that there is a definite progression towards a single
class of parallel architectures. Instead, there are numerous
classes of parallel architectures. Similarly, there are numerous
models of parallel computation, some specifically suited to
particular architecture classes, while others are suitable across
a range of parallel architecture classes.

Models of parallel computation are required to act as a
map between disparate programming languages and disparate
architectures. Hence, an application developed accordingto
the model is executable on the various architectures and its
performance is predictable.

A model is said to be architecture-independent if it is
general enough to model a range of architecture types. So,
the application source code is portable to various parallel
architecture classes without modification.

There are several levels at which a model of computation
may exist:

• Specification Level:at the specification level, the model
of computation provides an unambiguous description
of a computational problem without any notions of its
execution or implementation. Typical examples are:

– State Transition Models(e.g., FSM’s, CFSM’s,
Petri Nets, Process Algebras, Duration Calculus,π-
Calculus, etc.)

– Data Flow Models(e.g.,{Kahn} Process Networks,
Data Flow Graphs, Synchronous Data Flow Graphs,
etc.)

– Discrete Event Models(e.g., HDL Simulators, etc.)
• Performance Level:at the performance level, the model

provides a basis for the solution of a computational
problem. Thus, it forms the basis for the design, dis-
cussion and prediction of the performance of algorithms.
The most common examples of such models are: Turing
Machines, RAM, PRAM, BSP, LogP, etc.

• Programming Level: at the programming level, the
model provides a precise, high-level description of correct
and efficient methods for the solution of the particular
computational problem, e.g., Imperative Programming,
Declarative Programming (Applicative Programming -
Functional Programming, Predicative Programming -
Logic Programming), etc.

– Communication Sub Model:Communication is,
probably, the most important aspect of a computation
model. Therefore, in any model of computation,
communication needs to be accurately accounted for.
The most common communication abstractions are:
MPI/PVM, OpenMP, IPC, RPC, TCP/IP, OSI, etc.



• Architectural Level: at the architecture level, the model
describes the characteristics of a real machine on which
the computational problems will be implemented and
solved, e.g., SISD (von Neumann, Harvard, etc.), SIMD
(vector, array, etc.), MISD (systolic, etc.), MIMD (Par-
allel - Shared Memory, Distributed Memory, etc. Dis-
tributed - Clusters of Workstations, Grids, etc.), Data
Flow, Reduction, Neural Network, etc. [3].

– Network Sub Model:The two basic measures of
network models are latency and bandwidth which
determine the network geometry. The most com-
monly modelled network topologies are Hypercube,
Butterfly, Torus, Mesh, etc.

A multiprocessor system istightly coupled so that the
global status and workload information on all processors
can be kept current at a low cost. The system may use
a centralized scheduler. When each processor has its own
scheduler, the decisions and actions of the schedulers of all
the processors are coherent. In contrast, a distributed system
is loosely coupled. In such a system, it is costly to keep the
global status and workload information current. The schedulers
on different processors may make scheduling and resource
access control decisions independently. As a consequence,
their decisions may be incoherent as a whole. In modeling
distributed systems, the operating systems have a major role.
Moreover, in a distributed system, if the processors can be
used interchangeably, they are identical and if a message from
a source processor to a destination processor can be sent on
any of the links connecting them, then the links are identical as
well. In contrast, processors of different types cannot be used
interchangeably. Different types of processors may eitherbe
functionally different or they may be of different types for
many other reasons. A computation platform comprising such
processors, which are loosely coupled, is called a distributed
heterogeneous system [2].

C. Models of Reactive Systems

Reactive computing systems continuously interact with their
environment. These systems are, in general, composed of
concurrent, interacting sub-systems or processes which may
cooperate, synchronize, and share resources. It is the roleof
a scheduler to coordinate the execution of system activities in
order to guarantee a correct functioning of the system.

1) Control-flow vs. Data-flow Models:The family of formal
languages known as synchronous languages have shown that
they are simple enough to appeal to the engineering com-
munity and expressive enough to model non-trivial applica-
tions in embedded control.Lustre and Signal have a data-
flow (declarative) style whereasEsterel and Statechartsare
considered as control-flow or state-based (imperative). Each
language comes with a bunch of analysis techniques and well-
developed toolboxes. One of the major benefits ofSignal,
Lustre, andEsterelis the clearly-documented formal semantics
which acts as a description of a meta-model. The clock
calculus inLustre and Signal and the constructive semantics
of Esterel, for example, can be used for the static checking

of the desired properties of an instance (an application model)
based on the formal semantics of the languages the defined
correctness criteria. Major such properties are the determinism
in a controller and the causal consistency at every macro
(computation) step. TheStatematetool based onStatecharts
checks the type-coherence of the variables in a model and
performs some simple consistency checks.

These tools are finding their ways into modeling the digital
components of several embedded applications such as power
and digital signal processing systems (Signal), electronic de-
sign automation and aerospace systems (Esterel), and railway
and aerospace systems (Lustre). These tools also provide
efficient automatic code generation mechanisms. Thus, after
the compilation stage, the design can be subjected to further
formal verification and code optimization, eventually, leading
to automatically-generated controller code (C, Ada, or VHDL).

Statechartshas had its original popularity in the aerospace
sector but it is gaining popularity for the embedded system
design due to inclusion into theUML family of languages.
The tool Rhapsody, though no longer in the framework of
synchronous languages, is a valuable tool for modeling object-
oriented distributed embedded systems.

All of the above-mentioned tools, however, have so far been
applied on an individual basis in the respective applications.
Considering the growing needs of multi-paradigm modeling,
two European projects have been exploring the combination
potentials of these tools SACRES for combiningSignaland
Statecharts, and SYRF for the combination ofSignal, Lustre,
and Esterel. The work in SACRES has resulted in relating
synchrony with asynchrony and the conditions under which
these paradigms can be combined. The work in SYRF has
resulted in the development of cross-compilation tools for
Lustre, Signal, andEsterel(loose integration), an environment
for the multi-paradigm modeling (tight integration), and code
distribution for embedded systems.

2) Event-triggered vs. Time-triggered Models:As described
above, each member of the synchronous language family has
been extensively used for the design of embedded systems.
A recent activity has been to combine the analysis of contin-
uous systems (as modeled inMatlab ) with the meta-model
verification and efficient code generation capabilities of the
Signalenvironment. This is one of the approaches in a series
of attempts at the problem of the analysis of hybrid systems.

In recent years,Matlab has been extended with a modeling
facility for describing a discrete controller (Stateflow- with
a syntax reminiscent ofStatecharts). However, the underlying
computation mechanism for the simulation of the discrete part
of a model is the same as the continuous part of the model.
That is, all signals are defined over continuous time and the
simulation is time-triggered based on the lowest sample period.

3) Synchronous vs. Asynchronous Models:As discussed
above, not all applications can, naturally, be modeled as a
globally- synchronous system. A recent development has been
to relate the notions of synchrony and asynchrony in the
context of data-flow languages (in particular,Signal). This
work introduces the theoretical notions that can be used to



characterize an asynchronous network of locally-synchronous
nodes and the compositionality properties (as a meta-model
property in this context). Similar ideas are developed in
the context of imperative languages where it is shown how
constructively-checkedEsterel can be used as an input lan-
guage to thePolisenvironment, compiling into co-design finite
state machines communicating over one-place buffers.

4) Continuous vs. Discrete Models:Recent years have seen
the extension of the application of formal methods to the
models with both the continuous and the discrete elements. A
typical goal of verification is to show that an invariance holds
over a model. In particular, a bad property does not hold in
any reachable state of a system. Since digital controllers are
increasingly complex with mode changes and multiple inputs
and outputs, and the goal of the controller is, typically, to
avoid a bad state in the physical environment, the traditional
methods for proving the invariance are not applicable (neither
the computing science methods for proving the properties
of discrete systems, nor the control theory methods for the
analysis of continuous systems). Several techniques for dealing
with this inherently difficult problem have been proposed.

D. Models of Real-Time Systems

Real-time computing platforms are the systems whose cor-
rectness depends on the respect of timing constraints. Although
real-time systems have become ubiquitous by now, their design
still poses challenging problems and is a very active domain
of research. Real-time systems have to reconcile functional,
physical, and timing requirements that are often antinomic.

Currently, the validation of real-time systems is done by ex-
perimentation and measurement on specific platforms in order
to adjust design parameters and, hopefully, achieve conformity
to QoS requirements. The existence of modeling techniques
for real-time systems is a basis for rigorous design and should
drastically ease their validation. Modeling a real-time system
should allow to validate its design before implementing the
system, and to prove its correctness using formal methods.
For reactive real-time systems, it is important to build models
that faithfully represent their behavior. In such models, the
application has to be modeled together with the behavior of
its environment and dynamics [4].

A modeling framework accompanying the design process
of real-time systems and providing a methodology, can guide
and accelerate the design process, replace ad hoc solutionsby
standard constructions, and improve the quality of the model.
For a modeling framework to be useful, it should meet the
following requirements:

• It should be sufficiently general to allow, in a natural
and comprehensive way, the specification of resource
contention, synchronization, priority selection, urgency,
preemption, periodic, aperiodic, and sporadic processes,
and various scheduling disciplines on uni- or multipro-
cessor systems.

• It should be based, despite of their expressiveness, on
an analyzable and executable model. That is, it should be

operational rather than descriptive, so as to reduce risks of
errors caused by passing from one formalism to another.

• It should be founded on theoretical results ensuring well-
defined semantics, supporting a modular specification,
compositionality, and allowing, to some extent, correct-
ness by construction.

• It should be practical and applicable. That is, it should
provide an intuitive, high-level modeling formalism, to-
gether with a design methodology, and guidelines or
standard constructions for common problems. Moreover,
it should allow feasible algorithms for automatic analysis,
supporting the design process, and be supported by tools.

• It should help detecting design errors by providing diag-
nostics at an early stage allowing debugging of the design
or gain confidence in its correctness and support a pre-
dictable model, in the sense that unexpected interaction
between separately modeled behavioral requirements is
ruled out as far as possible.

Existing formalisms and tools are designed to meet different
subsets of the requirements mentioned above. However, as
some of the items seem difficult to reconcile - for example, the
generality of the model and the support for an early detection
of design errors - they are not equally addressed by one
framework [5].

Component-based engineering is of paramount importance
for rigorous system design methodologies. It is founded on
a paradigm which is common to all engineering disciplines:
complex systems can be obtained by assembling components
(building blocks). Components are, usually, characterized by
abstractions that ignore implementation details and describe
properties relevant to their composition, e.g., transfer func-
tions, interfaces. Composition is used to build complex compo-
nents from simpler ones. It can be formalized as an operation
that takes in components and their integration constraints.
From these, it provides the description of a new, more complex
component.

Component-based engineering is widely used in VLSI cir-
cuit design methodologies, supported by a large number of
tools. Software and system component-based techniques have
known significant development, especially, due to the use of
object technologies supported by languages such asC++ ,
Java, and standards such asUML andCORBA. However, these
techniques have not yet achieved the same level of maturity
as has been the case for hardware.

1) Scheduling Theory-based Approaches:Well-established
scheduling theory and scheduling algorithms have been suc-
cessfully applied to real-time systems development. Schedula-
bility analysis essentially consists in checking that the system
meets the schedulability criteria prescribed by the theory,
which allows efficient schedulability analysis tools. It does not
require the use of a model representing the dynamic behaviour
of the system to be scheduled. Current engineering practice,
essentially, adopts this approach.

Existing scheduling theory requires the application to be
set into the mathematical framework of the schedulability
criterion. Studies to relax such hypotheses have been carried



out. However, most of these schedulability results apply only
for particular process models or do not allow complex interac-
tion between the components such as shared resources apart
from the processor, atomicity, or communication. Generally,
functional and timing properties are specified and verified
separately and no unified approach for general scheduling
problems has been proposed so far.

2) Model-based Approaches:To overcome these limita-
tions, an alternative approach consists in building, explicitly, a
timed computation model of the real-time application, that is,
the application processes together with their possible interac-
tion, and verifying schedulability [6] or extracting a scheduler
[7], without considering the particular scheduling policies.
Modeling methodologies and tools for real-time systems have
shifted into the focus of research in the recent years.

The controller synthesis paradigm for discrete-event systems
[8] and timed systems [9], [10], [11], [12] provides a general
framework for scheduling. This is the most general approach
but the algorithmic method for synthesizing a controller is
of prohibitive complexity. For this reason, sometimes, the
existence of an invariant implying satisfaction of the timing
constraints is explored, using real-time verification techniques
[13], [14], [15], [16], [17], [18] and tools such asKronos [19],
[20], Uppaal [21], [22], Verus [23], Cospan[24], or HyTech
[25]. A non-empty invariant satisfying the timing constraints is
a sufficient condition for schedulability, requiring techniques
of lower complexity than synthesis which do not distinguish
between controllable and uncontrollable actions.

There are several other approaches to tackle the complexity
of verifying real-time systems, or synthesizing schedulers. For
example, [26] discusses incremental verification of communi-
cating Time Petri Nets, based on assume-guarantee reasoning.
[27] presents a scheduler synthesis tool based on constraint
satisfaction for a simple process model that nevertheless
allows shared resources, and a timing specification in Real-
Time Logic. [28] discusses the analysis of non-deterministic
real-time systems using the (max; +) algebra, which does
not require exploring the state space like traditional model-
checking techniques. [29] provides an algorithm synthesizing
a programmable logic controller from a specification described
by a fragment of the duration calculus. [30] describes a
formal low-level framework for real- time system models,
where processes are described by sets of possible behaviors.
This framework is intended as a unifying meta-model rather
than to directly model real- time applications. [31] discusses
modeling and verification of preemptive real-time systems
with hybrid automata. Similarly, [32] describes a methodology
for modeling a general class of real-time systems with resource
constraints, synchronization and context switching overhead,
and atomicity of code segments, as hybrid systems. The
method is applied to the timing analysis of Ada programs.
Adopting the same framework, [33] discusses the timing anal-
ysis of partially implemented systems, where lacking pieces
of code are specified in Graphical Interval Logic. [34], [35]
discuss a formal model of theRavenscar[36] subset ofAda
95, allowing to verify applications using the model-checker

Uppaal.
3) Meta-Model-based Approaches:Among the modeling

and design tools, we shall mention thePtolemy [37] project
and toolset aiming at heterogeneous modeling, simulation, and
design of embedded systems by integrating different models of
computation. Another tool for the integration of heterogeneous
models is theSPI Workbench [38], which uses graphs
of communicating processes annotated with timing intervals,
as a unifying abstract representation serving as a basis for
verification and hardware/software co- design.Giotto [39] is
a tool-supported design methodology for distributed embedded
systems based on the time-triggered paradigm. It consists
of a programming language, and a platform-dependent part
including a compiler and a runtime library. Taxys [40], [41] is
a toolused for the development and verification of embedded
systems in the telecommunication domain. The system and its
environment are specified in the synchronous languageEsterel
[42] annotated with timing constraints. The model can be
verified by the model-checkerKronos, and compiled toC
code by theEsterelcompilerSaxo-RT [43].

4) Process Algebra-based Approaches:There is some work
aiming at integrating model-based analysis of real-time sys-
tems, and scheduling theory. The interest of considering partic-
ular scheduling policies in a model-based approach is twofold.
First, it allows to verify both the functional correctness, and the
timeliness, of a scheduled real-time system, whereas the same
system without a scheduler, generally does not meet its timing
constraints. Second, restricting the set of possible behaviors
helps to manage the state explosion problem. Most of this
work is based on process algebras extended with a notion of
priority. [44] defines a process algebra based onCCS(Calculus
of Communicating Systems) [45] with real-time semantics and
dynamic priorities. In the process algebraRTSL(Real-Time
Specification Language) [46], scheduling policies such as
RMS (Rate-Monotonic Scheduling) and EDF (Earliest Dead-
line First) can be modeled by a function associating, with any
system state, a subset of processes that remain enabled after
priority choice. The process algebraACSR(Algebra of Com-
municating Shared Resources) [47], [48] provides a frame-
work with discrete and dense-time semantics for modeling
coordination between processes including shared resources,
synchronization, preemption, static priorities, and exception
handling. A prioritized strong bisimulation ensures compo-
sitionality. The Paragon toolset [49] for the specification
and verification of real-time systems is based onACSR. The
system can be modeled in a graphical specification language.
Verification is done by state-space exploration, or checking for
bisimulation with a process specifying a high-level behavior.
[50] discusses the modeling of real-time schedulers inACSR-
VP, an extension ofACSRwith value passing communication.
Schedulability analysis amounts to symbolically checking the,
possibly, parameterized model for bisimulation with a non-
blocking process, and synthesizes the parameter values for
which the system is schedulable. In [51], models of basic
process specifications are given, and schedulers for EDF and
the priority inheritance protocol [52] are modeled underACSR-



VP. [53] presents a modeling methodology for fault-tolerant
distributed real-time systems. Processes and fault models are
specified in a process algebra based on TimedCCS; liveness
properties and deadlines are expressed in a logic based on
Modal Timed-Calculus. The authors give examples of a best-
effort EDF scheduler, and a planning-based scheduler where
processes are only scheduled if their deadlines are guaranteed
to be met. [54] model real-time processes scheduled under
EDF as timed automata, and model-check the obtained rep-
resentation usingUppaal. However, their modeling method
is not compositional. [55] introduces I/O timed components,
essentially, timed automata with an interface declaration, as a
modeling formalism guaranteeing non-zeno and non-blocking
synchronization by construction. Information about the inter-
face of I/O timed components is used by a relevance calculus
to make abstraction from components that are irrelevant for
proving a given property specified as an observer process.
MetaH [56] is a development tool initially designed for avion-
ics applications. It accompanies the development process of
real-time systems from specification down to code generation,
and implements schedulability analysis based on the results of
[57], [58] extending rate-monotonic analysis. It is also possible
to specify error models, and carry out reliability analysis.
Sometimes, a deductive approach is used to verify correctness
of a scheduler [59], [60], [61] using theorem provers. In [60],
real-time programs with timing constraints, fault models, and
scheduling policies are modeled in the logicTLA (Temporal
Logic of Actions) [62]. Proving that scheduling the real-
time system under a certain discipline, both specified inTLA,
is feasible, amounts to verifying a schedulability condition
similar to the results from scheduling theory.

E. Application Domains of Computation Platforms

1) Networks-on-Chip:In the modern silicon technologies,
with minimum device geometries in the nanometer range
(<100nm), the on-chip interconnection fabric is a major source
of delay and power consumption which is challenging the on-
chip communication infrastructure and forcing a change from
device-centric to interconnect-centric design methodologies.

A Network-on-Chip (NoC) is a disciplined approach to
replace the current ad hoc wiring of the IP blocks that pairs
scalable communication performance and minimal intercon-
nect cost. It separates the computation from communication
by allowing the computational blocks to communicate with
one another via a uniform interface. A NoC can be based
on packet switching communication to flexibly share link ca-
pacity between either homogeneous or heterogeneous network
clients and to provide multiple communication services over
a uniform infrastructure with fixed topology.

An efficient combination of the best-effort and the guar-
anteed services in a NoC is a challenge [63]. The other key
challenges for designing NoCs include automated synthesis
[64], [65], low-power [66], [67], verification and testing [68],
[69], and fault-tolerance [70].

In order to address these challenges, accurate modeling of
the systems and all the interrelationships among the diverse

processors, software processes and physical interfaces and
interconnections, is needed. One of the primary goals of the
system-level modeling for networks-on-chip is to formulate a
modeling framework within which a broad class of designs
can be developed and explored.

In addition, to support the designers of single-chip based
embedded systems, which includes multiprocessor platforms
running dedicated real-time operating systems (RTOS’s) as
well as the effects of on-chip interconnect network, a system-
level modeling/simulation environment is required to support
an analysis of the:

• consequences of different mappings of tasks to processors
(software or hardware),

• network performance under different traffic and load
conditions,

• effects of different RTOS selections, including various
scheduling, synchronization and resource allocation poli-
cies.

The traditional network models like OPNET [71] are not
suited for NoC’s, since they model only the abstract communi-
cation structure without any support for chip-level architecture
modeling. In [72], [73], the concept of on-chip, packet-
switched micro-networks has been introduced that borrows
ideas from the layered design methodology for data networks.
The work on the system-level exploration of the commu-
nication architecture can be subdivided into static analysis
models [74], [75] and simulation-based models [76], [77].
Lahiri et al. [78] have proposed a hybrid model combining
simulation with analytical post-processing to achieve higher
accuracy of the performance estimation. The SystemC Open
Core Protocol (SOCP) communication channel in the StepNP
simulation model [79] addresses the exploration of the com-
munication infrastructure based on the OCP semantics. Serge
Goosens et al. [80] further abstract from architecture-specific
communication primitives to establish a unified modeling
framework for the investigation of heterogeneous on-chip
networks. The NoC modeling framework proposed in [81]
deals with generalized abstract tasks, processing elements, and
communication infrastructures instead of dealing with each
specific application and system architecture. This not only
broadens the applicability of the modeling framework, but also
leads to a better understanding of the problem at hand.

The current NoC modeling approaches do not cope with the
requirements introduced by the system-level design of full-
fledged on-chip networks. In order to apply analytical models,
enhanced algorithms are necessary to model the performance
of complex network topologies with sophisticated arbitration
mechanisms. Equally, current NoC simulation models fall
short to provide efficient support for the exploration of on-
chip networks.

2) Wireless Sensor Networks:The recent advances
in low-power embedded processors, radios, and micro-
electromechanical systems (MEMS) have made possible the
development of networks of wirelessly interconnected sensors.
The new computing paradigm enabled by the ad hoc wireless
sensor networks will be a key in making computation more



proactive. The silicon-based wireless sensors and the ad hoc
sensor networks represent exciting new technologies with
broad societal impacts and a wide range of new commercial
opportunities. As the wireless sensor technology continues to
advance, one day, it will be possible to have these compact,
low-cost wireless sensors embedded throughout the environ-
ment, in homes, offices, and ultimately inside people. With
the continued advances in power management, these systems
should find more numerous and more impressive applications.
Until that day, there is a rich set of research problems asso-
ciated with the distributed wireless sensors that require very
different solutions than the traditional sensors and multimedia
devices [82].

With their focus on the applications requiring a tight cou-
pling with the physical world, as opposed to the personal com-
munication focus of conventional wireless networks, the wire-
less sensor networks pose significantly different design, im-
plementation, and deployment challenges. Their application-
specific nature, severe resource limitations, long networklife
requirements, and the presence of sensors lead to an interesting
interplay between sensing, communication, power consump-
tion, and topology that the designers need to consider. Energy
dissipation, scalability, and latency must all be considered in
designing network protocols for collaboration and information
sharing, system partitioning, and low-power electronics design
[83].

The existing tools for modeling wireless networks focus
only on the communication problem and do not support the
modeling of power and sensing aspects that are essential to the
design of wireless sensor networks. A model of computation is
of prime importance as a clean starting point for the synthesis
of modern computing platforms. The wireless sensor networks
will not only require new models of computation, but also new
models of the physical world.

In the design automation domain, synthesis of the nodes
for the wireless sensor networks will pose a number of new
problems. Moreover, debugging and verification are the most
expensive and time-consuming components in the modern
design flow. Due to the heterogeneous nature and the complex
interaction between the components, it is expected that the
same will be true for the nodes of the wireless sensor networks.
In particular, the techniques for error and fault detectionand
testing collaboration will be of prime importance.

Middleware will be in strong demand to enable the develop-
ment of new applications. Tasks such as sensor data filtering,
data compression, data fusion, data searching and profiling,
exposure coverage, and tracking will be ubiquitous. It is
expected that new tasks will be defined and accomplished, for
example, sensor allocation and selection, sensor positioning,
sensor assignment and efficient techniques for the sensor data
storage [84].

In the software domain, main emphasis will be on the
RTOS’s (Real-Time Operating Systems). There is a need for
an ultra-aggressive, low-power management due to the energy
constraints and a need for comprehensive resource accounting
due to the demands for privacy and security and, in a number

of cases, the support for mobility-related functions as well.
There is also a need for the overall energy consumption
balanced architectures. Another issue is the wireless sensor
organization and the development of interfaces between the
components. Finally, due to the privacy, security, and authen-
tication concerns, techniques like unique IDs for the CPU and
other components can be of high importance.

III. A SSESSMENT

In order for a high-level modeling environment to be
effective for design exploration, it must be abstract, or high
enough to enable rapid design trade-offs, but detailed enough
to include a time basis for performance modeling.

The development of a general theoretical modeling frame-
work for component-based engineering is one of the few grand
challenges in information sciences and technologies. The lack
of such a framework is the main obstacle to mastering the
complexity of heterogeneous systems. It seriously limits the
current state of the practice, as attested by the lack of devel-
opment platforms consistently integrating design activities and
the often prohibitive cost of validation.

A major factor limiting the use of parallel computing
platforms in the mainstream computing is the lack of general-
purpose parallel computation models. Moreover, some special-
ists who believe that finding a unifying computation model is
just not possible have gone in another direction, developing
parallel software that lacks portability. On the software side,
the architecture differences in the parallel computing platforms
correspond to a large set of different parallel models and
languages often architecture-dependent and that offer only
partial solutions to programming portable parallel applications
in sequential computing using standard languages likeC,
Pascal, and Fortran. Many parallel programming languages
used today are of the low-level variety which require the
programmer to face the architectural issues of the parallel
computing platform on which the application executes.

On the other hand, high-level parallel languages abstract
from architectural issues but deliver unpredictable perfor-
mance on different architectures. Thus, porting the same
program to different parallel computation platforms from,say,
a message-passing multi-computer to a shared-memory multi-
processor can dramatically alter the platform’s performance.

Existing component technologies encompass a restricted
number of interaction types and execution models, for in-
stance, interaction by method calls under asynchronous ex-
ecution. We lack concepts and tools allowing integration
of synchronous and asynchronous components, as well as
different interaction mechanisms, such as communication via
shared variables, signals, rendezvous. This is essential for
modern systems engineering, where applications are initially
developed as systems of interacting components, from which
implementations are derived as the result of a co-design
analysis.

The application of component-based design techniques
raises two strongly related and hard problems. First, the
development of a theory for building complex heterogeneous



systems. Heterogeneity is in the different types of component
interaction, such as strict (blocking) or non strict, data driven
or event driven, atomic or non atomic and in the different
execution models, such as synchronous or asynchronous. Sec-
ond, the development of theory for building systems which
are correct by construction, especially with respect to essential
and generic properties such as deadlock-freedom or progress.
In practical terms, this means that the theory supplies rules
for reasoning on the structure of a system and for ensuring
that such properties hold globally under some assumptions
about its constituents e.g. components, connectors. Tractable
correctness by construction results can provide significant
guidance in the design process. Their lack leaves a posteriori
verification of the designed system as the only means to ensure
its correctness (with the well-known limitations).

