
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2012

Locality Enhancement and Dynamic Optimizations on Multi-Core Locality Enhancement and Dynamic Optimizations on Multi-Core

and GPU and GPU

Zheng Zhang
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Zhang, Zheng, "Locality Enhancement and Dynamic Optimizations on Multi-Core and GPU" (2012).
Dissertations, Theses, and Masters Projects. Paper 1539623602.
https://dx.doi.org/doi:10.21220/s2-arc8-dh10

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623602&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623602&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-arc8-dh10
mailto:scholarworks@wm.edu

Locality Enhancement and Dynamic Optimizations on Multi-Core and GPU

Zheng Zhang

Taixing, Jiangsu, China

Master of Science, The College of William and Mary, 2007

Bachelor of Science, Shanghai Jiao Tong University, 2004

A Dissertation presented to the Graduate Faculty
of the College of William and Mary in Candidacy for the Degree of

Doctor of Philosophy

Department of Computer Science

The College of William and Mary
August 2012

Copyright © Zheng Zhang
All Rights Reserved

APPROVAL PAGE

This Dissertation is submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

.obmmitlee Chair "'
Assistant Professor Xipeng Shen, Computer Science

// <' Je c::e;e -~f William and Mary

(~<;/;/ / /~--
A~g~iate Professor Phil Kearns, Computer Science

The College of William and Mary

Associate Professor Weizhen Mao, Computer Science
The College of William and Mary

Professor Mary Lou off Computer Science
The University of Virginia

ABSTRACT PAGE

Enhancing the match between software executions and hardware features is key to comput
ing efficiency. The match is a continuously evolving and challenging problem. This dissertation
focuses on the development of programming system support for exploiting two key features
of modern hardware development: the massive parallelism of emerging computational accel
erators such as Graphic Processing Units (GPU), and the non-uniformity of cache sharing in
modern multicore processors. They are respectively driven by the important role of accelera
tors in today's general-purpose computing and the ultimate importance of memory performance.
This dissertation particularly concentrates on optimizing control flows and memory references,
at both compilation and execution time, to tap into the full potential of pure software solutions in
taking advantage of the two key hardware features.

Conditional branches cause divergences in program control flows, which may result in serious
performance degradation on massively data-parallel GPU architectures with Single Instruction
Multiple Data (SIMD) parallelism. On such an architecture, control divergence may force com
puting units to stay idle for a substantial time, throttling system throughput by orders of mag
nitude. This dissertation provides an extensive exploration of the solution to this problem and
presents program level transformations based upon two fundamental techniques - thread relo
cation and data relocation. These two optimizations provide fundamental support for swapping
jobs among threads so that the control flow paths of threads converge within every SIMD thread
group.

In memory performance, this dissertation concentrates on two aspects: the influence of non
uniform sharing on multithreading applications, and the optimization of irregular memory refer
ences on GPUs. In shared cache multicore chips, interactions among threads are complicated
due to the interplay of cache contention and synergistic prefetching. This dissertation presents
the first systematic study on the influence of non-uniform shared cache on contemporary parallel
programs, reveals the mismatch between the software development and underlying cache shar
ing hierarchies, and further demonstrates it by proposing and applying cache-sharing-aware
data transformations that bring significant performance improvement. For the second aspect,
the efficiency of GPU accelerators is sensitive to irregular memory references, which refer to the
memory references whose access patterns remain unknown until execution time (e.g., A[P[i]]).
The root causes of the irregular memory reference problem are similar to that of the control
flow problem, while in a more general and complex form. I developed a framework, named G
Streamline, as a unified software solution to dynamic irregularities in GPU computing. It treats
both types of irregularities at the same time in a holistic fashion, maximizing the whole-program
performance by resolving conflicts among optimizations.

Table of Contents

Dedication

Acknowledgements

List of Tables

List of Figures

1 Introduction

1.1 Performance Impact of Divergent Control Flows .

1.2 Handling Irregular Memory Reference Patterns .

1.3 Matching Non-Uniform Cache Sharing Hierarchy

1.4 Dissertation Contributions .

1.5 Dissertation Layout

2 Divergent Controls Flows

2.1 Motivation

2.2 GPU Architecture and CUDA Programming Model.

2.3 CUDA Kernels and Thread-Data Remapping

2.3.1 An Abstract Form of GPU Kernels .

2.3.2 Concept of Thread-Data Remapping

vi

vii

viii

X

1

2

3

4

5

6

8

8

11

13

13

14

2.4 Mechanisms to Realize Thread-Data Remapping

2.4.1 Reference Redirection

2.4.2 Data Layout Transformation

2.4.3 Mechanism Selection

2.5 Data Layout Transformation On the Fly .

2.5.1 Hiding Overhead through CPU-GPU Pipelining.

2.5.2 Overhead Minimization through LAM

2.6 Evaluation

2.6.1 Methodology

2.6.2 3D-LBM .

2.6.3 GAFORT

2.6.4 MarchingCubes .

2.6.5 Reduction . .

2.6.6 BlackScholes

2.6. 7 Summary of Experimental Results

2. 7 Related Work

2.8 Summary . .

16

16

17

18

19

20

22

25

26

28

29

30

32

33

34

35

35

3 A Unified Framework for Both Control and Memory Irregularities 37

3.1 Motivation 37

3.2 Problem Definition 43

3.3 A Framework of Program Level Transformations

3.3.1 Two Basic Transformation Mechanisms

3.3.2 Three Transformation Methods

3.3.2.1 Data Reordering

3.3.2.2 Job Swapping .

3.3.2.3 Hybrid Transformations .

3.3.2.4 Comparisons

ii

44

44

45

45

46

47

48

3.4 Determination of Desirable Data Layouts and Mappings 49

3.4.1 Irregular Memory References 49

3.4.1.1 Data Reordering 50

3.4.1.2 Job Swapping 52

3.4.2 Divergent Control Flows . 53

3.4.2.1 Reference Redirection 53

3.4.2.2 Hybrid Approach 54

3.4.3 Co-Existence of Irregularities 54

3.5 Adaptive Efficiency Control • 0 ••• 55

3.5.1 Dependence and Kernel Splitting 55

3.5.2 Approximation and Overlapping 56

3.5.3 Adaptive Control 57

3.6 G-Streamline Usage and Other Issues 61

3.6.1 Overview •• 0 ••• 0 • 0 • 61

3.6.2 Improved Sorting Efficiency 62

3.6.3 CPU Thread Affinity . 62

3.7 Evaluation 63

3.7.1 Results Overview . 65

3.7.2 Programs with Independent Loops 67

3.7.3 Programs with Loop-Carried Dependences . 69

3.7.4 Program with No Central Loop . 70

3.8 Related Work 70

3.9 Summary .. 72

4 Non-Uniform Cache Sharing Hierarchies 73

4.1 Overview 73

4.2 Experiment Design 76

4.2.1 Benchmarks . 76

iii

4.2.2 Factors

4.2.3 Measurement Schemes

4.3 Measurement and Findings

4.3.1 Sharing Versus Non-Sharing .

4.3.2 Comparisons Among Sharing Cases

4.3.3 Pipeline Programs

4.3.4 Effects of Thread Binding

4.4 Program-Level Transformation

4.4.1 Streamcluster

4.4.1.1 Transformation .

4.4.1.2 Performance

4.4.2 Blackscholes

4.4.3 Bodytrack

78

80

80

81

85

87

90

93

93

93

96

99

100

4.4.4 Ferret 101

4.5 Related Work 102

4.6 Summary . . 104

5 Cross-Input Adaptive Performance Tuning for GPUs 105

5.1 Motivation 105

5.2 Experiment Platform . 107

5.3 Challenges for Optimizing GPU Programs 109

5.4 Adaptive Optimization Framework 110

5.4.1 Overview 111

5.4.2 Stage 1: Heuristic-Based Empirical Search and Data Collection 112

5.4.2.1 Optimization Pragmas and G-ADAPT Compiler 112

5.4.2.2 Performance Calibrator and Optimization Agent

5.4.3 Stage 2: Pattern Recognition and Cross-Input Adaptation .

5.5 Evaluation

iv

114

115

116

5.5.1 Matrix-Vector Multiplication

5.5.2 Parallel Reduction

5.5.3 Matrix Transpose .

5.5.4 Other Benchmarks and Overall Results

5.6 Discussions .

5. 7 Related Work

5.8 Conclusion

6 Conclusion

References

VITA

v

117

119

120

120

122

123

124

125

128

138

To my dear family,

for their unsurpassed love and continuous support.

vi

ACKNOWLEDGEMENTS

The research in this dissertation would not have been possible without the support of

many people. First of all, I would like to thank my advisor Xipeng Shen for his selfless and

persistent guidance throughout my time in graduate school. His kindness, diligence, and

ability to think on his feet has made working with him a real pleasure.

I would like to thank my remaining committee members for their service and mentorship

- Phil Kearns, Denys Poshyvanyk, Weizhen Mao, and Mary Lou Soffa. I thank Dr. Phil

Kearns for his wise advice and especially for his sturdy support when I was facing difficulties

in changing my research area in the first few years of my PhD study. I thank Dr. Poshyvanyk

for being both my committee member and a great friend. I thank Dr. Weizhen Mao for

her thoughtful comments and feedback on the theoretical aspect of my work. I have known

Dr. Mary Lou Soffa on many occasions. She has been successful both as a researcher and

a woman. She has inspired me in all different ways. I am very fortunate to have her on

my committee as an external committee member and have her valuable feedback on my

dissertation work.

I am grateful to my colleagues from the CAPS group for their collaboration - Yunlian

Jiang, Ziyu Guo, Kai Tian, Zhijia Zhao, Mingzhou Zhou, Yufei Ding, Bo Wu and Fen

Mao. We have made a great team together. I am also very grateful to the departmental

staff Vanessa Godwin and Jacqulyn Johnson for their devoted administrative support. I

benefited from a good work-life balance in graduate school because of all my kind and funny

friends, in particular - Liuming Liu, Zhen Ren, Xin Ruan, Qian Si, Yufei Ding, Han Li, Bo

Dong, Ziyu Guo, Mingzhou Zhou and Zhang Xu.

Lastly, I would like to thank my family for their unconditional support over all these

years. I can't express how lucky I am to have them in my life. My parents, my husband

and my younger brother, have always been there for me and supporting every major de

cision I have made in my life. They are great people themselves - loving, understanding,

hardworking, kind, upbeat and honest. They are shining examples to me and I can never

learn enough from them.

vii

List of Tables

2.1 Benchmarks for divergence removal experiments . 27

2.2 Experimental results of 3D-LBM 29

2.3 Experimental results of GAFORT. 31

2.4 Experiment results of MarchingCubes 31

2.5 Experiment results of Reduction ... 32

3.1 Benchmarks for G-Streamline and dynamically determined optimization pa-

rameters . 64

3.2 Numbers of thread divergences and memory transactions on one GPU SM

reported by hardware performance counters

3.3 Breakdown of time for different memory transaction sizes

4.1 Benchmarks for non-uniform shared cache experiments . .

65

67

77

4.2 Dimensions covered in the measurement for shared cache experiments 78

4.3 Configuration of NUCA CMP machines 80

4.4 Maximal percentage of the performance differences caused by different bind-

ings of threads to a given set of cores . 87

4.5 Performance of ferret on the Intel machine with different thread placement

on cores. (S: pipeline stage)

4.6 Streamcluster with a different input

viii

89

97

5.1 Benchmarks for input adaptivity experiments on GPU 117

ix

List of Figures

2.1 A piece of code adapted from gafort, a program implementing a genetic al

gorithm. Both the "if" statement and the "for" loop may cause thread

divergence. (tid is the sequential number of the current thread.) 9

2.2 An abstract form of a GPU kernel containing conditional statements. . 14

2.3 Illustration of thread-data remapping for elimination of thread divergences.

The two types of circles represent two types of input data sets. Their differ

ences make threads in a warp diverge on a condition statement. (For ease of

illustration, warp size of 4 is used.) After the remapping, all the divergences

disappear. 15

2.4 An example illustrating the (simplified) use of CPU-GPU pipelining to hide

the overhead in thread-data remapping transformations. The code in the

bottom box is part of the G-Streamline library. 20

2.5 The approximation scheme, LAM (label-assign-move), for reducing the over-

head in data layout transformation.

2.6 Speedup with and without efficiency control.

X

26

34

3.1 Examples of dynamic irregularities (warp size=4; segment size=4). Graph (a)

shows that inferior mappings between threads and data locations cause more

memory transactions than necessary; graph (b) shows that inferior mappings

between threads and data values cause threads in the same warp diverge on

the condition. 38

3.2 Potential performance improvement when dynamic irregularities are elimi-

nated for applications running on an GPU (Tesla 1060).

3.3 Major components of G-Streamline.

3.4 Examples for illustrating the uses of data reordering and job swapping for

irregularity removal.

3.5 Using data relocation for job swapping faces some complexities.

3.6 Kernel splitting makes CPU-GPU pipelining remain feasible despite loop-

carried dependences.

3. 7 Dynamic adjustment for optimization ratio.

3.8 Speedup from thread-data remapping.

4.1 The running time of each program in the sharing case normalized to its

running time in the non-sharing case. The bars in a group from left to right

correspond to the cases of 2 threads on the simlarge input, 2 threads on the

native input, 4 threads on the simlarge input, and 4 threads on the native

input.

4.2 Comparisons of L2-cache accesses and misses for 2-thread cases on the Intel

machine. ("S" for cache-sharing cases; "NS" for non-cache-sharing cases;

"CM" £ h . · "CA" £ h) or cac e misses, or cac e accesses.

4.3 Read sharing for 2-thread cases on Intel. It is computed as the number of

read accesses to the L2-cache lines with a "shared" state, normalized by the

39

41

44

47

56

61

65

82

83

total number of L2-cache accesses. 84

xi

4.4 Temporal traces of the 12 cache miss rates on the Intel machine when 4

threads are placed on the same set of cores differently. 88

4.5 Box plot of 12-cache miss rates per thread on the Intel machine when different

thread-core assignments are used. (c1,c2,c3 refer to the top 3 configurations

in Table 4.5.)

4.6 Effects of thread-core binding on Intel and AMD machines. Every box shows

min, max and median(·) of the five runs for every configuration. TheY-axis

is the running time in the non-binding case normalized to the average time

90

in the binding case. 91

4. 7 Simplified pseudo-code illustrating the original and optimized versions of the

function pgain(} in streamcluster. It is assumed that two threads constitute

a sibling group that share cache.

4.8 Speedup by inter-thread, intra-thread, and combined transformations on the

94

Intel machine. Adjacent two threads share 12 cache. . . 0 0 0 . 97

4.9 The reduction of 12 cache miss rates and memory bus contention on the

Intel machine. In each bar group, the first two are when inter-thread trans

formation is applied to the original program, and the next two are when the

combined transformation for both intra-thread and inter-thread sharing is

applied. In each pair, the two bars respectively correspond to the cases when

the sibling threads of the inter-thread optimized version run on two cores

sharing or not sharing cache. . . . 0 0 0 . 0 98

4.10 The reduction of 12 cache misses of blackscholes, bodytrack and ferret due to

cache-sharing-aware transformation. The Intel machine is used. . . . 100

5.1 G-ADAPT: An adaptive optimization framework for GPU programs. 111

502 Performance of matrix-vector multiplication on two inputs when different

optimization decisions are used. LU: loop unrolling levels; THRD: number

of threads per block. The maximum unrolling level can only be JTHRD/4. 118

xii

5.3 The best values of the optimization parameters of mvMul are input-sensitive.

G-ADAPT addresses the influence and produces significant speedup com-

pared to the original program. . . . 119

5.4 Experimental results on reduction. 119

5.5 Experimental results on transpose. 120

5.6 The ranges of speedup brought by different optimization decisions. For each

program, the left bar shows the range of speedup (less than 1 means slow

down) if the worst decision is taken. The right bar shows the range of speedup

when the G-ADAPT's prediction is used. 121

xiii

Introduction

Today's parallel computing systems are imposing multi-fold challenges on programmers by

getting more diversified and complicated. Modern parallel architectures are equipped with

unprecedented parallelism and heterogeneity. Examples are GPGPUs (General Purpose

Graphic Processing Units) and Intel's MIC (Many Integrated Core) chips. Programmers

not only have to handle the complexities in choosing and learning different parallel pro

gramming languages, but also generate efficient code to harness the tremendous hardware

computing power. Not to mention that program inputs and execution environments make

the optimization parameters dynamic and unpredictable. Many existing algorithms, pro

gram analysis and development tools are designed for sequential programs or outdated

parallel programming models. In this dissertation, I have examined the existing paral

lel programming paradigms, identified the major challenges for producing efficient parallel

code, and developed programming system support for tackling these challenges.

They are three main performance challenges: divergent control flow problem that causes

under-utilization of processor cores for many-core GPGPUs(General Purpose Graphic Pro

cessing Units) with massive parallelism, irregular memory reference that increases unnec

essary memory accesses for SIMD architectures, and non-uniform cache hierarchies that

may create not only synergistic sharing but also resource contention, which is detrimental

to program efficiency on commodity multi-core processors. For the first two challenges,

1

this dissertation provides an extensive exploration of the causes and solutions, including

enhanced understanding for relations between thread and dataset mappings, program level

transformations based on two fundamental techniques - thread relocation and data relo

cation, a unified framework for applying the program transformations to address different

challenges, the theoretical analysis for optimality of the transformations, as well as runtime

system that provides adaptive efficiency control to manage the transformation overhead and

make the transformation adapt to different program inputs and phases. For the third chal

lenge, this dissertation presents the first systematic study on the influence of non-uniform

shared cache on contemporary parallel programs, reveals the mismatch between the soft

ware development and underlying cache sharing hierarchies, and further demonstrates it by

yielding significant speedup through novel cache sharing aware transformations. Sections

1.1, 1.2, 1.3 describe the three major challenges in details and the overview of solutions

proposed in this work.

1.1 Performance Impact of Divergent Control Flows

Conditional branches cause divergences in program control flows, which may result in seri

ous performance issues on massively parallel architectures equipped with Single Instruction

Multiple Data (SIMD) parallelism. On such an architecture, control divergence may force

many computing units to stay idle for a substantial time, throttling system throughput

by orders of magnitude. My research has addressed this problem by proposing two types

of program transformations for applications on a popular SIMD like architecture Graphic

Processing Units (GPUs) [74]. The first optimization is thread relocation, which reorga

nizes logical threads by reassigning their thread IDs to minimize the divergences among

their control flows. The second is data relocation, which switches the tasks of threads by

relocating data on memory without changing thread IDs and data reference indices. These

two optimizations are fundamental techniques for swapping jobs among threads so that the

control flow paths of threads converge within every SIMD group. Compared to previously

2

proposed hardware extensions, the software approaches are readily deployable and address

dynamic program behavior by adapting to different program inputs and phases. This work

is the first in a series of research efforts that addresses control flow divergence problem

on GPUs in software. Experiment results have demonstrated that these transformation

techniques reduce the amount of thread divergence significantly in many applications.

1.2 Handling Irregular Memory Reference Patterns

The efficiency of massively data parallel architectures such as GPGPUs is sensitive to dy

namic irregular memory references, which refer to the memory references whose access pat

terns remain unknown until execution time (e.g., A[P[i]J). Experiments have shown great

performance gains when these irregularities are removed. But it remains an open question

how to achieve those gains through software approaches. I present in this dissertation a

systematic exploration on this problem [76]. I discovered that the properties and solutions

to the irregular memory reference problem share similarities with that of the control flow

problem.

I explored the inherent properties of both of them, including their interactions, their

relations with program data and threads, the computational complexities in removing them,

and heuristics-based algorithms for their removal through data reordering, job swapping,

and hybrid transformations. Based on these findings, I developed a framework, named G

Streamline, as a unified software solution to dynamic irregularities in GPU computing. It

treats both types of irregularities at the same time in a holistic fashion, maximizing the

whole-program performance by resolving conflicts among optimizations. Its optimization

overhead is largely transparent to GPU kernel executions, preserving at least the efficiency of

the original un-transformed GPU application. More importantly, it is robust to the presence

of various complexities in GPU applications. Our experiments results demonstrate that G

Streamline is effective in reducing both types of dynamic irregularities and is capable of

producing significant performance improvements for a variety of applications.

3

1.3 Matching Non-Uniform Cache Sharing Hierarchy

As the number of cores increases in a single chip, the sharing of the memory hierarchy

becomes deeper, more heterogeneous and more complex. This causes cache contention,

increases conflicts and meanwhile can also increase synergistic sharing. A comprehensive

understanding on the implication of this sharing behavior is needed. Many studies con

centrate on the interaction of co-running programs and the solutions are mostly in the

areas of architecture and operation systems. In my work presented in [75], I conducted

the first extensive investigation of the influence of shared cache on contemporary multi

threaded applications, with many important factors systematically examined, including

threads scheduling schemes, parallelization model, architecture and so on. For threads in a

multithreaded application, our study shows that whether a cache is shared exhibits surpris

ingly minor effects on the performance of the application. After identifying the reasons, I

develop shared-cache-aware program transformations, which produces asymmetric relations

among threads to match the ~on-uniform cache sharing in modern multi-core processors. I

further enhanced the depth of the study through an empirical examination of the relations

between the intra-thread sharing (private cache reuse) and inter-thread sharing (shared

cache reuse) using more case studies with different memory behaviors [77].

Other work One important trend in computing is the development of heterogeneous sys

tems, exemplified by the integrations of general-purpose cores with special-purpose proces

sors, including GPU, FPGA, DSP.The heterogeneity in modern computing systems brings

new opportunities but also the new challenges for application development and optimiza

tion. In my work [76], [72J, I explored the creation of a whole system synergy by making

multicore CPU and GPU work cooperatively.

I proposed a pipeline scheme, which assembles different types of processors together

into a pipeline so that one can optimize for the computations of another in an asynchronous

and transparent manner. I developed kernel splitting to circumvent the issues caused by

data dependences, and created an adaptive controller to help tailor the configurations of the

4

pipeline on the fly to best suit the need of the current execution. Experiments show that the

pipeline scheme provides an effective way to maximize the throughput of a heterogeneous

system.

Another urgent issue in modern parallel computing is the adaptivity to runtime environ

ments and program inputs. As mentioned earlier, the optimization parameters vary when

the program input and environment changes (like architecture and co-running processes)

and the optimization space explodes because of the large number of parameters including

both configuration parameters (like number of threads) and program parameters (like loop

unrolling level). I developed a framework called G-adapt that helps train and predict best

optimization parameter according to program inputs by machine learning techniques.

1.4 Dissertation Contributions

First of all, this dissertation presents an unified overview of the two types of problems

in GPU computing - the control divergence and irregular memory reference. These two

problems are similar in that they are both caused by the differences among threads in the

same SIMD thread group. The different executions paths caused by control flow statements

may lead to severe underutilization of cores within every SIMD processor. The differences

in the memory segment which every thread's data access fall into within a SIMD thread

group lead to more memory transactions than necessary. The relations among different

threads either in control or memory pattern are extremely important in today's parallel

system with respect to computing efficiency. In this dissertation, I propose a program level

transformation framework to address these two types of seemingly different problems based

on two fundamental techniques - thread relocation and data relocation. Thread relocation

and data relocation can be further combined to obtain the benefits and mitigate the side

effects of both transformations. The second contribution made by this dissertation is the

exploration of the influence of non-uniform cache on modern parallel program development.

The results of my study indicate that there is great potential in exploiting the non-uniform

5

synergistic cache sharing through program transformations that combine thread scheduling

and data reordering. Likewise, the implication is that the relations among threads that

run on processor cores sharing cache are extremely important. The difference from the first

contribution is that the thread group here are the threads that share cache, while the thread

group mentioned above are threads that run on every SIMD processor.

The third contribution made by this dissertation is enhanced parallel program adaptivity

to architecture, runtime environment and application inputs. I designed and implemented

a CPU /GPU pipelining runtime system that dynamically monitors and controls program

transformation overhead through asynchronous CPU /GPU task scheduling, termination

and coordination. This CPU/GPU pipelining runtime system ensures that the transforma

tion overhead is transparent and that the transformation level can be adjusted to strike a

balance between its overhead and benefits. Additionally, I developed an input-adaptive per

formance tuning framework for GPGPU programs with my colleague Yixun Liu. It learns

the pattern between program inputs and best program transformation parameters through

machine-learning techniques, and provide the optimally transformed program given a new

input.

1.5 Dissertation Layout

The layout of this dissertation is as follows. Chapter 2 focuses on the first challenge - the

control divergence in G PU programs, and elaborates my explorations in removing control

divergence through software techniques. Chapter 3 focuses on the second challenge - the

irregular memory reference problems. It first reveals the connections between the control

divergence and memory reference problems - the same reason of inappropriate thread

data mapping. I refer to these two types of problems as irregularities in GPU programs,

and proposed a unified framework of solutions based on two fundamental program level

transformations: thread relocation and data relocation. Chapter 4 discusses implication of

non-uniform cache sharing and demonstrates the potential of cache sharing aware program

6

transformations. Chapter 5 presents my work on cross-input adaptive performance tuning

for G PU programs.

7

Divergent Controls Flows

2.1 Motivation

Because of their remarkable computing power and cost efficiency, GPUs (Graphics Process

ing Units) have emerged as a kind of influencial platform for high performance comput-

ing [6, 19,45,50,51,56].

However, as GPUs are specially designed for massive data-parallel computing, their

performance is subject to the presence of condition statements in a CPU application. When

a CPU application runs, a group of threads (called a thread warp1) are deployed in each

CPU SM (streaming multiprocessor) so that they can run concurrently to maximize the

usage of the computing power. Normally, the threads in a warp run in a SIMD (Single

Instruction Multiple Data) fashion. However, on a conditional branch where the threads

diverge in which path to take, the threads taking different paths have to run serially. This

phenomenon is called thread divergence.

Thread divergence often causes serious performance degradations. Figure 2.1 shows a

piece of code adapted from a program named gafort that performing a genetic algorithm.

Suppose the first 32 elements in r1 are all even numbers except r1[13]. When the first warp

encounters the "if" statement in the code, only thread 13 passes through the check and

1This paper uses NVIDIA CUDA terminology and programming model for discussions. A warp is assumed
to contain 32 GPU threads.

8

if (r1 (tid)%2){
.. ... II compute1

icross = sqrt (r2[tid));
for (n= icross; n < nchrome; n++){

...... // compute2

Figure 2.1: A piece of code adapted from gafort, a program implementing a genetic algo
rithm. Both the "if" statement and the "for" loop may cause thread divergence. (tid is the
sequential number of the current thread.)

conducts computel, while all the other 31 threads are idle and waiting. Note that because

the warp is not completely idle, no other warps are allowed to run on that SM during that

time. So at most 1/32 computing power of the SM is being used. The similar problem

exists on the "for" loop in Figure 2.1. Suppose that the first 32 elements in r2 are all

as large as nchrome except that r2[4] is 0; then all the 31 threads have to stay idle and

wait until thread 4 finishes its nchrome (which could be very large) iterations of compute2,

causing substantial waste of computing power. In reality, we observe up to 1.47 speedup

when thread divergences are removed (as shown in Section 5.5), which echos the potential

observed in previous studies [11, 24].

As a side effect of the architectural support of GPUs for massive data parallelism, this

divergence problem exists in virtually all types and generations of modern GPUs. It impairs

the adoption of GPU for many applications that contain non-trivial condition statements.

There have been limited solutions proposed, among which, some [11] aim at reducing register

pressure incurred by thread divergences rather than the divergences themselves, some [24]

tackle divergences directly but rely on special hardware support.

In this chapter, we propose a pure software solution via runtime thread-data remapping.

The basic scheme is simple: to switch the data sets that the GPU threads work on so that

all the threads in a warp would take the same path on a conditional branch. Consider

the "if" statement in the example mentioned earlier in Figure 2.1. Suppose the other (say

992) elements of r1 all have the similar value pattern as the first 32 elements have-that is,

in every 32 elements, only one value is odd-we can remove all the thread divergences by

9

remapping the threads to data so that the first 992 threads all work on the data with small

r1 values, and only the final 32 threads work on the large ones. This strategy, apparently,

works with the "for" loop as well in a similar manner.

A series of issues must be solved before thread-data remapping can be feasibly applied to

real GPU applications. The first is the determination of a desirable thread-data mapping.

In a real GPU application, data accesses may be irregular or have complex indexing expres

sions. The thread-data remapping may cause side effects-such as, altering original regular

memory reference patterns-and hurt other performance factors (e.g., memory accesses as

detailed in Section 2.4).

