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Abstract

Future chip-multiprocessors (CMP) will integrate many cores interconnected with a high-bandwidth and low-latency scalable
network-on-chip (NoC). However, the potential that this approach offers at the transport level needs to be paired with an analogous
paradigm shift at the higher levels. In particular, the standard shared-memory programming model fails to address the requirements
of scalability of the many-core era. Fast data exchange among the cores and low-latency synchronization are desirable but hard to
achieve in practice due to the memory hierarchy. The message-passing paradigm permits instead direct data communication and
synchronization between the cores. The shared-memory could still be used for the instruction fetch. Hence, we propose a hybrid
approach that combines shared-memory and message passing in a single general-purpose CMP architecture that allows efficient
execution of applications developed with both parallel programming approaches. Cores fetch instructions from a hierarchical
memory and exchange their data through the same memory, for compatibility with existing software, or directly through the fast
NoC. We developed a fast SystemC based cycle-accurate simulator for design space explorations that we used to evaluate the
performance with real benchmarks. The various components have been RTL coded and mapped to a CMOS 45 nm technology to
build a silicon area model that we used to select the best architectural configurations.
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1. Introduction

Moore’s empirical law has been proved valid even in the
nanometric lithographic regime and we will likely continue to
behold an exponential increase in silicon transistor counts in
the years to come. As a corollary, we will see also an expo-
nential increase in the “core” counts in chip-multiprocessors
(CMP) for general purpose computing and in special purpose
dedicated on-chip architectures like graphics processing units.
Even the high-end sector of embedded computing is moving
toward the multi-core realm [1]. Commercial CPU chips are
now sold with up to eight cores but sixteen cores are on their
way [2]. It is likely that in the shift from multi to many core
we will see less complex cores then they used to be, because
many smaller in-order cores seem to produce a better aggre-
gate performance for a given silicon area than less out-of-order
larger cores [3]. The communication infrastructure is one of the
keys to allow cores pool to deliver its potential. It is now well-
established that packet-switched networks on-chip (NoC’s) will
be the communication backbone of such future chips [4][5].

The move to the NoC paradigm is a response to a scalability
problem. Having a scalable network is not sufficient though if
other hindrances impede the potential of such a parallel system
to fully develop. One of the obstacles is the current program-
ming model, based on the classic shared-memory paradigm.
The memory hierarchy becomes the true performance wall for
shared-memory based systems [6]. Cluster-based systems his-
torically faced the problem of sharing data by exchanging them
through explicit messages. The increasing difficulties in the
access to shared memory resources justify the adoption of a

similar approach also in the on-chip environment. The so-
called Message Passing paradigm offers then an alternative for
both data exchange and synchronization among different cores
that may benefit from the presence of a low-latency and high-
bandwidth on-chip network. Nonetheless, there are a number of
good reasons not to abandon the old way. First of all legacy is-
sues suggest to keep compatibility with parallel programs writ-
ten for a shared-memory environment. Second, not all the par-
allelized applications fully benefit from a message-passing ap-
proach. Third, the shared-memory paradigm is “easier” for de-
velopers, not that message-passing is difficult but requires an
initial learning cost. It must be said that shared-memory is easy
for parallel programming as long as there is a memory coher-
ence mechanism transparent for the developer. Unfortunately,
hardware cache coherency methods do not scale well and it
is likely that they need to be assisted more and more by soft-
ware in future parallel systems, hence reducing the appeal of a
shared-memory programming model.

For all these reasons, we propose a NoC-based hybrid
shared-memory/message-passing parallel CMP architecture
that has the following key characteristics:

1) Generality. It is not tailored to a specific class of applica-
tions, but must be able to support both message-passing
and shared-memory programming models, without any
need to rewrite existing code.

2) Scalability. Hardware characteristics of its constituent el-
ements do not depend on overall system architecture and
size (external memories topology, number of processing
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nodes), nonetheless their key parameters must be tunable
(e.g. L1 cache size and microprocessor features).

This paper illustrates the architecture, gives details about im-
plementation and discusses experimental results obtained exe-
cuting real benchmarks. It is not the aim of this work a per-
formance comparison with the “best” existing CMP architec-
ture designed for message-passing only, or rather with the op-
timal CMP configuration for shared-memory. Likely, that kind
of comparison will be at a disadvantage, performance-wise, for
our work. We believe instead that the support for both pro-
gramming paradigms is necessary for the non-specialized, cost-
effective CMP’s of the manycore era.

The processing elements in our CMP fetch their own instruc-
tions and load/store their private data from/to a more or less
standard hierarchical memory. As for shared data, process-
ing cores may still use a hardware/software assisted shared-
memory approach, or a faster point-to-point message-passing
mechanism that exploits the features of an on-chip packet-
switched network. For this case we developed simple and easy-
to-use API primitives which rely on an underlying hardware
interfacing with the NoC at full processor speed.

The architectural parameters need to be adjusted around a
single or a set of applications. This customization requires a
simulation environment fast enough to allow complete design
space exploration in an affordable time but that does not sac-
rifice accuracy for speed. We thus developed a cycle-accurate
SystemC based tool that made it possible to simulate more
than two hundred different instances of a 16 cores architecture
running a real software on it in few days. We used the results
to prune inefficient instances dominated by others with same or
more performance at equal or lower cost.

The idea of a multiprocessor architecture with hardware sup-
port for shared memories and explicit messaging is not totally
new and traces its roots back to the nineties. Notable exam-
ples are Stanford FLASH, MIT Alewife and ASCOMA projects
[7][8][9][10]. In those early cases that aimed to implement
board-level multiprocessor systems, a conventional processor
with cache and local memories was connected to special pur-
pose complex devices dedicated to handle I/O and interconnec-
tion to other nodes in the network. Those architectures were
mainly based on the concept of Distributed Shared Memory
(DSM), in which address translation is performed locally at
each node level, and no main memory is present. Compared
to one node of those machines, our on-chip processor core and
the switch, the essential elements of our NoC, are incompara-
bly simpler. The on-chip environment poses totally different
design constraints than board-level multiprocessor design and
we think that to maximize the performance it is better to keep
the “tile” of the modular design as simple as needed and to fill
the available area with as many tiles as possible.