Co-design for system-level modeling has been limited by
the view that all computation should be restricted to the
reactive system models - mathematical models of computation
unified by the event or token-based foundations. The resulting
executable specifications are designed to respond to testbench-
style inputs that model the external environment in which the
system is intended to operate. The presumptions are that the
computer system being designed is passive and it should be
isolated from its operating environment.

IV. T RENDS

Finding solutions to the problems and limitations in parallel
computation requires two actions:

• Make the design and implementation of general-purpose
parallel computing platforms capable of supporting a
wide range of programming models and providing pre-
dictable performance.

• Make the definition of programming models architecture-
independent, allowing abstraction and portability across
different parallel computing platforms. At the same time,
make these models simple and expressive.

An important step to success is the definition of high-
level, architecture-independent languages to demonstrate that
parallel programming is no more difficult than sequential
programming.

Low-level approaches, such as Parallel Virtual Machine
(PVM) and Message Passing Interface (MPI), are driven by
heterogeneous parallel computing, which tries to offer, on
different computers, library primitives for parallelism and
communication. These approaches partly meet the portability
goal but are based on tedious low-level library functions and
do not free the programmer from the issues of concurrency,
communication, and synchronization. In fact, even though the
PVM and the MPI are the de facto standards in parallel
programming, their related programming style looks in many
respects like the assembler-level programming in sequential
computing.

However, several proposed high-level approaches the Bulk
Synchronous Parallel (BSP), the LogP, and the Bird-Meertens
Formalism may represent good candidates for architecture-

independent programming models on general-purpose com-
puters.

Other promising models are the skeleton-based and the
actor-based languages. Although these models suffer from
low performance, they represent an interesting starting point
toward architecture-independence because they abstract from
architectural issues and allow predictable performance. If the
parallel programming community convinces itself that it needs
a clear strategy based on high-level languages to find a unify-
ing model for parallel computation, these models can be used
to drive this process. Adopting this strategy would unite high-
level programming, generality, and high-performance, leading
parallel computation to the computing mainstream [85].

Increasingly, the operating environment of a computer sys-
tem is another computer system. Accordingly, next generation
computer system modeling must be based not only on the reac-
tion of a passive computer system to its operating environment,
but upon the active cooperation and coordination sharing
across model boundaries such as resources. Computer system
designers must be able to capture the sharing effects or the
anticipated interactions of concurrent software executing on
multiple hardware resources over a range of design variations.
More than understanding the response of the system, this is
about understanding the response of the design.

Searching a complex design space for designs that satisfy
performance criteria can be thought of as isolating and analyz-
ing the prevalent performance models that arise between the
corner cases in a design space. To fully analyze a computer
system, the designers must isolate these prevalent performance
models and the ranges over which they are valid. A designer
can then understand the effects of software loading, resource
variations, and resource sharing [86].

A grand unified approach to modeling computing platforms
systems would seek a modeling framework that serves all
purposes. One approach is to create the union of all the
frameworks, which have been proposed so far, providing all
of their services in one bundle. But the resulting framework
would be extremely complex and difficult to use, and designing
and synthesis and validation tools would be difficult. A more
feasible alternative is to choose one concurrent frameworkand
show that all the others are the special cases of that. This is
relatively easy to do in theory. Most of these frameworks
are sufficiently expressive to subsume most of the others. The
disadvantage is that this approach does not acknowledge each
models strengths and weaknesses. A final alternative is to
mix frameworks either heterogeneously but instead of forming
the union of their services, preserve their distinct identity, or
hierarchically where a component in one framework is actually
an aggregate of components in another [87].

These are but a few of the interesting research problems
for modeling computation platforms for embedded systems.
There are many more. Modeling Configurable Computation
Platforms offers interesting opportunities and challenges and
potentially relates strongly to the problem of selecting appro-
priate computational models.



As mentioned above, there are also interesting and chal-
lenging problems in the modeling of networks, particularly
providing quality-of-service guarantees in the face of un-
reliable resources. Finally, models are required to develop
appropriate hardware and software design techniques that
minimize power consumption which are critical for portable
devices and wireless microsensor networks.
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Abstract—In this paper, we present a SystemC-based frame-
work to study the effects of running multi-threaded application
software on a multiprocessor platform under the control of
one or more abstract real-time operating systems (RTOSs). We
propose a modelling framework consisting of basic RTOS service
models; scheduling, synchronization, and resource allocation, and
a generic task model that is able to model periodic and aperiodic
tasks as well as task properties such as varying execution times,
offsets, deadlines, and data dependencies. A given multiprocessor
system is formed by the composition of RTOS service models and
the allocation of tasks (the application software) onto RTOSs. We
demonstrate the potential of our approach by simulating and
analyzing a small multiprocessor system.

I. I NTRODUCTION

As embedded systems become more and more complex,
todays applications demand a considerable computational
power from their platforms. To match these requirements,
it becomes necessary to utilize the parallel and distributed
systems technology. There is a growing trend towards the
implementation of heterogeneous architectures consisting of
several programmable, as well as, dedicated processors on
a single chip. As an increasing portion of applications are
implemented in software which, in turn, is growing larger
and more complex, dedicated operating systems will have to
be introduced as an interface layer between the application
software and the hardware platform [2]. Global analysis of
such heterogeneous systems is a big challenge. Typically, two
aspects are of interest when considering global analysis: the
system functionality and the timing and resource sharing,
in particular. Our aim is to study embedded applications
executing on a multiprocessor platform running a number of,
possibly, different RTOSs. As many embedded applications
are reactive in nature and have real-time requirements, it is
often not possible to analyze them statically at compile-time.
Furthermore, for single-chip solutions, we may need to use
non-standard RTOSs in order to limit the code size and, hence,
memory requirements, or to introduce special features interact-
ing with the dedicated hardware, such as power management.
When implementing an RTOS, we may wish to experiment
with different scheduling strategies in order to tailor theRTOS
to the application. For a multiprocessor platform, we may
wish to study the system-level effects of selecting a particular
RTOS implementation on one of the processors. To study
these effects at the system-level, before any implementation

has been done, we need a system-level model which is able
to capture the behaviour of running a number of RTOSs
on a multiprocessor platform. In this paper, we propose a
framework to model abstract application software (modelled as
a set of task graphs) executing on a multiprocessor platform
under the supervision of abstract RTOSs. The framework is
based on SystemC 2.0 [6].

II. RELATED WORK

Validation of multiprocessor RTOS’s is a complicated pro-
cess which is often solved in an ad-hoc manner due to the
lack of uniform methodologies and tools that cover all the
aspects pertaining to the modelling of modern heterogeneous
systems. This has been discussed in [2], [3], [5], [10] and
several approaches to develop such a methodology have
been devised. Sifakis [9] presents a methodology based on
composition to model real-time systems although nothing is
mentioned about the challenges implied by the modelling of
real-time systems implemented on multiprocessor platforms.
The approach followed by METAH [12] and VEST [11], is
based on the functional description of multiprocessor real-
time systems giving modelling capabilities and automatic
generation of different components including the operating
system. However, the focus is at a lower abstraction level than
the one we propose. In [2], a high-level performance model
for multi-threaded, multiprocessor systems is presented.This
approach is based on modelling the layer of schedulers in an
abstract manner, which resembles the aim of our approach.
Others have focused on providing RTOS modelling on top
of existing System Level Design Languages (SLDL), either
for open languages such as SpecC [5] and the RTOS library
of SystemC 3.0 [1], or for proprietary languages such as
SOCOS [4] of OCAPI and TAXYS [10]. These approaches
offer functional models of the RTOS enabling its emulation,
on top of which functional models of software applications
can be implemented.

III. F RAMEWORK

At the system levelthe application software may be mod-
elled as a set of tasks,τi ∈ T , which have to be executed on a
number of programmable processors under the control of one
or more RTOS(s). Our system model is designed following
the principle of composition as described in [9] and consists



of three types of basic components: tasks, RTOS services,
and links, where the links provide communication between
other system components. The RTOS services are decomposed
into independent modules that model different basic RTOS
services: A scheduler models a real-time scheduling algorithm.
A synchronizer models the dependencies among tasks and,
hence, both intra- and inter-processor communications. And
an allocator models the mechanism of resource sharing among
tasks.
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Fig. 1. Architecture of the System Model

In this paper, we assume that each processor can run just one
scheduling algorithm. In a multiprocessor platform, we would
have a number of schedulers representing the same number
of processors, while synchronization and allocation may be
represented by a single instance of each. Tasks can send the
messages:ready andfinished, to the scheduler which, in
turn, can send three commands to the tasks:run, preempt,
andresume. In between the schedulers and the tasks, we have
the synchronizer and the allocator acting as logical message
filters as shown in Figure 1. As a way to maintain composition,
each component handles its relevant data, independently of
the other. For example, a task determines when it is ready
to run and when it has finished. In this way, the scheduler
behaves in a reactive manner; scheduling tasks according to
the data received from them. Thus, we can add as many
tasks and schedulers as we desire. The same is the case with
the synchronizer and the allocator models. They hold the
information regarding their services, i.e., which tasks depend
on which other or, for the case of the allocator, what resources
are needed by a given task. We use a global clock connected
to all tasks (not shown in Figure 1) to measure time in terms
of clock cycles, i.e., use an abstract time unit. This allowsus
to identify the moment at which a task is ready to be executed
or when a task has finished its execution.

A. Task Model

At the system level, we are not interested in how a task,
τi, is implemented, i.e., its exact functionality, but we need
information regarding the execution of the task, such as
the WCET, BCET, context switching overhead, period (Ti),
deadline(di), andoffset(oi), in order to characterize execution
of the task. The dependencies among tasks are handled in

another part of our model which will be explained later. The
behaviour of a task is modelled as a finite state machine
(FSM) with four states: idle, ready, running, and preempted.
See Figure 2. We assume that all the tasks start in the idle
state with a certain offset1 that can have any value including
zero; in which case, the task goes immediately to the ready
state, waiting for the RTOS to issue arun command.
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Fig. 2. The Task Model

The task stays in the ready state until it receives a run
command from the scheduler. It then goes to the running
state in which it counts the number, crunning, of cycles. When
entering the running state, crunning is initialized to the value of
the task execution timeci

2. Whencrunning == 0, the task has
finished its computation. It then issues afinished message
to the scheduler and goes to the idle state. In all states,cperiod

is decremented each cycle. After reaching the idle state, the
task stays there untilcperiod == 0 indicating the start of a new
period by making a transition to the ready state and setting
cperiod = Ti. At any time during the running state, the task
may be preempted by the scheduler, i.e., the scheduler sends
a preempt command to the task. When preempted, the task
goes into the preempted state where it waits for the resume
command from the scheduler. During the preempted state, only
the value ofcperiod is updated.

B. Scheduler Model

From a system point of view, the major task of the RTOS is
to determine the execution order of the tasks, i.e., to perform
task scheduling. The scheduler maintains a list of tasks ready
to be executed. In our model, the list is a priority queue where
each task is given a priority according to the scheduling policy
of the scheduler. For example, for the rate-monotonic (RM)
scheduling, the task priority is based on the period of the
task while for the deadline-monotonic (DM) and the earliest-
deadline-first (EDF) scheduling, the task priority is basedon
the tasks deadline. In the following, we usep(τi) to denote the

1The offset is the time from the start of the system to the first time a given
task gets ready. This is, sometimes, referred to as the phase

2The execution time,ci, is calculated as a random number between the
BCET and theWCET of the particular task.



priority of taskτi. The scheduler is modelled as an event-based
process that runs whenever a message (ready or finished)
is received from a task. In the case of a finished message
received from a taskτi, the scheduler selects, from the list of
ready tasks, the one with the highest priority,τj , and issues the
commandrun to τj . In case of an empty list and no running
task, the scheduler just waits to receive aready message. As
soon as it receives this message, it issues arun command to
the ready taskτi. If the list is empty, but a task,τk, is currently
running, then,

1) if p(τk) > p(τi) thenτi enters the list of ready tasks.
2) if p(τk) < p(τi) then τk is preempted by issuing a

preempt command toτk and placingτi in the ready
list. Then the scheduler issues arun command toτi.

If the ready list is not empty,τi is only executed if it has
the highest priority, otherwise, the task,τj , with the highest
priority is selected.

The scheduler is designed to attend to several messages in
zero simulation time. When two or more different tasks send
a ready message simultaneously to the scheduler in the same
simulation cycle, the scheduler will choose the task with the
highest priority to run and enqueue the others. This is handled
very elegant by connecting Master ports to Slave ports using
the SystemC Master-Slave library3. The Master-Slave library
ensures that tasks are actually served sequentially duringthe
simulation cycle, although, the order is non-deterministic.

C. Synchronization Model

Another of the basic services provided by an RTOS is
synchronization among the cooperative tasks that are running
in parallel. For example, ifτi needs the data computed by
τj , then τi has to wait till the completion ofτj in order
to execute. As we have designed our framework to support
multiprocessor system environments, the synchronizer handles
intra- and inter-processor dependencies as well as multi-rate
systems4. Task dependency can be of various types, but at the
system level, we do not care about the nature of a dependency.
We can formulate an abstraction and assert that task,τj , is
eligible to be released just after the taskτi has finished its
execution. The synchronizer can be seen as a message filter
between the tasks and the schedulers letting other schedulers
know when a task is really ready, i.e., when its dependency
constraints have been resolved. Thefinished message will
always pass but theready message will pass only when
the dependency constraints have been resolved. Every time
a task issues a message, the synchronizer will receive it.
Its reaction will depend on the implemented synchronization
protocol. The basic synchronizer in our model works in the
following way: When it receives afinished message, it
looks into the dependency database to see if the issuing task
has dependencies. If so, it checks the waiting list if these
dependencies are already waiting. If they are waiting, then
they are released to the scheduler. If not, information about
the issuing task is stored in the finished list. If the received
message is ready, the synchronizer looks into the dependencies

3www.systemc.org
4The period of the producer is different from that of the consumer

database to see if the task has dependencies, it then checks if
its dependencies are already in the finished list. If they are, the
finished task is removed from the list and the ready message
is passed to the scheduler, otherwise, information about the
issuing task is stored in the waiting list.

D. Resource Allocation Model

The Resource Allocator uses the Priority Inheritance Pro-
tocol [8] for allocating the resources requested by the tasks.
The Priority-Inheritance Protocol ensures that, in the absence
of Deadlocks, no task is ever blocked for an indefinitely long
time because an uncontrolled Priority Inversion cannot occur.
When a task requires a resource, it sends arequest message
to the allocator which either issues agrant message to the
scheduler if the requested resource is available or arefuse
message if it is not. In both the cases, the priority of the
task requesting the resource is updated in accordance with the
Priority Inheritance Protocol and is notified to the scheduler by
anupdatePrioritymessage. In a similar way, when a task
has occupied a resource for its designated duration, it sends a
release message to the allocator which updates its resource
database and issues anupdatePriority message to the
scheduler as demanded by the Priority Inheritance Protocol.

IV. RESULTS

In this section, we will illustrate the capabilities of our
framework by analyzing a small multiprocessor example.
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Fig. 3. a) Task characterization and allocation for the multiprocessor
example; b) Modeling the example

Figure 3a shows a system with two processors, running
two such tasks each. A single dependency exists between
tasksτ2 andτ3. As seen in the figure, it is an inter-processor
dependency. The figure also shows the characterization of each
of the tasks. Figure 3b shows how we model the example
using our abstract RTOS model. Notice that, in this example,
we have omitted the resource allocator. In the first approach,
we will use rate-monotonic (RM) scheduling as the scheduling
policy for the RTOS on both processors. Figure 4 shows the
behaviour of the system in terms of a waveform indicating the
state changes over time for each task in the system. Asτ1 has
a shorter period thanτ2, it has, according to the RM policy,
a higher priority and, hence, starts executing at time 0. After



3 time units,τ1 has completed its execution well ahead of its
deadline.τ2 can then run until it completes after 2 time units
at time 5. Due to the dependency betweenτ2 and τ3, τ3 has
to wait until time 5. Asτ3 has a period of 6 time units and a
delay of 2 time units, it misses its deadline at time 6. If we
change the scheduling policy of the RTOS on processor PEa to
the earliest-deadline-first (EDF),τ1 and τ2 are now executed
in a different order, which allowsτ2 to deliver its data toτ3

in time for τ3 to meet its deadline.

V. CONCLUSIONS

We have presented a modelling framework based on Sys-
temC which supports the modelling of multiprocessorbased
RTOSs. The aim of the framework is to provide the system
designer with a user-friendly and efficient modelling and
simulation environment in which he/she can experiment with
different RTOS policies and study the consequences of local
decisions on the global system behaviour. So far, our test
cases have been aimed at providing the proof-of-concept as
is the case for the example presented in the previous section.
However, we are, currently, working on several large real-life
examples including a GSM encoder/decoder [7] containing 87
tasks.
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PEa running RM
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+ task2
PEb running EDF
+ task3
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Fig. 4. Schedule of the Example. In the top figure, both processors
are running RM scheduling, whereas the scheduler on processor PEb
is changed to EDF in the lower figure. Symbols: 0=idle, 1=ready,
2=running and 3=preempted
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Abstract—With the increasing number of transistors available
on a single chip, the System-on-Chip (SoC) paradigm has
evolved to exploit its full potential. As many processors can
be accommodated on a single chip, this paradigm has forced
a communication-centric, as opposed to a computation-centric,
design view. Thus, the choice, management and modeling of
the SoC interconnect is essential for an accurate evaluation and
optimization of the global performance of a system. Recently, the
notion of Network-on-Chip (NoC) has been introduced as a way
to extend the classical bus-based interconnection, which is still
the dominant interconnect structure for SoC’s, into a dedicated,
segmented and, possibly, packet-switched network fabric [2]. In
this paper, we present a NoC model which, together with a
multiprocessor real-time operating system (RTOS) model, allows
us to model and analyze the behavior of a complex system that
has a real-time application running on a multiprocessor platform.
We demonstrate the potential of our model by simulating and
analyzing a small multiprocessor system connected through
different NoC topologies, and discus how the simulation model
may be used during the design-space exploration phase.

I. I NTRODUCTION

With the growing complexity of embedded systems and
the capacity of modern silicon technology, there is a trend
towards heterogeneous architectures consisting of several pro-
grammable and dedicated processors, implemented on a single
chip, known as a System-on-Chip (SoC). As an increasing
portion of applications is implemented in software which, in
turn, is growing larger and more complex, dedicated operating
systems will have to be introduced as an interface layer
between the application software and the hardware platform
[5]. On the other hand, the hardware platform will either
be developed as a part of the design process or configured
from an existing reconfigurable platform, which allows for
the implementation of parts of an application as dedicated
processors (ASIC’s).

Modern silicon technologies, with minimum device geome-
tries in the nanometer range (<100nm), have made it possible
to integrate hundreds of processors on a single chip. In these
deep submicron technologies, the on-chip interconnectionfab-
ric is a major source of delay and power consumption which
is challenging the on-chip communication infrastructure and
forcing a change from device-centric to interconnect-centric
design methodologies. Traditionally, on-chip communication
has either been conducted via dedicated point-to-point links
or by shared media like a bus. Neither is very suitable for

generalized communication handling in large systems [13].
A promising solution is to have a dedicated, segmented,
and, possibly, packet-switched network fabric on the chip,a
Network-on-Chip (NoC) [2].

Hence, when mapping an application onto its target plat-
form, hardware/software codesign aspects [18] have to be
taken into account. These include mapping of tasks onto
software, hardware, or a combination of both, as well as task
dependencies on the communication infrastructure. In order to
do so, accurate modeling of the systems and all the interrela-
tionships among the diverse processors, software processes and
physical interfaces and interconnections, is needed. One of the
the primary goals of system-level modeling is to formulate a
model within which a broad class of designs can be developed
and explored. To support the designers of single-chip based
embedded systems, which includes multiprocessor platforms
running dedicated real-time operating systems (RTOS’s) as
well as the effects of on-chip interconnect network, a system-
level modeling/simulation environment is required to support
an analysis of the:

• consequences of different mappings of tasks to processors
(software or hardware),

• network performance under different traffic and load
conditions,

• effects of different RTOS selections, including various
scheduling, synchronization and resource allocation poli-
cies.

In this paper, we present a modeling environment based
on SystemC [22] which can provide the SoC designers a
software-like, system-level abstraction of the platform as well
as supporting the three requirements mentioned above for
system-level design-space exploration.

Most of the future embedded applications are likely to be
real-time applications that will run on multiprocessor SoC’s
which are, essentially, distributed computing systems. Ina
multiprocessor or a distributed system, the processing ele-
ments can be connected through shared memory, dedicated
communication links or a communication network. Instead of
dealing with each specific application and system architecture,
we deal with generalized abstract tasks, processing elements,
and communication infrastructures. This not only broadensthe
applicability of our modeling framework, but also leads to a



better understanding of the problem at hand.
We extend our previous work [9], [16] on the modeling

of a multi-threaded application, running on a multiprocessor
platform under the control of one or more abstract RTOS’s,
with a model of an on-chip network which can provide
provisions for run-time inspection and observation of the on-
chip communication. Using this system-level design approach,
implementations of the most promising network alternatives
can be prototyped and characterized in terms of performance
and overhead. Taking communication into account during
hardware/software mapping is essential in order to obtain
optimized solutions as emphasized in [14].

The paper is organized as follows: Section II describes
current trends and related work in the field of communica-
tion network modeling for multiprocessor environments. In
Section III, we provide a brief overview of our previously
proposed RTOS model and discuss its extension to include the
NoC model. Section IV presents our main ideas on NoC mod-
eling. It provides the methodology for developing a network
model for usage at the system-level. This model seamlessly
handles the allocation and scheduling of communication events
within the NoC as driven by the requirements from the tasks
running on the PE’s in a SoC. A SystemC implementation
of a torus network is also discussed. The results of our
implementation and simulation of the model are given in
Section V. Further, in Section VI, we extend this discussionto
the effects of select design-space exploration choices on global
system performance. Section VII, finally, provides conclusions
and the future direction of our work.

II. RELATED WORK

One of the essential elements of making a transition from
ad-hoc system-on-chip (SoC) designs to a disciplined SoC
design approach is taking a rigorous, though flexible, approach
towards the design of on-chip communication networks that
interconnect IP blocks of all variety, including the processing
elements (PE’s). A network-on-chip (NoC) approach, driven
by a consistent design methodology, is bound to lead to
dramatic changes in how SoC’s will be designed in the
future. The partitioning and mapping of tasks onto complex
architectures (homogeneous or heterogeneous) is a well-known
hardware/software codesign problem [18]. [8], [12], [16]–[19]
further explain allocation, scheduling and synchronization in
RTOS’s. But the notion of the on-chip communication medium
has been quite primitive. It has, generally, been viewed as an
overhead where no other useful work can be accomplished.
Thus, it is assumed to occur instantaneously or it is given a
token fixed overhead time. This approach is suboptimal and
error-prone requiring further iteration before design closure.
[12] and [14] clearly show the importance of evaluating the
communication media and how the choice of a communica-
tion architecture clearly impacts the overall architecture of a
SoC. In [1], a communication model for codesign has been
described, but it is limited and cannot account for specific
NoC features for design-space exploration at the system level.

There, already, exists plenty of research literature on the
communication modeling for multiprocessors with different
interconnection topologies to characterize their communica-

tion performance, for example [3]. Moreover, in [2] and [23],
the concept of on-chip, packet-switched micro-networks has
been introduced that borrows ideas from the layered design
methodology for data networks. In [15] the layered, packet-
switched NoC design concepts have been applied to a 2-D
Mesh Network Topology whereas in [10], similar concepts
have been applied to a Butterfly Fat Tree Topology. While
there are several mature methodologies for modeling and eval-
uating the processing element architectures, there is relatively
little research done to port the on-chip communication to
system-level. In [24], attempts have been made to fill this gap
by proposing a NoC modeling methodology based upon the
ideas borrowed from the object-oriented design domain and
implementing those ideas using an existing CAD framework
− Ptolemy II. However, the authors have conjectured about the
performance gains achievable by the porting of their proposed
modeling framework to SystemC. In [21], a theoretical frame-
work for modeling real-time applications running on multi-
processor systems has been developed that models the inter-
processing element communication with a link processor. But
such attempts are quite ad-hoc and no generalized approach
has, so far, been reported to our knowledge.

In our proposed abstract system modeling framework, an
embedded, real-time application is represented as a collection
of multiple, concurrent execution threads that are modeled
as a set of dependent tasks under certain precedence and
resource constraints. Such tasks, in turn, are modeled as a
chain of sub-tasks executing on, possibly, different processing
elements. Based on the abstract system model, three distinct,
but closely-related problems are identified, namely, execu-
tion synchronization, resource allocation and priority assign-
ment/scheduling. The inter-processing element communication
is modeled by modeling a communication network as a com-
munication processor and the message transmission through
the network as a communication task running (concurrently)
on the communication processor. Using this approach, we have
demonstrated that our, previously proposed [9], [16], abstract
RTOS model can be extended to include an abstract NoC
processor that can effectively model the system-level effects
of any NoC architecture.

III. A BSTRACT RTOS MODELING

As discussed earlier, at the system level, the application
software may be modeled as a set of tasks which have to be
executed on a number of processing elements (PE’s) under the
control of one or more RTOS(s). For details on the model and
how it is implemented in SystemC (including the use of the
Master-Slave library), we refer to [9] and [16].

Briefly, our system model is designed following the princi-
ple of composition, as described in [20], and consists of three
types of basic components: tasks, RTOS services, and links,
where the links provide communication between other system
components. We have used SystemC 2.0 as the implementation
language of our model. Although, any language could have
been used, the choice of SystemC is mainly due to the fact
that it is an extension of the C++ programming language
and has a built-in simulation kernel that supports concurrency.
In addition, it supports the design process from system-level



down to both hardware and software implementations. The
SystemC Master-Slave library provides a very elegant way
of handling concurrent messages sent by the tasks to the
RTOS services. This allows each RTOS service to deal with a
single message at a time independently of the other. Figure 1
shows the Abstract RTOS Model and Figure 2 presents the
overall system model, including the NoC model which will
be described in the next section. In this section, we focus
on the RTOS modeling which corresponds to the PE’s. The
RTOS services are composed from independent modules that
model different basic RTOS services. A scheduler models a
real-time scheduling algorithm. A synchronizer models the
dependencies among tasks and, hence, both intra- and inter-
processing element communications. An allocator models the
mechanism of resource sharing among tasks.

τ
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Synchronizer


Fig. 1. Abstract RTOS model.

