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Abstract

With the help of the parallelism provided by the fine-grained architecture, hardware accelerators

on Field Programmable Gate Arrays (FPGAs) can significantly improve the performance of many

applications. However, designers are required to have excellent hardware programming skills and

unique optimization techniques to explore the potential of FPGA resources fully. Intermediate

frameworks above hardware circuits are proposed to improve either performance or productivity

by leveraging parallel programming models beyond the multi-core era.

In this work, we propose the PolyPC (Polymorphic Parallel Computing) framework, which

targets enhancing productivity without losing performance. It helps designers develop

parallelized applications and implement them on FPGAs. The PolyPC framework implements a

custom hardware platform, on which programs written in an OpenCL-like programming model

can launch. Additionally, the PolyPC framework extends vendor-provided tools to provide a

complete development environment including intermediate software framework, and automatic

system builders. Designers’ programs can be either synthesized as hardware processing elements

(PEs) or compiled to executable files running on software PEs. Benefiting from nontrivial features

of re-loadable PEs, and independent group-level schedulers, the multitasking is enabled for both

software and hardware PEs to improve the efficiency of utilizing hardware resources.

The PolyPC framework is evaluated regarding performance, area efficiency, and

multitasking. The results show a maximum 66× speedup over a dual-core ARM processor and

1043× speedup over a high-performance MicroBlaze with 125× of area efficiency. It delivers a

significant improvement in response time to high-priority tasks with the priority-aware

scheduling. Overheads of multitasking are evaluated to analyze trade-offs. With the help of the

design flow, the OpenCL application programs are converted into executables through the

front-end source-to-source transformation and back-end synthesis/compilation to run on PEs, and

the framework is generated from users’ specifications.
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Glossary and Definitions

CU Compute Unit. A compute device in the OpenCL may consist of CUs.

PE Processing Element. Multiple PEs in both OpenCL standard and PolyPC framework comprise

a CU. Work-items execute on PEs.

hPE Each PE can be either a dedicated hardware accelerator or a general-purpose processor. The

accelerator PE is called an hPE, and the processor PE is called an sPE.

sPE See hPE.

Group A CU is called a group in the PolyPC framework. Sometimes it is called as hardware

groups.

PS Processing System. A complete Zynq device consists of the PS, and the programmable logic

(PL). The PS part is a hard-copy dual-core ARM processor. The PL part is fabricated as

traditional FPGAs.

PL Programmable Logic. See PS.

PR Partial Reconfiguration. PR techniques enable reprogramming part of FPGA fabrics without

affecting others.

Module It usually refers to a hardware component that can be either from vendors or users. It can

be embedded into FPGA EAD tools to comprise a system.

PolyTask Polymorphic Task. A PolyTask is associated with a kernel program and consists of

multiple threads. It can only run on compute device.

PolyTT PolyTask Table. It records execution information to run a PolyTask and to switch between

them.

Hardware Thread A thread associated with a work-item within the kernel program is executed



on a PE. As a PE can be either an sPE or an hPE, a thread is called as a software thread or a

hardware thread when it is executed on an sPE or an hPE, respectively.

Software Thread See Hardware Thread.

VSM Virtual Socket Manager. The PR controller works with multiple VSMs), each of which is

associated with a PR region.

ICAP Internal Configuration Access Port.

PCAP Processor Configuration Access Port.

API Application Programming Interface. The defined interface of a piece of software, often a

library or operating system.

CPU Central Processing Unit. A programmable hardware component often referred to as proces-

sor or core.

DMA Direct Memory Access. Often referring to hardware devices that can perform memory-to-

memory operations without processor assistance.

DSP Digital Signal Processor. A processor specialized for signal processing, often featuring vec-

tor and multiply-accumulate operations.

FIFO First-In, First-Out. A hardware component or data structure that exhibits First-In, First-Out

behavior (e.g. a queue).

FPGA Field Programmable Gate Array. A hardware chip whose functionality can be changed

post-fabrication.

GPGPU General-purpose Graphics Processing Unit. A hardware device specialized for data par-

allelism computation.

ACC Hardware Accelerator. Dedicated hardware logics that are designed to finish a particular

task.



Chapter 1

Introduction

1.1 Multi-core Era and Beyond

Before the general-purpose computing community decided to shift to multi-core systems,

general-purpose processors within the computer system kept pushing to their limits in terms of

processing technology, and advanced microarchitecture. Benefiting from the periodic device

feature size scaling predicted by Moore’s law (Dennard scaling [24]), general-purpose processors

were improving the performance accordingly for decades. Besides, with the help of multiple

abstractions of software programming such as operating systems, compilers and programming

models, general-purpose computer systems provide designers significant productivity, flexibility

and additional performance improvement.

However, the transistor cannot shrink forever [63]. By 2004, the general-purpose computing

community began to increase the number of cores to extend Moore’s law instead of squeezing

more performance out of a single-core processor [39]. This mainly resulted from the failure of

Dennard scaling. The slowed processor clock frequency scaling that did not scale along with the

feature size anymore, which thereby limits the increasing performance of a single-core processor.

The overall performance is improved by parallelizing workloads on multi-core processors.

Besides the processor clock frequency, the supply voltage fails to scale along with the feature size

as well [37], and thus power density is increasing. As the number of cores increases, the

incapability of heat dissipation system may prevent fully powering of all cores at the same time,

requiring some cores to run at low speed not to exceed the processor thermal design power

(TDP) [36, 90]. This phenomenon is called dark silicon: transistors that can be used on a chip are

far less than the economic manufacturability sweet-spot [10, 38, 46].

Another constraint contributing to the shift to multi-core systems is the nearly-stalled

1



improvement of processors’ microarchitecture. Advanced techniques applied in the

general-purpose single-core processor, such as superscalar execution, deeper pipelines, and

efficient cache design, have exploited its potential. Efforts to perfect the processors’

microarchitecture design obtain fewer gains over generations.

The transition to multi-core era seemed to be inevitable at first but was forced indeed. This

raises the following two questions:

1. How much more performance left in multi-core processors in the future? In the

multi-core era key questions that need to answer are if the performance gain is worth

scaling down or if we can scale down in the future after the failure of Moore’s law. But one

thing for sure is without breakthroughs of processing technologies multi-core systems (e.g.,

CPU and GPU) cannot benefit from performance gains that they used to have in the

single-core era. Even considering parallel programming optimization along with processing

scaling, the average annual performance gain is about 16% to 23% before 8 nm emerging in

the short future [36, 37]. Besides power constraints, the community can find alternative

solutions in realms such as multi-core microarchitecture, specific acceleration, and

programming methods.

2. How much speedup we can get from parallelism on multi-core processors? For decades,

the single-core processor and sequential programming models dominated the

general-purpose computing and gave its way in the multi-core era. However multi-core

systems bring new challenges for software programming, and it takes time for programmers

and software techniques to catch up with new trends. Amdahl’s law provides a method to

estimate how much speedup obtained through parallelism. But what matters is how to

parallelize applications. Programming models are evolving to meet new demands. In those

symmetric multiprocessor (SMP) systems, standards interfaces, such as Posix threads

(PThreads) or OpenMP, are used by software programmers [48, 82]. In distributed systems

where there are fundamental differences from multi-core systems, programmers are able to

2
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Figure 1.1: Heterogeneity Considerations

use to various standards such as message passing interface (MPI) and CORBA [101]. In

recent years, domain-specific models such as MapReduce [23] and Spark [97] are used to

handle big data analysis. However, speedup of small fractions of an application may be

negligible due to overheads of these programming models. For heterogeneous multi-core

systems, the standard SMP programming models may be unsuitable. Furthermore, some

applications, such as non-computation intensive applications, run well on single-core

processors; while computation intensive applications are able to have much speedup on

SIMD systems such as emerging general-purpose graphic processing units (GPGPUs).

1.2 Heterogeneous Computing

In the multi-core era, one computing resource cannot meet all requirements in terms of

performance, power efficiency, and productivity. The community is seeking solutions through

heterogeneity. One of the most promising approaches is to leverage specification.

3



For a particular task, custom logic via application-specific integrated circuits (ASICs) can

achieve up to three orders of magnitude differences in both power efficiency and performance

over general-purpose processors [17, 29, 32, 44]. But the heavy use of ASICs on general

applications remains many challenges. This is reflected in productivity and flexibility. Designing

ASICs requires much more efforts than on general-purpose processors and implementing

frequently-changed applications is infeasible. Programmable accelerators (i.e., FPGAs and

GPGPUs) provide the trade-off between the performance of ASICs and the productivity of

general-purpose processors (see Figure 1.1). GPGPUs leverage SIMD to accelerate data-intensive

applications; while FPGAs accelerate applications through programmable logics. GPGPUs are

still based on massive simple general-purpose processors. By using parallel programming models

(i.e., CUDA and OpenCL), they can achieve noticeable productivity even compared to

general-purpose processors. But recent research work and industrial trends reveal that FPGAs are

better at web services requiring low-latency and high-frequency requests than GPGPUs in data

centers [15, 66, 88].

1.3 FPGA as a Candidate

With the help of hardware accelerators, FPGAs are able to significantly improve the performance

of many applications due to the parallelism provided by the fine-grained architecture. However,

the dearth of flexibility and programmability affects their widespread adoption. In order to fully

explore the computing potential of FPGA resources, designers are required to have excellent

hardware programming skills and special optimization techniques. Usually, on a single computer

system, software programs can be compiled to binaries running on processors and software

programmers do not need to design application-specific hardware architectures. On the contrary,

programming hardware circuits by using hardware description languages (HDLs) on FPGAs

requires comprehensive hardware-oriented knowledge including pipelining, clock domains, data

flows, and memory managements. Therefore, designing hardware accelerators usually results in

4



particular hardware architecture per application.

FPGA devices have grown to a point where advanced processing technology is adopted to

achieve high capacity. State-of-the-art FPGAs can accommodate complicated heterogeneous

systems. Thus, hardware designers are willing to utilize extra resources to trade for flexible

architectures and productive design flows [3]. One of the most promising approaches is parallel

computing platforms with multiple processing elements such as Graphic Processing Units (GPUs)

and Multiprocessor System-on-Chip (MPSoC). Parallel programming languages such as OpenCL

are used to program these platforms efficiently and productively. OpenCL is an open standard for

parallel computing frameworks across GPUs, CPUs, and even FPGAs. OpenCL introduces

several models including execution, platform, memory, and programming models. These models

provide the unified hardware and software abstractions for programmers. Designers are released

from the burden of designing hardware architectures, and productivities and efficiency are

improved significantly.

One way to address the programmability of hardware logics within FPGAs is to use

High-level Synthesis (HLS) techniques. In [85], applications’ parallelism is expressed in a kernel

program that is directly synthesized into FPGA logics. This technique is very efficient in terms of

performance and power consumptions. Productivity is satisfying since designers do not have to

dig into the hardware details. But when multiple kernels are launched, they have to be synthesized

multiple times, which is significantly time-consuming. Besides, when one kernel is changed, the

whole platform has to be synthesized again. Other approaches target using soft processors. They

can be configured as many-core systems or overlays by using customized processors [65, 91] or

multiprocessor systems with vendor-provided processors [27, 28, 31]. Recent works also focus on

dedicated soft-GPU cores on FPAGs [3]. These approaches increase productivity by leveraging

general-purpose processors on a pre-defined hardware architecture. Comparing to HLS techniques

that every application has their logics, soft-processor-based solutions change different kernels by

compiling, which is usually much faster than synthesizing the same functionality. However, the
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trade-off is that they lose performance and area efficiency compared to dedicated logics.

However, heterogeneous systems on FPGAs still face the following challenges:

• Can platform specification details be removed from users’ codes and be encapsulated

within an automatic system builder?

• Can the complexity of designing parallel applications be reduced by applying standard

parallel programming models on FPGAs?

• What are the benefits when heterogeneous computing resources are used on FPGAs?

• Can the system efficiency be increased by introducing the priority-aware multitasking?

1.4 Statements and Contributions

In this work, we want to answer the questions raised in the previous section by proposing the

PolyPC (Polymorphic Parallel Computing) framework. The PolyPC framework targets improving

productivity without losing performance when designers want to implement their parallelized

applications on FPGAs. The PolyPC framework implements a custom hardware platform, along

with software intermediate framework and automatic system builders. On the one hand, designers

can write their programs by using the easy-to-use OpenCL-like programming model to optimize

their applications. Firstly, the automatic system builder takes the specifications to generate the

hardware platform. Then the software programs are either synthesized into hardware accelerators

or compiled to executable files running on general-purpose processors. On the other hand,

different from previous work that the whole hardware system is generated per application, the

PolyPC framework enables partially reloaded processing elements (PEs) for both sPEs and hPEs.

Therefore, PEs can be generated off-line without changing the static system and loaded into the

system during runtime environment. Benefiting from the flexibility of re-loadable PEs, the context

switching feature is enabled for PEs to improve the efficiency to utilize hardware resources. The

priority-aware scheduling policy is used to provide fast responses to tasks with high priorities.

6



1.5 Dissertation Organization

In the next chapter, we discuss the background in terms of parallel programming models and

detailed illustration of the OpenCL standard working on the PolyPC framework. Chapter 3,

Chapter 4 and Chapter 5 provide discussions of approaches for the PolyPC framework to address

questions raised in this chapter.

The hardware architecture of the PolyPC framework, as well as the evaluation of pure

performance part, is talked about in Chapter 3. Chapter 4 discusses the polymorphic multitasking

feature. Besides, experiments and results related to this feature are addressed as well. Chapter 5

demonstrates how to improve the productivity to implement parallel applications on the PolyPC

framework by using the design flow. Finally, Chapter 6 concludes this work and discusses the

future work.
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Chapter 2

Backgrounds

2.1 Parallel Programming Models

A parallel programming model is an abstraction of the computer architecture [25]. There are

many programming models for parallel computing because how to put several processors or

computing units together to form a complete system is different from one programming models to

another. Besides, it is difficult to separate one particular programming model to its hardware

implementation. In other words, the same programming model may have different software

compilation flows and hardware architectures.

POSIX Threads In this model, several concurrent execution paths (threads) can be controlled

independently. A thread is a lightweight process having its own program counter (PC) and

execution stack [7]. The model is very flexible, but it usually associated with shared memory and

operating systems.

The Pthreads, or Portable Operating System Interface (POSIX) Threads, is a set of C

programming language types and procedure calls [11, 55, 60]. Pthreads is implemented as a

header (pthread.h) and a library for creating and manipulating each thread. The Pthreads library

provides functions for creating and destroying threads and for coordinating thread activities via

constructs designed to ensure exclusive access to selected memory locations (locks and condition

variables). This model is especially appropriate for the fork/join parallel programming

pattern [75].

In general, Pthreads is not recommended as a parallel program development technology.

While it has its place in specific situations, and in the hands of expert programmers, the
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unstructured nature of Pthreads makes the development of correct and maintainable programs

difficult. Also, recall that the number of threads is not related to the number of processors

available. These characteristics make Pthreads programs not scalable to a large number of

processors [93].

OpenMP OpenMP [16] is a shared memory application programming interface (API) whose

aim is to ease shared memory parallel programming. The OpenMP multithreading interface [82]

is specifically designed to support high-performance computing (HPC) programs. It is also

portable across shared memory architectures. OpenMP differs from Pthreads in several significant

ways. While Pthreads is purely implemented as a library, OpenMP is implemented as a

combination of a set of compiler directives, pragmas, and a runtime providing both management

of the thread pool and a set of library routines. These directives instruct the compiler to create

threads, perform synchronization operations, and manage shared memory. Therefore, OpenMP

does require specialized compiler support to understand and process these directives.

In OpenMP, the use of threads is highly structured because it was designed specifically for

parallel applications. In particular, the switch between sequential and parallel sections of code

follows the fork/join model [7]. This is a block-structured approach for introducing concurrency.

A single thread of control splits into some number of independent threads (the fork). When all the

threads have completed the execution of their specified tasks, they resume the sequential

execution (the join). A fork/join block corresponds to a parallel region, which is defined using the

PARALLEL and END PARALLEL directives.

The characteristics of OpenMP allow for a high abstraction level, making it well suited for

developing HPC applications in shared memory systems. The pragma directives make it easy to

obtain the concurrent code from serial codes. In addition, the existence of specific directives eases

parallelizing loop-based code.
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MPI Message Passing is a parallel programming model where communication between

processes is done by interchanging messages. This is a natural model for a distributed memory

system, where communication cannot be achieved by sharing variables. Over time, a standard has

evolved and dominated for this model: the Message Passing Interface (MPI). MPI is a

specification for message passing operations [42, 42, 84, 93]. MPI is a library, not a language. It

specifies the names, calling sequences, and results of the subroutines or functions to be called

from Fortran, C or C++ programs. Thus, the programs can be compiled with ordinary compilers

but must be linked with the MPI library.

In this model, the processes executed in parallel have separate memory address spaces.

Communication occurs when part of the address space of one process is copied into the address

space of another process. This operation is cooperative and occurs only when the first process

executes a send operation and the second process executes a receive operation. In MPI, the

workload partitioning and task mapping have to be done by the programmer, similarly to

Pthreads. Programmers have to manage what tasks are to be computed by each process.

In summary, MPI is well suited for applications where portability, both in space (across

different systems existing now) and in time (across generations of computers), is important. MPI

is also an excellent choice for task-parallel computations and for applications where the data

structures are dynamic, such as unstructured mesh computations.

CUDA CUDA is a parallel programming model developed by NVIDIA [52]. The CUDA model

is designed to develop applications scaling transparently with the increasing number of processor

cores provided by the GPUs [49, 62]. CUDA provides a software environment that allows

developers to use C as a high-level programming language. For CUDA, a parallel system consists

of a host (i.e., CPU) and a computation resource or device (i.e., GPU). The computation of tasks

is done in the GPU by a set of threads running in parallel. The GPU threads architecture consists

of a two-level hierarchy, namely the block and the grid.
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The block is a set of tightly coupled threads, each identified by a thread ID. On the other

hand, the grid is a set of loosely coupled blocks with similar size and dimension. There is no

synchronization between the blocks, and a single GPU handles an entire grid. The GPU is

organized as a collection of multiprocessors, with each multiprocessor responsible for managing

one or more blocks in a grid. A block is never divided across multiple multiprocessors. Threads

within a block can cooperate by sharing data through some shared memory, and by synchronizing

their execution to coordinate memory accesses.

Worker management in CUDA is done implicitly. That is, programmers do not manage

thread creations and destructions. They just need to specify the dimension of the grid and block

required to process an individual task. Workload partitioning and worker mapping in CUDA is

done explicitly. Programmers have to define the workload to run in parallel by using the function

Global Function and specifying the dimension and size of the grid and of each block.

A recent initiative by Intel is called Knights Ferry [95, 103], and is being developed under

the Intel Many Integrated Core (MIC) architecture. Knight Ferry is implemented on a PCI card

with 32 x86 cores. The MIC supports a more classical coherent shared memory parallel

programming paradigm than CUDA. Moreover, it will be programmed using native C/C++

compilers from Intel.

OpenCL OpenCL [43] is an open royalty-free standard for general purpose parallel

programming across CPUs, GPUs, and other processors. Primarily, OpenCL distinguishes

between the devices (usually GPUs or CPUs) and the host (CPU). The idea behind OpenCL is to

write kernels (functions that execute on OpenCL devices) and APIs for creating and managing

these kernels. The kernels are compiled for the targeted device at runtime, during the application

execution. This enables the host application to take advantage of all the computing devices in the

system.