In the NoC scientific community, some early papers en-
visioned message passing as the communication mechanism
between computational resources [11], others proposed that
the network interface had to offer a shared-memory abstraction
[12] or that a new parallel programming paradigm was needed

[13]. Researchers involved in application specific multiproces-
sor systems-on-chip, not general purpose homogeneous CMP,
recognized the need to integrate both programming models for
reasons of flexibility [14]. More recently, after the industry
shift toward CMP architectures, it became clear that NoC’s are
the only answer for scalable intra-core connectivity. Support
to shared-memory by the NoC is then necessary, especially
for legacy reasons, but the need to include also a support for
message-passing in CMP emerged [15]. As far as we know
this is the first paper to address implementation aspects of a
hybrid shared-memory/message-passing CMP architecture and
to propose a detailed analysis of the performance/area tradeoff

obtained varying architectural parameters like cache size and
number of active cores when executing real parallel code.

Organization of the paper is as follows. The architecture with
its components is presented in section 2 while section 3 de-
scribes the SystemC based simulator. Section 4 discusses phys-
ical implementation issues. Simulation results are reported and
analyzed in section 5. Finally, section 6 comments on the ob-
tained results and concludes this work.

2. System Architecture

Figure 1 represents a generic instance of our NoC-based
multiprocessor architecture. The network consists of 5-port
Switches (SW) connected in a two-dimensional topology. Four
of the switch ports connect to four other switches. The fifth
one connects to a local Processing Element (PE) or to a Mul-
tiprocessor Memory Management Unit (MPMMU) which in
turn communicates with an off-chip double-data-rate SDRAM
(DDR in figure). Every link in figure is actually made of a pair
of busses traveling in opposite directions. (The external DRAM
data bus, however, is bidirectional, as usual for standard DDR
memories.) Every switch hence has five input and five output
ports (north, south, west, east and PE).

The following subsections describe in details components
used to build the system.

2.1. The On-Chip Network

Bidimensional mesh and torus are more amenable than other
topologies to large-scale silicon implementations primarily be-
cause of easiness of layout [11][16], but also for latency and
timing reasons [17]. Recent investigations evaluated multidi-
mensional variants of these simple topologies and concentrated
meshes which seem advantageous, in some cases, compared to
standard topologies [18][19]. The fact that a potential advan-
tage depends on the traffic scenario and possible layout compli-
cations drove our decision toward a simpler topology. We were
then left with the alternative between 2D mesh or torus. We
chose the latter for its larger bisection bandwidth, its better sym-
metry, and its smaller latency [16]. Although the wrap-around
connections in Figure 1 seem longer than the others, an opti-
mal layout arrangement called “folded torus” guarantees that
switches connect only through local links [20]. Torus topolo-
gies are less power efficient than meshes [16][21] and its local
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Figure 1: The system architecture.

links are longer [17]. However, [21] shows that when adap-
tive routing is used – and that is also our choice as will be later
explained – the power gap diminishes. In a previous work we
evaluated that the NoC consumes significantly less than the pro-
cessing elements connected to it [22], and so benefits outweigh
the relatively small power disadvantage. As for the longer links,
they may become an energy issue, because buffers inserted to
reduce delay are power expensive. But our experience with syn-
thesizable cores is that cores limit the clock frequency in a fully
synchronous design, while the NoC is not in the critical path.
Timing margins can then be used to relax NoC links design.
This conclusion may be upset if custom, optimized processors
were used. But, for the case at stake, the added power for longer
torus links was marginal at chip scale.

After topology selection, the second relevant choice was
the routing strategy implemented within switches. High-
performance switches consume a large share of silicon real es-
tate as well as power budget [4]. The main reason is their
large use of memory buffers. We believe that the largest part
of chip area and power budget should be dedicated to com-
putational elements and their local caches. Moreover, larger
caches reduce traffic due to less cache misses and alleviate per-
formance requirement of the network. We adopted an adaptive
routing strategy called “deflection-routing” that permits to keep
switch size small at a moderate and tolerable performance cost
[23][24][25]. It consists in choosing the best route for every
incoming packets and in case two or more of them contend for
the same output port, a winner is chosen, according to a pri-
ority rule. The others are “deflected” elsewhere. No packets
are ever kept inside the switch in any buffer, thus the alterna-
tive name of hot-potato routing. The fifth input from the PE
has the smallest priority and enters the NoC only if at least one
of the switch output ports is not already taken. It thence fol-
lows that PE needs to be stopped whenever it did not manage
to send a packet. Conversely, if the switch port toward a PE is

not open because the processing element is busy, packets ad-
dressed to it will get deflected. It must be noted that only PE’s
can be stopped and no other form of backpressure is present
in the switch-to-switch connections, thanks to the hot-potato
rule. It follows that there’s always a way out from a switch
for an incoming packet and so deflection-routing is inherently
deadlock-free (see [26] for a thorough analysis).