The model is designed such that any of the RTOS services
can be changed in a simple and straight forward manner. Tasks
are considered to be abstract representations of the application
and are characterized by a set of parameters, such as the
worst- and the best-case execution time, context switching
overhead, deadline, period (if it is a periodic task), offset,
resource requirements, and precedence relations. A task is
modeled as a finite state machine (FSM) which can send the
messages:ready andfinished, to the scheduler which, in
turn, can send one of the three commands to the tasks:run,
preempt, andresume. In between the schedulers and the
tasks, we have the synchronizer and the allocator acting as
”logical command filters”. As a way to maintain composition,
each module handles its relevant data independently of the
other. For example, a task determines when it is ready to
run and when it has finished. In this way, the scheduler
behaves in a reactive manner; scheduling tasks according to
the data received from them. Thus, we can add as many
tasks and schedulers as we desire. The same is the case with
the synchronizer and the allocator models. They hold the
information regarding their services, i.e., which tasks depend
on each other or, for the case of the allocator, what resources
are needed by a given task.

IV. N OC MODELING

Architecturally, a network is characterized by itstopology
and theprotocol running on it. The topology concerns the
geometry of the communication links on the chip while the
protocol governs the usage of these links. Many combinations
of topology and protocol exist for the efficient communication
of one or more predominant traffic patterns. Theperfor-
manceof a network is measured in quantitative terms such
as latency, bandwidth, power consumption and area usage,
and in qualitative terms such as network reconfigurability
(dynamic or static), quality of service (QoS), etc. Predictabil-
ity of performance is necessary for NoC designers to take
early decisions based on the NoC performance before actual
implementation. Numerous studies have been done for dead-
lock, livelock, congestion-avoidance, error-correction, network
setup/tear-down, etc. to provide a certain predictable network
behavior [7]. Even lower-level engineering techniques like
low-swing drivers, signal encoding etc., have been proposed to
overcome network communication uncertainties [4], [6], [11].
Many of these aspects are custom-tuned to fit the requirements
of the underlying application.

Throughout this paper, we usenetwork latencyas a primary
factor for grading the performance of a network. The network
latency is defined as the time taken to move data from a source
PE to a destination PE. It includes the message processing
overhead at the PE’s, link delays and the data processing
delays at the intermediate nodes [14]. It is a function of the
topology (which determines the number of nodes and links)
and the protocol (which defines the processing requirements
for routing and flow-control).

The state of a network at any instant is given by the
number of actively transmitting PE’s and the messages within
its nodes and links. The state of a network dictates which
resources of the network are currently in use and which ones
can be available for future use. This provides a measure of
the network servicesavailable to the system, which affect its
performance. We define network services as the system-level
characterization of network resource allocation and schedul-
ing. For a given topology-protocol combination, changes in
network services, change the resources available for a given
communication event, thus, affecting its latency.

For the purpose of forming a system-level NoC simulation
model, unlike a network simulator, we have abstracted away
all the above-mentioned low-level network details except the
most essential ones (e.g., topology, latency, etc.). We treat
the on-chip communication network as acommunication pro-
cessor to reflect the servicing demands. A communication
event within this network is modeled as amessage task, τm,
executing on the communication processor. When one PE
wants to communicate with another PE, aτm is fired on the
communication processor. Eachτm represents communication
only between two fixed set of predetermined PE’s. Since a
NoC supports concurrent communication,τm’s need to be
synchronized, allocated resources and scheduled accordingly.
This is a property of the underlying NoC implementation,
where the NoC allocator reflects the topology and the NoC
scheduler reflects the protocol. A resource database, which
is unique to each NoC implementation, contains information
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Resource Allocation Scheduling Needs Resource Allocation Scheduling Needs

Small Message Size Large Message Size Small or Large Message Size

τmx a→b L1 Immediate Preemptive L1 Immediate
τmy c→b L3, R1, L1 Immediate Immediate L3 Immediate

TABLE I
A sample reservation for two sample networks.

on all its resources. In a segmented network, these resources
are laid-out as two-dimensional interconnects and are a col-
lection of nodes (routers) and links. The NoC allocation and
scheduling algorithms map aτm onto the available network
resources. Here, we mainly illustrate this for the networks
which allow parallel communication to occur, such as the
segmented networks.

A. NoC Allocator

The allocator translates the path requirements of aτm in
terms of its resource requirements such as bandwidth, buffers,

etc. It attempts to minimize resource conflicts. The links and
nodes in a communication path are set aside dynamically (i.e.,
only for the requested time slot) in the resource database. If
the resource reservation process is successful, the message
task is queued for scheduling. The resource allocation for
two sample networks is shown in Table I. If there is a
contention over a resource, then resource arbitration occurs.
The arbitration mechanism is based on the underlying network
implementation and is discussed shortly. In this discussion,
the resources are regarded as non-preemptable. Therefore,a



resource is free to be assigned to anotherτm only after the
τm, which is already occupying that resource, has released it.

B. NoC Scheduler

The NoC scheduler executes theτm’s according to
the particular network service requirements. It attempts
to minimize resource occupancy. In a network, resource
occupation is dictated by the size of the message. This
concept is better illustrated using the example in Table I,
where the scheduling needs for two sample networks are
shown. For a mesh there is no resource conflict. Theτm’s
get the required resources allocated ’immediately’. But inthe
case of a torus, it might experience a resource conflict for the
link L1. Here, in the event of a small message size, where
τmx is finished beforeτmy asks forL1, there is no scheduling
problem. The resources can be ’immediately’ assigned to
the τm’s. But in the case of a large message size, where
τmx is still running whenτmy asks for the linkL1, resource
contention occurs. Thus, the scheduling of the messages has
to be performed preemptively.

Let us consider the above example from the points of
view of the network-designer and the system-designer. At
the network-level, seeing the resource conflict as a network
problem, the network designer may over-design linkL1 by
providing excess bandwidth or introduce processing overhead,
such as TDM-based message interleaving. These techniques
would restore fair servicing for both theτm’s, reducing the
degree of contention. However, at the system-level, it may be
possible to reschedule the communication event between the
PE’s (eitherτmx or τmy). This opens up the possibility of an
alternate path assignment for theτm’s or simply stalling one
of the traffics until the other has passed. System designers
may even realize that large message sizes (to the extent where
L1 is contentious) never occur within the system. This could
save potential scheduling/computation overhead in terms of
hardware real-estate, power, etc. at routerR1 and on linkL1

as was envisioned by the network designer. Thus, when seen
from the system-level, a trade-off between the NoC resource
allocation and scheduling would not only complement better
self-utilization, but might provide other useful insightsfor
design improvements. Towards this, we implement a NoC
model for system-level evaluation.

C. Implementation

The NoC model has exactly the same structure as the
abstract RTOS model but with some modifications to its
constituent module blocks. The main idea while implementing
the NoC model was to preserve the existing structure of
the abstract RTOS framework and to reuse the existing code
fragments as much as possible so that no extra complexity
is added and the code size does not grow too much so as
to compromise the simulation speed. The message routing
scheme currently implemented in our NoC model is that of
fixed routing but the framework does have provisions for
implementing other routing schemes.

1) Message Task:The message task has the same FSM
structure as the Task model in the abstract RTOS model with

some modifications to take out preemption and introduce re-
source requirements. Theτm implementation accepts a number
of arguments for its characterization. TheMessage Task IDen-
ables the Synchronizer and the NoC Scheduler to identify the
τm sending the message. Similarly, theNoC Scheduler IDis
meant for theτm’s to recognize their scheduler for exchanging
various control messages. The lower- and the upper-bounds on
the transmission latency of anτm through the NoC are defined
by the BCET (Best-Case Execution Time)and the WCET
(Worst-Case Execution Time). If a message task has a certain
setup time before it is released, then itsoffset is non-zero. A
list of resources (links, routers, etc.) required by aτm during
its execution is furnished in the form ofResource ID’sand
the time durations for holding those resources are specifiedas
CSL’s (Critical Section Lengths). The implementation of aτm

can be viewed as a FSM that manages various counters after
sending messages to the NoC Scheduler and the NoC Allocator
and upon receiving commands from the NoC Scheduler.

2) NoC Allocator:The NoC Allocator manages its resource
database upon receivingrequest andrelease messages
from the τm’s. The resources are allocated to theτm’s dy-
namically and they are released by theτm’s immediately after
usage. This makes resource management very flexible. In this
implementation, the resources are served by the NoC Allocator
on a first-come-first basis but other allocation policies canbe
implemented as well. Whenever a requested resource is avail-
able, the NoC Allocator sends agrant message to the NoC
Scheduler and whenever a requested resource is occupied,
there is a resource contention and the NoC Allocator sends
a refuse message to the NoC Scheduler for an appropriate
action.

3) NoC Scheduler:The NoC Scheduler receives theready
andfinished messages from theτm’s through the Synchro-
nizer and thegrant andrefuse messages from the NoC
Allocator. It then issues therun andbuffer commands to
the τm’s. Whenever a Task running on a PE, is finished and
needs to communicate with a Task running on another PE,
it sends afinished message to the Synchronizer which
maintains a task dependency database and passes theready
message for the correspondingτm to the NoC Scheduler which
issues therun command to thatτm.

Whenever there is a resource contention, the NoC allocator
issues arefuse message to the NoC Scheduler which then
either terminates the execution of the requestingτm (equiv-
alent to message dropping) or blocks theτm from execution
(equivalent to message buffering) till the requested resource
becomes available again which is indicated by thegrant
message sent by the NoC Allocator to the NoC Scheduler. The
message dropping or buffering decision is taken by the NoC
Scheduler according to its underlying network implementation.

V. RESULTS

The results of our SystemC implementation of the NoC
model from Figure 2 are presented in Figure 4 and Figure 5
and illustrated in Figure 6. The sample SoC-NoC setup is
shown in Figure 3. The application is assumed to have been
decomposed into four tasks (τ1, τ2, τ3, and τ4). Three PE’s
(PEa, PEa, and PEa) are selected to execute these tasks.
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Fig. 4. Simulation results for communication events. State enumeration: 0=inactive, 1=ready, 2=running, 3=preempted.

The task mappings are:{τ1} 7→ PEa, {τ4} 7→ PEb, and
{τ2, τ3} 7→ PEc. τ2 has a higher priority thanτ3, so it can
preemptτ3 on PEc. In this example, we look at a simple case
where all the tasks are modeled identically with a period of 25
time units (except forτ2, which has a period of 24 time units
due to the priority-assignment scheme in the Rate Monotonic
scheduling), an execution time (both BCET and WCET) of 10
time units and a deadline of 22 time units.

The communications between the tasks are modeled asτm’s
(as described in Section 4) which execute on a communi-
cation processor simulating a torus network using the store-
and-forward routing protocol [7] (with infinite buffer at the
source and the destination nodes). The message task paths and
dependencies are:τmx, from PEa to PEc usingL1, R2, and
L2, andτmz , from PEc to PEb usingL3, R1 andL1. Thus,
the link L1 experiences a possible contention. In our SoC-
NoC test setup, the resource ID is given in brackets (next
to the resource label in Figure 3). We present two cases of
interest:

In Figure 4(a), modeling of two concurrent communications
is shown. As mentioned earlier, there is a link contention
betweenτmx and τmz for L1. It is resolved by scheduling
L1 at different times among theτm’s within the time-slot
of 10 to 20 time units (and subsequent time slots).L1 is
used from 11 to 14 time units inτmx and from 17 to 20
time units in τmz. Figure 5 shows the log file of resource
occupancy (Resource# 1 is linkL1). Figure 6 provides a

graphical representation (Note that 1 time unit is consumedin
the network setup during simulation). Thus, our model clearly
supports concurrent communication as observed in segmented
networks.

Figure 4(b) shows the interplay of process modeling and
interconnect activity. Consider the signal titledPEc Task 3
(τ3) in Figure 4(b) at a point close to the time period of
95 time units. Here, it is clear thatτ3 starts accepting the
communication message and is then preempted byτ2 on PEc

because of its higher priority. Onceτ2 is finished,τ3 resumes
and completes in time (at time 120) before its deadline. Now
consider the next execution ofτ3. Both τ2 and τ3 are in
contention.τ3 does not even start; instead,τ2 starts on the
PEc. τ3, here, is not able to accept the message communicated
to it by τ1. This brings us to an interesting role of the NoC.
In this simulation, we have enabled the routers to be able to
buffer messages. Thus theτmx finishes freeing up its resources
althoughτ2 has yet to begin.τ3, when finished, is thus able
to initiate τmz , which is whenτ2 resumes.

Consider the case where the same torus network processor
is running wormhole routing (plots not provided). Then, in
the preemption case, theτmx stalls, holding the linkL1. As
τ2 has already preemptedτ3 on PEc, when it is complete,
it would attemptτmz . But this would not be possible as the
link L1 required here is busy inτmx, thus stallingτmz. This
causes deadlock in the system. As seen earlier, we can resolve
it either by introducing buffering in the routers or we have



0 Initializations
10 CommTask X Released by the Synchronizer
10 CommTask Z Released by the Synchronizer
11 task x (request resource# 1)-> allocator
11 NoC_allocator (granted)->NoC_scheduler
11 task z (request resource# 4)-> allocator
11 NoC_allocator (granted)-> NoC_scheduler
14 task x (release resource# 1)-> allocator
14 task x (request resource# 2)-> allocator
14 NoC_allocator (granted)-> NoC_scheduler
14 task z (release resource# 4)-> allocator
14 task z (request resource# 5)-> allocator
14 NoC_allocator (granted)-> NoC_scheduler
17 task x (release resource# 2)-> allocator
17 task x (request resource# 3)-> allocator
17 NoC_allocator (granted)-> NoC_scheduler
17 task z (release resource# 5)-> allocator
17 synchronizer (release)-> allocator
17 task z (request resource# 1)-> allocator
17 NoC_allocator (granted)-> NoC_scheduler
20 task x (release resource# 3)-> allocator
20 task x (finished)-> scheduler 2
20 synchronizer (finished)-> allocator
20 NoC_allocator (finished)-> NoC_scheduler
20 task z (release resource# 1)-> allocator
20 task z (finished)-> scheduler 2
20 synchronizer (finished)-> allocator
20 NoC_allocator (finished)-> NoC_scheduler

and so on...

Fig. 5. Simulation log.

the freedom to choose an alternate network implementation
or scheduling strategy. Thus, even this simple example clearly
demonstrates the global performance evaluation for codesign
when both SoC and NoC are jointly modeled.

VI. D ESIGN-SPACE EXPLORATION

Figure 7 illustrates how our proposed NoC model can be
used for design-space exploration at the system level. We have
used three sample network topologies: torus, mesh, and bus.
The assignment of tasks to the PE’s are:{τ1, τ2} 7→ PEa, {τ3}

7→ PEb, and{τ4, τ5} 7→ PEc. All the tasks have the same
period, execution time (BCET=WCET) and a deadline of 100,
15 and 100 time units, respectively. It is assumed that the tasks
are mapped on the PE’s in such a way that none of them misses
its deadline. The task dependencies are:τ3 ≺ {τ1, τ4} andτ5

≺ τ2. The dependencies for the tasks mapped onto different
PE’s translate intoτm’s as described in Section 4. In this
illustration, we have labeled them as x, y, and z. The link and
the node utilization for each corresponding topology-protocol
combination alters for theseτm’s. For simplicity, we model all
link occupancies to be 10 time units and node processing times
to be 2.5 time units. Besides, the task and the communication
model, in this analysis we have also included the time spent
at the network interface for message transfer from the PE’s
to the NoC. This is assumed to be about 3 time units. It is
incurred twice, once at the source and then at the destination,
for each communication event.

The three rows in Figure 7 show the network performance
for three different scheduling-architecture combinations. The
performance of the system is judged by its scheduling. In the
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Fig. 6. NoC allocation and scheduling for the first communication
cycle.

first row, basic timing-aware scheduling is illustrated. Here,
the networks are quite primitive, i.e., the link contentionis
resolved randomly. The best-effort scheduling for the torus
network and the bus consumes about 80 time units. The mesh
network utilizes 65 time units. The bus is a singular entity
and, hence, the NoC allocator does not have much freedom
in its allocation. The scheduling of the communication is,
therefore, sequential. On the other hand, the torus and the
mesh networks have multiple ways to allocate and schedule
their resources. As the example is relatively small, therefore,
the full potential of concurrent communication is not obvious
for the torus network. But it is obvious for the mesh network.It
is about 10 time units less than the other networks. Regarding
the link utilization1, both for the torus and the mesh networks,
one link each is not used in this architectural setup (L1 for
the torus andL4 for the mesh network). Thus, if the system
is not under the constraints of meeting the timing-bounds, a
possible network optimization exists. On the other hand, in
the torus network, ifτ1 and τ4 are scheduled together, there
is a contention on linkL1, so a network optimization to meet
the timing-bounds is required.

In the second row of Figure 7, we illustrate one possible
network optimization, namely, the effects of source-basedQoS
routing. Any traffic fromPEa is considered to have a higher
priority and, hence, is assigned the contentious resource (when

1Link Utilization is defined as the aggregation of the number of links
occupied in the smallest time unit



2


4


�����1


y


z
������5
� x
��x


����3


a


L

1


b


c


L

2


L

3


(i) Timing-Aware Scheduling


(ii) QoS-Aware Scheduling


(iii) Allocation-Aware Scheduling


a


L

1


b


L

2


c


L

3


a


b


c


bus


a


a


b


b


c


c


bus


bus


L

3


c


L

2


b


L

1


a


a


a


L

1


L

1


b


b


L

2


L

2


c


c


L

3


L

3


2
� 1
�
z
�

4
�� z
����������� 3


5


y


x
�� 1
 2


3


5
4


y
 x
 z
��������������
2
� 1
�
4
������������5


y
z
 x


x
 y
 z
������������������2


1


4


3


3


5


5


1


4


2
 3
����������������x


y
 x


z
���2


4


1


z


z


x


x
y


5


3
������������������
1
 2
 1


4


3


5


x
z


z


y


������������������2


3


4
 5


x
 y


z
x
�������������� a


L

1


b


L

2


c


L

3
��

0
 10
 20
 30
 40
 50
 60
 70
 80
 0
 10
 20
 30
 40
 50
 60
 70
 80
 0
 10
 20
 30
 40
 50
 60
 70
 80


a
 b
 c


1,2
 4,5
3


a
 b
 c
1,2
 4,5
3


L

4


L

1


L

3


L

2


L

3


L

2


L

1
 bus


c
b
a
 4,5
3
1,2


Fig. 7. Illustration of the system-level design-space exploration.

necessary). For a mesh network, there is no effect as the link
occupancy is not in conflict. But consider its effect on the
torus network. It gives about 5 time units better performance
than the regular torus network. For a complex system with
multiple links and nodes and handling numerous messages,
these advantages are expected to be significant (both for torus
and mesh). The bus architecture, on the other hand, would
become a bottleneck in communication.

Having looked at how a manipulation of the network affects
the overall performance, at the system-level, one can even
expect to change the allocation of tasks based on the network
choice. This is illustrated in the last row. The new allocation
under consideration is:{τ2, τ3} 7→ PEa, {τ4, τ5} 7→ PEb,
and{τ1} 7→ PEc. The advantage in terms of overall system
execution time is considerable for the segmented network
compared to the bus. The reasons for the poor performance of



the bus are the same as the ones stated earlier. In the case of the
torus and the mesh networks, the link utilization is high now.
Many links, though not all, are used simultaneously without
any contention. We have not considered QoS assignment in
this case, but its effect on performance, especially, in a large
system might be considerable.

Using these illustrations, similar analysis for memory and
power utilization can be easily performed as well. There are
many possibilities of trade-offs during each iteration; namely
to change the resource requirements, resource allocation,or
scheduling. The overall idea is to assist the codesign process
to converge while satisfying the desired performance criteria.

VII. C ONCLUSIONS

We have presented an abstract modeling framework based
on SystemC which supports the modeling of multiprocessor-
based RTOS’s and their interconnection through a NoC. The
aim is to provide the system designer of single-chip, real-time
embedded systems with a simple modeling and simulation
framework in which one can experiment with different task
mappings, RTOS policies and NoC structures and protocols
in order to study the consequences of local decisions on the
global system behavior and performance. We have presented
how our initial multiprocessor RTOS model has been extended
to handle NoCs. So far, our experimental work has been aimed
at providing a proof-of-concept as demonstrated in Section
5. We are currently working on extending the NoC model to
incorporate issues like, dynamic path routing, packet switching
and power profiling. We are also working on a few large real-
life examples as well as a schedule viewer based on the output
from the monitors which will provide detailed and annotated
views of the system behavior such as detailed network usage
and power- and memory-profiles.
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Abstract—We present a system-level modeling framework
to model system-on-chips (SoC) consisting of heterogeneous
muliprocessors and network-on-chip communication structures
in order to enable the developers of todays SoC designs to
take advantage of the flexibility and scalability of network-on-
chip and rapidly explore high-level design alternatives tomeet
their system requirements. We present a modeling approach for
developing high-level performance models for these SoC designs
and outline how this system-level performance analysis capability
can be integrated into an overall environment for efficient SoC
design. We show how a hand-held multimedia terminal, consisting
of JPEG, MP3 and GSM applications, can be modeled as a
multiprocessor SoC in our framework.

I. I NTRODUCTION

Networks on chip (NoC’s) are receiving considerable at-
tention as a solution to the interconnect problem in highly-
complex chips. The reason is two-fold. First, NoC’s help
resolve the electrical problems in new deep-submicron tech-
nologies, as they structure and manage global wires. At the
same time, they share wires, lowering their number and
increasing their utilization. NoC’s can also be energy-efficient
and reliable, and are scalable compared to buses. Second,
NoC’s also decouple computation from communication, which
is essential in managing the design of billion-transistor chips.
NoC’s achieve this decoupling because they are traditionally
designed using protocol stacks, which provide well-defined
interfaces separating communication service usage from ser-
vice implementation. Using networks for on-chip communica-
tion when designing systems-on-chip (SoC), however, raises
a number of new issues that must be taken into account.
This is because, in contrast to existing on-chip interconnects
(e.g., buses, switches, or point-to-point wires), where the
communicating modules are directly connected, in a NoC,
the modules communicate remotely via network nodes. As
a result, interconnect arbitration changes from centralized to
distributed, and issues like out-of order transactions, higher
latencies, and end-to-end flow control must be handled either
by the intellectual property block (IP) or by the network.

Multimedia is an increasingly important application area
for NoC platforms, in particular, for the new generations of
hand-held devices where high-quality audio and video have
to be delivered under strict resource and energy constraints.
Baiceanu et al. [1] have analyzed the consequences of applying
rate-monotonic (RM) scheduling on multimedia applications,
i.e. an MPEG player. They argue that the complexity and

dynamic behavior of this type of application makes static
solutions infeasible and, hence, adaptive methods have to be
used. [2] presents a more extensive survey of OS support, and,
in particular, scheduling methods for multimedia applications.
The presented methods are discussed in the context of basic
system requirements for multimedia. In [3], Nieh and Lam
present an integrated processor scheduling algorithm for mul-
timedia applications, where both audio and video streams have
to be manipulated within well-defined timing requirements,
whereas conventional interactive and batch activities still have
to be handled. The scheduling algorithm uses two different
scheduling policies within the same scheduler, i.e., multimedia
tasks are handled by an EDF scheduling algorithm, whereas
conventional tasks are scheduled by a Round-Robin scheduling
algorithm. The approach of having several scheduling policies
within the same scheduler is further explored by Goyal et
al. in [4]. They present a framework for hierarchical CPU
scheduling in which different scheduling algorithms are em-
ployed for different parts of a multimedia application in order
to better support the variety of best-effort, hard, and softreal-
time characteristics which are typically found in multimedia
computing environments. In [5], the scheduling of audio and
video multimedia applications is brought to multiprocessor
systems. Although a multiprocessor scheduling algorithm has
been presented, the network communication latencies have not
been taken into account.

In this paper, we present a system-level NoC model, which
is an extension of our previous multiprocessor SoC modeling
framework [6]. The extended model is able to model hetero-
geneous multiprocessor architectures interconnected through a
an on-chip network architecture, such as a mesh or a torus.
We show how a hand-held multimedia terminal, consisting of
integrated JPEG encoding and decoding, and MP3 decoding
as well as GSM encoding and decoding for the wireless trans-
mission, can be modeled at the system-level in our modeling
framework.

II. SYSTEM-LEVEL MODELING

To address the system-level design challenges described
above, we need an extended system-on-chip design process,
including the effects of the network-on-chip, with the ability
to evaluate options and make critical architectural decisions
based on a system-level representation in advance of a detailed
design. A key pre-requisite is a library of abstract component



models that captures their respective performance, power,and
physical characteristics.

The primary goal of system-level modeling for embedded
systems is to formulate a model within which a broad class
of designs can be developed and explored. Moreover, the
difficulty of verifying the design of complex systems can be
reduced by decomposing a system into smaller subsystems,
independently verifying an implementation of the subsystems,
and then proving that the composition of the subsystem
specifications satisfies the overall system specification. In
order to do so, accurate modelling of the system and all
the interrelationships among the diverse processors, software
processes, physical interfaces and interconnections is needed.

The scheduling problem, central to the analysis of the
complexity of concurrent programs, depends on the way in
which the scheduled tasks are mapped on the processing
elements which, in turn, is linked with the physical architecture
of the computing platforms.

A real-time operating system is meant to provide some as-
surances about the timely performance of tasks. Unfortunately,
most mechanisms used in the basic RTOS services are not
compositional in nature. Even if a mechanism can provide
assurances individually to each task, there is no systematic
way to provide assurances for an aggregate of two except in
trivial cases.

To support the designers of single chip-based embedded
systems, which includes multiprocessor platforms running
dedicated RTOS’s, we have developed a modeling environment
based on SystemC [6], [7]. In our abstract RTOS modeling
framework, we deal with generalized abstract tasks, processing
elements, and communication infrastructures. For the purposes
of modelling, three distinct but closely-related RTOS services
have been identified, namely, task scheduling, execution syn-
chronization, and resource allocation.

III. M ODEL IMPLEMENTATION

We have implemented our system-level modeling frame-
work in SystemC. SystemC is in a class of languages that
target modeling of hardware and software systems, and it has
the desirable feature of being able to simulate models at a
very high level of abstraction together with low-level ones.
Figure 1 gives an overview of our system-level SoC model,
including the processor model and the NoC model which will
be described in this section.