The OpenCL operational model can be described as four interrelated models: the platform,
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execution, memory, and programming models. The platform model is viewed from a hierarchical

and abstract perspective. In this model, a host coordinates execution, transferring data to and from

an array of Compute Devices. Each Compute Device is composed of an array of Compute Units.

Each Compute Unit is comprised of an array of Processing Elements.

Execution of an OpenCL program involves simultaneous execution of multiple instances of

a kernel on one or more OpenCL devices. A kernel is the primary executable code unit. It is

called work-item and has a unique ID. Work-items can be organized into work groups for

synchronization and communication purposes. The different executions of a program are queued

and controlled by the host application. This last sets up the context in which the kernels run,

including memory allocation, data transfer among memory objects, and the creation of command

queues used to control the sequence in which commands are executed. However, the programmer

is responsible for synchronizing any necessary execution order.

OpenCL has been designed to be used not only in GPUs but also in other platforms like

multi-core CPUs. Thus, it can support both data parallel [47], and task parallel [76] programming

patterns [75], which are well suited for GPUs and CPUs architectures, respectively.

DirectCompute DirectCompute is Microsofts approach to GPU programming. DirectCompute

is a part of the Microsoft DirectX APIs collection [50]. In fact, it is also known as DirectX11

Compute Shader. It was initially released with the DirectX 11 API but runs on both DirectX 10

and DirectX 11 graphics processing units. In particular, it was introduced thanks to the new

Shader Model 5 [51] provided in DirectX 11, which allows computation independently of the

graphic pipeline, therefore suitable for GPGPUs. The main drawback of DirectCompute is that it

only works on Windows platforms.

Array Building Blocks Intels Array Building Blocks (ArBB) provides a generalized

vector-parallel-programming solution for data-intensive mathematical computation [40, 56, 61].

Users express computations as operations on arrays and vectors. ArBB comprises a standard C++
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Figure 2.1: OpenCL Platform Model

library interface and a powerful runtime. A just-in-time (JIT) compiler supplied with the library

translates the operations into the target-dependent code, where a target could be the host CPU or

an attached GPU. As for runtime, ArBB uses Intels Threading Building Blocks [57], which

contributes to abstract platform details and threading mechanisms for scalability and performance.

Intels ArBB can run data-parallel vector computations on a possibly heterogeneous system. By

design, Intel ArBB prevents parallel programming bugs such as data races and deadlocks.

2.2 The OpenCL Standard Overview

OpenCL is an open industrial standard providing the low-level hardware abstraction plus a

framework to support programming on heterogeneous hardware platforms [43]. The OpenCL

framework can be described by using several models:

• Platform model.

• Memory model.

• Execution model.
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2.2.1 Platform Model

The platform model is an abstraction describing how OpenCL views the hardware. As shown in

Figure 2.1, the OpenCL platform model consists of one host processor and one or more compute

devices, each of which contains multiple compute units (CUs). A single compute unit is

comprised of multiple processing elements (PEs), within which the computation occurs. The

OpenCL framework can be deployed on heterogeneous compute devices, such as graphics

processing units (GPUs), field-programmable gate arrays (FPGAs), and even central processing

units (CPUs). The specific hardware implementation of the platform model is different per vendor

even for the same compute device [99]. Four major commercial solutions are listed as following:

• NVIDIA GPUs [21]. In a NVIDIA GPU, the compute unit is called as a streaming

multiprocessor (SM). A streaming multiprocessor consists multiple stream processor (SP)

cores. In modern GPU architecture, each SP core is highly multithreaded. SMs employ the

NVIDIA-called SIMT (single-instruction, multiple-thread) architecture. Threads are

divided into groups of 32 threads, which are called warps. Warps are executing on SMs,

and further on SIMD units in lockstep. To improve throughputs, warps are scheduled and

interleave their execution through the pipeline of SIMT units.

• AMD GPUs [5]. AMD GPU devices vary in architectures through generations. For devices

in Evergreen and Northern Islands families, a compute unit is called a SIMD

(single-instruction, multiple-data) engine that consists of multiple stream cores (SCs). SCs

execute VLIW (very long instruction word) 4 (for Northern Islands) or 5 (for Evergreen)

wide instructions from one wavefront (similar to warps in NVIDIA devices) in lockstep.

For devices in Southern Islands family, which is also known as GCN (Graphic Core Next),

each compute unit has one scalar unit and four vector unit. Each vector unit contains an

array of 16 PEs and works as the SIMD architecture.
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Figure 2.2: OpenCL Execution Model

• Intel FPGAs [94]. Different from how parallelism is revealed in GPUs, Intel FPGAs use

the concept of pipeline parallelism. OpenCL programs are transformed into dedicated and

pipelined hardware circuits on FPGAs by using their SDK tools. A PE is called a kernel

pipeline, which is the dedicated and pipelined circuit module. Kernel pipelines duplicate

themselves and group into multiple compute unit.

• Xilinx FPGAs [105]. SDAccel is the SDK tool that Xilinx launched for designers to

implement the OpenCL framework on Xilinx FPGAs. OpenCL programs compatible with

SDAccel are converted into the form that is acceptable to the Xilinx high-level synthesis

(HLS) tool. One compute unit is generated from an OpenCL kernel program and can

duplicate itself. PEs within the compute unit are revealed by unrolling the for loop in the

kernel program. Same with Intel’s solution, the dedicated hardware module can be

pipelined.
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2.2.2 Execution Model

An OpenCL application is combined with two programs: a set of kernel programs and a host

program. A kernel program that executes on one or more OpenCL devices is defined as a unit of

execution: kernel.

Kernel programs execute across a global domain of work-items, where an index space is

defined. The work-items in a grid are broken up into work-groups. A work-item has a global ID

according to the coordinate within the index space; while the local ID is defined based on the

position within its work-group. The index space is called an NDRange in OpenCL. The NDRange

is an N-dimensional index space, where N is up to three. The NDRange is defined by the size of

the index space (global size) in each dimension, the size of a work-group (local size), and the

offset F indicating the initial value of the indices. Each work-item’s global ID is an

N-dimensional tuple, as well as the local ID. Work-groups are also assigned IDs that indicating

positions of the work-groups as blocks within the NDRange. Therefore, a work-item is calculated

by using two ways: (1) a global index; (2) the size and index of work-group and local index.

As the example is shown in Figure 2.2, a 2-dimensional NDRange is demonstrated. The

NDRange is defined by the NDRange size (Gx,Gy), the work-group size (Sx,Sy), and the global

ID offset (Fx,Fy). Each work-item is identified by either its global ID (gx,gy) or the calculation of

work-group ID (wx,wy), the work-group size (Sx,Sy), and the local ID (sx,sy) within its

work-group such that

(gx,gy) = (wx ∗Sx + sx +Fx,wy ∗Sy + sy +Fy)

The number of work-groups are computed as 1

(Wx,Wy) = (ceil(
Gx

Sx
),ceil(

Gy

Sy
))

1Beginning from OpenCL 2.0, work-group sizes could be non-uniform in multiple dimensions when the global
size is not divisible by the work-group size in each dimension.
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The real-world example of dot product is shown below. We want to calculate the dot product

of two vectors a = [a0,a1, ...,a15], and b = [b0,b1, ...,b15], which is defined as a ·b = ∑
15
i=0 aibi.

The intermediate result c = [c0,c1, ...,c15] is denoted as ci = aibi, where 0≤ i≤ 15. To calculate

vector c by using OpenCL, the 1-dimensioned global index space is defined as 1×16, and the

local index space (the size of workgroup) is as 1×4. Therefore, there are totally 4 workgroups,

each of which contains 4 work-items, i.e., c0...c3, c4...c7, c8...c11, and c12...c15.

A host program that executes on the host uses the OpenCL API to create and manage the

context through command queues. A context contains several hardware and software resources

including compute devices, kernel objects, program objects, and memory objects. Each single

compute device within the context is associated with a command queue. The command queue is

categorized into three types: (1) kernel-enqueue commands that enqueue a kernel program on a

device; (2) memory commands that manage memory mappings and transfer data between

memories; (3) synchronization commands that control the command execution order explicitly.

Commands within its command queue execute in either in-order execution mode or out-of-order

execution mode.

In OpenCL, there are different domains of synchronization, i.e., command synchronization

and work-group synchronization. Command synchronization can constrain the execution order of

commands within a command queue in an out-of-order execution mode. Work-items within a

single work-group can be synchronized by using the work-group synchronization.

The work-group is scheduled to execute on a compute unit. Every work-item is physically

executed on a processing element within its corresponding compute unit. Through this mapping

of compute device↔kernel, compute unit↔work-group, processing element↔work-item, the

data parallelism in an application is expressed.
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Figure 2.3: OpenCL Memory Model

2.2.3 Memory Model

Memory model showing in Figure 2.3 defines how memory resources are seen by multiple

compute resources, and managed by the OpenCL applications. Memories in OpenCL are divided

into two parts: host memory and device memory. Host memory is only accessible by the host, and

device memory is only for the compute devices2.

The device memory is further decomposed into a three-level memory hierarchy.

• Global/Constant Memory. The global memory is accessible by all work-items within all

work-groups for reading and writing. The constant memory is also accessible by all

2OpenCL 2.0 brings the new feature of shared virtual memory (SVM), by using which the host and compute
devices can share the same virtual memory space without moving data explicitly.
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Table 2.1: Allocation and Accessibility to Memory Objects within Memory Hierarchy

Global Memory Constant Memory Local Memory Private Memory

Host
Allocation Dynamic Dynamic Dynamic -

Accessibility Read/Write Read/Write - -

Kernel
Allocation Static Static Static Static

Accessibility Read/Write Read Read/Write Read/Write

work-items but remains constant during the execution of kernels.

• Local Memory. The local memory is located in a work-group and is shared by all

work-items within the work-group.

• Private Memory. The private memory is exclusively accessible by the work-item, and

cannot be visible to other work-items.

The memory hierarchy guarantees the memory isolation among them referring to the logic

concept. In host programs, the OpenCL API is used to create and manage memory objects to

move data between host and device memories. A memory object is a handle pointing to a space

within the memory. Table 2.1 summarizes the allocation and accessibility to memory objects for

different memory hierarchies. Dynamic allocation means the memory space is managed at

runtime while static allocation is at compile time.
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Chapter 3

Hardware Architecture of the PolyPC Framework

3.1 Brief Introduction of Zynq Architecture

The PolyPC framework is built on top of the Xilinx Zynq-7000 series (i.e., Z7045 device on the

ZC706 development kit in this work). A complete Zynq device consists of the processing system

(PS) and the programmable logic (PL). The PS part is a hard-copy dual-core ARM processor. The

PL part is fabricated as traditional Kintex-7 FPGAs.

One of the most important components within the PS is the dual-core ARM processor.

Figure 3.1 demonstrates the overview architecture of the Zynq SoC. The PS and the PL parts

communicate with each other through various interfaces including four general-purpose (GP)

AXI interfaces, four high-performance (HP) AXI interfaces, and one AXI accelerator coherence

port (ACP) interface.

• GP AXI interfaces provide two slave ports and two master ports. They are designed for

general purposes (e.g., passing control signals from the PS to the PL) instead of achieving

high performance. The GP AXI master bus is usually used to control the hardware modules

in the PL part by the PS processor.

• The four HP AXI interfaces provide four PS master ports with high bandwidth data path to

the PS DDR memory. Each interface includes two FIFO buffers for read/write traffic. The

PL communicate with memory interconnect to the DDR interface through the four

high-speed HP AXI ports. HP AXI interfaces are used by applications that need high

throughputs between the PL and the PS.

• The ACP interface provides low-latency access to PL logics, with optional coherency with
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Figure 3.1: Zynq SoC Architecture

L1 and L2 cache. The master port is connected to the snoop controller that is responsible

for data coherence and consistency. In other words, hardware modules that connects to the

AXP slave port in the PL shares the same snoop controller with the PS processor.

The PS has a PS DDR memory that is for applications running on the ARM processor (i.e., Linux

OS). The PL DDR memory is optional depending on the board design. If the PL DDR memory is

connected to the PL, a DDR controller IP within the PL provides AXI interfaces that PL modules

can access. The PL can be controlled via PS software through the processor configuration access

port (PCAP) bridge with a bitstream file. The PS provides the clock and reset module that can

drive PL logics.

3.2 PolyPC Architecture Overview

Different from existing hardware architecture, the PolyPC framework has its hardware

architecture which adapts the hardware abstraction from the OpenCL platform model and extends

to support unique features (i.e., polymorphic task and polymorphic multitasking). Figure 3.2

21



Embedded Linux

Processing System (PS)

PL Peripherals

Programmable Logic (PL)

PS Peripherals

...

PL DDR

PR
Controller

PolyTask 
Table RAM

Mutex
Manager

Item ID 
Generator

...
sPE #N

User 
Application

PolyTask

PS DDR SD Card 
Controller Ethernet . . . 

Group IF
Group

Scheduler

Item ID 
Generator

...
Group IF

Group
Scheduler

sPE #0

sPE #N

. .
PolyTask

Application Libs
Device Drivers

  Group #M

hPE #0

  Group #0

Figure 3.2: PolyPC Platform Architecture

shows the overview of the PolyPC framework architecture. In the PolyPC framework, the PS is

equivalent to the host in the OpenCL platform model, and the architecture implemented on the PL

is equal to the compute device. Currently, only one compute device is supported for one host in

the PolyPC framework. Groups (sometimes, we call them hardware groups for clarification) are

equivalent to and extends functionalities from Compute Units (CUs) within the OpenCL platform

model. Each group may contain multiple processing elements (PEs) that are the same with PEs in

OpenCL. The PolyPC framework supports a heterogeneous PE architecture. Each PE can be

either a dedicated hardware accelerator or a general-purpose processor (i.e., MicroBlaze). The

accelerator PE is called an hPE, and the processor PE is referred to as an sPE. PEs within one

group can be all hPEs, sPEs, or the combination of them. hPEs can be either unchangeable or

re-loadable by using the partial reconfigurable (PR) techniques. The sPEs are always re-loadable

since they are general-purpose processors that can load any programs.

An embedded Linux is booted on the PS. Application libraries provide the OpenCL API
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functions that are used in the host programs for the PolyPC framework. Device drivers are

low-level interfaces between the Linux applications and devices within the PL part. User

applications are similar to the host programs from the OpenCL execution model. In the PolyPC

framework, a host program (user application) is a typical Linux user program written in the C

language. In a host program, one or more polymorphic tasks (PolyTasks) are created, launched,

and committed. A PolyTask is associated with a kernel program that is similar to the kernel

program in the OpenCL execution model and runs on the compute device. It has polymorphic

forms that can run on both sPEs and hPEs.

PS peripherals are exclusively accessible by the host processor. The Linux OS uses the PS

DDR memory. Binary files and input data files are stored on the SD card for further loading into

the DDR memory to process. The output results can also be moved back to the SD card after

processing. The PL DDR memory is accessible by both PS and PL parts. During runtime, data

elements are loaded from and stored into the PL DDR memory and processed on the PL. Other

hardware modules within the PL part (i.e., PolyTask Table RAM, Mutex Manage, and PR

Controller) support unique features of the PolyPC framework.

3.3 Memory Hierarchy

Similar to the OpenCL memory model, the PolyPC framework provides a three-level memory

hierarchy within one compute device including private memory, local memory, and

global/constant memory. The host memory is exclusively accessible by the host processor.

Figure 3.3 demonstrates the implementation of the three-level memory hierarchy in the

PolyPC framework. The global/constant memory is visible to all PEs within their group on the

compute device. Besides, global/constant memory is also accessible by the host processor and is

used to temporarily store data and binary files that are utilized by the compute device. The local

memory is located in a group and shared by PEs within the group. The private memory is

exclusive owned per PE. Within each group, a group DMA can move datum between the local
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memory and the global memory so that PEs are nearer to the datum that is ready to process than

those in the global memory.

The global memory is connected to the host and the compute device through the AXI bus, as

well as connections between memories and PEs. PS DDR and PL DDR memories are used to

implement the host memory and the global/constant memory, respectively. Local memories use

block RAMs (BRAMs), which are dedicated memory resources on FPGAs. Private memories are

different per PE kind. For hPEs, the private memory is determined according to the kernel codes

that define the size of the private memory. For sPE, the private memory uses the block RAM that

can be only accessible by the general-purpose processor.

3.4 Bus Hierarchy

The PolyPC framework uses a hierarchical bus architecture based on the AXI memory-mapped

(MM) bus. The AXI4 protocol provides the optional burst addressing and read and write

operations works on multiple channels [106]. For example, reading data elements involves Read

Address channel and Read Data channel. Under the non-burst mode, a read operation consists
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of a read address request through the Read Address channel and a data read on the Read Data

channel. If the size of data is larger than the bus length, the whole process will invoke multiple

small read operations. The burst mode provides an efficient way for data transferring with

consecutive addresses. Under the burst mode, a read operation consists of one read address

request following by multiple data reads, which will significantly improve the bus bandwidth for a

large amount of data.

The AXI MM bus is divided into two types: AXI-lite bus and AXI-full bus [9]. The former

one does not have burst mode and usually is used for signal controlling. The latter one has burst

mode and is designed for high throughput. In a practical design, the control flow bus architecture

and data flow bus architecture are independent of each other to avoid interferences. As shown in

Figure 3.4, the horizontal double-arrow lines represent AXI interconnects that have both slave and

master ports. All memory-mapped IP modules have to communicate with others through AXI

interconnects as either a slave device or a master device. The vertical single-arrow lines represent

those connections from devices to interconnects.

The blue lines are the control path by using the AXI-lite protocol, and the red ones are data
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flow by using the AXI-full protocol. Every peripheral such as PolyTT RAM and mutex manager

has their own interconnect, each of which is connected to all groups and the host. Therefore,

when different groups access different peripherals, the performance will not be affected since

control signals go to different interconnect. The red lines are the data path by using the AXI-full

protocol. Three data paths are demonstrated in Figure 3.4.

1. PR Controller Data Path The master port of the PR controller is used to fetch PR

bitstream files from the PL DDR. When the PR controller is programming the PR region,

the PR files are read to write to the ICAP module in burst mode.

2. PE Data Path Every PE has the data master port connect to the inner group data

interconnect that is connected to the outer group data interconnect. Multiple groups can

access the PL DDR through the same outer group data interconnect. The local memory is

also attached to the inner group data interconnect. PEs operate on the local memory, which

will not affect other groups to access data from the PL DDR. PEs can also use burst mode

to fetch and update data from the PL DDR.

3. Group DMA Data Path The master port of the group DMA shares the same inner group

data interconnect with PEs. Data elements between the PL DDR and the local memory are

transferred in the burst mode.

Within each group, the group scheduler and PEs work on the group control interconnect and

the inner group data interconnect, respectively. This design will leverage features of AXI-full and

AXI-lite protocols to avoid the interference between control signals and the data transferring.
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3.5 Compute Device Architecture

3.5.1 PolyTask Table Queue

PolyTask table RAM is a doubly-linked list storing PolyTask tables in the block RAM. In host

processor one user thread can create and launch one or more kernels that will run on PEs. A

running kernel on compute device is called as a polymorphic task (PolyTask) in PolyPC context.

Creating a PolyTask by a user thread is the equivalent process to create a PolyTask table in the

PolyTask table RAM.