In our implementation, the basic routing unit is the flit (flow
control unit) which coincides with the phit (physical unit). Ev-
ery injected flit is treated as a complete packet by the switches
and is given a relative address in (X,Y) form that is decremented
as the flit gets close to its destination or incremented if it gets
deflected astray. Such address and a validity bit form the flit
header, followed by the NoC-level payload which in turn en-
capsulates other higher-level packets described later. The price
for using hot-potato is that deflected flits of a larger message
may experience different latencies and arrive out of order at des-
tination. Reordering mechanisms must be then implemented
in hardware or in software and assisted by sequence numbers
printed in the packets’ header. In theory, packets could be de-
flected forever giving rise to a livelock issue. However the
probability that a packet is not delivered vanishes rapidly as
a function of packet age. In one of our previous experiences
with deflection-routing and a benchmark suite of parallel ap-
plications, we observed sporadic cases of single flits delivered
with high latency (larger than average) that did not significantly
hamper execution times [24]. We anticipate that in this work
we did not observe any significant overhead, too. Should live-
lock become an issue, a flit-age prioritization mechanism must
be implemented at router level that guarantees that the oldest
flit is not deflected and always arrives at destination [25]. Re-
serving bits for packet age implies some performance reduction
(less wires used for payload) or some higher area and power
cost (more wires for a given payload).

2.2. Processing Element and NoC Interface
Building a full-blown CMP architecture from scratch and

experimenting with it using realistic programs as benchmarks
is an almost prohibitive task for a university research group.
Therefore instead of building our own processing elements we
resorted to a third party core. We selected the highly con-
figurable Tensilica Xtensa-LX processor which comes with a
stable and powerful tool-chain for compilation, profiling, hard-
ware/software co-simulation and emulation on FPGA. Another
research group in Stanford recently proved useful the same ap-
proach [27]. But the main reason of our choice was the possibil-
ity to add custom hardware to the processor baseline and to ex-
tend its instruction set to deal with such add-ons. This allowed
us to configure the Xtensa cores with a high-speed message-
passing interface using TIE (Tensilica Instruction Extension)
ports. Such I/O directly connects to the processor register-file
and behaves as a FIFO queue interface with push/pop com-
mands and full/empty flags. The scheme in Figure 2 depicts the
Xtensa processing element and the way it connects to a switch
through a NoC interface.

This figure reveals that TIE ports used for message-passing
use the same FIFO signals used in the PE-Switch connection.

3



DCache reqctrl

respctrl
respdata

reqdata

datao
push

empty
pop
datai
full

Switch

N
oC

 I
nt

er
fa

ce

datai
full

push
datao

pop
empty

Xtensa

Tensilica

Core

PI
F 

B
us

T
IE

 P
or

ts

datao
datai

ctrl

addr

datao
datai

ctrl

addr

ICache

reqaddr

Figure 2: The processing element and its interface with the network-on-chip.

Hence the message-passing interprocess communication be-
tween cores is nothing else but a simple FIFO read/write pro-
cess, as Figure 3-a shows. A message is split into flits when it is
sent and the TIE interface puts sequence number and (X,Y) ad-
dress into all flits. In order to speed-up the operation and to sus-
tain the maximum throughput of one flit per clock cycle, we ex-
tended the processor core with a counter for the sequence num-
ber and a LUT for addressing. The sequence number removes
the need to instantiate buffers to sort out-of-order received flits.
When a flit arrives, the PE reads it from the NoC interface with
a pop operation and stores it into a register. Then the flit gets
written in memory by using its sequence number as an offset
address while another register contains the base address. Re-
ceived messages can be of data or request type and a bit of the
flit’s header is used as selector of the appropriate base address.
A double buffer technique allows one clock cycle read opera-
tions. Additional hardware for reception of messages, whose
overhead is around 5k gates for a 64 bit wide flit, is directly
supported by custom TIE instructions. Figure 3-b describes the
reception operation.

+
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Figure 3: FIFO-like inter-processor communication model and details of the
receiving interface.

Figure 2 showed that TIE ports assisted message-passing is
not the only way PE’s interact with the NoC. Every time a data
or instruction miss occurs in local caches, a processor inter-
face bus (PIF) transaction takes place as if a main memory was
connected to that bus. The NoC interface, whose a scheme
is reported in Figure 4, intercepts such requests and translates
them into various types of NoC packets corresponding to sin-

gle read/write operations or block transfers. Final destinations
of such packets are the MPMMU’s. Translation of a specific
shared-memory address into a NoC address depends on a con-
figuration memory inside the interface and can be directly con-
figured by the microprocessor (MPMMU LUT in Figure 4).
In block-read transactions, which always occur during cache
misses, different flits containing words read from the MPMMU
may arrive out-of-order. The usual processor configuration sup-
ports a cache line of 16 bytes thus a miss causes a block read of
four 32 bits words. For this reason, the NoC interface contains
a reordering buffer with a depth of four flits (every word is en-
capsulated in one flit). Even though there are no limitations in
the number of MPMMUs in the whole system, in all our exper-
iments we used a single MPMMU which receives all the mem-
ory transactions. Thus the interface prints a fixed NoC (X,Y)
address for the whole memory address space in all flits of this
type of transactions. In case of a distributed shared-memory, a
given address range will correspond to a given MPMMU.

pif−to−NoC Bridge

PIF Bus TIE Ports

Reord.
FIFO

MPMMU
LUT

Arbiter

NoC−Out

NoC−In

Tensilica Xtensa Processor

Figure 4: Shared-memory and message-passing interface to and from the NoC.

Since both message-passing and shared-memory transac-
tions use the same NoC, the interface contains a simple arbiter
that can be configured in three possible ways, depending on
required system performance and area availability. In the
simplest configuration the two interfaces connect to the NoC
with a simple multiplexer and no buffers, as shown in Figure
4. In case of contention, the arbiter grants the NoC access
to one interface while the other waits until the release of the
resource. A second implementation uses a single FIFO queue
that temporary stores packets from the two interfaces if the
switch cannot accept them because of a local congestion. In the
last implementation, two FIFOs are used, one for High-Priority
and one for Best-Effort traffic. In this case the arbiter will read
the best-effort queue only if the high-priority one is empty.

