

DYNA
http://dyna.medellin.unal.edu.co/

© The authors; licensee Universidad Nacional de Colombia.

DYNA 81 (185), pp. 28-35 June, 2014 Medellín. ISSN 0012-7353 Printed, ISSN 2346-2183 Online

Static and dynamic task mapping onto network on chip

multiprocessors

Mapeo estático y dinámico de tareas en sistemas multiprocesador,

basados en redes en circuito integrado

Freddy Bolaños-Martínez a, José Edison Aedo b & Fredy Rivera-Vélez b

a Facultad de Minas, Universidad Nacional de Colombia, Colombia. fbolanosm@unal.edu.co
b Facultad de Ingeniería, Universidad de Antioquia, Colombia. {farivera, joseaedo}@udea.edu.co

Received: November 16th, 2012. Received in revised form: April 2th, 2014. Accepted: April 10th, 2014.

Abstract

Due to its scalability and flexibility, Network-on-Chip (NoC) is a growing and promising communication paradigm for Multiprocessor

System-on-Chip (MPSoC) design. As the manufacturing process scales down to the deep submicron domain and the complexity of the

system increases, fault-tolerant design strategies are gaining increased relevance. This paper exhibits the use of a Population-Based

Incremental Learning (PBIL) algorithm aimed at finding the best mapping solutions at design time, as well as to finding the optimal

remapping solution, in presence of single-node failures on the NoC. The optimization objectives in both cases are the application

completion time and the network's peak bandwidth. A deterministic XY routing algorithm was used in order to simulate the traffic

conditions in the network which has a 2D mesh topology. Obtained results are promising. The proposed algorithm exhibits a better

performance, when compared with other reported approaches, as the problem size increases.

Keywords: Task mapping, Multiprocessor System-on-Chip (MPSoC), Networks on Chip (NoC), Population-based Incremental Learning

(PBIL).

Resumen

Las redes en circuito integrado (NoC) representan un importante paradigma de uso creciente para los sistemas multiprocesador en

circuito integrado (MPSoC), debido a su flexibilidad y escalabilidad. Las estrategias de tolerancia a fallos han venido adquiriendo

importancia, a medida que los procesos de manufactura incursionan en dimensiones por debajo del micrómetro y la complejidad de los

diseños aumenta. Este artículo describe un algoritmo de aprendizaje incremental basado en población (PBIL), orientado a optimizar el

proceso de mapeo en tiempo de diseño, así como a encontrar soluciones de mapeo óptimas en tiempo de ejecución, para hacer frente a

fallos de único nodo en la red. En ambos casos, los objetivos de optimización corresponden al tiempo de ejecución de las aplicaciones y

al ancho de banda pico que aparece en la red. Las simulaciones se basaron en un algoritmo de ruteo XY determinístico, operando sobre

una topología de malla 2D para la NoC. Los resultados obtenidos son prometedores. El algoritmo propuesto exhibe un desempeño

superior a otras técnicas reportadas cuando el tamaño del problema aumenta.

Palabras clave: Mapeo de tareas, Sistemas integrados multiprocesador (MPSoC), Redes en circuito integrado (NoC), Aprendizaje

incremental basado en población (PBIL).

1. Introduction

MPSoC systems are a feasible alternative for

implementing a complexity-growing and variable set of

applications. NoC-based MPSoCs have appeared as a way

to easily scale the size of the system, and to deal with

application performance requirements, application

variability and constraints, such as real time [1]. In such

systems, it is necessary to establish an optimal way to map

the executable tasks of an application onto the available

resources for its implementation. Static mapping is

performed at design time, before executing the application.

In [2], an Integer Linear Programming (ILP) approach is

proposed for static mapping aimed to optimize energy in a

NoC-based MPSoC. The algorithm considers both the

processing and communication energy as optimization

objectives. A simulated annealing heuristic is added to the

optimization process, which suffers from large execution

times. Similarly, reference [3] reports a custom algorithm

for static mapping of tasks on a NoC platform. The

algorithm optimizes the computation and communication

energy, with a slight degradation of system's performance.

The work reported in [4] proposes a technique for

mapping tasks onto a set of heterogeneous Processing

Elements (PEs) operating at multiple voltage levels in a

Bolaños-Martínez et al / DYNA 81 (185), pp. 28-35. June, 2014.