The second issue is on what mechanism to use to realize the thread-data remapping.

There are two options. One is through reference redirection (also called indirect accessing).

For the "if" example in Figure 2.1, we may create an index array I[] and change rl[tid]

to r1[I[tid]]. Appropriately setting the values in I[] will produce a desired thread-data

mapping. The second option is through data layout transformation (also called data pack

ing). For the "if" example again, if we keep the kernel unchanged but relocate the elements

in r1 so that small values are all at the front of r1 and large ones all at the end, we can

achieve the same mapping as the redirection array produces. It is necessary to explore both

options to determine their limitations, effectiveness, and how they should be implemented

and applied safely.

The final but also the most difficult issue is on the conflict between the large remapping

overhead and the need for the remapping to happen on the fly. Because in most cases the

values of the data set that a condition statement depends on are not known until run time,

the thread-data remapping must happen on the fly. However, the remapping, through either

redirection or layout transformation, typically causes significant overhead that may easily

outweigh the remapping benefits. It is hence crucial to minimize or hide the overhead, as

well as to protect the basic efficiency of the GPU application from getting jeopardized by

the remapping process.

In this work, we develop a set of techniques to address these issues, making run-time

10

thread-data remapping feasible for GPU computing. Our description starts with an ab

stract form of GPU applications and the concept of thread-data remapping (Section 2.3).

In Section 2.4, we discuss the two mechanisms, reference redirection and data layout trans

formation, for the realization of thread-data remapping, with their properties, constraints,

and suitable scenarios uncovered.

In Section 3.5, we present two techniques that make run-time remapping possible for

GPU computing by effectively hiding and reducing remapping overhead. The first technique

is a CPU-GPU pipelining scheme, which allows the remapping-related operations to overlap

with GPU kernels execution. Its effectiveness in hiding remapping overhead comes from its

exploitation of the massive data-parallelism in GPU applications and the independence

between CPU and GPU memory systems. The second technique is a linear-time LAM

(label-assign-move) scheme, which minimizes the number of data movements required for

the generation of a target thread-data mapping. Together, the two techniques hide virtually

all remapping overhead for most applications and turn costly remapping affordable for

runtime deployment.

Section 5.5 reports up to 1.47 speedup on a set of GPU applications, demonstrating the

effectiveness of the techniques for eliminating thread divergences and streamlining GPU

computing on the fly.

2.2 GPU Architecture and CUDA Programming Model

A GPU chip consists of several multi-core processor, each of which is a SIMD (Single

Instruction Multiple Data) engine. In NVIDIA terminology, it is referred to as Streaming

Multiprocessor (SM). For the rest of the dissertation, we use NVIDIA terminology to explain

the concepts and describe the techniques. Every streaming multiprocessor typically consists

of 8, 16, or 32 cores. There is one instruction issuing unit per SM. The implication is that

every core has to execute the same instruction at the same time. Different SMs can execute

different instructions at one time. There are two types of memory on a GPU: the on-chip

11

memory and the off-chip memory. Based on the types of usages, there are shared memory,

constant memory, texture memory, and etc. On-chip memory can be accessed much faster

than off-chip memory, but has small capacity. Shared memory is a type of on-chip memory

that works like scratch pad memory. Users have to manually read, write and maintain

the consistency. Constant memory is read-only off-chip memory that can be automatically

cached by hardware. Texture memory is also off-chip memory, the data in which can be

cached by hardware. Besides, it has two-dimensional locality, which means data adjacent

in both rows and columns can be accessed together very fast. Off-chip memory has larger

capacity, but larger access. It is referred to as global memory. GPUs also have caches.

There is a read-coherent private Ll cache for every SM. All NVIDIA general purpose GPU

cards, from Fermi architecture and later, have a fully coherent L2 cache shared by all SMs.

CUDA (Compute Unified Device Architecture) is a parallel computing platform and

programming model, which includes language extensions to C/C++, a runtime and driver

level API access to NVIDIA GPUs. Besides, CUDA has a mature ecosystem with sup

porting libraries and development tools provided and used by a large community of CUDA

programmers. The work in this dissertation is based on CUDA since it is efficient and mean

while the leading GPU programming mode for general purpose GPUs. Writing a CUDA

program is like writing a C/C++ program. With CUDA language extensions, users specify

which functions should run on GPUs. These functions are referred to as kernel functions.

Every kernel function is executed by many GPU threads. These threads that execute the

same kernel are organized into a grid. A grid of threads are further divided into many

blocks. Threads within a block can communicate using shared memory and threads across

blocks can only communicate using global memory. Threads within a block can also be

synchronized using hardware support. Threads across blocks can be implemented using

software approaches. The number of threads to execute the function is much larger than

the total number of processing units and therefore they run simultaneously. A GPU card

has very large register file and they are partitioned into register banks dedicated for every

thread. The shared memory, if used, is partitioned to serve every thread as well. When a

12

grid of threads are launched, the runtime starts allocating resources such as registers and

shared memory for as many active threads as possible. The active threads will start running

on the SMs until they have reached the end of the kernel function and another batch of

threads will be loaded in. The number of active threads needs to be larger than or equal to

the number of processor cores to keep all of them utilized. A block of threads are further

partitioned into warps. A warp is the minimal execution and scheduling unit. When one

warp of threads are waiting for memory accesses to finish, another warp can be switched in

to fill the instruction pipeline, which can be analogical to very lightweight context switch.

2.3 CUDA Kernels and Thread-Data Remapping

This section first outlines an abstract form for GPU kernels that contain condition state-

ments, based on which, it introduces the concept of thread-data remapping.

2.3.1 An Abstract Form of GPU Kernels

As mentioned in Section 2.2, GPU application written in CUDA consists of some CPU code

and GPU code. The GPU part includes one or more functions; each of them is called a CPU

kernel. All applications start from the "main" function in the CPU code. When the CPU

launches a GPU kernel, a number of GPU threads are created with each having a unique

sequential number, called thread ID and denoted as tid in this paper2 Upon its creation,

every thread starts an instance of the GPU kernel independently. Although they execute

the same kernel with the same parameter values, they may behave differently and access

different data. The differences usually stem from the uses of tid inside the GPU kernel.

Figure 2.2 outlines an abstract form for GPU kernels containing condition statements.

We omit the parts irrelevant to thread divergence. We use arrays to represent container

objects in GPU kernels as they are the most commonly used data structures. The input

arrays are those arrays whose values are passed from CPU to GPU at the invocation of the
2 More precisely, CUDA uses several builtin variables to store the index of the current thread block and

the index of the current thread in its block. Combined together, they form the tid, a unique identity for the
current thread.

13

f Start

Input array set: S,;(t. lo}

Condition array set: S.=(8,, ... , S..)

Output array set: So={ o, ... , Oo)

Figure 2.2: An abstract form of a GPU kernel containing conditional statements.

kernel. Note, in this abstract form, all thread IDs together are viewed as a special input

array as I DArray[tid] = tid. This view is important for the applicability of thread-data

remapping (as Section 2.4.2 will show).

Each condition array corresponds to one instance of a condition statement in the kernel,

storing only binary values: Bi[tid] = 1 means that thread tid goes through the check of

the ith condition; Bi[tid] = 0 means otherwise. A loop or a condition with more than two

branches are viewed as a series of such binary conditions. The denotation fi() represents the

computation that produces Bi from the input arrays. The output arrays store the ultimate

computation results.

Additionally, we introduce the concept of path vectors. A path vector of a thread is

S8 [tid] =< BI[tid], B2 [tid], · .. , BK[tid] > .

It summarizes the entire path taken by thread tid. It is easy to see that a warp diverges if

and only if there exist two threads in the warp whose path vectors differ. Another important

concept is the input set of a thread. It refers to the set of elements in all the input arrays

that are accessed by a thread, denoted as S1[tid].

2.3.2 Concept of Thread-Data Remapping

It is important to note that the input set of a thread completely decides how that thread

behaves in a given kernel, hence deciding the path vector of that thread. The implication

14

Figure 2.3: Illustration of thread-data remapping for elimination of thread divergences. The
two types of circles represent two types of input data sets. Their differences make threads
in a warp diverge on a condition statement. (For ease of illustration, warp size of 4 is used.)
After the remapping, all the divergences disappear.

is that, if after a remapping, the ith thread maps to the original S1[j] (i =/= j), then the new

value of S B [i] would be the same as the original value of S B [j]. This is the basic rationale

for using thread-data remapping to remove thread divergences. If we view the values of the

path vector produced by an input set as the color of that input set, there is no divergence

if and only if all threads in a warp are mapped to the input sets of the same color. So the

thread-data remapping in this work is essentially to find an appropriate mapping between

threads and input sets, as Figure 2.3 illustrates.

Thread divergences may come from two kinds of sources. The first is the differences in

loop trip-counts (i.e. numbers of iterations), as illustrated by the "for" loop in Figure 2.1.

Clearly, the time for a thread warp to finish the execution of the loop is determined by

the largest trip-counts of the loop in the executions by all the threads in that warp. Each

iteration of a loop typically takes a similar amount of time to run. Hence, the total time

that the loop costs all the warps is determined by

w
T = L maxkEwarp;(itk),

i=l

where W is the total number of warps, itk is the trip-count of the loop executed by the kth

thread. Minimizing thread divergences hence leads to the minimization of T. Our basic

strategy is to create a thread-data mapping so that the trip-counts of the loop executed by

the threads form a sorted sequence-that is, after the remapping, i < j => iti ::; itj.

Thread divergence may also come from non-loop condition statements, as illstrated by

the "if" example in Figure 2.1. In this case, the kernel contains no diverging loops but K

(K > 0) other types of condition statements. Each thread hence has a K-dimensional path

vector. From now on, we say two threads are of the same type if their path vectors are

equal. The basic remapping strategy in this case is to greedily pack threads of the same

15

type together.

Although the remapping strategies in both cases are straightforward, realizing them

safely, efficiently, and beneficially requires solutions to a series of issues.

2.4 Mechanisms to Realize Thread-Data Remapping

There are two ways to realize a thread-data remapping: reference redirection and data layout

transformation. Although they have both been studied in many CPU program optimizations

(e.g., [14, 17]), their applications in GPUs appear to face some new complexities. This

section first describes the implementation and applicability of each of the two remapping

approaches, and then discusses their respective strengths and weaknesses.

2.4.1 Reference Redirection

Reference redirection creates an index array, denoted as D[], to generate a new thread-data

mapping. If a new mapping requires thread i map to the original input data set S1 [j], then

D(i] = j. This creation step is put into the CPU code before the invocation of the GPU

kernel (actually in a pipelining fashion as detailed in Section 3.5). The index array D is

passed to the GPU kernel at its invocation.

The transformation to the GPU kernel is simple. At the beginning of the kernel, a

statement like "_..newtid = D[tid]" is inserted, where __ newtid is a new local variable3 . The

transformation then replaces all occurrences of tid in the kernel with __ newtid.

The transformation is applicable to kernels that contain no dependences across threads.

It can be proved that in this case, the transformed program produces the same output as

the original program does. The intuition of the proof is simple: After the transformation,

the computation and data accesses in all kernel instances remain the same as before, even

though those kernel instances are executed by different threads. It is not hard to see that

the transformation can also apply to the cases where a kernel consists of multiple sections

3 Because CUDA uses several builtin variables for thread indexing, in the actual implementation, a new
local variable is created for each of them, and their values are derived from the index array D[].

16

separated by barriers and inter-thread dependences exist only across sections but not within

a section 4 .

2.4.2 Data Layout Transformation

The second mechanism is data layout transformation. If the new mapping requires thread

i map to the original input set Sf[j], in this transformation, the content of Sf[j] is copied

to the corresponding locations in Sf[i] before the invocation of the GPU kernel (again in

a pipelining fashion, shown in Section 3.5). For instance, suppose in the original program,

threads i,j, k map to ft[i], Il[j], and ft[k] respectively, but the new mapping requires these

threads process Jl[j], JI[k], ft[i] respectively. The transformation creates a new array If

with J~[i] = II[j], Jf[j] = ft[k], and Jf[k] = ft[i], and then replaces It with If at the

invocation of the GPU kernel. After the invocation of the GPU kernel, a restoration step

is sometimes necessary, in which, the elements in the output arrays are reordered so that

they are consistent with what the original program produces.

For the transformation to be safe, we require the GPU kernel meet two conditions:

1) The input sets of two arbitrary GPU threads have no overlap-that is, Sf [i] nSf [j] =

0 (i =f. j; 0 < i, j < N). And no two threads write to a common memory location.

2) For an arbitrary input data element accessed by thread i, there must be a counterpart

in the input data set of thread j. Specifically, if Ix[f(i)] E Sf[i], where f(i) represents the

relation between the index of the data element and the thread ID, then Ix[f(j)] E Sf[j]

(0 < i,j < N).

These two conditions ensure that the data movements cause no mistaken data overwrit-

ing. Fortunately, many GPU programs satisfy such conditions because of their data-level

parallelism and simple dependences among threads.

Theoretically speaking, there is another condition to meet: The only effect of the thread

4 In CUDA, since barriers work only for threads within a block (containing many warps), in the cases
with barriers, the remapping transformation applies inside each thread block.

17

ID, tid, on the kernel execution is on deciding which data elements of the input and output

arrays a thread references. The thread ID tid must not involve directly in value calculation.

For example,

OI[tid] = Il[tid * 2] + /2[tid]

is allowed, but the following one is not:

01 [tid] = /1 [tid* 2] +tid

This condition is necessary for the correctness of the computation results. To see this

point, one may consider the case where h [2] = -1 and h [4] = 1 for the example statement

0 1 [tid] = It [tid* 2] +tid. Suppose the remapping requires thread 1 map to h [4] and thread

2 map to It [2]. After the data layout transformation, the execution of the example would

produce 01[1] = 2 and 01[2] = 1, which differ from the original output OI[l] = 0 and

0 1 [2] = 3. Apparently, the error cannot be corrected by the operations (i.e. reverse data

movements) in the subsequent restoration step.

Fortunately, this third condition is easy to meet through a preprocessing step. In that

step, an assistant array I DArray is created before the GPU kernel invocation; its elements

are set as I DArray[tid] = tid. The array is then passed to the GPU kernel at the kernel's

invocation as an extra input array. Inside the kernel, all references to tid are replaced with

I DArray[tid]. This transformation is demonstrated in the benchmark named reduction in

Section 5.5.

For efficiency, we use asynchronous memory copy for data transfers between the host and

GPU. In some kernels, the condition arrays determine the loop trip-counts but meanwhile

are modified inside the loop body. This work does not handle such cases.

2.4.3 Mechanism Selection

The two mechanisms have their respective strengths and weaknesses. The applicability

of data layout transformation is subject to some conditions as described in the previous

section. In addition, the transformation usually causes larger transformation overhead that

18

the alternative because of the data movements and restoration it requires (although this

problem can be alleviated as to be shown in Section 3.5).

On the other hand, data layout transformation maintains certain memory reference

patterns of the original GPU kernel, whereas, reference redirection does not always do so.

In GPU, memory reference patterns strongly affect the effective memory bandwidth. For

instance, in NVIDIA G200, if the words accessed by a warp fall into n different segments

of global memory (a segment contains 32, 64, or 128 consecutvie bytes), the GPU needs

to conduct n memory transactions for those accesses. (When the threads in a warp access

memory locations in a small range, all the references by that warp may take only one

transaction; such references are termed coalesced memory references.) So the changes that

reference redirection causes to memory reference patterns may result in significant increases

in the number of memory transactions for a kernel, and hence offset the benefits brought

by the reduction of thread divergences.

In our implementation, the principle for the selection of these two mechanisms is as

follows. If the reference redirection may be proved to hurt no memory reference efficiency,

it is selected. Such cases may happen in two scenarios. One is that the kernel uses texture

memory rather than global memory for data references: Texture memory tolerates memory

pattern changes better than global memory for its use of cache. The other is that the redi

rection applies to calculations but not data references in the kernel. In other situations, the

alternative mechanism, data layout transformation, is selected if it is applicable. Section 5.5

demonstrates the selection on different benchmarks.

2.5 Data Layout Transformation On the Fly

Because the values that a condition statement produces typically depend on the input

data sets of the GPU application, thread-data remapping often needs to be applied during

run time. However, the operations involved in the remapping are expensive. Without a

careful design, the overhead may easily outweigh the benefits brought by the reduction

19

pDau = &dau;
for (i=O; i<N/S; i++) (...

p_asynRemop (pOarD+A *S); II remap by assist CPU thread l
if (cpucpyDone[i]) Remapping

fl>ukrnel_zs_opr <« »> (pDato, ...); (gs_asynRemop &

, :;.~~~-~f+.!;:>.~:::.~::.~~-~:-~:.::.·~~---······-·····-, ,._chec:~~)
i procedure p_checi<Remop OJ (i Kernel Exec.

remap data chunk A

remap daa chunk A+ I

remap data chunk A+2

remap daa chunk A+ 3

f-~·
ifQ<A) return; II no remappint forth~ iteration l DOD---~
while ((!,puDone[j- I]) AND (!cpuop!Done[i-A})); j (gpul<ernel on GPU) ~ • • •
if (cpuoptDone[i-A}){ ! 0 2 4 5 6

p_do!DCpy (j-A); II asynchronous copy !0 GPU i start
, whae ((lfPuDone[j- I]) AND (!cpucpyDone[i-A])); i

t.~.. .. ~---············-····-·-··-·---··············--···························-····················-j
iterations

(a) CPU part of an example program with (b) Pipeline when the depth A is 3
G-Streamline code (italic) inserted.

Figure 2.4: An example illustrating the (simplified) use of CPU-GPU pipelining to hide the
overhead in thread-data remapping transformations. The code in the bottom box is part of
the G-Streamline library.

of thread divergences. This section describes how we enable efficient runtime thread-data

remapping through the use of CPU-GPU pipelining and a linear-time LAM scheme to hide

and minimize remapping overhead.

2.5.1 Hiding Overhead through CPU-GPU Pipelining

The basic idea of the CPU-GPU pipelining is to make transformations happen asyn

chronously on CPU when GPU kernels are running. We first explain how the pipelining

works in a setting where the main body of the original program is a loop. Each iteration of

the loop invokes a G PU kernel to process one chunk of data; no dependences exist across

loop iterations. This is a typical setting in real GPU applications that deal with a large

amount of data.

Figure 2.4 shows an example use of the CPU-GPU pipelining. The CPU part of the

original program is in normal font in Figure 2.4 (a). Each iteration of its central loop

invokes gpuKernel to make the GPU process one chunk of the data. The italic-font lines are

inserted code to enable the pipelined thread-data remapping. All functions with the prefix

"gs_" are part of the G-Streamline library. Consider that the execution of the ith iteration

of the loop. At the invocation of "gs_asynRemap ()", the main CPU thread wakes up an

assistant CPU thread. While the assistant thread does thread-data remapping for the chunk

20

of data that is going to be used in iteration (i + 6.), the main thread moves on to process

the ith chunk of data. It first checks whether the G-Streamline transformation (started in

the (i- 6.)th iteration) for the current iteration is already done. If so (i.e., cpucpyDonefi}

is true), it invokes the optimized GPU kernel; otherwise, it uses the original kernel. While

the GPU executes the kernel, the main CPU thread moves on to "gs_checkRemap (i + 1)"

(pseudo code in the box) to copy the transformed (i+ 1)th chunk of data from host to GPU.

This copying is conditional: The first while loop in "gs_checkRemap ()" ensures that the

copying starts only if the transformation completes before the ith GPU kernel invocation

finishes. The second "while" loop ensures that the main thread moves on normally without

waiting for the data copying to finish if the ith GPU kernel invocation has completed. These

two "while" loops together guarantee that the transformation and associated data copying

cause no delay to the program execution even in the worst case.

The status arrays, gpuDone, cpuoptDone, and cpucpyDone in Figure 2.4, are conceptual.

The "cudastreamquery" in CUDA API is actually used for checking the GPU kernel status.

It is worth noting that the presence of such loop structures is not mandatory for the

pipelining scheme to work. Consider a program containing two phases of computation,

whose second phase is a GPU kernel with thread divergences. If the divergences do not

depend on the computation in the first phase, the remapping function for the second kernel

may be invoked before the first phase so that the remapping can overlap with the first phase

execution.

On the other hand, a common pattern in many GPU programs is that each thread works

on a separate set of data. Inter-thread communications exist only within a block of threads;

no global synchronizations are allowed in GPU programs. So even if there is no such outer

loop in the original GPU program, it is often easy to partition data to be processed into

chunks, and create such a loop structure. We will see more discussions about this in Section

3.5.1.

Note that we only use Figure 2.4 to illustrate the intuitive idea of CPU-GPU pipelining

approach. The actual implementation is more complicated and other factors have been

21

taken into consideration. For example, in addition to copying the transformation results

back to GPU, we may have to copy data from GPU to CPU so that the data arrays to be

transformed are up to date if they have been modified in GPU memory. This also makes the

overhead control more complicated since we have to monitor the pipelining system status

more frequently at the boundaries of data transferring and data transformation. On the

other hand, the best number of CPU assistant threads depends on the number CPU cores.

If ~ = 1, then the best number of threads to be created should equal to the total number

of CPU cores minus 1. If~= the number of CPU cores -1, then we can create one thread

at one time. One CPU core is reserved for the main thread to dispatch GPU tasks and

monitor the pipelining system. Since modern CPU processors are equipped with more than

one core, this job assigning policy with respect to thread affinity is easy to implement and

quite efficient. In both cases, the ultimate purpose is to fully utilize the CPU resources to

reduce the total CPU transformation time.

To the best of our knowledge, we are not aware of previous uses of such CPU-GPU

pipelining for GPU program optimizations. The pipelining scheme exploits two distinctive

features of GPU computing: the presence of massive data-parallelism as we have mentioned

earlier, and the independence of the memory systems that CPUs and GPUs work on. The

second feature is vital for the data transformations to proceed without interfering the normal

execution of the GPU kernel.

The CPU-GPU pipelining scheme trades certain amount of CPU resource for the en

hancement of GPU computing efficiency. The usage of the extra CPU resource is not a

concern for most GPU applications because during the execution of their GPU kernels,

CPUs often remain virtually idle.

2.5.2 Overhead Minimization through LAM

Even though the CPU-GPU pipelining scheme helps overlap the remapping process with

computation, it is still important to minimize the overhead of the remapping transforma

tions. Large overhead leads to a deeper pipeline, which in turn causes two consequences.

22

First, the warm-up stage of the pipeline is long, leaving many initial iterations of a loop

unoptimized. Second, many transformation threads must run concurrently, resulting in a

large burden to the host system. Further, increasing the pipeline depth cannot always hide

the entire transformation overhead. When the number of transformation threads is so large

that the capacity of CPU or memory bus is saturated, increasing the pipeline depth can

only prolong the transformation time.

As mentioned earlier, between the two mechanisms for realizing thread-data remapping,

data layout transformation usually incurs more transformation overhead. This sub-section

hence concentrates on overhead reduction for data layout transformation.

High-Level Design We develop an approximation algorithm to save transformation over

head. It aims at striking a good tradeoff between the transformation overhead and the

quality of the resulting thread-data mapping. The rationale is that sometimes, sacrificing

the optimality of the resulting divergences a little may significantly reduce both the time

for layout computation and the number of required data movements.

The developed scheme is named LAM (label-assign-move). Figure 2.5 outlines the al

gorithm. For easy explanation, the following description assumes that the kernel contains

only one condition statement. It is a loop, which has data[tid] iterations in the execution

of thread tid. At the end of this section, we discuss the application of the algorithm in a

general setting.

The high-level design of LAM is that it partitions the possible values in data into a

number of classes, and then constructs a data layout so that most warp segments5 are

pure--that is, containing elements of the same class. To avoid unnecessary data movements,

the scheme first uses a class ID to label each warp segment of the original data array. The

elements in a warp segment that belong to its labeled class won't be moved during the

construction of the new data layout. By ignoring the differences within a class and avoiding

unnecessary movements, LAM may save significant transformation overhead.

5 A warp segment is a segment of data mapping to a thread warp.

23

Detailed Algorithm Figure 2.5 outlines the algorithm of LAM. LAM includes three

steps as suggested by its name. In the "label" step, it partitions the value range of array

data toR sub-ranges, represented by ri (i = 1, 2, · · · , R). Each element in data must belong

to one sub-range (we say that the sub-range covers that element). There are two attributes

associated with a sub-range, stored in r;.quota and r;.toFill. Let ni represent the number

of elements in data covered by ri. The algorithm sets r; .quota to l nd warpSize J initially,

indicating the largest number of warps that can be entirely covered by r;. The "label"

step examines each warp segment in data. Let rmax be the sub-range with the largest

coverage for a warp segment; the algorithm labels that warp segment with segmax· Suppose

an element in that warp segment a is not covered by r;, the algorithm puts the location

of a into the array r;.toFill, indicating that this location should be filled with some other

element of data that is covered by r;. An exception occurs when the quota of r; is used up,

when that warp segment is labeled as "mixed".

The "assign" step creates an array destLoc (initial values are all zeros) of the size of

data to store the desired destination of every element in data. It includes two sub-steps. It

examines every location in the toFill array of every range first, because the data elements

in those locations must move. Let data[i] be one of such elements, and l be the value range

data[i] falls into. Then, destLoc[i] is set to a location stored in r[l].toFill, and the algorithm

marks that location as "taken". An exception happens when all locations in r[l].toFill have

been taken. In that case, the algorithm puts i into an array toMix, indicating that data[i]

needs to be later moved into a to-be-mixed warp segment; the exact destination is yet to

be determined. At the end of this sub-step, some locations in some toFill arrays may not

be taken yet. The second sub-step checks every element in the "mixed" warp segments to

see which can be used to fill those remaining openings. As soon as a location in "mixed"

warp segments becomes vacant, it is assigned as the destination of an element in the toMix

array.

When the "label" step finishes, the value of destLoc[i] is the desired destination for

data[i] if destLoc[i] is not zero. Otherwise, data[i] needs no movements. The final step,

24

"move", simply copies the elements of data to dataCopy accordingly.

Discussions The description of LAM assumes that the kernel contains only one loop

condition statement. If there are more condition statements, the algorithm works in a

similar way. The only change is on how the R classes are defined: One option is to consider

the path vector of a thread as one point in a K -dimensional space, and define the R classes

by clustering the points to R groups.

Divergences on different statements may cause different influence on the overall perfor

mance. We may incorporate such differences into LAM by using weighted distances during

the clustering process, with weights as the degree of performance influence.

The use of quota and the labeling process in LAM ensure that using LAM, every data

element in the new layout must have one and only one counterpart in the original layout.

This property determines the correctness of the transformation scheme.

A key parameter in LAM is R. The larger it is, the better the resulting mapping is,

in terms of eliminated divergences. But meanwhile, more overhead will be incurred by the

transformation. In our experiments, we set it to 10. A desriable scheme is to dynamically

determine its appropriate value through runtime adaptation, which may happen coopera

tively with the adaptation of CPU-GPU pipelin depths (Section 2.5.1). The detail is left

for future explorations.

2.6 Evaluation

For the techniques to be useful in practise, they must not only be able to enhance program

performance in certain scenarios, but also guarantee no performance degradations in other

cases. Our evaluation concentrates on both aspects:

• Benefits. How effective are the proposed techniques in removing thread divergences

and improving performance?

25

II data[N]: the transformation target
II constants:
II R: # of val partitions;
II WZ: the warp size;

"Label" Step:
mn = min (data); mx =max (data);
createVaiRngs (R. mn, mx. r);
caiQuota (data, r);

for (warp=O; warp< N/WZ; warp++){
i ::=warp*WZ;
I = argmax (coverage(r[k], data[i:i+WZ-1]));

k

if (r[l].quota >0) {
r[l].quota--;
label(warp] =I; //label this warp
for Q=i; j< i+WZ; j++) {

else

if (data[j] ~ r[l]){
II a to-be-filled location
r[l].toFill [r[l].ttl++] = j;

label(warp] = MIXED; II -I

"Assign" Step:
II for elements in toFilltocations
toMixN = 0; k = 0;
for (i=O; i< R; i++){

])

for (j=O; j< r(i].ttl; jH){
orgloc = r[i].toFillfil;
I= getRng (data[orgloc));
~ (r[l].cur < r(l].ttl) {II not full yet

II put to a to-be-pure warp
destloc[orgloc] = r(l].tofill[r[l].cur];
r[l].cur++;)

else II go to a mixed warp
toMix [toMixN++] = orgloc;

II for other elements
for each "MIXED" warp w {

for 0 = w*WZ; j< w*WZ+WZ; j++){
I = getRng (data[j]);
if (r(l].cur < r[l].ttl) {

II fill an opening in a to-be-pure warp
destloc [j] = r[l].toFill[cur];
II use a to-be-mixed element to fill the left opening
destloc [toMix[k++]] = j;)})

"Move" Step:
II dataCopy is a copy of data created already
for (i=O; i< N; i++)

if (destloc[i]) dataCopy [destloc[i]] = data[i];

Figure 2.5: The approximation scheme, LAM (label-assign-move), for reducing the overhead
in data layout transformation.