PolyTask table (PolyTT) records execution information to run a PolyTask and to switch

between them. Figure 3.5 shows the detailed structure of the PolyTask table. The priority is set

by users and is used for schedulers. The tid is copied from the thread ID from the user thread

creating that particular PolyTask. The kernel magic is defined manually. Together with tid,

kernel magic is a unique identifier to distinguish each PolyTask. workgroup size (the size of

each workgroup, i.e., the number of work-items within one workgroup) and num workgroup (the

number of workgroups totally) are kernel configurations that are the same with OpenCL. The

curr workgroup is the workgroup IDs indicating the latest workgroup that is running. The array

argv stores arguments that pass to the kernel. elf info and pr info record the information of

‘source codes’ of a PolyTask in two forms: ELF executables and PR bitstream files. These two

files are located in the FPGA DDR, which are initially loaded by user thread. Different from
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Table 3.1: Accessibility of Registers on the Mutex Manager for a Mutex Lock

ReqID CurID RelID

Execution Instances W R WR
Mutex Manager R W WR

pr info that only stores the entry addresses and sizes of bitstream files for each hardware thread,

elf info stores the stack address additionally. To decrease the size of ELF files, sections that are

allocated dynamically during run-time are eliminated with only labels remaining (e.g., head and

stack sections). Therefore, the ELF file size and the DMA size are not the same and sections are

loaded into FPGA DDR one by one according to its virtual memory address.

3.5.2 Mutex Manager

Mutex manager provides the underlying mutual exclusion mechanism across any execution

instance across the whole system. It is a complement to the original OS mutex functions. In

PolyPC, there are three kinds of execution instances: host programs on the host processor,

scheduling programs on group schedulers, and PolyTasks on PEs. When acquiring the access of

global resources (e.g., PolyTT Queue), threads within Linux can leverage OS-level mutex locks.

Polymorphic tasks are not aware of these mutex locks at all. Instead of getting host processor

involved to handle mutex requests from polymorphic tasks, a dedicated global mutex manager is

set. Therefore, there are totally two-level mutex locks. For threads running on the host processor,

firstly, they need to request the global mutex locks to exclude polymorphic tasks on PEs, and then

request the OS-level mutex locks. Polymorphic tasks can request global mutex locks directly to

exclude all the other threads.

Execution instances request and release mutex locks with the mutex manager through

multiple 3-register bundles that are accessible to both execution instances and the mutex manager.

One mutex lock occupies three registers to complete its functionality. Table 3.1 demonstrates the

accessibility of three registers (i.e., ReqID, CurID, and RelID) from one mutex lock. To avoid
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conflicts, one register may be read-only to execution instances and write-only to the mutex

manager such as ReqID, and CurID. Since RelID cannot be read and written at the same by the

mutex manager and execution instances, it is entirely accessible for both sides. To request and

release a mutex lock, every execution instance should have one unique ID to let the mutex

manager identify them. In the PolyPC framework, the host program can use the process ID (PID)

from the Linux system while the group scheduler can use the group index that starts from 1. The

algorithm of requesting a mutex lock from an execution instance is shown as:

1. Keep polling CurID to check if it is equal to its ID.

If not, set ReqID with its ID and repeat this step (1); otherwise, jump to the next step (2).

2. Continue to run.

Possibly, there are multiple requests for one mutex lock by writing their IDs to ReqID during the

same period. The mutex manager approves a random request by choosing its ID. Releasing the

mutex lock is done by using only one register and is demonstrated as:

1. Keep RelID to check if it has been reset.

If not, set RelID with its ID and repeat this step (1); otherwise, jump to the next step (2).

2. Continue to run.

Since one execution instance can only obtain one mutex lock at one time, the mutex manager

monitors the RelID to check if the execution instance would release this mutex lock.

Figure 3.6 summaries how the mutex works for one mutex lock. The mutex manager keeps

checking CurID to examine if this mutex lock has been obtained already. If CurID is equal to

zero, which means this mutex lock is free to requests no matter there are requests or not, the

mutex manager fills CurID with requesting ID from ReqID and resets ReqID in case this is the

only request for this mutex lock. If RelID is not equal to zero, which means the execution

instance wants to release this mutex lock, the mutex manager resets RelID to tell the execution
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while true do
if CurID == 0 then

CurID = ReqID;
ReqID = 0;

end
if RelID != 0 then

RelID = 0;
CurID = 0;

end
end

Figure 3.6: Mutex Manager Algorithm for One Mutex Lock
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Figure 3.7: PolyTask Context Switching Demonstration

instance that the mutex lock has been released, and resets CurID to let the mutex manager know

that current execution instance has released this mutex lock.

3.5.3 Partial Reconfiguration Controller

In the PolyPC framework, different hardware threads running on hPEs are switches by using the

partial reconfiguration (PR) technique. Each loadable hardware thread exists as a hardware logic

module and is placed within a PR region. To switch out a running hardware thread, the group

scheduler requests the PR controller to load a PR bitstream file from the PL DDR into a particular

PR region. For the group with multiple hPEs, the group scheduler issues multiple requests to the

PR controller one at a time. The PR controller works with multiple virtual socket managers
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(VSMs) simultaneously. Different group schedulers can issue requests at the same time. Since the

PR controller uses the internal configuration access port (ICAP) IP module that can load only one

bitstream file at a time, the PR controller queues requests from multiple VSMs and responses to

them one by one.

As shown in Figure 3.7, the PR controller consists of VSMs that are connected to the fetch

path. A VSM manages one particular virtual socket that refers to a PR region with static logics

assisting the PR functionality. For example, the PolyPC framework uses decouplers to isolate PR

regions with other static logics. In particular, during the period of loading one PR bitstream file

into its corresponding PR region, the output wires of PR regions will be assigned with unexpected

values that interfere with control logic on buses (e.g., valid signals on a master AXI Stream bus).

This phenomenon may result in confusions of modules connecting to the PR region. For instance,

if the PR region connects to a FIFO by using a master AXI Stream bus, the FIFO may be filled

with garbage values during PR loading since the valid signal may be asserted for more than one

clock cycle. Decouplers are comprised of multiple multiplexers of 2 inputs to isolate these control

signals. The VSM uses a 1-bit select line to select correct values of decoupled signals. The

PolyPC framework uses another reset signal connecting to the logic that is programmed on the

PR region to reset the module in behavior level. To guarantee that the logic runs correctly after

loaded into the PR region, each VSM works in the following three states:

1. Initialize The group scheduler assigns the memory address along with other information

(e.g., size) of the PR bitstream file that is applicable on this virtual socket. The VSM waits

for triggers or starts signals to load the PR bitstream file. At this state, the decouple and

reset signals remain deasserted.

2. Load The VSM asserts the decouple signal to trigger the decoupler to work and notice the

fetch patch to bring corresponding PR bitstream file from configuration library to the ICAP

module. This state may last for a while depending on the size of the bitstream file and the

bandwidth of buses connecting to the memory.
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3. Reset The VSM deasserts the decoupling signal and assert the reset signal. The duration of

the reset signal is defined at the Initialize state. After certain clock cycles, the VSM

deasserts the reset signal and go back to the Initialize step.

The PR controller uses the ICAP IP module to load PR bitstream files to corresponding PR

regions. As discussed in section 3.1, the Zynq device has a PCAP module to load bitstream files.

Before using ICAP, the PolyPC framework switches from PCAP to ICAP by clearing the PCAP PR

bit in the DEVCFG CTRL register. In the PolyPC framework, PR bitstream files of hardware threads

are stored in the PL DDR memory along with creating the PolyTthread from the host. The

Config Libs refers to the DDR memory that storing bitstream files. The location of PR

bitstream files for each virtual socket are set during runtime by the group scheduler.

3.6 Group Architecture

Groups are computing resources in PolyPC. One group consists of the Group Interface (Group IF)

and one or more Processing Elements (PEs). Figure 3.8 shows the overview of detailed group
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architecture. Within one group, PEs may consist of hardware accelerators, MicroBlazes, or both

of them. Hardware modules to run polymorphic tasks are PEs in two variants: hardware

accelerators and general-purpose processor (i.e., MicroBlazes). In other words, one polymorphic

task has two execution instances: ELF binaries for MicroBlazes and bitstream files for hardware

accelerators. In Figure 3.8, the gray PE block is shown as a PR region. The hardware accelerators

can be either placed into PR regions for dynamic scheduling or configrured as non-loadable for

performance purposes.

3.6.1 Group Interface

The group IF Group IF has two major components: item ID generator and dispatcher, and the

group scheduler. After receiving a trigger command (i.e., the size of a new work group) from the

group scheduler, the item ID generator begins to generate item IDs. The item ID is generated one

by one clock cycle. The item ID dispatcher will assign one ID to one of the PEs per clock cycle.

The item ID generator and dispatcher and PEs are connected by using the AXI-Stream bus.

Considering the performance of each PE is different from each other and achieving the best

efficiency, Ready signals of item ID AXI stream buses from all PEs are wired to the item ID

dispatcher as the priority selection input. In this way, one PE can request an ID as soon as it

finishes the current thread.

Group Scheduler

The group scheduler decides what application and which work group will run on this hardware

group. The group scheduler handles PolyTask context switching, as well. PolyPC supports

run-time thread switching for both software and hardware threads. In other words, the new

PolyThead applications are programmed off-line and added to the running system without

terminating it. Unique PE architectures are designed to support this feature.
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ID Generator and Dispatcher

One ID generator and one ID dispatcher work together to provide item IDs to PEs. Item IDs refer

to the global IDs within the problem space (see Figure 3.9). Once requesting a new work group,

the group scheduler initializes the ID generator with two arguments: a 2-dimensional global offset

of the first position of the new work group and the 2-dimensional size of the new work group. The

ID generator then generates each global ID of the new work group one every one clock cycle. The

generated ID is passed to the ID dispatcher through the AXI stream bus. In the PolyPC

framework, one 2-dimensional ID is composed of two 16-bit width IDs. The total 32-bit wide ID

can be delivered and received in one clock on a 32-bit wide AXI stream bus for high throughput.

PEs need to know the end of current work group so that one special ID is reserved for the purpose

(i.e., 0xFFFFFFFF). Therefore, the maximum global problem space is 216−1 by 216−1. The

reasons why the ID generator generates the global ID instead of the local ID is because we want

to save the computation time for PEs to calculate global IDs. In the current design, for one work

group, the group scheduler will help PEs to calculate the global ID of the first position of this

work group for only one time. If the ID generator generates the local ID, the maximum problem

space will expand to 232(216−1) by 232(216−1) from the ID generator side since the group size

is 32-bit width. But in this case, every PE will calculate the global ID for every received item ID

if necessary, which may waste computation resources.

The ID dispatcher dispatches every ID received from the ID generator to all PEs according

to the runtime priority. Every PE uses the AXI stream bus to receive the ID and their Ready
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signals are concatenated together to work as the priority selection for the ID dispatcher. Once a

PE requests an item ID, the Ready signal of that AXI stream bus will be asserted, and therefore

the corresponding bit within the priority triggers will also be asserted. As the example shown in

Figure 3.9, the priority triggers are shown as b1011..., and three PEs are requesting IDs at this

clock cycle. The more left the bit is; the higher priority the corresponding PE has. The leftmost

bit has the top priority and in the next clock cycle, the triggers become b0011... once the ID is

dispatched to that PE.

3.6.2 Processing Elements

hPE

An hPE can be either unchangeable and re-loadable. An unchangeable hPE is embedded into the

system as soon as the system is assembled. The hPE works as a particular benchmark and is

represented as an IP module and cannot be changed after the system is generated. A re-loadable

hPE is represented as a PR region in the system. The re-loadable hPE can be programmed with

any benchmark bitstream file as long as the PR region is large enough to hold that benchmark.

Instead of determining which benchmark is programmed into the PR region during the system

assembly, the benchmark is loaded into the system during runtime by the PolyTask loading.

sPE

sPEs are MicroBlaze processors in the PolyPC framework. Figure 3.10 demonstrates the sPE

architecture. Under normal usage, one MicroBlaze only needs one local BRAM that is connected

to the Data Local Memory Bus (DLMB) and Instruction Local Memory Bus(ILMB) as the

Harvard architecture. A bootloader existing in the local BRAM performs the context switching of

the software threads. In PolyPC system, an extra BRAM called kernel BRAM is added and

connected to the DMA duplicator. Since every sPE can execute the same binary of a kernel
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program, the DMA duplicator is designed to avoid redundant DMA transfers. Within one group,

once the group DMA issues an ELF executables transfer to the DMA duplicator, the connection

between the DLMB and the kernel BRAM is disconnected by DMA duplicator automatically.

The DMA duplicator then dispatches the same ELF executables to each kernel BRAM of the sPE

at the same time.

3.6.3 Execution Sequence

Figure 3.11 explains how a group works when receiving a Group ID. As for each PolyTask

application, the current group ID is stored in the PolyTask Table that shared by groups and host.

The group scheduler has to request a mutex lock for the current group ID, as well as application

information. After that, the group scheduler will check if its group has loaded corresponding elf

executables and programmed bitstream files according to the type of applications. If not, the

group scheduler will issues commands to Group DMA and one VSM of PR Controller to load and

program the files, respectively. DMA transferring of ELF executables and bitstream file

transferring can happen simultaneously because they use different DMA resources. PR Controller

36



Request a 
mutex lock

Get a 
Group ID

[Not Match]
Dispatch ELF [Not Match]

Do PR Decouple

Rel Decouple
/Reset

Start ID Disp

Start Kernel
Start Kernel

Req Item ID
Req Item ID

Req Item ID
Req Barrier

Req Barrier
Rel Barrier

Rel Barrier

Req Item ID

Current Group Context Finishes

DMA Finishes

PR Finishes

Release a 
mutex lock

Group
DMA

Group
Scheduler

PR Controller
VSM #0

Item ID
Gen/Disp

PE #0
(Accelerator)

PE #1
(MicroBlaze)

Group
Barrier

Figure 3.11: Group Execution Sequence

handles the decoupling. Commands to start generating and dispatching are also issued by the

group scheduler, which may be overlapped by ELF and bitstream file transferring. This will save

preparing time before the group does actual computation.

Once the ELF and bitstream file transferring are finished, the group scheduler notices hPEs

and sPEs to start. The kernel threads are executed for one time by receiving an Item ID. During

the execution, PEs may request a barrier for synchronization purposes. The barriers will not be

released until the Group Barrier receives all barrier requests.

3.7 Trace Subsystem

The trace system is necessary for system evaluation as well as system debug. It records execution

information of every work group within one PolyTask. The execution information includes the

group index belonging to the hardware group that executes the work group, and three checkpoints
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that are listed as follow:

1. After acquiring a work group, the group scheduler writes the first checkpoint before

performing the PolyTask loading to the trace system.

2. After the PolyTask loading is finished, the group scheduler writes the second checkpoint

before triggering PEs.

3. After the hardware group finishes the current work group, the group scheduler writes the

last checkpoint.

The PolyTask is created along with allocating the trace memory for every work group.

Therefore, after the PolyTask is finished, we can dump the trace memory to find out which

hardware group executes the particular work group and how long the hardware group takes to

complete the work group. By examining the checkpoints, we can break down the execution of

each work group.

3.8 Evaluation and Results

In this section, we want to examine the potential of the system regarding acceleration

performance. The PolyPC framework is configured with unchangeable hPEs. Therefore, there are

no overheads of context switching within the system since only one benchmark will run on one

system. sPEs are not configured in the system. The system resource utilization is also examined

in this part.

Before performing the experiments, we define five kinds of time checkpoints to assist our

evaluation. The first three checkpoints will append to every work group during the run-time as the

tracing information.

• Tl: It is the time that is before the group scheduler loads ELF executables or bitstream files

after acquiring a new work group.
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• Tt : It is the time that is before the group scheduler triggers every PEs after the loadings are

finished.

• Tf : It is the time that is before the group scheduler requests new work groups after all PEs

finish current work group.

Another one is Ts, which is the time that the first work group begins to executed when a specific

task or a task sequence is loaded into the system. It is defined as Ts = min(Tl) for all work groups.

The last one is Te, which is the time that the last work group ends. It is defined as Te = max(Tf )

for all work groups.

3.8.1 Benchmarks

We select four benchmarks representing frequently-used applications on reconfigurable systems

regarding image processing, signal processing, and web searching. The last benchmark (Memory

Operations) is used to evaluate the bandwidth of the system.

Vector Multiplication Two arrays, A and B, are as for input data. The output array C is

calculated as ci = ai ·bi (i = 0, ...,n−1), where n is the length of arrays A, B, and C.

Finite Impulse Response (FIR) For a discrete-time FIR filter of order N, each output value is

calculated as the weighted sum of its most recent input values, which is denoted as

bi = ∑
N
j=0 ai+ j · f j (i = 0, ...,n−1), where a, b, and f are input sequence, output sequence, and

filter array, respectively, and n is length of input and output sequences. In our test, we use 4th

order (a.k.a 5-tap) FIR filter.

PageRank The PageRank algorithm is used to compute the relative importance of a web page

by using the linking information between amount of web pages. The relative importance of N

web pages (nodes) is denoted as a PageRank vector v with the length of N. For a kth iteration
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PageRank algorithm, the PageRank vector is denoted as vk = Akvk−1, where v0 = { 1
N , ...,

1
N}.

The N-by-N matrix A is a modified adjacency matrix, each element ai, j of which is the

normalized importance passing from node j to node i. In our experiments, we test one iteration

for this benchmark.

Matrix Multiplication Two squared two-dimensional matrices (a and b) are as for input data,

and one two-dimensional matrix (c) is computed as results. The ith raw and jth column element of

output matrix is calculated as ci, j = ∑
length−1
k=0 ai,k ·bk, j (i = 0, ..., length−1; j = 0, ..., length−1),

where length is the dimension of the matrices.

Memory Operations We use three separate benchmarks to evaluate the global memory

bandwidth in terms of read-only, write-only, and read-and-write.

3.8.2 Experimental Setup

The PolyPC framework is compared with other two common computing resources on the ZC706

platform: the dual-core ARM processor and the general-purpose processors on FPGA fabric.

Table 3.2 lists the detailed configurations of each hardware platform.

PolyPC Framework In this experiment, all PEs are set as hardware accelerators (hPEs). Four

benchmarks, Vector Multiplication, FIR, PageRank, and Matrix Multiplication are

evaluated, respectively. For each benchmark, the configurations of hardware platforms only differ

from the number of hardware groups. In other words, to test one benchmark, we generate eight

hardware platforms, where the number of hardware groups is from one to eight. The number of

hPEs within one hardware group is four for every platform. The global memory uses the PL DDR

memory that is connected to the FPGA fabric. The Memory Interface (MIG) module is used to

connect the computing logics to PL DDR memory. The MIG is configured as 200MHz to achieve

40



Table 3.2: Hardware Platform Configurations

Hardware Platform Items Descriptions

PolyPC

# Hardware Groups 1, 2, 3, 4, 5, 6, 7, 8
# PEs 4 within each Hardware Groups

Memory Size

Global memory: 512 MB
Local memory: 64 KB

Private memory: n * 4 * 128 bytes,
where n differs from benchmarks

Memory Frequency 200MHz/64 bits
PE Frequency 100MHz

ARM
# Cores 2

Core Frequency 667MHz
Memory Frequency 533MHz

MicroBlaze
Configuration Default high performance with 32 KB I/D caches

Core Frequency 100MHz
Memory Frequency 200MHz

high memory bandwidth. The maximum sizes of private memory may not be the same, which

depends on the types of benchmarks and how the benchmark is optimized. But no matter how

many private buffers are, we want to keep each buffer store 128 elements, each of which is

usually 4 bytes.