 29

NoC platform. Such work is based on a Mixed Integer

Linear Programming (MILP) formulation for the static

mapping problem, and it aims to optimize the overall energy

consumption of the system, under performance constraints.

The only objective considered for optimization is energy,

and there are some complex problems (for instance, those

related with low voltage setups) for which a feasible

solution may not be found.

On the other hand, Dynamic mapping is also often

referred to as remapping and is used in two defined

contexts. First, the workload of the system may change due

to several reasons [5], so a remapping procedure may adjust

the system to the new workload and traffic conditions

according to the figures of merit to be optimized. In second

place, as a consequence of current systems complexity,

there is a growing set of malfunctions and failures that

cannot be detected or avoided by using current design

methodologies [6]. Fault tolerance may be achieved by

using dynamic mapping, which distributes the current

workload of the system and avoids the use of faulty

resources.

Some of the reported dynamic mapping approaches are

restricted to homogeneous networks [5, 7, 8], meaning that

all the processing elements are identical. Some other

reported works are limited to the mapping of single tasks

onto each processor of the system [9]. In [10], a multi task

dynamic mapping approach is proposed for heterogeneous

networks, i.e., processing elements in the system are of

different kinds. The mapping algorithm uses heuristics

aimed at reducing the traffic overhead, by means of

assessing the adjacent available resources and measuring of

the proximity of the communicating tasks.

The work reported in [11], presents a set of simple

heuristics for dynamic mapping in NoC-based MPSoCs.

Due to its simplicity, these algorithms may run very fast and

deal with changing conditions in the network's workload.

However, link occupation is the only objective being

considered in the optimization process. Besides, the

mapping algorithms described are not designed for

achieving optimal solutions, as derived from the reported

results.

A multitask dynamic mapping approach is proposed in

[12]. The work is aimed at providing fault tolerance in a

heterogeneous network. The optimization algorithm is based

on ILP, and performs a multiobjective space search, in order

to minimize both the execution time and the communication

cost. The main issue with ILP is that optimization becomes

highly complex as the problem's size increases. The work

reported in [13] proposes an algorithm for mapping and

scheduling in MpSoC systems. The algorithm is able to map

executable applications both to bus-based and to NoC-based

architectures. The exploration of the solution space is

performed by means of a simulated annealing algorithm,

which starts from a given solution (usually a random

solution), and improves it gradually until reaching an

Table 1. Survey of the revised mapping solutions.

Reference
Target

Architecture
Mapping Nature Optimization Algorithm

Common domain

semantic

Optimization

Objective

[15] Heterogeneous Static
Successive Relaxation or

Genetic Algorithms
Metric Space Network traffic

[16] Homogeneous Hybrid Custom Dataflow graph Throughput

[17, 18] Homogeneous Hybrid
Simulated Annealing and

custom
Task Graph Energy

[19] Heterogeneous Hybrid ILP Task Graph Energy and Exec. Time

[20] Heterogeneous Hybrid Distributed Stochastic Task Graph Communication energy

[21] Homogeneous Static ILP Task Graph Temperature

[22] Homogeneous Dynamic Custom Task Graph Hop Count

[10, 23] Heterogeneous Dynamic Custom Task Graph Multiobjective

[12] Heterogeneous Dynamic ILP Task Graph Multiobjective

[24] Heterogeneous Static Artificial Bee Colony Task Graph Power

[5, 25] Homogeneous Dynamic Custom Task Graph Energy

[26] Heterogeneous Static Fuzzy and Custom Task Graph
Energy and message

latency

[2] Heterogeneous Static
ILP and simulated

annealing
Task Graph Energy

[27] Heterogeneous Static Ant Colony
Task and core

graphs
Energy and temperature

[28] Homogeneous Static Simulated Annealing Task Graph Energy

[3] Heterogeneous Static Custom Task Graph Energy

[29] Homogeneous Hybrid
Multiobjective

Evolutionary
Task Graph Latency and Power

[30] Homogeneous Static Quadratic Programming Task Graph Energy

Bolaños-Martínez et al / DYNA 81 (185), pp. 28-35. June, 2014.