• Overhead. How effective are the techniques in reducing and hiding transformation

overhead? Can they prevent the transformations from degrading the performance of

the application, even in extreme scenarios where no potential benefits exist for the

transformation?

2.6.1 Methodology

Table 5.1 shows the five benchmarks selected for evaluating the techniques in both aspects.

The first two come from real applications, and the other three come from the NVIDIA

CUDA SDK [1]. These benchmarks contain different amount of thread divergence and

hence different potential gain for the transformation to produce. The first four benchmarks

have a number of thread divergences, suitable for the assessment of the effectiveness in

thread-divergence removal. The last benchmark, even though containing condition control

flows, has no thread divergences. We include it to test whether the proposed techniques

can ensure the basic efficiency of the program in this extreme case.

As an echo to previous observations [11, 24], one of the difficulties we come across in the

26

Table 2 1· Benchmarks for divergence removal experiments ..
Program Description Lines of code Cause of di- Diverg. ratio*

verg.
3D-lbm lattice 3380 condition 50-100%

Botzmann
model for
partial dif-
ferential
equation

gafort Fitness cal- 3723 condition & 75%
culation in loop
a genetic al-
gorithm

marching- Geometric 2178 condition 99%
Cubes isosurface

extraction
reduction Parallel re- 1264 condition 100%

duction
black- Option 501 none 0
scholes pricing

* Divergence rat1o: the number of d1vergmg thread warps over the total number of warps.

evaluation process is the lack of standard GPU benchmarks. Many previous studies have

used only some kernels in industry released SDKs (e.g. NVIDIA CUDA SDK). However,

because those kernels are created partially to show off the appealing power of GPU, most

of them have virtually no GPU-unfriendly features-such as thread divergence 6 . Even for

programmers of real GPU applications, as they are told that thread divergence is a GPU

performance killer, they typically avoid using GPU if the program includes complex control

flows. The consequence is the sparsity of interesting applications for the evaluation of thread

divergence removal, even in real application suites. The implication of such a phenomenon

is not that thread divergence elimination is unimportant, but the opposite: The current

exploitation of GPU is evidentially limited by the weakness in handling thread divergences;

resolving such a weakness may well extend the use of GPU for high performance computing.

Our experimental platform is an NVIDIA Tesla 1060 hosted in a dual-socket quad-core

6 The program reduction used in the experiment is a version NVIDIA uses to explain GPU performance
hazards in their tutorials.

27

Intel Xeon E5540 machine a.<> the platform. The Tesla 1060 includes a single chip with

240 cores, organized in 30 Streaming multiprocessors. We use CUDA as the programming

model.

In our experiments, the transformations are conducted in a semi-automatic manner.

We implement a prototype library that includes a set of functions for facilitating both the

profiling and the transformations. These functions include the LAM scheme, the functions

for profiling divergences and condition variable values, and for finding optimal thread-data

mappings. For each program, we manually insert the invocation of those functions on

appropriate variables in the CPU-GPU pipelining fashion. As the focus of this work is on

the examination of the effectiveness and feru>ibility of the transformation techniques, we

leave their integration in compilers to the future.

In the rest of this section, we report the performance gain and the transformation

overhead of every benchmark. We summarize the results at the end of this section.

2.6.2 3D-LBM

The program, 3D-LBM, is a PDE (partial differential equation) solver bru>ed on the LBM

(lattice Boltzmann model), implemented by Zhao [78] for GPU. The LBM is a model initially

designed to solve fluid dynamics through the construction of simplified microscopic kinetic

models. Its extended version may help solve the parabolic diffusion equation, a critical

component in the elliptic Laplace and Poisson equations, widely used in the manipulation

of images, surfaces and volumetric data sets. The developed LBM program is for 3-D fluid

simulation. The code hru> been highly optimized, appearing to be an efficient alternative to

traditional implicit iterative solvers on CPU [78].

Our experiment concentrates on a kernel named "streamAndCollision", one of the most

time-consuming kernels. In that kernel, each thread works on a fluid node. It checks

19 directions in a 3D space, and performs density calculation and node update if it finds

neighboring nodes in the a direction. As shown in Table 2.2, this condition statement causes

50-100% thread warps to diverge, depending on the thread block size.

28

Table 2.2: Experimental results of 3D-LBM
Block size 8 16 32
Diverg. ratio org 50% 100% 100%

opt 0% 0% 0%
Exe. time (J.Ls) org 4627 4951 5601

opt 3961 3360 3901
Speedup 1.17 1.47 1.44

. . org: original program. opt. the opt1m1zed program wtth thread-data remappmg and efficiency control applied .

As the neighboring nodes are input-specific and compile-time unknown, the divergences

can only be handled through runtime transformations. In our experiment, our tool chooses

data layout transformation to apply because of the use of global memory in the GPU kernel

and the satisfaction of the conditions listed in Section 2.4.3.

Table 2.2 reports the experimental results. Because the program performance is sensitive

to the size of a thread block, we experiment with three different block sizes, ranging from 8 to

32 (the largest size is 32 because of the limits on the 3D space). Half to all of the 1024 warps

diverge on the condition statement. The transformation removes all divergences, making

the kernel run 1.17 to 1.44 times faster than the original version does. The transformation

overhead is 1900J.Ls, smaller than the length of an invocation of the kernel, hence completely

hided by the CPU-GPU pipelining (with pipeline depth as 1).

2.6.3 GAFORT

GAFORT is a CUDA program derived from an OpenMP version in SPEC OMP3.2. It

computes the global maximum fitness in a genetic algorithm. The program starts with an

initial population and then generates children who go through crossover, jump mutation,

and creep mutation with certain probabilities. All of these major computations are im

plemented as GPU kernels. In each iteration, some runtime generated random numbers

determine which operation(s) among crossover, jump mutation and mutation needs to be

done by a child. The random numbers hence introduce misalignments of control flow into

the GPU kernels. The random number generator runs on CPU, interleaved with the GPU

kernels.

29

The optimized kernel is the children generation kernel. Each thread works on one child

gene. It first determines whether a crossover operation needs to be applied to the child

gene. The criterion is based on both the fitness of every candidate genes and a crossover

probability between every randomly picked pairs. If a crossover is necessary, the thread

conducts such operation on the child gene.

The kernel contains two types of divergences. The first is due to the different decisions

on whether a crossover is to be performed on the children genes. The second happens in

the crossover computation. That computation contains a loop, whose trip-count equals the

length of the segment of parent genes the child needs to use, which differs across children

genes. We handle the two types of divergences by combining them into one: The case of no

crossover operations is equivalent to that the trip-count of the crossover loop is zero.

Similar to 3D-LBM, the GPU kernel of this program uses global memory for most

arrays and meet the conditions listed in Section 2.4.3. The tool hence selects data layout

transformation to apply. A direct application of the data layout transformation would add

8000JLs overhead, largely offsetting the benefits it can bring. With the LAM algorithm and

CPU-GPU pipelining, the overhead can be completely hided.

Table 2.3 reports the results. Unlike 3D-LBM, this program appears insensitive to the

thread block size. In all the cases, the transformation reduces the divergence ratio from

75% to the minimum, 67%. The minimum divergence ratio is still significant because of

the large variations in the trip-counts of the crossover loop. Besides the reduction of thread

divergences, the transformation on this kernel produces a side effect that it reduces the

distance among array elements accessed by adjacent threads, which increases the coalesced

global memory accesses. Overall, the transformation yields 1.24 speedup to the kernel.

2.6.4 MarchingCubes

The Marching Cube Isosurface application is from the CUDA SDK, which extracts a geo

metric isosurface from a volume dataset using a marching cubes algorithm. In this program,

a mathematical function is used to create a 3D grid, which is then loaded into the GPU

30

Table 2.3: Experimental results of GAFORT
Block size 32 64 128 256
Diverg. ratio org 75% 75% 75% 75%

opt 67% 67% 67% 67%
Exe. time (p,s) org 67751 67902 67751 67786

opt 54772 54778 54756 54724
Speedup 1.24 1.24 1.24 1.24

Table 2.4: Experiment results of MarchingCubes
Block size 32 64 256 512
Diverg. ratio org 99% 99% 99% 99%

opt 98% 83% 67% 34%
Exe. time (mus) org 9264 9147 9132 9579

opt 6155 6926 4672 3718
Speedup 1.51 1.32 1.95 2.58

device memory. After the isosurface triangles have been calculated, the graph is rendered

immediately. This program provides an interactive GUI interface, by which users can per-

form a variety of actions, such as rotation, zoom in, and recomputation of the isosurface.

The program invokes some kernels corresponding to the user's input. One of the frequently

used kernels is the triangle generation kernel. It is a kernel for graphics rendering. The

kernel runs only on the occupied voxels by looking up in a table stored in 1D texture mem

ories. Thread divergences occur because of the non-uniform distribution of the occupied

voxels.

Different from the previous two benchmarks, the kernel in this program uses texture

memory. As mentioned in Section 2.4.3, reference redirection is an appealing option in such

a scenario and is selected to apply.

Table 2.4 presents the experimental results. The benefits from the transformation de

pends on the size of a thread block. The divergence ratio of the optimized version ranges

from 34% to 98%, and the speedup ranges from a factor of 1.51 to 2.58. The larger the block

size is, the more significant the benefits are. This is because the thread-data remapping

is among the threads within a thread block. As the block size grows, the effects of the

remapping become more clear.

31

Table 2 5· Experiment results of Reduction
Input size 2:.:1 2:.::.: 2:lJ 2~4 2:.::>

Diverg. ratio* org 100% 100% 100% 100% 100%
opt 50% 50% 50% 50% 50%

Exe. time (Jls) org 1010 1626 2007 2851 3986
opt 927 1474 1788 2565 3549

Speedup 1.09 1.10 1.12 1.11 1.12

2.6.5 Reduction

This benchmark is an implementation of the parallel reduction included in the NVIDIA

SDK. It computes the sum of an array through a tree-based approach. The SDK contains

multiple versions of the implementation. For our evaluation purpose, the version we use is

the one containing interesting thread divergences. At each level of the tree, only part of the

threads get involved in the computation. For instance, on the first level of the reduction

tree, a condition check on whether the thread ID "tid" is an even number. If so, the thread

conducts summation of two elements in the array; otherwise, it does nothing. This condition

check causes divergences to every thread warp.

According the principles in Section 2.4.3, for this program, the reference redirection

is selected as the transformation technique because its influence is on the computation

but not on the global memory references. The transformation follows the description in

Section 2.4.1. It includes the creation of a new array, "newiDArray", the first half of

whose elements are assigned with even values ranging from 0 to the thread block size,

and odd values for the second half. In the kernel, the references to "tid" are replaced with

"newiDArray[tid]" (except in the memory loading statement). After such a transformation,

on the first level of the reduction tree, all of the first half of the threads in a block get involved

in the calculation, hence all of the thread divergences are removed. There are still some

divergences on the other levels of the reduction tree. However, as the first level covers

a large portion of the kernel running time, the performance improvement is evidential as

shown in Table 2.5 on input arrays of different sizes.

We note that as shown in the NVIDIA tutorial, the thread divergences in this pro-

32

gram can be completely removed through algorithm changes, leading to further speedup.

However, unlike the transformations conducted in our experiment, such changes require

programmer's domain knowledge and complete manual efforts. And that approach is spe

cific to the reduction problem, rather than a generally applicable, potentially automaticable

solution to thread divergence elimination.

2.6.6 BlackScholes

The Black-Scholes model is widely used in the pricing of options in financial engineering.

This program from NVIDIA SDK shows an implementation of the model in CUDA for

European options.

The kernel contains a condition statement in the polynomial approximation of cumu

lative normal distribution function, "cndGPU". But profiling results show that no warps

diverge on that condition statement. Applying the thread-data remapping transformation

to such a program can yield no benefits but possible slowdown for the extra overhead.

We use this benchmark as an extreme case to examine whether the transformations can

guarantee the basic efficiency of GPU programs. This examination has its practical values.

Even though it may be possible to automatically rule out the use of the transformations

for some GPU applications containing no divergences, it is not always easy to do: For some

applications, the number of divergences may depend on the input data sets. The guarantee

of basic efficiency is important for the application of the transformations in such scenarios.

The thread-data remapping step on the CPU computes the values of the condition

variable but does not relocate any data because the condition variable values suggest no

need for that. The remapping step takes over 10 times of the kernel execution time to run.

However, with the efficiency control, the remapping is shut down automatically as soon as

the GPU kernel finishes. So, the execution time of the kernel shows no noticeable changes

compared to those of the original kernel and program (as shown in Figure 2.6), indicating

the effectiveness of the scheme in hiding the overhead and protecting the basic efficiency of

the program.

33

3 ~----------

.~~ !,.0~ ~<:-· ·0<:- ,¢'
_,., o,'b' ~'b' !>"& ~:rP

Benchmarks

Figure 2.6: Speedup with and without efficiency control.

2.6. 7 Summary of Experimental Results

To provide a holistic view of the experimental results, we put the speedup results of all

benchmarks into Figure 2.6. For each program, we select the result of a most representative

case.

The three bars of a benchmark in Figure 2.6 correspond to the normalized execution

times of three versions of the kernel: the original version, the version after the thread

data remapping transformation but without efficiency control, and the version after the

transformation with efficiency control. (The baseline of the normalization is the execution

time of the original version.)

The large speedups of the third version demonstrate that the transformation generates

significant performance benefits by reducing thread divergences in the kernels. The compar-

ison with the performance of the second version reveals that the efficiency control techniques

are crucial for the benefits to show up by effectively hiding the transformation overhead.

The blackscholes results demonstrate the importance of the efficiency control in protecting

the basic efficiency of the program in extreme cases. Overall, the results demonstrate the

effectiveness and feasibility of the proposed techniques in handling thread divergences, one

of the critical performance hazards in GPU computing.

34

2.7 Related Work

There is a body of work focused on the optimization of some specific GPU applications

(e.g., [19, 45, 68]), building general-purpose GPU performance tuning tools [39, 51], or op

timizing memory references [6, 36, 67]. Our discussion concentrates on the studies closely

related to thread-divergence elimination and data transformations.

Fung and others [24] have tried to reduce thread divergences through special hardware

extensions. Our techniques do not need special hardware support. Carrillo and others [11]

have proposed loop splitting and branch splitting for optimizing GPU applications that

contain loops and branches. Their techniques aim at the alleviation of register pressure,

rather than the reduction of thread divergences. The goal of our work is complementary to

theirs.

Data layout transformation has been used to reduce cache and TLB misses in CPU [14,

16, 17, 25]. We are not aware of previous uses of the transformation for thread divergence

elimination in GPU, which features some special challenges, especially those caused by the

distinctive properties of GPU thread divergences and their implications, and the conflict

among the large overhead of the transformation, the need for the transformation to occur

on the fly, and the little tolerance of overhead in the massively parallel computing on GPU.

2.8 Summary

This chapter describes a systematic exploration in using runtime thread-data remapping to

eliminate thread divergences in G PU computing. It proposes the use of reference redirection

and data layout transformation for the realization of thread-data mappings. It characterizes

the constraints, weaknesses and strengths of the two mechanisms by analyzing the novel

implications that GPU computing imposes on the uses of both mechnisms. It presents a

CPU-GPU pipelining scheme and a LAM algorithm to effectively hide and reduce thread

data remapping overhead. Together, these techniques remove significant numbers of thread

divergences for a set of GPU applications, creating up to 1.47 times of speedup, demon-

35

strating the feasibility and large potential of runtime thread divergence elimination, and

opening up opportunities for streamlining GPU applications on the fly.

36

A Unified Framework for Both Control and

Memory Irregularities

3.1 Motivation

The massive parallelism of GPU is embodied by the equipment of a number of streaming

multiprocessors (SM), with each containing dozens of cores. Correspondingly, a typical

application written in GPU programming models (e.g., CUDA [43] from NVIDIA) creates

thousands of parallel threads running on GPU. Each thread has a unique ID, tid. These

threads are organized into warps1. Threads in one warp are assigned to a single SM, and

proceed in an SIMD (Single Instruction Multiple Data) fashion. As a result, hundreds of

threads may be actively running on a GPU at the same time. Parallel execution of such

a large number of threads may well exploit the tremendous computing power of GPU, but

not for irregular computations.

Dynamic Irregularities in GPU Computing Irregularities in an application may

throttle GPU throughput by as much as an order of magnitude. There are two types of

irregularities, one on data references, the other on control flows.

1This work uses NVIDIA CUDA terminology.

37

P(J • (0, S, I, 7,4,3.6.2}

odo i (i" j' i'''j]:4''5''''6'' 7]

1----<~·cnl HTnHr
I~ AIH II

(a) Irregular memory reference

ad: : 0 I l "3'!4 S 6 7: nnrrn l·''~'"' 111 l
~~Mill B{J-j(&J(1l1!11

(b) Irregular control flow

Figure 3.1: Examples of dynamic irregularities (warp size=4; segment size=4). Graph
(a) shows that inferior mappings between threads and data locations cause more memory
transactions than necessary; graph (b) shows that inferior mappings between threads and
data values cause threads in the same warp diverge on the condition.

Before explaining irregular data references, we introduce the properties of CPU memory

access. (Without noting, "memory" refers to CPU off-chip global memory.) In a modern

CPU device (e.g., NVIDIA Tesla C1060, S1070,C2050, S2070), memory is composed of a

large number of continuous segments. The size of each segment is a constant2 , denoted

as Z. One memory transaction can load or store all data in one memory segment. The

accesses by a set of threads at one load or store instruction are coalesced into a single

memory transaction, if these threads are within a warp and meanwhile the words accessed

by them lie in a single memory segment. An irregular reference refers to a load or store

instruction, at which, the data requested by a warp happens to lie on multiple memory

segments, causing more (up to a factor of W; W for warp size) memory transactions than

necessary. Because a memory transaction incurs latency of hundreds of cycles, irregular

references often degrade the effective throughput of GPU significantly.

A special class of irregular data references is dynamic irregular references, referring to

irregular references whose memory access patterns are unknown (or hard to know) until ex

ecution time. Figure 3.1 (a) shows an example. The memory access pattern of "A[P[tid]]"

is determined by the runtime values of the elements in array P, whose content causes an

irregular mapping between threads and the locations of the requested data, resulting in

four memory transactions in total, twice of the minimum. Being dynamic, these references

are especially hard to tackle, making effective exploitation of GPU difficult for many ap-

plications in various domains, including fluid simulation, image reconstruction, dynamic

2 In real GPU devices, the value of Z varies across data types. The difference is considered in our
implementation but elided in discussions for simplicity.

38

c.

t
(J)

Benchmarl<s

Figure 3.2: Potential performance improvement when dynamic irregularities are eliminated
for applications running on an GPU (Tesla 1060).

programming, data mining, and so on [42, 62j.

Dynamic irregularities also exist in program control flows, causing thread divergences

as discussed in Chapter 2. Thread divergences typically happen on a condition statement.

When threads in a warp diverge on which branch to take, their parallel execution turns into

a serial execution of the threads that take different branches. Figure 3.1 (b) illustrates such

an example. Consider the first warp in the graph. Due to the values of the data mapped

to the threads, only thread 2 takes the "if" branch. During the execution of that thread,

all the other threads in that warp have to stay idle and wait. Note that because the warp

is not completely idle, no other warps are allowed to run on that SM during that time,

causing waste of computing resource. Consider a typical case where each warp contains 32

threads. The waste of the SM throughput is up to 96% (31/32). The problem is especially

serious for loops. Consider a loop "for (i=O; ijA[tid]; i++)" in a kernel and A[OJ to A[31]

are all zero except that A[l3]=100. All threads in the warp have to stay idle until thread

13 finishes the woth iteration.

Dynamic irregularities severely limit the efficiency of GPU computing for many appli

cations. As shown in Figure 3.2, removing the dynamic irregularities may improve the

performance of a set of GPU applications and kernels (detailed in Section 5.5) by a factor

of 1.4 to 5.3.

There have been some recent explorations on the irregularity issues. Some propose new

hardware features [24,42,62], others offer software solutions through compiler techniques [6,

39

11,36,67, 73]. Software solutions, being immediately deployable on real GPUs, are the focus

of this work. Previous software solutions mainly concentrate on cases that are amenable to

static program analysis. They are not applicable to dynamic irregularities, whose patterns

remain unknown until execution time. A recent work [74] tackles dynamic divergent control

flows, but in a limited setting (as elaborated in Section 5. 7).

Overall, a systematic software solution to address dynamic irregularities in GPU com

puting is yet to be developed. In fact, what remains missing are not just solutions, but more

fundamentally, a comprehensive understanding to the problem of irregularity removal itself.

For instance, as Figure 3.1 shows, the two types of irregularities stem from the relations be

tween GPU threads and runtime data values or layouts, but the relations are preliminarily

understood. No answers exist to the questions such as what data layouts and thread-data

mappings minimize the irregularities, what the computational complexities are for finding

desired layouts or mappings, and how they can be effectively approximated.

Moreover, previous explorations (in software) have treated the two kinds of irregularities

separately. But in many real applications, both may exist at the same time and connect

with each other-optimizing one may influence the other (e.g., 3dlbm shown in Section 5.5).

It is important to treat them in a holistic fashion to maximize overall performance.

Overview of This Work In this work, we aim to answer these open questions and

contribute a comprehensive, practical software solution to both types of dynamic irregular

ities. First, we unveil some analytical findings on the inherent properties of irregularities in

GPU computing. This includes the interactions between irregular control flows and mem

ory references, the NP-completeness of finding the optimal data layouts and thread-job

mappings and a set of heuristics-based algorithms, as well as the relations among dynamic

irregularities, program data, and GPU threads. These findings substantially enhance the

current understanding of the irregularities. Second, we provide a unified framework, named

G-Streamline, as a comprehensive solution to both types of dynamic irregularities. G

Streamline has several distinctive properties. It is a pure software solution and works on

40

Tronsformt:ttlons

' 1111 twhr d Jnb
I f'(~l rjq "" II

ci~_--"·-::-::~0

Figure 3.3: Major components of G-Streamline.

the fly, requiring no hardware extensions or offline profiling. It treats both types of irregu

larities at the same time in a holistic fashion, maximizing the whole-program performance

by resolving conflicts among optimizations of multiple irregularities of the same or different

types. Its optimization overhead is transparent to GPU executions, jeopardizing no basic

efficiency of the GPU application. Finally, it is robust to the presence of various complex

ities in the GPU application, including the concealing of the data involved in condition

statements, the overlapping of the data involved in irregular data references.

We build G-Streamline based on a perspective illustrated in Figure 3.1 (a) and (b):

Both irregular memory references and control flows essentially stem from an inferior map-

ping between threads and data (data locations for the former; data values for the latter).

This perspective leads to the basic strategy of G-Streamline for irregularity elimination: en-

hancing the thread-data mappings on the fly. To make this basic strategy work efficiently,

we develop a set of techniques organized in three components as shown in Figure 5.1.

The component, "transformation" (Section 3.3), includes techniques for the realization

of new thread-data mappings. Its core consists of two primary mechanisms, data reloca

tion and reference redirection. The former moves data elements on memory to create new

data layouts; the latter redirects the references of a thread to new memory locations. To

gether they lead to three transformation techniques-data reordering, job swapping, hybrid

transformation-with respective strengths and weaknesses, suitable for different scenarios.

There are two key conditions for the transformations to work effectively: the determination

of desirable data layouts or mappings, and the minimization and concealment of transfor-

41

mation overhead.

The second component, "optimality & approximation" (Section 3.4), helps meet the first

condition by answering a series of open questions on the determination of desirable data

layouts and mappings for GPU irregularity removal. It proves that finding the optimal data

layouts or thread-data mappings in order to minimize the number of memory transactions

is NP-complete. For the minimization of thread divergences, it shows that the problem is

NP-complete as well but with respect to the number of conditional branches rather than the

number of threads. Based on the theoretical insights, this component provides a heuristics

based algorithm for each type of transformations, enabling the computation of near-optimal

data layouts or thread-data mappings. Meanwhile, it offers some guidelines for resolving

conflicts among the optimizations of different irregularities.

The third component, "efficiency control" (Section 3.5), addresses overhead issues. On

one hand, because the irregularities are dynamic, optimizations must happen during run

time. On the other hand, transformations for irregularity removal are usually expensive

due to the data movements and relevant computations involved. To address that ten

sion, the "efficient control" component employs two techniques. First, based on a previous

proposal [74], it adopts an adaptive CPU-GPU pipelining scheme to offload most trans

formations to CPU so that the transformations can happen asynchronously with the GPU

kernel execution. The scheme effectively hides transformation overhead from kernel execu

tion, and meanwhile, protects the basic efficiency of the program by automatically shutting

down transformations when necessary. Second, it uses a multilevel adaptation scheme to

reduce transformation overhead. The first level is on the tuning of individual transforma

tions; the second level is on the selection of different transformation methods, according to

their distinctive properties and the runtime scenarios.

Contributions In summary, this work makes four-fold contributions:

• It provides the first software solution for handling dynamic irregularities in both con

trol flows and memory references for GPU computing.

42

• It proves the computational complexities of irregularity removal, and reveals the es

sential properties of the irregularities along with their relations with threads and data,

advancing current understanding to GPU irregularity removal substantially.

• It develops a set of transformations, analyzes their properties and applicabilities, and

proposes several heuristics-based algorithms to circumvent the NP-completeness of

irregularity removal.

• It develops a multilevel efficiency-driven adaptation scheme and integrates it into a

CPU-GPU pipelining mechanism, demonstrating the feasibility of on-the-fly software

irregularity removal solutions.

3.2 Problem Definition

Before describing the three components of G-Streamline, we first present some terms and

abstract forms to be used in the following discussions.

Recall that in Section 2.2, a kernel is a function executed on GPU. On an invocation

of a kernel, thousands of threads are created and execute the same kernel function. They

may access different data and behave differently due to the appearances of tid in the kernel.

Arrays are the major data structure in most GPU kernels, hence the focused data struc

ture in this study. Typically, a GPU kernel takes some arrays as input, conducts certain

computations based on their content, and stores results into some other arrays (or scalars)

as its final output. We call these arrays input arrays and output arrays respectively (one

array may play both roles).

In the following discussions, we use the abstract form "A[P[tid]]" to represent an irreg

ular reference, and "if (B[tid])" to represent an irregular control flow. The arrays "P" and

"B" are both conceptual. In real applications, "P" may appear as an actual input array,

or results computed from some input arrays (e.g., "A[X[tid]%2+Y[tid]]"), while, "B" may

appear as a logical expression on some input arrays. Using these abstract forms gives con

veniences to our discussion, but does not affect the generality of the conclusions (elaborated

43

J tod: thread 10; ~;a thread; 1 :data access; l: data or job swappin& I

(a) Data reordering for iJTegular references

(c) Job swapping for irregular control flows
(through reference redirection)

JJJ.5,,LH.J,
tid: L~ ... LLJJt! .. I .. ! ... ?.1

(d) Job swapping for irregular control flows
(through data relocation)

data
I"C''f'dcrina

job
SW~IJilin~

(e) Hybrid transfonnation

Figure 3.4: Examples for illustrating the uses of data reordering and job swapping for
irregularity removal.

in Section 3.6).

3.3 A Framework of Program Level Transformations

G-Streamline contains three main transformation methods for realizing new thread-data

mappings. They are all built upon two basic program transformation mechanisms: data

relocation and reference redirection. Although the basic mechanisms are classic compilation

techniques, it remains preliminarily understood how to use them to remove irregularities

in GPU computing-more fundamentally, what are the relations between GPU irregulari

ties and threads and data, how those transformation mechanisms and methods affect the

relations, and what the strengths and weaknesses of each transformation method are. This

section discusses the mechanisms and transformation methods.

3.3.1 Two Basic 'Iransformation Mechanisms

Data relocation is a transformation that moves data on memory through data copying. It

can be either out-of-place (e.g., creating a new array), or in-place (e.g., elements swapping

44

inside an array).