ARM The ZC706 has a hard-core dual-core ARM processor that is called programming system

(PS). It runs at a higher frequency than the FPGA fabric and connects to the PS DDR memory

that also has a much higher frequency. We want to use both of these cores to compare to the

PolyPC framework.

MicroBlaze One MicroBlaze, along with its supporting components in the FPGA fabric is

generated for comparison. To maximize the performance, the MicroBlaze is configured as the

high-performance mode with 32 KB data and instruction caches, and the cacheline is the size of

16 words. The hardware multiplier and divider are also enabled.
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Table 3.3: Benchmark Configurations

Benchmarks Software(Hardware) Groups Data Size (Word) Buffer Size (Word)

Vector Multiplication
1(1), 2(2), 4(3), 4(4), 2K, 4K, 8K, 16K, 32K, 3 * (8, 16,
8(5), 8(6), 8(7), 8(8) 64K, 128K, 256K 32, 64, 128)

FIR
1(1), 2(2), 4(3), 4(4), 2K, 4K, 8K, 16K, 32K, 2 * (8, 16,
8(5), 8(6), 8(7), 8(8) 64K, 128K, 256K 32, 64, 128)

PageRank
1(1), 2(2), 4(3), 4(4), 32, 64, 128, 256, 3 * (8, 16,
8(5), 8(6), 8(7), 8(8) 512, 1024 32, 64, 128)

Matrix Multiplication
1(1), 2(2), 4(3), 4(4), 64*64, 128*128, 256*256,

3 * 16 * 16
8(5), 8(6), 8(7), 8(8) 512*512, 1024*1024

Table 3.3 shows the detailed setup for each benchmark. The number of work groups may

not be the same with the number of hardware groups. To reduce the overhead of scheduling when

the group scheduler changes between different work groups, for each hardware platform the

number of work groups is set as close as the number of its hardware groups, which is the power of

2. The data size describes the output data (i.e., results) without considering input data sizes. For

example, The output results of PageRank is a vector with sizes from 32 to 1024. However, the

input data is one matrix with sizes from 32-by-32 to 1024-by-1024 and a vector with sizes also

from 32 to 1024.

In OpenCL-like parallel programming models, optimizing the data locality is one of the

most common ways to improve performance. In our experiments, we use private memories to

create private buffers working as the closest memories to PEs. Different benchmarks may have

different number of buffers with various siezes. For example, Vector Multiplication has two

input vectors and one output vector. We use three buffers to temporarily store part of these three

vectors, respectively. For Matrix Multiplication, each of three matrices (two input matrices

and one output matrix) has one 16-by-16 buffer. The maximum buffer size is determined by the

hardware kernel programs that cannot be changed after the system is generated. But we can still

use an arbitrary buffer size that is equal to or smaller than the maximum one from the host

programs.
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Table 3.4: System Resource Utilization

Items LUTs (%) Registers (%) BRAMs (%) DSPs (%)

1 Group 32472 (14.90) 33952 (7.77) 62.5 (11.47) 21 (2.33)
2 Groups 47045 (21.52) 51013 (11.67) 84.5 (15.50) 42 (4.67)
3 Groups 61511 (28.14) 67953 (15.54) 106.5 (19.54) 63 (7.00)
4 Groups 75869 (34.71) 84870 (19.41) 128.5 (23.58) 84 (9.33)
5 Groups 90095 (41.21) 101775 (23.28) 150.5 (27.61) 105 (11.67)
6 Groups 104531 (47.82) 118680 (27.15) 172.5 (31.65) 126 (14.00)
7 Groups 118803 (54.35) 135603 (31.02) 194.5 (35.69) 147 (16.33)
8 Groups 133655 (61.14) 152583 (34.90) 216.5 (39.72) 168 (18.67)

HP MicroBlaze 15742 (7.20) 13354 (3.05) 27.5 (5.04) 6 (0.67)

Table 3.5: hPEs Resource Utilization

Benchmark PrivateMem (Bytes) LUTs (%) Registers (%) BRAMs (%) DSPs (%)

FIR
512 * 2 1213 (0.55) 1596 (0.37) 1.5 (0.28) 2 (0.22)

0 966 (0.44) 1359 (0.13) 0 (0) 0 (0)

Matrix Multiplication
64 * 64 * 3 1348 (0.62) 2233 (0.51) 1.5 (0.28) 7 (0.78)

0 1160 (0.53) 1707 (0.39) 0 (0) 5 (0.56)

PageRank
512 * 3 2010 (0.92) 2961 (0.68) 1.5 (0.28) 7 (0.78)

0 1343 (0.61) 1936 (0.44) 0 (0) 7 (0.78)

Vector Multiplication
512 * 3 1145 (0.52) 1730 (0.40) 1.5 (0.28) 5 (0.56)

0 877 (0.40) 1436 (0.33) 0 (0) 3 (0.33)

3.8.3 Resource Utilization

As for each hardware platform with the specific number of groups, it has multiple versions with

different kinds of benchmarks. We average the resource utilization for each hardware platform

and show the results in Table 3.4. The resource utilization of a complete high-performance

MicroBlaze is also listed. To compute tasks with large input and output data sizes, the extern

DDR memory has to be added, which makes it use more resources than those of a typical

MicroBlaze system.

Figure 3.5 shows the resource utilization of each type of hPE. Evey type of hPE has two
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Figure 3.12: Memory Bandwidth

versions: one with private buffers; the other with no buffers. Generally, hPEs with no buffers

utilize fewer resources than those with private buffers in terms of every type of hardware

resources. Of all four type of benchmarks, PageRank consumes the most hardware resources due

to its floating point computation. Of the other three integer-based benchmarks, Matrix

Multiplication does the most complex computation and therefore utilize more resources.

3.8.4 Performance Analysis

As shown in Figure 3.12, we test the memory bandwidth of three types of hardware platforms in

Table 3.2. The number of hardware groups significantly affects the memory bandwidth in PolyPC

framework. As the number of hardware groups increases, the memory bandwidth of three

operations (i.e., read, write, and read/write) roughly increases and achieve the maximum

bandwidth when the number of hardware groups is eight. It is noticed that the bandwidth drops

compared to the previous one when the numbers of hardware groups are 3, 5, 6, and 7. It is

because the mismatch between the number of hardware groups and work groups affect the

efficiency of the system. For example, when an application with eight work groups runs on a

system with seven hardware groups, after the first seven work groups are finished, there is a high

possibility that the last one work group occupies only one hardware group while other six
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Figure 3.13: Performance Range of Vector Multiplication

hardware groups are idle. This will decrease the efficiency of the system while resulting in a

lower bandwidth. We will elaborate this phenomenon in the following experiments. The reason

why 1-group and 2-group platforms have lower bandwidth than others is that the total number of

hPEs of the two platforms cannot fully utilize the memory bandwidth.

Benefiting from the advanced micro-architecture and higher frequency, the ARM processor

achieves a relatively high bandwidth comparing to the PolyPC framework. Due to the cache

policy, write bandwidth is higher than the other two operations. Even the frequency of memory

interface is the same as the PolyPC’s. The high-performance MicroBlaze has no advantages

regarding memory bandwidth. In summary, the maximum read/write bandwidth is about 2× and

155× over a dual-core ARM processor and a high-performance MicroBlaze, respectively. The

data cache can help general-purpose processors (i.e., ARM processor and HP MicroBlaze) to

improve the utilization of AXI buses since the cacheline fetching is under AXI bursting mode.

However, to complete a particular task, the general-purpose processors are usually inefficient

comparing to hardware accelerators. Both the computation capability and memory bandwidth

decide the upper bound of the throughput.

Figure 3.13, 3.14, 3.15, and 3.16 demonstrates the performance of benchmark Vector

Multiplication, FIR, PageRank, and Matrix Multiplication, respectively. Here the
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throughput is defined as how many output data it can process per second. For example, if we say

the throughput of Vector Multiplication is 500 MB/s, we mean that it can deliver 500 MB

output vector per second. For each figure, we measure the lowest throughput and the highest

throughput for benchmarks running on a high-performance MicroBlaze, dual-core ARM

processor, and PolyPC framework with groups ranging from 1 to 8. For the PolyPC part, we also

the range of throughput for each buffer size. The line with the hollow dot marks the highest

throughput for each configuration.

From the maximum throughput line for the PolyPC part, we can notice that similar to that of
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the memory bandwidth (Figure 3.12), the throughput drops when the number of groups is 3, 5, 6,

and 7. It is due to the same reason that the number of hardware groups does not match with the

number of work groups. To examine this result, we further define another metric called

efficiency, which is calculated as:

e f f iciency =
∑

n
i=1 Tei

Tw ∗N

where Tei = Tti−Tli is the effective computation time of the ith work group, Tw = Te−Ts is the

wall clock time of this task, and N is the number of hardware groups. Te of each work group is the
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time slice between triggering the group and the end of its finishing. Figure 3.17 shows the

efficiency of FIR. Other benchmarks have the similar results so that we only use FIR to

demonstrate this result. The maximum efficiencies when the number of groups is 1, 2, 4, and 8

can reach almost 100%. Since as for every buffer size, different data sizes are tested, the

efficiency for small data sizes may be low due to the warm-up overheads. When the number of

groups is 3, 5, 6, and 7, the maximum efficiencies are from around 70% to 80%. For instance,

when 4 work groups running on 3 hardware groups, after the last round of scheduling, only one

hardware group is busy running the last work group, and the other 2 hardware groups are idle. We

can also notice that when 8 work groups run on 5, 6, and 7 hardware groups, the efficiency

decreases as the number of hardware groups increases. This is because that higher ratio of the

number of work groups to the number of hardware groups results in higher efficiency.

However, higher efficiency does not inevitably result in higher throughput if we compare

Figure 3.13 and Figure 3.17. Instead, more hardware groups usually deliver better throughput. It

is because that before reaching the maximum memory bandwidth, more computation resources

result in more memory accesses, which increases bus throughputs. Since calculating one output

element requires much more computations for benchmark PageRank and Matrix

Multiplication than other benchmarks, they reach the maximum throughputs by using fewer

hardware groups. Another important factor that can significantly affect performance is the size of

buffers. For these four benchmarks without private buffers, the performance is very low and

cannot even beat a dual-core ARM processor. But even if we enable small size buffers, the

performance improvement is significant. For the first three benchmarks, as the size increases, the

performance reaches its peak when the buffer size is 128 bytes. It drops when the buffer size

keeps growing. The lower bound of the throughput results from the small data sizes. In PolyPC

framework, how private buffers are used to improve performance can be explained in two aspects:

one is to reduce reading redundant data (i.e., PageRank and Matrix Multiplication); the other

is to improve the utilization of the AXI bus by using AXI bursting mode.
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Figure 3.18: Speedup and Area Efficiency over ARM and HP MicroBlaze

Figure 3.18 summaries the speedup of PolyPC framework over the dual-core ARM

processor and a high-performance MicroBlaze. The speedup is calculated by comparing the same

data size, which may make it look different from previous performance figures. The maximum

speedup happens from Matrix Multiplication, which is about 66× for ARM processor and

1050× for MicroBlaze. The minimum speedup happens from PageRank, which is as low as 3×

for ARM processor and 30× for MicroBlaze. The more calculation it needs for one output

element, the more speedup PolyPC can get over processors, such as Matrix Multiplication.

However, it does not happen on PageRank that also needs a lot of calculation. It may be due to

that PageRank calculates on floating point data, at which the FPGA may not be very good. The

high-performance MicroBlaze utilize hard DPS cores on FPGA to calculate, which makes it

efficient on PageRank.

We use the metric of area efficiency to measure how effectively the PolyPC framework
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Figure 3.19: AutoPilot C Programming Model from [85]

uses hardware resources. The area efficiency is defined as how much speedup the PolyPC

can get by using the same amount of hardware resources (i.e., LUTs) comparing to the

high-performance MicroBlaze system. The results are shown in Figure 3.18. Matrix

Multiplication has the best area efficiency; while PageRank has the worst one. Usually,

computation-intensive benchmarks run more efficiently on PolyPC framework than on a

MicroBlaze. However, since FPGAs are not very good at floating point computation, the

PageRank does not gain too much speedup by using the dedicated hardware accelerators.

3.9 Related Work

3.9.1 HLS-based Systems

There are several research projects and commercial solutions that take OpenCL applications to

generate binaries on FPGAs by using HLS approaches.

FCUDA [85] is an FPGA design flow that adapts the CUDA programming model to map the

coarse and fine grained parallelism onto the reconfigurable fabric. FCUDA employs

AutoPilot [20], an advanced HLS tool, and is highly based on AutoPilot’s pragma. Besides

AutoPilot, FCUDA builds on a code transformation process, which is divided into three steps.
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Figure 3.20: SOpenCL Front-end Code Transformation from [83]

Firstly, FCUDA directives are inserted into the CUDA kernel code to generate annotated codes.

Then the codes are generated into RTL logics through coarse-grained and fine-grained parallelism

extraction. The previous step is expressed explicitly from multiple function calls. These functions

are synthesized into FPGA cores via the following step by using AutoPilot (see Figure 3.19).

Their subsequent work multilevel granularity parallelism synthesis (ML-GPS) framework [86]

employs a space search heuristic to exploit different granularities of parallelism for mapping

CUDA kernel onto FPGAs.

Silicon-OpenCL (SOpenCL) [83] is based on the front-end source-to-source transformation

and the back-end template-based hardware generation. The front-end transformation includes

logical thread serialization that coarsens the OpenCL kernel codes into a series of nested loops

and elimination of barriers and variable privatization that transforms OpenCL codes with barriers

into fissioned loops [22] (see Figure 3.20). Transformed codes with nested loops are generated

into hardware accelerators using a back-end compiler that extends LLVM. Instead of generating
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arbitrary logics, SOpenCL puts logics into a hardware accelerator template.

UT-OCL [77] provides an architecture support of OpenCL programming model on

embedded reconfigurable systems. The device subsystem comprises several support modules that

are implemented using MicroBlazes and compute device that can be generated by HLS or the

software compiler as MicroBlazes.

Besides academic works, Xilinx and Intel have launched their solutions based on OpenCL

programming model. In Intel’s approach [94], OpenCL programs are transformed into dedicated

and pipelined hardware circuits that are called PEs on FPGAs by using their SDK tools including

the HLS tool. Parallelism is expressed by duplicating PEs. Xilinx’s solution, SDAccel [105], is

highly relied on their HLS tools. Similar to academic works, the front-end step finishes the

source-to-source transformation and the back-end synthesized into hardware logics. SDAccel

supports additional complication for new kernel programs without re-generating the whole

system. The coarse-grained and fine-grained parallelism is expressed by generated nested-loop

codes and its unrolling with directives, which is a combination of FCUDA and SOpenCL. As an

example, the following is the HLS-compatible kernel codes with work group size attribute.
1__kernel __attribute__((reqd_work_group_size(4,4,1)))
2void mmult32(global int *A,global int *B,global int *C)
3{
4. . .
5}

This fragment of codes is transformed into nested-loop codes to achieve coarse-grained

parallelism.
1__kernel void mmult32(global int* A,global int* B,global int* C)
2{
3localid_t id;
4int B_local [16*16];
5for(id[2]=0;id[2]<1;id[2]++)
6for(id[1]=0;id[1]<4;id[1]++)
7for(id[0]=0;id[0]<4;id[0]++){
8. . .
9}
10}
11}
12}

Compared with previous works and industrial solutions, our work is based on a two-step
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approach as well: source-to-source transformation and hardware generation with HLS tools. The

PolyPC framework requires designers to write PolyPC-specific OpenCL kernel codes, which is

similar to write annotate codes in FCUDA. A single PE is generated with a kernel program

through the second step. Different from FCUDA, SOpenCL, and SDAccel, the coarse-grained

and fine-grained parallelism is expressed through architectural supports in the PolyPC framework

instead of explicit expressions within kernel codes. For example, fine-grained parallelism is

achieved by unrolling for loops to duplicate PEs in SDAccel or parallel function calls in

FCUDA. But in our work, PE duplication is independent of source codes and defined as platform

specifications. Cooperating with group schedulers and ID dispatchers, the PolyPC framework

does not require explicit architecture information (e.g., work group size) within kernel source

codes. Besides, PolyPC defines the memory model from OpenCL standard that is missing in

previous work (e.g., SOpenCL). A separate barrier module is implemented in our framework so

that no further loop fission is needed via source transformation in SOpenCL and SDAccel. In

summary, the PolyPC framework provides more conveniences for designers to write kernel

programs than previous works through custom architectural design.

3.9.2 Processor Substrate

OpenRCL [68] framework builds on both LLVM compiler infrastructure and OpenCL

programming model to employ on a low-power and high-performance many-core-style processor

architecture. Coarse-grained parallelism is expressed on an array of PEs that are implemented as

many-core processors. The fine-grained parallelism is expressed on a thin, n-stage, n-way

multi-threaded simplified MIPS processor that can be extended with custom instructions as well.

Other works [2, 28, 67] are based on existing general-purpose processors such as MicroBlaze and

LEON. PEs are implemented as processors. The system architecture is highly customized to

execute OpenCL programs.

FGPU [3] and FlexGrip [8] focuses on soft-GPU implementation on FPGAs. Different from
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HLS-based and general-purpose processor approaches, dedicated soft-GPU designs can have

more common architecture features with a commercial GPU but remain abilities to customize

system architecture. As an example, FGPU keeps the principle of a commercial GPU architecture

but extends the memory subsystem to better fit into FPGAs.

Processor-based GPU solutions for OpenCL programming model have advantages on

productivity but may lose performance compared to HLS-based approaches. In general, kernel

codes for processor-based GPU do not require source-to-source transformation to generate proper

C codes for HLS tools. Besides, architectures can be more flexible. For instance, both OpenRCL

and FGPU support the OpenCL memory model with better memory hierarchy and FGPU further

designs cache systems for memory accesses from PEs. Heterogeneous architecture design in the

PolyPC framework leverage advantages from both HLS-based and processor-based solutions to

achieve high performance and flexible architecture design.
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Chapter 4

Polymorphic Multitasking

4.1 Polymorphic Tasks

The polymorphic task (PolyTask) is created, launched, and committed by the host program and

can only run on the compute device. A PolyTask is associated with a kernel program and consists

of multiple threads. A thread associated with a work-item within the kernel program is executed

on a PE. As a PE can be either an sPE or an hPE, a thread is called as a software thread or a

hardware thread when it is executed on an sPE or an hPE, respectively.

4.1.1 Hardware Threads

A hardware thread executes a work-item on a unchangeable or re-loadable hPE. The hardware

thread is initialized once the hPE receives an item ID from the ID dispatcher. Hardware threads

retrieve thread arguments (e.g., addresses of input and output data) from the local memory that

are passed by the group scheduler in advance. For re-loadable hPEs, they are associated with

executables. As hPEs are located on PR regions, an executable (i.e. a PR bitstream file) is loaded

into corresponding PR region before hardware thread starts. A running hardware thread is a

loaded and powered executable on an hPE associated with a PR region.