Concerning the core, apart from extensions that we used for
the message-passing interface, there are a number of standard
options that the user can customize before creating an instance
of the core, ranging from pipeline stages (5 or 7), to cache size
and associativity, integer unit options (like hardware support for
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16x16 or 32x32 multiplications) and many others. Our system
accepts cores with any of these options set. Since the archi-
tecture can be used for parallel scientific computations, a dou-
ble precision floating point acceleration provided by Tensilica
has been included in the core [28]. A small set of TIE instruc-
tions and states can be used for speeding up the existing double-
precision software emulation. With the addition of just 4k-7k
gates, an Xtensa processor performs double precision adds and
subtracts in an average of 19 cycles while multiplies take an
average of 60 cycles using 16 or 32 bit multipliers and only 26
cycles for configuration including the “Multiply High” option.

2.3. Multiprocessor Memory Management Unit (MPMMU)
An MPMMU is an Xtensa processor dedicated to shared-

memory transactions. Differently from the PE of Figure 2, its
PIF bus connects to a DDR-SDRAM controller and not to the
NoC interface. The latter is also different because it hosts two
FIFOs for incoming and one for outgoing packets. Incoming
packets can be of Pif-Requests/Control or Pif-Data type. The
Pif-Request/Control FIFO receives “request-for-transaction” to-
kens generated by cores which aim to perform read/write (sin-
gle/block) shared-memory transactions. (The MPMMU can be
seen as a slave, i.e. it always answers to transactions initiated
by other processors.) The depth of this queue is as large as the
number of processors, therefore once a core’s request token ar-
rives at the MPMMU’s switch, the request leaves the NoC and
gets queued even if the MPMMU is busy. This choice reduces
greatly the probability of traffic congestion. The request token
flit contains source-id of transaction initiator, memory address
and type of transaction (write/read). In case of write request,
the MPMMU issues a grant to the sender which is then enabled
to send its data packet. The Pif-Data queue absorbs a temporar-
ily speed mismatch between the switch and the MPMMU that
reads from the queue and stores into memory, and is then useful
to reduce NoC traffic, like the request queue does. At the end of
this operation a second acknowledge is sent to the transaction
initiator (Figure 5.a). Even though it might seem a better idea
to send data immediately with the first request, and not wait-
ing for the acknowledge, our choice reduces the need for more
buffer area in the NoC interface of the MPMMU and reduces
traffic congestion in the on-chip network. Moreover, once the
core initiates a PIF transaction because of a write miss, the time
spent in the network for the first round of request and acknowl-
edge is a negligible fraction of the whole transaction time.

In case of a read transaction request, the MPMMU immedi-
ately sends requested data through the outgoing FIFO (Figure
5.b). Since the MPMMU has a local cache for both instruc-
tions and data, latency of read operations strongly depends on
availability of the given word inside the cache.

The global shared-memory which can be banked and at-
tached to different MPMMU’s is divided into logic segments,
i. e. a shared area and as many private areas as the processing el-
ements. Since the private area can be accessed only by one PE,
no coherency is required between L1 cache and system mem-
ory. In order to support atomic operations like critical sections,
a lock/unlock mechanism of a given word in shared-memory
has been implemented in the firmware of the MPMMU. Every
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Data
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Processor
Generic

MPMMU
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Req
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Processor
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Figure 5: Write (a) and Read (b) protocol between a processor and the MP-
MMU.

processor which aims to access the shared memory segment for
read/write operations must first request lock. If granted, the
line can be read/written. Before releasing the locked line with
an unlock command, the processor must flush the locked line
in its L1 cache so as to keep coherency. All the lock/unlock
requests are stored in the Pif-Requests/Control queue.

Even if not mandatory, all the processors access the same
address-space, a choice that makes easier and faster to use the
system. The MPMMU will thus add a base address different for
each core on the basis of the source-id.

2.4. Network Protocol

The network protocol of the system can be divided into
three levels: network, bridge and application. Network-level
is used by NoC switches to route flits through the network. As
we anticipated above, the network payload comes along with
a simple header made of a validity bit and a (X,Y) destina-
tion address field the size of which depends on network size.
For a 4x4 topology two bits are required for each coordinate.
The bridge-level concerns PIF memory-mapped and message-
passing transactions, which the interface transposes into the
NoC acting as a bus bridge. The header for this level includes
type, sub-type and sequence-number fields. The first one is
a three bits field and expresses seven possible types of pack-
ets: single-read, single-write, block-read, block-write, lock and
unlock for shared-memory transactions plus another one for
generic message-passing packets. The sub-type two bits field
used in shared-memory transactions defines if the packet is an
Ack/Nack or has an Address/Data in the payload. In case of
a message-passing flit, it is used to distinguish requests from
generic data packets. The third one, sequence-number, is used
at the receiver to perform the re-ordering process of incoming
packets in case of out-of-order delivery. In the current imple-
mentation we set the size of this field to four bits, so that the
maximum packet size is sixteen flits.

All the protocol fields of the application-level are written and
used by the software layer. Source-id and burst-size are an ex-
ample. For instance, in a 4x4 implementation the source-id is a

5



four bits field. The burst-size is used by the receiver and indi-
cates how many flits, belonging to the same message, must be
expected before closing the transaction.

Figure 6 is an example of encapsulated packets for the three
levels in case of a 4x4 implementation with a single MPMMU.
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Figure 6: Three-levels packet format description.