 30

optimal. Working with a single solution, instead of a

population of solutions, may carry problems related to local-

optimal solutions, as stated in [14].

Table 1 summarizes most of the relevant related works

concerning mapping of tasks into NoC-based systems. The

mapping may be either static, dynamic, or hybrid, meaning

that part of the mapping labor is performed in design time,

and the remaining work takes place in runtime.

The common domain semantics refers to an intermediate

representation, which combines features of both the high

level specification of the application, and figures of merit

related to the implementation platform [31]. As depicted in

Table 1, task graphs are the most common approach as

intermediate representation. Particularly, annotated task

graphs (ATGs) allow the tasks structure (represented as

dependences in the graph) and the figures of merit to

optimize (supplied in the form of annotations) to be

represented.

Some formal optimization methods, such as ILP, appear

often in Table 1. Heuristics are also very common

approaches for performing the optimization of the mapping

problem. Such optimization may be devoted to a single

objective, such as throughput, energy, traffic, temperature,

and so on. Some of the mapping strategies are devoted to

several objectives at once, i.e., they are multiobjective.

This paper describes an approach for static and dynamic

mapping based on a PBIL optimization algorithm. The

dynamic approach is aimed at providing fault tolerance in a

single-node failure scenario. A heterogeneous NoC, based on a

2D mesh interconnection network, is used as a case study. Two

objectives were taken into account for the optimization

process: Completion time of the application, and peak

bandwidth of the interconnection resources within the

network. Bandwidth is related to the implementation costs of

the system, since interconnection resources must be appraised

at design time and placed into the system chip. For the sake of

assessing the second objective, an XY routing algorithm was

used in simulations. The remainder of this paper is organized as

follows. Section 2 describes the static and dynamic mapping

problems, as well as the experimental setup used to test the

proposed approach. Section 3 describes the PBIL optimization

algorithm and the customizations performed on it in order to

deal with the dynamic and static mapping problems. Section 4

shows the simulation results. Concluding remarks and future

work appear in Section 5.

2. Static And Dynamic Mapping

As mentioned before, static mapping is performed at

design time and is aimed at choosing the optimal

combination of available resources in a NoC, in order to

implement an application, composed of a set of executable

tasks. An annotated task graph (ATG) is often used as a

middle-level representation of the application which is

going to be implemented.

Fig. 1 shows a 12-task ATG for an MPEG-2 decoder [32].

In such graph, vertices are associated with executable tasks

(labeled from t1 to t12), and edges represent data

Figure 1. A 12-task ATG for an MPEG2 decoder.

dependences among the tasks of the system (labeled from e1

to e14). Annotations provide information about figures of

merit such as performance, power, bandwidth, and some

others. Such annotations allow exploring several

implementation choices in the optimization process, and

were omitted in Fig. 1 for space reasons.

A 3 × 3 2D mesh was used as the target architecture.

Fig. 2 shows such a mesh, composed of RISC and DSP

processors. In such figure, there are nine nodes or tile

spaces (labeled from n1 to n9) representing the processing

elements, and twelve communication links between the

different nodes (labeled from L1 to L12).

A deterministic XY routing algorithm was used to

simulate the traffic conditions in the network. The PBIL

optimization was performed for two conflicting objectives:

First, the completion time of the application, which is equal

to the maximum time stamp associated with the execution

of tasks in the whole system. The second optimization

objective was the peak bandwidth of the target NoC. This

figure of merit may be calculated as the maximum value of

bandwidth requirements for the links in the network, once

the mapping has been performed.

Figure 2. Target Architecture.

Bolaños-Martínez et al / DYNA 81 (185), pp. 28-35. June, 2014.

 31

Given the input task graph and the target architecture,

the static mapping problem may be defined as finding the

best task distribution, for the sake of optimizing both

completion time and peak bandwidth in the system

implementation.

On the other hand, dynamic mapping must deal with a

subset of the system tasks and resources . Since dynamic

mapping must deal only with exceptional situations, such as

node failures or changing traffic conditions, the primer

mapping solution (which was performed at design time) is

still valid for most of the executable tasks on the system.