4.1.2 Software Threads

A software thread executes a work-item on an sPE. As an sPE is a MicroBlaze in the PolyPC

framework, a running software thread is a running program on the MicroBlaze. A software thread

is associated with thread arguments, as well as executables. Executables on sPEs are ELF files
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Figure 4.1: PolyTask Mapping with Hardware Resources

compatible with MicroBlazes. Different from hardware threads, a software thread is initialized by

the bootloader running on the sPE. The bootloader located on a local BRAM is a program to

monitor triggers from the group scheduler and to switch between it and software threads. Before a

software thread starts, a corresponding ELF file is loaded into a kernel BRAM.

4.2 Polymorphic Scheduling

Figure 4.1 demonstrates how PolyTasks are mapped on hardware resources, as well as work

groups and work-items. A PolyTT in the PolyTT queue is one-to-one mapped to a PolyTask that
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is created from the host processor. Their unique PolyTask IDs (TIDs) are used to identify

themselves, and the magic number is used to distinguish different types of kernel programs. For

one particular PolyTask, the problem space is divided into multiple two-dimensional work groups.

All work groups belonging to a PolyTask are of the same size. Work groups from all launched

PolyTasks are assigned to hardware groups. In the PolyPC framework, a group-level multitasking

is designed. Work groups in a PolyTask are the minimal schedulable units. In other words, a

hardware group executing a PolyTask cannot switch out current work group to change in a new

group unless the current work finishes execution. The new work group belongs to either the

current PolyTask or other PolyTasks. In this way, PolyTasks schedule on hardware groups. Each

work group has its group ID (GID) within one PolyTask. Since GIDs are generated by the ID

generator and dispatcher in orders, the execution progress can be recorded by using the GID.

Then each work group is divided into multiple work-items, which are the minimum processable

elements physically deployed on PEs.

The curr workgroup (see Figure 3.5) from the PolyTT queue indicates the next available

work group of that PolyTask for execution. The curr workgroup along with other information

with the corresponding PolyTT slot is the running context of the PolyTask. The polymorphic

multitasking is based on the group-level scheduling and extends to support priority-aware

scheduling and PolyTasks. The polymorphic multitasking supports scheduling of PolyTasks and

therefore, performs on groups comprised of either sPEs or hPEs.

Figure 4.2 demonstrates the pseudocode of how the group scheduler works. The flow is

logically divided into four steps within an infinite loop. They are scheduling, Updating

context, PolyTask loading, and Triggering to finish. A complete polymorphic

multitasking is also comprised of the four steps.

1. Scheduling: Before accessing the PolyTT queue, the group scheduler requests a mutex

lock. Then the group scheduler will go through every valid slot of this queue. The

searchPolyTTQueue() function is to choose a new work group from all available
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isMatch = false;
while true do

isFound = f alse;
requestMutex(groupIndex);
isFound, isMatch = searchPolyTTQueue();
if not isFound then

releaseMutex(groupIndex);
continue;

end
increaseCurrentGroupID();
releaseMutex(groupIndex);
passArg();
if not isMatch then

if existMB then
doELFLoading();

end
if existPR then

doPR();
end

end
triggerPEs();
waittoFinish();

end

Figure 4.2: Group Scheduler Pseudocode

PolyTasks within the PolyTT queue. Different algorithms can be implemented in this

function. The function will return a PolyTask (i.e. PolyTask table) if there is an available

work group belonging to that PolyTask and variable isFound is asserted; otherwise, the

scheduler will release the mutex lock as other group schedulers obtain changes to access the

PolyTT queue. As an example of the priority-aware scheduling, the

searchPolyTTQueue() function returns a PolyTask with the highest priority or a PolyTask

with the highest priority and the same magic number. If the latter one is found, the

scheduler prefers the latter one; otherwise, the scheduler chooses the former one. When the

magic number of the new PolyTask does not match with the current one, variable isMatch

is set as false; otherwise it is true.

2. Updating context: If the group scheduler obtains a new PolyTask, it increases the group ID

58



of the newly-obtained work group by one and updates the curr workgroup with that value.

The updated curr workgroup records the next available work group that other group

schedulers can execute. If all work groups of this PolyTask is finished, the group scheduler

will deasserted the isValid value with the PolyTT to tell the host program that the

PolyTask is finished; otherwise, the group scheduler releases the mutex lock and copies the

kernel arguments to store in the local memory for PEs to access.

3. PolyTask loading: The PolyTask loading includes the software thread loading and the

hardware thread loading. This step updates executables of sPEs and/or hPEs within the

group. Each PolyTask is associated with executables that are stored in the PL DDR. The

software thread loading is equivalent to load the corresponding ELF file into sPEs’ kernel

BRAMs as shown in Figure 3.10; while the hardware thread loading is equivalent to

program re-loadable hPEs (i.e. PR regions) within the group by using corresponding PR

bitstream files. Whether the PolyTask loading is performed depends on the value of

isMatch. If the isMatch is true, the existing executables within the group match with new

executables and therefore, this step can be bypassed.

4. Triggering to finish: Once the loading is finished, the scheduler triggers all PEs and wait

to finish. All PEs within a group shared a local memory that the group scheduler can also

access. PEs, as well as the group scheduler, keep polling the local memory to wait for

triggers and signals. When all PEs finishes all work-items within the work group, the group

scheduler is noticed to finish.

4.2.1 Architectural Supports for Multitasking

Specialized hardware architectures are designed to support both the software thread multitasking

and the hardware thread multitasking.
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0x003B

.regs

..

.elfs

..

0x03FC

.main
//	Wait	for	trigger
		//	Update	the	executable	info
		//	Store	CPU	Context
		//			regular/special	regs
		..

		addik	r11,	r0,	.elfs
		lwi	r3,	r11,	4
		lwi	r1,	r11,	8
		brald	r15,	r3
		nop
		//	Restore	CPU	Context
		//			regular/special	regs
		..
//	Go	back	to	wait

Local BRAM (0x0000)
0x8e40

void	main(void)	{

		//	Prepare	arguments

		if	(!setjmp(buf)))	{

				while(1)	{

						kernel(arg0,…);

				}

		}

}

void	kernel(arg0,…)	{

		unsigned	id=getID();

		//	Do	calculation

}

..

.heap

..

.stack
0x94ef

Kernel BRAM (0x8000)

Figure 4.3: Software Thread Multitasking

Software Thread Multitasking

sPEs begin to run a bootloader existing in the Local BRAM once the system starts. The

bootloader keeps monitoring triggers from the group scheduler. If it is triggered, the group

scheduler has loaded an executable into the kernel BRAM, and the bootloader prepares to switch

to the software thread with the executable. Figure 4.3 shows BRAM contents and how sPEs

switch between the bootloader and the software thread in the following four steps.

1. Before sending triggers to sPEs, the group scheduler has copied the executable information

(i.e. the main function entry address and stack address of the software thread) to the local

memory. Once receiving the trigger, the bootloader firstly updates the new executable

information in the .elfs section.

2. Then the bootloader stores values of 32 regular registers and special registers belonging to

the MicroBlaze into the .regs section. This step saves the execution context of the

60



bootloader.

3. In MicroBlaze ABI [104], brald is an assembly statement to jump to another function. The

bootloader uses brald to jump to the targeted address that is stored in register r3. The new

stack address of software thread is passed by using register r1.

4. Once the software thread finishes executing all available work-items, the software thread

returns to the bootloader. The bootloader then restores the values of regular and special

registers from the .regs section.

Hardware Thread Multitaksing

The group scheduler cannot perform multitasking for unchangeable hPEs. How the group

scheduler does hardware thread multitasking on a re-loadable hPEs is equivalent to use the PR

technique to load a PR bitstream file into the corresponding PR region. The gray block showing

in Figure 3.8 is the hPE as a PR region to hold a hardware thread executable. The group scheduler

manages the context of the PolyTask. Different from the software thread, the hardware thread

does not have context information.

All input and output ports of the hPE are connected to a decoupler, and the reset port of

hPEs are connected to the PR controller. The group scheduler performs the PR bitstream file

loading through a PR controller. Once finishing the PR file loading, the PR controller continues

the routine to deassert the decouple and reset the hPE. When the decoupler is deasserted, the hPE

can communicate with the outside. The hPE is then powered once it is reset.

4.2.2 Priority-aware Scheduling Policy

The scheduling policy determines how the group scheduler chooses a work group belonging to

new PolyTask. This depends on various factors. The priority-aware scheduling policy is based on

the priority of each PolyTask, which can be concluded in three steps:

61



Group #1

Binding: T0

Binding: T0

Binding: T0

Binding: T1

Binding: T2

Binding: T1

Group #1
PE #0 PE #1

Group #0
PE #0 PE #1

T0 T1 T2S0

P1 Mv

Group #1
PE #0 PE #1

Group #0
PE #0 PE #1

T0

P1 Mv

S1

Binding: T2

0 1

P4 Mb

0
1

S2

Group #1
PE #0 PE #1

Group #0
PE #0 PE #1

T1T0

P1 Mv P4 Mb
01
P4 Mv

Binding: T2

PE #0 PE #1

Group #0
PE #0 PE #1

T2T1T0

P1 Mv P4 Mb

0 1

P4 Mv

S3

Figure 4.4: Polymorphic Multitasking Demonstration

1. Once a work group is finished by a hardware group, the group scheduler goes through the

PolyTT queue to find a valid PolyTask with the highest priority. If this particular PolyTask

is found, the group scheduler will choose a work group from this PolyTask and ignore the

following step.

2. If there are multiple PolyTasks with the same priority returned from the searching, the

group scheduler will choose a PolyTask with the same magic number with the current

PolyTask. This reduces the unnecessary overheads of the PolyTask loading. If such a

PolyTask exists, the following step is ignored.

3. If these PolyTasks have different magic numbers from the current PolyTask, the group

scheduler will choose an arbitrary PolyTask, which is usually the one last visited.

Figure 4.4 gives an example to demonstrate how group-level priority-aware scheduling

works. In this example, we have two hardware groups, within each of which there is entirely two

PEs. At sometime, PolyTask T0 with priority 1, and magic number v comes into the PolyTT

queue.

Time Stamp S0 There is only on PolyTask in the PolyTT queue. The first four work groups of

the PolyTask T0 have finished. Work group (1, 1) is executed by the hardware group 0, and work
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group (1, 2) is by the hardware group 1.

Time Stamp S1 PolyTask T1 with priority 4 and magic number b comes into the PolyTT

queue. At this point, the hardware group 0 has not finished current work group (1, 1) of PolyTask

T0 yet, and the hardware group 1 has finished the work group (1, 2). Then the hardware group 1

chooses to execute new work group (0, 0) from PolyTask T1 as the PolyTask T1 has the highest

priority 4 within the PolyTT queue.

Time Stamp S2 Another PolyTask T2 with priority 4 and magic number v comes into the

PolyTT queue. The hardware group 1 has finished work group (0, 0) of PolyTask T1, and the

hardware group 0 has finished work group (1, 1) of PolyTask T0. At this point, each hardware

group will choose a PolyTask with the highest priority. But there are two PolyTask T1 and T2

having the highest priority 4. In order to reduce the overheads of the excessive PolyTask loading,

the hardware group 1 will continue on PolyTask T1 to execute new work group (0, 1). The

hardware group 0 can choose a work group from either PolyTask T1 or T2. In this example, the

hardware group 0 moves on to the new work group (0, 0) of PolyTask T2.

Time Stamp S3 The hardware group 1 has finished PolyTask T1. It chooses the PolyTask with

the highest priority, which is T2. From this point, both hardware group 0 and 1 will continue to

finish PolyTask T2 and then go back to work on PolyTask T0 if no other PolyTasks are coming

into the PolyTask queue.

4.3 Evaluation and Results

4.3.1 Experimental Setup

In this experiment, we want to examine how polymorphic multitasking works. The experiment

has two parts: 1) hardware thread multitasking, and 2) hardware and software thread multitasking.

63



Table 4.1: Experiment Configurations

Items Configurations Descriptions

PolyPC

Hardware Config #1 2G4P0s, 4G2P0s
Software Config #1 1, 2, 4, 8 (# work groups)
Hardware Config #2 2G4P4s, 4G4P8s
Software Config #2 4, 8, 16 (# work groups)

# Types 4
PolyTask # PolyTasks 4
Sequence # PolyTasks per Type 4

Total # PolyTasks 16

Data Size #1 256K * 4 bytes
Vector Multiplication Buffer Size #1 32 * 4 bytes

FIR Data Size #2 32K * 4 bytes
Buffer Size #2 0

PageRank

Data Size #1 512 * 4 bytes
Buffer Size #1 32 * 4 bytes
Data Size #2 1024 * 4 bytes

Buffer Size #2 0

Matrix Multiplication

Data Size #1 32 * 4 bytes
Buffer Size #1 0
Data Size #2 256 * 4 byte

Buffer Size #2 0

In the first part, only the hardware thread multitasking is examined on re-loadable hPEs.

Since the maximum number of PR regions cannot exceed eight in our experiment, only two

hardware platforms are generated as the hardware config #1 shown in Table 4.1. One platform

has two hardware groups (2G), each of which contains four PEs (4P). The other platform has four

hardware groups (4G) and each one contains two PEs (2P). Both platforms have no sPEs (0s),

which means all PEs are re-loadable hPEs. The total number of hPEs are eight for both of the two

platforms, which is the same as the number of total PR regions. Different numbers of work

groups are tested on both platforms.

In the second part, hardware and software thread multitasking are examined on two

64



platforms with both re-loadable hPEs and sPEs. The configurations are shown in Table 4.1 as

hardware config #2. A Larger number of work groups than that of the first part is tested in this

part.

In this experiment, a PolyTask sequence that consists of total 16 PolyTasks is generated

randomly as the synthetic benchmark. The sequence comprises four types of benchmarks, each of

which has four identical PolyTask in terms of data size and buffer size. The details of the four

type of benchmarks are shown in Table 4.1. For the first part, considering we want the execution

time of each PolyTask to be roughly the same, the data size and buffer size of each benchmark is

carefully chosen. For the second part, we want to examine the breakdown of the execution of each

hardware group, the data size and buffer size are different from the first part.

In order to examine how the priority-based scheduling policy works, two other scheduling

policies are set as baselines. All the three policies use the same synthetic benchmark.

Baseline Every PolyTask is launched on the system one-by-one, which means the PolyTask will

not be executed unless the previous one is finished. After one PolyTask is finished, all group

schedulers will continue on the next PolyTask by performing the PolyTask loading. The test is

implemented by setting the same priority and different magic numbers for each PolyTask within

the synthetic benchmark.

Baseline+ Baseline+ is an improved Baseline scheduling policy. Group schedulers are aware

of the PolyTask sequence in advance. After finishing one work group, the group scheduler will

prefer to switch in next work group with the same magic number; otherwise, the group scheduler

moves to a new group by performing the PolyThead loading. In this test, every PolyTask has the

same priority. But the magic number is set correctly according to their benchmark types.

Priority This scheduling policy is the default one in our system. Different from Baseline+, the

priority of each PolyTask in the sequence are not the same. After finishing one work group, the
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group scheduler will choose a PolyTask with the highest priority from the PolyTT queue. If there

are multiple PolyTasks with the same top priorities, the group scheduler will choose the one with

the same magic number. In the test, two of the four PolyTasks with the same benchmark type

have the priority of 1, and the remaining two have the priority of 0. Therefore, there are totally

eight PolyTasks with the priority 1 and the other eight with 0.

We use two kinds of metrics to evaluate the first part of this experiment: average response

time (ART) and average execution time (AET). Average response time is defined as:

ART =
∑

N
i=1 ARTi

N

where N is the number of PolyTasks within the sequence, and ARTi is the average response time

of the ith PolyTask. And ARTi is defined as:

ARTi = minTl j,(1≤ j ≤ n)

where n the number of work groups of the ith PolyTask. The average response time is used to

evaluate how fast that a PolyTask begins to execute for different scheduling policies and different

priorities.

Average execution time is defined as:

AET =
∑

N
i=1 ∑

n
j=1 (T

i
f j−T i

l j)

N

where N is the number of PolyTasks within the sequence, and n is the number of work groups of

the ith PolyTask. T i
f j and T i

l j belong to the jth work group of the ith PolyTask. The average

execution time describes the averaged time (including all overheads and the effective execution)

for all PolyTasks within the sequence.
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Figure 4.5: Partial Reconfiguration Bandwidth

Table 4.2: Partial Reconfiguration Bandwidth (unit: MB/s)

2 Hardware Groups 4 Hardware Groups
1 WG 2 WG 4 WG 8 WG Ave 1 WG 2 WG 4 WG 8 WG Ave

PR Bandwidth 216.6 209.6 209.6 209.0 201.5 255.7 222.1 235.2 156.0 207.5

4.3.2 Result Analysis

Analysis for the Part 1

Figure 4.5 describes the bandwidth to load PR bitstream files for each scenario. Each x-axis label

is denoted as the number of hardware groups (2G, and 4G), scheduling policies (B, B+, and P), and

the number of work groups (1, 2, 4, 8). The serrated bars is the possibility distributions of

bandwidth ranges. The maximum PR speed can reach almost 400 MB/s for all scenarios. The PR

bandwidth for 2-group and 4-group hardware platforms are very different. Bandwidths of the

2-group one gather within a range from 200 MB/s to 230 MB/s; while bandwidths of the 4-group

one have a wider range of 90 MB/s to 400 MB/s. The reason is that PR bitstream files are stored

in the DDR memory that also stores the input and output data. When all PEs are fetching data

elements under the burst mode, the PR loading and the data fetching may interfere with each

other. For the 4-group platform, the data fetching and the PR loading have more changes to avoid
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Figure 4.6: Average Response Time (Synthetic Benchmark with 16 PolyTasks)

interferences.

However, if we further examine the average bandwidth grouped by the number of work

groups from Table 4.2, the PR bandwidth of 2-group and 4-group hardware platforms is almost

the same (201.5 MB/s vs. 207.5 MB/s). As more work groups are used, the PR bandwidth

decreases. This results from more interferences involved as the PolyTask is divided into more

work groups.

The average response time of all the hardware configurations of part 1 is shown in

Figure 4.6. For each scheduling policy, PolyTasks’ ART with low priority (0), PolyTasks’ ART

with highest priority (1), and all PolyTasks’ ART are demonstrated. From all scheduling policies,

Baseline has the worst ART no matter it comes to low or highest priority PolyTasks. It’s easy to

explain that the system wastes too much time on redundant PR loadings. If the performance of

2-group hardware platform and that of 4-group hardware platform are compared, it is noticed that
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more hardware groups can reduce the ART in general, which is good. It is because each group

scheduler works independently, and more hardware groups provide more changes for more

PolyTasks running at the same time, which may decrease the response time. Also, when the

number of software of each PolyTask increases, the 4-group hardware platform reaches its

convergence slower than the 2-group one for all three scheduling policies.

When Baseline+ is used, all three kinds of ARTs decrease dramatically. The improvement

comes from the redundant PR loadings are eliminated. When it comes to the Priority, the high

priority ART decreases compared to the one from Baseline+. The low priority ART, and the

combined ART increase. The Priority scheduling policy works in the way that when higher

priority PolyTask is coming into the system, the current hardware groups will switch to that one,

which may increase overheads of PR loadings, and be harmful to the ART of low priority

PolyTasks. Therefore, the Baseline+ can achieve the most efficient ART for overall PolyTasks;

while the Priority will result in the least ART for high priority PolyTasks.

Figure 4.7 shows the average execution time of all the hardware configurations from the part

1. Similar to the ART from Figure 4.6, Baseline get the worst results due to the redundant PR

loadings. Different from results of the ART, the 4-group hardware platform has worse AET than

2-group one. Although both hardware platforms have the same number of PEs entirely, more

hardware groups may result in more scheduling overheads. When the number of work groups

increases, the AETs decrease especially for 4-group hardware platform. When each PolyTask

uses a small number of work groups, the hardware platform cannot be thoroughly used up, where

some hardware resources may be wasted.

