111 research outputs found

    Optimizing NANOS OpenMP for the IBM Cyclops multithreaded architecture

    Get PDF
    In this paper, we present two approaches to improve the execution of OpenMP applications on the IBM Cyclops multithreaded architecture. Both solutions are independent and they are focused to obtain better performance through a better management of the cache locality. The first solution is based on software modifications to the OpenMP runtime library to balance stack accesses across all data caches. The second solution is a small hardware modification to change the data cache mapping behavior, with the same goal. Both solutions help parallel applications to improve scalability and obtain better performance in this kind of architectures. In fact, they could also be applied to future multi-core processors. We have executed (using simulation) some of the NAS benchmarks to prove these proposals. They show how, with small changes in both the software and the hardware, we achieve very good scalability in parallel applications. Our results also show that standard execution environments oriented to multiprocessor architectures can be easily adapted to exploit multithreaded processors.Peer ReviewedPostprint (author's final draft

    Evaluation of OpenMP for the Cyclops multithreaded architecture

    Get PDF
    Multithreaded architectures have the potential of tolerating large memory and functional unit latencies and increase resource utilization. The Blue Gene/Cyclops architecture, being developed at the IBM T. J. Watson Research Center, is one such systems that offers massive intra-chip parallelism. Although the BG/C architecture was initially designed to execute specific applications, we believe that it can be effectively used on a broad range of parallel numerical applications. Programming such applications for this unconventional design requires a significant porting effort when using the basic built-in mechanisms for thread management and synchronization. In this paper, we describe the implementation of an OpenMP environment for parallelizing applications, currently under development at the CEPBA-IBM Research Institute, targeting BG/C. The environment is evaluated with a set of simple numerical kernels and a subset of the NAS OpenMP benchmarks. We identify issues that were not initially considered in the design of the BG/C architecture to support a programming model such as OpenMP. We also evaluate features currently offered by the BG/C architecture that should be considered in the implementation of an efficient OpenMP layer for massive intra-chip parallel architectures.Peer ReviewedPostprint (author's final draft

    Scheduling Dynamic OpenMP Applications over Multicore Architectures

    Get PDF
    International audienceApproaching the theoretical performance of hierarchical multicore machines requires a very careful distribution of threads and data among the underlying non-uniform architecture in order to minimize cache misses and NUMA penalties. While it is acknowledged that OpenMP can enhance the quality of thread scheduling on such architectures in a portable way, by transmitting precious information about the affinities between threads and data to the underlying runtime system, most OpenMP runtime systems are actually unable to efficiently support highly irregular, massively parallel applications on NUMA machines. In this paper, we present a thread scheduling policy suited to the execution of OpenMP programs featuring irregular and massive nested parallelism over hierarchical architectures. Our policy enforces a distribution of threads that maximizes the proximity of threads belonging to the same parallel section, and uses a NUMA-aware work stealing strategy when load balancing is needed. It has been developed as a plug-in to the ForestGOMP OpenMP platform. We demonstrate the efficiency of our approach with a highly irregular recursive OpenMP program resulting from the generic parallelization of a surface reconstruction application. We achieve a speedup of 14 on a 16-core machine with no application-level optimization

    Performance analysis and tuning in multicore environments

    Get PDF
    Performance analysis is the task of monitor the behavior of a program execution. The main goal is to find out the possible adjustments that might be done in order improve the performance. To be able to get that improvement it is necessary to find the different causes of overhead. Nowadays we are already in the multicore era, but there is a gap between the level of development of the two main divisions of multicore technology (hardware and software). When we talk about multicore we are also speaking of shared memory systems, on this master thesis we talk about the issues involved on the performance analysis and tuning of applications running specifically in a shared Memory system. We move one step ahead to take the performance analysis to another level by analyzing the applications structure and patterns. We also present some tools specifically addressed to the performance analysis of OpenMP multithread application. At the end we present the results of some experiments performed with a set of OpenMP scientific application.Análisis de rendimiento es el área de estudio encargada de monitorizar el comportamiento de la ejecución de programas informáticos. El principal objetivo es encontrar los posibles ajustes que serán necesarios para mejorar el rendimiento. Para poder obtener esa mejora es necesario encontrar las principales causas de overhead. Actualmente estamos sumergidos en la era multicore, pero existe una brecha entre el nivel de desarrollo de sus dos principales divisiones (hardware y software). Cuando hablamos de multicore también estamos hablando de sistemas de memoria compartida. Nosotros damos un paso más al abordar el análisis de rendimiento a otro nivel por medio del estudio de la estructura de las aplicaciones y sus patrones. También presentamos herramientas de análisis de aplicaciones que son específicas para el análisis de rendimiento de aplicaciones paralelas desarrolladas con OpenMP. Al final presentamos los resultados de algunos experimentos realizados con un grupo de aplicaciones científicas desarrolladas bajo este modelo de programación.L'Anàlisi de rendiment és l'àrea d'estudi encarregada de monitorar el comportament de l'execució de programes informàtics. El principal objectiu és trobar els possibles ajustaments que seran necessaris per a millorar el rendiment. Per a poder obtenir aquesta millora és necessari trobar les principals causes de l'overhead (excessos de computació no productiva). Actualment estem immersos en l'era multicore, però existeix una rasa entre el nivell de desenvolupament de les seves dues principals divisions (maquinari i programari). Quan parlam de multicore, també estem parlant de sistemes de memòria compartida. Nosaltres donem un pas més per a abordar l'anàlisi de rendiment en un altre nivell per mitjà de l'estudi de l'estructura de les aplicacions i els seus patrons. També presentem eines d'anàlisis d'aplicacions que són específiques per a l'anàlisi de rendiment d'aplicacions paral·leles desenvolupades amb OpenMP. Al final, presentem els resultats d'alguns experiments realitzats amb un grup d'aplicacions científiques desenvolupades sota aquest model de programació