A. Abstract RTOS Model

Our abstract RTOS System Model [7] deals with the
analysis of the execution behavior of a real-time application
running on a heterogeneous multiprocessor platform. In our
model, such an application is represented as a multi-threaded
application comprising a set of tasks where each task,τ ,
can be decomposed into a sequence of task segments,τi.
Each task segment,τi, is required to precede a given set
of other task segments. Moreover, each task segment also
excludes a given set of other task segments for the use of
shared resources. For each task, we are given a release time,
rk, a release-time offset,oi, a start time,sk, a best-case
execution time,bceti, a worst-case execution time,wceti, a
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Fig. 1. System-level System-on-Chip model

deadline,di, a period,Ti, and a context switch time,cswi.
A similar set of parameters can be computed for each task
segment,τi, relative to the beginning of the task containing
that task segment. The multiprocessor platform is modelledas
a collection of Processing Elements,PEk, and Devices,Dk,
interconnected by a set of Communication Channels,Ck. Each
PEk is modelled in terms of the RTOS services provided to
the tasks comprising the application. Based on the principle
of composition, three basic RTOS services are modeled: a
scheduler, a synchronizer, and a resource allocator.

The scheduler is modeled around the priority-based pre-
emptive scheduling policy which is one of the most preferred
scheduling policies for the execution of tasks in real-time
systems due to its higher schedulability. According to our
scheduler model, whenever a task becomes ready or finishes
execution, the scheduler is called and it then looks for a
ready task with maximal priority to continue execution. In our
synchronizer model, synchronization is regarded as a means
to prevent undesirable task interleavings by the scheduler.
Our synchronizer model is responsible for establishing the
correctness of the results computed by the multiprocessor
platform and it implements the Direct Synchronization (DS)
protocol [8].

B. Extension of the Abstract RTOS Model to Model NoCs

For the purpose of forming a system-level NoC simulation
model, unlike a network simulator, we have abstracted away
all the low-level network details except the most essential
ones (e.g., topology, latency, etc.). We treat the on-chip com-
munication network as acommunication processor to reflect
the servicing demands. A communication event within this
network is modeled as amessage task, τm, executing on the
communication processor. When one PE wants to communi-
cate with another PE, aτm is fired on the communication
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Fig. 2. The five task graphs corresponding to the multimedia applications. From left, these are the JPEG Encoder, JPEG Decoder,
MP3 Decoder, GSM Encoder and the GSM Decoder.

Application Type Number of Tasks Deadline Processor Clock Frequency Scheduler
JPEG Encoder 5 250ms GPP0 25MHz Rate Monotonic
JPEG Decoder 6 500ms GPP0 25MHz Rate Monotonic
MP3 Decoder 16 25ms GPP0 25MHz Rate Monotonic
GSM Encoder 53 20ms GPP0 25MHz Earliest Deadline First
GSM Decoder 34 20ms GPP1 10MHz Earliest Deadline First

TABLE I
Parameters for the multimedia applications

processor. Eachτm represents communication only between
two fixed set of predetermined PE’s. Since a NoC supports
concurrent communication,τm’s need to be synchronized,
allocated resources and scheduled accordingly. This is a
property of the underlying NoC implementation, where the
NoC allocator reflects the topology and the NoC scheduler
reflects the protocol. A resource database, which is unique
to each NoC implementation, contains information on all its
resources. In a segmented network, these resources are laid-
out as two-dimensional interconnects and are a collection of
nodes (routers) and links. The NoC allocation and scheduling
algorithms map aτm onto the available network resources.

• NoC Allocator: The allocator translates the path require-
ments of aτm in terms of its resource requirements
such as bandwidth, buffers, etc. It attempts to minimize
resource conflicts. The links and nodes in a commu-
nication path are set aside dynamically (i.e., only for
the requested time slot) in the resource database. If the
resource reservation process is successful, the message
task is queued for scheduling.

• NoC Scheduler: The NoC scheduler executes theτm’s
according to the particular network service requirements.
It attempts to minimize resource occupancy. In a network,
resource occupation is dictated by the size of the message.

IV. H AND-HELD MULTIMEDIA TERMINAL

In this section, we will demonstrate the capabilities of our
system-level modeling framework by presenting the simula-
tion results of a multiprocessor SoC-based multimedia device

which concurrently runs JPEG encoding/decoding, MP3 de-
coding, and GSM encoding/decoding all in real-time. Figure2
shows the five task graphs which are defining the core func-
tionality of our multimedia device. The pre-processing steps
for abstracting the application code, like the extraction of
the static task graph parameters through code profiling, and
mapping the task graphs to the NoC architectures have been
performed manually [9]. For the purpose of demonstrating the
capabilities of our modeling framework, the applications have
been mapped on four processing elements (see Figure 3), three
fast processors (25 MHz), and one slow processor (10 MHz).
Each of the four processors has its own local memory and
all the four processors are interconnected by a torus network.
Using distributed memory for instructions and data greatly
reduces the traffic in the network.

The MP3 decoder is the most critical multimedia application
and mapping its task graph on a single processor, even on a
fast processor, reveals that some tasks miss their deadlines.
Therefore, the MP3 application task graph has been partitioned
and mapped on two fast processors which, as mentioned
above, are interconnected through a NoC. The JPEG encoder
and decoder applications are mapped to the same two fast
processors as the MP3 decoder, whereas the GSM encoder
is mapped onto a third fast processor and the GSM decoder
is mapped on a slow processor. This mapping results in the
exchange of communication messages between the two fast
processors over the NoC.

In order to illustrate the capabilities of our modeling frame-
work, we are using two different schedulers. RM scheduling
is used on the two fast processors to handle JPEG and MP3,
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whereas the two GSM applications are scheduled using EDF
scheduling. Table I summarizes the characteristics of the
multimedia application.

V. CONCLUSIONS

We have presented a system-level, system-on-chip modeling
framework and discussed how our original SoC model has
been extended to handle the effects of the on-chip interconnec-
tion infrastructure, i.e., the network-on-chip. We have demon-
strated the capabilities of our modeling framework by model-
ing and simulating a hand-held multimedia terminal applica-
tion mapped on a heterogeneous 4-processor SoC architecture
interconnected through a torus on-chip network topology. It is
worth mentioning, however, that our system-level modeling
framework supports more sophisticated scheduling policies
and NoC topologies. Moreover, features like including the
effects of the network interface and memory accesses as well
as dynamic load balancing support can be built upon by adding
more components to the existing framework components. We
are currently extending our modeling framework to include
radio and transducer components in order to be able to model
wireless sensor networks, i.e., a distributed system of SoCs.
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Abstract—Wireless integrated sensor networks have emerged
as a promising infrastructure for a new generation of monitoring
and tracking applications. In order to efficiently utilize t he
extremely limted resources of wireless sensor nodes, accurate
modeling of the key aspects of wireless sensor networks is
necessary so that system-level design decisions can be made
about the hardware and the software (applications and real-time
operating system) architecture of sensor nodes. In this paper,
we present a SystemC-based abstract modeling framework that
enables system-level modeling of sensor network behavior by
modeling the applications, real-time operating system, sensors,
processor, and radio transceiver at the sensor node level and
environmental phenomena, including radio signal propagation,
at the sensor network level. We demonstrate the potential ofour
modeling framework by simulating and analyzing a small sensor
network configuration.

I. I NTRODUCTION

Wireless sensor networks have emerged as a promising
infrastructure for a new generation of monitoring applications.
Owing to their small form-factors, ad-hoc deployment, and
extended periods of unattended operation requirements, these
wireless sensor networks form an extremely resource- and
energy-constrained sensing, computing, and communication
environment which makes the design and optimization of these
systems a challenging task. In particular, the design of the
sensor nodes requires a deep understanding of their various
constituent components, their underlying technologies and the
interactions between those components. Figure 1 shows the
elements of a wireless sensor node and its hardware and
software partitioning.
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Fig. 1. Sensor Node

In order to be able to explore the design space at very
early stages in the design process, it is important to have an
accurate system-level model of the sensor network capturing
all the inter-relationships among the diverse processors,soft-
ware processes and radio- and sensor interfaces. In this paper,
we present an extension of our earlier work on SystemC-
based multiprocessor SoC modeling framework [1] which can
provide the wireless sensor network designers a system-level
abstraction of the sensor network for system-level design-
space exploration to meet the requirements mentioned above1.

Numerous sensor network simulators implemented in soft-
ware exist, either in the open source or as commercial prod-
ucts, which can be broadly categorized intoimprovised sensor
network simulators - based on existing network simulators
or discrete-event simulation frameworks - andcustom sensor
network simulators. Typical examples ofimprovised sensor
network simulators are: ns-2 [2], Opnet Wireless Module [3],
and OMNeT++ [4] while common examples ofcustom sensor
network simulators include: TOSSIM [5] and its extension
PowerTOSSIM, Avrora [6] and its extension AEON, and
Atemu [7]. Most of theimprovised sensor network simulators
emphasize sensor network level simulations (concentrating on
the simulation of wireless communication protocol stacks)
while a majority of thecustom sensor network simulators
focus mainly on sensor node level simulations (mostly code
or processor simulations) and are either specific to certain
sensor network research projects or support a limited number
of sensor node platforms. A unified sensor node level as well
as sensor network level simulator does not exist so far despite
such attempts [8]. Moreover, to the best of our knowledge,
none of the sensor network modeling approaches, reported so
far, addresses the issue of designing sensor network systems
from a hardware/software codesign perspective.

The main contribution of this work is to apply a HW/SW
Codesign approach for the system-level modeling of a generic
sensor node platform embedded in a generic sensor network
environment model forming a system-level sensor network
model which is fairly detailed as well as sufficiently efficient.

The rest of this paper is organized as follows: Section II
provides the methodology and implementation details for our
sensor network model. The results of our implementation and

1A part of this work was funded by the ARTIST and the Hogthrob Projects.



a simulation example elaborating our modeling framework
are presented in Section III. Section IV, finally, provides
conclusions and the future directions of our work.

II. SENSORNETWORK MODEL

In our SystemC-based modeling framework, a sensor net-
work model is designed following the principle of composi-
tion. We model a sensor network at two levels: the sensor
network level (Figure 2) and the sensor node level (Figure 3).
This section describes the details of each of these levels and
their inter-relationships and interactions.
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Fig. 2. Sensor Network Level Model

A. Sensor Node Level Model

At the sensor node level, a sensor node platform model
is split into two sections: the software section - for functional
simultion of the sensor node platform and the hardware section
- to enable estimation of the energy consumption of the sensor
node platform.

The software section of the sensor node platform model
consists of the application model, comprising a set of task
models, and the RTOS model, composed of a set of RTOS
services [1].
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1) Application Model: The sensor node application soft-
ware is modeled as a set of task models which are executed on
the sensor node processor(s) under the control of RTOS(s). To
accurately model the sensor node application, it is important
to handle both the tasks and their possible inter-dependencies.
The dependencies among the tasks are resolved by the syn-
chronizer which is a component of the RTOS model.

The task models are the abstract building blocks from which
the sensor node application model is composed. From the point
of view of their activation mechanism, task models can be
either time-triggered (periodic) or event-triggered (sporadic).
While periodic task models represent repetitive tasks, sporadic
task models handle the response of the application model to
the events that are generated either by the environment model
or by other task models. In addition, from the point of view
of their function or behavior, task models are organized into
two groups:

• processing task models (τP ) model the usage of a sensor
node processor and are controlled by the RTOS model.

• I/O task models (τIO) model the usage of the I/O devices
on a sensor node platform, e.g., the sensors and the radio
transceiver. These task models form, a link between the
RTOS model and the environment model with which they
are interfaced using specific interface protocols (e.g., poll-
based/interrupt-based, serial/parallel, etc.). There are two
separate I/O tasks to model the radio transceiver behavior.
The send task models radio transmission and the receive
task models radio reception.

The function or behavior of a task is modeled as a finite-
state machine (FSM) with five states as indicated in Fig-
ure 4: idle, ready, running, preempted, and self-preempted.
Each task model is characterized by a set of parameters,
such as the worst- and the best-case execution time, context-
switching overhead, deadline, period (for a periodic task),
offset, resource requirements, and precedence relations.Upon
initialization, each task starts in theidle state and, if its offset
value is zero, it transits to theready state. The task remains
in the ready state until it receives arun command from
the RTOS scheduler upon which it transits to therunning
state. When the task has finished its execution, it issues a
finished message to the scheduler and transits back to
the idle state. At any time during its execution, a task may
be preempted by the scheduler and it then enters into the
preempted state where it waits till it receives aresume
command from the scheduler which enables it to reenter the
running state. Theself-preempted state models the ability
of an application task to release processor control to some
other applicaion task requesting it, while it is waiting foran
interrupt from an I/O device. Note that theself-preempted state
is different from thepreempted state in that the task itself
controls its transition to and from it, while the transitionto
and from thepreempted state is controlled exclusively by the
scheduler.

The occurence of an interrupt is modeled by the
self-resume message from a task in the self-preempted
state. To service the interrupt, the priority of the self-
preempted task is updated to the maximum level when it self-
resumes. Thus, an interrupt is handled by the RTOS scheduler
by interrupting the execution of whatever task is running atthe
time of its occurrence to service the interrupt and the portion
of the application task running after self-resumption represents
interrupt servicing. The only difference between running a
high-priority task and interrupt servicing is that a high-priority
task may not preempt a running task if it has the same priority,
while interrupt servicing does preempt a running task, even
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the interrupt servicing of another, previously-occured interrupt
(e.g., in case of nested interrupts).

2) RTOS Model: The RTOS model is composed of three
independent modules that model the basic RTOS services. The
model is designed such that any of the RTOS services can
be changed in a simple and straight-forward manner. Each
module handles its relevant data independently of the other
to preserve composability. A scheduler models a real-time
scheduling algorithm. A synchronizer models dependencies
among tasks. An allocator models the mechanism of resource
sharing among tasks. For details on the model and how it is
implemented in SystemC, we refer to [1].

All the task models are connected to the RTOS model
through a pair of SystemC master/slave ports. In addition to
that, the I/O task models are connected to the master/slave
ports of the sensor node platform model which, in turn,
are connected, in a similar way, to the components of the
environment model. The receive and the sense task models
also have activation ports (see Figure 3).

3) Battery Model: The hardware section of the sensor
node platform model contains energy macro models2 for the
processor, memory, clock, and I/O devices alongwith a battery
model. The battery model handles the energy consumption
of a sensor node. It is connected to each of the hardware
component models of the sensor node and decreases its energy
resources depending on their power draw. At each clock cycle,
the battery model updates it energy resources according to a
certain specified function depending on the selected battery
model (simplistic linear battery discharge models as well
as more advanced battery models, which take the hysteresis
phenomenon into account, can be selected). The link between
the hardware component models is bidirectional which enables
modeling the demise of a sensor node when its battery
runs out of energy. The battery model can also inform the
hardware component models when its energy resources go

2The energy macro modeling approach refers to the pre-characterization
of a hardware or a software macro-block in terms of its energyconsumption
using empirical, simulation, or analytical models. A macro-block comprising
a system can be defined at any level of abstraction by trading-off accuracy
with efficiency or vice vera, e.g., a hardware macro-block can be defined at
the RT-level or a software macro-block can be defined at the instruction-level.

below predefined thresholds.

B. Sensor Network Level Model

At the sensor network level, a sensor node platform model
is embedded in an environment model that models the en-
vironmental phenomena to be sensed by the sensor network
application.

1) Environment Model: The environment model represents
an abstraction of the environment as observed at the outputs
of the sensors on the sensor nodes. It is composed of dif-
ferent component models each of which corresponds to the
phenomenon monitored by the sensor network application. The
environment model connects all the instantiations of the sensor
node model− any of which can request it for data pertaining
to a certain phenomenon. The environment model can also
generate events for any instantiation of the sensor node model.

To model sensing, an I/O task model requests or gets events
from the environment model component corresponding to the
phenomenon (temperature, movement, etc.) according to a cer-
tain interface protocol (poll-based/event-based, serial/parallel,
etc.). The receiver part of the radio transceiver is treatedas
a special kind of sensor and the transmitter part as a special
kind of actuator. Thus, the radio signal propagation through the
environment is treated as a special kind of phenomenon. The
radio channel model, therefore, forms a special component of
the environment model.

III. E XAMPLE

This section describes an example illustrating the capabili-
ties of our sensor network model to capture the mechanism of
radio communication among the sensor nodes. The example
configuration consist of 5 sensor nodes, two of which are
transmitting a message while the rest are receiving it (see
Figure 5).
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Fig. 5. Example Topolgy

On each sensor node, the processor runs the I/O tasks
modeling the communication protocol. The transmission com-
ponent of the communication protocol is described in Figure6
and the reception component of the communication protocol
is described in Figure 7. Two I/O task models have been
instantiated for this example. The send task is a low-priority
task, i.e., it does not preempt a running task when it initially
starts. Once it has started, it periodically self-preemptsand
self-resumes. Everytime the send task enters its ’running’
state, it steps through the states of the send protocol, either
causing transition(s) to the next state(s) of the send protocol
or retaining its existing state. The receive task is a high-priority
task (its activation is based on the timer interrupts). Similar to



the send task, the receive task executes the receive protocol in
its ’running’ state.
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The simulation output waveforms corresponding to the
example are presented in Figure 8. This figure represents the
state of each task in terms of processor occupation as well as
in terms of the communication protocol state for the send and
the receive tasks. The example illustrates the behavior of the
MAC (CSMA protocol) in the case of channel contention. The
send task of the sensor node 2 fails to obtain channel access
at its first attempt (because it detects that the sensor node 1is
transmitting). It, therefore, backs-off for a random period of
time before reattempting to gain access to the radio channel.
On its second attempt, the transmission of the sensor node
1 has finished and the radio channel is clear, so the sensor
node 2 can send. The reason why the sensor node 1 gains
access to the radio channel first is because its initial back-off
time was smaller than that of the sensor node 2. Furthermore,
notice that once the send task of the sensor node 1 has finished
transmitting, the receive task of the sensor node 1 polls the
radio channel, detects the preamble from the sensor node 2
and receives the packet sent by it.

IV. CONCLUSIONS

We have presented a system-level wireless sensor network
modeling framework based on SystemC. The aim of our mod-
eling framework is to provide designers of sensor networks
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Fig. 8. Simulation results for Example (see Table I for state enumerations).

TABLE I

State No. Send/Receive Task Send Protocol Receive Protocol

0 inactive idle idle
1 ready back-off poll
2 running carrier-sense synchronize
3 preempted transmit preemble receive data
4 self-preempted transmit data

with a simple modeling and simulation framework in which
one can experiment with different application task mappings,
RTOS policies and communication protocols in order to ef-
ficiently utilize the limited resources available. Using this
framework, one can also study the consequences of design
decisions taken at the sensor node-level on the behavior and
performance of the sensor network. We are currently working
on extending our modeling framework to incorporate more
accurate power modeling. This will enable us to estimate how
different power management strategies can improve the sensor
network lifetime.
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Abstract—This paper describes the framework for a bridging
model that links the cycle-accurate sensor node model with
the system-level sensor network model [7]. This model also makes
use of hierarchical channels in SystemC and Transaction-Level
Modeling concepts and their support in the SystemC TLM
library.

I. I NTRODUCTION

The embedded computer system designers, usually, use
processor-based templates to build today’s system-on-chip
(SoC) designs, which contain one or more cores with consid-
erable on-chip memory and complex communication buses.
Because on-chip processor cores are often either legacy or
third-party components, the designers need correct functional
models to accurately track the interaction of processor core(s)
with the rest of the embedded system.

The embedded hardware designers use Hardware Descrip-
tion Language (HDL) simulators to validate their work, but
these simulators model the processor micro-architecture in too
much detail to efficiently simulate complex processor cores.
The embedded software designers, on the other hand, routinely
use cross-development toolkits containing a cross-compiler
and an instruction-set simulator (ISS) to validate functionality
and assess application performance.

Thus, exploring and validating a complex SoC design
requires a single, integrated hardware-software cosimulation
platform. The academic research groups, as well as electronic
design automation vendors, have developed numerous such
platforms.

Traditional cosimulation design environments use multi-
language system descriptions - HDL for hardware and C (or
similar languages) for software - to construct an efficient
link between event-driven hardware simulators to cycle-based
ISS’s. Therefore, there has been a need for a system design
language that describes the functionality of both hardware and
software. It must allow the system to be defined, first without
making assumptions about the implementation, and then to
be refined into the exact implementation with hardware and
software components. It is also important to be able to use
standard models of computation (MOCs) at the initial design
stages. Further, one may not wish to concretely specify the
communication mechanisms and instead leave it to be defined
by the underlying operational semantics of the MOCs being
deployed.

More recently, using C/C++ for hardware design descrip-
tions and design flows has gained popularity because using
the same language for describing hardware and software can,
potentially, bridge the gap between hardware and software
description languages. Using the same language also makes
it possible to simulate the entire system within a single
simulation engine.

SystemC is the leader in system-level modeling with C++.
The SystemC approach consists of a progressive refinement of
specifications. SystemC allows both applications and platforms
to be expressed at sufficiently high levels of abstraction
while, at the same time, enabling the linkage to hardware
implementation and verification. SystemC has the potential
to provide a full-fledged description of an execution platform
which can serve as the target of a codesign methodology. Thus,
SystemC is a viable intermediate representation language.

Compared to VHDL, with SystemC, interfaces between
blocks are not simply described by signals, but by com-
munication methods and protocols. This drastically increases
the design abstraction and, thus, the design efficiency. This
capability is provided via an open-source C/C++ class library
that extends the capabilities of C++ by providing new mech-
anisms to model system architecture with hardware elements,
concurrency and reactive behavior (through events). It provides
several class packages for specifying hardware blocks and
communication channels. The design environment specifies
software algorithmically as a set of functions embedded in
abstract modules that communicate with one another and with
hardware components via abstract communication channels.

SystemC is not a design methodology but it proposes
various layers of abstraction that are useful for specification
capture in the early stages of a design flow. The design cycle
starts with an abstract high-level untimed or timed functional
(UTF/TF) representation that is refined to a bus-cycle accurate
and then an RTL (Register Transfer Level) hardware model
[1].

Currently, in the majority of industrial projects, after the
specification phase, what will be the software and hardware
parts constituting the future SoC (System-on-Chip) is chosen
following ad hoc methods, often based on the designer ex-
periences. Then, the development of the hardware part and
the software part of the SoC is performed in two disjoined
design flows. This is problematic because errors appear very
late in the design process and modifying hardware/software



partitioning requires a huge amount of work. The reason is
the lack of tools during the partitioning phase. Several efforts
are being made to ease partitioning, by making possible the
specification and simulation at system level, then refining it in
an iterative way towards the final implementation.

II. T RANSACTION-LEVEL MODELING IN SYSTEMC

In contrast to SoC modeling, the design of embedded
systems, typically, incorporates the assembly of standardHW
and SW components with user-designed HW (reconfigurable
logic or ASIC) and SW. As system complexity continuously
rises, the proper connection of user HW and SW to the
system’s communication architecture becomes more and more
a focus of design. As a result, the development of embedded
software that is closely related to the HW will have to wait
for the RTL model to be completed.

To fill this gap, recently, the Transaction Level Modeling
(TLM) paradigm has been widely propagated for System-on-
Chip (SoC) design. A TLM approach for embedded system de-
sign with SystemC considerably relieves designers of the task
of implementing platform-specific communication protocols.
By orthogonalizing system functionality and system commu-
nication, very high simulation speeds become feasible enabling
fast communication architecture exploration, early embedded
software development, and rapid prototype generation.

Transaction Level Modeling (TLM) is a higher modeling
abstraction level, above the Bus Cycle Accurate (BCA) ab-
straction level, for faster simulation performance. At theTLM
level, architecture IPs are modeled at a functional level and the
system bus is captured as an abstract ’channel’, independent
of a particular bus architecture or protocol implementation. A
TLM model can be used as a reference prototype of the system
and for early functional system validation and embedded
software development.

Transaction Level Models are bit-accurate models of a
system with specifics of the bus protocol replaced by a generic
bus (or channel), and where communication takes place when
IPs call read() and write() methods provided by the
channel interface. Since detailed timing and pin-accuracyis
omitted, these models are fast to simulate and are useful for
early functional validation of the system.

SystemC provides a rich set of primitives for commu-
nication and synchronization - channels, ports, interfaces,
events, signals and wait-state insertion. Concurrent execution
is performed by multiple threads and processes (lightweight
threads) and execution schedule is governed by the scheduler.
SystemC also supports capture of a wide range of modeling
abstractions from high-level specifications to pin- and timing-
accurate system models.

SystemC separates computation and communication by hav-
ing modules and processes for computation and interfaces and
channels for communication.

In SystemC,modules are the basic building blocks for
partitioning a design. The modules control and process data.
A module hides its data and algorithms from other modules. A
module may have one or many processes which can run con-
currently. There are three types ofprocesses: sc_method,
sc_thread andsc_cthread. The modules communicate

throughchannels. The channels implement communications
between modules. There are two types of channels:primitive
channelsand hierarchical channels. The primitive channels
are, in some sense, state-less while the hierarchical channels
can have internal states and control flow associated with them.
As the name suggests, hierarchical channels can contain other
channels, modules or processes. Theinterfaces provide a
mechanism to allow independence of computation modules
from the mechanisms of communication channels. The in-
terfaces specify the signature of the operations provided by
channels. Ablocking interfaceimplies that this interface has
to be called from within ansc_thread, as such, the im-
plementation of the interface is allowed to containwait(.)
statements. In contrast, anon-blocking interfacecannot contain
a wait(.) statement since it is allowed to call such an
interface from within ansc_method which is not capable of
performing the context switch that is required to implement
the wait(.) call. A module accesses a channel through a
port whose type is one of the interfaces implemented by the
channel [2].

A key feature of SystemC 2.0 is that it introduces a set
of features for generalized modeling of communication and
synchronisation. In SystemC 2.0, communication can be mod-
eled at a higher level of abstraction referred to as Transaction
Level Modeling (TLM). The exchange of data between two
computational components of a system is called a transaction.
Communication is modeled through channels and transaction
requests take place using interface method calls of these
channel models without any synchronization. Unnecessary
details of communication are hidden in the TLM and can be
worked out later on. Using TLM results in simplified design
effort and also gains simulation speed as details of the low
level communication infrastructure are not present.

The TLM level emphasizes what data are transferred and
from which locations but not the detailed implementation
based on a specific protocol. Thus, communication among
components is abstracted from the details of the implemen-
tation of the communication architecture and this enables
component-reuse. In addition, simulation at this level can
usually be carried out at high speed.

SystemC’s TLM abstracts hardware communication from
signal-level clocked protocols into untimed function calls. Like
subroutine abstraction, TLM can also be applied recursively at
higher and higher levels, e.g., from bus read/write transactions
to burst reads/writes; to DMA transfers; to complete HW
accelerator functions; and so on. This abstraction also has
benefits in simulation speed. While TLM standardization for
module communication has been impressive, there are still
some serious challenges ahead.

A. SystemC Channels

In SystemC channels are important because they enable
several concepts: Appropriate channels enable safe commu-
nication between processes. Channels, in conjunction with
ports, clarify the relationships of communication (producer vs.
consumer) Interfaces are important in SystemC because they
enable the separation of communication from processing.