When Baseline+ is enabled, the AET drops. Similar to how the ART drops, the

improvement comes from reducing the redundant PR loadings, as well. However, the high

priority AET does not benefit from the Priority scheduling policy, as well other kinds of AET.

All kinds of AETs are slightly greater than those of Baseline+ since the overheads of additional

PR loadings.

69



13.9

4.98

7.78

16.6

7.75

9.42

13.8

7.33

9.3

16.2

9.78

12.5

13.9

6.15

8.54

16.4

8.77

10.9

2HG1WG
2HG2WG
2HG4WG
2HG8WG

4HG1WG
4HG2WG
4HG4WG
4HG8WG

2HGLP Ave
4HGLP Ave
2HGHP Ave
4HGHP Ave

2HGAP Ave
4HGAP Ave

Lo
w

 P
rio

rit
y 

AE
T 

(m
s)

0

5

10

15

20

H
ig

h 
Pr

io
rit

y 
AE

T 
(m

s)

0

5

10

15

20

To
ta

l P
rio

rit
y 

AE
T 

(m
s)

0

5

10

15

20

Baseline Baseline+ Priority

Figure 4.7: Average Execution Time (Synthetic Benchmark with 16 PolyTasks)

Analysis for the Part 2

Figure 4.8 demonstrates the bandwidth of the PolyTask loading for both hardware and software

threads. The PR loading bandwidth is higher than the ELF loading for both 2-group and 4-group

hardware platforms. However, more hardware groups have a negative influence on the PR loading

bandwidth, but a slight influence on the ELF loading bandwidth. The PR controller performs the

PR loading through one ICAP module. As the ICAP module can only handle one PR bitstream

file at one time, PR requests from all group schedulers have to queue in line, which may result in

lower bandwidth. The ELF loading is performed by the group DMA that every hardware group

has. The bandwidth is more limited by the memory bandwidth instead of the structure hazard as

there are multiple group DMAs working simultaneously.

If examining the bus hierarchy from Figure 3.4, we can notice that the data path for the PR
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Table 4.3: Numbers of Work Groups that Hardware Groups Execute

G0 w/ L G0 total G1 w/ L G1 total G2 w/ L G2 total G3 w/ L G3 total Total # loadings

2G
4P
4s

B 16 1057 10 159 - - - - 26
B+ 4 1047 4 169 - - - - 8
P 7 1114 3 102 - - - - 10

4G
4P
8s

B 16 522 16 523 11 85 11 86 54
B+ 4 530 4 525 3 80 3 81 14
P 7 552 7 512 3 76 3 76 20

controller to load PR bitstream files from the PL DDR memory into ICAP module is different

from that for group DMAs to load ELF files. PR files from the PL DDR to ICAP go through one

interconnect and while ELF files go through three interconnects. The longer data path may have

lower data transfer bandwidth that of the shorter data path. This explains why the ELF loading

bandwidth is lower than that of the PR loading bandwidth.

We calculate how many work groups are executed by hardware groups for the whole

synthetic benchmark. Table 4.3 illustrates the results for both hardware platforms when the

number of work groups is set as 16 for each PolyTask. For the 2-group hardware platform,

hardware group 0 contains re-loadable hPEs and hardware group 1 contains sPEs. For the 4-group

one, the first two hardware groups hold re-loadable hPEs, and the last two have sPEs. Three

scheduling policies are tested for each platform, and each test executes totally 1216 work groups
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Table 4.4: Overhead Breakdown of Each Hardware Group (unit: ms)

Group 0 Group 1 Group 2 Group 3 Wall-
clock1∗ 2† 3‡ 4§ 1 2 3 4 1 2 3 4 1 2 3 4

2G
4P
4s

B 33.5 12.2 79.4 8258.1 4.9 1.8 0.3 8406.7 - - - - - - - - 8413.7
B+ 30.5 12.1 19.9 8272.6 4.9 1.9 0.1 8328.0 - - - - - - - - 8335.0
P 31.7 12.8 34.7 8573.7 2.9 1.2 0.1 8667.4 - - - - - - - - 8671.6

4G
4P
8s

B 16.5 6.0 106.4 6798.1 16.4 6.0 113 6786.3 2.7 1.0 0.3 7140.5 2.7 1.0 0.3 7140.4 7144.6
B+ 15.6 6.1 24.7 6813.9 15.2 6.1 23.5 6815.9 2.3 0.9 0.1 6858.8 2.3 0.9 0.1 6858.5 6862.1
P 15.7 6.4 48.2 6816.8 14.6 5.9 47.0 6820.0 2.1 0.9 0.1 6943.5 2.1 0.9 0.1 6943.0 6946.5

∗Overheads of scheduling. In this step, the group scheduler keeps going through the PolyTT queue until it picks
up an available PolyTask.

†Overheads of updating context and the PolyTask loading without the DMA transferring. This is the route that the
group scheduler updates the context and check if the DMA transferring needs to perform or not.

‡Overheads of the DMA transferring. Is is the time of the DMA transferring of executables for sPEs and/or hPEs.
If no DMA transferring is performed, this time is zero.

§PE execution time. It is the time slice PEs finish all work-item within the work group. The group scheduler
records the time stamp from triggering to receiving finish signals from all PEs.

by a run of the synthetic benchmark.

Similar to the results from the part 1, the scheduling policy affects the number of total

loading (i.e. PR loading and ELF loading). The Baseline policy performs the most loadings

while the Baseline+ carries out the least. However, hPE groups execute much more work groups

than sPE groups, which is about 7.5× for the 2-group platform, and about 6.5× for the 4-group

one. The result can be compared with the execution time from Table 4.4. The execution time of

hPE groups is pretty much the same with that of sPE groups. The speedup gains come from

dedicated hardware accelerators over the general-purpose processors.

Table 4.4 demonstrates the overhead breakdown by using the trace subsystem through group

schedulers. The 4-group hardware platform is about 1.18× - 1.25× faster over the 2-group

hardware platform by comparing the wall-clock time. The speedup from the unchangeable hPE

experiment (see Subsection 3.8) is higher than this one. The speedup is affected not only by the

types of the benchmark, data size, and buffer size, but also by multitasking overheads. Overheads

of scheduling and updating context and the PolyTask loading of the 2-group hardware platform
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Figure 4.9: Overhead Breakdown of PolyTask Execution

are about twice as the 4-group hardware platform as the 2-group hardware platform executes

twice work groups as the 4-group one. Although the 2-group platform executes the same number

of work groups as that of the 4-group one, the 4-group spends more time to do the DMA

transferring, which is explained from Figure 4.5. Overheads of the ELF loading is much less than

overheads of the PR loading even the number of loadings are the same.

We further break down the PolyTask execution on the 2G4P4s platform (see Figure 4.9) in

terms of benchmark types. Although according to our experiments, the averaged bandwidth to

load PR files is higher than that to load ELF files (i.e. 379.5 MB/s vs. 210.4 MB/s), overheads to

re-load hPEs are significantly higher than those to re-load sPEs within a group, which is around

134× longer. The main reason is that one PR file for one hPE is usually larger than the ELF file

for one sPE and ELF loadings benefit from the DMA duplicator while one PR file for one hPE

cannot be used for other hPEs. However, sizes of PR files and ELF files may change depending

on different types of applications. The averaged speedup that hPEs gain over sPEs is about 16×.

Therefore, we can conclude from Figure 4.9 that sPEs are suitable for applications with small data

size and short execution time due to its low overheads of the PolyTask loading. hPEs have

advantages in large applications with long execution time.
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Table 4.5: Reconfigurable System Resource Utilization

Items LUTs (%) Registers (%) BRAMs (%) DSPs (%)

One PR Region 3200 (1.47) 6400 (1.47) 10 (1.83) 20 (2.22)
Static 4G2P0s 54501 (24.93) 53618 (12.26) 104.5 (19.17) 0 (0)
Static 2G4P0s 42430 (19.41) 42079 (9.63) 72.5 (13.30) 0 (0)
Static 2G4P4s 45311 (20.73) 42292 (9.67) 104.5 (19.17) 0 (0)
Static 4G4P8s 70411 (32.21) 65486 (14.98) 168.5 (30.92) 0 (0)

4.3.3 Resource Utilization

Figure 4.5 demonstrates the resource utilization of four platforms as well as the PR region. In this

experiment, one PR region has to be large enough to hold all kinds of benchmarks on hPEs.

Resources of eight PR regions are excluded from resources of first static platforms (i.e. 4G2P0s,

and 2G4P0s) so that the static systems do not use DSPs at all. 2G4P4s utilizes more resources

than 2g4P0s since the former one has one group with four re-loadable sPEs. If we further

compare the resource utilization of 2G4P4s, and 2g4P0s with the multitasking experiment from

Figure 4.9, extra sPEs will bring more flexibilities on the polymorphic multitasking with slight

overheads of resources.

4.4 Related Work

4.4.1 Reconfigurable Systems

To the best of our knowledge, this is the first time that the polymorphic multitasking is enabled on

a heterogeneous system with the OpenCL programming model. Several previous works are

focusing on HW/SW tasks on FPGA platforms. Most of them refer to operating system extension

to manage accelerator resources. They are still highly related to our work since we also provide

the intermediate framework to manage hardware resources. Some works provide a method to

manage HW accelerators during runtime [4, 58, 92, 100, 107]; while others support HW tasks
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with dedicated OS interfaces [6, 69, 70, 96].

In FUSE [58] the custom hardware circuits are integrated into a SoC as a memory mapped

IO device peripheral. This is achieved via a customized hardware interface abstracted away by a

corresponding loadable kernel module (LKM) in the kernel space. Transparent to the user,

thread create() will run the entire thread in either SW or HW based on resource availability. In

other words, the operation system checks to see if there is a free accelerator for that function. If

so, it runs in HW. The overhead of loading/unloading the LKM as well as calling OS services to

communicate with the HW accelerators are among the drawbacks of this approach. Plus, there is

no fine grained HW/SW dynamic partitioning. In other words, the entire thread is either running

on SW or HW.

In BORPH [96], the hardware abstraction is achieved by adopting OS threads, which

extends Linux targeting multi-FPGA platforms. Each HW task is implemented on a separate

FPGA.

ReconOS [69, 72] targets dynamic partial reconfiguration (DPR) on FPGA. Hardware tasks

are implemented as reconfigurable modules on PR regions. A set of unified POSIX-compliant

APIs is provided for both hardware and software threads. They further support part of virtual

memory management by providing memory management unit (MMU) for hardware threads. [1]

also presents memory virtualization for reconfigurable hardware. Recent updates on ReconOS

involve the preemptive hardware multitasking supports [45], where no deep modifications on

source codes of hardware threads are required. It is implemented via parsing and restoring

bitstream files.

Hthreads [6] allows hardware and software threads to co-exist and seamlessly be scheduled

and synchronized under a unified programming model (i.e., POSIX). These approaches provided

performance increases through the use of standard programming models that allowed the

parallelism within the application to increase the scalable numbers of processors that could be

mapped into each new generation of FPGA’s. Similar to our work, Hthreads gives HW/SW
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threads the support of dynamic memory allocation and recursive execution of functions.

In [41], authors present a runtime adaptive OS referred to as Configuration Access Port OS

(CAP-OS). They argue that the traditional software-tasks scheduling based on resource

(processor) availability and priority does not suffice for systems with runtime reconfigurable

hardware. Their work addresses task scheduling onto reconfigurable hardware consisting of

processors, co-processors, and accelerators. During design time, applications are defined as a

collection of tasks whereby each is described through a control data flow graph (CDFG). These

applications are profiled off-line for execution time, and possible suggestions for hardware

implementation opportunities are presented to the user. The user can choose to provide hardware

implementations of suggested code blocks enabling the runtime system for alternative task

placement and scheduling. Similar to our work, this work classifies tasks into three categories

according to where execution occurs: software tasks (processors), co-design tasks

(processor+hardware accelerator), and hardware tasks (hardware accelerator).

4.4.2 Task Scheduling and Placement

Several works were devoted to scheduling and placement of task on reconfigurable systems. In

[18], authors present a mixed off-line/on-line scheduling strategy, where the CDFGs are analyzed

off-line via customized list scheduling techniques. The extracted parameters are used to

optimized the scheduling results during run-time. The on-line scheduling is implemented in

hardware as dedicated logics. Similar to this work, CAP-OS [41] requires user profiling to build

up a flow graph (CDFG) that is used for run-time scheduling. Scheduling of all such tasks occurs

through the main processor where CAP-OS executes. Similarly, OS services such as additional

hardware resources occur through this single processor. Another work [14] extending Hthreads

provides the run-time tuning for applications with different types and data sizes. Information that

is needed for scheduling is extracted off-line presenting within a resource table.

In [71], authors extend ReconOS to support cooperative scheduling techniques. The source
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codes of hardware threads require modification to support the cooperative scheduling. Hardware

threads can be preempted at certain points of execution. Our work is similar to this work in terms

of the ‘semi-preemptive’ scheduling. But source codes of hardware codes does not need special

modifications. The follow-up work [45] on ReconOS supports preemptive scheduling for

hardware threads. They leverage the ‘reverse engineering’ on PR bitstream files to resolve

checkpoints during run-time. However, this technique highly relies on vendor specifications and

may not be used on the newest FPGA devices (e.g., Zynq devices). Works in [34, 35, 89] execute

hardware tasks in non-preemptive scheduling. They divide the reconfiguration areas into fixed

regions.

We compare our work with the previous work above and would like to highlight the

following aspects:

• The PolyPC framework is designed to parallelize applications with multitasking supports

via parallel programming models. It is different from the previous works that are

implemented for sequential applications or multi-threaded applications without significant

performance improvement.

• The PolyPC framework is fully implemented on existing FPGA devices. However, some

previous works are not yet fully implemented and they are at the theoretical stage.

• The decision of scheduling tasks on either hardware and software resources appears to be

limited to the main processor (e.g., CAP-OS), which may be the bottleneck increasing

scheduling overheads. The PolyPC framework allows decision making on top of multiple

independent group schedulers.

• Both hardware threads and software threads are not locked to particular PEs during system

generation stage. They are allowed to run on any PEs during run-time.

• Although our PolyTasks do not support fully preemptive scheduling, source codes of

PolyTasks does not require specific modifications to support multitasking; while other
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previous work may need modifications on their source codes [71].

• In our PolyPC framework, we can achieve up to 400 MB/s to switch out and in both

hardware and software threads. Previous work (e.g., CAP-OS) can only achieve about 13

MB/s to 28 MB/s
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Chapter 5

Design Flow

In early times, system designers are able to build a reconfigurable embedded system manually

with few processors, buses and other peripheral components by using the vendor-provided EDA

tools. However, densities of current platform FPGAs are continuing to grow in recent decades.

When FPGAs have reached the million-LUT level, it is possible to construct a complex system

composed of hundreds of components on a single chip. Traditional GUI-based methods are

certainly no longer sufficient for handling this complexity. FPGA vendors continue to launch

tools with text-based configuration files (e.g., Xilinx MHS) and TCL-based scripts (e.g., Vivado

TCL) for automatic generation of multiprocessor systems. But these tools are not designed for

generating framework such as the PolyPC framework.

The PolyPC framework requires extensions on existing vendor-provided tools. The

challenge is to create a design flow that allows users to work from software source codes and

platform specifications to executable binaries.

5.1 Platform Generation

The PolyPC framework extends the existing process to build a reconfigurable embedded system

by using the vendor-provided tools. The process involves both hardware and software generation

tools. The framework mainly utilizes the bash scripts, and Tcl scripts that Vivado tool sets

(including Vivado, Vivado HLS, MicroBlaze SDK, Petalinux SDK, and XSDB debug tools) use

to work automatically without invoking GUI-based tools.

Figure 5.1 shows the entire generation flow from source codes to executable binaries on the

SD cards. What designers need to prepare is source codes regarding hardware platform
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specifications and software programs including host programs and PolyTask kernel programs.

The hardware platform specifications are comprised of the number of hardware groups, the

number of PEs per group and other configurations (e.g., trace and debug systems). If users want

to use unchangeable hPEs, the number of and the name of the hPE are also attached to the

specifications. Hardware specifications do not need to be associated with software programs. In

other words, no matter how many groups are set in software programs, they can run on hardware

platforms with any number of hardware groups.

Software programs consist of host programs and PolyTask kernel programs. Host programs

will initialize input and output data, create PolyTasks and launch PolyTasks into the system.

Kernel programs have two forms: software thread programs for sPEs and hardware thread

programs for HLS to compile to hardware accelerators as either unchangeable hPEs and

re-loadable hPEs. The host program does not necessarily have a one-to-one relationship with the

PolyTask kernel program. For instance, one host program can launch multiple PolyTask kernels,

and one PolyTask kernel can be launched by multiple host programs.

The Automation Builder is comprised of several Tcl scripts that can take specifications

and source codes and runs on Vivado tool sets. The Automation Builder assembles every

hardware components (including vendor-provided IPs and custom PolyPC IPs) into a block design

and connects them together. After the implementation of the block design, it will generate a static

dcp file that has empty PR regions for hPEs. The system configuration file will be generated, as

well. PR Generator applies every dcp file that is synthesized by Vivdao HLS from hardware

thread programs onto the static dcp file to generate a static bitstream file and PR bitstream files.

The group scheduler program along with the bootloader program of sPEs are compiled to

executable ELF files. The static bitstream file is updated with them to generate the final system

bitstream file. The system configuration file, PolyPC drivers, libraries, and Linux kernel source

codes are linked and compiled by the Petalinux SDK to configure the Linux system running on

the ARM processor. After compilation, necessary bootable file (e.g., device tree, file system, and
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kernel image) are generated. Software thread programs are compiled into ELF files that can run

on sPEs. All generated files along with data that is about to process will be stored on an SD card.

5.1.1 Automation Building Flow

As shown in Figure 5.1, hardware platform specifications, PolyTask kernel programs and host

programs are given to the automation builder as input. Hardware platform specifications are used

to build the hardware platform. PolyTask kernel programs can be compiled into either sPE

executables or hPE executables. Host programs are associated with PolyTasks running on the

Linux system. We create multiple Tcl and bash scripts (including hardware platform building

tool, hardware thread dcp generation tool, SDK automation tool, and Petalinux configuration tool)

to connect different parts as a complete automatic design flow. The following shows an example

to demonstrate how our automation builder works.

Hardware Thread Kernel Compilation First of all, if we want to have hardware thread

kernels running on hPEs in the system, we need to generate the hardware thread kernel IPs and

dcp files from kernel programs that are written by designers. If we do not want to add hPEs to the

system this step can be ignored.

vivado_hls -f hls_gen.tcl <Options >

This step invokes the Vivado HLS tool to run the script called hls gen.tcl. Option can be

either a name of a hardware thread kernel name that is the same as the top function name in HLS

source codes or all. If a particular kernel name is given, this step will generate or update this

hardware kernel; otherwise, all hardware thread kernel programs will be compiled or updated.

Hardware System Generation The system can be generated by using the following command.

vivado -mode batch -source gen.tcl -tclargs <Number of Groups >

<Number of PEs per Group >
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<Total Number of hPEs >

[Name of the hPE]

This command invokes Vivado to finish system assembly, implementation and PR generation.