    Locality Enhancement and Dynamic Optimizations on Multi-Core and GPU

    Get PDF
    Enhancing the match between software executions and hardware features is key to computing efficiency. The match is a continuously evolving and challenging problem. This dissertation focuses on the development of programming system support for exploiting two key features of modern hardware development: the massive parallelism of emerging computational accelerators such as Graphic Processing Units (GPU), and the non-uniformity of cache sharing in modern multicore processors. They are respectively driven by the important role of accelerators in today\u27s general-purpose computing and the ultimate importance of memory performance. This dissertation particularly concentrates on optimizing control flows and memory references, at both compilation and execution time, to tap into the full potential of pure software solutions in taking advantage of the two key hardware features.;Conditional branches cause divergences in program control flows, which may result in serious performance degradation on massively data-parallel GPU architectures with Single Instruction Multiple Data (SIMD) parallelism. On such an architecture, control divergence may force computing units to stay idle for a substantial time, throttling system throughput by orders of magnitude. This dissertation provides an extensive exploration of the solution to this problem and presents program level transformations based upon two fundamental techniques --- thread relocation and data relocation. These two optimizations provide fundamental support for swapping jobs among threads so that the control flow paths of threads converge within every SIMD thread group.;In memory performance, this dissertation concentrates on two aspects: the influence of nonuniform sharing on multithreading applications, and the optimization of irregular memory references on GPUs. In shared cache multicore chips, interactions among threads are complicated due to the interplay of cache contention and synergistic prefetching. This dissertation presents the first systematic study on the influence of non-uniform shared cache on contemporary parallel programs, reveals the mismatch between the software development and underlying cache sharing hierarchies, and further demonstrates it by proposing and applying cache-sharing-aware data transformations that bring significant performance improvement. For the second aspect, the efficiency of GPU accelerators is sensitive to irregular memory references, which refer to the memory references whose access patterns remain unknown until execution time (e.g., A[P[i]]). The root causes of the irregular memory reference problem are similar to that of the control flow problem, while in a more general and complex form. I developed a framework, named G-Streamline, as a unified software solution to dynamic irregularities in GPU computing. It treats both types of irregularities at the same time in a holistic fashion, maximizing the whole-program performance by resolving conflicts among optimizations

    ACOTES project: Advanced compiler technologies for embedded streaming

    Get PDF
    Streaming applications are built of data-driven, computational components, consuming and producing unbounded data streams. Streaming oriented systems have become dominant in a wide range of domains, including embedded applications and DSPs. However, programming efficiently for streaming architectures is a challenging task, having to carefully partition the computation and map it to processes in a way that best matches the underlying streaming architecture, taking into account the distributed resources (memory, processing, real-time requirements) and communication overheads (processing and delay). These challenges have led to a number of suggested solutions, whose goal is to improve the programmer’s productivity in developing applications that process massive streams of data on programmable, parallel embedded architectures. StreamIt is one such example. Another more recent approach is that developed by the ACOTES project (Advanced Compiler Technologies for Embedded Streaming). The ACOTES approach for streaming applications consists of compiler-assisted mapping of streaming tasks to highly parallel systems in order to maximize cost-effectiveness, both in terms of energy and in terms of design effort. The analysis and transformation techniques automate large parts of the partitioning and mapping process, based on the properties of the application domain, on the quantitative information about the target systems, and on programmer directives. This paper presents the outcomes of the ACOTES project, a 3-year collaborative work of industrial (NXP, ST, IBM, Silicon Hive, NOKIA) and academic (UPC, INRIA, MINES ParisTech) partners, and advocates the use of Advanced Compiler Technologies that we developed to support Embedded Streaming.Peer ReviewedPostprint (published version