Only a subset of the system tasks must be mapped at

runtime to some other executable resources. Let’s suppose

that one of the nodes in Fig. 2 suffers a failure whilst the

system is executing a given application. In order to provide

some degree of fault tolerance, tasks that were running in a

faulty node, may be redistributed to the remaining ones. In

the proposed approach, dynamic mapping is performed to

accomplish this aim. The main difference with respect to the

static approach is that dynamic mapping must be performed

at runtime. Besides, the number of tasks and resources that

must be taken into account in the dynamic approach will be

lower than that for static scenarios.

3. PBIL–Based Task Mapping

PBIL algorithms are stochastic search methods, which

obtain directional information from the best solutions

previously found in the solution space. Such algorithms

have been used in design automation for embedded systems

with promising results [33, 34]. PBIL techniques are a

special case of a larger group of optimization approaches

based on population. The main feature of the PBIL-based

algorithms is an array of probabilities, which converge

progressively to an optimal solution. The values in such an

array must be updated iteratively. In the final stages of the

optimization process, some entries of the PBIL array have

greater probabilities, pointing to an optimal solution of the

problem at hand.

Let's suppose a mapping problem (it may be either static

or dynamic) with a set of N tasks and M available resources.

The PBIL probability matrix for such a problem may take

the form of the array shown in Fig. 3. In this figure, P(i,j)

represents the probability of task j to be implemented on the

resource i. Fig. 4 shows a basic version of the adaptive

PBIL algorithm, which is intended to update the

probabilities of the PBIL array iteratively, until an optimal

solution becomes more probable than the remaining ones.

This algorithm starts with the PBIL probability array,

namely P, with dimensions M × N, as shown in Fig. 3. All

the probabilities in the array are initialized to 1/M, which is

the value that ensures maximum population diversity, in

such a way that all potential solutions to the mapping

problem are being considered at the beginning of the

optimization process.

The routine Create_Population generates a new

population (namely Pop), starting from probabilities in the

PBIL array. Rows (resources) in the array with the highest

Figure 3. PBIL Probability Matrix.

values of probability are meant to appear more frequently in

the population’s individuals. The Evaluate_Population

routine assesses the population’s individuals just created.

Fitness values allow choosing the best solution for the

mapping problem. The Choose_Best routine is used to

accomplish this goal. The learning rate or LR is a way to

control the convergence speed of the PBIL algorithm.

Higher values of LR will lead to fast convergences, although

the quality of the solutions might not be satisfactory. If LR

is reduced, quality will improve at the expenses of longer

convergence time. In our adaptive approach, the LR

parameter must be adjusted in order to allow both

exploration and exploitation of the PBIL search space. The

entropy (E) of the probability array is calculated and used as

an estimation of the population’s diversity. In Fig. 4, the

routine Learning_Rule represents the way in which the LR

parameter is tuned as a function of the P array’s entropy.

Once the LR parameter is calculated, the P array must be

updated in order to adjust the probabilities, according to the

best solutions found in the population. Function

Update_Array performs this.

Figure 4. Basic Adaptive PBIL approach.

Bolaños-Martínez et al / DYNA 81 (185), pp. 28-35. June, 2014.

 32

The value of the E parameter in Fig. 4 is calculated as the

systemic entropy of the PBIL array, just as is done in

information theory. Equation (1) depicts the calculations

performed inside the Entropy routine, for the entropy

calculation.

(1)

According to Equation (1), entropy values range from 0

to 1. E = 1 means that there is maximum population’s

diversity (this only happens when all values on the PBIL

matrix are equal to 1/M). When E = 0, it means that the

PBIL matrix points to a unique and completely defined

solution. Entropy decreases as the probability array tends to

concentrate on single entries of each column of the P array

(i.e., when an optimal solution becomes more probable). For

the sake of speeding up the convergence of the PBIL

algorithm, the termination condition in Fig. 4 is a

comparison between the Entropy value and a given

tolerance. By using this strategy, it is not necessary to wait

until the Entropy value becomes equal to zero, which may

be very restrictive and time consuming.

The way in which the LR parameter is changed as a

function of entropy is often referred to as the learning rule.