The first three arguments are required to build the system. The last argument is optional. If it is

set as a platform with specific unchangeable hPEs, the system will not have PR regions, and all

hPEs are associated with that hardware thread kernel. In this configuration, the name of the hPE

has to be specified; otherwise, all hPEs are re-loadable. The total number of re-loadable hPEs

cannot exceed the maximum number of PR regions that is eight in the PolyPC framework. In this

configuration, PR regions will be created, and PR bitstream files are generated in the final step.

The PR Generator can work off-line without going through the automation builder from

the beginning. When new hardware thread kernels are added to the framework, the PR

Generator compiled new kernel programs with system static dcp file to generate PR bitstream

files.

SDK Project Generation Next, we need to create all MicroBlaze SDK projects and compile

them for sPEs and group schedulers.

xsdk -batch -source sdk_config.tcl <Number of Groups >

<Number of PEs per Group >

<Total Number of hPEs >

After this command is executed, the software kernel projects are created and compiled.

Executable binary files of group schedulers and bootloader for sPEs are compiled, as well. Two

lscript.ld files for sPE MicroBlazes are modified to link bootloader and software thread kernel

programs, respectively as the bootloader and software thread executables locate in different

BRAMs with different addresses. Since sPEs within a group are identical to each other, we can

either build only one ELF file that runs on sPEs or different ELF files for sPEs. Similar to the PR

Generator, software thread kernels can be compiled off-line, as well.
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Table 5.1: Intermediate Libraries of PolyPC Framework

Libraries Scope Functionalities

sche Scheduler ELF loading, mutex, PRC controlling, and many others.
cl Kernel OpenCL-like kernel functions (e.g., getID()) and supported functions.

mem man The dynamic memory manager for allocating and freeing.
exe loader The dynamic executable loader.

mutex Host Handle mutex-related functions, such as requesting and releasing.
register Handle PolyTask-related functions such as lunching and cleaning up.
trace Tracing-related functions, such as creating trace space and dumping.

Petalinux Project Generation The last step is to create and compile Petalinux projects by

using Petalinux SDK.

./petalinux_config.sh <Project Name >

The PolyPC framework provides necessary modules and libraries for embedded Linux system.

Petalinux SDK takes these drivers and system configuration to generate a Petalinux project. After

compiling, it delivers files that the system need to boot from SD card. Host programs, as well as

other user programs, are linked and compiled in this step.

5.2 Intermediate Libraries

Intermediate libraries are between the hardware platform and software programs that include host

programs and kernel programs. Table 5.1 demonstrates the most important libraries that are used

to create programs for group schedulers, PolyTasks, and host programs. sche is specially used for

group schedulers. It includes drivers to load executables of polymorphic tasks and other functions,

such as searching the PolyTT Queue and requesting/releasing mutex locks for group schedulers.
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5.2.1 Memory Management

The PolyPC framework manages memory resources in multiple levels. Private memories of sPEs

and hPEs are managed in different ways. Programs on sPEs manage private memories through an

assembly linkage and compilation standard that is executable and linkable format (ELF). Users

can use the C standard library to allocate and free memory spaces within the .heap section of

ELF files dynamically. Alternatively, static allocation is available on other sections (e.g., .bss

and .data). Private memories of hPEs are allocated statically and implemented on memory

resources (i.e., registers and BRAMs) according to actual usage.

The host memory is accessible to the host processor, and therefore the memory is managed

by the Linux OS. The global memory is managed by the host process, as well. But this memory

space span is out of the virtual memory system under Linux OS. The host processor is always

able to use this memory manually by using its physical address. This is not an efficient way to

utilize memory resources. In the PolyPC framework, the intermediate library provides a dynamic

memory manager for the host processor to manage the global memory. Although PEs are

accessible to the global memory, they cannot manage the global memory.

The challenge of the dynamic memory manager is to maximize utilization of the global

memory while to minimize overheads. The former one requires fine-grained allocation, but the

latter one requires coarse-grained allocation. The dynamic memory manager within the PolyPC

framework manages a doubly-linked queue in the Linux kernel space. Each node of the queue

contains information (i.e., entry address and size) about a contiguous memory space that is either

free or allocated. Considering the 4K boundary for DMA transfer, start addresses of allocated

memory spaces are under 4K boundary, which means the minimum size of an allocated memory

space is 4K bytes How it works is described in two aspects:

• Allocation The manager goes through nodes of the queue from the beginning until it

encounters a node that is free and equal to or larger than the size requested. Then the

85



manager attaches a new node to the node found if there is remaining space after allocating

for the node found. If There are no more space for the PL DDR memory, the manager will

return an error. Initially, there is one node existing in the queue. The node is free and

indicates the whole free PL DDR memory.

• Free The manager goes through nodes of the queue from the beginning until it encounters

the node that matches the entry address we want to free; otherwise, an error is returned.

Then the manager marks the node as free or merges with the previous and later node. If the

previous and following nodes are allocated, the targeted node is marked as free. If either the

previous or the following node is free, the targeted node is merged with that one to extend

to have a larger free memory space.

5.2.2 Dynamic Executable Loader

The sPE executable files are flattened to preserve the memory layout of instructions and data. It is

required as memory addresses and file offsets of sections in an ELF file may not be the same [19].

In other words, sections are not contiguous in the memory. Instead of loading ELF files into

memory directly, an executable loader is needed to analyze the structure of ELF files and load

them correctly. The hPE executable files are PR bitstream files. They are binary files that are

generated from Vivado tool sets.

The PolyPC framework provides a dynamic executable loader for loading executables of

both hPEs and sPEs.

hPE Executable Loader

Original .bit bitstream files cannot be use to load into the PR controller directly. Through the

Vivado tools, the .bit files are converted into .bin files to handle the endianness and bitswap

problems. The PolyPC framework uses a little-endian system with 32-bit wide buses. The .bit
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Table 5.2: Program Header within an ELF File

Index Type File offset File size Virtual address Memory size

0 LOAD 0x00000094 0x00000028 0x00000000 0x00000028
1 LOAD 0x000000BC 0x00000A58 0xC0000000 0x00000A58
2 LOAD 0x00000B14 0x00000128 0xC0008000 0x000009B0

Table 5.3: Sections within an ELF File

Index Name File offset Virtual address Memory size

3 .vectors.hw exception 0x000000B4 0x00000020 0x00000008
4 .text 0x000000BC 0xC0000000 0x000009FC

14 .head 0x00000C3C 0x000081B0 0x00000400
15 .stack 0x00000C3C 0x000085B0 0x00000400

files are converted to little-endian files, as well as indicating a 32bit bus compatible. The PR

bitstream files have a particular bitswap format that is required by the ICAP module. But in our

framework, the PR controller will handle the bitswap.

Since every .bit file has the same size, the executable loader combines every single file into

one file for each hPE group. The entry offset of each PR file within the big one file is calculated

by using the number of hPEs within a group and the size of PR files from each group scheduler.

sPE Executable Loader

The dynamic executable loader for sPEs can analyze and load ELF files during runtime. The

program header within the executable ELF file describes a segment that is needed to prepare

the program for execution. A segment contains multiple sections. Table 5.2 shows the loadable

segments that are necessary for the program to execute, which means these segments are required

to load into memory for execution. File offsets are not equal to the virtual addresses as well as file

sizes and memory sizes. To load segments correctly, segment 1 and 2 are loaded into their virtual

addresses from their file offsets, respectively. Segment 2 requires memory padding as well as its

file size is not the same as its memory size.
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As an example, consider a portion of the ELF file shown in Table 5.3. Section 3 and 4 are

contiguous within the ELF file but are non-contiguous for the memory layout. So that these two

sections need to be loaded into their addresses separately. Although file sizes of section 14 and 15

are zero as they have the same file offset, the memory size is not equal to zero. This is because

.head and .stack do not have static contents within the file but are allocatable during execution.

These two sections need memory padding when loaded into the memory.

According to the PolyTask information within the PolyTT (see Figure 3.5), symbol

information including entry addresses of the main function and the .stack section must be

extracted as the bootloader requires this information to jump to execute the new thread. We

cannot load only the main function as the MicroBlaze bare-metal program assembles functions,

such as exception handles and initialization, which are necessary for execution. The new thread

also needs a stack space with the address for recursive functions. The DMA size is the size of the

maximum memory footprint that has instruction and data contents. The thread size is usually

larger than the DMA size as the thread size includes allocatable sections such as .head and

.stack. The MicroBlaze linker uses a linkscript file to change the entry address of the

PolyTask to 0x00008000, which is the physical address of the kernel BRAM shown in Figure 3.8.

5.3 Programming OpenCL Applications

The PolyPC framework requires host programs and kernel programs that include software thread

kernel programs and hardware thread kernel programs.

5.3.1 Execution Model

The execution model refers to how to write a pogrom with the OpenCL model and how to map

the divided work groups on hardware groups. Figure 5.2 shows how the problem space of a

2-dimensional problem (i.e., matrix multiplication) is divided and mapped to each hardware
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group. The whole problem space is divided into multiple work groups. The number of work

groups of the two dimensions is called group numbers that is indicated by a pair of numbers.

The number of work items of two dimensions within each work group is called group size. The

current PolyPC framework supports up to two dimensions. The maximum number of work

groups and work group size is limited by the ID data length that is illustrated in Section 3.6.1.

The intermediate library also provides supports for both host and kernel programs. As

shown in Table 5.1, besides libraries for group schedulers others are for host and kernel programs.

Since the OpenCL language is library-base programming model, PolyPC provides cl to write
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software and hardware thread kernel programs. It is equivalent to the CL library from the OpenCL

standard library. Other libraries are used in host programs. They adapt a broad range of low-level

drivers to high-level user interfaces.

• mem mam provides user functions ddr malloc and ddr free that are similar to malloc and

free functions in C libraries, which is the user interface of the dynamic memory manager.

• exe loader is for the dynamic executable loader. It provides two user interfaces:

elf loader for sPE executables and pr loader for hPE executables.

• mutex provides functions to request and release mutex locks from the mutex manager as

well as Linux synchronization subsystem. This library is implemented in the Linux kernel

space and does not provide user interfaces. Libraries such as register call this library for

shared resources.

• By using register, host programs can launch and delete a PolyTask from the PolyTT

queue. It provides user interfaces as reg add and reg del.

• trace subsystem can work as either a debug system or an evaluation system that can help

developers further examine the system. User interfaces trace alloc and dump trace

allocate a trace memory and dump the trace data, respectively.

5.3.2 Host Programs

Listing 5.1 Host Program of PageRank
1typedef float d_type;
2
3int main(int argc , char *argv[])
4{
5// Preparation
6reg_clr();
7trace_clr();
8int ret = 0;
9int SIZE_PER_PE = 2;
10int num_group = 4;
11int data_size = 1024;
12int buf_length = 32;
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Listing 5.1 (Cont.): Host Program of PageRank

13int group_size = data_size / num_group / SIZE_PER_PE;
14
15// Construct PolyTask structure
16struct PolyTask_struct PolyTask;
17PolyTask.argv[0] = ddr_malloc(data_size * data_size * sizeof(d_type));
18PolyTask.argv[1] = ddr_malloc(data_size * sizeof(d_type));
19PolyTask.argv[2] = ddr_malloc(data_size * sizeof(d_type));
20PolyTask.argv[3] = data_size;
21PolyTask.argv[4] = buf_length;
22PolyTask.kernel_magic = ’p’;
23PolyTask.cur_group_id.id0 = 0;
24PolyTask.cur_group_id.id1 = 0;
25PolyTask.group_size.id0 = 1;
26PolyTask.group_size.id1 = group_size;
27PolyTask.group_num.id0 = 1;
28PolyTask.group_num.id1 = num_group;
29PolyTask.trace_ram_off = trace_alloc(PolyTask.group_num) /
30sizeof(struct hapara_trace_struct);
31
32// Load ELF and PR files into memory
33ret = elf_loader(ELF_FILE_NAME , ELF_START_ADDR , &PolyTask.elf_info);
34ret = pr_loader(PR_FILE_NAME , &PolyTask.pr_info);
35
36// Add PolyTask structure to PolyTask Queue
37ret = reg_add(&PolyTask);
38
39// Dump trace file and wait for this thread to terminate
40dump_trace(0, TRACE_FILE_NAME);
41
42// Free all allocated memory space
43ret = reg_del(ret);
44ret = ddr_free(PolyTask.elf_info.ddr_addr);
45ret = ddr_free(PolyTask.pr_info.ddr_addr);
46ret = ddr_free(PolyTask.argv[0]);
47ret = ddr_free(PolyTask.argv[1]);
48ret = ddr_free(PolyTask.argv[2]);
49return 0;
50}

Host programs running on the host processor are mainly responsible for initializing data,

creating, and launching PolyTasks into the system. Listing 5.1 shows a portion of a workable host

program associated with the PageRank benchmark. The host program is programmed and

executed in orders, which is demonstrated in the following.

1. Create a PolyTask instance: Line 16 create a PolyTask instance in the host memory.

Creating a PolyTask is equivalent to create a PolyTask structure. The PolyTask struct

structure is associated with the data structure storing in the PolyTT queue.

2. Create Memory Objects: The dynamic memory manager is used to create memory objects

in the global memory. Line 17-19 creates three memory objects by using ddr malloc.

Similar to the malloc function from C standard library, this function returns a physical
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address of the global memory given a size that users want to allocate.

3. Initialize Memory Objects: In this step, users initialize the allocated memory objects.

Since the host processor can access the global memory by mapping the physical memory

address to its virtual memory space, users can initialize the allocated memory objects from

the host program. Alternatively, users can always copy data from extern storage (e.g., SD

card) to the memory objects. Figure 5.1 does not show this part.

4. Initialize PolyTask: Initializing a PolyTask includes two parts: 1) arguments that are

passed to kernel programs; 2) runtime information that is necessary for group schedulers. In

this example, totally five arguments are passed for the PolyTask including three memory

object addresses of input and output data elements and the other two are required

particularly by the benchmark itself (see Line 17-21). Runtime information includes the

kernel magic as well as how the problem space is divided such as cur group id,

group size, and group num. The entry of the trace ram can also be attached to the

PolyTask by allocating the space for the trace data.

5. Load Executables: The dynamic executable loader loads sPE and hPE executables from

the extern storage into the global memory. It calls the dynamic memory manager to allocate

global memory for executable files. The information of executables is updated in the

PolyTask as well. At this point, the PolyTask is created and up-to-date with necessary

information for launching.

6. Launch the PolyTask: Then the host program calls reg add to add PolyTask into PolyTT

queue by copying the PolyTask structure to the PolyTT queue. After this step, the PolyTask

is launched successfully, and each group scheduler can access this PolyTask from the

PolyTT queue.

7. Dump Trace Data: Trace data can be read from the trace memory and stored into either

the extern storage or the host memory. Once the PolyPC framework finishes the PolyTask,

the host program will return from the dump trace function.
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8. Clean Up: Firstly, the PolyTask is unregistered from the PolyTT queue to save spaces.

Then the dynamic memory manager frees all allocated memory objects including spaces for

executables.

5.3.3 Kernel Programs

Kernel programs are compiled to executables to run on PEs conducting the computation tasks.

Kernel programs are comprised of software and hardware thread kernel programs. Software

thread kernel programs are compiled to ELF files to run on sPEs. Hardware thread kernel

programs are compiled by the HLS tool to generate two types of files: dcp files for re-loadable

hPEs and IP modules for unchangeable hPEs.

Hardware Thread Kernel Programs

A complete hardware thread kernel program that is written in C for the Vivado HLS is

decomposed into three parts: application main function, kernel function, and definitions.

Listing 5.2 pagerank Function of PageRank for hPEs
1void pagerank(volatile unsigned int *id,
2volatile unsigned int *barrier ,
3volatile unsigned int *barrier_rel ,
4d_type *data ,
5char htID) {
6#pragma HLS INTERFACE ap_ctrl_none port=return
7#pragma HLS INTERFACE m_axi depth=16 port=data
8#pragma HLS INTERFACE axis port=id
9#pragma HLS INTERFACE axis port=barrier
10#pragma HLS INTERFACE axis port=barrier_rel
11unsigned int internal_id;
12unsigned int id0, id1;
13unsigned int trigger;
14unsigned int zero = 0;
15d_type trigger_d_type;
16while (1) {
17trigger_d_type = data[SCHE_SLAVE_TRIGGER_BASE + htID];
18trigger = *((unsigned int *)&trigger_d_type);
19if (trigger == 2) *barrier = 2;
20if (trigger == 1) {
21data[SCHE_SLAVE_TRIGGER_BASE + htID] = *((d_type *)&zero);
22d_type arg0_d_type = data[SCHE_SLAVE_ARGV_BASE];
23unsigned int arg0 = *((unsigned int *)&arg0_d_type);
24d_type arg1_d_type = data[SCHE_SLAVE_ARGV_BASE + 1];
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Listing 5.2 (Cont.): pagerank Function of PageRank for hPEs

25unsigned int arg1 = *((unsigned int *)&arg1_d_type);
26d_type arg2_d_type = data[SCHE_SLAVE_ARGV_BASE + 2];
27unsigned int arg2 = *((unsigned int *)&arg2_d_type);
28d_type arg3_d_type = data[SCHE_SLAVE_ARGV_BASE + 3];
29unsigned int arg3 = *((unsigned int *)&arg3_d_type);
30d_type arg4_d_type = data[SCHE_SLAVE_ARGV_BASE + 4];
31unsigned int arg4 = *((unsigned int *)&arg4_d_type);
32internal_id = *id;
33while (internal_id != 0xFFFFFFFF) {
34id0 = internal_id >> 16;
35id1 = internal_id & 0x0000FFFF;
36kernel(arg0 , arg1 , arg2 , arg3 , arg4 , id0, id1, data);
37internal_id = *id;
38if (internal_id == 0xFFFFFFFF) {
39*barrier = 1;
40}
41}
42}
43}
44}

The pagerank function (see Listing 5.2) is the entry function for a hardware thread kernel

program. When users write different hardware thread kernel programs, the differences lie in the

arguments passing. Arguments that are needed to pass to the kernel function are fetched from the

local memory via codes from Line 22-31. In this PageRank example, there are totally five

arguments. They are initialized within the host program (see Listing 5.1) For other applications,

designers can only change these codes to adjust the number of arguments they want to pass.

Correspondingly, the number of arguments that are passed to kernel functions needs to change to

the caller on Line 36.

Interfaces of hPEs are defined as arguments from the pagerank function. There are four

kinds of interfaces to this module: id port, barrier ports, data port, and htID port, each of

which is associated with a bus protocol, which is defined from Line 6-10.

• id is implemented in the slave AXI-Stream protocol, which is used to get work group IDs

from the ID dispatcher.

• A pair of barrier ports are implemented in master and slave AXIS-Stream protocols,

respectively. They are used in pagerank and kernel functions to synchronize with other

PEs within a group.
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• data uses a master AXI memory-mapped protocol that is used for reading and writing data

from the global memory and local memory.

• htID is assigned a unique number to identify each PE within a group. It is wired to the hPE

without special standard protocol.

Line 38-40 in this example shows that a synchronization occurs when all item IDs within this

group finish dispatching. The pagerank function is to keep polling the trigger that is set by the

group scheduler from the local memory. Once the trigger is set, the sPE will fetch the new

arguments that are updated by the group scheduler. Then the hPE keeps fetching item IDs from

the id port until it occurs a 0xFFFFFFFF that indicates the termination . The 32-bit ID is divided

into two 16-bit IDs that stand for a pair of two-dimensional IDs. The two IDs will be passed to

the kernel function eventually.