The channels come in two flavors: primitive and hierarchi-
cal. The basic premise of a channel is a class that inherits
from an interface. The interface makes a channel usable
with ports. In addition, channels must inherit either from
sc_prim_channel or sc_channel. This distinction in
these latter two base classes is one of distinct capabilities and
features. In other words,sc_prim_channel has capabili-
ties not present insc_channel and vice versa.

1) Primitive Channels:Primitive channels are intended to
provide very simple and fast communications. They contain no
hierarchy, no ports, and nosc_methods or sc_threads.
Primitive channels have the ability to implement the evaluate-
update paradigm.

2) Hierarchical Channels:By contrast, hierarchical chan-
nels may access ports, they can have processes and contain
hierarchy as the name suggests. In fact, hierarchical channels
are really just modules that implement one or more interfaces.
Hierarchical channels are intended to model complex com-
munications buses such as PCI, HyperTransport, or AMBA
[3]–[6].
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Fig. 1. Composition of Bridging Model

III. T HE BRIDGING MODEL

SystemC describes the functionality of both hardware and
software inside a unified specification language based on C++.
At a high level of abstraction, SystemC allows the use of a

common language for software and hardware specifications
and simulation of the whole system. However, one of the
problems encountered with SystemC 2.0 is the lack of features
to support embedded software modeling. For some classes
of applications modeled with SystemC, it is not, currently,
possible to completely model the software behavior of the
targeted architecture.

The availability of RTOS models is becoming strategic
inside HW/SW (hardware/software) co-design environments.
An RTOS provides a very useful abstraction interface between
applications with hard real-time requirements and the target
system architecture. Indeed, for the simulation of software
modules, such as preemption and/or priority-based scheduling,
generally present in any RTOS, the SystemC simulator does
not offer all the necessary functionalities. This is because,
during simulation, the RTOS scheduler, responsible for deter-
mining which thread will run next, manages both software and
hardware threads identically. It means that systems with hard
real-time constraints requiring an RTOS (Real-Time Operating
System) based on a preemptive priority-based kernel cannot
be modeled in a natural manner. As a consequence, a joint
refinement of the software and hardware parts is a tedious
task in SystemC 2.0.

To easily simulate various hardware/software configura-
tions, at high-level, we have succesfully developed an abstract
RTOS modeling framework in SystemC by abstracting the
real-time operating system features at the system level as
explained in Chapters 3-4. The results have shown that sim-
ulation overhead introduced by the RTOS model is negligible
while providing modeling accuracy.

A. Structure and Composition

To jointly simulate the software part with the hardware part,
the bridging model refines the system-level wireless sensor
network model by modeling the embedded processor by an ISS
(Instruction-Set Simulator) and integrating the ISS with the
RTOS model making it possible to schedule several application
software modules on the ISS and to simulate, more accurately,
the interaction of software with hardware.

Using an ISS abstracts away the lower-level RTL details
while maintaining a reasonably-fast simulation speed. TheISS
is written in C/C++, encapsulated (wrapped) in a SystemC
module and simulated by SystemC that accepts a binary code
obtained by the cross-compilation of the software modules.
During simulation, when the scheduler relinquishes control to
the ISS, the corresponding software thread with the highest
priority, and ready to run, is executed. Thus, it is possibleto
quickly obtain a functional system model whose simulation is
reliable and realistic because it depends on the actual platform
architecture [1]

One of the RTOS to be modeled in detail in our modeling
framework is TinyOS [7]. It offers all the advantages of a real-
time operating system: a preemptive kernel, a priority based
task scheduler and an interrupt system. TinyOS was selected
for its low complexity, the availability of its source code and
because it has successfully been ported to a range of embedded
processors. The ISS model is based on the AVR processor.



The bridging model also supports a faster way of modeling
communications to perform a complete simulation of a sensor
network application. It supports transaction-level models of the
peripheral device interfaces and the sensor and radio channel
models the details of which are given below.

B. Transaction-Level Modeling of Peripheral Communication
Interfaces

Instead of plugging a given peripheral directly on a system
bus, it is much more easy to connect them through a serial
interface whose major advantage is the reduction of commu-
nication pins. Most embedded systems comprise a set of nodes
connected through field busses such as I2C, SPI, CAN, etc. In
its most usual form, a node is a microcontroller connected to
various sensors or actuators.

In this section we show how to model the field bus commu-
nications between the nodes of an embedded system. Whereas
the methodology is generic we present it in the specific case
of the SPI bus and the I2C bus.

1) SPI Interface Model:The Serial Peripheral Interface
(SPI) bus is, basically, a relatively simple synchronous serial
interface for connecting low-speed external devices usingquite
minimal number of wires. The SPI-bus is a 4-wire serial com-
munications interface used by many microprocessor peripheral
chips. It provides support for a low/medium bandwidth (1
Mega Baud) network connection amongst CPUs and other
devices supporting the SPI.

The SPI is synchronous and fully duplex, i.e., it uses a
clock signal to time bit transfers in blocks of 8 bits, and one
wire handles transmitted data and another handles received
data. SPI bus is a master/slave interface. Whenever two devices
communicate, one is referred to as the master and the other
as the slave device. The master drives the serial clock. When
using SPI, data is simultaneously transmitted and received,
making it a full-duplex protocol.

The SPI signals are named as follows: SCLK for Serial
Clock, which is always driven by the master: MISO is Master-
In Slave-Out data: MOSI is Master-Out Slave-In Data. In a
typical application, the microcontroller’s SCLK is connected
to the converter’s SCLK input, the MISO is connected to the
converter’s DOUT pin, and the MOSI pin is connected to
the converter’s DIN pin. In most of the serial communication
protocols, such as SPI, a chip-select input is required to enable
the IC. Using this chip-select signal it is possible to connect
many ICs to the same SPI bus in parallel. If there is a
Chip-Select (CS) signal in use, it can be driven by a spare
microcontroller, general-purpose output. Every IC connected
to bus needs it’s own chip-select signal line. Thus, when
10 devices are on the bus, 10 chip-select lines, in addition
to the shared clock and data lines, are needed to select the
appropriate device.

2) I2C Interface Model: The I2C (Inter-Integrated Cir-
cuit) interface enables data communication on a two-wire bi-
directional bus - serial data (SDA) and serial clock (SCL)
- between a small number of devices (sensors, microcon-
troller, LCD display, etc.). The I2C interface supports a
parallel interface which is compatible with most standard
microcontrollers/microprocessors, data transfer rate upto 100
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Fig. 2. Transaction-Level Model

kbits/s (standard transmission mode), 7-bit addressing mode,
start/stop/acknowledge generation and detection and bus state
(busy) detection.

The data frame for the standard mode is made of a start
bit, a 7-bit address, a read/write bit, an acknowledge bit and
a sequence of data bytes. Each data byte is followed by
an acknowledge bit issued by the target device. A stop bit
finalizes the transmission. Each bit is transmitted on SDA in
conjunction with the SCL clock.

A start condition initiates data transfers which happens
when a falling transition occurs on SDA while SCL is high. A
stop condition ends data transfers which happens when a rising
transition occurs on SDA while SDA is high. During the high
state of SCL data is considered valid. Therefore, SDA signal
must remain stable during this half period.

I2C allows multi-master communications and features an
arbitration management protocol for such transmissions. The
arbitration takes place on the SDA line, while the SCL line
is in the high state. The control of the bus is granted to the
master which transmits a low level while the others transmita
high level. A master which loses arbitration switches its data
output stage to high impedance state.

The basic structure of the I2C bus controller comprises
two distinct blocks: a digital block interfaced with a master
(microprocessor core) manages the I2C protocol timing and
control of specific sequences while an analog block ensures
access to the external bus [8]–[10].

The digital block manages the acknowledge genera-
tion/detection depending on the mode of operation (trans-
mit/receive). A shift register either serializes data to besent to
the bus line in transmit mode or collects information from the
bus in receive mode. It also sets the transmission frequency
by dividing the system clock with a user-defined constant.

The architecture of the digital block is divided into three
blocks:

1) A processor interface handles all data transfers between
the master and the I2C bus controller and interprets all
the requests from the master (such as read data, write



data, bus controller configuration, etc.). It is built around
a FIFO which stores the successive requests coming
from the microprocessor bus (AVR bus, AMBA, VCI,
etc.). When the bus controller has finished a transaction
on the I2C bus and if a request is stored in the FIFO,
the FIFO is read and the processor interface extracts the
information needed by the sequencer (type of operation,
address, data, etc.) to perform new communication.
The processor interface also includes an interrupt line
connected to the master so that it can read a data received
from the I2C bus.

2) The core of the bus controller is the sequencer module
which translates all the requests from the master into a
detailed sequence respecting the I2C protocol such as
frame generation (start/stop bits, address transmission),
byte transmission or reception, etc.). It is composed of
a set of finite state machines.

3) A signal generator module manages or drives the SCL
and SDA bus lines according to the sequencer com-
mands.

C. Radio and Sensor Channel Modeling with SystemC Hier-
archical Channels

1) Radio Channel Model:Radio Irregularity is a common
phenomenon with non-negligible effects in wireless sensor
networks because it results in irregularity in radio range
and variations in packet loss in different directions and is
considered to have an impact on MAC, routing, localization
and topology control protocols [11].

Several empirical studies have revealed that the radio range
varies significantly in different directions and the percentage
of asymmetrical links in a wireless sensor network system
varies dependent upon the distance between the sensor nodes.
Although the impact of radio irregularity on the protocol
performance of a wireless sensor network can be investigated
empirically, only few research groups have actually pursued
this direction because of two main reasons: first, the complex-
ity and cost of performance evaluations on an empirical system
escalate when the nodes in a wireless sensor network scale up
to thousands; second, repeatable results of radio performance
are extremely hard to obtain from uncontrolled environments,
hence, leading to difficulties in system tuning and performance
evaluation.

The spherical radio footprints assumed by most existing
simulation models do not approximate real radio properties
well enough and, hence, lead to an inaccurate estimation of
the application performance.

In general, radio irregularity is caused by the anisotropic
properties of the propagation media and the heterogeneous
properties of the physical radio devices.

While RF signal propagation models such as fading and
path loss are not part of the radio model, they control the
input given to the radio model and have great impact on their
performance.

Fading: is a variation of signal power at receivers, caused
by the node mobility that creates varying path conditions from
the transmitters. The AWGN (Additive White Gaussian Noise)
radio channel model is an idealistic channel condition where

no signal fading occurs. The fading models with Rayleigh
or Ricean distributions are commonly used to model wireless
sensor network environments. The fading model with Rayleigh
distribution is meant for highly mobile conditions with NLOS
(No Line Of Sight) path between the communicating nodes,
while the fading model with Ricean distribution accounts for
the LOS (Line Of Sight) path between the communicating
nodes. The signal power from the LOS path with respect to
the signal power from NLOS paths can be controlled by a
parameter called the RiceanK factor.

Path Loss: When an electromagnetic signal propagates
within a medium, it may be reflected, diffracted and scattered.
These effects have two important consequences on the signal
strength. First, the signal decays exponentially with respect to
distance. Second, for a given distance,d, the signal strength is
random and log-normally, distributed about the mean distance-
dependent value. The variance in the signal path loss is one
of the major causes of radio irregularity.

Reflection occurs when an electromagnetic signal encoun-
ters an object, such as a building, that is greater than the
wavelength of the signal. Diffraction occurs when the signal
encounters an irregular surface such as a stone with sharp
edges. Scattering occurs when the medium through which the
electromagnetic wave propagates contains a large number of
objects smaller than the wavelength of the signal. The prop-
erties of the communication medium are normally different in
different directions. Consequently, radio propagation exhibits
anisotropic patterns in most environments.

Path Loss defines the average signal power loss of a path
on the terrain. The free-space path loss model is used as a
basic reference model and is also considered to be an idealized
propagation model. With this path loss model, even nodes far
from the transmitter can receive packets, which can result in
fewer hops to reach the final destination in wireless sensor
networks. Therefore, simulation results with the free-space
path loss model tend to be better than with other path loss
models. However, as signal propagation with little power loss
may cause stronger interference for concurrent transmissions,
it does not necessarily yield the best performance under all
scenarios. The two-ray path loss model is suited for LOS
microcell channels in urban environments, and its use for
wireless sensor networks can be justified by the environmental
similarities (low transmit power and low antenna height).

In isotropic radio propagation models, the received signal
strength is, usually, represented with the following formula:

received signal strength = sending power + fading

− path loss

The sending power of a wireless sensor node is determined
by the battery status and the type of the radio transmitter,
power amplifier and the antenna. The path loss determines the
signal’s energy loss as it travels to the receiver. Many models
are used to estimate the path loss, such as the free-space
propagation model, the two-ray model, etc. However, all
these models are isotropic, meaning that the signal attenuates
exactly the same in all directions which do no hold well
in practice. Therefore, the following formula is more accurate:



received signal strength = sending power + fading

− anisotropic path loss

where,anisotropic path loss = Ki × isotropic path loss

Ki is a coefficient to represent the difference in path loss in
different directions.

Radio Interference Model: The computation of interfer-
ence and noise at a receiver is a critical factor in wireless
sensor network communication modeling, as this computation
becomes the basis of SINR (Signal to Interference and Noise
Ratio) or SNR (Signal to Noise Ratio) that has a strong
correlation with FER (Frame Error Rate) on the radio channel.
The power of interference and noise are calculated as the sum
of all signals on the radio channel other than the one being
received by the radio plus the thermal (receiver) noise. The
resulting power is used as the base of SNR, which determines
the probability of successful signal reception for a given frame.
For a given SNR value, two signal reception models are
commonly used in wireless network simulators: SNR threshold
based and BER based models. The SNR threshold based model
uses the SNR value directly by comparing it with an SNR
threshold (SNRT), and accepts only signals whose SNR values
have been above SNRT at any time during the reception.
The BER based model probabilistically decides whether or
not each frame is received successfully based on the frame
length and the BER (Bit Error Rate) deduced by SNR and
the modulation scheme used at the transceiver. As the model
evaluates each segment of frame with a BER value every
time the interference power changes, it is considered to be
more realistic and accurate than the SNR threshold based
model. However, the SNR threshold based model requires less
computational cost and can be a good abstraction if each frame
length is long.

This regards the model for radio interference in a wireless
network simulation. Given the different ways in which each
specific simulator may compute radio interference, it is im-
portant to know exactly what model drives this computation
because this model has a substantial impact in determining the
accuracy of the simulation’s results.

The assessment of the strength of interference on a wireless
node, however, comes at a high price in terms of computation.
The total amount of interference on a node is the summation
of all signals that can be picked up at its location which come
from a source other than the sender of information. When
the number of nodes in a wireless network model grows,
not only does the number of terms in this summation grow
fast, but also does the number of times the summation has
to be computed. Clearly, without any measure to restrain
the increase in the complexity of these computations, the
scalability of the simulator can be severely impaired.

A common solution to reduce the computational complexity
of interference calculations in wireless networking models
is to limit the propagation range of interfering signals. In
practice, this amounts to defining a cutoff value for radio
signal propagation. The basic idea is that since interference
is computed as the summation of all the ”other” signals in a
channel, sufficiently small terms in this summation could be

discarded without substantially compromising the accuracy of
the calculation. The crucial question here lies in determining
how faint a signal should be so that it can be discarded from an
interference computation without inducing substantial errors.

If a simulator should offer a cutoff parameter in the descrip-
tion of the experimental scenario, one should understand what
consequences a chosen value brings.

This parameter can be interpreted in two different ways. It
can be read as the maximum distance between transmitter and
receiver that guarantees that the received signal is intelligible.
Alternatively, cutoff can be defined as the highest attenuation
(or path loss) that a signal may suffer and still be received
(measured in decibels). We have taken the latter approach
and require the user to enter this value in the configuration
of the simulation scenario. Using a function provided by the
underlying radio propagation model, the simulator converts
this attenuation value to a distance value. Since differentradio
propagation models determine very different attenuationsfor
the same transmitter-receiver separation, we believe thisis the
most general and practical solution. Note that the importance
of a cutoff parameter extends beyond just determining the
complexity of the interference computation. This parameter
is used in the construction of a connectivity graph for the
network, which determines what radio links exist between
nodes. When a node sends out a radio frame the connectivity
graph is inspected to that the simulator knows to what other
nodes deliver the information. If the network nodes are mobile,
this connectivity graph is updated periodically.

2) Sensor Channel Model:A typical wireless sensor node
is equipped with one or more sensors, e.g., acceleration
(seismic), acoustic, heat (temperature), pressure, etc. Each of
these sensor types senses some physical phenomenon that
propagates either through wave mechanics or diffusion. The
former follows the inverse distance power law and suffers
from fading, path-loss, multipath distortion, etc. (e.g.,seismic
waves, sound waves). The latter can be defined as the property
of movement of species across a gradient from region of
low concentration to high (e.g., heat, pressure). Both of these
propagation models (channels) are the building blocks upon
which any specific sensor channel can be defined. The wave
propagation channel can be implemented similar to the radio
propagation models. For diffusion channel, Fick’s law can be
used for temperature gradient Fourier’s law for concentration
gradient, etc.

IV. CONCLUSIONS

We have shown how to link the top-most, system-level and
the lower-most, cycle-accurate platform models for wireless
sensor networks through a bridging model which ties together
the SystemC-based abstract RTOS model with the ISS to
model SW and HW as well as models peripheral commu-
nications using submodels which are conceptually based on
the transaction-level modeling theory and can be implemented
in SystemC using the SystemC TLM library and hierarchical
channels.
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Abstract—Wireless integrated sensor networks are a new class
of embedded computer systems which have been made possible
mainly by the recent advances in the micro and the nano
technology. In order to efficiently utilize the limited resources
available on a sensor node, we need to optimize its key design
parameters which is only possible by making system-level design
decisions about its hardware and software (operating system and
applications) architecture. In this paper, we present the design of
a sensor node development platform in relation to an application
of wireless integrated sensor networks for sow monitoring.We
also discuss the related hardware/software codesign tradeoffs.

I. I NTRODUCTION

Wireless integrated sensor networks are a class of networked
embedded systems that combine sensing, computation, and
communication in an inexpensive and very small form factor
device with limited energy. They are meant to act as a bridge
between the physical and the virtual worlds. Apart from
myriads of applications being proposed for them, their low
cost and size, ease of deployment, and autonomous operation
make them a viable and non-intrusive solution for livestock
monitoring applications.

In the Hogthrob [1] project, we are aiming to develop a
sensor network infrastructure for sow monitoring. A part of
the project consists of developing sensor nodes that can be
tagged onto the sows (in replacement of the RFID tags they
wear today). Such sensor nodes must be low-cost (costing no
more than a couple of Euros), small-sized (small enough, when
packaged, to be worn as an ear tag) and low-energy (a few
months’ autonomy is a minimum). In order to conform to the
above-mentioned requirements, we have decided to design a
sensor node on a chip.

Today’s Danish farms for pig production are using RFID
tags for sow identification and controlling their food consump-
tion. However, these tags have proven to be quite impractical
to locate sows in large pens. Moreover, they are not flexible
enough to be useful in contexts other than controlling the food
consumption. For example, the pig farmers have to manually
monitor the key aspects of a sow’s lifecycle such as the onset
of estrus1 or farrowing - the phenomena that have a profound
effect on pig production.

1Estrus or Heat Period is the period when a sow can be bred and itlasts for
a short time only. If a sow is not bred during its first estrus, it is considered
unproductive from the commercial point of view since it normally returns to
estrus about 3 weeks later and needs to be fed and housed meanwhile.

Numerous sensor network research projects have designed
sensor nodes with microprocessors from Atmel, Texas In-
struments, Intel, etc. for similar purposes, notably [2], [3].
However, none of the sensor node architectures, reported so
far in the literature, approaches the sensor node design from a
hardware/software codesign perspective (except in [4], but to a
limited extent). We have designed a sensor node development
platform in order to explore the design-space both in terms of
hardware and software and to end up with a complete sensor
node implemented on a single chip. Hence, a key component
of our sensor node development platform is an FPGA which
has enabled us to explore various hardware/software tradeoffs.

An important design consideration while designing our
sensor node development platform, called the Hogthrob plat-
form, has been to reduce the overall cost of prototyping by
using COTS (Common Off-the-Shelf) components. Another
consideration has been to have the capability to experiment
with various combinations of sensors, radio transceivers (e.g.,
Bluetooth, Zigbee, Wi-Fi, UWB, etc.), and microprocessors
(e.g., Atmel, Intel, ARM, Texas Instruments, Microchip, etc.)
to select the optimal combination. To achieve these objectives,
we have adapted a modular design strategy so that we can swap
sensors and radio transceivers with the ones resulting in more
efficient energy and system performance. For trying different
microprocessors and/or to perform hardware acceleration,we
needed some form of reconfigurable logic on the sensor node
development platform so that we can configure the sensor
node with various mircoprocessor cores. Of course, low power,
small form factor, and robust packaging were the necessary
features as well because the sensor nodes have to be mounted
on sows.

The Hogthrob platform has also been designed with a
view to explore the tradeoffs of implementing application
functionality either in software (on the embedded processor)
or hardware (on the reconfigurable logic), without being
constrained by the initial design choices as was the case in
[5]. As an initial design step, all the application functionality
has been placed on the embedded processor and is gradually
being moved to the FPGA. At the the current stage of software
development, the radio transceiver and other peripherals are
being controlled by the software running on the embedded
processor but, eventually, the embedded processor will only
initialize the FPGA and function as an external timer and an
A/D converter for the FPGA.



II. SENSORNODE HARDWARE ARCHITECTURE

The Hogthrob platform architecture consists of four closely-
interacting subsystems (please refer to Figure 2). These sub-
systems are: the sensing subsystem, the computing subsystem,
the communication subsystem, and the power-supply subsys-
tem. The platform has been designed using a modular design
approach and comprises one mother board (8.5cm x 7cm)
which comprises the computing and the power-supply subsys-
tems, one daughter board for the communication subsystem
(4cm x 5cm) and another daughter board for the sensing
subsystem. The mother board has been further divided into the
analog and the digital sections with the analog section mostly
occupied by the power-supply subsystem and the computing
subsystem comprising the digital section.
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Fig. 1. Hogthrob Sensor Node Development Platform Interfaces

A. Sensing Subsystem

The sensing subsystem can support an assortment of analog
and digital sensing devices. As the Hogthrob project is still
in its infacy, the requirements for monitoring the various
parameters that can be associated with the phenomenon of
the onset of estrus in sows might change. However, prelim-
inary studies have indicated a direct correlation between the
movement of a sow and the onset of estrus [6]. Therefore,
at present, we are looking into the use of a MEMS-based,
three-axis accelerometer with a digital output (possibly,the
most recently-released, LIS3L02D, single-chip device from
ST Microelectronics [7]). In future, we might have to use
temperature and accoustic sensors which can have analog out-
puts. The analog outputs from these sensors can be processed
by the 10-bit A/D converter available on the ATMega128L
either directly or, if necessary, one analog input can be routed
via an on-chip comparator for signal conditioning. The A/D
converter supports 8 analog input channels. The ATMega128L
also supports anI2C interface which is commonly available
on most of the sensors.

B. Computing Subsystem

The computing subsystem is centered around the Atmel
ATMega128L microcontroller running at a clock frequency
of 8 MHz at 3.0V and the Xilinx Spartan3 series XC3S400
FPGA (please see Table I) running at the clock frequencies of
48MHz and 4MHz at 2.5V for the peripherals and 1.2V for the
core. The primary function of the computing subsystem is to
execute the sow monitoring application and to coordinate the
functions of the sensor node. The operating system running
on the sensor nodes forms the core of the software running
on the computing subsystem which is responsible for the
task scheduling operations and resource management. We
are presently running the TinyOS which is an event-based
embedded operating system developed at the University of
California, Berkeley [8] (please see Section 4).

There are a number of interfaces supported by the AT-
Mega128L which are also supported by the mother board
(please refer to Figure 1). These interfaces include the two-
wire (I2C) interface for the sensing subsystem, the three-wire
(SPI) interface for the communication subsystem, the JTAG
interface for in-system programmability and debugging, and
the serial (RS-232) interface for interaction with the PC.

The Spartan3-series FPGA has been included to act either
as a hardware accelerator for the ATMega128L or it can be
configured with a stand-alone microprocessor core working
independently of the on-board ATMega128L. This will allow
us to experiment with various microprocessor/microcontroller
cores without redesigning the mother board.

The FPGA supports the same interfaces as the ATMega128L
[9]. The access of either the ATMega128L or the FPGA
to the radio transceiver is controlled by the bus exchange
switches. The interface between the ATMega128L and the
FPGA consists of parallel multiplexed address and data buses
which can be demultiplexed by implementing an address latch
in the FPGA and using the ALE (Address Latch Enable)
signal. The FPGA uses an in-system programmable Flash
memory (4M x 16 bits). There are two serial configuration
PROM’s provided with the FPGA which are controlled by the
ATMega128L and the configuration data can be downloaded
to them through the JTAG port. A number of LED’s and push-
buttons have been provided at the mother board for easy test
and debugging.

C. Communication Subsystem

The communication subsystem manages the data transfer
and signaling (beaconing) between the sensor nodes. It in-
cludes the network protocols and the radio transceiver. The
radio transceiver is a Nordic VLSI nRF2401 (please see
Table I) that can deliver a maximum data rate of 1 Mbps.
It consists of a fully-integrated frequency synthesizer which
can generate a frequency range of 2.4-2.5 GHz in the ISM2

band, a power amplifier, a crystal oscillator (it uses a 16MHz
external crystal), and a GFSK3 modulator. The output power
and the frequency channels of the radio transceiver are fully
programmable through the 3-wire (SPI) interface. The antenna

2ISM stands for Industrial, Scientific, and Medical
3GFSK stands for Gaussian-filtered Frequency-Shift Keying
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Fig. 2. Hogthrob Sensor Node Development Platform Architecture

used for radio transmission and reception is an omnidirectional
stub antenna. The transmission range of the radio transceiver
has been measured to be 80 meters under ideal conditions.

D. Power Supply Subsystem

The power-supply subsystem comprises 3 or 4 AAA-sized
batteries and a collection of DC-DC converters to service the
entire sensor node. The voltages generated by the DC-DC
converters are: 3.0V, 3.0V-Flash, 2.5V, and 1.2V. The 3.0V
supplied to the radio transceiver is filtered through a low-pass
passive LC filter (fc=1.5MHz) to generate 3.0V-Analog which
is also used by the ATMega128L for its analog I/O. The two
serial configuration PROM’s for the FPGA use two supplies:
3.0V-Flash and 2.5V. An optional 2.5V is also reserved for the
radio transceiver for future use.