2.5. Programming Model
As clear from discussion, the architecture supports a hy-

brid shared-memory/message-passing approach. To properly
use the system it is important to fully understand its program-
ming model. At startup, the code is placed in external DDR
memories, partitioned according to the number of MPMMU in-
stances. After reset all processors start to fetch initialization
routines (C runtime initialization, interrupt vectors etc.). The
private segment owned by each core is completely cacheable
and no particular precautions are needed for cache coherency
if cores only access that area or if the shared segment is read-
only. More attention is required for writing shared-data placed
in the shared-memory segment. First of all, data structures of
this type must be declared as volatile to alert the compiler that
optimizations involving those variables may potentially have
side-effects. Second, when a producer wants to write data in
this shared segment, a cache flush of the line must be performed
to make sure that coherency exists between the local L1 cache
and the global system-memory. An Xtensa custom instruction,
DIWBI, is used for this purpose. Also the consumer of a given
data in the shared segment must avoid incoherency making the
corresponding address not cacheable. For small memory re-
gions the DII instruction can be used, which invalidates a spe-
cific address of the cache and forces a load from the system
memory. For wider segments of at least 512MB it would be a
better choice to set all the segment as uncacheable bypassing
completely the cache, mainly in case of frequent accesses.

For the message-passing model, we used a subset of
message-passing interface (MPI) [29] APIs that we called
embedded-MPI (eMPI), developed in a previous project in
which cores were allowed to communicate only via message-
passing and did not access a global shared memory [22]. Three
basic primitives, MPI send(), MPI receive() and MPI barrier(),
are sufficient for direct communication between cores and can
be used for synchronization and for data exchange. The MPI
way of communicating performs best when data to be sent are
resident in the local L1 data cache memory, otherwise the time

to retrieve them from external memory after a cache miss sums
up to total communication time, making MPI less convenient
in this case than a coordinated shared-memory access. We will
see in the results section that L1 cache size is a critical param-
eter and must be well tuned around the application or range of
applications. Choosing a “one-size fits all” big L1 cache is not
a good choice, as large memories steal silicon area that could
be allocated to more computing elements [30].

A relevant point is that the hardware architecture of the com-
munication infrastructure and the memory hierarchy is totally
transparent to the processor cores. Hence we can make use of
the standard development tool-chain including the compiler that
does not have to be modified under any aspect.

3. System-Level Exploration

One of the issues with many-core designs is performance
evaluation. The challenge arises from the necessity to co-
simulate newly developed hardware, like PE’s, NoC and related
interfaces, with real software benchmarks running on, and from
the multiplication of this problem by the number of core in-
stances. Moreover, finding the right balance of all the architec-
tural parameters involved, like number of active cores, cache
size, packet lengths etc., requires many simulation batches.

Pursuing a full HDL modeling approach is not affordable in
terms of simulation time, even though it would be preferable for
its accuracy and matching with the implementation flow. Limit-
ing usage of HDL modeling to just the NoC and glue logic and
using a cycle-accurate Instruction Set Simulator (ISS) for the
PE is possible and gives the same accuracy of a full HDL model
as long as the ISS is cycle-accurate. Some commercial simu-
lation tools like Mentor Graphics Seamless usually link ISS to
HDL blocks through Inter Process Communication (IPC) at op-
erating system level [31]. Although this may work for limited
size architectures, the high number of nodes instantiated in our
case, and the consequent large overhead of operating system
task switching, makes this choice prohibitive if we intend to
simulate in an acceptable time different instances of the archi-
tecture and to run various benchmarks on it.

As a consequence, we used an alternative modeling tech-
nique, based on the SystemC co-simulation language [32].
From the point of view of microprocessor cores, many ISS
models written in SystemC are available, and for our architec-
ture, the existence of a cycle-accurate ISS of the Tensilica core
is a key point. Moreover, some commodity classes are available
to build a Tensilica based computation node. They model local
memories, attached to three different busses of the core, and a
TIE queue, i.e. the communication port for message-passing.
As for the custom developed hardware parts of the architecture,
we modeled them both at RTL using a synthesizable VHDL
coding style and with SystemC. We took care of checking their
behavior, so as to be sure of perfect compliance. This allowed
us two things:

• We built an FPGA emulator for small size versions of
the architecture and then checked the SystemC simulator
against it.
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• We prototyped the layout of the systems blocks in a CMOS
45 nm technology and so we accurately estimated the area
cost of the various configurations of the architecture (see
section 4).

Once selected the modeling technology, we developed a ba-
sic framework, which we used to perform debug and execution
tracing. The debug subsystem supports methods and classes
used during the test of the designed architecture to guarantee
model correctness. It is built up two interfaces, one template
and one module (in SystemC semantics). They are designed as
abstract objects, which must be extended to build the real ver-
sions. The template is just a general purpose counter, used in
any profiling or performance counter of our system. The only
class defined is Parameter, which specifies arguments passed
to Debug interfaces and aimed to prepare and collect execution
results. The two interfaces, Dump and Debug, must be imple-
mented by every object in the modeled system, and perform the
real work. Declared methods have the following meanings:

• prepare debug() - Set debugging environment and initialize
event counters.

• start debug() - Start the debugging engine inside the mod-
ule.

• stop debug() - Stop the debugging engine inside the mod-
ule.

• is debug started() - Check if the debugging engine is cur-
rently running.

• get debug result() - Extract event counters values from the
current module.

• dump() - Save current module state for later reuse.

• restore() - Restore module state saved from a previous
dump.

Based on these basic objects, three new abstract classes were
developed. They are Switch, which represents the data switch-
ing portion of a NoC node, Router, a block describing the
routing algorithm adopted, and Resource. Every possible data
source/sink object connected to the NoC must be derived sub-
classing the last one. A resource can be either a synthetic traffic
generator or a real Xtensa ISS, according to the type of simula-
tion required.

This environment has been used to analyze the performance
of the architecture running real benchmarks, as we discuss later
on in section 5. Concerning the comparison against a HDL-ISS
co-simulation, on average we achieved a speedup of 15x and
perfect overlap of behavior. Such speed enables accurate design
space explorations of many potential candidate architectures in
hours, a relatively small time compared to days for the HDL-
ISS version.