Reference redirection directs a data reference to certain memory location. In G-Streamline,

the redirection is through the use of redirection arrays. For instance, we can replace "A[tid]"

with "A[D[tid]]"; the redirection array "D" indicates which element in "A" is actually ref

erenced.

3.3.2 Three Transformation Methods

We develop three transformation methods for removing irregular control flows and memory

references. Each of them consists of a series of applications of the two basic mechanisms.

In the following explanation on how the transformations remove dynamic irregularities, we

assume that the desirable mappings between threads and data (locations or values) are

known. Section 3.4 discusses how to determine those mappings.

3.3.2.1 Data Reordering

The first strategy is to adjust data locations on memory to create a new order for the

elements of an array. Its application involves two steps, as illustrated in Figure 3.4 (a). In

the first step, data relocation creates a new array A' that contains the same set of elements

as the original array A does but in a different order. The new order is created based on

a desirable mapping (obtained from Pas shown in Section 3.4) between threads and data

locations. In our example, originally, the values of the elements in P cause every warp to

reference elements of A on two segments (the top half of the graph). The relocation step

switches the locations of A(5] and A[l]. The second step of the transformation changes

accesses to A in the kernel such that each thread accesses the same data element (likely in a

different location) as it does in the original program. The boxes in the left part of Figure 3.4

(a) illustrates the change: A[P[tid]] is replaced with A[Q[tid]], where Q is a newly produced

redirection array. After this transformation, all data accessed by the threads in the first

warp lie in the first segment; the total needed memory transactions is reduced from four to

three. (Section 3.3.2.3 will show how to reduce it further to the minimum.)

45

Data reordering is applicable to various irregular memory references. But as it maintains

the original mapping between threads and data values, it is not applicable to the removal

of irregular control flows by itself.

3.3.2.2 Job Swapping

The second method for irregularity removal is exchanging jobs among threads. A job in this

context refers to the whole set of operations a CPU thread conducts and the entire set of

data elements it loads and stores in a kernel execution.

As shown in Figure 3.4 (b), by exchanging the jobs of threads 1 and 4, we make thread

1 access A[2] and thread 4 access A[5]. The transformation achieves the same reduction

of memory transactions as data reordering does (not reaching the optimal either). When

applying job swapping, it is important to keep the integrity of each job-that is, the entire

jobs of thread 2 and thread 4 in our example must be swapped. To do so, one just need to

replace all occurrences of tid in the kernel with a new variable (e.g., newtid), and inserting

a statement like "newtid=Q[tid]" at the beginning of the kernel, where, Q is an array

capturing the desired mapping between threads and jobs. The bottom box in Figure 3.4

(b) exemplifies this process. Apparently, the arrays Q and P can collapse into one R such

that R[tid] = P[Q[tid]]. The collapse may avoid the additional reference "newtid=Q[tid]",

introduced by the transformation.

Job swapping is applicable for removals of irregular control flows as well. Figure 3.4 (c)

shows an example. In the original program, the values of elements in B cause both warps

to diverge on the condition statement. By exchanging the jobs of thread 2 and thread 4,

the transformation eliminates divergences of both warps on the condition statement. This

example exposes a side effect of job swapping: It may change memory access patterns in

the kernel. The swapping in Figure 3.4 (c) impairs the regularity of the accesses to B,

causing extra memory transactions. This side effect can be avoided by applying the data

reordering transformation described in the prior sub-section as a follow-up transformation

to job swapping.

46

uriginal

,f (B[tid]) { ... } <swap 8[2] & 8(<4]> ntid = P[t,d]:
C[tid] = A(tid] + M ======::> if (B[tid]) { ... }

'-:=:--:::-::-:-::-::--::-:-:-:' <swapA(2] &A(-4]> C[tid] = A(tid] + ntid:
B[l = {0.0.6.0,0.2,4,1} P[l = {0.1.4,3.2,5.6,7)

Figure 3.5: Using data relocation for job swapping faces some complexities.

Job swapping can be materialized in two ways. Besides through reference redirection

as Figures 3.4 (b) and (c) show, the second way is through data relocation. As shown in

Figure 3.4 (d), when the locations of B[2] and B[4] switch while tid remains unchanged in

the kernel, threads 2 and 4 automatically swap their jobs. There are some complexities in

applying this job swapping method, exemplified by Figure 3.5. First, it requires all input

arrays in the kernel (e.g., A and B in Figure 3.5) go through the same data exchanges

to maintain the integrity of a job. The incurred data copying may cause large overhead.

Second, for this approach to work, it must treat occurrences of tid that are outside array

subscripts carefully. For instance, in Figure 3.5, simply switching A[2] and A[4] on memory

would cause the expression "A[tid]+tid" to produce wrong results. A careful treatment to

appearances of "tid" that are outside array subscripts can fix the problem, as shown in

the transformed code in Figure 3.5 (where, P is an assistant array created to record the

mapping between threads and jobs). Finally, at the end of the kernel, the order of the

elements in output arrays (e.g., C in Figure 3.5) has to be restored (e.g., switch C[2] and

C[4]) so that the order of elements match with the output of the original program.

Apparently, relocation-based job swapping applies only to the removal of irregular con-

trol flows, but not irregular memory references as the mapping between threads and data

locations remains the same as the original.

3.3.2.3 Hybrid Transformations

The third strategy for removing irregularities is to combine data reordering and job swap-

ping. The combination has two benefits. The first has been mentioned in the prior sub

section: A follow-up data reordering helps eliminate the side effects that thread divergence

elimination imposes on memory references.

47

The second benefit is that combined transformations often lead to greater reduction of

memory transactions than each individual transformation does. As shown in Figure 3.4

(a) and (b), data reordering and job swapping both reduce the needed memory transac

tions to three for the shown example. Figure 3.4 (e) shows that a combination of the two

transformations may reduce the number of memory transactions to two, the minimum. The

rationale for the further reduction is that the reordering step creates a data layout that is

more amenable for job swapping to function than the original layout is. On the new layout,

two threads in warp one reference two data elements in segment two, and meanwhile, two

threads in warp two reference two data elements in segment one. Swapping the jobs of the

two pairs of threads ensures that the references by each warp fall into one single segment,

hence minimizing the number of needed memory transactions.

3.3.2.4 Comparisons

Both types of irregularities may benefit from multiple kinds of transformations. We briefly

summarize the properties of the various transformations. Section 3.5 describes the selection

scheme adopted in G-Streamline.

Irregular reference removal may benefit from all three strategies (except relocation-based

job swapping). Data reordering and job swapping each has some unique applicable scenarios.

Suppose the segment size and warp size are both 4. For a reference "A[Q[tid]]" with "Q[

]={0,4,8,12,16,20,24,28}", data reordering works but job swapping does not; a contrary

example is "A[Q[tid]]" with QO = {0, 1, 2, 5, 2, 5, 6, 7}-no data reordering alone helps as

A[2] and A[5] are each accessed by two warps. The hybrid strategy combines the power

of the two, having the largest potential. On the aspect of overhead, job swapping incurs

the least overhead because unlike the other two strategies, it needs no data movements on

memory. In complexity, the hybrid strategy is the most complicated for implementation.

Thread divergence removal relies mainly on job swapping with data reordering as a

follow-up remedy for side effects. Between the two ways to realize job swapping, the

redirection-based method has lower overhead than the relocation-based method, as by itself,

48

no data movements are needed. However, that benefit is often offset by its side effect on

memory references. On the other hand, the relocation-based method, although having no

such side effects, are limited in applicability. Generally, if the data to be moved are accessed

by threads in more than one warp, relocation-based job swapping is likely to encounter dif

ficulties. (Consider a modified version of the example in Figure 3.4 (d), where thread 4

originally accesses B[3] rather than B[4].)

Overall, the techniques discussed in this section form a set of options for creating new

mappings between threads and data. Next, we discuss what mappings are desirable and

how to determine them for the minimization of different types of irregularities.

3.4 Determination of Desirable Data Layouts and Mappings

In this section, we first present some findings and algorithms related to the removal of each

individual type of irregularities, and then describe how to treat them when they both exist

in a single kernel.

3.4.1 Irregular Memory References

Recall that all three strategies can apply to irregular reference removal. For data reordering,

the key is to determine the desirable orders for elements in input arrays; for job swapping,

the key is to determine the desirable mappings between threads and jobs; for the hybrid

strategy, both data layouts and thread-job mappings are important. We are not aware of

any existing solutions to the determination of optimal data layouts or thread-job mappings

for irregular reference removal on GPU. In fact, even whether the optimal are feasible to

be determined has been an open question.

In this work, by reducing known NP-complete problems, the 3DM and the partition

problem [28], we prove that finding optimal data layouts or thread-data mappings is NP

complete for minimizing the number of memory transactions. We will present the proofs

and describe the heuristics-based solutions.

49

3.4.1.1 Data Reordering

Problem Definition In the Minimal Memory Transaction (MMT) problem, our goal is

to group data items into fixed number of memory segments so that the number of memory

transactions can be minimized. We define the decision problem version of MMT for NP

completeness proof. Assume there are n threads warps and k data items that need to be

grouped into k/m memory segments of size m bytes (k is a factor of m). We define a set W

containing n thread warps. There is a set D, a collection of k subsets of the set W, with one

subset for each data item. Every subset Di (i = 1 to k) comprises of the integer indices of

the warps that request for the i-th data item (as shown in Figure 3.4.1.1). Given a bound

B, the question is whether there exists an even partition of the set of data items into P1 ,

... , Pk/m such that:

• P; (l Pj = 0, IPtl = m, and u:~'; P; = D

• Define the weight of P; as S(i) =I UnjEP; Djl, and E:~'; si :s; B

In the above definition, the k/m disjoint partitions of D represent the partitioning of k data

items into k/m memory segments. The weight S(i) for partition P;, which is the number of

unique warps that need to access one or more data items in the partition, stands for the total

number of requests for the i-th memory segment from all the warps, which is essentially the

number of memory transactions instantiated for the ith memory segment. Henceforth, the

sum of the weights is the total number of memory transactions for all memory segments.

We prove the NP-completeness of MMT decision problem by a polynomial time reduc

tion from 3 Dimensional Matching (3DM). The 3DM problem is proved to be NP-complete

and defined as follows.

• Input: Disjoint sets B, G, P, each of size a, and a set of ordered triples T ~ B x G x P

• Question: Does there exist a subset M ~ T with IMI = a such that for each pair (b,

g, p), (b', g', p') EM it holds that b "I b',g "I g',p "I p'

50

Warps: w = {1,2}

Data:
Data Requesters: {I} {1.2} {1,2} {2}

D = {{1},{1.2},{1,2},{2}}

Proof In the reduction, we generate an special instance of MMT problem from an instance

of the 3DM problem. We define the set W of warps in MMT using the set T of triples in

3DM so that W = T. Every data item is modeled as a member in B, GorP. Therefore

the dataset D corresponds to the set union of B, G, P and /DI = /BUG UP/. The i-th

member Di is a subset of T and includes a triple in T if and only if the i-th element in

BUG UP do not exist in the triple. Then we set m = 3 and B =a X (/T/- 1). Therefore

the 3DM problem is reduced to the MMT problem in polynomial time. Next we prove that

if there exists such a partition in the MMT problem, there exists a feasible matching M

for 3DM problem. The weight of every partition is at least ITI - 1, since only when the

three elements (b,g,p) associated with three subsets in D form a valid triple in T their

corresponding set union miss at most one triple in IT/. There are a partitions in total and

the sum of the weights is at least a* (/T/-1). Hence when the upper bound B =a* (/T/-1),

there exist a partitioning scheme if and only if every partition contains three data elements

(b, g, p) that exist as a valid triple in T and the partitions are disjoint. The MMT decision

problem is NP because we can evaluate if a partition satisfies the constrains by set union and

other set operations in polynomial time. Therefore we proved the MMT decision problem

is NP-complete.

Heuristics Based Algorithm For data reordering, we employ data duplication to cir-

cumvent the difficulties in finding optimal data layouts. The idea is simple. At a reference,

say A[P[tid]J, we create a new copy of A, denoted as A', such that A'[i] = A[P[i]]. Then,

we use A'[tidj to replace every appearance of A[P[tidj] in the kernel. With this approach,

the number of memory transactions at the reference equals the number of thread warps-

51

the optimal is achieved. The main drawback of this approach is space overhead: When n

threads reference the same item in A, there would ben copies of the item in A'. When there

are irregular references to multiple arrays (or multiple references to one array with differ

ent reference patterns, e.g., A[P[tid]] versus A[Q[tid]]) in the kernel, the approach creates

duplications for each of those arrays (or references), hence possibly causing too much space

overhead. There are two ways to mitigate the problem. First is to first determine the range

of array to be transferred between GPU and CPU which is used a base reference array for

duplication. For example, in A[P[i]], array A is the base array that is used to generate du

plicated array. The second way is to dynamically control the amount of duplication so that

we will be able to approximate the transformation according to best cost/benefit balance

point. Section 3.5 will show how adaptive controls regarding the second approach.

3.4.1.2 Job Swapping

For job swapping, we design a two-step approach. First, consider a case with only one

irregular memory reference A[P[tid]J. The first step of the approach classifies jobs into

M (number of memory segments containing requested items in A) categories; category Ci

contains only the jobs that reference the ith requested memory segment of array A. Then

for each category (Ci), we put IW * liCii/WJ of its members evenly into liCii/WJ buckets

(W is warp size). This step ensures that each of those job buckets, when assigned to one

warp, needs only one memory transaction at A[P[tid]]. The remaining jobs of Ci form

a residual set, R;_. The second step uses a greedy algorithm to pack the residuals into

buckets of size W. Let n = {R;.Ii = 1, 2, · · · , M}. The algorithm works iteratively. In each

iteration, it puts the largest residual set in n into an empty bucket, and then fills the bucket

with some jobs in the smallest residual sets in n. It then removes those used jobs from

0 and applies the same algorithm again. This process continues until 0 is empty. This

size-based packing helps avoid splitting some residual sets-splits cause jobs accessing the

same memory segment to be distributed to different warps, hence incurring extra memory

transactions. This job swapping algorithm uses less space than data reordering, but is

52

mainly applicable for kernels having one or multiple references with a single access pattern

(e.g., A[P[tid)] and B[P[tid]]). For other cases, G-Streamline favors data reordering.

As the previous section shows, the combined use of data reordering and job swapping

may create additional opportunities for optimizations. However, the catch is extra complex

ities for determining the suitable data layouts and job mappings. A systematic exploration

is out of the scope of this work.

3.4.2 Divergent Control Flows

3.4.2.1 Reference Redirection

As Section 3.3 describes, job swapping is applicable for removing irregular control flows.

Section 2.4.1 describes reference redirection approach in a elaborate way. The key to its

effectiveness is to find a desirable mapping between threads and jobs. Through reducing

the partition problem [28], we prove that finding optimal thread-job mappings (in terms of

the total number of thread divergences) for the removal of irregular control flows is NP

complete with respect to K (K is the number of condition statements in a kernel; assuming

each has two branches). The proof is omitted for lack of space.

We extend the algorithms proposed in Section 2.4.1. In the last chapter, we used path

vector-based job regrouping to handle divergences caused by non-loop condition statements.

For a kernel with K condition statements, each job has a corresponding K-dimensional

vector (called path vector), with each member equaling the boolean value on a condition

statement. The prior work uses loop trip-count (i.e., number of iterations) based sorting to

treat thread divergences caused by a loop termination condition. We have developed a new

sorting algorithm that is even quicker than quick sort algorithm. The intuition is that since

for a lot of threads, the path vectors are the same so during the sorting process, we aggregate

the continuously same path vector threads while scanning the array and exchange values.

Besides, we put a sentinel (the largest array element in the end) to reduce the total number

of instructions and this also helped reduce total sorting time a lot. On the other hand, we

handle cases with more than one loop by adding one dimension to the path vector for each

53

loop. The values in those dimensions are categorized loop trip-counts. The categorization

is through distance-based clustering [27]. For instance, for a kernel with two condition

statements and one loop whose iterations among all threads fall into L clusters (i.e., 0,

100-200, 1000-1300, >10000), the path vectors of all threads would be in three dimensions;

the final dimension is for the loop, and can have only L possible values, corresponding to

the L clusters. After integrating loops into path vectors, we can simply assign jobs having

the same path vector values to threads in the same warps.

3.4.2.2 Hybrid Approach

The second mechanism is hybrid approach which helps alleviate the side effects on memory

reference patterns. It is the approach elaborated in Section 2.4.2, which is referred to as data

layout transformation. The effect of this approach as if we first apply a thread relocation

approach simply by transformation on thread IDs. Then we check the data arrays whose

reference pattern has been changed from being coalesced to being random, and transform

these data arrays correspondingly to maintain at least the same memory efficiency.

3.4.3 Co-Existence of Irregularities

Irregular control flows and irregular memory references co-exist in some kernels. The co

existence may be inherent in the kernel code, or caused by optimizations as already exem

plified in Figure 3.4 (c). As the optimal data layouts or thread-job mappings may differ for

the two types of irregularities, the co-existence imposes further challenges to irregularity

removal.

G-Streamline circumvents the problem based on the following observation: Even though

job swapping affects both control flows and memory references for a thread, data reordering

affects only memory references. The corresponding strategy taken by G-Strearnline is to

first treat irregular control flows using the approach described in the previous sub-section,

and then apply data reordering to handle all irregular memory references, including those

newly introduced by the treatments to irregular control flows. The handling of irregular

54

memory references does not jeopardize the optimized control flows.

3.5 Adaptive Efficiency Control

Sophisticated techniques for overhead minimization is important for the optimizations de

scribed in this project to work profitably. As dynamic irregularities depend on program

inputs and runtime values, transformations for removing them have to happen at run time.

These transformations, however, often involve significant overhead. Job swapping, for in

stance, the most lightweight transformation of the three, requires no data movements, but

still involve considerable cost for computing suitable thread-job mappings and the creation

of redirection arrays. Without a careful design, the overhead may easily outweigh the

optimization benefits.

G-Streamline overcomes the difficulty through a CPU-GPU pipelining scheme, a set of

overhead reduction methods, and a suite of runtime adaptive control. These techniques

together ensure that the optimizations do not slow down the program in the worst case,

and meanwhile, maximize optimization benefits in various scenarios by overlapping trans

formations with kernel executions, circumventing dependences, and adaptively adjusting

transformation parameters. Recall that we have described the basic CPU-GPU pipelining

in Section 2.5.1 and we will describe more complicated pipelining schemes in this section.

3.5.1 Dependence and Kernel Splitting

In some programs, the main loop works on a single set of data iteratively; the arrays to

be transformed are both read and modified in each iteration of the central loop. These

dependences make the CPU-GPU pipelining difficult to apply because the transformation

has to happen on the critical path synchronously after each iteration. Transformation

overhead becomes part of the execution time, impairing the applicability of the G-Streamline

optimizations.

We introduce a technique called kernel splitting to solve the problem. The idea is to

55

gpuKemel_org<« ... >>>(pOat2, ...);'

, J split

gpuKemel_org_sub<« ... >>>(pData,O, (1-r)*len, ...);
gpuKernel_ org_ sub<<< ... »>(pData,(1-r)*len+ I, len, ...);

Figure 3.6: Kernel splitting makes CPU-GPU pipelining remain feasible despite loop-carried
dependences.

split the execution of a GPU kernel into two by duplicating the kernel call and distributing

the tasks. Figure 3.6 shows such an example. In the new program, the invocation of the

original kernel "gpuKernel_org" is replaced with gpuKerneLorg_sub and gpuKerneLopLsub.

The invocation of the function gpuKerneLorg_sub behaves the same as the original, but

completes only the first (1 - r) portion of the data processed by the original kernel (i.e.,

the tasks conducted by the first (1 - r) portion of the original GPU threads), while the

invocation of function gpuK erneLopLsub completes the remaining tasks. When G PU is

executing gpuK erneLorg_sub, a CPU assistant thread does G-Streamline transformations

for the data to be used in gpuKerneLopLsub. Therefore, with the kernel execution split into

two, the CPU-GPU pipelining becomes feasible even in the presence of dependences. The

rate r is called optimization ratio, the determination of which is discussed in Section 3.5.3.

In some of these programs, the suitable data layout and mappings do not vary across

iterations. In that case, the analysis for finding the appropriate mappings or data layouts

is a one-time operation, and can be put outside of the main loop. But the creation of new

arrays have to happen after each iteration of the main loop. For programs having no central

loops but multiple phases of computation, the pipelining can still be applied through kernel

splitting in the similar way as the previous paragraph describes.

3.5.2 Approximation and Overlapping

In some cases, the overhead of a full transformation is so large that even the pipelining

cannot completely hide the overhead. Approximations are necessary to trade optimization

quality for efficiency. The partial transformation mentioned in the previous subsection is

one example of such approximations. By only transforming part of the data set that is

56

going to be used in an iteration, the technique reduces transformation time. Even though

that technique is described for addressing loop-carried dependences, partial transformation

is apparently applicable to all settings regardless of the presence of dependences.

For the elimination of control flow irregularities, we adopt the label-assign-move (LAM)

algorithm described in our previous work [74]. The algorithm avoids unnecessary data

movements by marking data with a number of class labels and making only necessary

switching of data elements such that same classes of data locate adjacently.

An additional technique we use to reduce transformation overhead is to overlap the

different parts of a transformation. A transformation usually consists of two steps: pro

ducing appropriate data layout or thread-data mappings, copying the produced data to

GPU. (For some programs, some data may have to be copied from GPU to host before the

transformation.) These steps may all consume considerable time. Our technique treats the

to-be-transformed data set as s segments so that the copying of one segment can proceed

in parallel with the transformation of another. We call the parameter s the number of data

segments, determined through the following adaptive control.

3.5.3 Adaptive Control

G-Streamline comes with a multi-level adaptive control that selects the transformation

methods and adjusts transformation parameters on the fly.

Coarse-Grained Adaptation The first level of adaptation exists in the CPU-GPU

pipelining. As Section 2.5.1 already shows, a transformation shuts down automatically

if it runs too slow, and the main CPU thread moves on to the next iteration regardless of

whether the transformation finishes. This level of adaptation guarantees the basic efficiency

of the program execution.

The second level of adaptation selects appropriate transformation method to use. Recall

that irregular reference removal can benefit from different types of transformations. The

implementations of these transformations in G-Streamline show the following properties.

57

Data reordering has the largest space overhead and medium time overhead, but is able

to remove all irregular memory references (with data duplication). Job swapping has the

smallest overhead in both space and time, but has limited effectiveness and applicability.

The strategy in G-Streamline is to use data reordering as the first choice. If its space

overhead is intolerable, G-Streamline switches to job swapping. To enable this level of

adaptation, multiple copies of the kernel code would need to be created, with each containing

the code changes needed for the corresponding transformation. This level of adaptation is

optional in the use of G-Streamline.

Fine-Grained Adaptation The third level of adaptation is fine-grained control, which

dynamically adjusts the transformation parameters. There are mainly four parameters: the

pipeline depth b., the optimization ratio r, the number of classes in LAM c, and the number

of data segments s.

The pipeline depth b. (Section 2.5.1) determines the time budget for a transformation

to finish. In our implementation, we fix it as 1 but allow multiple threads (depending on

the number of available CPU cores) to transform for one chunk of data in parallel. This

implementation simplifies thread management.

The number of data segments s (Section 3.5.2) influences the overlapping between trans

formation and data copying. Its value is 1 by default. In the initial several iterations, if

G-Streamline finds that the transformation overhead always exceeds the kernel running time

despite what values r takes, it increases this parameter to 5, a value working reasonably

well for most benchmarks in our experiments.

The parameters r and c control the amount of work a transformation needs to do. Their

determinations are similar. We user for explanation. We start with the case where no kernel

splitting is needed for the target program. A simple way to determine an appropriate value

for r is to let its value start with 100%, and decrease by 10% on every failed iteration (i.e.,

the transformation time exceeds the kernel time). We employ a more sophisticated scheme

to accelerate the searching process and meanwhile exert the potential of the transformation

58

to the largest extent. The scheme consists of three stages as follows:

• Online Profiling. This stage happens in the first two iterations of the central loop;

r is set to a small initial value (10% in our implementation), represented as ro. In

the first iteration, the transformation time and the kernel execution time--note, this

is the original kernel execution time as no optimizations have been applied yet-are

recorded, represented by Ttr and Torg· If the first iteration fails (i.e., Ttr > Tor9),

no G-Streamline transformations will be applied to all future iterations. Otherwise,

in the second iteration (r0 of the data to be used have been optimized), the kernel

execution time is recorded, represented by Topt· The difference (Torg- Topt) is the

time saved by the optimization, represented by Tsav·

• Estimating Transformation Ratio. The second stage happens at the beginning of the

third iteration. Notice that the desirable value of r, represented as r', should make

the transformation time equal the optimized kernel time-that is, Tfr = (Torg- T~av)·

Assuming that both transformation time and kernel saving time increase propor

tionally with r, we have Tfr = Ttr· * r'/ro and T~av = Tsav * r'Jro. Hence, we get

r' = ro * Tor9 /(Ttr + Tsav)·

• Dynamic Adjustment. The third stage adjusts r' through the next few iterations in

case that the estimated r' is too large or small. A naive policy for the adjustment is

(1) to decrease its value by a step, r8 , on each failed iteration until reaching a success,

and (2) to increase its value on each success until a failure, then decrease it by a

step size, and stop adjustment. This simple policy is insufficient, illustrated by the

following example. Suppose ro = 10%, r' equals 30% at the beginning of this stage,

and the third iteration is a success. Note that the kernel execution in this iteration

actually is on the data optimized in the second iteration, when the optimization ratio

is 10% rather than 30%. Therefore, the success of the third iteration does not mean

that the transformation of 30% data takes less time than the optimized kernel with

30% as the optimization ratio. In another word, 30% could be too large so that the

59

fourth iteration (with r = 30%) may fail. The increase of r upon each success in the

naive policy is hence inappropriate.

Figure 3. 7 shows the adjustment policy in G-Streamline. As the right part of the flow

chart indicates, r increases its value on two (rather than one) consecutive successes to

avoid the problem mentioned in the previous paragraph. An additional condition for

the increase is that the value of r has never been decreased. If r has been decreased,

two consecutive successes means that the appropriate value of r has been found (fur

ther increase can only cause failures, and further decrease produces less optimization

benefits), and the adjustment ends. All future iterations use that r value.

In the case that kernel splitting is needed for dependences carried by the central loop,

the dynamic adjustment of r is the same as shown in Figure 3. 7 except that the top two

boxes on the right are removed. It is due to the fact that the transformed data are used in

the current iteration.

In the case that there is no central loop (e.g., cuda-ec in Section 5.5), The kernel tasks

are split into three parts, executed by three kernel calls. The first part contains 10% of all.

During its execution, the CPU transforms 10% of data. After that, the CPU thread uses

the measured kernel time T org and the transformation time Ttr to estimate what portion (a)

of the remaining 90% tasks should run in the second kernel call so that the transformation

for the remaining (1 -a) * 90% tasks can finish before the finish of the second kernel call.

The calculation is a = Ttr / (Ttr + T org). The G-Streamline then optimizes for the remaining

(1-a)*90% tasks while the second kernel call is working on the 0'*90% tasks. If the second

kernel call still finishes early, the transformation is terminated immediately. Otherwise, the

third kernel call uses the optimized data to gain speedups.

The size of a data chunk per central-loop iteration may also be adjusted for runtime

adaptation. That size influences the length of a GPU kernel invocation, as well as transfor

mation overhead. However, we find it unnecessary to adjust the chunk size given that the

transformation parameters in the adaptive control (e.g., the optimization ratio) can already

60

Figure 3.7: Dynamic adjustment for optimization ratio.

alter the rate between transformation overhead and kernel length. In our implementation,

the chunk size is the default size in the original program.

3.6 G-Streamline Usage and Other Issues

3.6.1 Overview

G-Streamline is in form of a library, written in C++ and Pthreads, consisting of functions

for various transformations (including the heuristics-based algorithms) described in this

work, along with the functions for enabling the CPU-GPU pipelining and the adaptation

schemes. To activate the pipelined transformations, users need to insert several function

calls into the CPU code that encloses GPU kernel invocations. Some minor code changes

are necessary to GPU kernels, such as the changes to array reference subscripts as shown

in Figure 3.4. Currently, the changes are done manually.