Equation (2) describes a sigmoid learning rule, which was used

inside the Learning_Rule routine. In the equation, LRMIN and

LRMAX are the minimum and maximum values, respectively,

for the learning rule parameter (LR), whilst Δ is an empirical

value which usually ranges from 4 to 6. The idea is to keep the

LR parameter low at the beginning of the algorithm, when there

is a high population’s diversity and the values of E are close to

one. When entropy’s value decreases, i.e., when the population

approaches to a given optimal, LR parameter is increased to

speed up the convergence process.

(2)

For each task of the mapping problem or, equivalently,

for each column in the PBIL array, the function

Update_Array must increase the probability of the choice

which resulted in the best solution. Since each single

column in the PBIL matrix represents a conjoint probability

event, the probabilities sum along a column must be equal

to one. Therefore, when a given probability in the array is

increased, the remaining ones in that column must be

decreased accordingly. Equation (3) shows the probability’s

updating formulae, which are based on the Hebbian learning

rule [35]. In Equation (3), it is supposed that for a given

attribute j, the best solution obtained is the choice k.

Suffixes Old and New in Equation (3) are meant to denote

the old and new versions of each probability, respectively.

(3)

The PBIL approach described so far may be easily

adapted to perform dynamic mapping. In the event of a

single node failure, the number of columns in the

probability array in Fig. 3 (N) would be equal to the

number of tasks that the faulty node was executing. The

number of rows may be kept the same. Then, all the

probabilities associated with the faulty node (a single

row in the array) must be set to zero. In such a case, the

initialization stage of the array in Fig. 4, must set all the

probabilities to (M − 1) −1.

The situation is not so different in the event of failures

involving several nodes at once. The rows associated with

the faulty resources must be equal to zero and the

initialization stage, at the beginning of the optimization

process, must take into account only the available resources

for task implementation. In an improved version of the

PBIL algorithm, the probability array must take the exact

dimensions according with the specific dynamic mapping

problem: N must be equal to the number of tasks to be

remapped and M must be equal to the amount of available

resources. This is the approach adopted for the remaining of

this paper.

4. Experimental Results

The PBIL optimization algorithms, both for static and

dynamic mapping, were written and tested in Matlab

(R2011a), for an MPEG-2 decoder like the one represented

in Fig. 1, with 12, 24 and 36 tasks. The NoC target

architecture was that shown in Fig. 2. The traffic conditions

in the network were simulated using a deterministic XY

algorithm. The profiling information (annotations of the

taskgraph) regarding execution time and bandwidth was

extracted from [36].

The routine Evaluate Population in Fig. 4, as described in

previous section, assesses each solution in the population

and gives it a fitness value. A weight vector was used to

deal with the multiobjective issue in the optimization

process. Each entry of the vector is associated with a given

objective of the problem (such as completion time, energy

consumption or bandwidth). The relative value of each entry

with respect to the remaining ones, represent the probability

of its associated objective to be optimized at each PBIL

algorithm’s iteration. By changing the relative values of the

weight vector, it is possible to construct a Pareto curve, as

shown in Fig. 5. Pareto curves show several trade-offs

among the objectives to be optimized, because they define

the set of solutions in which a given objective cannot be

improved, without degrading some other objective.

In order to profile our PBIL approach, static mapping may

be considered as the worst-case scenario (i.e., the one which

takes more convergence time). In static mapping, all tasks

must be mapped, and all the resources are available for

potential implementations. Alternatively, dynamic mapping

must deal with a subset of the system’s tasks and a subset of

the available resources. Convergence times for several

Bolaños-Martínez et al / DYNA 81 (185), pp. 28-35. June, 2014.

 33

Figure 5. Pareto curves for PBIL optimization

instances of the PBIL static mapping optimization are

shown in Fig. 6. In this figure, the continuous line

represents a quadratic fit performed on the data. Data from

an ILP optimization [12], performed over the same static

mapping problem, was included in the figure for

comparison purposes.

As shown in Fig. 6, the ILP approach exhibits a better

performance than PBIL for small problems. However, if the

number of tasks increases, optimization using the ILP

algorithm becomes prohibitive. As reported in [12], the

mean ILP convergence time for a 36-tasks optimization is

around 1700 seconds. PBIL convergence time is around one

order of magnitude lower than this value.