III. SENSORNODE SOFTWARE

The sensor node is limited in a number of ways, memory,
computational power, etc. However, the most limited resource
is the energy. The energy performance of a sensor node
is greatly influenced by the software running on it. The

ATMega128L Resources Spartan3 Resources nRF2401 Characteristics
EEPROM 4KB Gates 400K Carrier Freq. 2.4 GHz
RAM 4KB CLB Size 32x28 Modulation GFSK
I/O’s 53 Slices 3,584 Data Rate 0-1 Mbps
8-Bit Timers 2 Logic Cells 8,064 Sensitivity -90 dBm
16-Bit Timers 2 CLB FF’s 7,168 Voltage 1.9-3.6V
10-Bit ADC Chan. 8 Dist. RAM 56K Bits Current: TX 10.5 mA
SPI Interface 1 RAM Blocks 16 Current: RX 18 mA
I
2
C Interface 1 Block RAM 288K Bits Current: PD 1 µA

JTAG Interface 1 Config. PROM 1.7M Bits Channels 25
UART Interface 2 Max. I/O 264 Sec. Mod. FH-SS

TABLE I
Salient Features of the Hogthrob Platform

sensor node control software (or the operating system) has
to be designed to efficiently utilize the limited resources and,
especially, the power-conserving features of the sensor node
platform and to incur low computation and communication
overhead. Furthermore, the application software has to take
advantage of the spatial and temporal characteristics of the
targeted application; it mustmodel the application as realis-
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tically as possible. In the Hogthrob project, the focus of our
application is the accurate and reliable detection of the estrus
of sows.

As mentioned in Section 3, we are running TinyOS− an
event-based embedded operating system, on the Hogthrob plat-
form. The extremely modular and flexible design of TinyOS is
very well-suited for exploring the boundary between hardware
and software [10]. TinyOS is a programming environment
rather than an operating system in the traditional sense andis
closely tied to the nesC language which is an extension of the
C-language [11]. The TinyOS programs comprise a number of
componentsinterconnected byinterfaces. A component imple-
ments an interface, and can serve either as a software module
or as a wrapper for a hardware block. All the components
of a TinyOS program are compiled into a single static image
which is uploaded to the target platform. Compiling a static
image allows optimizations that are otherwise troublesomein a
traditional operating system, such as whole program analysis,
compile-time data race analysis and more detailed dead-code
detection.TinyOS was originally developed for the Mica sensor
node platform [12], and has been, sucessfully ported to the
Hogthrob platform.

A. Porting TinyOS to the Hogthrob Platform

The core of TinyOS has no platform-dependent components
[13], therefore, the process of porting TinyOS to the Hogthrob
platform has been fairly straightforward. In addition, we
have implemented two TinyOS components,nRFSPI and
htV0Control, to access the radio transceiver, the FPGA,
the bus-exchange switches, and the push-buttons (please see
Figure 3):

nRFSPI: The Hogthrob platform software is a work
in progress and is currently limited to simple connection-
less unreliable communication. Although the nRF2401 radio
transceiver implements major parts of the physical access
protocol, it does not handle collisions and retransmissions. The
nRFSPI component functions as a wrapper for this functional-
ity and provides apacket-levelinterface to thebyte-levelSPI
peripheral of the ATMega.

htV0Control : This component implements the methods and
the events closely tied to the Hogthrob platform− selecting
the PROM for the FPGA configuration, booting the FPGA,
setting up the FPGA communication, setting the bus-exchange

switches and the push-button interrupts.
As the configuration of the Hogthrob platform is quite

similar to the Mica platform [12], we can use most of the other
hardware components of TinyOS (e.g., the A/D Converter,
UART’s, LED’s, Timer’s) with minor modifications.

B. The Sow Monitoring Application

In collaboration with KVL4 (which is our partner university
in the Hogthrob project), we are studying the behavior of a
herd of sows before and during their estrus. Thus far, we
have identified the following characteristic behavioral features
which are relevant to the application software running on the
sensor nodes.

1) During the night, the sows rest (sleep) for long periods
(4-8 hours at a stretch)

2) The heat period occurs infrequently but regularly sug-
gesting differentduty cyclesof operation− not in heat
period (low sample rate); might be in heat period (high
sample rate).

With these observations, it seems appropriate to power down
a sensor node while a sow is sleeping and to duty-cycle
the sensor nodes according to the sow activity. Our initial
approach is to formulate a model (based on the Markov Model
or the Finite State Automata) and associate a duty cycle with
each state (e.g., sleeping - one sample per hour, active - one
sample per minute, close to a boar - 4 samples per second).

As mentioned earlier, it has been shown that there is a
correlation between the movement of a sow and the onset
of its heat period [6]. We are now conducting experiments to
get initial time series characterizing the movement of sows
using accelerometers. Along with KVL, we will develop an
application model based on these time series.

IV. H ARDWARE-SOFTWARE CODESIGN OF THESENSOR

NODE

In order to explore various options available for designing
the computing subsystem of our sensor node SoC, we have
designed and implemented a custom microprocessor core on
the FPGA. The design of low-power microprocessors for
portable systems is an ongoing research subject [14], [15],
however, our focus in this project is not to advance the
field of low-power microprocessor design. Therefore, we have
made our design decisions by selecting from relatively well-
understood options.

As mentioned above, for our sensor network application,
the microprocessor will spend most of its time in sleep mode
− not actively executing instructions. Thus, our main design
focus has to be on reducing startup times and providing the
right low-power states and hardware accelerators and not on
executing the program instructions efficiently.

Furthermore, a key issue is the availability of design au-
tomation tool chain. Having a suite of design automation tools
available while developing an actual application is a must.
As an example, consider the Freescale evaluation board [16]
based on the Motorola HCS08 microcontroller, which is not
supported by the GNU GCC compiler. Porting TinyOS to this

4The Royal Veterinary and Agricultural University, Copenhagen, Denmark
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platform not only involves rewriting the hardware drivers,but
also the tool chain differences. These considerations haveled
us to implement an AVR-instruction set compatible processor,
which we call Nimbus after a classic Danish motorcycle.

A. Nimbus Processor Core

The Nimbus processor core (please see Figure 4) imple-
ments a subset of the Atmel ATMega103 functionality with no
hardware multiply unit. It is based on the AVR processor core
from OpenCores5 which has been debugged and modified
to support different power modes. The serial flash is used
for program storage. However, for simplicity, the programs
are stored in the SRAM memory blocks of the FPGA while
testing.

To get a feel of how the Nimbus processor core performs,
we have simulated the Nimbus core using the Synopsys Power
Compiler and compared it with the Atmel ATMega128L.

For comparing the two processor cores, we have written
a few benchmarks and have run them in the simulated en-
vironment of the Nimbus processor core and on the Atmel
ATMega128L on a BTNode2 [17]. Each of these benchmarks
exercise different features of each processor core. To allow us
to measure just the power consumption of the processor core
and no additional component, we have slightly modified6 the
BTNode2 board. The Atmel ATMega128L, on the BTNode2,
runs at 7.35 MHz and is powered with a 3.3 V power supply
while the Nimbus processor core is simulated to be running
at 7.0 MHz with a 1.32 V power supply.

In order to explore and compare the architectural advantages
of the Nimbus processor core over the Atmel ATMega1281,
the two technologies have to be the same. However, the
actual technology of the Atmel ATMega128l is not published.
Therefore, we have made an assumption that it is manufactured
using a 0.25 micron technology.

We summarize the comparison results in Table II. Although
the simulated operating voltage of the Nimbus core is lower
than that of the Atmel ATMega128L, but even with this
simple comparison, with this relatively simple implementation

5www.opencores.org
6on the BTNode2 board, there is a 0 Ohm resistor that can easilybe replaced

by two wires, allowing the use of an ammeter

Benchmark Nimbus ATMega Description

nop 2.26 mW 47.5 mW tight loop of no operation instr.
idle 1.00µW 17.0 mW idle mode of the ATMega
power-save 1.22µW 38.6µW power-save mode of the ATMega
power-down 0.59µW 39.0µW power-down mode of the ATMega
add 1.38 mW 30.1 mW tight loop of add instr. stored in registers
add-mem 1.90 mW 31.9 mW tight loop of add instr. stored in memory
hamming 1.76 mW 32.3 mW Hamming encoding and decoding

TABLE II
Comparison of the Nimbus Microprocessor Core with the

ATMega128L Microprocessor

of the Nimbus processor core, it is evident that lowering the
power consumption of the microprocessor in the computing
subsystem is possible.

The results are summarized in Table II. It is clear from
the results that, using this comparison, the Nimbus core out-
performs the Atmel ATMega128l. While this is promising,
our conclusion might be biased given the fact that we are
using a lower operating voltage for the Nimbus core and if
our assumption that the Atmel ATMega128L is manufactured
using a 0.25 micron technology is wrong. The numbers are,
obviously, not comparable in that case.

V. WORK IN PROGRESS

To further explore the HW/SW codesign options and to
enable platform tuning [18], we are busy capturing the SNAP
[19] and BitSNAP [20] processor designs in GEZEL [21].
We are also exploring various sensor node platform modeling
approaches in Java [22]–[24], GME [25], and SystemC [26].

The prototype sensor node is presently undergoing field
trials and, once successful, we plan to build a second prototype
which will be more compact and more customized. We will
also compare the synchronous AVR core with its asynchronous
counterpart. The ultimate goal is to shrink the sensor node to a
single system-on-chip costing less than a couple of Euros. We
are also planning to exploit a number of energy scavenging
solutions being made available by the ongoing research in the
fields of micro and nano technology [27], [28].

Fig. 5. Motherboard of the Hogthrob Sensor Node Hardware
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Abstract—Wireless sensor networks are networked embedded
computer systems with stringent power, performance, cost and
form-factor requirements along with numerous other constraints
related to their pervasiveness and ubiquitousness. Therefore, only
a systematic design methdology coupled with an efficient test
approach can enable their conformance to design and deployment
specifications. We discuss off-line hierarchical functional testing
of complete wireless sensor nodes containing configurable logic
through a combination of FPGA-based board test and Software-
Based Self-Test (SBST) techniques. The proposed functional test
methodology has been applied to a COTS-based sensor node
development platform and can be applied, in general, for testing
all types of wireless sensor node designs.

I. I NTRODUCTION

A number of, often conflicting, design, deployment and
performance constraints increase the importance of functional
testing in the context of wireless sensor node designs. In
order to reduce the costs of low-volume wireless sensor node
designs for research/proof-of-concept purposes, manufacturing
test mechanisms like, AOI (Automated Optical Inspection),
AXI (Automated X-ray Inspection), etc. cannot be employed,
thus, reducing the possibility for the detection of process-
induced faults. These test mechanisms become feasible only
for certain minimum production quantities (which, usually, run
in thousands) when their cost can be amortized over high pro-
duction volumes. Other factors reducing the test coverage of
wireless sensor node hardware are the form-factor limitations
coupled with high pin-count, fine lead-pitch surface-mount
(e.g., TSOP, TQFP, etc.) and area-array component packages
(e.g., µBGA, CSP, Flip-Chip, etc.) which necessitate multi-
layer PCB design with no provision for test node insertion,
thus, circumventing even Flying Probe ICT (In-Circuit Test).
Apart from being intrusive and costly, high-speed testers are
increasingly becoming unable to match the component speeds
[1]. Built-in Test mechanisms can be implemented using a
Built-In Self Test (BIST) infrastructure incorporated into the
wireless sensor node designs. However, hardware BIST is
often not possible because dedicated test circuitry incursa
performance, area and energy overhead as described in [1] and
is, in general, not preferable for low-cost, low-power wireless
sensor nodes [2], which are often built with Commercial Off-
The-Shelf (COTS) components including Systems-on-Chip [3]
and all of the COTS components might not support BIST.
Therefore, functional testing at system speed seems to be the
only viable option available for testing wireless sensor node
hardware to detect process-induced faults, as well as, design-
related errors while keeping the costs to a minimum.

In this paper, we describe an at-speed, functional test
methodology developed for the Hogthrob Project [4] which
is hierarchical in the sense that it first performs a board-level
test for testing the on-board bus interconnects (for shorts, con-
tinuity, signal integrity, etc.) and interfaces among the COTS
components (for design-related errors, at-speed timing issues,
etc.) by implementing a synthesizable Test Controller in the
on-board reconfigurable logic which functions both as a test
vector generator and a response analyzer and achieves a high
fault coverage. The component-level testing is performed next
on major system components (Flash memory, microcontroller,
etc.). The main contributions of our work are a combination
of various component-level (March Test, Software-Based Self-
Test, etc.) and board-level (at-speed test, interconnect test,
etc.) functional test strategies into a coherent, hierarchical
test methodology aimed at testing the implementations of
wireless sensor node architectures while taking into account
all the constraints (functional, structural, etc.) outlined above
and the exploitation of the on-board reconfigurable logic for
implemeting a Test Controller which has a unique access to
all the board-level and component-level interfaces.

Our functional test methodology, presented here, also aug-
ments the Software-Based Self Test (SBST) approach de-
scribed in [5] for testing the embedded microcontroller andin
[6] for testing the on-board Flash memory while extending, as
well, the approach described in [7] (without any considerations
for power efficiency because our objective has only been low-
cost, off-line testing) by testing not only the COTS components
comprising the sensor node system (with an FPGA, in addi-
tion) but by also testing the interconnections on the printed
circuit boards comprising the wireless sensor node platform.
It can be applied, in general, for the functional testing of low-
volume wireless sensor node designs in a totally self-contained
and non-intrusive manner.

The rest of this paper is organized as follows: a description
of our system under test is given in Section II. Section III
elaborates on the FPGA-based Test Controller for board-
level testing of the peripheral interfaces as well as the Flash
memory and Section IV discusses the software-based self
test of the microcontroller. The conclusions are provided in
Section V followed by a description of the work in progress
in Section VI.

II. SYSTEM DESCRIPTION

Designing wireless sensor nodes for Wireless Sensor Net-
works (WSN’s) is an error-prone and, hence, an iterative pro-



cess because of the inherent intricacies of designing a wireless
communication-oriented, mixed-signal, distributed embedded
system. Therefore, it is important to follow a systematic design
methodology coupled with an efficient test approach to satisfy
all the design requirements for the target application. An
important design consideration while designing our wireless
sensor node development platform, called the Hogthrob plat-
form, has been to reduce the overall cost of prototyping by
using COTS components. The Hogthrob platform has also
been designed with a view to explore the HW/SW tradeoffs,
therefore, it also contains reconfigurable logic.

The Hogthrob platform architecture consists of four closely-
interacting subsystems (please refer to Figure 1). These sub-
systems are: the sensing subsystem, the computing subsystem,
the communication subsystem, and the power-supply subsys-
tem. The platform has been designed using a modular design
approach and comprises one mother board (8.5cm×7cm)
which comprises the computing and the power-supply subsys-
tems, one daughter board for the communication subsystem
(4cm×5cm) and another daughter board for the sensing sub-
system. The mother board has been further divided into the
analog and the digital sections with the analog section mostly
occupied by the power-supply subsystem and the computing
subsystem comprising the digital section.

A. Sensing Subsystem

The sensing subsystem can support an assortment of analog
and digital sensing devices. At present, we are looking into
the use of a MEMS-based, three-axis accelerometer with a
digital output. In future, we might have to use temperature and
accoustic sensors which can have analog outputs. The analog
outputs from these sensors can be processed by the 10-bit
A/D converter available on the ATMega128L either directly
or, if necessary, one analog input can be routed via an on-
chip comparator for signal conditioning. The A/D converter
supports 8 analog input channels. The ATMega128L also
supports an I2C interface which is commonly available on
most of the sensors.

B. Computing Subsystem

The computing subsystem is centered around the Atmel
ATMega128L microcontroller running at a clock frequency
of 8 MHz at 3.0V and the Xilinx Spartan3 series XC3S400
FPGA running at the clock frequencies of 48 MHz and 4
MHz at 2.5V for the peripherals and 1.2V for the core. The
primary function of the computing subsystem is to execute
the wireless sensor network application and to coordinate the
functions of the sensor node. The operating system running
on the sensor nodes forms the core of the software running
on the computing subsystem which is responsible for the
task scheduling operations and resource management. We are,
presently, running a port of TinyOS to the Hogthrob platform
which is an event-based embedded operating system developed
at the University of California, Berkeley [8].

There are a number of interfaces supported by the AT-
Mega128L which are also supported by the mother board
(please refer to Figure 1). These interfaces include the two-
wire (I2C) interface for the sensing subsystem, the three-
wire (SPI) interface for the communication subsystem, the

JTAG interface for in-system programmability and debugging,
and the serial (RS-232) interface for interaction with the PC.
The Spartan3-series FPGA has been included to act either
as a hardware accelerator for the ATMega128L or it can be
configured with a stand-alone microprocessor core working
independently of the on-board ATMega128L. This will allow
us to experiment with various microprocessor/microcontroller
cores without redesigning the mother board.

The FPGA supports the same interfaces as the AT-
Mega128L. The access of either the ATMega128L or the
FPGA to the radio transceiver is controlled by the bus ex-
change switches. The interface between the ATMega128L and
the FPGA consists of parallel multiplexed address and data
buses which can be demultiplexed by implementing an address
latch in the FPGA and using theALE (Address Latch Enable)
signal. The FPGA uses an in-system programmable Flash
memory (4M×16 bits). There are two serial configuration
PROM’s provided with the FPGA which are controlled by the
ATMega128L and the configuration data can be downloaded
to them through the JTAG port. A number of LED’s and push-
buttons have been provided at the motherboard for easy test
and debugging.

C. Communication Subsystem

The communication subsystem manages the data transfer
and signaling (beaconing) between the sensor nodes. It in-
cludes the network protocols and the radio transceiver. The
radio transceiver is a Nordic VLSI nRF2401 that can deliver
a maximum data rate of 1 Mb/s. It consists of a fully-integrated
frequency synthesizer which can generate a frequency range
of 2.4-2.5 GHz in the ISM band, a power amplifier, a crystal
oscillator (it uses a 16 MHz external crystal), and a GFSK3
modulator. The output power and the frequency channels of
the radio transceiver are fully programmable through the 3-
wire (SPI) interface. The antenna used for radio transmission
and reception is an omni-directional stub antenna. The trans-
mission range of the radio transceiver has been measured to
be 80 meters under ideal conditions.

D. Power Supply Subsystem

The power-supply subsystem comprises 3 or 4 AAA-sized
batteries and a collection of DC-DC converters to service the
entire sensor node. The voltages generated by the DC-DC
converters are: 3.0V, 3.0V-Flash, 2.5V, and 1.2V. The 3.0V
supplied to the radio transceiver is filtered through a low-pass
passive LC filter (fc=1.5 MHz) to generate 3.0V Analog which
is also used by the ATMega128L for its analog I/O. The two
serial configuration PROM’s for the FPGA use two supplies:
3.0V-Flash and 2.5V. An optional 2.5V is also reserved for the
radio transceiver for future use.

In the next section we describe the details of our functional
test methodology which is hierarchical in nature as it combines
board-level, as well as, component-level testing. The board-
level test is performed by synthesizing and implementing
a parameterizable Test Controller in the on-board FPGA
which tests all the peripheral interfaces on the board while
component-level testing combines a March-like algorithm for
testing the on-board Flash memory and the software-based
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Fig. 1. Hogthrob Sensor Node Development Platform

self-test (SBST) technique for testing the embedded micro-
controller.

III. T EST OFFPGA INTERFACES

The use of an FPGA along with a microproces-
sor/microcontroller is an extremely attractive option in wire-
less sensor node platforms for implementing application-
specific logic and/or for embedding coprocessor and DSP
cores, on-chip memory blocks, peripheral devices and busses
and supporting various (differential or single-ended) I/Ostan-
dards because FPGA-based System-on-Chip (SoC) architec-
tures can achieve higher integration levels in low-power, low-
cost electronic systems like wireless sensor nodes. By using
the existing large family of synthesizable IP (Intellectual
Property) blocks combined with readily-available software
drivers and libraries, the FPGA-based SoC approach allows for
the rapid development of hardware and its prompt adaptation
to a large variety of applications. Integration of application-
specific logic blocks designed by users is facilitated by well-
defined master and/or slave interfaces to the peripheral busses
of embedded processors.

Likewise, the FPGA on the Hogthrob Sensor Node devel-
opment platform has the following interfaces:

• FPGA-JTAG Interface
• FPGA-Push Button Interface

• FPGA-LED Interface
• FPGA-Sensor Board Interface
• FPGA-Radio Transceiver Board Interface
• FPGA-UART Interface
• FPGA-AVR Processor Interface
• FPGA-Flash Memory Interface

The interfaces listed above have to be tested for process-
induced interconnect-related faults some of which are:

• short(s) between the adjacent signal traces on the
impedance terminations provided or at the balls of the
BGA package of the FPGA.

• cuts(s) in the signal traces due to PCB manufacturing
defects (e.g., overetching) or due to board mishandling.

• improper component assembly due to which the balls of
the BGA package or the pins of the integrated circuit chip
are not soldered properly and do not make contact to the
pads on the board.

• cross-talk between the signals due to their proximity
which hampers the connectivity at high signal edge rates.

• signal integrity issues due to long trace lengths and
inadequate terminations.

In order to test all the FPGA interfaces for the faults
mentioned above, we have designed and synthesized a param-
eterizable FPGA-based Test Controller. Apart from reducing
the number of LED’s or Logic Analyzer channels required for



monitoring the test response of the signals comprising each
interface, the advantage of such an approach for testing the
interconnects in the board interfaces is that the whole process
of generating the VHDL code and the user constraints file
for the FPGA can be automated using thePerl scripts and
a spreadsheet (e.g.,Excel) file (the I/O pin configurations
of the FPGA can be stored in a tabular form by importing
the net data directly from the CAD tool), thus, eliminating
implementation errors for sensor node designs with large
number of interconnects.

The FPGA-JTAG Interface is tested by connecting the
FPGA program download cable to the JTAG connector on
the motherboard and the program download software can
detect all the devices linked through the JTAG chain on the
motherboard confirming the proper functioning of the FPGA-
JTAG Interface. To test theFPGA-Push Button Interface,
the FPGA-based Test Controller logic pulls up the I/O pins of
the FPGA connected to the push buttons configuring the push
buttons as switches for turning the LED’s on or off while, for
testing theFPGA-LED Interface, a binary counter has been
implemented in the Test Controller which sends the bits of
its count value to toggle the LED’s causing them to blink at
different rates.

Testing all the interconnections comprising the board inter-
faces can become a very challenging task for FPGA’s having
large number of I/O pins. Implementing a counter and a
decoder in the FPGA and observing the decoder outputs with
the LED’s or the Logic Analyzer requires, in general, ak-
bit counter for observingN signals wherek = log2(N).
However, for testing theFPGA-Radio Transceiver Board
Interface and theFPGA-Sensor Board Interface, we have
adopted a faster and more elegant approach by connecting
the pins on the interface connectors in a daisy-chain fashion.
The Test Controller implements a simple binary counter that
sends the last bit of its count through the chain to toggle an
LED on and off.

A. FPGA-UART Interface

The FPGA-UART Interface is tested by the Test Controller
by implementing aUART core in the FPGA which receives
and sends back a series of test characters from a PC through
its UART.

B. FPGA-AVR Interface

For testing the FPGA-AVR Interface, an 8-bitlatch is im-
plemented in the Test Controller (Figure 2) which is controlled
by theALE signal from the AVR. An 8-bit×256 SRAM, also
implemented in the Test Controller, is controlled by theWRI
andRDI signals from the AVR. The AVR sends the address
and data on the multiplexedDA[0:7] bus for writing to
the SRAM along with theALE and WRI signals. Thelatch
demultiplexes (separates) the address from the data and stores
the data at the separated address in theSRAM. The data
stored in theSRAM is read back by the AVR and checked
for consistency to ensure proper operation of the FPGA-AVR
Interface.

Address


ALE
WRI
RDI


FPGA


(
Xilinx Spartan
3
)


(
XC
3
S
400
)


Microcontroller


(
Atmel ATMega
128
L
)


Latch
SRAM


D
a

ta



Fig. 2. FPGA-AVR Interface

C. FPGA-Flash Memory Interface

For testing the FPGA-Flash Interface, the Test Controller
implements aFlash Controller (Figure 3) which performs a
March-like Flash test and consists of aController block which
is a programmable state machine (Figure 4) that receives the
READY and READ/WRITE commands from theSequencer
block. TheGenerator block generates the program commands
and the address and the data for programming the Flash
after receiving appropriate control signals from theController
block. The data written to the Flash is read back by theFlash
Controller which is compared in theMonitor block which
flashes an LED if the read data is the same as the data written
at the corresponding address.
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Fig. 3. FPGA-Flash Interface

IV. T EST OFM ICROCONTROLLER& I NTERFACES

For testing the Atmel ATMega128L embedded microcon-
troller, we have used the Software-Based Self Test (SBST)
approach as described in [5]. SBST methodology is a
technology-independent, component-based processor testde-
velopment strategy that uses a divide-and-conquer approach
by identifying regular structures and targeting individual pro-
cessor components (categorized asfunctional, control and
latent) for structural (stuck-at) faults and defining different
test priorities for the processor components. It combines
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the desirable characteristics of functional testing (using the
processor instruction set for test development at a higher
abstraction level) with an appropriate use of RTL information.
It applies, both, to the case where low-level processor netlist
is not available (COTS or ’hard’ IP versions) or in the case
where technology remapping is required. Another advantageof
the SBST approach is that it is non-intrusive in nature sinceit
exploits the embedded processor functionality and instruction
set to carry out self testing.

According to the SBST methodology described in [5],
the functional components of the processor (computational
- arithmetic and logic modules,interconnect - multiplexers,
and storage - register file and registers) have the highest test
priority for test development since their size dominates the
processor area and they demonstrate good controllability and
observability (i.e., they provide easy and full accessibility).

We have developed a library of component test routines.
Each of these test routines exercises different architectural fea-
tures of the processor and generates small deterministic tests
for most of the functional processor components. An important
consideration while developing these test routines has been
to perform collateral test coverage of non-targeted processor
components (e.g., while testing the ALU, mutliplexers and the
control unit are also tested).

As shown in Figure 1, the ATMega128L microcontroller

Test Routine Description

nop tight loop of the no operation instruction
idle idle mode of the ATMega128L
power-save power-save mode of the ATMega128L
power-down power-down mode of the ATMega128L
add tight loop of the add instruction stored in the register file
add-mem tight loop of the add instruction stored in program memory
hamming Hamming encoding and decoding

TABLE I
SBST Routines for the AVR core of the ATMega128L

Microprocessor

Test Routine Description

blink blink the on-board LED’s
button notify an on-board push-button press
echo echo a typed character
ADC print the value converted by the ADC
nRF2400 set a Tx/Rx pair of sensor nodes and make them communicate

TABLE II
SBST Routines for the Peripheral Components of the ATMega128L

Microprocessor

chip comprises an AVR core and a set of peripherals. The set
of test routines developed for testing the AVR core are listed
in Table I. The test programs for the AVR have been written in
the TinyOS. A brief description of the test routines for testing
the peripheral components is given in Table II.