Discussions in this work have been based on the abstract forms of irregular references

("A[P[tid]]") and condition statements ("if (B[tid])") defined in Section 3.2. In our exper

iments, we find that for most applications, "P" and "B" are either some input arrays or

results derived by a simple calculation on input arrays. In these cases, their values are

easy for G-Streamline to obtain through a simple pre-computation on input arrays before

applying the transformations. But in few kernels, the calculations of "P" and "B" are com

plex. To handle such cases, G-Streamline provides an interface for programmers to provide

functions for the attainment of "P" and "B". For efficiency, the function can produce ap-

61

proximated values. The calculation of "P" and "B" is part of the transformation process in

G-Streamline, and hence can be hidden by the CPU-GPU pipelining scheme and jeopardizes

no basic efficiency of the application.

3.6.2 Improved Sorting Efficiency

For divergence path vector based thread relocation algorithm, sorting is an important build

ing block. Either sorting a single array or multiple arrays if the size of divergence path vector

is greater than 1 will help generate a near optimal new thread layout. We designed a sort

ing method that is even faster than quick sort, which is the fastest sorting algorithm we

have tried among several most commonly used sorting algorithms. The sorting algorithm

is called quicker sort. The intuitive idea is identify the continuously same data items in the

array and treat them as a single data item while scanning and swapping based on the pivot

value. The advantage is that we can reduce the total amount of data swapping by grouping

the same data items together and later filling them into their corresponding locations. It is

typical that the sorting data set has a lot of continuously identical values after several round

of recursive quick sort routine. Therefore the quicker sort helps speed up the total thread

relocation time. Besides, we set a sentinel element at the end of the array to use the faster

quick sort implementation. This quicker sort approach is very important because it helps

reduces the CPU transformation time significantly. The CPU transformation intuitively

should bear large overhead even compared to the whole GPU execution time. Without the

quicker sort approach, we found it to be very difficult to gain performance improvement for

several benchmarks.

3.6.3 CPU Thread Affinity

Another key factor for making G-Streamline efficient is the CPU helper thread affinity,

which means the thread placement on the physical cores. The main thread is responsible

for launching GPU kernel calls and spin waiting for monitoring the status of both CPU and

GPU threads. The other helper threads are responsible for performing data transformation

62

or job swapping transformation. The helper threads carry less workload than the main

thread. Therefore, the main thread is supposed to get the largest amount of computing

resources and the helper threads should only receive computing resource when necessary. We

discover that the operating system scheduler does not work well in this scenario. Therefore,

we bind every individual CPU thread to a single core and only create the same number of

threads as the number of physical cores. This affinity set-up yields the best performance

and is crucial to G-streamline overall effectiveness.

The time when the thread affinity should be set also matters. Using pthread affinity

set functions, we can bind threads to cores in two different ways. The first approach sets

thread affinity before the threads are created by specifying thread attribute. The second

approach sets thread affinity after the threads are created by inserting a call inside the

thread entry function. These two approaches seem to be similar. However, they can make

a big difference in performance of G-Streamline. The children threads by default inherit

the thread affinity of the parent thread. If inside the thread entry function, the affinity is

set as different from its default one, the thread will be migrated to the designated core(s).

Although the helper threads need to reside on different cores, at the beginning they reside

all on the same core as the parent thread. Since the parent thread starts spin waiting after

the helper (also children) threads are created, the parent thread gets more time slices than

the children thread with some operating system scheduler. Therefore the parent thread can

be a monopoly of the CPU core while the helper transformation threads can't be migrated

to other cores and start working in time. We choose the first approach which makes thread

immediately run on different cores before the parent thread's spin wait starts. And we

observe significant reduction in the transformation overhead.

3.7 Evaluation

We evaluate the effectiveness of G-Streamline on a set of benchmarks shown in Table 4.1.

We select them because they contain some non-trivial dynamic irregularities. The bench-

63

Table 3.1: Benchmarks for G-Streamline and dynamically determined optimization param
eters

sloe· source lines of code· r· optimization ratio· s· num of data segments in one transformation ' . ' .

Benchmark Source Description Irreg. Input sloe added sloe r s
all new

3dlbm real partial diff. div & 32x32x32 1.7k 200 50 1 1
app. [78] equation solver mem lattice

cfd Rodinia [13] grid finite vol- mem BOOk mesh 0.6k 550 200 0.37 5
ume solver

cg NAS conjugate gra- mem 75k array 1.2k 250 200 0.3 5
(rewrit- dient method
ten [36])

cuda-ec Tesla sequence error div l.lM DNA 2.5k 900 150 0.65 1
Bio [63] correction seq.

gpu-hmmer Tesla protein se- div 0.2M pro- 28k 350 100 1 1
Bio [63] quence align- tein seq.

ment
nn Rodinia [13] nearest neigh- mem 150M data 0.3k 210 150 0.7 1

bor cluster
unwrap real 3-D image re- mem 512x512 im- 1.4k 100 70 1 1

app. [61] construction ages

marks come from some real applications [61, 78] and some recently released GPU benchmark

collections, including Rodinia [13] and NVIDIA Tesla Bio [63]. One exception is cg, a ker

nel derived from an OpenMP program in the NAS suite [5]. Including it is for a direct

comparison with a prior study [36] that has optimized the program intensively.

The seven benchmarks cover a variety of domains, and have different numbers and types

of irregularities. The program 3dlbm contain both diverging branches and irregular memory

references. Four of the others have irregular memory references, and the other two contains

only thread divergences. Together they make a mixed set for the evaluation of not only

the various transformations in G-Streamline but also its adaptation schemes. The original

implementation of these programs are in CUDA. Previous documents have shown that they

have gone through carefully tuning and outperformed their CPU counterparts substantially

(e.g., 10-467x for 3dlbm [78], 20x for cuda-ec [63],9-30x for cfd [13]). The inputs to these

programs are shown in Table 4.1, some of which (e.g., the input to cfd) are directly obtained

64

i"
"' ' -

••

Figure 3.8: Speedup from thread-data remapping.

Table 3.2: Numbers of thread divergences and memory transactions on one GPU SM re
ported by hardware performance counters

org· original· opt (div)· divergence eliminated· opt (both)· memory references and divergences optimized
' '

3dlbm cfd cg cuda-ec gpu-hmmer nn unwrap
div mem div mem div mem div mem div mem div mem div mem

org 67k 103M 2.2M 5.2G 0 3.7G 970k 580M 13k 5.6G 0 7.5M 8k 63M
opt 0.5k 90M - - - - 860k 58 0M 0.3k 1.8G - - - -
(div)
opt 0.5k 73M 2.2M 4.5G 0 3.0G - - - - 3 2.5M 8k 13M
(both)

from the authors of the benchmarks as the ones coming with the benchmark suite are too

small for experiments and typical practical uses.

Our experiments run on an NVIDIA Tesla 1060 hosted in a quad-core Intel Xeon E5540

machine. The Tesla 1060 includes a single chip with 240 cores, organized in 30 streaming

multiprocessors (SM). The machine has CUDA 3.0 installed. We analyze performance

through CUDA profiler (v3.0.21), a tool from NVIDIA reporting execution information by

reading hardware performance counters in one SM of a GPU.

3. 7.1 Results Overview

Figure 3.8 reports the speedups of the optimized kernels in the seven benchmarks. The

baseline is the execution times of the original kernels; bars higher than 1 means speedup,

and slowdown otherwise.

Each program has three bars, respectively corresponding to the performance when the

transformations are applied with no adaptation control, with first-level control (i.e., au-

65

tomatic shutdown when transformations last too long), and with all adaptions. The first

group of bars indicate that the brute-force application of the transformations, although

leading to significant speedup to three programs, cause drastic slowdown to two programs.

The first-level adaptive control (automatic shutdown) successfully prevents the slowdown,

while the other levels of adaptations yield further substantial performance improvement to

most programs. (The reason for the first-level adaptation to throttle speedup of cuda-ec is

shown in Section 3. 7 .4.) The benefits of the optimizations are confirmed by the significant

reduction of divergences and memory transactions reported by the CUDA profiler, shown in

Table 3.2. Overall, the optimizations yield speedups between 1.07 and 2.5, demonstrating

the effectiveness of G-Streamline for exerting GPU power for irregular computations. We

acknowledge that compared to the data shown in Figure 3.2, some of the results are sub

stantially below the full potential. It is mainly due to the dependences across central loops,

transformation overhead, and approximation errors. It indicates possible opportunities for

further refinement of G-Streamline.

The software rewriting overhead mainly consists of insertion of G-Streamline library calls

for data reordering and threads swapping, customized condition computation functions, and

the transformed GPU kernels that optimizes data access patterns and control divergence.

Table 4.1 reports the software overhead in terms of the number of lines of inserted code.

For most programs, the majority of the inserted code is the duplication of the original code

because the new GPU kernels are typically the same as the original except that the thread

IDs or array reference IDs are replaced with new IDs. The numbers of lines of newly created

code are shown by the "new" column in the table. We acknowledge that the current design

of the G-Streamline interface can be further improved to enable more concise expression.

Moreover, compiler transformation may further simplify the code changes.

The different degrees of speedups on the seven benchmarks are due to their distinctive

features. These programs fall into three categories based on the presence of central loops

and dependences. We next discuss each of the benchmarks in further detail.

66

Table 3.3· Breakdown of time for different memory transaction sizes
32b-ld 64b-ld 128b-ld 32b-st 64b-st 128b-st total

org 57M 2M 1M 0 2.5M 0 62.5M
optO 10M 0 0 2.5M 0 12.5M

3.7.2 Programs with Independent Loops

Each of the four programs, unwrap, nn, 3dlbm, gpu-hmmer, has a central loop with different

iterations processing different data sets.

UNWRAP The program, unwrap, is for reconstructing 3-D models of biological particles

from 2-D microscope photos [61]. Each iteration of the central loop invokes a GPU kernel to

transform an image from the Cartesian coordinate system to the Polar coordinate system.

In doing so, it accesses the data points in a series of concentric circles, from the image center

to the outskirt. The reference patterns lead to inefficient memory accesses.

G-Streamline uses data reordering to optimize the memory accesses. Because the ap-

propriate data layout is determined by the image dimension and typically does not change

in the loop, its computation is put outside the central loop. The overhead is completely

hidden by the 50 initial iterations of the loop. The creation of new data arrays has to hap-

pen in every iteration. The corresponding G-Streamline function call is put inside the loop,

working in the CPU-GPU pipelining fashion. The array creation overhead is completed

hidden by the execution of the GPU kernels.

As Table 3.2 shows, the transformation reduces the numbers of memory transactions by

over 77%. Table 3.3 explains the reduction by showing the breakdown of different sizes of

memory transactions. (In the GPU, data can be accessed in 32B-, 64B-, or 128B- segments

with the same time overhead.) After putting data accessed by the same warp close on

memory, the optimization aggregates many small transactions into some large ones, hence

reducing the total number of transactions significantly, cutting execution time by half.

NN The nearest neighbor application, nn, finds the k-nearest neighbors from an unstruc

tured data set. Each iteration of the central loop reads in a set of records, computes the

67

Euclidean distances from the target latitude and longitude. The master thread evaluates

and updates the k nearest neighbors. We optimized the read accesses to the unstructured

data set through data reordering. We used both the distance computation kernel and the

data transfer from host to device to hide the transformation overhead. As Figure 3.8 shows,

the overhead for optimizing the whole kernel run can't be completely hidden. Using the

adaptive scheme, we were able to achieve a speedup of about 1.8 with the automatically

selected optimization ratio equaling 0.7.

3DLBM The program, 3dlbm, is a partial differential equation solver based on the lat

tice Boltzmann model (LBM) [78]. It contains both divergences and irregular memory

references. Thread divergences mainly come from conditional node updates. The memory

reference patterns in the kernel depend on the dimensions of the GPU thread blocks. A

previous study [74] has showed up to 47% speedup. But it concentrates on the removal

of thread divergences and uses ad-hoc transformations to resolve memory issues. In this

work, we apply G-Streamline to the program and achieves a similar degree of speedup.

The follow-up data reordering transformation successfully cuts both the newly introduced

irregular references and the originally existing ones. The number of memory transactions

reduces by over 74%. Both analysis and transformations happen asynchronously outside

the main loop because the order does not need to change across iterations.

GPU-HMMER The application gpu-hmmer is a GPU-based implementation of the HM

MER protein sequence analysis suite, which is a suite of programs that uses Hidden Markov

Models (HMMs) to describe the profile of a multiple sequence alignment. Thread diver

gences due to the different lengths of protein sequences impairs the program performance.

We remove the divergence by job swapping. We replace the original thread-id with re

ordered thread-id except that the thread-ids used in read/write accesses of intermediate

result arrays remain unchanged because it hurts no correctness of the program and keeps

memory accesses regular. As Table 3.2 shows, the elimination of thread divergences happen

to reduce the number of memory transactions as well, indicating that as threads work in a

68

more coordinate way, they fetch data more efficiently than before. We obtain a speedup of

2.5. The thread-data remapping overhead is completely hidden by the kernel executions in

the central loop.

3.1.3 Programs with Loop-Carried Dependences

Two programs, cjd, and cg, belong to this category. The iterations of their central loops

work on the same set of data iteratively; the computing results of an earlier iteration

influence the data to be read by the later iterations. Kernel splitting and multi-segment

data transformation (s = 5) are applied to both of them.

CFD The program, cfd is an unstructured grid finite volume solver for three-dimensional

Euler equations for compressible flow [13]. The inefficient memory references come from

the reading of the features of neighboring elements of a node in the unstructured grid of

the solver.

The appropriate data layout is loop-invariant and is computed outside the central loop

by G-Streamline, while the new array creation has to happen in each iteration. With kernel

split, the runtime adaptation of G-Streamline finds that optimization of 37% array elements

is appropriate. The optimization yields 7% performance improvement.

CG The program, cg, is a Conjugate Gradient benchmark [5]. Lee and others [36] have

shown that careful optimizations are necessary when translating cg from an OpenMP version

to GPU code because of its irregular memory references. They demonstrate that static

compiler-based techniques may coalesce some static irregular references in its kernel and

achieve substantial performance improvement. But they give no solution to the dynamic

irregular references to a vector in its sparse matrix vector multiplication kernel. The vector

is read and modified in each iteration, causing loop-carried dependence.

G-Streamline tackles those remaining irregular references by applying data reordering

transformation to the vector. The analysis step resides outside of the main loop as the

suitable data order does not vary. But the transformation step is in each iteration. G-

69

Streamline decides on 30% data transformation, and produces 12% further performance

improvement over the version optimized through the previous technique [36].

3.7.4 Program with No Central Loop

The program, cuda-ec, is a parallel error correction tool for short DNA sequence reads. It

contains no central loop, but several kernel function calls. We optimize the main kernel

fix_errorsl by removing divergence through job swapping. As Figure 3.8 shows, the sim

ple application of optimizations without adaptations yields speedup of 1.12. The simple

adaptive scheme with automatic shutdown turns off optimizations by default because it

cannot tell whether the transformation is beneficial for lack of central loops. G-Streamline,

equipped with the complete adaptive control, is able to use the split kernels to estimate

optimization ratio (following the scheme described at the end of Section 3.5.3) such that

the transformations can overlap with partial kernel executions. The estimated optimization

ratio is 0.65, yielding a speedup of 1.22.

3.8 Related Work

Several previous studies have proposed hardware extensions for reducing the influence of

irregular memory references or control flows on GPU program performance. Meng and

others [42] introduce dynamic warp subdivision to divide a warp so that diverging threads

can execute in an interleaving manner. Tarjan and others [62] propose adaptive slip to

allow a subset of threads to continue while other threads in the same warp are waiting

for memory. Fling and others [24] try to reduce thread divergences through dynamic warp

formation. These hardware approaches have shown promising simulation results. As a pure

software solution, our approaches are immediately deployable on current real GPU systems.

In software optimizations, the work closest to this study is our previous study on thread

divergence removal [74]. We show that some thread divergences can be removed through

runtime optimizations with the support of a CPU-GPU pipeline scheme. This work is en-

70

lightened by that study, but differs from it in several major aspects. First, the previous

study tackles only thread divergences, while this study shows that it is important to treat

thread divergences with irregular memory references at the same time because of their strong

connections. We provide a systematic way to tackle both types of irregularities in a holistic

manner, including novel techniques stimulated by the distinctive properties of dynamic ir

regular memory references on GPU. Second, we contribute some in-depth understanding of

the inherent properties of irregularity removal, including the NP-completeness of the prob

lems and the approximation algorithms. They substantially enhance current understanding

of GPU irregularity removal. Third, even though the previous study has used reference

redirection and data relocation for removing thread divergences, our work reveals the full

spectrum of transformations that can be constructed from the two basic mechanisms, and

uncovers the properties of each type of transformations. Finally, our work develops some

novel efficiency-driven adaptations. Together, these innovations advance state of the art of

GPU irregularity removal in both theoretical and empirical aspects.

Another work on thread divergences is from Carrillo and others [11]. They use loop

splitting and branch splitting in order to alleviate register pressure caused by diverging

branches, rather than to reduce thread divergences.

There have been a number of studies on optimizing GPU memory references. The

compiler by Yang and others [73] optimizes memory references that are amenable for static

transformations. Lee and others [36] show the capability of an openMP-to-CUDA compiler

for optimizing memory references during the translation process. Baskaran and others [6]

use a polyhedral compiler model to optimize affine memory references in regular loops. Ueng

and others [67] show the use of annotations for optimize memory references through shared

memory. Ryoo and others [50] demonstrate the potential of certain manual transformations.

All those studies have shown effectiveness, but mostly for references whose access pat

terns are known at compile time. To the best of our knowledge, this current study is the first

that tackles dynamic irregular memory references. Its distinctive on-the-fly transformations

are complementary to prior static code optimizations.

71

An orthogonal direction for enhancing GPU program performance is through auto

tuning tools [39, 49]. The combination of dynamic irregularity removal and auto-tuning

may offer some special optimization opportunities.

In CPU program optimizations, data relocation and reference redirection have been

exploited for improving data locality and hence cache and TLB usage (e.g., [2, 14, 17]).

As a massively parallel architecture, GPU display different memory access properties from

CPU, triggering the new set of innovations in this work on both complexity analysis and

transformation techniques.

3.9 Summary

In this work, we have described a set of new findings and techniques for the removal of

dynamic irregularities in GPU computing. The findings include the interactions between ir

regular control flows and memory references, the complexity in determining optimal thread

data mappings, a set of approximation algorithms, and the relations among dynamic ir

regularities, program data, and GPU threads. These findings substantially enhance the

current understanding to GPU dynamic irregularities. Meanwhile, we develop a practical

framework, G-Streamline. It consists of a set of transformations and adaptive controls for

effectively removing dynamic irregularities from GPU applications. G-Streamline works

on the fly, requiring no hardware extensions or offiine profiling. It treats both irregular

memory references and control flows at the same time in a holistic fashion, maximizing

the whole-program performance by resolving conflicts among optimizations. Together, the

findings and techniques open up many new opportunities for scientific applications involv

ing complex data references or control flows to effectively benefit from massively parallel

architectures.

72

Non-Uniform Cache Sharing Hierarchies

4.1 Overview

One of the features that distinguish modern Chip Multiprocessors (CMP) from traditional

processors is the presence of cache sharing among multiple computing units on a chip. The

sharing reduces communication latency among co-running threads, but also results in cache

conflicts and contention among threads. On a system with multiple chips, the sharing

further shows non-uniformity: Cores across chips typically do not share cache as the cores

in a chip do.

Researchers have recognized the importance of an effective use of shared cache and

developed a number of techniques to exploit it. For example, cache-sharing-aware scheduling

in operating systems (OS) research has shown that by assigning suitable programs or threads

onto the same chip, one can alleviate the cache contention among co-runners (processes or

threads running on sibling cores) and reduce inter-thread communication latency, improving

program performance considerably. The effectiveness of those techniques has shown on sets

of independent jobs [21, 30, 57, 65] as well as parallel threads inside certain classes of single

applications [60 J.

However, in this work, through a systematic measurement, we find that contrary to

the commonly perceived significant effects, cache sharing has very limited influence, either

73

positive or negative, on the performance of the applications in PARSEC-a recently released

benchmark suite that "focuses on emerging workloads and was designed to be representative

of next-generation shared-memory programs for chip-multiprocessors" [8]. Our experiments

show that for those programs, no matter how the threads are placed on cores (they may share

the cache in various ways or do not share cache at all), the performance of the programs

remains almost the same.

This surprising finding comes from a systematic measurement consisting of thousands

of runs, covering various potentially important factors on the levels of programs (number of

threads, parallel models, phases, input datasets), OS (thread binding and placement), and

architecture (types of CMP and number of cores). It is derived from the measured run

ning times, and confirmed by the low-level performance reported by hardware performance

counters.

After conducting a detailed analysis, we find that the fundamental reason for the in

significant influence is that the development and the currently standard compilation of the

programs are oblivious to cache sharing, causing a mismatch between the generated pro

grams and the CMP cache architecture. The mismatch shows on three aspects. First, the

data sharing among threads in those programs is typically uniform, that is, the amount of

data a thread shares with one thread is typically similar to the amount it shares with any

other thread. The uniformity mismatches with the non-uniform cache sharing on CMPs,

explaining the insensitivity of the program performance on the placement of threads. Sec

ond, the accesses to shared cache lines are limited for most of the programs because of the

uniform partition of computation and data among threads, explaining the small construc

tive effects from shared cache. Finally, the working sets of the programs are typically much

larger than the shared cache. The difference between the sharing and non-sharing cases in

terms of cache size per thread is not enough to make significant changes in cache misses.

Cache contention hence show little influence as well.

The second part of this work explores the implications of the observed insignificance.

At the first glance, the observation might seem to suggest that exploitation of cache sharing

74

is unimportant for the executions of the multithreaded applications. But a set of experi

ments demonstrate the exact opposite conclusion: Exploiting cache sharing has significant

potential, but to exert the power, cache-sharing-aware transformations are critical.

In the experiments, we increase the amount of shared data among sibling threads (the

threads to run on the same chip) through certain code transformations. The transforma

tions yield non-uniform data sharing among threads, matching with the non-uniform cache

sharing on the architecture. The influence of cache sharing becomes much more significant

than on the original programs. Appropriate placement of threads on cores cuts over half of

cache misses and improves performance by up to 36%, compared to other placements and

the original programs.

To the best of our knowledge, this work is the first that systematically examines the in

fluence of cache sharing in modern CMP on the performance of contemporary multithreaded

applications. Many previous explorations [21, 30, 31, 57, 65] are concentrated on co-runs of

independent programs, on which, cache contention is the single main influence by shared

cache. The studies on multithreaded programs have been focused on certain aspects of

CMP, rather than a systematic measurement of the influence from cache sharing. For in

stance, many of them have used simulators rather than real machines; some [66] have used

old benchmark suites (e.g., SPLASH-2 [71]), or have concentrated on a specific class of

applications, such as server programs [60]; some [38] have used old CMP machines with no

shared cache equipped. These limitations may not be critical for the particular focus of the

previous research-in fact, sometimes they are unavoidable (e.g., using simulators for cache

design). However, they may cause biases to a comprehensive understanding of the influence

of cache sharing on program performance. As far as we know, none of the previous explo

rations has included the many factors as covered in this work. These differences explain the

departure between the observations made in this work and the previous.

Similar to the observation made by Sarkar and Tullsen [52], we have found only a small

number of studies [34, 44, 52] on exploiting program transformations for the improvement of

shared cache usage (a clear contrast to the large body of work in OS and architecture areas.)

75

With the importance of program transformations demonstrated in this work, hopefully more

research efforts will be triggered in this direction.

In summary, this work consists of three-fold contributions.

• We conduct a systematic measurement on the influence of cache sharing in modern

CMP on the performance of contemporary multithreaded applications with seven

factors on three levels (program, OS, architecture) considered. The measurement

reveals novel observations on the influence of cache sharing.

• We uncover the reasons for the insignificant influence of cache sharing on the mul

tithreaded applications, pointing out that their mismatch with the underlying CMP

cache architecture is the main obstacle for exerting the potential of shared cache.

• Through a set of experiments, we demonstrate the potential of cache-sharing-aware

program transformations, and conclude that program transformations are the key for

exerting the power of shared-cache management (e.g., shared-cache-aware scheduling).

In the rest of this chapter, we describe the design of the measurement in Section 4.2,

report the measurement results and findings in Section 4.3, present the exploration on

cache-sharing-aware transformation in Section 4.4, discuss related work in Section 4.5, and

conclude the paper in Section 4.6.

4.2 Experiment Design

In this section, we first introduce the benchmark suite we use, then present the factors

that we vary in the measurement and the corresponding rationales, and finally describe the

schemes used for the measurement of times and hardware performance.

4.2.1 Benchmarks

We use PARSEC [8] as the benchmark suite. It is a recently released suite designed for CMP

research. The suite includes emerging applications in recognition, mining and synthesis, as

76

Table 4.1: Benchmarks for non-uniform shared cache experiments
Program Description Parallelism Working

Set
Blackscholes Black-Scholes data 2MB

diff-eqtn
Bodytrack body tracking data
Can neal sim. annealing unstruct.
Dedup stream com- pipeline

pression
Facesim face simulation data
Ferret image search pipeline
Fluidanimate fluid dynamics data
Streamcluster online cluster- data

ing
Swaptions

X264

portfolio pric- data
ing
video encoding pipeline

*' see (8] for detail.

8MB
256MB
256MB

256MB
64MB
64MB
16MB

512KB

16MB

well as systems applications that mimic large-scale multithreaded commercial programs.

Studies [7, 8] have shown that the suite covers a wide range of working set sizes, and

a variety of locality patterns, data sharing, synchronization, and off-chip traffic, making

it an attractive choice over some old parallel benchmark suites such as SPLASH-2 [71].

Table 4.1 lists the 10 programs we use with the working set sizes (on simlarge inputs).

Programs dedup and ferret both use the pipeline parallelization model with a dedicated pool

of threads for each pipeline stage. Programs facesim, fiuidanimate, and streamcluster have

streaming behavior. Other programs are data-level parallel programs with different amount

and patterns of synchronizations and inter-thread communications. We are unable to use

two other programs, vips and freqmine, because we had difficulty in binding the threads

in those programs with processors. All the programs we use are written in Pthreads API.

All employ standard Pthreads schemes (locks and barriers) for synchronizations, except

canneal, which uses an aggressive synchronization strategy based on data race recovery.

77

Table 4.2: Dimensions covered in the measurement for shared cache experiments
Dimension Variations Description
benchmarks 10 from PARSEC
inputs 4 simsmall, simmedium,

simlarge, native
of threads* 4 1,2,4,8
parallelism 3 data, pipeline, unstruc-

tured
binding 2 yes, no
assignment* 3 thread assignment to

cores
platforms 2 Intel X eon & AMD

Opteron
subset of cores 7 the cores a program uses

•: Dedup and Ferret have more threads and assignments (see Section 4.3.3).

4.2.2 Factors

To achieve a comprehensive understanding on how much cache sharing influence the per

formance of multithreaded applications, our experiments include a number of factors that

are potentially important for the influence. In this section, we briefly describe those factors

and the rationale for selecting them. Table 4.2 summarizes the variations of the factors,

and Section 4.3 elaborates on the treatment of the factors in the systematic measurement.

The considered factors come from the program, OS, and architecture levels as follows.

(Words in bold fonts correspond to the dimensions in Table 4.2.)

• Progrom Level The major factors include the input datasets to the program, the

number of threads, and the parallel models. The first two factors determine

the working set of a thread and the intensity of cache contention. We use four input

datasets included in PARSEC, as listed in Table 4.2 in increasing order of size, and

vary the number of threads from one to eight. The third factor, parallel models,

determines the patterns of data sharing and computation.

• OS Level The major effect from the OS is thread scheduling, which determines the

co-runners on a chip. To examine the potential of the scheduling, we avoid using

any particular scheduling algorithms. Instead, we experiment with different thread-

78

core assignments to cover different co-running scenarios as detailed in Section 4.3.

Because the experiment needs binding threads to cores, we examine the effects of

binding by comparing to non-binding cases (detailed in Section 4.3.4.)

• Architecture Level We use a Dell PowerEdge 2950 server equipped with 2 quad-core

Intel Xeon E5310 processors, and a Dell PowerEdge R80 hosting 2 AMD Opteron

2352 processors. The two machines are the representatives of two typical CMP ar

chitectures on the market. The Intel machine is based on Front-Side-Bus (FSB) with

an inclusive cache hierarchy; the AMD machine is a Cache Coherent None-Uniform

Memory Access (ccNUMA) CMP with HyperTransport links and an exclusive cache

hierarchy1 . The explorations on both of them may exhibit the impact of architecture

features on how cache sharing influences the performance of multithreaded applica

tions. Both machines run Linux 2.6.22 with GCC4.2.1 installed. Table 4.3 reports

the detail of the hardware.