Figure 6. Convergence times for several mapping instances.

The PBIL algorithm for dynamic mapping starts from a

previous mapping schema, obtained from the static

optimization. The reference to the faulty node is also

Figure 7. Evolution of the optimization objectives.

necessary, for identifying the system tasks that must be

remapped. By using such information, it is possible to

define the dimensions of the PBIL probability array, and the

optimization algorithm may take the form depicted in Fig. 4.

For dynamic mapping, only single node failure scenarios

were considered in the simulations. However, multiple-node

failures may be easily considered with the proposed

methodology: If a failure event affects two nodes

simultaneously, two rows of the matrix in Fig. 3 must be set

to zero. The remaining values of such a matrix should be set

to 1/(M − 2). The PBIL algorithm may then perform the

optimization process as described before. In a more general

fashion, if a failure affects an amount of F nodes, the matrix

in Fig. 3 must be initialized in such a way that F rows, in

correspondence with the faulty resources, must be set to

zero. The remaining values of the matrix must be set to

1/(M − F), for the sake of guaranteeing maximum

population diversity.

Fig. 7 depicts the evolution of the two optimization

objectives (Completion Time and Bandwidth) as a function

of the number of algorithm iterations. In this case, the size

of the problem, or equivalently, the number of tasks to be

mapped was equal to 36 and the weight vector was tuned to

provide 60 % of probability to the Completion Time

objective to be optimized, whilst the Bandwidth had a

probability of 40 %.

5. Conclusions

A multiobjective PBIL optimization approach has been

described and tested for static and dynamic mapping of

tasks to an MPSoC based on NoC. The objectives

considered in the optimization process were the completion

time of the executable application and peak bandwidth. For

our simulations, a 2D mesh architecture and a deterministic

routing schema were adopted. The PBIL optimization

algorithm seems to have a better performance than some

other reported approaches, such as ILP, when the problem

size increases. This is a major advantage, since the size of

MPSoC systems has been increasing as well as the

complexity of the applications involved.

Bolaños-Martínez et al / DYNA 81 (185), pp. 28-35. June, 2014.

 34

Acknowledgements

The authors would like to thank ARTICA,

COLCIENCIAS, the Communications Ministry of

Colombia, the National University of Colombia and the

University of Antioquia, for their support in the

development this work.

References

[1] Marculescu R., Ogras U. Y., Peh L. S., Jerger N. E., Hoskote

Y. Outstanding research problems in NoC design: system,

microarchitecture, and circuit perspectives. Trans. Comp.-Aided

Des. Integ. Cir. Sys., vol. 28, no. 1, pp. 3–21, Jan. 2009.

[2] Huang J., Buckl C., Raabe A., Knoll A. Energy-aware task

allocation for network-on-chip based heterogeneous

multiprocessor systems. In Parallel, Distributed and Network-

Based Processing (PDP), 2011 19th Euromicro International

Conference on, pp. 447 –454, Feb. 2011.

[3] Rajaei R., Hessabi S., Vahdat B. V. An energy-aware

methodology for mapping and scheduling of concurrent

applications in MPSOC architectures. In Electrical Engineering

(ICEE), 2011 19th Iranian Conference on, pp. 1 –6, May 2011.

[4] Ghosh P., Sen A., Hall A. Energy efficient application mapping

to noc processing elements operating at multiple voltage levels. In

Networks-on-Chip, 2009. NoCS 2009. 3rd ACM/IEEE

International Symposium on, pp. 80 –85, May 2009.

[5] Mandelli M., Ost L., Carara E., Guindani G. , Gouvea T.,

Medeiros G., Moraes F. Energy-aware dynamic task mapping for

NoC-based MPSoCs. In Circuits and Systems (ISCAS), 2011

IEEE International Symposium on, pp. 1676 –1679, May 2011.

[6] Marculescu R. Networks-on-chip: The quest for on-chip fault-

tolerant communication. In VLSI, 2003 Proceedings of the IEEE

Computer Society Annual Symposium on, pp. 8 – 12, Feb. 2003.

[7] Schranzhofer A., Chen J. J., Santinelli L., Thiele L. Dynamic

and adaptive allocation of applications on mpsoc platforms. In

Design Automation Conference (ASP-DAC), 2010 15th Asia and

South Pacific, pp. 885 –890, Jan. 2010.