The program upload port of the ATMega128L has been
tested first by uploading and downloading the test patterns for
the March-type test to the on-chipFlash memory through the
UART0. Each of the tests has been carried out by a single test
routine uploaded to ATMega128L. The tests have been carried
out by connecting the motherboard of the Hogthrob platform
to a terminal emulator program on a PC via theUART1 and
a level converter.

Theblink and thebutton test routines test theI/O ports
and the corresponding registers of ATMega128L as well as the
interconnections between the microcontroller chip and theon-
board LED and Push-Button interface while thenRF2400 test
routine tests theSPI interface and the corresponding register
set of ATMega128L as well as the interconnection between
the microcontroller chip and the radio transceiver interface.
Similarly, theADC test routine tests the on-chip A/D converter
and the interconnection between the microcontroller chip and
the analog sensors interface.

As most of the present wireless sensor node designs do
not contain reconfigurable logic because of power and/or cost
considerations, for testing such sensor node designs, the test
controller routines can be implemented in the microcontroller.
In this case, the microcontroller can undergo a self test first
by the SBST method described above and the test controller
routines can be executed later for testing the rest of the system.

V. CONCLUSIONS

We have developed a hierarchical, at-speed, functional test
methodology and applied it successfully to test a custom-
built wireless sensor node development platform. This test
methodology, though unique in its approach, extends earlier



work in this area and can be applied, in general, for testing
all types of wireless sensor nodes . A significant contribution
of our work is a unified test methodology for wireless sensor
nodes that combines, as well as, extends various component-
level and board-level test techniques and exploits the on-board
programmable logic for implementing a Test Controller that
has a strategic access to all the board-level and component-
level interfaces.

VI. WORK IN PROGRESS

The prototype sensor node development platform is
presently undergoing field trials and, once successful, we plan
to build a sensor node prototype which will be more compact
and more customized and to extend the off-line functional
testing methodology described here into a self-contained,
low-power, on-line self test method in order to introduce
fault-tolerance with graceful performance degradation inthe
deployed sensor network. The ultimate goal is to shrink the
sensor node to a single system-on-chip costing less than a
couple of Euros.
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Abstract—The growing complexity of MEMS devices and their
increased used in embedded systems (e.g., wireless integrated
sensor networks) demands a disciplined aproach for MEMS
design as well as the development of techniques for system-level
modeling of these devices so that a seamless integration with the
existing embedded system design methodologies is possible.

In this paper, we present a MEMS design methodology that
uses VHDL-AMS based system-level model of a MEMS device
as a starting point and combines the top-down and bottom-up
design approaches for design, verification, and optimization. The
capabilities of our proposed design methodology are illustrated
through the design of a microaccelerometer.

I. I NTRODUCTION

Integrated Microsystems and their subset− MicroElec-
troMechanical Systems (MEMS)− are inherently complex in
nature. The level of their complexity can be realized from the
fact that these systems involve coupled energy domains (e.g.,
electrical, mechanical, magnetic, fluidic, optical, etc.)and
their signal conditioning units typically involve continuous-
time (analog) and discrete-time (digital) electronic domains
or a mixture of both (mixed-signal). The prototyping of
these systems, using the available manufacturing techniques is
usually very expensive. Therefore, the exising ”build-and-test”
approach for these systems has to be replaced by a systematic
design methodology that introduces design hierarchy and
information sharing across the domain dichotomies. As a part
of design methodology, modeling and simulation of MEMS-
based systems play an important role in reducing the number
of design iterations and their time-to-market.

The design methods of MEMS have traditionally been
viewed from either a bottom-up or a top-down perspective.

In the bottom-up approach, which, presently, is the most
common design approach among the MEMS design com-
munities, the idea of a MEMS device is conceived and
the necessary physical-level modeling on the device design
is conducted to establish its physical characteristics. How-
ever, the computational resource requirements associatedwith
physical-level modeling render it an impractical approachfor
modeling the entire system. Therefore, the physical-levelmod-
eling techniques are only employed to analyze the physical
characteristics of MEMS device structures and to generate the
data necessary to create a reduced-order model of the device1.

1The techniques associated with reduced-order modeling areessentially the
same as macro-modeling.

The reduced-order modeling of the MEMS device, alongwith
the necessary signal conditioning and control electronics, is
then conducted to detemine its proper functioning at the device
level. System-level modeling is then carried out to determine
the potential impact the device will have on the whole system.

On the other hand, in the top-down approach, the critical
system parameters are first determined from the system-level
(reduced-order) analytical equations governing the system be-
havior regardless of the implementation options or the process
technology to be used. After determining the critical system
parameters, the implementation details and the specific process
technologies are considered through the use of device-level
reduced-order models. Modeling at the device level involves
a MEM structure with or without the signal conditioning
and control electronics. At the device-level, reduced-order
modeling allows the designers to determine what boundary and
load conditions will be placed on individual components. After
device-level modeling, more detailed physical-level modeling
(3D Modeling) allows the designer to examine a structure’s
response to a particular physical environment in finer detail.

In this paper, we mainly focus on system-level modeling
of MEMS-based sensors using VHDL-AMS as it supports
multi-domain, mixed-signal modeling capabilities neededfor
system-level modeling of MEMS-based systems. We propose
a model-driven MEMS-based system design methodology
in which the design specification is captured in a system-
level model using VHDL-AMS which is subsequently re-
fined in a step-by-step manner to yield the physical design.
By back-annotating the refined design parameters obtained
through physical-level simulations, the same specification-
based system-level model can be used for system optimization
through design-space exploration by iterating back and forth
the design hierarchy until a fully optimized system design is
achieved. Our proposed design methodology can be viewed as
a combination of top-down and bottom-up design approaches
(described above) which have been modified to allow for
optimization through design-space exploration.

The rest of this paper is organized as follows: Section II
provides an overview of the current research in the field of
system-level modeling of integrated microsystems. Section III
gives a detailed explanation of our proposed model-driven
design methodology. An illustrative example elaborating the
capabilities of our proposed design methodology applied to
the system-level modeling and design of a microaccelerom-



eter for wireless sensor network applications is presentedin
Section IV. Section V, finally, provides conclusions and the
future directions of our work.

II. RELATED WORK

HDL’s2 have been used since the 1960s to model and
simulate applications as diverse as (digital and analog) elec-
tronic systems and fluid concentrations in chemical processes.
Modern HDLs support the description of both behavior and
structure.

Depending on the available language constructs, HDLs
can be divided into digital, analog, and mixed-signal HDLs.
Digital HDLs, such as VHDL or Verilog, are based on
event-driven modeling techniques and use a discrete model
of time. They support the modeling of digital hardware at
abstraction levels, ranging from system level down to the
device level. Analog HDLs support the description of systems
of differential and algebraic equations (DAEs) whose solution
varies continuously with time. Analog HDL’s like Verilog-A,
MAST, VHDL-AMS, etc. support multi-domain and mixed-
signal modeling capabilities and have been effectively used
for MEMS modeling. HDL-A and MAST are the proprietary
languages, so their development is vendor-dependent. On the
other hand, Verilog-AMS and VHDL-AMS are open-source
languages.

VHDL-AMS is an informal name for a combination of
two IEEE standards: VHDL 1076-1993 and VHDL 1076.1-
1999. It covers most of the modeling requirements for MEMS,
and sufficient work (e.g., [1]–[3]) has been done to model
electromechanical, MOEMS, fluidic, magnetic, and thermal
systems. VHDL-AMS supports hierarchical description of
continuous, mixed-domain, and discrete, conservative andnon-
conservative physical systems. An overview on modeling
conservative systems with analog and mixed signal is dis-
cussed in [4], [5]. At the device level, VHDL-AMS has been
effectively used to predict the behavior of interacting energy
domains (e.g., magnetic, mechanical, electrical, etc.) using an
integrated, multiple-domain, system representation.

Several techniques have been reported for the system-level
modeling of MEMS devices. At the system level, MEMS
devices are modelled as lumped-parameter elements (span-
ning multiple energy domains) along with associated elec-
tronics (analog, mixed-signal, digital). The equations gov-
erning the device behavior are the Ordinary Differential
Equations (ODEs) and the Difference Equations (DEs). A
hierarchically-structured design methodology for designing
suspended MEMS devices which is compatible with the
standard mixed-signal ASIC design flow has been described
in [6], [7] using the example of a microresonator and a
microaccelerometer. The design approach takes advantage of
parameterized component libraries for device layout genera-
tion and modern analog and mixed-signal hardware description
languages such as VHDL-AMS and Verilog-A which allow the

2Hardware Description Languages (HDL’s) are the programming languages
specifically designed for describing the behavior of physical devices and
processes. Models written in an HDL are used as input to a suitable simulator
to analyze the behavior of the devices.

use of non-electrical energy domains for behavioral or system-
level simulation of the MEMS device. The design methodol-
ogy also provides design-space exploration capability.

In [8], the general aspects concerning the design automation
for microsystems (in particular, MEMS devices) are consid-
ered but no clear design methodology has been presented.
In [9], a modular design methodology for suspended MEMS
has been presented that uses circuit-level behavioral simu-
lation, schematic-driven layout generation, and system-level
simulation in VHDL-AMS and Verilog-AMS. A comprehen-
sive, multi-domain, multi-language system-level modeling of
Systems-on-Chip embedding MEMS devices (using SystemC
and VHDL-AMS) has been reported by [10] but it does
not complement the system-level model with a concrete and
workable MEMS design methodology.

The top-down design of MEMS and the underlying design
challenges have been discussed by [11], [12] whereas [13]
discuss the bottom-up design methodology and system-level
modeling using VHDL-AMS. [14] uses top-down design ap-
proach for device design and bottom-up approach for design
verification. In this paper, we extend this approach to include
design optimization through back annotation of refined device
parameters obtained by FEM analysis at the physical level into
the system-level model described in VHDL-AMS.

III. M ODEL-DRIVEN MEMS DESIGN METHODOLOGY

As mentioned above, to specify, design, and implement
a complex MEMS-based sensing device, it is modeled at
four levels of abstraction: process-level, physical-level, device-
level, and system-level. Physical-level modeling involves nu-
merically solving the equations of physics governing the
system behavior using numerical solvers such as the Finite-
Element Method (FEM), Boundary Element Method (BEM),
etc. Device-level modeling involves reduced-order modeling
through the generation of macro-models from the physical-
level models using the macro-modeling solvers. System-level
modeling techniques involve block diagram-based system rep-
resentation (e.g., Simulink) or it may also involve reduced-
order modeling using HDL’s (SystemC-AMS, VHDL-AMS,
etc.) or Parametric Design Libraries3, etc. We propose a
model-driven MEMS design methodology (see Figure 1) that
supports component-based design accompanied by substantial
component reuse.

Starting from a design concept, a system-level model of a
MEMS device is constructed for functional simulation of the
design concept and for design-space exploration by examining
and changing the behavioral and performance characteristics
of the design concept till it meets the desired system specifi-
cations.

The key design parameters are extracted from the system-
level model to construct a reduced-order model at the device
level. The schematic-based, circuit-level reduced-ordermod-
els involve lumped-parameter device models having few de-
grees of freedom with analytical or semi-analytical equations
describing the behavior of the components comprising the
MEMS device (e.g., beams, plates, combs, etc.). These models

3For example, in the Coventor design environment, a 3D model of a MEMS
device can also be generated from a parametric design library-based model.



are written in an HDL and compiled into a design library called
the parameterized design library. A MEMS device is composed
by connecting together the required components.These device
models can analyze a complex device behavior in a very short
time.

System Level
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Refined Design Parameters


Fig. 1. System-Driven MEMS Design Methodology

After reduced-order modeling, a 3-D device structure is
obtained at the physical level which is subjected to FEM-
based analysis to extract the refined design parameters which
are back-annotated into the system-level model for design
refinement. This process is iterated till a final optimized device
design is obtained.

IV. I LLUSTRATIVE EXAMPLE : M ICROACCELEROMETER

MODELING & D ESIGN

To illustrate the capabilities of our proposed MEMS design
methodology, a system-level model for a capacitive microac-
celerometer has been developed at the system level using
VHDL-AMS which allows direct simulation of mechanical
and analog and digital electric sub-systems in their respective
domains without any analogy transformation.
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Fig. 2. Lumped-Parameter Model of Microaccelerometer

If the proof mass of the sensing element of a microac-
celerometer has a mass ofM , the suspension beams have
an effective spring constant ofK, and there is a damping
factor D, affecting the dynamic movement of the mass, the

microaccelerometer can be represented by a second-order
mass-damper-spring system (see Figure 2). If an external force,
F , displaces the support frame relative to the proof mass, the
internal stress in the suspension spring changes. Both, this
relative displacement and the suspension-beam stress can be
used as a measure of the external force. By using Newton’s
second law [15]:

Mẍ + Dẋ + Kx = F

ẍ + 2ζωnẋ + ω
2

nx = a

In the above equation,x is the proof mass displacement,

ωn =
√

K
M

is the natural resonance frequency,ζ = D
2Mωn

is

the damping factor, andQ =
√

KM
D

is the quality factor,
The resonance frequency,ωn, of the structure can be in-

creased by increasing the spring constant,K, and decreasing
the proof mass,M , while the quality factor,Q, of the device
can be increased by reducing the damping factor,D, and by
increasing the proof mass,M , and spring constant,K.

The static sensitivity of the microaccelerometer is:

Sstatic = xstatic

a
= 1

ω2
n

The static response of the device, i.e., its static sensitivity,
Sstatic, can be improved by reducing its resonant frequency,
ωn.

The primary mechanical noise source for the device is due
to the Brownian motion of the gas molecules surrounding
the proof mass and the Brownian motion of the proof mass
suspension or anchors. The total noise equivalent acceleration
(TNEA) is:

TNEA =
√

4kbTD
M

=
√

4kbTωn

QM

where,
kb is the Boltzmann’s constant andT is the absolute

temperature.
Thus, to reduce the mechanical noise, the quality factor,Q,

and the proof mass,M , have to be increased.
For the system response to be linear,a, has to be less

than 0.3ωn. This sets the maximum bandwidth,Bmax, of the
microaccelerometer.

2πBmax ≤ 0.3ωn ⇒ ωn ≥ 20.944Bmax

For the least amplitude distortion and for the output to
follow the input over the widest input frequency range, the
system has to be critically damped. This implies that:

ζ = 0.707

or

D
2Mωn

= 0.707

The minimum detectable acceleration can be obtained from
the expression for TNEA:

amin =
√

4kbTD
M

=
√

4kbTωn

QM

The maximum detectable acceleration can be obtained from
Sdynamic as:



amax = Kgmax

M

However,gmax cannot be belowg
3
, because after that pull-

in voltage (Vp = 2

3

√

2Kg

Aε
) kicks in and electrodes collide with

each other.
The difference betweenamax andamin gives the dynamic

range of the microaccelerometer. There is a big tradeoff
between dynamic range and sensitivity.

In the most general case, the proof-mass motion can have
six degrees of freedom. But, typically, in a unidirectional
accelerometer, the geometrical design of the suspension issuch
that one of these is dominant and the device has low off-axis
sensitivity. The cantilever support has been one of the early
popular suspension support designs, due to its simplicity,lower
spring constant, and internal stress relief of the beams. How-
ever, this configuration results in a larger off-axis sensitivity
unless the device is fully symmetric. Symmetric, full-bridge
supports result in a very low off-axis sensitivity. By usinga
crab-leg or folded-beam configuration in a full-bridge support,
the residual stress of the beams can also be relieved keeping
the spring constant unchanged due to tensile and compressive
stresses. The spring constant for the folded beam configuration
employing straight truss is:

K = (π4

6
)[ Ewh3

(2L1)
3+(2L2)

3 ]

If parallel-plate estimates are used to get the correct order
of magnitude of capacitances:

Csense = N
ε0hl
g0±x

The plates of a parallel-plate capacitor attract each other
with an electrostatic force of:

F = ε0hl
2g2

0

The mass of the proof mass with attached cantilever elec-
trodes can be estimated from the device dimensions.

The damping factor is a difficult quantity to calculate be-
cause the effect ofsqueezed-filmdamping between the fingers
must be added to theCouette flowbeneath the proof mass as
it displaces. Further, if the aspect ratio of the air gaps between
the fingers is low, even squeezed-film damping estimates are
inaccurate. The damping factor,D1, obtained from the Couette
flow4 is:

D1 = η
A
h

where,
η is the viscosity of the surrounding air/gas. The damping

factor,D2 obtained from the squeezed-film model is:

D2 = Nη
lw3

π4h3

0

The total damping,D, is the sum ofD1 andD2.
The differential capacitors have high sensitivities and can

be configured to give a linear response and are, therefore, pre-
ferred for many applications. The differential capacitorshave
the virtue of cancelling many effects to first order, providing
a signal that is zero at the balance point and carries a sign

4Steady viscous flow between parallel plates, one of which is moving
parallel to the other, is called Couette flow

that indicates the direction of motion. From the system point
of view, a differential capacitor accomplishes linearization
about the balance point. Consider an interdigitated parallel-
plate differential capacitor with the gap of the upper capacitor
g1 and that of the lower capacitorg2. Assuming an equal area
of both capacitors, a voltage+Vs is applied to the upper plate
and a voltage,−Vs is simultaneously applied to the lower
plate. The voltage appearing at the voltage divider output is:

V0 = −Vs + C1

C1+C2

2Vs = C1−C2

C1+C2

Vs

since the areas are equal:

V0 = g1−g2

g1+g2

Vs

If the two gaps are equal, the output voltage is zero.
However, if the middle plate moves so that one gap is larger
than the other, the output voltage is a linear function of this
change. The resulting sensing element output is a square wave
with amplitude propotional to the displacement and, hence,the
acceleration magnitude. The phase of the output square wave
relative to the excitation determines the acceleration polarity
which measures the unbalance in the differential capacitor.
The output is amplified, synchronously demodulated, low-pass
filtered and digitized with aΣ−∆ A/D converter to give the
output value. Since the demodulator is phase synchronized
with the excitation signal, the output signal polarity correctly
indicates the direction of the applied acceleration [16].

library ieee;
use ieee.math_real.all;
use ieee.mechanical_systems.all;
use IEEE.electrical_systems.all;
use work.all;

entity testbench is
end entity testbench;

architecture ideal of testbench is
terminal telect1, telect2 : electrical;
terminal ttrans1, ttrans2 : translational;
quantity tq : real;
terminal tinput1, tinput2 : electrical;

begin
ins_spring: entity work.spring(linear)
port map (trans1 => ttrans1,trans2 => ttrans2);

ins_mass: entity work.mass(ideal)
port map (trans1 => ttrans1, trans2 => ttrans2, elect1 => tinput1,

elect2 => tinput2, q_v => tq);

ins_damper: entity work.damper(ideal)
generic map (D => 0.0)
port map (trans1 => ttrans1,trans2 => ttrans2);

ins_parallel_plate: entity work.parallel_plate(ideal)
port map (elect1 => telect1, elect2 => telect2, trans1 => ttrans1,

trans2 => ttrans2, q_c => tq);

ins_v_pulse: entity work.v_pulse(ideal)
generic map (pulse => 5.0, width => 50ms, period => 100ms)
port map (pos => telect1, neg => electrical_ref);

ins_forcepulse: entity work.forcepulse(ideal)
generic map (pulse => 1000.0, width => 500ms, period => 1000ms)
port map(trans_pos => ttrans1, trans_neg => translational_ref);

end architecture ideal;

Fig. 3. Top-level VHDL-AMS Code for System-level Model

A surface micromachined, single-axis, lateral capacitive
microaccelerometer sensing element consists of a movable
beam (seismic mass), suspended by two spring tethers on
either end. Movable fingers are attached to the mass. The
fingers establish, together with fixed plates, capacitancesthat
are evaluated by an electronic circuit. If the seismic mass is
moved by an external force, the capacitances depend on this
force. The structure is highly regular. Similar microelectro-
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Fig. 4. System-Level VHDL-AMS Model Block Diagram

Fig. 5. System-Level Transient Simulation in VHDL-AMS

mechanical devices are used in force-balanced accelerometers
like the ADXL series from Analog Devices and Siemens.

Using the proposed model-driven design methodology, gen-
eral system-level modeling of the microaccelerometer has
been performed in VHDL-AMS using the above equations,
as well as the mechanical relations describing the spring
constant and the damping factor as a function of the device
geometry and the ambient pressure. The basic functionalityof
the microaccelerometer has been simulated using VHDL-AMS
(see Figure 3) A block diagram description of the VHDL-AMS
model is given in Figure 4. The time-domain characteristicsare
simulated for different modeling approaches using simulation
and are shown in Figure 5.

Further, the first-order device design optimization has been
performed using the same equations, while the final mi-
croaccelerometer sensing element design has been simulated
and optimized using the commercially-available finite-element
method (FEM) solvers in the Coventer software package.

Figure 6 shows the schematic drawing of the sensing ele-
ment and the electronic circuitry of such a microaccelerometer
built using components from the parametrized design library
of Saber and MAST in the Coventer design environment. The
device-level model consists of mechanical beams of different
dimensions. The electrostatic forces are modeled by comb
models (see Figure 7). The design parameters are listed in

TABLE I
DESIGNPARAMETERS

Proof Mass

Length 410µ

Width 90µ

Height 10µ

Damping Holes

Length 10µ

Width 10µ

Depth 10µ

Number 80

Finger

Length 160µ

Width 10 µ

Thickness 5µ

Number 22

Suspension Support

Length1 170µ

Length2 185µ

Length3 30µ

Table I. The advantage of this (schematic-based) approach is
an easy combination of these MEMS primitives with other
user-defined models. Therefore, for functional simulation,
behavioral models of the electronic subsystems were used.
Figure 8 shows the displacement of the sensing element at
the first resonance frequency.

V. CONCLUSIONS

We have proposed a model-driven MEMS design method-
ology which is more than a combination of the existing top-
down and bottom-up design approaches as it enables MEMS
design, validation, and optimization in a consistent, step-by-
step manner and is compatible with the existing embedded
system design methodologies. We have illustrated the capabil-
ities of our proposed MEMS design methodology by applying
it to design, simulate, and optimize a microaccelerometer
sensor. System-level modeling of MEMS-based sensors is an
ongoing research area with the aim to model, as accurately as



Fig. 6. Sensing Element Schematic

Fig. 7. Sensing Element

Fig. 8. Sensing Element FEM Simulation in Coventer

possible, the microsystem device behavior at the system level
as well as at the lower levels of abstraction. The capabilities of
the existing design tools for designing microsystems are still
limited to some extent, either in the diversity of components
in the parametric components library, accuracy of simulation,
or in terms of simulation speed and ease of use. Lack of
standards and interoperability are additional limitations. Infor-
mation about macromodeling or lumped parameter modeling

of microsystems is ample but patchy. Moreover, automated
synthesis of microsystems from system-level models seems
to be a far-off dream. The work described here gives a
good insight into the system-level modeling of microsystems
which can stimulate ideas about hybrid systems modeling and
verification especially in the context of the emerging new area
of wireless integrated sensor networks.
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Abstract—This paper describes the details of a cycle-accurate
model of a coprocessor for Kalman filtering which is a standard
DSP tool for combining information from many sensors as wellas
low-pass filtering, amplification, etc. A properly-designed Kalman
Filter allows observation of only a few quantities, or measured
outputs and reconstruction or estimation of the full internal state
of a system.

We consider a wireless sensor network application in which
accelerometer data from field experiments on sows are analyzed
for acceleration patterns and an automatic classification method
based on a Multi-Process Kalman Filter has been devised. How-
ever, the practical implementation of such analysis methodposes
problems because Kalman Filter implementation for real-time
applications is computation-intensive in software and resource-
demanding in hardware due to matrix multiplication and in-
version operations. Therefore, we have developed a design flow
for design-space exploration using HW/SW Codesign to select
the optimum implementation and implemented an FPGA-based
cycle-accurate model of a coprocessor block for Kalman filtering.

I. I NTRODUCTION

Filters are commonly used to extract a desired signal from
a backgroud of random noise or deterministic interference.In
the statistical approach to the solution of the linear filtering
problem, knowledge of certain statistical parameters of the
useful signal and unwanted additive noise (e.g., mean and
correlation functions) is assumed. The problem is to designa
linear filter with the noisy data as input and the requirementof
minimizing the effect of the noise at the filter output according
to some statistical criterion.

Consider the following situation: An original signal s(t) is
transmitted through an information channel (cable, wireless
channel, storage medium). The received signal x(t) is impaired
by two different effects. Firstly, the channel may not have a
perfect impulse (delta-function) response so that the original
signal s(t) is convolved with some known impulse response
g(t) to give a smeared signal v(t) = g(t)*s(t). Secondly, noise
n(t) may be added to v(t) to, finally, give the signal x(t) =
v(t)+ n(t) at the receiver. Our task is to find the optimal filter
h(t) which, when applied to the signal x(t) produces a signal
y(t) that is as close as possible to the uncorrupted signal s(t).
In other words, we want to estimate the true sigal s(t).

A useful approach to this filter-optimization problem is
to minimize the mean-square value of the error signal that
is defined as the difference between some desired response

and the actual filter output. For stationary signal inputs, the
resulting solution is commonly known as theWeiner filter .

Wiener filters are a class of optimum linear filters which
involve linear estimation of a desired signal sequence from
another related sequence. They are designed to minimise the
mean-square error between their output and a desired or
required output.

Most of the filter design techniques are firmly based on
fequency domain concepts. By contrast, Wiener filters are
developed using time-domain concepts. However, the Weiner
filter is inadequate for dealing with situations in which nonsta-
tionarity of the signal and/or noise is intrinsic to the problem.
In such situations, the optimum filter has to be assumed to be
of a time-varying form. A highly successful solution to this
more difficult problem is found in theKalman filter .

Sensor fusion is important in a network of sensors of dif-
ferent modalities. A distributed vehicle/personnel surveillance
network might include seismic, acoustic, infrared motion,
temperature, and magnetic sensors. The standard DSP tool
for combining the information from many sensors is the
Kalman Filter. The Kalman Filter is used for communications,
navigation, feedback control, and elsewhere and provides the
accuracy that allowed man to navigate in space and, eventually,
to reach the moon and, more recently, to send probes to the
limits of the Solar System.

A properly designed Kalman Filter allows one to observe
only a few quantities, or measured outputs, and then re-
construct or estimate the full internal state of a system. It
also provides low-pass filtering functions and amplification,
and can be constructed to provide temperature compensation,
common mode rejection, zero offset correction, etc.