When the number of threads is smaller than the total number of cores in a machine

(8 in our experiment), the threads may be assigned to different subsets of cores.

We experiment with up to 7 (depending on the number of threads) different sets to

cover most representative sharing scenarios. In the case of 2 threads on the Intel

machine, for instance, the sets of cores we use include 2 sibling cores that share cache,

2 non-sibling cores on a single chip which share the same memory-processor bus, and

2 cores residing on different chips. The 4-thread case has 3 corresponding sets. The

8-thread case has only 1 set, the set of all cores.

Program phase changes may affect the measurement results, especially on the measured

potential of thread scheduling. We address this factor as described in Section 4.3.2.

1The new Intel CMP, Nehalem, resembles this AMD architecture but with an inclusive cache hierarchy.

79

Table 4 3· Configuration of NUCA CMP machines
CPU Ll L2 L3 Memory

Intel Xeon E5310 1.6GHz 32KB 2x4MB, each None 8GB
quad-core shared by 2 cores shared bus

AMD Opteron 2352 2.1GHz 64KB-Icache 512KB 2MB 8GB
quad-core 64KB-Dcache shared by 4 cores ccNUMA

4.2.3 Measurement Schemes

Our measurement concentrates on running times, cache miss rates, and the amount of

shared-data accesses. We use the built-in utility HOOKS in the PARSEC suite to measure

running times, and employ the Performance Application Programming Interface (PAPI)

library [10] to read memory-related hardware performance counters, including cache miss

rates, memory bus transactions, and the reads to cache lines in a "shared" state for every

thread. (As required by PAPI for thread-level measurement, we set the pthread scheduling

scope to "system" in the hardware performance monitoring.)

Each instance of the set of factors listed in Table 4.2 determines a setting of a run.

We call such an instance a configuration. For each configuration, we conduct 5 to 10

repetitive runs to reduce the interference from random noises. By default, we use the

average performance of the repetitive runs; when necessary, we report the variations as

well.

4.3 Measurement and Findings

In this section, we report the detail of the experiments, the results, and findings. As the

focus of this work is on the performance influence from cache sharing, our experiments

center on the comparisons between the sharing and non-sharing cases-that is, when the

threads are bound to sibling or non-sibling cores respectively, as shown in Section 4.3.1.

To prevent the effects of thread scheduling from blurring the observations, for the sharing

case, we also examine the performance difference caused by different assignments of threads

on cores, as reported in Section 4.3.2. We describe the results of dedup and ferret sepa-

80

rately in Section 4.3.3. They are two typical pipeline programs with task-level parallelism

and numerous pipeline stages. Each stage is handled by a pool of threads. Unlike other

programs, the interactions among the threads in these two programs exist both within and

between stages, requiring a different set of measurements. The other pipeline program,

x264, behaves like a data-parallel program, with each thread working on an image frame.

So we report its results together with the non-pipeline programs.

4.3.1 Sharing Versus Non-Sharing

To study the influence of cache sharing, we compare the sharing case where the threads

are bound to sibling cores, an<~ the non-sharing case where the threads run on non-sibling

cores. Let a be the number of threads per chip in the sharing case. The average cache size

per thread in the sharing case is 1/a of the size in the non-sharing case. The reduced size is

part of the effects of cache sharing. We will see that the resulting influence on performance

is insignificant.

We use two and four threads in the experiments. (We did not use 8 threads as there

would be no interesting non-sharing case to compare.) On the AMD machine, because of

the quad-core sharing, the two 4-thread cases actually both have some cache sharing: In

the 4-thread sharing case, all four threads run on one chip, thus share one cache; In the

4-thread non-sharing case, there are two threads per chip.

When there are more than one way to assign the threads to cores, we pick the most

straightforward way. For instance, in the case of 4-thread sharing case on the Intel machine,

we assign threads 0 and 1 to two sibling cores and threads 2 and 3 to the other two sibling

cores on a chip. Section 4.3.2 will show that other ways of assignments produce similar

results.

Figure 4.1 presents the performance comparison. The running time shown by a bar is

the running time of the program in the sharing case normalized to the time in the non

sharing case. So, a bar higher than 1 means the contention on the shared cache and memory

bus causes slowdown to the program in the sharing case; a bar lower than 1 indicates that

81

•
~ 05

Figure 4.1: The running time of each program in the sharing case normalized to its running
time in the non-sharing case. The bars in a group from left to right correspond to the cases
of 2 threads on the simlarge input, 2 threads on the native input, 4 threads on the simlarge
input, and 4 threads on the native input.

the constructive sharing improves the performance of the program. The contention caused

by shared cache generates some slowdown to canneal and streamcluster when the large

inputs, native inputs, are used, but not much for other programs. On the other hand,

the sharing improves the performance of canneal and streamcluster slightly for simlarge

inputs, showing that the constructive effects outweigh the cache contention influence when

inputs become small. But overall, the sharing shows insignificant influence for most of the

programs performance.

The measured cache miss rates further confirm the observed small influence on the

performance. Figure 4.2 plots the cache accesses and misses averaged over the threads on

the Intel machine for the 2-thread cases on native inputs. The cache misses are similar in

the sharing and non-sharing scenarios for every program, consistent with the running time

results shown in Figure 4.1.

The reasons for the insignificance of the influence come from two aspects. First, the

small amount of inter-thread data sharing determines the limited constructive effects from

shared cache. Figure 4.3 shows the portion of all the reads on shared cache that happen

to access a cache line with a "shared" state (i.e., more than one cores have been reading

the data in the cache line.) The larger the portion is, the more data that the co-running

threads may prefetch for each other, and hence the more constructive effects cache sharing

82

6

4

Figure 4.2: Comparisons of 12-cache accesses and misses for 2-thread cases on the Intel
machine. ("S" for cache-sharing cases; "NS" for non-cache-sharing cases; "CM" for cache
misses; "CA" for cache accesses.)

83

True Sharing Ratio on Intel Machine
0.07 ,-----,-----,----,-------r--.,----r--.-----.--,

en
"0

0.06

m o.os
a:
g> 0.04
·c
~ 0.03
(/)

~ 0.02
::J
1-

0.01 I
o~~----J----~-~---~•---L--~---L--~

Figure 4.3: Read sharing for 2-thread cases on Intel. It is computed as the number of read
accesses to the L2-cache lines with a "shared" state, normalized by the total number of
L2-cache accesses.

84

may impose. The portions are less than 7% for all the programs. Analysis of the source code

of the programs confirms the finding. Take the program canneal as an example. Each of its

threads operates on randomly picked two nodes in a network in every iteration. Because of

the large size of the network and the randomness in node selection, it is no surprise to see

the small amount of references on shared data blocks.

Second, because the working sets of the programs, as shown in Table 4.1, are typically

much larger than the shared cache on a processor, the difference of the cache size per thread

between the sharing and non-sharing cases is not enough to make significant changes in cache

misses. The cache sharing therefore shows no clear negative effects either. The working set

of the program blackscholes is smaller than the shared cache on the Intel machine, but it

has very few L2 cache line reuses, as shown in Figure 4.2. So the cache sharing has little

influence on it either.

4.3.2 Comparisons Among Sharing Cases

The threads in a parallel program usually have certain differences among one another.

Threads in a data-level parallel program may compute on different sections of data, resulting

in different working sets. Threads in pipeline programs may execute different tasks. In

both types of programs, there may be non-uniform communication and data sharing across

threads.

In light of the non-uniform cache sharing, the differences among threads may offer

opportunities for performance improvement through appropriate placement of threads on

cores. The sharing cases considered in the previous subsection contain just one thread-core

assignment for each scenario. This section examines the impact that different assignments

may have by binding threads to cores in various ways.

For 4-thread cases, we permutate the thread-core assignments and exhaust distinctive co

running combinations. For 8-thread cases, we use three representative thread assignments

in both the Intel and AMD architectures. We place the threads in such a way that threads

whose indices differ by a given distance are assigned to sibling cores. For example on Intel

85

machine, with the distance set to 1, every two consecutive threads reside on two sibling

cores. We vary the distance from 1 to 2 to 4.

Table 4.4 shows the performance difference caused by the different assignments when

the native inputs are used. Similar results are observed on other input sets. As the table

shows, 6 of the 8 benchmarks have less than 5% maximum difference. For the programs that

have over 5% differences, canneal, facesim, we find that the times and cache miss rates for

the multiple runs of a fixed configuration fluctuate considerably. For instance, five simlarge

runs of canneal on the AMD machine have running times as 0.85, 0.72, 0.83, 0.96, and

0.93. After applying a statistical analysis on the data (Student-distribution with 90% as

the confidence value), we observe overlaps of the confidence intervals of different bindings,

indicating that the difference in running times is statistically insignificant.

Overall, the different thread-core assignments do not show considerable effects on the

program performance. There are two possible reasons. First, the threads in those programs

may have similar interactions (communications, synchronizations, etc.) with one another,

that is, for each thread, its relations with any other threads may be similar. The second

possible reason is program phases. It could be that even though the interactions among

threads are not similar among one another, but the interactions show different patterns in

different phases of the execution so that no particular assignments work well for all the

phases.

We conduct a more detailed experiment to determine the exact reason. We collect the

cache miss rates of every 100 million instructions (a typical interval granularity used in phase

detection [54, 55]) when the program runs in different thread-core assignments. Figure 4.4

plots the temporal traces of the L2-cache miss rates of swaptions and fiuidanimate when

they run on the Intel machine with threads placed on two pairs of sibling cores differently.

The three curves in each graph correspond to three sharing cases, in which, the cache

on a processor is shared by a different pair of threads. The two programs show different

phase change patterns. But on both of them, the three sharing cases show similar L2-

cache miss rate curves. Similar phenomena are seen on other programs, indicating that the

86

Table 4.4: Maximal percentage of the performance differences caused by different bindings
of threads to a given set of cores

AMD Intel
Benchmarks 4-t 8-t 4-t 8-t
Blackscholes 0.03 0.01 0.12 0.02
Bodytrack 0.6 0.97 0.64 1.02
Canneal 3.4 7.18 9.34 2.56
Facesim 0.16 11.15 0.43 0.23
Fluidanimate 0.25 0.71 1.23 2.29
Streamcluster 1.88 0.08 0.13 0.05
Swaptions 0.3 1.08 0.1 1.01
X264 0.32 1.12 0.17 0.2

uniform interplay among threads rather than phase changes is the reason for the observed

insignificance of the influence of thread-core assignments.

As a side note, the insignificant influence seems to suggest little potential of thread

co-scheduling (or thread clustering) for improving the performance of these programs, a

contrast to previous results on independent jobs [30,57] and server programs [60]. However,

Section 4.4 will show that program transformations would lead to an opposite conclusion.

4.3.3 Pipeline Programs

Unlike data-parallel programs, typical pipeline programs contain numerous concurrent com

putation stages, and the interactions among the threads exist both within and between

stages.

In PARSEC, ferret and dedup are two such programs. The program ferret is a search

engine, which finds a set of images that best match a query image by analyzing their

contents. The program dedup is a program that detects and eliminates redundancy in a

data stream. The two programs use a similar producer-consumer model for task parallelism:

Every job has to go through several stages before completion; The processing results in one

stage is passed to the next stage; Every stage has a dedicated thread pool. The product

queue between every two stages is protected by lock-based synchronization schemes. As the

programs show similar experimental results, we concentrate on ferret for explanation.

87

swaptions
0.07.------,-----,----.------.;:::=========:::::;-!

--Thread 1, 2 Share Cache

~ 0.05
iU a:
fll 0.04
fll

~
Q) 0.03

..r:.
~ (.,) 0.02

0.01

0.6

50

·-·-·Thread 1,3 Share Cache
- - - Thread 1,4 Share Cache

1 00 150 200 250 300

Instructions (1 09
)

350 400

fluidanimate

--Thread 1, 2 Share Cache
- ·- Thread 1,3 Share Cache

- - - Thread 1 ,4 Share Cache

100 200 300 400 500

Instructions (1 09
)

Figure 4.4: Temporal traces of the L2 cache miss rates on the Intel machine when 4 threads
are placed on the same set of cores differently.

88

Table 4.5: Performance of ferret on the Intel machine with different thread placement on
cores. (S: pipeline stage)

Thread-core Binding of 6 Stages Time
s S2,S3,S4,S5 S6 (s)
0 {0 2 4 6},{0 2 4 6},{1 3 5 7},{1 3 5 7} 1 210.1
0 {0 4 1 5},{2 6 3 7},{0 4 1 5},{2 6 3 7}2 160.9
0 {1 50 4},{3 7 2 6},{1 50 4},{3 7 2 6} 3 161.1
0 {0 2 4 6},{1 3 5 7},{0 2 4 6},{1 3 57} 1 161.6
0 {0 2 1 3},{4 56 7},{0 2 1 3},{4 56 7}4 161.3

No binding 165.7

The program ferret has 6 concurrent pipeline stages. The first and final stages are the

initialization and completion stages with only one thread in each. The other four stages

have the same number of threads. The number is specified in the program input.

Unlike the observations in the previous section, different thread-core assignments for

ferret sometimes cause significant performance difference. However, the reason for the

difference is not the effects from the shared cache, but the load balance across stages. We

illustrate the phenomenon by showing the performance of five representative assignments

in Table 4.5, each having four threads in every middle stage. Each tuple in the table

represents the thread-core assignment in a stage. For example, the first {0,2,4,6} tuple in

the top assignment means that the four threads in the second stage are bound to cores

0, 2, 4, 6 in their creation order. (The core layout on the machine is that cores of even index

numbers are on one chip and odd numbers on the other.)

Among the five binding cases in Table 4.5, four have about 160s running times, much

smaller than the other binding case. What is common about the four good cases is that

half of the 8 cores are assigned to stages 1 and 3, and the other cores are assigned to stages

2 and 4. A detailed analysis shows that stages 3 and 4 are the bottleneck, taking more time

than other stages. Further experiments confirm that as long as stages 3 and 4 do not share

cores, the running times are always about 160s; otherwise, the performance is considerably

worse. The non-binding case takes about 160s as well, indicating that the dynamic load

balancing in the default Linux scheduler successfully avoids the contention between stages

89

0.7

0.6
(/)

~ 0.5
a:
~ 0.4
~
Q) 0.3
.c
(,)

(3 0.2

0.1 ¢ $

Ferret

I

I

¢$:

I

$1

----0~~~---L-L~--~--~~---L---L~J---L---~
c1 c2 c3 c1 c2 c3 c1 c2 c3 c1 c2 c3

Figure 4.5: Box plot of L2-cache miss rates per thread on the Intel machine when different
thread-core assignments are used. (cl,c2,c3 refer to the top 3 configurations in Table 4.5.)

3 and 4.

The cache miss rate results further confirm that the shared cache is not the main reason

for the performance difference. Figure 4.5 shows the L2-cache miss rates on the Intel machine

when we run ferret using the top 3 assignments listed in Table 4.5. Every box in the plot

presents the distribution of the cache miss rates of the threads in a stage in 5 runs. The

results show that even though the cache miss rates in the different stages differ significantly,

the different thread-core assignments impose minor influence on the cache miss rates. In

fact, the first configuration (cl) shows slightly lower cache miss rates than others, but its

performance is the worst, echoing that load balance rather than shared cache is the main

factor for such programs.

4.3.4 Effects of Thread Binding

As many of the measurements bind threads with cores, in this part, we examine the effect

of the binding, showing that binding threads to cores typically does not worsen the program

performance on CMP and thus is a valid way for the study of the influence of cache sharing.

90

Intel: Thread Core Binding V.S. Non Binding
~ 1.6

i= 1.5
C>
c ·c: 1.4
c
:::l a: 1.3

"0

....

.§ 1.2 D
~ 1.1

0 <1=
z L-------------------------------------~

AMD: Thread Core Binding V.S. Non Binding

D -

Figure 4.6: Effects of thread-core binding on Intel and AMD machines. Every box shows
min, max and median (·) of the five runs for every configuration. The Y -axis is the running
time in the non-binding case normalized to the average time in the binding case.

91

In the binding cases, we bind each thread to a particular core by inserting an invocation

of the system function "pthread....setaffinity _np" into each benchmark at the point where

threads are created. In the non-binding case, we rely on the default Linux scheduler to

schedule the threads; the scheduler periodically migrates threads to maintain load balance

if necessary. It is important to note that as mentioned in Section 4.2.2, in both binding and

non-binding cases, when the number of threads is smaller than the total number of cores in

a machine, we use the "taskset" command in Linux to specify which set of cores to use.

The results indicate that binding makes the programs perform much more stably than

non-binding, reducing performance variations by as much as a factor of 122. We use the

average times in the binding case to normalize the running times in the non-binding cases,

and plot the 4-thread (2 sibling cores per chip on native input) results in Figure 4.6. The

heights of the boxes show the large variations of the non-binding running times. Most boxes

are above 1, indicating that binding makes the programs run faster than non-binding. We

observe the similar phenomena on other configurations, despite the changes in the number

of threads, core sets, and inputs.

The observed effects are mainly because the binding reduces cache thrashing and thread

migrations. On the other hand, binding may hurt load balance, but that effect is not

obvious for those programs due to the uniformity of the threads. This experiment, besides

justifying the use of binding in the following explorations, also suggests that, similar to prior

observations on traditional SMP (Symmetric multiprocessing) machines, the binding may

serve as a strategy for the performance improvement of multithreaded applications running

on CMP, despite the presence of shared cache.

Short Summary This section has shown that due to the large working sets and the lim

ited inter-thread data sharing of the multithreaded programs, cache sharing has insignificant

(either constructive or destructive) influence on the performance of the programs. Further

more, we reveal that adjusting the placement of threads on cores has limited potential for

performance enhancement of the programs. The main reason is the uniform relations among

parallel threads, which mismatches with the non-uniform cache sharing on CMP machines.

92

These conclusions, drawn from the extensive measurements, appear to hold across inputs,

number of threads, sets of cores, and architectures.

4.4 Program-Level Transformation

Although the previous section reports insignificant influence of cache sharing for the per

formance of PARSEC programs, we maintain that the results do not suggest that cache

sharing is a factor ignorable in the optimization of the execution of those programs. The

implication is actually the opposite: Cache sharing deserves more attention especially in

program transformations.

The conclusion comes from a set of experiments, in which, we transform several programs

to make them better match the non-uniform cache sharing on CMPs. Our experiments

concentrate on four representative programs. The transformations on them share a single

theme, which is to increase the data sharing among sibling threads but not other threads.

This section uses streamclu.ster as an example to explain the transformations in detail, and

then reports the results on other programs.

4.4.1 Streamcluster

The program, streamcluster, is a data-mining program that clusters a stream of data points.

One part of the program takes a chunk of array points and calculates their distances to a

center point. This calculation occurs many times and accounts for a major part of the

program's running time.

4.4.1.1 'Iransformation

To highlight the transformation, we use the simplified pseudo-code in Figure 4. 7 for the

explanation, and assume there are 2 cores per chip.

The original version of the program is outlined in Figure 4.7(a). Each of the threads

computes the distances of a chunk of data to the center points. The variables TLstart,

93

!.:.~~~--Thread 1
I .ori = 1 to N_ctr. step= 1

1 forJ=T1_starttoT1_end
: dist = cal_dist(P()]. P(cente~ I] J l:

end

-- ------rhn>ail 2 --
for I= ~.~.N_ctr, step= 1

for J = T2_start to T2_end
dist = cal_dist(P()]. P{ centerf I] I l:

end

(a) Original Version (cache-sharing-oblivious)

Thread 3

- -~ ---Threiid1 11tedistribu'te~'1~:·~-------- -" · -thfeciif2- (Redistribut~; ------nlrei(fj
for I= 1 to N_ctr, step= 2 \......_ Wo~ · fat I= 1 to N_ctr. step= 2 "--__W_Q_~'

forJ=T1_startto T2_end ~4- 1 for}=Tt_startto T2_end 4
templ(/ J=cal_dist(P[/]. P[centerfij]1: temp2[)]•cal_dist(P{/ (. P(centerfl+1]]1:

end l!nd

'-----~--------

(b) Cache-sharing-aware transformation. Data sharing increases between sibling threads
(e.g. threads 1 & 2),

but not across sibling pairs (e.g. threads 2 & 3).

----~---Threaifl-~....:- t- ~~~ Thread2 ~;;;-;.
fori•1 to N_ctr, step .. 2 ~roU & Jam 1 fori= 1 toN ctr step,.. 2 ~nroll & Jam

forJ=T1_starttoT1_end -~ : forJ=f2_slarttoT2_end --- -
templ(j]=cal_dial(P(j], P(""'"In I), I tomp1[j]=cal_d<SI(P[)], P{ cente<j~]),

.~:'p2(}]=cal_dis~ P(j (, P[""'"(/+/]]], 1 en~emp2[/]=cal_dist(P()]. P{ center[/+/]])

------- -- _I_ --- ~~------ --end

(c) Traditional unroll-and-jam (cache-sharing-oblivious). Intra-thread data locality
increases.

Figure 4.7: Simplified pseudo-code illustrating the original and optimized versions of the
function pgain() in streamcluster. It is assumed that two threads constitute a sibling group
that share cache.

94

TLend represent the start and end of the data chunk assigned for Thread 1, T2_start,

T2_end for Thread 2. The outer loop iterates over every candidate cluster center, and the

inner loop iterates over every data point in a chunk. The function caLdist computes the

distance between a point and a candidate center.

Figure 4. 7(b) illustrates a transformation toward improving the matching between the

program and shared cache on CMP. It tries to enhance the data sharing among sibling

threads by letting them compute the distances from the same chunk of data points (e.g.,

thread 1 & 2 on data from Tl_start to T2_enrl) to two different center points. The chunk size

becomes twice as large as before. The computed distances are stored into two temporary

arrays for later uses. (The use of temporary arrays is necessary to circumvent some loop

carried dependencies2.) With this transformation, the data sharing among threads becomes

non-uniform: For instance, thread 2 shares substantially more data with thread 1 than with

thread 3. When sibling threads co-run on a CMP processor, they would form synergistic

prefetching with one another. One thread can use the data point brought into the shared

cache by the other thread.

We notice that one may improve data locality inside a thread using traditional unroll-

and-jam transformation (3]. The transformed code is shown in Figure 4.7(c). (In our

implementation, the inner loop is staged to circumvent loop carried dependencies.) In one

iteration of the inner loop, each thread computes the distances between a point and two

centers, increasing the reuse of the loaded data points. The increase of data reuse is similar

to the previous transformation, except that it is inside a thread rather than between threads.

The intra-thread and inter-thread transformations are complementary to each other. They

can be applied to a program at the same time. In the next section, we report how the

inter-thread transformation benefit the program both without and with the intra-thread

optimizations.

2Inside the inner loop, after caLdist, there is an update to a data structure corresponding to the point
Pfjj, which is then used in the computation following the inner loop, causing loop carried dependencies

95

4.4.1.2 Performance

Figure 4.8 shows the speedup brought by the transformations when four or eight threads run

on the Intel machine. In all these runs, we keep sibling threads assigned to adjacent cores.

Even though both the inter-thread and intra-thread transformations add extra store oper

ations to the temporary arrays, the results show that their benefits outweigh the overhead

substantially. An examination of the source code shows the reason. Each point involved

in the distance calculation is of 128 dimensions. As a result, the temporary arrays weight

only a small portion of the entire working set.

One may notice that the benefits from the inter-thread transformation is not as sig

nificant as those from the intra-thread transformation3 . It is because the intra-thread

transformation increases the hits in Ll cache, while the inter-thread transformation only

benefits L2 usage. However, it is important to note that these two transformations are not

competitors. As the "both-share" bars in Figure 4.8 show, based on the code optimized

through the intra-thread transformation, the inter-thread transformation further improves

the performance by 23%, demonstrating the complementary relations between these two

kinds of transformation.

Figure 4.9 reports the normalized L2 cache miss rates and the numbers of memory bus

transactions. The performance of the orignial program is the baseline. In each group of

bars, the "inter-share" and "both-share" bars correspond to the cases when the inter-thread

transformation is applied without and with the intra-thread transformations respectively.

In both cases, the transformation reduces L2 cache miss rates and memory bus transactions

substantially, confirming the benefits of the transformation for data locality enhancement

despite whether intra-thread optimizations are applied. We stress that the application of

the transformations requires the cooperation from thread schedulers. The "inter-noshare"

and "both-noshare" bars in Figure 4.9 shows the result when sibling threads are placed on

non-sibling cores. The clear contrast with the other bars demonstrates that the shared-

3 This result differs from our previous observations [75) because we reimplement the transformation,
during which, we manage to remove some inefficiency in the intra-thread transformed code, including the
elimination of stores of some intermediate results and some references to assistant data structures.

96

1-tnl:•-share-intra-shareCJ both-sharel

2.5

i .:
"' 1

0.5

8Thl<!

Figure 4.8: Speedup by inter-thread, intra-thread, and combined transformations on the
Intel machine. Adjacent two threads share 12 cache.

Table 4 6· Streamcluster with a different input ..
Data Reuse Level 4 8 16 32 64

Intra (s) 12.2 11.1 10.7 10.9 11.5
Combine (s) 12.0 10.7 10.3 10.3 10.9

cache-aware program transformation creates opportunities to better exert the power of

thread co-scheduling or clustering.

We stress that inter-thread sharing is an essential component when using shared cache to

improve the program performance by combining the inter-thread sharing and intra-thread

sharing transformations together. Simply using intra-thread may not always yield better or

equivalent performance compared to using combined transformation. The Table 4.6 shows

the streamcluster performance results on a smaller input. We define the data reuse level as

the product between the inter-thread sharing level and the intra-thread sharing level, which

is the number of times a data point is continuously reused for distance computation in short

time interval. As we can see from this table, with the same level of data reuses, the combined

transformation case always performs better than the intra-thread sharing case. The reason,

as confirmed by 11 cache simulation results, is that increase in intra-thread sharing may

increase the chance of cache line conflicts in 11 cache between the data points and center

points in the distance calculation. In this case, the center points could have been reused if

they had not been evicted out of the cache earlier due to conflicts. The inter-thread sharing

case while preserving the same amount of data reuses in last level cache, can help reduce

the contention in first level caches. We can control the level of cache conflicts by tuning the

97

•inter-share •inter-noshare Oboth-share Oboth-noshare

L2 Cache Miss Rates
1.5,-----~--------------~-----.

(!)
"0
0
() 1
Ol ·;::
0

c:: 0.5

~

4 Threads 8 Threads

Memory Bus Transactions
1.5.-------~----------------,--------.

(!)

"8
() 1
Ol

·;::
0
........

c:: 0.5
«1 .=

4 Threads 8 Threads

Figure 4.9: The reduction of 12 cache miss rates and memory bus contention on the Intel
machine. In each bar group, the first two are when inter-thread transformation is applied
to the original program, and the next two are when the combined transformation for both
intra-thread and inter-thread sharing is applied. In each pair, the two bars respectively
correspond to the cases when the sibling threads of the inter-thread optimized version run
on two cores sharing or not sharing cache.

98

inter-thread sharing level in the combined transformation case, while traditionally exclusive

loop unrolling might only deteriorate the performance. Another recently published work [32]

corroborates our observation by pointing out the benefits of inter-thread sharing in reducing

cache conflicts with a large number of arrays present. In summary, the inter-thread sharing

is an essential code transformation technique that should be recoganized for performance

tuning on the contemporary shared cache architectures.

4.4.2 Blackscholes

The program, blackscholes, is a financial application. It calculates the prices for a port

folio of European options analytically with the Black-Scholes partial differential equation.

Because there is no close-form expression for the equation, the program uses numerical

computation [8].

The input data file of this benchmark includes an array of options. The program com

putes the price for each of the options based on the five input parameters in the dataset file.

The upper bound of the outermost loop in the program controls the number of times the

options need to be priced. There are no inherent dependencies between two iterations of the

loop. In the original program, the parallelization occurs inside the loop. In each iteration,

the options are first evenly partitioned into n (n for the number of threads) chunks. Each

chunk is then processed by one thread, which prices the options in the chunk one after one

by solving the Black-Scholes equation.

The transformation we apply is similar to the one on streamcluster. After the transfor

mation, sibling threads process the same chunk at the same time; their executions corre

spond to a number of adjacent iterations of the outermost loop.