[8] Wildermann S., Ziermann T., Teich J. Run time mapping of

adaptive applications onto homogeneous noc-based reconfigurable

architectures. In Field-Programmable Technology 2009. FPT

2009. International Conference on, pp. 514 –517, Dec. 2009.

[9] Carvalho E. de S., Calazans N., Moraes F. Dynamic task

mapping for MPSoCs. Design Test of Computers, IEEE, vol. 27,

no. 5, pp. 26 –35, Oct. 2010.

[10] Singh A. K., Srikanthan T., Kumar A., Jigang W.

Communication aware heuristics for run-time task mapping on

NoC-based MPSoC platforms. J. Syst. Archit., vol. 56, no. 7, pp.

242–255, Jul. 2010.

[11] Carvalho E., Calazans N., Moraes F. Heuristics for dynamic

task mapping in NoC-based heterogeneous MPSoCs. In

Proceedings of the 18th IEEE/IFIP International Workshop on

Rapid System Prototyping, ser. RSP ’07. Washington, DC, USA:

IEEE Computer Society, pp. 34–40, 2007.

[12] Derin O., Kabakci D., Fiorin L. Online task remapping

strategies for fault-tolerant network-on-chip multiprocessors. In

Networks on Chip (NoCS), 2011 Fifth IEEE/ACM International

Symposium on, pp. 129 –136, May 2011.

[13] Tafesse B., Raina A., Suseela J. , Muthukumar V. Efficient

scheduling algorithms for MPSoC systems. In Information

Technology: New Generations (ITNG), 2011 Eighth International

Conference on, pp. 683 –688, April 2011.

[14] Russell S. J., Norvig P. Artificial Intelligence: A Modern

Approach. 2nd ed. Pearson Education, 2003.

[15] Jang W., Pan D. Z. A3Map: Architecture-aware analytic

mapping for Networks-on-Chip. ACM Trans. Des. Autom.

Electron. Syst., vol. 17, pp. 26:1–26:22, July 2012.

[16] Singh A. K., Kumar A., Srikanthan T. A hybrid strategy for

mapping multiple throughput-constrained applications on

MPSoCs. In Proceedings of the 14th international conference on

Compilers, architectures and synthesis for embedded systems,

CASES ’11, (New York, NY, USA), pp. 175–184, ACM, 2011.

[17] Antunes E., Soares M., Aguiar A., Filho S. J., Sartori M.,

Hessel F., Marcon C. A. M. Partitioning and dynamic mapping

evaluation for energy consumption minimization on noc-based

MPSoC. In ISQED (K. A. Bowman, K. V. Gadepally, P.

Chatterjee, M. M. Budnik, and L. Immaneni, eds.), pp. 451–457,

IEEE, 2012.

[18] Antunes E., Aguiar A., Johann F. S., Sartori M. , Hessel F.,

Marcon C. Partitioning and mapping on NoC-based MPSoC: an

energy consumption saving approach. In Proceedings of the 4th

International Workshop on Network on Chip Architectures,

NoCArc ’11, (New York, NY, USA), pp. 51–56, ACM, 2011.

[19] He O., Dong S., Jang W., Bian J., Pan D. Z. UNISM: Unified

scheduling and mapping for general Networks on Chip. IEEE

Trans. VLSI Syst., vol. 20, no. 8, pp. 1496–1509, 2012.

[20] Hosseinabady M., Nunez-Yanez J. L. Run-time stochastic

task mapping on a large scale Network-on-Chip with dynamically

reconfigurable tiles. IET Computers and Digital Techniques, vol.

6, no. 1, pp. 1–11, 2012.

[21] Hamedani P. K., Hessabi S., Sarbazi-Azad H., Jerger N. D. E.

Exploration of temperature constraints for thermal aware mapping

of 3D Networks on Chip. In PDP (R. Stotzka, M. Schiffers, and Y.

Cotronis, eds.), pp. 499–506, IEEE, 2012.