4. Physical Implementation

When different system architectures are evaluated, perfor-
mance is often used as the only criterion of comparison. We
think that a better figure of merit is performance for a given
cost. Thus, we evaluated the cost in terms of silicon area of
some possible architectural configurations. In particular, we
configured Xtensa processors as described in Table 1 and lim-
ited design exploration to the number of active cores and the
size of their L1 caches. Then we mapped the various archi-
tectural components described in section 2 on a CMOS 45 nm
technology standard-cell library and designed the layout of a
“tile” including the processor (core or MPMMU), its L1 data
and instruction caches with their tags, the interface with the
NoC and the switch. The areas of the different types of tile
obtained varying the cache size are reported in Table 2.

Table 1: Principal parameters of the Xtensa processor configuration.

Pipeline stages 5
Number of physical registers 32
16x16 integer multiplier yes
Zero-overhead loop instructions yes
Count of Load/Store units 1
Write buffer entries 4
Width of Instruction Fetch interface 32 bits
Width of Data Memory/Cache interface 128 bits
Width of PIF interface 32 bits
Width of interface to instruction cache 32 bits
Instruction Cache size 2, 4, 8 or 16 kBytes
Instruction Cache Line size 16 Bytes
Instruction Cache Associativity direct mapped
Data Cache size 2, 4, 8 or 16 kBytes
Data Cache Line size 16 Bytes
Data Cache Associativity direct mapped
Write Back yes
Debug yes
Data address breakpoint registers 2
Instruction address breakpoint registers 2
On Chip Debug(OCD) yes
External Debug Interrupt yes
System RAM size 128 MBytes

Table 2: Area (mm2) of CORE and MPMMU tiles in CMOS 45 nm technology
as a function of data and instruction cache size.

2 kB 4 kB 8 kB 16 kB
CORE tile area (mm2) 0.28 0.30 0.35 0.45
MPMMU tile area (mm2) 0.37 0.39 0.43 0.51

An exemplar floorplan and post-route layout of a core tile
with 4 kB caches is shown in Figure 7. The pins connecting it
to other tiles, not visible in figure, are positioned on tile edges
in such a way that a simple abutting connection can be made.
Therefore the area of an architecture made of P cores and M
MPMMU’s can be estimated by multiplying CORE tile area
in Table 2 by P, MPMMU tile area by M and summing the
two contributions together. As we will see in the next section,
a larger area does not necessarily correspond to better perfor-
mance. We then used the calculated areas together with per-
formance evaluations obtained through the SystemC simulation
environment to select the configurations for which an increas-
ing area corresponds to a decreasing execution time.
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Figure 7: Floorplan (left) and post-route layout (right) of a core tile with 4 kB caches.

5. Experimental Results

We selected a few programs as benchmarks for the sys-
tem, trying to pick some representative templates from different
fields. From the scientific computation area, we chose a paral-
lel version of the iterative Jacobi algorithm for the solution of
2D partial differential equations [33]. In the following we will
refer to it simply as “JACOBI.” The well-known Advanced En-
cryption Standard (AES) encoding algorithm was our second
choice [34], in the following called “AES”, which differently
from JACOBI does not make use of floating point data. The
third one was the so-called marching cubes algorithm – “MC”
from now on – which is used in computer graphics applied to
medical imaging for extracting a polygonal mesh of an isosur-
face from a three-dimensional scalar field [35]. MC makes a
limited use of floating point operations and is characterized by
rather frequent I/O accesses. The three algorithms have been
chosen for their different characteristics which make some of
them more suited for a message-passing approach rather than a
shared memory one, or vice versa. They are briefly described
in the following.

5.1. Parallel Benchmarks

It can be shown that JACOBI is an iterative solver for the
class of elliptic 2D partial differential equations[33]. Having
chosen a spatial discretization step, the 2D domain becomes a
N × N matrix of calculation points (the largest square which
contains the domain). From the point of view of computational
complexity, a simple serial implementation requires 7N2 float-
ing point operations in each iteration. The parallel implemen-
tation we have used consists in the subdivision of the matrix in
horizontal slices, of size N × N/P each where P is the number
of available processors, then in the assignment to each comput-
ing node of a subset of rows to process, and in the exchange of

the two boundary rows among adjacent processors at each iter-
ation. Each node executes 7N2/P floating point operations per
iteration, but 2NP floating point numbers must be exchanged on
the communication network, too, which limits the effectiveness
of parallelization. Iterations are stopped when the error decays
within a specified precision limit. We implemented JACOBI
following both a pure shared-memory and a hybrid MPI/shared-
memory approach. In both cases instructions are read from the
external shared-memory at every cache miss. In the full shared-
memory case data are also exchanged by memory explicit ac-
cesses assisted by a semaphore-based synchronization. One of
the cores, namely processor number 0, handles synchronization
and decides to stop execution when the global error is under
a predefined threshold. In the MPI version, data are explicitly
exchanged via the short NoC links between cores. Synchro-
nization is then implicit and one of the cores is used for initial
data dispatch and final data collection after error checking (all
cores send to such core their residual errors).

Figure 8 shows the communication patterns among the cores
in the shared-memory and the MPI cases, under the hypothesis
of a sixteen nodes NoC with 15 cores and a single MPMMU.
Core number 0 is in charge of collecting data and of synchro-
nization. Cores 1-14 execute the JACOBI computation and the
MPMMU is the last processor. It’s clear that the single MP-
MMU, numbered 15 in figure, suffers from excessive pressure
in the full shared-memory case.