We observe that the transformation significantly reduces the number of misses on the

shared cache on the native input, as shown in the left part of Figure 4.10. However, the

program running times have no considerable changes. The document of the benchmark

(the README file in the package) mentions that "the limiting factor lies with the amount

of floating-point calculation a processor can perform." Through reading the program, we

99

!•Original OOptimizedl
~ 1.5,----.-----.----.-----,----.-----.----.-----r----,
Q)
~
~

~
Q)

.s::
~
(.)
C\1
...J

a:l 0.5
.~
«;
E
0

Blackscholes

z 0-
4 Thrd 8 Thrd

Bodytrack Ferret

0_
4 Thrd 8 Thrd 4 Thrd 8 Thrd

Figure 4.10: The reduction of L2 cache misses of blackscholes, bodytrack and ferret due to
cache-sharing-aware transformation. The Intel machine is used.

confirm that the program is a compute-bounded application-after reading an option data,

the program conducts a significant amount of computation to solve the Black-Scholes equa

tion with only local variables referenced. For further confirmation, we artificially reduce

the amount of computation of the kernel in both the original and optimized programs. The

optimized program starts showing clear speedup.

4.4.3 Bodytrack

The program, bodytrack, tracks the 3D pose of a human body through an image sequence

using multiple cameras. The algorithm uses an annealed particle filter to track the body

pose using edges and foreground segmentation as image features, based on a 10 segment 3D

kinematic tree body model. The number of particles and annealing layers are supplied as

command line arguments.

The program processes frame by frame, and every frame consists of multiple camera im-

ages. The program has mainly two parallelized kernels CreateEdgeMap and Calc Weights.

We make sibling cores share workload of the same image and non-sibling cores on different

images in the procedure CreateEdgeMap, resulting in a 15% speedup with 8 threads pro-

100

cessing the native input on the Intel machine. We also increase the chance of true data

sharing for the Calc Weights by redistributing the comparison workload for edge maps and

foreground segment maps, resulting in a 5% speedup with 8 threads on the Intel machine.

The last level cache misses are significantly reduced. We provide the normalized last level

cache miss reduction in the middle part of Figure 4.10.

4.4.4 Ferret

The program, ferret, is a pipeline program. It implements a search engine for finding a set

of images that best match a query image by analyzing their contents. The program contains

6 concurrent pipeline stages. The first and final stages are for initialization and completion

with only one thread in each. The other four stages have the same number of threads. The

number is specified in the program input.

The fourth stage of the pipeline is the most memory intensive phase of the program.

During that stage, the features of a query image extracted by the first three stages are

compared against the feature database to identify the top K images closest to the query

image. In the original program, each thread processes one query each time. Every query

will look up some part of the database according to the locality sensitive hashing (LSH)

that maps similar items to the same buckets in the hash table. The part of database that

is traversed is much larger than the size of the last-level cache we experiment with, not to

mention the size of the whole database.

We apply a two-step transformation to examine the potential of shared-cache-aware

program optimizations. First, we split the database into m sections evenly (m equals the

number of shared caches in the machine). The threads running on the ith shared cache

compare the queries against only the ith database section. As a result, each query is

processed by m threads (one on each shared cache). A post step is added to merge the

results together. For example, there are eight threads with the first four running on the

first chip and the second four on the other chip (assuming one shared cache per chip). After

the transformation, the database is split evenly into two sections, owned by each chip. At

101

most four queries can be processed at one time with threads 0 and 4 processing the first

query, threads 1 and 5 processing the second and so on. In the second step, based on their

data addresses, we reorder the queries and assign them to the corresponding threads so

that nearby queries for the same database section are processed by sibling threads within a

short time interval.

This transformation creates a non-uniform relation among threads: Sibling threads share

similar data accesses in the same database section, but non-sibling ones do not. Besides

the synergistic prefetching among sibling threads, an additional benefit is that shared cache

can be used more efficiently: Rather than keeping multiple copies of a database entry in

multiple shared caches as the original program entails, the transformed program ensures

that different shared caches store different parts of the database. The transformation is

insensitive to database size as data reuses are enhanced in an inter-thread level within short

time intervals. As shown in the right part of Figure 4.10, the transformation eliminates

most shared-cache misses, and yields a speedup of as much as 1.53.

Overall, the experiments demonstrate that after the transformations, cache sharing

starts to show its influence, and the placement of threads on cores becomes important

for the programs performance. The observations suggest the importance of program-level

transformations for improving the usage of shared cache. On the other hand, they further

confirm that the uniform relation among threads in the original programs is one of the main

causes for the limited influence of cache sharing on performance.

4.5 Related Work

Cache sharing exists in both SMT (Simultaneous Multithreading) and CMP architectures.

Its presence has drawn lots of research interest, especially in architecture design and pro

cess/thread scheduling in OS.

In architecture research, many studies (e.g., [12, 47, 48, 53, 59]) have proposed different

ways to design shared cache to strike a good tradeoff between the destructive and construe-

102

tive effects of cache sharing. These studies, although containing some examination of the

influence of shared cache, mainly focus on the hardware design. Their measurements are

on simulators and cover limited factors on the program or OS levels.

In OS research, the main focus on shared cache has been job co-scheduling including

thread clustering. Many job co-scheduling studies [20, 21, 30, 31, 57, 58, 65], are on mul

tiprogramming environments, attempting to alleviate shared-cache contention by placing

independent jobs appropriately. Some of them include parallel programs in the job set, but

the main focus is on inter-program cache contention rather than the influence of shared cache

on parallel threads. Tam and others [60] propose thread clustering to group threads that

share many data to the same processor through runtime hardware performance monitoring.

They concentrate on server programs.

Some studies on workload characterization and performance measurement are relevant

to this current work. Bienia and others [7, 8] have shown a detailed exploration of the

characterization of the PARSEC benchmark suite on CMP. Because their goal is to expose

architecture independent, inherent characteristics of the benchmarks, their measurement

runs on simlarge input only, and uses a CMP simulator rather than actual machines. Liao

and others [38] examine the performance of OpenMP applications on a Sun Fire V 490

machine with private cache only. Tuck and Tullsen [66] have measured the performance of

SPLASH-2 when 2 threads corun on a SMT processor.

Our work is distinctive in that it examines the influence of cache sharing in CMP on

multithreaded programs in a comprehensive manner. It explores the numerous factors on

program, OS, and architecture levels at the same time, employs modern CMP machines

and contemporary multithreaded benchmarks. The systematic examination of the various

facets of the problem is vital for avoiding biases that partial explorations may have, and

thus improving the understanding of the influence of cache sharing on CMP.

We have found only few studies on exploiting program transformations for the im

provement of shared cache usage, which echoes a prior observation [52]. Tullsen and oth

ers [34, 52] have proposed compiler techniques to change data and instructions placement

103

to reduce cache conflicts among independent programs. Nikolopoulos [44] has examined a

set of manual code and data transformations for improving shared cache performance on

SMT processors. The inter-thread transformation described in Section 4.4 may share some

similarity with traditional locality optimization on NUMA architectures for main memory

usage [37]. Although both try to redistribute computation and data, our transformation

aims to promote synergistic prefetching across threads, rather than increase data accesses

to local memory banks.

4.6 Summary

In this work, we conduct a series of experiments on Intel and AMD CMP architectures

to systematically examine the influence of cache sharing on the performance of modern

multithreaded programs. The experiments cover a spectrum of factors related to shared

cache performance on various levels. The multidimensional measurement shows that on

both CMP architectures and for all the thread numbers and inputs we use, shared cache on

CMP has insignificant influence on the performance of most multithreaded applications in

the benchmark suite. The implication, however, is not that cache sharing has no potential

to be explored for the execution of such multithreaded programs, but that the current

development and compilation of parallel programs must evolve to be cache-sharing-aware.

The point is reinforced by three case studies, showing that significant potential exists for

program-level transformations to enhance the matching between multithreaded applications

and CMP architectures, suggesting the need for further studies on cache-sharing-aware

program development and transformations.

104

Cross-Input Adaptive Performance Tuning

for GPUs

5.1 Motivation

Compared to previous approaches for general purpose GPU programming through OpenGL

APis, we have seen significant advance in the accessibility of GPUs for general-purpose com

puting. One of the most popular programming model is NVIDIA CUDA, as mentioned in

previous chapters, abstracts GPU as a general-purpose multithreaded SIMD (single instruc

tion, multiple data) architectural model, and offers a C/C++-like interface-supported by a

compiler and a runtime system-for GPU programming. CUDA simplifies the development

of GPU programs.

However, developing an efficient GPU program remains as challenging as before if not

even more. The difficulties come from four aspects. The first is the complexity in GPU

architecture. On an NVIDIA GeForce 8800 GT, for example, there are over one hundred

cores, four types of off-chip memory, hundreds of thousands of registers, and many parame

ters (e.g., maximum number of threads per block, thread block dimensions) that constrain

the programming. The second difficulty is that the multi-layered software execution stack

makes it difficult to predict the effects of a code optimization. A special difficulty with

105

CUDA is that currently a GPU program has to be compiled by the NVIDIA CUDA com

piler (NVCC) and run on the NVIDIA CUDA runtime system, some details of both of

which are not disclosed yet. Third, an optimization often has multiple effects, and the

optimizations on different parameters often strongly affect each other. Finally, some GPU

applications are input-sensitive. The best optimizations of an application may be different

when different inputs are given to the application. Together, these factors make manual

optimizations time consuming and difficult to attain the optimal, and at the same time,

form great hurdles to automatic optimizations as well.

On the other hand, optimizations are particularly important for GPU programming.

Because of the tremendous computing power of GPU, there can be orders of magnitude

performance difference between well optimized and poorly optimized versions of an appli

cation [6,50,51].

Several recent studies have tried to tackle the problem through empirical search-based

approaches. Ryoo and his colleagues [51] have defined efficiency and utilization models for

GPU programs to help prune the optimization space. Baskaran et al. [6] have developed

a polyhedral compiler model to optimize global memory accesses in affine loop nests, and

used model-driven empirical search to determine the levels of loop unrolling and tiling.

Although both studies have shown promising results, neither of them have explored the

influence of program inputs on the optimization. Program inputs refer to both the values

and other related properties (e.g., dimensions of an input matrix) of the inputs given to

a program. In this work, we initiate an exploration in this new dimension, showing that

program inputs may affect the effectiveness of an optimization by up to a factor of 6. Based

on the exploration, we develop a tool, G-ADAPT (GPU adaptive optimization framework),

to efficiently discover near-optimal decisions for GPU program optimizations, and then,

tailor the decisions for each program input.

More specifically, this work makes three major contributions. First, we develop a source

to-source compiler-based framework, G-ADAPT, for empirically searching for the best op

timizations for GPU applications. The framework is distinctive in that it conducts program

106

transformations and optimization-space search in a fully automatic fashion, and meanwhile,

offers a set of pragmas for programmers to easily incorporate their knowledge into the em

pirical search process. Second, this work examines the influence of program inputs on GPU

program optimizations. We are not aware of any previous studies in this direction. The

lack of such explorations may be due to a common intuition that as most GPU applications

divide a task into small sub-tasks, the changes in their inputs do not matter to the optimiza

tions as long as the sub-tasks remain similar. Our experiments show that, although many

GPU kernels conform that intuition, some GPU programs exhibit strong input-sensitivity

due to their computation patterns and the interplay with optimization parameters. Finally,

based on the exposed input sensitivity, we construct a cross-input predictor by employing

statistical learning (Regression Trees in particular) to make G-ADAPT automatically tailor

optimizations to program inputs. As far as we know, this is the first framework that allows

cross-input adaptive optimizations for GPU applications.

Experiments on NVIDIA GeForce 8800 GT GPU show that the adaptive optimization

framework can predict the best optimizations for most of the 7 GPU applications with over

93% accuracy. The adaptive optimization improves the program performance by as much

as 2.8 times in comparison with manually optimized versions.

We organize the paper as follows. Section 5.2 provides some background on GPU and its

programming model. Section 5.3 discusses the challenges in GPU program optimizations.

Section 5.4 describes G-ADAPT as our solution to those challenges. Section 5.5 reports

evaluation of the framework. Section 5.6 discusses the training overhead and some other

complexities of G-ADAPT. After an overview of some related work in Section 5.7, we

conclude the paper with a brief summary.

5.2 Experiment Platform

This work uses the NVIDIA GeForce 8800 GT GPU as the architecture. It is a single-chip

massively parallel architecture, with 112 cores and 512 MB off-chip memory. The GPU

107

contains 14 streaming multiprocessors (SMs). Each SM contains 8 streaming processors

(SPs) or cores, with the clock rate set at 1.51 GHz. Each SM also includes 2 special

function units (SFUs) for the fast execution of complex floating point operations, such as

sine, cosine. Besides the computing units, on each SM, there are 8192 32-bit registers and

16 KB shared memory. Unlike cache, the shared memory has to be managed explicitly in

each GPU application.

The off-chip memory includes a 512 MB global memory, which is both readable and

writable by every SP, and some constant memory and texture memory, which can only be

read by the SPs. The constant memory and texture memory are cachable thanks to some

on-chip cache, but the global memory is not.

Recall that in Section 2.2, a GPU application written in CUDA is composed of CPU code

and GPU kernels. CUDA abstracts the execution of a GPU kernel as multithreaded SIMD

computation. The threads are grouped into many warps with 32 threads in each. Those

warps are organized into a number of thread blocks. Each time, the runtime system maps

one or more thread blocks to an SM. The warps in those blocks are dynamically scheduled

to run on the SM. In GeForce 8800 GT, half of a warp is an SIMD execution unit. If one

warp is stalled (e.g., due to memory accesses), the other warps can be switched in with

nearly zero overhead. Therefore, the number of warps or thread blocks that are mapped

to an SM determines the effectiveness of the pipelining execution in hiding latency. As the

thread-block size determines the mapping of blocks on SMs, it is an important parameter

in GPU program optimizations.

Threads may communicate in the following ways. Threads in a block may communicate

through shared memory and be synchronized by a __ syncthreads primitive. But communi

cations between threads that belong to different thread blocks have to use off-chip global

memory; the communications are hence slow and inflexible.

108

5.3 Challenges for Optimizing GPU Programs

Although CUDA simplifies GPU programming, it reduces little if any difficulty in optimizing

GPU applications; to some degree, the added abstractions even complicate the optimization

as they make performance prediction still harder.

Optimizations There are mainly two ways to improve the performance of a GPU pro

gram: the maximization of the usage of computing units, and the reduction of the number

of dynamic instructions. Optimizations to reach the first goal fall into two categories. The

first includes those techniques that attempt to increase the occupancy of the computing

units. One typical example is to reduce resource consumption of a single thread so that

multiple thread blocks can be assigned to an SM at the same time. The multiple blocks

may help keep the SM busy when the threads in one block are stalled for synchronization.

Example transformations for that purpose include the adjustment of the number of threads

per block, and loop tiling. The second category contains the techniques that try to reduce

latencies caused by memory references (or branches). Examples include the use of cachable

memory (e.g., texture memory), the reduction of bank conflicts in shared memory, and co

alesced memory references (i.e., when threads in a warp reference a sequence of contiguous

memory addresses at the same time.)

Optimizations to reduce the number of dynamic instructions include many traditional

compiler transformations, such as loop unrolling, common subexpression elimination. Al

though the CUDA compiler, NVCC, has implemented many of these techniques, researchers

have seen great potential to adjust some of those optimizations, such as the levels of loop

unrolling [6,51].

Challenges It is difficult to analytically determine the best optimizations for a GPU

application, for three reasons. First, it is often difficult to accurately predict the effects

of an optimization on the performance of the GPU application. The effects are often non

linear as what Ryoo et al. have shown [51]. The undisclosed details of the CUDA compiler

109

and other abstractions add further unpredictability. Second, different optimizations often

affect each other. Loop unrolling, for example, removes some dynamic instructions and

exposes certain opportunities for the instruction scheduler to exploit; but it also increases

register pressure for each thread. Given that the number of registers in an SM is limited, it

may result in fewer threads an SM can hold, and thus affect the selection of thread-block

size. Finally, the many limits in GPU hardware add further complexity. In GeForce 8800

GT, for instance, the maximum number of threads per block is 512, the maximum number

of threads per SM is 768, the maximum number of blocks per SM is 8, and at each time,

all the threads assigned to an SM must use no more than 16 KB shared memory and 8192

registers in total. These constraints plus the unpredictable effects of optimizations make it

extremely difficult to build an accurate analytical model for GPU optimization.

An alternative strategy for determining the best optimizations is through empirical

search, whereby the optimizer searches for the best optimization parameters by running the

GPU application many times, each time with different optimizations applied. Three obsta

cles must be removed before this solution becomes practical. First, a compiler is needed for

abstracting out the optimization space and transforming the program accordingly. Second,

effective space prunes are necessary for the search efficiency, especially when the optimiza

tion space is large. Finally, the optimizer must be able to handle the influence of program

inputs. Our study (Section 5.5) shows that the best values of optimization parameters of

some GPU programs are different for different inputs. For example, an optimization suitable

for one input to a reduction program degrades the performance of the program on another

input by as much as 640%. For such programs, it is desirable to detect the input-sensitivity

and make the optimization cross-input adaptive.

5.4 Adaptive Optimization Framework

G-ADAPT is our solution to the challenges in GPU program optimization. It is a cross

input adaptive framework, unifying source-to-source compilation, performance modeling,

110

Empirical search &
data collection

optimization

Pattern recognition &
code generation

perf.
patterns ---•.

I

0
Figure 5.1: G-ADAPT: An adaptive optimization framework for GPU programs.

and pattern recognition. This section first gives an overview of the framework, and then

elaborates on every component in the framework.

5.4.1 Overview

Figure 5.1 shows the structure of G-ADAPT. Its two parts separated by the dot vertical

line correspond to two stages of the optimization. The task of the first stage, shown as

the left part in Figure 5.1, is to conduct a series of empirical search in the optimization

space of the given GPU program. During the search, a set of performance data, along with

the program input features, are stored into a database. After the first stage finishes, the

second stage, shown as the the right part of Figure 5.1, uses the performance database to

recognize the relation between program inputs and the corresponding suitable optimization

decisions. G-ADAPT then transforms the original GPU code into a program that is able

to automatically adapt to an arbitrary input.

The first part uses empirical search to overcome the difficulty in modeling GPU pro

gram performance; the second part addresses the input-sensitivity issue by recognizing the

111

influence of inputs and making GPU program adaptive.

5.4.2 Stage 1: Heuristic-Based Empirical Search and Data Collection

The first stage is an iterative process. The inputs to the process include a given GPU

application (with some pragmas inserted) with a set of typical inputs.

In the iterative process, the adaptive framework, for each of the given inputs to the

GPU application, automatically searches for the best values of optimization parameters

that can maximize the performance of the application. The process results in a performance

database, consisting of a set of <input, best parameter values> tuples.

Three components are involved in this iterative process. For a given input to the GPU

program, in each iteration, a compiler produces a new version of the application, a calibrator

then measures the performance of the program on the given input, and the measured result

is used by an optimization agent to determine what version of the program the next iteration

should try. When the system finds the best optimization values for that input, it stores the

values into the performance database, and starts the iterations for another input.

Several issues need to be addressed to make the empirical search efficient and widely

applicable. The issues include how to derive optimization space from the application, how

to characterize program inputs, and how to prune the search space to accelerate the search.

In the following, we describe how the 3 components in the first stage of G-ADAPT work

together to address these issues.

5.4.2.1 Optimization Pragmas and G-ADAPT Compiler

We classify the optimization parameters in GPU applications into three categories, corre

sponding to three different optimization levels. In the first category are execution configu

rations of the program-that is, the number of threads per block and the number of thread

blocks for the execution of each GPU kernel. The second category includes the parameters

that determine how the compiler transforms the program code, such as loop unrolling levels

and size of loop tiles. The third category includes other implementation-level or algorithmic

112

decisions, such as the selection of different algorithms for implementing a function. These

parameters together constitute the space for the empirical search.

Different applications have different parameters to optimize; some parameters may be

implicit in a program, and the ranges of some parameters may be difficult to be auto

matically determined because of aliases, pointers, and the entanglement among program

data.

So even though compilers may automatically recognize some parameters in the first two

categories, for automatic search to work generally, it is necessary to have a mechanism to

easily expose all those kinds of parameters and their possible values for an arbitrary GPU

application.

In this work, we employ a set of pragmas, named G-ADAPT pragmas, to support the

synergy between programmers and compilers in revealing the optimization space. There

are three types of pragmas. The first type is dedicated for the adjustment of scalar variable

(or constant) values that control the execution configurations of the GPU application. The

second type is for compiler optimizations. The third type is for implementation selection.

The pragmas allow the inclusion of search hints, such as the important value ranges of a

parameter and the suitable step size. For example, a pragma, "#pragma erange 64,512,2"

above the statement "#define BLKSZ 256", means that the search range for the value of

BLKSZ is from 64 to 512 with exponential (the first "e" in "erange") increases with base 2.

We develop a source-to-source compiler, named the G-ADAPT compiler, to construct

and explore the optimization space. The G-AD APT compiler is based on Cetus [35], a C

compiler infrastructure developed by the group led by Eigenmann and Midkiff. With some

extensions added to Cetus, the G-ADAPT compiler is able to support CUDA programs,

the G-AD APT pragmas, and a set of program transformations (e.g., redundant elimination,

and various loop transformations.)

The G-AD APT compiler has two-fold responsibilities. At the beginning of the empirical

search, the compiler recognizes the optimization space through data flow analysis, loop

analysis, and analysis on the pragmas in the GPU application. In each iteration of the

113

empirical search, the compiler uses one set of parameter values in the search space to

transform the application and produces one version of the application.

5.4.2.2 Performance Calibrator and Optimization Agent

The performance calibrator invokes the CUDA compiler, NVCC, to produce an executable

from the GPU program generated by the G-ADAPT compiler. It then runs the executable

(on the current input) to measure the running time. After the run, it computes the oc

cupancy of the executable on the GPU. The occupancy reflects the degree to which the

executable exerts the computing power of the GPU. A higher occupancy is often desirable,

but does not necessarily suggest higher performance. The occupancy calculation is based

on the occupancy calculating spreadsheet [1] provided by NVIDIA. Besides hardware in-

formation, the calculation requires the information on the size of shared memory allocated

in each thread, the number of registers used by each thread, and the thread block size.

The calibrator obtains the information from the ".cubin" files of the GPU program and the

execution of the executable 1.

The calibrator then stores the parameter values, along with the running time and oc

cupancy, into the performance database. It checks whether the termination conditions

(explained next) for the search on the current input have been reached; if so, it stores the

input, along with the best parameter values that have been found, into the performance

database.

The responsibility of the optimization agent is to determine which point in the opti

mization space should be explored in the next iteration of the search process. The size

of the optimization space can be very large. For K independent parameters, with Di de-

noting the number of possible values of the ith parameter, the optimization space is as

large as f1~ 1 Di· It implies that for an application with many loops and implementation

options, the space may become too large for the framework to enumerate all the points.

The optimization agent uses hill climbing to accelerate the search. Let K be the number

1The ".cubin" files are generated by NVCC with the usage of registers and shared memory per thread
block exposed.

114

of parameters. The search starts with all the parameters having their minimum values. In

each of the next K iterations, it increases one parameter by a step and keeps the others

unchanged. After iteration (K + 1), it finds the best of the K parameter vectors that are

just tried, and use it as the base for the next K iterations. This process continues. When

one parameter reaches the maximum, it stops increasing. When all parameters reach their

maximum values, the search stops.

This hill climbing search differs from the model-based prune proposed by Ryoo et al. [51].

Their approach is applicable when the program performance is not bounded by memory

bandwidth; the method has shown more significant prune rate than our approach does. On

the other hand, the hill climbing search is more generally applicable, making no assumptions

on the GPU application.

5.4.3 Stage 2: Pattern Recognition and Cross-Input Adaptation

After the first stage, the performance database contains a number of< input, best pammeter

values> tuples, from which, the pattern recognizer learns the relation between program

inputs and the optimization parameters. A number of statistical learning techniques can be

used in the learning process. In this work, we select Regression Trees [27] for its simplicity

and good interpretability. Regression Trees is a divide-and-conquer learning approach. It

divides the input space into local regions with each region having a regular pattern. In

the resulting tree, every non-leaf node contains a question on the input features, and every

leaf node corresponds to a region in the input space. The question contained in a non-leaf

node is automatically selected in the light of entropy reduction, defined as the increase of

the purity of the data set after the data are split by that question. We then apply Least

Mean Squares (LMS) to the data that fall into each leaf node to produce the final predictive

models.

To capitalize on the learned patterns, we need to integrate them into the GPU appli

cation. If there were just-in-time compiler (JIT) support, the integration could happen

during runtime implicitly: The JIT compiles the program functions using the parameters

115

predicted as the best for the program input. Without JIT, the integration can occur either

through a linker, which links the appropriate versions of object files into an executable be

fore every execution of the application, or an execution wrapper, which every time selects

the appropriate version of executables to run. In our experiments, we use the wrapper solu

tion because it has no linking overhead, and the programs in our experiments need only few

versions of executables. The G-ADAPT compiler, along with the CUDA compiler, produces

one executable for each parameter vector that is considered as the best for some training

inputs in the performance database. When the application is launched with an arbitrary

input, the version selector in the wrapper uses the constructed regression trees to quickly

determine the right executable based on the input and then runs the program.

5.5 Evaluation

We use seven benchmarks to test the effectiveness of the optimization framework, as listed

in Table 5.1. Most of the programs are from NVIDIA SDK [1]. The program, mvMul, is a

matrix vector multiplication program from Fujimoto [23]. It is an efficient implementation,

outperforming the NVIDIA CUBLAS [1] version significantly, thanks to its adoption of a

new algorithm along with an effective use of texture memory [23].

We emphasize that the programs we use have all been manually tuned by the developers.

The reduction program, for instance, has gone through seven optimizations, respectively on

the algorithm, locality, branch divergence, loop unrolling and so on. NVIDIA has used it as

a typical example to demonstrate manual optimizations on GPU programs. The sequence

of optimizations have accelerated the program by as much as a factor of 30 [26].

The third column of the table shows the number of different inputs we have used for

each benchmark. We create those inputs based on our understanding to the applications,

with an attempt to cover a wide range of the input space.

The type of GPU we use is NVIDIA GeForce 8800 GT. It contains 512 MB global

memory, 14 multiprocessors, 112 cores, with clock rates set at 1.51 GHz. Each multipro-

116

Table 5.1: Benchmarks for input adaptivity experiments on GPU
Benchmark Description Num of Prediction Training Training

Inputs Accuracy iterations time (s)
convolution convolution filter of a 2D sig- 100% 200 2825

nal 10
matrixMul dense matrix multiplication 9 100% 196 2539
mvMul dense matrix-vector multipli- 15 93.3% 124 124

cation
reduction sum of array 15 80% 75 29
scalar Prod scalar products of vector pairs 7 100% 93 237
transpose matrix transpose 18 100% 54 1639
transpose-co matrix transpose with coa- 18 100% 54 631

lescing memory references

cessor has 16 KB shared memory and 8192 registers. Every GPU co-runs with 2 Intel Xeon

processors (3.6 GHz) on a machine with SUSE Linux 2.6.22 installed.

Before presenting the detailed results on each benchmark, we briefly summarize the

results. The best configurations of three out of the seven programs change with their

inputs. For all the programs, the G-ADAPT is able to learn the relation between inputs

and optimization parameters, producing over 93% prediction accuracy (except 80% for

one program) for the best optimization decisions. The prediction yields several times of

speedup compared the running times of the original programs. In the following subsections,

we present the results of the input-sensitive programs first, followed by the results of other

programs.

5.5.1 Matrix-Vector Multiplication

The program, mvMul, computes the product between a dense matrix and a vector. The

parameters of this program include the size of a thread block, and the loop unrolling factors

in the kernel function. Figure 5.2 shows the performance of the program on two example

inputs when different configurations are used. The different parameter values cause up to

2.5 times performance difference. The block size has more significant influence than the

unrolling levels. Moreover, the results clearly show the influence of program inputs on the

117

/Mat Size = 64x32768/

1 0
16
Configuration

/Mat Size = 32768x64/

Figure 5.2: Performance of matrix-vector multiplication on two inputs when different opti
mization decisions are used. LU: loop unrolling levels; THRD: number of threads per block.
The maximum unrolling level can only be vTHRD/4.

optimal parameter values. The best block size for the first input turns out to be the worst

for the second input, causing 2.4 times slowdown than its best run. One of the reasons

for the negligible effect of loop unrolling is that there is little room for adjustment: the

innermost loop can have iterations of at most a quarter of the width of a thread block.