[22] Wang C., Yu L., Liu L., Chen T. Packet triggered prediction

based task migration for Network-on-Chip. In Proceedings of the

2012 20th Euromicro International Conference on Parallel,

Distributed and Network-based Processing, PDP ’12,

(Washington, DC, USA), pp. 491–498, IEEE Computer Society,

2012.

[23] Kaushik S., Singh A. K., Jigang W., Srikanthan T. Run-time

computation and communication aware mapping heuristic for NoC

based heterogeneous MPSoC platforms. In Proceedings of the

2011 Fourth International Symposium on Parallel Architectures,

Algorithms and Programming, PAAP ’11, (Washington, DC,

USA), pp. 203–207, IEEE Computer Society, 2011.

[24] Zhe L., Xiang L. NoC mapping based on chaos artificial bee

colony optimization. In Computational Problem-Solving (ICCP),

2011 International Conference on, pp. 518 –521, oct. 2011.

[25] Mandelli M., Amory A., Ost L., Moraes F. G. Multi-task

dynamic mapping onto NoC-based MPSoCs. In Proceedings of the

24th symposium on Integrated circuits and systems design, SBCCI

’11, (New York, NY, USA), pp. 191–196, ACM, 2011.

[26] Habibi A., Arjomand M., Sarbazi-Azad H. Multicast-aware

mapping algorithm for on-chip networks. In Proceedings of the

Bolaños-Martínez et al / DYNA 81 (185), pp. 28-35. June, 2014.

 35

2011 19th International Euromicro Conference on Parallel,

Distributed and Network-Based Processing, PDP ’11,

(Washington, DC, USA), pp. 455–462, IEEE Computer Society,

2011.

[27] Liu Y., Ruan Y., Lai Z., Jing W. Energy and thermal aware

mapping for mesh-based NoC architectures using multi-objective

ant colony algorithm. In Computer Research and Development

(ICCRD), 2011 3rd International Conference on, vol. 3, pp. 407 –

411, march 2011.

[28] Zhong L., Sheng J., Jing M., Yu Z., Zeng X. , Zhou D. An

optimized mapping algorithm based on simulated annealing for

regular NoC architecture. In ASIC (ASICON), 2011 IEEE 9th

International Conference on, pp. 389 –392, oct. 2011.

[29] Sepulveda J., Strum M., Chau W. J., Gogniat G. A

multiobjective approach for multi-application NoC mapping. In

Circuits and Systems (LASCAS), 2011 IEEE Second Latin

American Symposium on, pp. 1 –4, feb. 2011.

 [30] Sheng J., Zhong L., Jing M., Yu Z. , Zeng X. A method of

quadratic programming for mapping on NoC architecture. In ASIC

(ASICON), 2011 IEEE 9th International Conference on, pp. 200 –

203, Oct. 2011.

[31] Sangiovanni-Vincentelli A. Is a unified methodology for

system-level design possible? IEEE Des. Test, vol. 25, pp. 346–

357, July 2008.

[32] Bonatti P. A., Lutz C., Murano A., Vardi M. ISO IEC 13818-

2 MPEG2. Information Technology - Generic Coding of Moving

Pictures and Associated Audio Information: Video,” in ICALP

2006. LNCS, pp. 540–551, Springer, 2006.

[33] Fan L. J., Li B., Zhuang Z. Q., Fu Z. Q. An approach for

dynamic Hardware/Software partitioning based on DPBIL. In

Proceedings of the Third International Conference on Natural

Computation. Volume 05, ser. ICNC ’07. Washington, DC, USA:

IEEE Computer Society, 2007.

[34] Bolanos F., Aedo J., Rivera F. System-level partitioning for

embedded systems design using Population-based Incremental

Learning. In CDES, H. R. Arabnia and A. M. G. Solo, Eds.

CSREA Press, pp. 74–80, 2010.

[35] White R. H. Competitive hebbian learning: Algorithm and

demonstrations. Neural Networks, vol. 5, no. 2, pp. 261 – 275, 1992.

[36] Thiele L., Bacivarov I., Haid W., Huang K. Mapping

applications to tiled multiprocessor embedded systems. In

Proceedings of the Seventh International Conference on

Application of Concurrency to System Design, ser. ACSD ’07.

Washington, DC, USA: IEEE Computer Society, pp. 29–40, 2007.