We implemented the AES cypher algorithm with 256 bits
key length in MPI. When cores end working, they send
encrypted data back to core 0. Hence, only core 0 accesses
the external shared memory with loads/stores operations. The
synchronization is done internally by processor 0 which keeps
track of active and inactive cores through busy/idle variables
stored in its local cache and not written back to external mem-
ory during operations. Parallelization consisted in dividing
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Figure 8: Jacobi communication patterns.
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Figure 9: AES communication patterns.

the data blocks in chunks dispatched by core 0 to the other
cores which are not busy. The computation cost per core is
then N/P basic cypher operations to which we must add the
communication cost, which in this case is again proportional to
N/P per core but that sums up to N because communication is
serial (core 0 sends and receives data to and from one core at
a time). Differently from JACOBI in which a communication
cost proportional to P makes this cost dominate and increase
for large values of P, leading to a non monotonic speed-up
curve, here speed-up saturates to a maximum value. Instead
of making a full shared-memory version of AES-256, we only
exposed the variables used for synchronization in the external
memory, letting every processor access them and change their
values to signify their willingness to accept new data. Despite
the minimal modification, the results reported later will show
that there are significant differences in performance. Similarly
to Figure 8, Figure 9 shows the communication patterns
among 16 active cores numbered from 0 to 15. In this case,
data communications from and to core 0 dominate whereas
the MPMMU is accessed in MPI during cache misses only.
In the modified version, called for simplicity “AES hybrid
shared-memory/MPI” in figure, the MPMMU is accessed also
for synchronization.

The marching cubes algorithm was implemented in a pure
shared-memory fashion without any use of MPI API’s. At
every iteration step, every active core processes a pair of 2D
slices (cut along the z-axis) of a 3D data representation. Given
N slices and P active cores, the amount of work per core scales
like N/P. However the I/O is relevant given that any slice
contains M × M values of 8-bit pixels intensity read from
memory at every iteration, and given that for each voxel, that
is a cube formed by eight adjacent pixels, the intersections
of the surface with the cube edges are calculated and stored
into memory. Therefore we expect performance dominated
by communication costs. Core 0 is still used to synchronize
the beginning and end of computation, but does not send any
data to other cores which access external memory through the
MPMMU at every instruction cache or data cache read/write
misses. No further synchronization is required because all
cores store computed data into separate address spaces. For
all of these reasons, a MPI implementation would not give
any additional speed-up. The communication patterns for
this case and with 16 cores and a single MPMMU are then
point-to-point connections from every core to the MPMMU
and vice versa, and look just like the shared-memory version
of Jacobi in Figure 8. Again, the MPMMU will be under high
pressure.

We ran all the simulations concerning these three paral-
lel benchmarks on two servers equipped with dual Xeon 3.2
GHz/1MByte L2 cache processors, 8 GByte RAM and SCSI
Ultra 320 10k rpm hard disks. For every benchmark we varied:

• The number of active cores from 2 to 15 with at least cores
0 and 1 always included and the 16th NoC node being the
MPMMU.

• The cores’ cache size (data and instructions varied to-
gether) and the MPMMU’s cache size (varied separately
from the core’s one) in four logarithmic steps from 2 kB to
16 kB.

• The size of the problems for JACOBI (16x16, 30x30 and
60x60 matrices) and AES (data blocks of 100, 200, 400
and 800 elements to encrypt) whereas only one case was
considered for MC (16 2D slices of 256 pixels each).

The possible architectural configurations are 224, that is 14
cores × 4 core cache sizes × 4 MPMMU cache sizes. The sim-
ulation time varied significantly over the various benchmarks.
Simulating MC required one day for the entire set of configu-
rations and a similar time was necessary for each AES problem
(then about 4 days for the whole AES simulations). JACOBI
required about twice the time, because of the iterative nature
and the larger use of floating point computations. Following
sections report and discuss obtained results.

5.2. JACOBI Simulations

The six histograms in Figure 10 report the results for the
execution time of a single JACOBI iteration, MPI on the left
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Figure 10: Execution time of Jacobi’s one iteration for different problem sizes: message-passing (left) and shared-memory (right).

and shared-memory on the right, for the three different prob-
lem sizes and a 16 kB MPMMU cache size. (The graphs with
smaller MPMMU cache are similar, with monotonically de-
creasing times with increasing MPMMU cache size.) In each
graph cores cache size and number of active cores are varied.
The fraction of computation and communication times are in-
dicated by a slightly different color in each bar.

Results confirm expectations about the non monotonic be-
havior of execution times as a function of the number of active
cores, the minimum being in the range 2-15 processors when

the communication cost is very large, that is in the case with the
smallest caches. For larger data size, the minimum is beyond
the simulated core number. Results demonstrate the importance
of choosing a cache size for the cores sufficiently large to avoid
excessive cache misses and that, obviously, once the minimum
cache size requirement is met increasing it further does not give
any additional advantage. The comparison between MPI and
shared-memory reveals that the better MPI performance is due
to a smaller communication cost which instead is dominant for
the shared-memory case.
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Figure 11: Jacobi optimal configurations for different problem sizes and their normalized area and speedup: message-passing (top) and shared-memory (bottom).

Graphs in Figure 10 gives an overview of the trend but do not
reveal which are the optimal configurations. We thus pruned the
explored solutions that were Pareto-dominated (larger area for
a smaller performance) and kept only those that resulted in a
performance increase at the minimum cost, starting from the
architecture with the smallest area. The six histograms in Fig-
ure 11 report the speedup of optimal configurations, sorted from
smaller to larger area, with respect to the smallest one. MPI re-
sults are on top whereas graphs on bottom correspond to shared-
memory simulations. The area overhead is also reported so as
to make clear the “cost” of a given performance speed-up. The
larger the gap between area and performance bars, the better

the configuration. The configurations are labeled as Xk/Yk/ZP
where Z is the number of active cores, Y is the size of their pri-
vate cache and X is the size of the MPMMU’s cache. Under
this perspective, it is possible to observe that

1. MPI exploits better the area at disposal giving a larger
speedup for a given surface.

2. The larger the data size, the smaller the gap between
speed-up and area overhead both in MPI and shared-
memory.

3. The larger the data size, the more configurations become
optimal (less configurations were pruned).
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Figure 12: AES execution time for 200 data block size: message-passing (left) and shared-memory (right).