    09061 Abstracts Collection -- Combinatorial Scientific Computing

    Get PDF
    From 01.02.2009 to 06.02.2009, the Dagstuhl Seminar 09061 ``Combinatorial Scientific Computing \u27\u27 was held in Schloss Dagstuhl -- Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Effective data parallel computing on multicore processors

    Get PDF
    The rise of chip multiprocessing or the integration of multiple general purpose processing cores on a single chip (multicores), has impacted all computing platforms including high performance, servers, desktops, mobile, and embedded processors. Programmers can no longer expect continued increases in software performance without developing parallel, memory hierarchy friendly software that can effectively exploit the chip level multiprocessing paradigm of multicores. The goal of this dissertation is to demonstrate a design process for data parallel problems that starts with a sequential algorithm and ends with a high performance implementation on a multicore platform. Our design process combines theoretical algorithm analysis with practical optimization techniques. Our target multicores are quad-core processors from Intel and the eight-SPE IBM Cell B.E. Target applications include Matrix Multiplications (MM), Finite Difference Time Domain (FDTD), LU Decomposition (LUD), and Power Flow Solver based on Gauss-Seidel (PFS-GS) algorithms. These applications are popular computation methods in science and engineering problems and are characterized by unit-stride (MM, LUD, and PFS-GS) or 2-point stencil (FDTD) memory access pattern. The main contributions of this dissertation include a cache- and space-efficient algorithm model, integrated data pre-fetching and caching strategies, and in-core optimization techniques. Our multicore efficient implementations of the above described applications outperform nai¨ve parallel implementations by at least 2x and scales well with problem size and with the number of processing cores

    Exploiting Hardware Abstraction for Parallel Programming Framework: Platform and Multitasking

    Get PDF
    With the help of the parallelism provided by the fine-grained architecture, hardware accelerators on Field Programmable Gate Arrays (FPGAs) can significantly improve the performance of many applications. However, designers are required to have excellent hardware programming skills and unique optimization techniques to explore the potential of FPGA resources fully. Intermediate frameworks above hardware circuits are proposed to improve either performance or productivity by leveraging parallel programming models beyond the multi-core era. In this work, we propose the PolyPC (Polymorphic Parallel Computing) framework, which targets enhancing productivity without losing performance. It helps designers develop parallelized applications and implement them on FPGAs. The PolyPC framework implements a custom hardware platform, on which programs written in an OpenCL-like programming model can launch. Additionally, the PolyPC framework extends vendor-provided tools to provide a complete development environment including intermediate software framework, and automatic system builders. Designers\u27 programs can be either synthesized as hardware processing elements (PEs) or compiled to executable files running on software PEs. Benefiting from nontrivial features of re-loadable PEs, and independent group-level schedulers, the multitasking is enabled for both software and hardware PEs to improve the efficiency of utilizing hardware resources. The PolyPC framework is evaluated regarding performance, area efficiency, and multitasking. The results show a maximum 66 times speedup over a dual-core ARM processor and 1043 times speedup over a high-performance MicroBlaze with 125 times of area efficiency. It delivers a significant improvement in response time to high-priority tasks with the priority-aware scheduling. Overheads of multitasking are evaluated to analyze trade-offs. With the help of the design flow, the OpenCL application programs are converted into executables through the front-end source-to-source transformation and back-end synthesis/compilation to run on PEs, and the framework is generated from users\u27 specifications

    Roadmap on Electronic Structure Codes in the Exascale Era

    Get PDF
    Electronic structure calculations have been instrumental in providing many important insights into a range of physical and chemical properties of various molecular and solid-state systems. Their importance to various fields, including materials science, chemical sciences, computational chemistry and device physics, is underscored by the large fraction of available public supercomputing resources devoted to these calculations. As we enter the exascale era, exciting new opportunities to increase simulation numbers, sizes, and accuracies present themselves. In order to realize these promises, the community of electronic structure software developers will however first have to tackle a number of challenges pertaining to the efficient use of new architectures that will rely heavily on massive parallelism and hardware accelerators. This roadmap provides a broad overview of the state-of-the-art in electronic structure calculations and of the various new directions being pursued by the community. It covers 14 electronic structure codes, presenting their current status, their development priorities over the next five years, and their plans towards tackling the challenges and leveraging the opportunities presented by the advent of exascale computing.Comment: Submitted as a roadmap article to Modelling and Simulation in Materials Science and Engineering; Address any correspondence to Vikram Gavini ([email protected]) and Danny Perez ([email protected]
    • …
    corecore