Listing 5.3 kernel Function of PageRank for hPEs
1void kernel(unsigned int a_addr ,
2unsigned int b_addr ,
3unsigned int c_addr ,
4unsigned int num_nodes ,
5unsigned int buf_size ,
6unsigned int id0,
7unsigned int id1,
8d_type *data) {
9unsigned int a = a_addr >> 2;
10unsigned int b = b_addr >> 2;
11unsigned int c = c_addr >> 2;
12
13unsigned int line_off = id1 * SIZE_PER_PE * num_nodes;
14unsigned int vector_off = id1 * SIZE_PER_PE;
15int i, j;
16int num_buf_chunk = num_nodes / buf_size;
17d_type sum[SIZE_PER_PE] = {0.0f, 0.0f};
18for (i = 0; i < num_buf_chunk; i++) {
19unsigned int chunk_off = i * buf_size;
20d_type *ina0 = &(data[a + line_off + chunk_off]);
21d_type *ina1 = &(data[a + line_off + num_nodes + chunk_off]);
22d_type *inb = &(data[b + chunk_off]);
23memcpy((d_type *)a_buffer0 , (const d_type *)ina0 , sizeof(d_type) * buf_size);
24memcpy((d_type *)a_buffer1 , (const d_type *)ina1 , sizeof(d_type) * buf_size);
25memcpy((d_type *)b_buffer , (const d_type *)inb, sizeof(d_type) * buf_size);
26for (j = 0; j < buf_size; j++) {
27#pragma HLS PIPELINE
28sum[0] += a_buffer0[j] * b_buffer[j];
29sum[1] += a_buffer1[j] * b_buffer[j];
30if ((i == num_buf_chunk - 1) && (j == buf_size - 1)) {
31data[c + vector_off] = sum[0];
32data[c + vector_off + 1] = sum[1];
33}
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Listing 5.3 (Cont.): kernel Function of PageRank for hPEs

34}
35}
36}

Listing 5.3 shows the kernel function of PageRank. The contents of kernel functions may

differ from one application to another. But the interfaces are similar regarding functionalities. In

this example, the first three arguments are the two input data addresses and one output data

address, respectively. The next two arguments are the two 16-bit two-dimensional item IDs. This

particular application uses the remaining two arguments.

It is noticed that there are optimization techniques that can be used to program hPEs. One

way to do this is to cache data. When using this method, the hPE process multiple data elements

with one item ID. Line 23-25 uses memcpy to burst multiple data elements per transfer. Data

elements are stored temporally in the private memories. The other way is to pipeline the

execution. The hardware thread kernel program uses a parameter in the source codes to make the

HLS tool optimize compilation. This technique is usually to pipeline a for loop as shown in Line

27.

Listing 5.4 Definitions of PageRank for hPEs
1#define SCHE_SLAVE_ARGV_BASE 0x30000020
2#define SCHE_SLAVE_TRIGGER_BASE 0x30000040
3typedef float d_type;
4#define N 128
5#define SIZE_PER_PE 2
6#include "string.h"
7d_type a_buffer0[N];
8d_type a_buffer1[N];
9d_type b_buffer[N];

Listing 5.4 shows the definition part. Data type is defined as d type that is float. N is

maximum buffer size. In order to reduce redundant data transferring, we process two elements

from one item ID so that the SIZE PER PE is defined as 2, and we defined two buffers to

temporarily store matrix input data as a buffer. The b buffer is for the vector input data. These

arrays are implemented as private memories for hPEs.
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Software Thread Kernel Programs

Listing 5.5 main and kernel Functions of PageRank for sPEs
1#include "../../ generic/CL/cl.h"
2#define SIZE_PER_PE 2
3
4void kernel(
5float *A,
6float *B,
7float *C,
8int num_nodes ,
9int buf_size) {
10unsigned int id0 = getGlobalID (0);
11unsigned int id1 = getGlobalID (1);
12unsigned int off = id1 * SIZE_PER_PE;
13unsigned int off0 = (off + 0) * num_nodes;
14unsigned int off1 = (off + 1) * num_nodes;
15int i;
16float sum = 0;
17for (i = 0; i < num_nodes; i++) {
18sum += A[id0 + off0 + i] * B[id0 + i];
19}
20C[id0 + off] = sum;
21sum = 0;
22for (i = 0; i < num_nodes; i++) {
23sum += A[id0 + off1 + i] * B[id0 + i];
24}
25C[id0 + off + 1] = sum;
26}
27
28int main() {
29setArgv(0, arg0 , float *);
30setArgv(1, arg1 , float *);
31setArgv(2, arg2 , float *);
32setArgv(3, num_nodes , int);
33setArgv(4, buf_size , int);
34if (!setjmp(buf)) {
35while (1) {
36kernel(arg0 , arg1 , arg2 , num_nodes , buf_size);
37}
38}
39clean_up();
40return 0;
41}

Listing 5.5 shows the main and kernel functions for sPEs. The main function is different

from that of the hardware kernel program in terms of detailed implementation but shares the same

execution flow. sPEs fetch the updated arguments by using a micro setArgv that is defined in cl

library, which is shown from Line 29-33. The micro defined a variable with the given type and

assigned the argument to the variable according to the index. Different applications may require a

different number of arguments. Users can change the codes on demands. If we compare with the
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codes from the hardware thread kernel program, the software thread kernel program does not have

a trigger part. This part is implemented by the bootloader instead.

Then the kernel function will be executed once it gets an item ID as shown in Line 10-11.

Once the sPE receives the termination signal 0xFFFFFFFF, the getGlobalID function will throw

an exception that can be caught by setjmp in Line 34. Software thread kernel programs are easier

to program than hardware ones in terms of footprints. This provides more flexibility to the users.

However, hPEs offer more changes for the high performance and high throughputs.

5.4 Related Work

5.4.1 Executables for PolyTasks

For a single type of general-purpose processors (e.g., sPEs in our work), traditional compilation

processes generate an executable file that is a binary representation of the instruction stream for

this type of processor. Each instruction has an ISA-specific encoding that perfectly matches a

decode stage in a given processor, allowing a single compiler to hide ISA-level intricacies from

the programmer. In heterogeneous general-purpose systems, compilation flows are required to

produce executables that contain multiple instruction streams, each of which is encoded in a

particular ISA [59]. Additionally, the distinct instruction streams have to be linked so that

references to the same data object refer to the same address in memory. Unfortunately, most

executable formats do not specify how to resolve references for common data and code objects

between different processor architectures [54].

To overcome this limitation, many previous heterogeneous design flows create augmented

compilation tools that are able to handle cross-linking heterogeneous binaries [53, 59, 81, 98, 102]

for general-purpose processors. However, modifying modern compilers and linking utilities is an

exceedingly difficult process; as compilation frameworks are extremely large and complex.

Additionally, maintenance and extension of heterogeneous systems not only implies but requires
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the modification and maintenance of multiple compilers and binary utilities. As an example,

previous work creates customized extensions to standard executable-linkable file formats (ELFs)

to allow for cross-architecture linking and embedding of binary files [53, 59, 102]. These

extensions require the modification of compilers to produce ELF files that conform to the new

extensions. The extensions defined by both IBM’s CESOF [53, 54] and Joglar’s HELF [59] aim

to create standardized executable formats that enable heterogeneous compilation flows while

simultaneously preserving backward compatibility. Other heterogeneous compilation flows prefer

to leave compilation tools as is to create new helper utilities that can link and embed

heterogeneous binaries by using intermediate files that are encoded in high-level languages (e.g.,

C). As an example, both NVIDIA’s heterogeneous compilation drivers (nvcc) [81] and Arachne’s

preprocessing compiler [26] produce intermediate files that are encoded in traditional library

header files that can be readily linked and embedded using normal compilation tools.

In the PolyPC framework, none of these approaches are applicable. For a PolyPC system

with both sPEs and hPEs, it is even harder to have a unified executable format to combine and

link ELF files and PR bitstream files, not to mention having custom compilers and linkers to put

them together. The helper utilities to embed heterogeneous binaries into a single executable (e.g.,

for host processor) seem to work at first. But this approach may suffer from low extensibility. All

executables have to be embedded into a source code to compile and link with that source code

together. When the number of applications increases, it may generate extremely large binaries by

using this approach. Furthermore, this approach can only work off-line during the compiling and

linking stages. In our framework, we introduce the dynamic executable loader to address issues

raised above. PolyTask executables are compiled, loaded and stored separately. This enables

off-line generation and run-time loading for all executables.
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Table 5.4: Overview of Selected High-level Synthesis Tools

Tools Owner License Input Output Year

MaxCompiler Maxeler Commercial MaxJ RTL 2010
Bluespec BlueSpec Inc. Commercial BSV System Verilog 2004

Vivado HLS Xilinx Commercial C/C++/SystemC VHDL/Verilog/SysmteC 2013
Bambu PoliMi Academic C Verilog 2012
LegUp U. Toronto Academic C Verilog 2011

DWARV TU. Delft Academic C subset VHDL 2012

5.4.2 High-level Synthesis Approaches

Hardware description languages (HDLs, such as Verilog and VHDL) are used to design digital

system for decades on register transfer level (RTL) of FPGAs and are synthesized into targeted

logics. In contrary, high-level synthesis (HLS) tools are expected to convert high-level languages

(e.g., C language) to either HDLs or bitstream files. Although HLS approaches for digital design

have drawn attentions from both academia and industry for decades, designers are wondering if

traditional HDLs can be replaced by them to increase productivity without performance loss. But

one thing for sure is that HLS solutions are increasing their shares on commercial markets [74].

One important contribution to this trend is the failure of Moore’s law. Designers tend to integrate

application-specific hardware accelerators into their processors [10] or to have custom hardware

accelerators instead. But designing specialized hardware requires excellent skills in hardware

knowledge, which significantly bars the widespread use of custom accelerators. HLS tools

provide a promising alternative to this issue.

There are many HLS tools created, some of which are in use and others are abandoned.

Tables 5.4 is extracted from [79] to list few HLS tools that are in use.

• MaxCompiler: It is an HLS tool especially aiming data flow optimization. The input

language MaxJ is a Java-based language. It delivers synthesized logics targeting on

hardware platforms from Maxeler.
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• Bluespec: Bluespec compiler uses Bluespec SystemVerilog (BSV) as input language. BSV

is based on System Verilog and is originally from Haskell [80]. BSV is provided to express

a circuit: behavior and structure. The behavior is demonstrated by using Guarded Atomic

Actions, and is based on Atomic Rules and Interfaces. The guard is a statement that

evaluates to a Boolean and if true, the rule fires and executes until completion. BSV is an

invented language that is different from transitional hardware and software languages.

Therefore, users are required to have experience in BSV.

• Vivado HLS: It originates from AutoESL’s AutoPilot [20], which was acquired by Xilinx.

Vivado HLS was released in 2013 along with the Vivado design suite. It accepts C, C++,

and System C as source codes and generates either IP modules that consist of

Verilog/VHDL modules or pre-synthesized dcp file on targeted Xilinx devices. Vivado HLS

is based on module design. The generated modules are embedded into Vivado to comprise a

complete system. Vivado HLS provides abundant optimization options including resources,

performance, bandwidth, and interfaces. Usually, options are combined with considerations

of downstream and upstream modules to deliver optimized circuits.

• Bambu: The bambu framework [87] is modular and can be extended with new HLS

algorithms for research purposes. It requires the C specification and an XML configuration

file as input. It produces the HDL description of the hardware implementation and the

scripts for logic synthesis.

• LegUp: The LegUp compiler [12] is built within LLVM compiler framework [64]. It

accepts C codes to synthesize to either hardware logics or hardware accelerators that

cooperate with a general-purpose processor communicating via memory-mapped interfaces

targeting on Altera devices. LegUp supports Pthreads and OpenMP to synthesize into

parallel hardware logics automatically.

• DWARV: The DWARV compiler [78] accepts universal C codes as input to generate VHDL

codes that can be synthesized on reconfigurable architectures. This work is based on the
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CoSy commercial compiler. The compiler can be extended by including standard CoSy or

custom engines.

The generation of hPEs within the PolyPC framework is built on Xilinx Vivado HLS tools.

However, Vivado HLS does not take OpenCL kernel programs as input. Besides, it is not suitable

to design a complete system without other IP modules. Thereby, our framework is intended to

cooperate with Vivado HLS. It is the similar approach to Xilinx’s OpenCL tool SDAccel [105]

that is also built on Vivado HLS. But there are many differences that will affect the performance

and productivity. The architectural parallelism within SDAccel is revealed by unrolling for

loops. Particularly, a compute unit (a group in our implementation) is generated from a single

kernel program. In our approach, an hPE is generated from a single kernel program. The source

codes and hardware architecture are not independent of each other in Xilinx’s approach, which

may suffer from resource limitations when implementing a large design.

5.4.3 Automatic System Builder

Several works are focusing on automating system generation on multiprocessor system-on-chip

(MPSoC) [30]. In [13], authors present a prototype design flow and set of automated tools that

enable designers to construct MPSoC architectures on FPGAs automatically. The tool targets

systems with tens of processors, and exists at an abstraction level above vendor-provided EAD

tools. ReconOS [72] provides a tool flow to assist their design, as well. Their flow takes source

codes of hardware and software programs as input to generate executable binaries, which is very

similar to our approaches. But in our design flow, a very important part is the system assembly,

which is more flexible than other works. This tool targets heterogeneous systems based on the

OpenCL framework. It takes any specifications from users and assembles every component into a

system. Other works [33, 73] focus on system automation of general bus-based MPSoC

architectures. They take the vendor-provided scripts as an intermediate implementation, on top of

which they create an abstraction layer by using high-level languages (e.g., Java). For instance, in
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[33] components existing within a system are represented as objects that can be connected to a

bus. In this way, the system is constructed in a clear and easy way as designers can focus on

system hierarchy instead of implementation details.
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Chapter 6

Conclusions

This work explores challenges and solutions of FPGAs as a candidate within heterogeneous

systems beyond the multi-core era. FPGAs have advantages of performance over general-purpose

processors and productivities over ASIC designs. FPGAs have been playing as a mid-point

between processors and dedicated circuits. As the failure of Moore’s law, both academia and

industry pay more attentions on heterogeneous solutions on FPGAs. Various frameworks on

FPGAs have been proposed for designers to use FPGAs easily. The launch of high-level synthesis

tools provides an efficient way to increase productivity by compiling high-level languages into

RTL logics. However, HLS tools are required to cooperate with proper frameworks supporting

parallel programming models to achieve performance improvement along with productivity.

In this work, we propose the PolyPC (Polymorphic Parallel Computing) framework that

targarts parallelizing applications on FPGAs. The PolyPC framework supports the OpenCL

parallel programming models by providing a custom hardware platform, software intermediate

libraries, and automatic system builders. The OpenCL application programs are converted into

executables through the front-end source-to-source transformation and back-end

synthesis/compilation to execute on PEs. Coarse-grained parallelism is expressed through

architectural supports. Fine-grained parallelism is expressed by PE duplications and loop

unrolling within HLS kernel codes. The automatic system builder takes the specifications to

generate the hardware platform. The PolyPC framework enables partially reloaded processing

elements (PEs) for both sPEs and hPEs. On the one hand, PEs can be generated off-line without

changing the static system and loaded into the system during run-time. On the other hand,

benefiting from the flexibility of re-loadable PEs, the priority-aware scheduling is enabled to

provide designers more flexibilities.
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The PolyPC framework is evaluated regarding performance, area efficiency, and

multitasking. The results show a maximum 66× speedup over a dual-core ARM processor, and

1043× speedup over a high-performance MicroBlaze with 125× of area efficiency. It delivers a

significant improvement in response time to high-priority tasks with the priority-aware

scheduling. Overheads of multitasking are evaluated to analyze trade-offs.

In summary, this work investigates and answers questions raised in Chapter 1.

• Can platform specification details be removed from users’ codes and be encapsulated within

an automatic system builder? Configurations of hardware platforms, such as the number of

groups, are transparent to users’ source codes during run-time. This is quite different from

current HLS-based approaches, where hardware configurations are embedded into kernel

source codes. The automatic system builder helps to generate the hardware framework from

users’ specifications. Therefore, the answer to this question is yes.

• Can the complexity of designing parallel applications be reduced by applying standard

parallel programming models on FPGAs? Yes. The ultimate goal of this framework is to

make writing OpenCL programs on FPGAs as quickly as that on GPGPUs. In this work,

the complexity is reduced in two ways. Firstly, architectural components help with

parallelism and implementation of the OpenCL programming model. Then HLS tools

improve design productivity from source codes to RTL circuits through front-end and

back-end compilation.

• What are the benefits when heterogeneous computing resources are used on FPGAs?

Heterogeneous solutions on FPGAs aim to increase productivity without performance loss.

hPEs can provide significant performance improvement over soft processors. sPEs have

much lower multitasking overheads compared to hPEs. Heterogeneous solutions provide

more flexibilities for users to trade-off their different designs.

• Can the system efficiency be increased by introducing the priority-aware multitasking?

Generally speaking, yes. When multiple kernels are launched, groups keep busy to avoid
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idle states. In contrary, when only one kernel is launched, some groups may become

inactive while others keep busy as this kernel is about to finish. However, multitasking has

its costs. The efficiency may decrease especially when multitasking overheads dominate the

wall clock execution time. Therefore, this may require designers to trade-off between

flexibility and overheads carefully.

6.1 Future Work

6.1.1 Adoption of More OpenCL Features

In this work, we have implemented basic functionalities of the OpenCL standard. However, some

very exciting features from the OpenCL standard have not been implemented yet. These features

may improve productivity and increase performance for some applications. For instance, pipes

appear from the OpenCL 2.0 specification. It enables direct communication between executing

kernel instances. Before pipes were introduced, memory objects are transferred from one kernel

instance to another through the host memory. Pipes provide a logic link between kernels for

memory objects.

Other features that can be added to our implementation are not from the OpenCL standard.

Shared memory between host and compute devices is useful since it avoids potential overheads of

data transferring between global memory and host memory. Besides, PEs can keep coherence and

consistency of memory objects via host’s cache controller to access data from the host memory

directly. Moreover, a global TLB or OS page tables can be shared by PEs and host. This further

provides a virtualization layer for compute devices on FPGAs.

Further works on the OpenCL standard may include more unified kernel codes for sPEs and

hPEs. The ultimate purpose is to make the platform details transparent to users, where designers

can use the same kernel codes for one application. This requires further investigations on the

heterogeneous compilation flow of general-purpose processors and hardware circuits.
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6.1.2 Intelligent Scheduling

A lot of interesting works can be researched for the scheduling part. Two of them are discussed

here: multilevel granularity scheduling and run-time adaptive scheduling. Currently, the

framework supports coarse-grained multitasking scheduling. The minimal units that can be

scheduled are work groups from multiple PolyTheads. Future works can involve fine-grained

scheduling within group execution. PEs can switch between different work-items from multiple

PolyTheads, which may further improve the efficiency of the whole system.

Another important part in the future work is the run-time adaptive scheduling. The group

scheduler can consider more factors when deciding to switch between PolyTasks. More flexible

scheduling algorithms can be introduced to trade-off between these factors. Furthermore, instead

of off-line profiling, on-line profiling can be implemented in the future. A run-time profiler can

monitor and analyze execution information to provide to group schedulers for decisions.
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