Figure 5.3 (a) reports the best block size for each of the 15 inputs. The block size used

in the original program is 256, which works the best for the 4 inputs on the left. For the

other inputs, the best block size is 64. Figure 5.3 (b) plots the speedups of the program

when it uses the optimizations predicted by the G-ADAPT framework. The baseline is the

running times of the original program. The trend is that as the height of the input matrix

becomes larger than its width, the speedup becomes larger. The reason why large blocks

work poorly for thin matrices is that each time, a block is in charge of a group of rows,

and in thin matrices, each thread has little work to do and thus results in low occupancy

on GPU processors. This benchmark demonstrates that the shape of the input matrix is

critical for the optimization decisions.

118

256

Input Size

(c) Speedup brought by G-ADAPT

Figure 5.3: The best values of the optimization parameters of mvMul are input-sensitive. G
AD APT addresses the influence and produces significant speedup compared to the original
program.

1~,~--~~~~~~~~~~--~~

120

~ 100

~ eo

~ 60
~
8~

20

0 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

LOQarithmic of lnpul Size

(a) Best thread-block size

16 17 18 19 20 21 22

LORarithmic of Input Size

(c) Speedup brought by G-ADAPT

Figure 5.4: Experimental results on reduction.

5.5.2 Parallel Reduction

The program, reduction, performs sum operations on an array of integers. It represents

one kind of common computation in parallel computing, reducing a series of values into

a single value. Given that many optimizations (e.g., loop unrolling) have been manually

applied in the development of the original program, our experiment concentrates on a single

parameter, the number of threads per block.

The default setting is 128 threads per block. That setting turns out to be the best for

most inputs, except two inputs whose array sizes are 219 and 220 , in which case, the best

block size is 64. Even on these two inputs, the default setting works virtually similar to the

optimal, with only 3% performance difference.

119

256 • • • • • • • • • • ••

Input Size

(a) Best thread-block size (b) Speedup brought by G-ADAPT

Figure 5.5: Experimental results on transpose.

5.5.3 Matrix Transpose

There are two versions of matrix transpose in the NVIDIA SDK. One uses memory coalesc

ing and the other one does not; we denote them as transpose-co and transpose respectively.

In both versions, the kernel function contains no loops, and the key optimization parameter

is the block size. Figure 5.5 shows the results of transpose. For matrices of medium sizes,

the best block size is 256, the same as the default setting in the original program. Whereas,

the best size becomes 16 when the matrix size increases to over 4 million elements. The

speedup becomes more significant as the matrix become larger.

In contrast, the coalesced version, transpose-co, is not input-sensitive. The best block

size is always 256. This version differs from transpose mainly in memory accesses. In the

kernel function of mtco, the references to the global memory are staged. The data are first

brought into shared memory in a coalesced manner before the computation. Furthermore,

the array is padded to reduce bank conflicts in the shared memory. The changes in memory

reference patterns remove the input-sensitivity. When the block size is 16, the program

achieves 100% occupancy on the multiprocessors, and thus exhibits the best performance.

5.5.4 Other Benchmarks and Overall Results

The best values of the parameters in the other 3 benchmarks, matMulGPU, convolution,

scalarProd, show no sensitivity to their inputs. Besides the parameters for loop optimiza-

120

convolution matrixMul mvMul reduction scalarProd transpose transpose-co

Figure 5.6: The ranges of speedup brought by different optimization decisions. For each
program, the left bar shows the range of speedup (less than 1 means slowdown) if the
worst decision is taken. The right bar shows the range of speedup when the G-ADAPT's
prediction is used.

tions, the program matMulGPU has a parameter controlling the size of thread blocks, the

program convolution has 3 parameters controlling the tile size and the number of columns,

and the program scalar Prod has 2 parameters controlling the dimensions of the grid and the

dimensions of a thread block. The G-ADAPT system successfully finds the best parameter

values for all the 3 programs.

We apply the predictions of G-ADAPT to these programs to measure the effectiveness

in performance improvement. The prediction is based on leave-one-out cross validation [27],

which is a typical practice in statistical learning to estimate the error of a predictive model in

real uses. For each input, we use all the other inputs as training inputs to build regression

trees, and then apply the trees to the left-out input to predict the corresponding best

optimization decisions. The average prediction accuracies are shown in the fourth column in

Table 5.1. For input-insensitive programs, the prediction is simple. For the input-sensitive

programs, the prediction accuracy is 80% for reduction, 93.3% for mvMul, and 100% for

transpose. These results demonstrate the effectiveness of the Regression Trees method in

modeling the relation between inputs and optimization decisions.

On different inputs to an application, the G-ADAPT yields different speedups. Fig

ure 5.6 summarizes the ranges of speedup brought by G-ADAPT on the 7 GPU programs.

The baseline is the running times of the original GPU programs. For each program, the

121

left bar in a benchmark corresponds to the worst configuration encountered in the explored

optimization space, which reflects the risk of a careless configuration or transformation.

The right bar shows the effectiveness of G-ADAPT. Among all programs, only the default

settings in transpose-co and reduction happen to be (almost) the same as the one G-ADAPT

finds. The 1.5 to 2.8 times of speedup on other programs demonstrate the effectiveness of

input-adaptive optimizations enabled by G-ADAPT.

5.6 Discussions

In this section, we first present the training overhead of G-ADAPT and then discuss some

complexities in applying G-ADAPT for large applications.

The right-most two columns in Table 5.1 reveal the training overhead of G-ADAPT

on the seven benchmarks. The total numbers of iterations range from 54 to 200, and the

total training time spans from 29 seconds to 47 minutes. The time is determined by the

number of training inputs, the dimensions of the search space, and the size of the inputs.

The program, convolution, happens to run for a long time on some of its training inputs,

resulting in the longest training time.

It is worth noting that one complexity, input characterization, happens to be simple in

our experiments. Input characterization is to determine the important features of program

inputs. In our experiments, the inputs to the programs are just several numbers, indicating

the sizes of the input signal, matrix, array, or vector, which naturally capture the important

characteristics of the input data sets. However, for large complex GPU applications, the

input characterization may need special treatment. One option is to develop some input

characterization procedures and link them with G-ADAPT. A recent study [40] proposes

an extensible input characterization language, XICL, to ease the efforts. Detailed studies

remain to be our future work.

122

5.7 Related Work

The studies closest to this work are the recent explorations by Ryoo et al. [51], and Baskaran

et al. [6]. Ryoo and his colleagues have defined efficiency and utilization models for GPU

computing, and demonstrated the effectiveness of the models in pruning of the optimization

space. Our study complements their technique in that the influence from program inputs

is a dimension omitted in their work. Furthermore, the previous work conducts transfor

mations manually, whereas, we develop a compiler framework with optimization pragmas

for automatic transformations. The prune method in our tool complements the previous

models in that it relaxes some assumptions made by previous work, such as the memory

bandwidth is not the bottleneck on performance. On the other hand, the previous models

may work well in the cases when the assumptions hold.

In the study by Baskaran et al. [6J, the authors focus on the optimization of affine loops

in GPU applications. They develop an approach to improving global memory accesses

and use model-driven empirical search to determine optimal parameters for loop unrolling

and tiling. Our work is complementary to their technique on two aspects. First, our

optimizations are input adaptive, whereas, the influence of program inputs is a missing

factor in the previous study. Second, our tool can be applied to not only optimization of

affine loops, but also other factors that affect the performance of GPU applications, such

as the size of thread block size and implementation-level decisions. On the other hand, the

transformations developed in the previous work can strengthen the effectiveness of our tool.

An integration of them into the tool may be worthwhile.

On traditional CPU architecture, there has been many studies on empirical-search

based optimizations. Many of the explorations are for the development of efficient numer

ical libraries or kernels, such as ATLAS [70], PHiPAC [9], SPARSITY [29], SPIRAL [46],

FFTW [22], STAPL [64]. Our work is enlightened by those explorations, but focuses on a

single-chip massively parallel architecture, on which, the optimizations dramatically differ

from those on the previous CPU architecture. Furthermore, the targets of this work are gen-

123

eral GPU applications, rather than a certain set of kernels. The variety in the applications

further complicates input characterization and the construction of cross-input predictive

models.

The adaptation to different program inputs in this work shares some common theme

with code specialization, such as procedure cloning [15], the incremental run-time specializa

tion [41], the specialization of libraries in Telescoping Languages [33]. In addition, dynamic

optimizations [4, 18, 40, 69] may tailor a program to their inputs by runtime code generation.

5.8 Conclusion

This paper reports our exploration of the influence of program inputs on GPU program op

timizations. It shows that for some GPU applications, their best optimizations are different

for different inputs. It presents a compiler-based adaptive framework, G-ADAPT, which

is able to extract optimization space from program code, and automatically search for the

best optimizations for an GPU application on different inputs. With the use of Regression

Trees, G-ADAPT produces cross-input predictive models from the search results. The mod

els can predict the best optimizations from the input given to the GPU application, and

thus enable cross-input adaptive optimizations. Experiments show significant performance

improvement generated by the optimizations, demonstrating the promise of the framework

as an automatic tool for resolving the productivity bottleneck in the development of efficient

GPU programs.

124

Conclusion

In conclusion, my PhD research focuses on revealing and exploiting the implications of

emerging hardware features on the development, compilation, and execution of software.

Enhancing the match between software executions and hardware features is key to com

puting efficiency (in terms of both performance and energy). The match is a continuously

evolving and challenging problem. I have concentrated on the development of programming

system support for exploiting two key features of modern hardware development: the mas

sive parallelism of emerging computational accelerators such as Graphic Processing Units

(GPU), and the non-uniformity of cache sharing in modern multicore processors. They are

respectively driven by the important role of accelerators in today's general-purpose com

puting and the ultimate importance of memory performance. More specifically, my research

has initiated extensive research efforts on optimizing control flow and memory reference at

the program level in order to take advantage of these two key hardware features.

Conditional branches cause divergences in program control flows, which may result in

serious performance issues on massively data-parallel GPU architectures with SIMD paral

lelism. On such an architecture, control divergence may force computing units to stay idle

for a substantial time, throttling system throughput by orders of magnitude. My research

has attacked this problem by proposing two types of program transformations. The first

is thread relocation, which reorganizes logical threads by reassigning their thread IDs to

125

minimize the divergences among their control flows. The second is data relocation, which

switches the tasks of threads by relocating data in memory without changing thread IDs

and data reference indices. These two optimizations provide fundamental support for swap

ping jobs among threads so that the control flow paths of threads converge within every

SIMD thread group. Compared to previously proposed hardware extensions, my software

approaches are readily deployable and address dynamic program behavior by adapting to

different program inputs and phases. To the best of our knowledge, this work is the first

in a series of research efforts that addresses control flow divergence elimination problem on

GPUs through software support.

My PhD research in memory performance has concentrated on two aspects of the prob

lem: the influence of non-uniform sharing on multithreading applications, and the optimiza

tion of irregular memory references on GPUs. In shared cache multicore chips, interaction

among threads are complicated due to the interplay of cache contention and synergistic

prefetching. I conducted the first extensive investigation of the influence of shared cache

on contemporary multi-threaded applications, with important factors systematically exam

ined ranging from architecture level to program level. My study reveals the surprisingly

insignificant influences on the performance of the application by shared cache. I identified

the underlying reason that current program development is oblivious to the non-uniformity

in cache sharing topology. I proposed a novel data locality optimization paradigm to match

with the non-uniformity of cache sharing, which opens up many new opportunities for ad

dressing the memory performance issues in multicore and manycore systems. The efficiency

of GPU accelerator is sensitive to irregular memory references, which refer to the memory

references whose access patterns remain unknown until execution time (e.g., A[P[i]]). Ex

periments have shown great performance gains when these irregularities are removed. But

it remains an open question how to achieve those gains through software approaches. My

work presented a systematic exploration on this problem. I discovered that root causes of

irregular memory reference problem are similar to that of the control flow problem, while in

a more general and complex form. They both may arise from the undesirable thread-data

126

mapping while irregular memory reference may also come from the original data layout.

I explored the inherent properties of both irregularities, including their interactions, their

relations with program data and threads, the computational complexities in removing them,

and heuristics-based algorithms for their removal through data reordering, job swapping,

and hybrid transformations. I developed a framework, named G-Streamline, as a unified

software solution to dynamic irregularities in GPU computing. It treats both types of irreg

ularities at the same time in a holistic fashion, maximizing the whole-program performance

by resolving conflicts among optimizations. Its optimization overhead is largely transparent

to GPU kernel executions, without jeopardizing the basic efficiency of the GPU application.

127

References

[1] NVIDIA CUDA. http://www.nvidia.com/cuda.

[2] A. V. Aho, M.S. Lam, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques,

and Tools. Addison Wesley, 2nd edition, August 2006.

[3] R. Allen and K. Kennedy. Optimizing Compilers for Modern Architectures: A

Dependence-based Approach. Morgan Kaufmann Publishers, 2001.

[4] M. Arnold, M. Hind, and B. G. Ryder. Online feedback-directed optimization of Java.

In Proceedings of ACM Conference on Object-Oriented Programming Systems, Lan

guages and Applications, pages 111-129, 2002.

[5] D. Bailey, J. Barton, T. Lasinski, and H. Simon. The NAS parallel benchmarks.

Technical Report 103863, NASA, July 1993.

[6] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam, A. Rountev,

and P. Sadayappan. A compiler framework for optimization of affine loop nests for

GPGPUs. In ICS, 2008.

[7] C. Bienia, S. Kumar, and K. Li. PARSEC vs. SPLASH-2: A quantitative comparison

of two multithreaded benchmark suites on chip-multiprocessors. In Proceedings of the

IEEE International Symposium on Workload Characterization, pages 47-56, 2008.

128

http://www.nvidia.com/cuda

[8] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark suite: charac

terization and architectural implications. In Proceedings of International Conference

on Parallel Architectures and Compilation Techniques, pages 72-81, 2008.

[9] J. Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel. Optimizing matrix multiply using

PHiPAC: A portable, high-performance, ANSI C coding methodology. In Proceedings

of the ACM International Conference on Supercomputing, pages 340-347, 1997.

[10] S. Browne, C. Deane, G. Ho, and P. Mucci. PAPI: A portable interface to hardware

performance counters. In Proceedings of Department of Defense HPCMP Users Group

Conference, 1999.

[11] S. Carrillo, J. Siegel, and X. Li. A control-structure splitting optimization for gpgpu.

In CF, 2009.

[12] J. Chang and G. So hi. Cooperative cache partitioning for chip multiprocessors. In

Proceedings of the 21st annual international conference on Supercomputing, pages 242-

252, 2007.

[13] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron.

Rodinia: A benchmark suite for heterogeneous computing. In IISWC, 2009.

[14] T. M. Chilimbi and R. Shaham. Cache-conscious coallocation of hot data streams. In

PLDI, 2006.

[15] K. D. Cooper, M. W. Hall, and K. Kennedy. Procedure cloning. In Computer Lan

guages, pages 96-105, 1992.

[16] C. Ding and K. Kennedy. Improving cache performance in dynamic applications

through data and computation reorganization at run time. In Proceedings of the SIC

PLAN '99 Conference on Programming Language Design and Implementation, Atlanta,

GA, May 1999.

129

[17] C. Ding and K. Kennedy. Improving effective bandwidth through compiler enhance

ment of global cache reuse. JPDC, 2004.

[18] P. Diniz and M. Rinard. Dynamic feedback: an effective technique for adaptive comput

ing. In Proceedings of ACM SIGPLAN Conference on Programming Language Design

and Implementation, pages 71-84, Las Vegas, May 1997.

[19] Y. Dotsenko, N. K. Govindaraju, P. Sloan, C. Boyd, and J. Manferdelli. Fast scan

algorithms on graphics processors. In ICS'08: Proceedings of the 22nd Annual Inter

national Conference on Supercomputing, pages 205-213, 2008.

[20] Ali El-Moursy, R. Garg, D. H. Albonesi, and S. Dwarkadas. Compatible phase co

scheduling on a cmp of multi-threaded processors. In Proceedings of the International

Parallel and Distribute Processing Symposium (IPDPS), 2006.

[21] A. Fedorova, M. Seltzer, and M. D. Smith. Improving performance isolation on chip

multiprocessors via an operating system scheduler. In Proceedings of the International

Conference on Parallel Architecture and Compilation Techniques, pages 25-38, 2007.

[22] M. Frigo and S. G. Johnson. The design and implementation of FFTW3. Proceedings

of the IEEE, 93(2):216-231, 2005.

[23] N. Fujimoto. Faster matrix-vector multiplication on GeForce 8800GTX. In Proceedings

of the Workshop on Large-Scale Parallel Processing (co-located with IPDPS), pages 1-8,

2008.

[24] W. Fung, I. Sham, G. Yuan, and T. Aamodt. Dynamic warp formation and scheduling

for efficient gpu control flow. In MICRO, 2007.

[25] H. Han and C.-W. Tseng. Exploiting locality for irregular scientific codes. IEEE

Transactions on Parallel Distributed Systems, 17(7):606-618, 2006.

[26] M. Harris. High performance computing with CUDA. In Tutorial in IEEE SuperCom

puting, 2007.

130

[27] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning.

Springer, 2001.

[28] D. S. Hochbaum. Approximation Algorithms for NP-Hard Problems. PWS Publishing

Company, 1995.

[29] Eun-Jin lm, Katherine Yelick, and Richard Vuduc. Sparsity: Optimization framework

for sparse matrix kernels. Int. J. High Perform. Comput. Appl., 18(1}:135-158, 2004.

[30] Y. Jiang, X. Shen, J. Chen, and R. Tripathi. Analysis and approximation of optimal

co-scheduling on chip multiprocessors. In Proceedings of the International Conference

on Parallel Architecture and Compilation Techniques (PACT), pages 220-229, October

2008.

[31] Y. Jiang, K. Tian, and X. Shen. Combining locality analysis with online proactive job

co-scheduling in chip multiprocessors. In Proceedings of The International Conference

on High Performance Embedded Architectures and Compilation (HiPEAC), pages 201-

215, 2010.

[32] Yunlian Jiang, Eddy Z. Zhang, Xipeng Shen, Yaoqing Gao, and Roch Archambault.

Array regrouping on cmp with non-uniform cache sharing. In Proceedings of the 23rd

international conference on Languages and compilers for parallel computing, LCPC'10,

pages 92-105, Berlin, Heidelberg, 2011. Springer-Verlag.

[33] K. Kennedy, B. Broom, A. Chauhan, R. Fowler, J. Garvin, C. Koelbel, C. McCosh,

and J .Mellor-Crummey. Telescoping languages: A system for automatic generation of

domain languages. Proceedings of the IEEE, 93(2}:387-408, 2005.

[34] R. Kumar and D. Tullsen. Compiling for instruction cache performance on a multi

threaded architecture. In Proceedings of the International Symposium on Microarchi

tecture, pages 419-429, 2002.

131

[35] S. Lee, T. Johnson, and R. Eigenmann. Cetus - an extensible compiler infrastructure

for source-to-source transformation. In Proceedings of the 16th Annual Workshop on

Languages and Compilers for Parallel Computing (LCPC), pages 539-553, 2003.

[36] S. Lee, S. Min, and R. Eigenmann. OpenMP to GPGPU: A compiler framework for

automatic translation and optimization. In PPoPP, 2009.

[37] H. Li, S. Tandri, M. Stumm, and K. C. Sevcik. Locality and loop scheduling on NUMA

multiprocessors. In Proceedings of the International Conference on Parallel Processing

(ICPP), pages 140-147, 1993.

[38] C. Liao, Z. Liu, L. Huang, and B. Chapman. Evaluating OpenMP on chip multithread

ing platforms. In Proceedings of International Workshop on OpenMP, 2005.

[39] Y. Liu, E. Z. Zhang, and X. Shen. A cross-input adaptive framework for gpu pro

grams optimization. In Proceedings of International Parallel and Distribute Processing

Symposium (IPDPS), pages 1-10, 2009.

[40] F. Mao and X. Shen. Cross-input learning and discriminative prediction in evolvable

virtual machine. In Proceedings of the International Symposium on Code Generation

and Optimization (CGO), pages 92-101, 2009.

[41] R. Marlet, C. Consel, and P. Boinot. Efficient incremental run-time specialization for

free. In Proceedings of ACM SIGPLAN Conference on Programming Language Design

and Implementation, pages 281-292, Atlanta, GA, May 1999.

[42] J. Meng, D. Tarjan, and K. Skadron. Dynamic warp subdivision for integrated branch

and memory divergence tolerance. In ISCA, 2010.

[43] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel pro

gramming with CUDA. A CM Queue, pages 40-53, March/ April 2008.

132

[44] D. Nikolopoulos. Code and data transformations for improving shared cache perfor

mance on smt processors. In Proceedings of the International Symposium on High

Performance Computing, pages 54-69, 2003.

[45] A. Nukada, Y. Ogata, T. Endo, and S. Matsuoka. Bandwidth intensive 3-D FFT kernel

for GPUs using CUDA. In SC'08: Proceedings of the 2008 ACM/IEEE Conference on

Supercomputing, pages 1-11, 2008.

[46] M. Puschel, J.M.F. Moura, J.R. Johnson, D. Padua, M.M. Veloso, B.W. Singer, Jianxin

Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R.W. Johnson, and N. Rizzolo.

SPIRAL: code generation for DSP transforms. Proceedings of the IEEE, 93(2) :232-275,

2005.

[47] M. K. Qureshi and Y. N. Patt. Utility-based cache partitioning: A low-overhead,

high-performance, runtime mechanism to partition shared caches. In Proceedings of

the International Symposium on Microarchitecture, pages 423-432, 2006.

[48] N. Rafique, W. Lim, and M. Thottethodi. Architectural support for operating system

driven CMP cache management. In Proceedings of the International Conference on

Pamllel Architecture and Compilation Techniques, pages 2-12, 2006.

[49] G. Rudy, C. Chen, M. Hall, M. Khan, and J. Chame. Using a programming language

interface to describe gpgpu optimization and code generation. 2010.

[50] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and W. W. Hwu.

Optimization principles and application performance evaluation of a multithreaded

GPU using CUDA. In PPoPP, 2008.

[51] S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi, S. Ueng, J. A. Stratton,

and W. W. Hwu. Program optimization space pruning for a multithreaded GPU. In

CG 0 '08: Proceedings of the Sixth Annual IEEE/ A CM International Symposium on

Code Generation and Optimization, pages 195-204, 2008.

133

[52] S. Sarkar and D. Tullsen. Compiler techniques for reducing data cache miss rate on a

multithreaded architecture. In Proceedings of The HiPEAC International Conference

on High Performance Embedded Architectures and Compilation, pages 353-368, 2008.

[53] A. Settle, J. L. Kihm, A. Janiszewski, and D. A. Connors. Architectural support

for enhanced SMT job scheduling. In Proceedings of the International Conference on

Parallel Architecture and Compilation Techniques, pages 63-73, 2004.

[54] X. Shen, Y. Zhong, and C. Ding. Locality phase prediction. In Proceedings of the

International Conference on Architectural Support for Programming Languages and

Operating Systems, pages 165-176, 2004.

[55] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically characterizing

large scale program behavior. In Proceedings of International Conference on Architec

tural Support for Programming Languages and Operating Systems, pages 45-57, 2002.

[56] Mark Silberstein, Assaf Schuster, Dan Geiger, Anjul Patney, and John D. Owens.

Efficient computation of sum-products on GPUs through software-managed cache. In

Proceedings of the 22nd A CM International Conference on Supercomputing, pages 309-

318, June 2008.

[57] A. Snavely and D.M. Tullsen. Symbiotic jobscheduling for a simultaneous multithread

ing processor. In Proceedings of the International Conference on Architectural Support

for Programming Languages and Operating Systems, pages 66-76, 2000.

[58] A. Snavely, D.M. Tullsen, and G. Voelker. Symbiotic jobscheduling with priorities

for a simultaneous multithreading processor. In Proceedings of the Joint International

Conference on Measurement and Modeling of Computer Systems, pages 66-76, 2002.

[59] G.E. Suh, S. Devadas, and L. Rudolph. A new memory monitoring scheme for memory

aware scheduling and partitioning. In Proceedings of the 8th International Symposium

on High-Performance Computer Architecture, pages 117-128, 2002.

134

[60] D. Tam, R. Azimi, and M. Stumm. Thread clustering: sharing-aware scheduling on

SMP-CMP-SMT multiprocessors. SIGOPS Oper. Syst. Rev., 41(3):47-58, 2007.

[61] G. Tan, Z. Guo, M. Chen, and D. Meng. Single-particle 3d reconstruction from cryo

electron microscopy images on gpu. In ICS, 2009.

[62] D. Tarjan, J. Meng, and K. Skadron. Increasing memory miss tolerance for simd cores.

In SC, 2009.

[63] NVIDIA Tesla Bio Workbench. http:/ jwww.nvidia.com/object/tesla_bio_workbench.html.

[64] N. Thomas, G. Tanase, 0. Tkachyshyn, J. Perdue, N. M. Amato, and L. Rauchwerger.

A framework for adaptive algorithm selection in STAPL. In Proceedings of the Tenth

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages

277-288, 2005.

[65] K. Tian, Y. Jiang, and X. Shen. A study on optimally co-scheduling jobs of different

lengths on chip multiprocessors. In Proceedings of A CM Computing Frontiers, pages

41-50, 2009.

[66] N. Tuck and D. M. Tullsen. Initial observations of the simultaneous multithreading

Pentium 4 processor. In Proceedings of International Conference on Parallel Architec

tures and Compilation Techniques, pages 26-35, 2003.

[67] S. Ueng, S. Baghsorkhi, M. Lathara, and W. Hwu. Cuda-lite: Reducing gpu program

ming complexity. In LCPC, 2008.

[68] V. Volkov and J. W. Demmel. Benchmarking gpus to tune dense linear algebra. In

SC'08: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, 2008.

[69] M. Voss and R. Eigenmann. High-level adaptive program optimization with ADAPT. In

Proceedings of A CM Symposium on Principles and Practice of Parallel Programming,

pages 93-102, Snowbird, Utah, June 2001.

135

http://www.nvidia.com/object/tesla_bio_workbench.html

[70] R. C. Whaley, A. Petitet, and J. Dongarra. Automated empirical optimizations of

software and the ATLAS project. Parallel Computing, 27(1-2):3-35, 2001.

[71] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta. The SPLASH-2 programs:

Characterization and methodological considerations. In Proceedings of the Interna

tional Symposium on Computer Architecture, pages 24-36, 1995.

[72] Bo Wu, Eddy z. Zhang, and Xipeng Shen. Enhancing data locality for dynamic simula

tions through asynchronous data transformations and adaptive control. In Proceedings

of the 20th International Conference on Parallel Architectures and Compilation Tech

niques, PACT '11, 2011.

[73] Y. Yang, P. Xiang, J. Kong, and H. Zhou. A gpgpu compiler for memory optimization

and parallelism management. In PLDI, 2010.

[74] E. Z. Zhang, Y. Jiang, Z. Guo, and X. Shen. Streamlining gpu applications on the fly.

In ICS, 2010.

[75] E. Z. Zhang, Y. Jiang, and X. Shen. Does cache sharing on modern cmp matter to

the performance of contemporary multithreaded programs? In PPoPP '10: Proceed

ings of the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, pages 203-212, 2010.

[76] Eddy Z. Zhang, Yunlian Jiang, Ziyu Guo, Kai Tian, and Xipeng Shen. On-the-fly

elimination of dynamic irregularities for gpu computing. In Proceedings of the sixteenth

international conference on Architectural support for programming languages and op

erating systems, ASPLOS '11, pages 369-380, New York, NY, USA, 2011. ACM.

[77] Eddy Zheng Zhang, Yunlian Jiang, and Xipeng Shen. The significance of cmp cache

sharing on contemporary multithreaded applications. IEEE Transactions on Parallel

and Distributed Systems, 23:367-374, 2012.

136

[78] Y. Zhao. Lattice boltzmann based pde solver on the gpu. The Visual Computer,

(5):323-333, 2008.

137

VITA

Zheng Zhang is originally from China, where she received her Bachelor of Science degree

in Electronic Engineering from Shanghai Jiao Tong University in 2004. She received her

Master of Science degree in Computer Science from the College and William and Mary in

2007. She began her work on Doctor of Philosophy from Aug 2007. Her research interests lie

generally in the area of compilers and programming systems, with a focus on revealing and

exploiting the implications of emerging hardware features on the development, compilation,

and execution of software. This dissertation was defended in May 31, 2012.

138

	Locality Enhancement and Dynamic Optimizations on Multi-Core and GPU
	Recommended Citation

	tmp.1539748087.pdf.ClvT2