Observation 1 is straightforwardly explained by the smaller
communication cost in MPI, something that we already no-
ticed. The second observation simply derives from the fact that
a given architecture, and so a given area, elaborates more data
in more time. The third one is less intuitive and is explained
by two facts. First, the larger the data matrix, the bigger is the
processor count at which execution time reaches its minimum
(we already noticed that it is not monotonic). Hence the con-
figurations with the highest processor count, pruned when the
data size is smaller, are instead not pruned when the data size
is bigger. Second, if on the one hand configurations with large
caches are useless for small size data, on the other hand pro-
gressively larger data require increasingly larger caches, and so
the corresponding configurations are not pruned.

As far as the comparison between MPI and shared-memory
goes, the advantage of the first is clear for the JACOBI imple-
mentation.

5.3. AES Simulations

Differently from the previous case, varying the size of the
problem in the range (100,200,400,800) of data blocks size did
not cause changes in trend lines. Therefore we report results
in graphic form only for the 200 data block case, chosen arbi-
trarily as a representative of the class. In Figure 12 the MPI
version and the hybrid one with shared-memory synchroniza-
tion are compared in terms of execution time. Only the cases
with 16 kB MPMMU’s cache have been reported because other
results scale uniformly as a function of this parameter. The
MPI implementation confirms expectations about saturation of
speed-up, whereas the hybrid version exhibits an initially de-
creasing execution time as the number of cores increases, fol-
lowed by a reverse behavior. The reason is that the time spent
for external synchronization depends on the number of active
cores – the higher the worse – and so becomes a limiting factor.
This is also corroborated by the much larger communication
fraction of execution time in the shared-memory case, the com-
putation time being more or less the same in the two cases.

Figure 13 reports the set of optimal configurations listed in
the same spirit of previously reported JACOBI data in Figure

11. Results represented in Figure 12 show that hybrid imple-
mentation is at loss for architecture configurations more com-
plex than just three cores (last and biggest good configuration
is 2k/4k/3P – Figure 13-right). The MPI versions, too, stop
giving a useful speed-up beyond 6 cores (last configuration is
8k/4k/6P– Figure 13-left), even though the advantage of keep-
ing synchronization off shared-memory is evident.
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Figure 13: AES optimal configurations for 200 data block size and their nor-
malized area and speedup: message-passing (left) and shared-memory (right).

5.4. MC Simulations

In the case here considered, MC execution time first de-
creases, then increases, as the histogram in Figure 14 demon-
strates. Communication time dominates, as expected, and
increases slightly as the core count grows beyond a certain
amount, leading to optimal configurations with up to ten cores,
as shown in Figure 15. The trend is similar to what happened
in shared-memory implementations of JACOBI and AES, albeit
with a slower pace, but the reason is not immediately apparent.
In JACOBI that increase was justified by the increasing commu-
nication time with core count and in AES by the frequent access
to external memory for synchronization. Here synchronization
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cost is negligible and the amount of communication scales, the-
oretically, with the core count. However, slight deviations from
theory are possible and communication I/O latencies that do not
perfectly scale with processor count occur and result in an in-
crease of execution time beyond ten cores. Such reverse scaling
is more evident for smaller cache size where it is likely that not
just data but instruction misses too sum up to communication
costs.
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Figure 14: MC execution time.
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Figure 15: MC optimal configurations and their normalized area and speedup.

6. Discussion and Conclusions

The results demonstrate that when communications are
moved from off to on-chip with MPI, execution time reduces
and silicon area is better utilized: An area increase due to more
active cores or larger caches most of the times corresponds to
a better performance. On the contrary, the serialization of ac-
cesses to shared memory resources wastes the potential speedup
of a parallel architecture.

A possible question concerns the deflection routing strategy
and the fact that in case of congestion its latency increases,
compared to other techniques. This may adversely impact es-
pecially shared-memory accesses. However, in our architecture
communication with MPMMU’s is based on a handshake (see
Figure 5) and no multiple outstanding transactions can be in
place at a time. This avoids NoC congestion for memory traffic
and all involved packets experience no additional latency.

It can be argued that simulations with shared-memory op-
tion suffer from the choice of using a single MPMMU which
creates an evident bottleneck and that having more parallel ac-
cesses will change the picture and the conclusions. This is only
partly true. First, for a given area, if we increase the number of
MPMMU’s we will have less space for computing cores, some-
thing that might adversely impact performance, and then it is
not granted that the more MPMMU’s the better (it depends on
the ratio between communication and computation time.) Sec-
ond, if the application requires data to be shared among all the
cores, it is likely that serialization of accesses wipes out the
advantage of having many parallel MPMMU’s. Third, if we
move from 16 to 64 cores or 128, as we expect for future chip
multiprocessors, we would need 4 or 8 times more accesses to
external memories, and the question is how will package tech-
nologies help to support this need. We believe that as we scale
towards the hundreds core regime, the number of memory ac-
cesses will not keep up with core number, even with 3D stack-
ing technologies. Therefore we, and not only we [5], advocate
the adoption of NoC-based MPI for future on-chip messaging in
massively parallel CMP’s. It’s clear that this has a cost, not very
a hardware cost but rather a software one because programmers
must learn how to use MPI primitives. But it’s true that if they
want to efficiently utilize hundreds or even thousands of cores
that forthcoming CMP’s will made available, they will certainly
have to change the way they write programs in any case. Hence,
passing to the MPI paradigm will just come at a small marginal
cost the returns will surely pay off.

A very important point that we didn’t touch concerns energy
efficiency, and is the subject of our future investigations. In
particular we would like to extend our constrained approach
that helped us select the optimal set of architectural parameters
for a given area budget to the case of a fixed power budget.
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