999 research outputs found

    Deploying rural community wireless mesh networks

    Get PDF
    Inadequate Internet access is widening the digital divide between town and countryside, degrading both social communication and business advancements in rural areas. Wireless mesh networking can provide an excellent framework for delivering broadband services to such areas. With this in mind, Lancaster University deployed a WMN in the rural village of Wray over a three-year period, providing the community with Internet service that exceeds many urban offerings. The project gave researchers a real-world testbed for exploring the technical and social issues entailed in deploying WMNs in the heart of a small community

    Advances in wireless community networks with the community-lab testbed

    Get PDF
    Beyond traditional telecom providers, citizens and organizations pool their own resources and coordinate in order to build local network infrastructures to address the digital divide in many parts of the world. These crowdsourced network infrastructures can be self-organized and shared by a community for the collective benefit of its members. Several of these networks have developed open, free, and neutral agreements, and are governed as a common-pool resource: community networks. These are built using a variety of commodity wireless hardware (e.g., Wi-Fi long-range point-to-point links, Wi-Fi and GSM access points, and mesh networks), sometimes optical fiber links, heterogeneous nodes, routing protocols, and applications. A group of researchers, developers, and community networks developed the Community-Lab testbed, and for the last five years have worked together to overcome obstacles, improve the technologies, tools, and operational models being used, as well as model best practices for more effective and sustainable community networks. This article presents the challenges for experimentation, the testbeds built, results, lessons learned, and the impact of that work to place wireless community networks as one sustainable way toward an Internet accessible to all.Peer ReviewedPostprint (author's final draft

    Towards a scalability model for wireless mesh networks

    Get PDF
    Zenzeleni mesh network is a wireless ad-hoc mesh network that provides voice services using public analogue telephones to the Mankosi community in the Eastern Cape Province. We would like to improve on the network infrastructure by upgrading the mesh routers and introducing low-end smartphones onto the network; and offer both data and voice over Internet protocol services. However, before deploying resources, it is imperative to identify the maximum number of mesh nodes, clients and simultaneous voice over internet protocol calls that can be supported by the mesh network while maintaining acceptable quality of service levels. Absence of such data might lead to financial risk and time depletion when setting up an optimal network. Bolstering the claim are investigations that report drop in quality levels as network density and hop count escalate. As current investigations mostly yield capacity models to predict per-node throughput with increasing hop count, we propose experiments to devise a scalability model to quantify scalability of mesh networks in this paper. We recommend experimental implementations at simulation level in Network Simulator-3 moving on to testbeds built using WiBed, and then finally take results to the field.Telkom, Cisco, Aria Technologies, THRIP, CONFINEDepartment of HE and Training approved lis

    Design and evaluation of a self-configuring wireless mesh network architecture

    Get PDF
    Wireless network connectivity plays an increasingly important role in supporting our everyday private and professional lives. For over three decades, self-organizing wireless multi-hop ad-hoc networks have been investigated as a decentralized replacement for the traditional forms of wireless networks that rely on a wired infrastructure. However, despite the tremendous efforts of the international wireless research community and widespread availability of devices that are able to support these networks, wireless ad-hoc networks are hardly ever used. In this work, the reasons behind this discrepancy are investigated. It is found that several basic theoretical assumptions on ad-hoc networks prove to be wrong when solutions are deployed in reality, and that several basic functionalities are still missing. It is argued that a hierarchical wireless mesh network architecture, in which specialized, multi-interfaced mesh nodes form a reliable multi-hop wireless backbone for the less capable end-user clients is an essential step in bringing the ad-hoc networking concept one step closer to reality. Therefore, in a second part of this work, algorithms increasing the reliability and supporting the deployment and management of these wireless mesh networks are developed, implemented and evaluated, while keeping the observed limitations and practical considerations in mind. Furthermore, the feasibility of the algorithms is verified by experiment. The performance analysis of these protocols and the ability to deploy the developed algorithms on current generation off-the-shelf hardware indicates the successfulness of the followed research approach, which combines theoretical considerations with practical implementations and observations. However, it was found that there are also many pitfalls to using real-life implementation as a research technique. Therefore, in the last part of this work, a methodology for wireless network research using real-life implementation is developed, allowing researchers to generate more reliable protocols and performance analysis results with less effort

    Performance evaluation of a distributed storage service in community network clouds

    Get PDF
    Community networks are self-organized and decentralized communication networks built and operated by citizens, for citizens. The consolidation of today's cloud technologies offers now, for community networks, the possibility to collectively develop community clouds, building upon user-provided networks and extending toward cloud services. Cloud storage, and in particular secure and reliable cloud storage, could become a key community cloud service to enable end-user applications. In this paper, we evaluate in a real deployment the performance of Tahoe least-authority file system (Tahoe-LAFS), a decentralized storage system with provider-independent security that guarantees privacy to the users. We evaluate how the Tahoe-LAFS storage system performs when it is deployed over distributed community cloud nodes in a real community network such as Guifi.net. Furthermore, we evaluate Tahoe-LAFS in the Microsoft Azure commercial cloud platform, to compare and understand the impact of homogeneous network and hardware resources on the performance of the Tahoe-LAFS. We observed that the write operation of Tahoe-LAFS resulted in similar performance when using either the community network cloud or the commercial cloud. However, the read operation achieved better performance in the Azure cloud, where the reading from multiple nodes of Tahoe-LAFS benefited from the homogeneity of the network and nodes. Our results suggest that Tahoe-LAFS can run on community network clouds with suitable performance for the needed end-user experience.Peer ReviewedPreprin

    The w-iLab.t testbed

    Get PDF

    Aziala-net: Deploying a Scalable Multi-hop Wireless Testbed Platform for Research Purposes

    Get PDF
    Aziala-net is a flexible and scalable experimental testbed for wireless multi-hop networks based on simple off-the-shelf hardware that is able to adapt to various research purposes. It is composed of more than 50 Asus wireless routers that have been adapted to either work as fixed base station or as mobile nodes. After describing the technical details of Aziala-net, we illustrate the potential of the testbed by showing two samples of works that are currently under study in the testbed. The first example focus on the use of the IEEE 802.11 MAC layer protocol for multi-hop networks and the stability problem that it faces in the case of wireless mesh networks. The second example focus on epidemic forwarding protocols and their performance in a real testbed deployment
    corecore