The discrete-time Kalman Filter, useful for DSP, is a dy-
namical filter given by the following equation [1]:

x̂k+1 = A(I − KH)x̂ + Buk + AKzk

where the sensed outputs are in vectorzk, the control
inputs to the system being observed are in vectoruk, and the
estimates of the internal states are given by the vectorx̂k . Note
that the number of sensed outputs can be significantly less than
the number of states one can estimate. In this filter, matrices
A andB represent the known dynamics of the sensed system,
and the sensed outputs are given as a linear combination of
the states byzk = Hxk, whereH is a known measurement
matrix. The Kalman gainK is determined by solving a design
equation known as the Riccati Equation. The Kalman Filter is



the optimal linear estimator given the known system properties
and prescribed corrupting noise statistics.

A. Kalman Filter Design Equations [2]

Predict

• Project the State Ahead:
x̂
−

k = Ax̂k−1 + Buk

p_est = A*p + B*u
• Project the Error Covariance Ahead:

P
−

k = APk−1A
T + Q

P_cap_est = A*P_cap*A’ + Q

Correct

• Compute the Kalman Gain:
Kk = P

−

k HT (HP
−

k HT + R)−1

K = (H’*P_cap_est)*inv(H*P_cap_est*H’
+ R)

• Update Estimate with Measurementzk:
x̂k = x̂

−

k + Kk(zk − Hx̂
−

k )
p = p_est + K*(A’ - p_est)

• Update the Error Covariance:
Pk = (I − KkHP

−

k )
P_cap = (I - KH)*P_cap_est

II. HW/SW CODESIGN OFKALMAN FILTER

As described above, Kalman Filter is the standard DSP tool
for combining the information from many sensors as well
as low-pass filtering, amplification, etc. A properly designed
Kalman Filter allows one to observe only a few quantities,
or measured outputs, and then reconstruct or estimate the full
internal state of a system.

In the Hogthrob project, accelerometer data from the field
experiments on sows were analyzed for acceleration patterns
and an automatic classification method based on a Multi-
Process Kalman Filter was implemented by the KVL research
group [3].

However, the practical implementation of such analysis
method poses problems because Kalman Filter implementation
for real-time applications is computation intensive in software
and resource demanding in hardware due to matrix multipli-
cation and inversion operations.

Therefore, we developed a design flow for design-space
exploration using HW/SW Codesign to select the optimum
implementation and implemented an FPGA-based coprocessor
block for the Kalman Filter.

A. Software Implementation

A software-based Kalman filtering algorithm was imple-
mented in C language (code listing given below) and cross
compiled to AVR processor using the GNU C cross assembler
and linker for AVR processors. However, because of matrix
multiplication and inversion operations, its execution onthe
resource-constrained AVR processor was extremely slow and,
therefore, far from meeting the real-time throughput require-
ments of the system.

B. Hardware Implementation

Although data from the acceleration sensors was analyzed
using Kalman Filters in theR modeling language, we selected
the MATLAB language for algorithmic modeling because it
offers a rich environment for DSP algorithm development and
debugging and is uniquely adept with vector- and array-based
waveform data at the core of DSP algorithms.

1) Design Flow: Traditional FPGA deployment of DSP
algorithms can involve many steps that take an algorithm
from C instructions to an FPGA-specific bit stream. To
simplify rapid prototyping of DSP-in-FPGA designs, a high-
level MATLAB-based algorithm synthesis package, the Xilinx
AccelDSP Algorithmic Synthesis Tool, lets DSP algorithm
developers create DSP blocks for Xilinx FPGA’s.

AccelDSP automates floating-point to fixed-point conver-
sion, generates synthesizable VHDL, and creates a test bench
for verification. In short, it translates the MATLAB algorithms
specified in the m-files into synthesizable VHDL code.

The Xilinx System Generator is a rapid prototyping tool
for creating hardware DSP designs using graphical meth-
ods. With a visual programming environment that leverages
the MathWorks Simulink tool and Xilinx Block Set library
of predefined digital signal-processing and communications
functions such as filters, fast-Fourier transforms, encoders,
decoders and so on., Xilinx System Generator meets the needs
of both system architects (to integrate design components)and
hardware designers (to optimize implementations).

The Xilinx AccelDSP Synthesis tool augments the Xilinx
System Generator by providing a seamless integration path
for DSP algorithm developers, enabling the rapid creation
of DSP IP blocks, directly from m-files, that enhance the
Xilinx Block Set in the Xilinx System Generator. In addition,
AccelDSP has optional AccelWare toolkits that complement
System Generator with additional DSP IP cores optimized for
Xilinx FPGA cores. The building blocks of DSP functions
can drop into System Generator. AccelWare toolkits include
mathematical building blocks, signal processing, communica-
tions, and advanced mathematics to implement linear algebra
functions.

AccelDSP was used to explore different micro and macro
architectures. A macro architecture could encompass some-
thing as simple as a divide operation where one could use a
CORDIC, a Newton-Raphson, a Goldschmidt or another divi-
sion technique. After this decision, the possibilities of using a
pipeline or a resource-shared micro architecture were explored.
That way we could trade off implementation requirements and
capabilities. By automating the design flow we could develop
algorithms within MATLAB, use Simulink as a software test
bench and then validate our design within a real FPGA.

By using the design flow described above, We could con-
centrate on getting the best performance out of their algorithms
and not on how to implement them on an FPGA chip.

2) Design Capture:The Kalman filter algorithm was cap-
tured with a MATLAB m-file to perform stimulus creation,
algorithm evaluation, and post-processing. A listing of the m-
file is given in Figure 3.

The algorithm defines matricesR and I that describe the
statistics of the measured signal and the predicted behavior.
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Fig. 1. Kalman Filter Design Flow.

function [S] = simple_kalman(A)
DIM = size(A,2);
persistent p P_cap
if isempty(P_cap)
P_cap = [8 0 0; 0 8 0; 0 0 8];
p = ones(DIM,1)/2;
end;
I = eye(DIM);
R = [128 0 0;0 128 0; 0 0 128];
% estimate step:
%p_est = p;
P_cap_est = P_cap+I;
% correction step:
K = P_cap_est * inv(P_cap_est+R);
p = p + K * ( A’ - p );
P_cap = (I - K)*P_cap_est;
S = p’;

Fig. 2. The MATLAB m-file describing code for Kalman Filter.

The last nine lines of the algorithm are the code that predicts
and corrects the estimate (ref. Section??).

This algorithm illustrates the flexibility and concisenessof
the MATLAB language. Common operators such as addition
and subtraction operate on variables like the two-dimensional
arraysA or P_cap without having to write loops, as one
would in languages like C. Multiplication of two-dimensional
arrays is automatically performed as matrix multiplication
without any special annotation. MATLAB operators such as
matrix transposition allow the MATLAB code to be compact
and easily readable. And complex operations like matrix

inversion are completed using MATLAB’s extensive linear
algebra capabilities.

Although such an algorithm could have been constructed as
a block diagram, doing so would have obscured the algorithm
structure so readily apparent in MATLAB.

3) Design-Space Exploration:With Xilinx AccelDSP [4],
a first step in synthesizing a complete algorithm is to generate
any major cores that are referenced - in this case, the matrix
inverse indicated by the function callinv(P_cap_est+R).
But a matrix inverse can be implemented in many ways; the
choice of which method to use depends on the size, structure,
and values of the matrix. Using the matrix inverse IP core
from the Xilinx AccelWare toolkit, we could choose from
micro-architectures designed for different applications. These
micro-architectures can be optimized for speed, area, power,
or noise. In this case, the most suitable approach was to use
the AccelWare QR matrix inverse core.

4) Design Optimization: The m-files were loaded into
the Xilinx AccelDSP tool and they served as the ”golden
source” for a design flow that ultimately produced optimized
implementations in Xilinx FPGAs. With the MATLAB m-file
loaded into Xilinx AccelDSP, the next step was to simulate
the floating-point design to establish a baseline. AccelDSP
was used to convert the design to fixed-point format [5],
verifying it in MATLAB. AccelDSP offered us an array of
tools to help trim bits from the design and verify the fixed-
point design effects like saturation and rounding. AccelDSP
aided us in this process by propagating bit growth throughout
the design and letting the use of directives to set constraints on
bit width. This algorithmic design space exploration allowed
us the attainment of the ideal quantization that minimized
bit widths while managing overflows or underflows, allowing
early trade-offs of silicon area versus performance metrics.

Once suitable quantization had been attained, the next step
was to generate RTL for the target Xilinx device. At this
point, the AccelDSP GUI was used to set constraints on the
design using the following design directives to achieve further
optimizations:

• Rolling/unrolling of FOR loops
• Expansion of vector and matrix additions and multiplica-

tions
• RAM/ROM memory mapping of vectors and two-

dimensional arrays
• Pipeline insertion
• Shift-register mapping
Using these directives constituted hardware-based design

exploration, allowing further improvement to the quality of
results. In synthesizing the RTL, AccelDSP evaluated the
entire design and scheduled the entire algorithm, performing
necessary boundary optimization in the process.

Throughout this flow, Xilinx AccelDSP maintained a uni-
form verification environment through a self-checking test
bench; the input/output vectors that were generated when
verifying the fixed-point MATLAB design were used to verify
the generated RTL. The RTL verification step also gave
Xilinx AccelDSP the information necessary to compute the
throughput and latency of the Kalman filter. This was essential
information to assess whether the design met specifications



and was critical for achieving cycle-accurate simulation.
5) Design Implementation:Although RTL verification is

a key step in the design flow, we wanted to see algorithms
running in hardware. Xilinx System Generator’s hardware-in-
the-loop co-simulation interfaces made this a push-buttonflow,
bringing the full power of MATLAB and Simulink analysis
functions to hardware verification.

Having run RTL verification in AccelDSP, the AccelDSP
design was now ready to be exported to the Xilinx System
Generator by going to the ”Export” pull-down menu in the
AccelDSP GUI and selecting ”System Generator”. AccelDSP
then generated a cycle-accurate System Generator block that
supports both simulation and RTL code generation.

At this point, the design flow transitioned to System Gen-
erator [6], where a new block for the Kalman filter was
available in the Simulink library browser. The Kalman filter
block only needed to be selected and dragged into the desti-
nation model to incorporate the AccelChip-generated Kalman
filter into a System Generator design. Once the AccelDSP-
generated block was included in the System Generator design,
a complete, system-level simulation of cycle-accurate, bit-true
models could be performed to verify that the system met
specifications.

The AccelDSP-generated blocks could be used for System
Generator in conjunction with the Xilinx block set. Once this
system-level verification step was completed, the next step
in the System Generator flow was to move on to design
implementation. The ”Generate” step in System Generator
compiled the design into hardware.

6) Design Verification:All design files generated by Ac-
celDSP, including exported System Generator files, were ver-
ified back to the original ”golden” source MATLAB m-file.
AccelDSP’s verification approach is based on the generation
of a test bench from the MATLAB source - this test bench
was applied at the RTL level within AccelDSP and could be
applied in System Generator to verify the correctness of the
design. Once verified in the System Generator environment,
the AccelDSP-generated block could be verified using System
Generator’s supported methods - including HDL co-simulation
and hardware-in-the-loop - to accelerate hardware-level simu-
lation 10 to 100 times [7].

III. C ONCLUSIONS

The use of HW/SW Codesign aprroach for Kalman filter
implementation enabled us to select the best implementation
method that could meet the system specifications which, in
this case, was a hardware implementation. By using the
algorithm design and hardware design tools together, we could
employ the most productive means of modeling hardware for
implementation and completing high complexity designs more
rapidly.
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APPENDIX

The C code for Kalman Filter [8] is listed below in the
following pages.



// Implementation of the Kalman filter for one time-series of the activity
// classification algorithm for the Hogthrob Project. The purpose is to find
// the memory requirements and computational complexity of this piece of code
// and, later, optimize the memory usage.

#include <stdio.h>
#include <stdlib.h>

float at[3]; // array containing "Prior means"
float Rt[3*3]; // array containing "Prior Variances"
float ft[1]; // array containing "One-step Forecast means"
float Qt[1]; // array containing "One-step Forecast variances"
float At[3]; // array containing "Adaptive Coef. matrix"
float et[1]; // array containing "One-step Forecast error"
float mt[3]; // array containing "Filtered means"
float Ct[3*3]; // array containing "Filtered variances"

int additions = 0;
int multiplications = 0;
int divisions = 0;

// Parameter Ft contains tabularized sines and cosines. R code:
// st <- sin(((2*pi)/T)*(1:n));
// ct <- cos(((2*pi)/T)*(1:n));
// Ft <- cbind(rep(1,n),st,ct);

float Ft[3*21] = {1, 2.947552e-01, 0.9555728, \
1, 5.633201e-01, 0.8262388, \
1, 7.818315e-01, 0.6234898, \
1, 9.308737e-01, 0.3653410, \
1, 9.972038e-01, 0.0747301, \
1, 9.749279e-01,-0.2225209, \
1, 8.660254e-01,-0.5000000, \
1, 6.801727e-01,-0.7330519, \
1, 4.338837e-01,-0.9009689, \
1, 1.490423e-01,-0.9888308, \
1,-1.490423e-01,-0.9888308, \
1,-4.338837e-01,-0.9009689, \
1,-6.801727e-01,-0.7330519, \
1,-8.660254e-01,-0.5000000, \
1,-9.749279e-01,-0.2225209, \
1,-9.972038e-01, 0.0747301, \
1,-9.308737e-01, 0.3653410, \
1,-7.818315e-01, 0.6234898, \
1,-5.633201e-01, 0.8262388, \
1,-2.947552e-01, 0.9555728, \
1,-2.449213e-16, 1.0000000};

// Parameter Yt contains the time series in use. This Yt is the first
// 120 samples from EAM1 (J=k=1). This is, probably, data from the X-axis.

float Yt[120] = {0.061035156250, 0.130371093750, 0.161376953125, \
0.258984375000, 0.207275390625, 0.272216796875, \
0.354980468750, 0.357421875000, 0.358886718750, \
0.541015625000, 0.496093750000, 0.435302734375, \
0.416992187500, 0.521728515625, 0.502929687500, \
0.266601562500, 0.410644531250, 0.205322265625, \
0.238525390625, 0.384521484375, 0.419433593750, \
0.110595703125, 0.116943359375, 0.891601562500, \
0.226562500000, 0.056152343750, 0.249267578125, \
0.300781250000, 0.268066406250, 0.392089843750, \
0.455810546875, 0.309326171875, 0.403320312500, \
0.337646484375, 0.632568359375, 0.533203125000, \
0.475341796875, 0.331542968750, 0.102783203125, \
0.195556640625, 0.262451171875, 0.436035156250, \
0.256103515625, 0.227294921875, 0.206542968750, \
0.076171875000, 0.112304687500, 0.265869140625, \
0.191894531250, 0.256835937500, 0.527832031250, \
0.408935546875, 0.451660156250, 0.386718750000, \



0.495849609375, 0.439697265625, 0.505468750000, \
0.204101562500, 0.206298828125, 0.239257812500, \
0.404541015625, 0.412353515625, 0.431884765625, \
0.420410156250, 0.230224609375, 0.176269531250, \
0.129296875000, 0.402832031250, 0.267822265625, \
0.227539062500, 0.477539062500, 0.505126953125, \
0.403808593750, 0.452636718750, 0.556152343750, \
0.423095703125, 0.395751953125, 0.310351562500, \
0.167968750000, 0.398437500000, 0.471435546875, \
0.395019531250, 0.485107421875, 0.437011718750, \
0.159423828125, 0.204833984375, 0.247558593750, \
0.097851562500, 0.273925781250, 0.338623046875, \
0.200683593750, 0.216796875000, 0.376220703125, \
0.639648437500, 0.491210937500, 0.340820312500, \
0.421386718750, 0.525390625000, 0.482421875000, \
0.495605468750, 0.444580078125, 0.336914062500, \
0.258789062500, 0.074462890625, 0.229980468750, \
0.207763671875, 0.376464843750, 0.352539062500, \
0.364062500000, 0.333984375000, 0.476806640625, \
0.168945312500, 0.177734375000, 0.209472656250, \
0.151855468750, 0.017822265625, 0.527587890625, \
0.469726562500, 0.426025390625, 0.436718750000};

// Parameter Vt is different from the one in table 8.1 on page 93 in Cecile
// Cornou’s Ph.D. Thesis "Automated Monitoring Methods For Group Housed Sows".
// This Vt originates from distributed data material.

float Vt = 0.007187178;

// Parameter Wt is different from the one in table 8.1 on page 93 in Cecile
// Cornou’s Ph.D. Thesis "Automated Monitoring Methods For Group Housed Sows".
// This Wt originates from distributed data material.

float Wt[] = {0.01828878, 0.0000000000, 0.00000000000, \
0.00000000, 0.0001154555, 0.00000000000, \
0.00000000, 0.0000000000, 0.00011545550};

void matrix3x3addition(float *a, float *b, float *c)
{ int i;

for(i = 0; i<9; i++)
{ c[i] = a[i] + b[i];
}
additions = additions + 9;

}

void matrix1x3addition(float *a, float *b, float *c)
{ int i;

for(i = 0; i<3; i++)
{ c[i] = a[i] + b[i];
}

}

void matrix1x3constantAddition(float *a, float *b, float *c)
{ int i;

for(i = 0; i<3; i++)
{ c[i] = a[i] + b[0];
}
additions = additions + 9;

}

void matrix1x3mul3x1(float *a, float *b, float *c)
{ int i,j;

for(i = 0; i<3; i++)
{ for(j = 0; j<3; j++)
{ c[3*i+j] = a[i] * b[j];
}

}
multiplications = multiplications + 9;

}



void matrix3x1transpose3x3multiplication(float *a, float *b, float *c)
{ c[0] = a[0]*b[0] + a[1]*b[3] + a[2]*b[6];

c[1] = a[0]*b[1] + a[1]*b[4] + a[2]*b[7];
c[2] = a[0]*b[2] + a[1]*b[5] + a[2]*b[8];
multiplications = multiplications + 9;
additions = additions + 6;

}

void matrix3x3multiplication3x1(float *a, float *b, float *c)
{ c[0] = a[0]*b[0] + a[1]*b[1] + a[2]*b[2];

c[1] = a[3]*b[0] + a[4]*b[1] + a[5]*b[2];
c[2] = a[6]*b[0] + a[7]*b[1] + a[8]*b[2];
multiplications = multiplications + 9;
additions = additions + 6;

}

void matrix3x1multiplication(float *a, float *b, float *c)
{ c[0] = a[0]*b[0] + a[1]*b[1] + a[2]*b[2];

multiplications = multiplications + 3;
additions = additions + 2;

}

void print3x3(float *k)
{ // printf("Matrix:\n");

printf(" %e %e %e\n",k[0], k[1], k[2]);
printf(" %e %e %e\n",k[3], k[4], k[5]);
printf(" %e %e %e\n\n",k[6], k[7], k[8]);

}

void print1x3(float *k)
{ //printf("Matrix:\n");

printf(" %e %e %e\n",k[0], k[1], k[2]);
}

void printScalar(float *k)
{ //printf("Scalar:\n");

printf(" %e\n\n",k[0]);
}

int main(void)
{ int i,j;

float temp1[9], temp2[9], temp3[0];

// Initialization of Ct
Ct[0] = 0.147833;
Ct[1] = 0.000000;
Ct[2] = 0.000000;
Ct[3] = 0.000000;
Ct[4] = 0.147833;
Ct[5] = 0.000000;
Ct[6] = 0.000000;
Ct[7] = 0.000000;
Ct[8] = 0.147833;

// Initialization of mt
mt[0] = 0.3340450;
mt[1] = 0.0984615;
mt[2] = 0.3192043;

// R code converted to C code:
// ft[1] <- mt[1,1,1];

ft[0] = mt[0];

// R code converted to C code:
// Qt[1] <- t(Ft[1,]) %*% (Ct[,,1] + Wt) %*% Ft[1,] + Vt;

matrix3x3addition(&Ct[0], &Wt[0], &temp1[0]);
matrix3x1transpose3x3multiplication(&Ft[0], &temp1[0], &temp2[0]);
matrix3x1multiplication(&temp2[0], &Ft[0], &temp1[0]);
Qt[0] = temp1[0] + Vt;



// R code converted to C code et[1] <- Yt[1] - ft[1];() :

et[0] = Yt[0] - ft[0];

for(i=1;i<120;i++)
{ //at[,,i] <- mt[,,i-1];

at[0] = mt[0];
at[1] = mt[1];
at[2] = mt[2];

//Rt[,,i] <- Ct[,,i-1] + Wt;

matrix3x3addition(&Ct[0], &Wt[0], &Rt[0]);

//ft[i] <- t(Ft[i,]) %*% at[,,i];

matrix3x1multiplication(&Ft[3*(i%21)], &at[0], &ft[0]);

//Qt[i] <- t(Ft[i,]) %*% Rt[,,i] %*% Ft[i,] + Vt;

matrix3x1transpose3x3multiplication(&Ft[3*(i%21)], &Rt[0], &temp1[0]);
matrix3x1multiplication(&temp1[0], &Ft[3*(i%21)], &temp2[0]);
Qt[0] = temp2[0] + Vt;
additions = additions + 1;

//At[,,i] <- as.vector(Rt[,,i] %*% Ft[i,]) / Qt[i];

matrix3x3multiplication3x1(&Rt[0], &Ft[3*(i%21)], &temp2[0]);

At[0] = temp2[0] / Qt[0];
At[1] = temp2[1] / Qt[0];
At[2] = temp2[2] / Qt[0];

divisions = divisions + 3;

//et[i] <- Yt[i] - ft[i];

et[0] = Yt[i] - ft[0];

additions = additions + 1;

//mt[,,i] <- at[,,i] + At[,,i]*et[i];

mt[0] = at[0] + At[0]*et[0];
mt[1] = at[1] + At[1]*et[0];
mt[2] = at[2] + At[2]*et[0];

multiplications = multiplications + 3;
additions = additions + 3;

//Ct[,,i]<- Rt[,,i] - At[,,i] %*% t(At[,,i]) * Qt[i];

matrix1x3mul3x1(&At[0], &At[0], &temp1[0]);

for(j=0;j<9;j++)
{ Ct[j] = Rt[j]-temp1[j]*Qt[0];
}
multiplications = multiplications + 9;
additions = additions + 9;

// printf("\nCt:\n");
// print3x3(&Ct[9*i]);

}



printf("Output: \n\n");

printf("\nat:\n");
print1x3(&at[0]);

printf("\nRt:\n");
print3x3(&Rt[0]);

printf("\nft:\n");
printScalar(&ft[0]);

printf("\nQt:\n");
printScalar(&Qt[0]);

printf("\nAt:\n");
print1x3(&At[0]);

printf("\net:\n");
printScalar(&et[0]);

printf("\nmt:\n");
print1x3(&mt[0]);

printf("\nCt:\n");
print3x3(&Ct[0]);

printf("Additions: %i\n", additions);
printf("Multiplications: %i\n", multiplications);
printf("Divisions: %i\n", divisions);
return 0;

}



Chapter 12

Conclusions

This thesis concerns the system-level modeling and design of networked mul-
tiprocessor embedded systems. The contributions of this thesis include the
following concepts and techniques:

The first part of the thesis presents an overview of the existing theories and
practices of modeling and simulation of multiprocessor systems-on-chip. The
systematic categorization of the plethora of existing programming models at
various levels of abstraction is the main contribution here which is the first such
attempt in the published literature.

The second part of the thesis deals with the issues related to the development
of system-level design methodologies for networked multiprocessor systems-on-
chip at various levels of design abstraction with special focus on the modeling
and design of wireless integrated sensor networks which are an emerging class
of networked embedded computer systems.

The work described here demonstrates how to model multiprocessor systems-
on-chip at the system level by abstracting away most of the lower-level details
albeit retaining the parameters most relevant at the system-level. The multi-
processor modeling framework is then extended to include models of networked
multiprocessor systems-on-chip which is then employed to model wireless sensor
networks both at the sensor node level as well as the wireless network level.
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In the third and final part, the thesis covers the issues related to the design,
implementation and testing of a system-on-chip wireless sensor node develop-
ment platform, specifically, for the Hogthrob project. This part also deals with
the cycle-accurate model of the multiprocessor system-on-chip and its possible
extensions to the transaction-level MPSoC model.

An important design consideration while designing our sensor node develop-
ment platform, called the Hogthrob platform, was to reduce the overall cost
of prototyping by using COTS (Common Off-the-Shelf) components. Another
consideration was to have the capability to experiment with various combina-
tions of sensors, radio transceivers and microprocessors to select the optimal
combination. To achieve this objective, we needed to adapt a modular design
strategy so that we could swap sensors and radio transceivers with the ones
resulting in more efficient energy and system performance. For trying different
microprocessors and/or to perform hardware acceleration, we needed some form
of reconfigurable logic on the wireless sensor node so that we could configure it
with various mircoprocessor cores. Of couse, low power, small form factor, and
robust packaging were necessary as well because the wireless sensor nodes have
to be mounted on sows.

The Hogthrob platform has also been designed with a view to explore the
tradeoffs of implementing application functionality either in software (on the
embedded processor) or hardware (on the reconfigurable logic/custom proces-
sor), without being constrained by the initial design choices. The hardware
and software components that constitute a sensor network system had to be
optimized so that they meet the resource and energy constraints while deliver-
ing acceptable performance. To meet these objectives, we needed to adopt a
hardware/software codesign perspective for designing the wireless sensor nodes
which could be customized to suit our application. As an initial design step,
all the application functionality was placed on the embedded processor and was
gradually moved to the FPGA. At the initial stage of software development, the
radio transceiver and other peripherals were being controlled by the software
running on the embedded processor but, eventually, the embedded processor
only served to initialize the FPGA and function as an external timer and an
A/D converter for the FPGA.

Because application-specific integrated circuits (ASIC’s) can clock at much lower
speeds and use less numerical precision, they consume several orders of mag-
nitude less energy than the programmable processors. While the line between
dedicated processors and general-purpose (more easily programmed) processors
is constantly shifting, generally speaking, a mixed architecture was needed for
computational subsystems dealing with connections to the physical world. The
ratio in die area between the two approaches - ASIC and programmable proces-
sor - scales with the technological changes, so ASIC’s maintain a cost advantage
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over many chip generations. Convenient programmability across several orders
of magnitude of energy consumption and data processing requirements is a wor-
thy codesign research goal for pervasive computing. In the meantime, while the
codesign researchers continue to pursue that goal, multiprocessor systems are
needed in the wireless integrated sensor networks.

The thesis, as a whole makes contributions to the field of research by describing
a design methodology for networked multiprocessor embedded systems at three
layers of abstraction from system-level through transaction-level to the cycle
accurate level as well as demonstrating it practically by implementing a wireless
sensor node design.
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