78 research outputs found

    Global attractivity of solutions for nonlinear fractional order Riemann-Liouville Volterra-Stieltjes partial integral equations

    Get PDF
    This paper deals with the existence and the attractivity of solutions of a class of fractional order functional Riemann-Liouville Volterra-Stieltjes partial integral equations. Our results are obtained by using Schauder's fixed point theorem

    On solutions of some delay Volterra integral problems on a half-line

    Get PDF
    In this paper, we study the existence of a.e. monotonic solutions of some general delay integral problems for both fractional and integer orders in the space of Lebesgue integrable functions on the interval R+ = [0;1) and in the space of locally integrable functions L1loc (R+). In particular, the uniqueness of solutions for considered problems is obtained

    Fractional Calculus - Theory and Applications

    Get PDF
    In recent years, fractional calculus has led to tremendous progress in various areas of science and mathematics. New definitions of fractional derivatives and integrals have been uncovered, extending their classical definitions in various ways. Moreover, rigorous analysis of the functional properties of these new definitions has been an active area of research in mathematical analysis. Systems considering differential equations with fractional-order operators have been investigated thoroughly from analytical and numerical points of view, and potential applications have been proposed for use in sciences and in technology. The purpose of this Special Issue is to serve as a specialized forum for the dissemination of recent progress in the theory of fractional calculus and its potential applications

    Fractional differential equations and Volterra–Stieltjes integral equations of the second kind

    Get PDF
    In this paper, we construct a method to find approximate solutions to fractional differential equations involving fractional derivatives with respect to another function. The method is based on an equivalence relation between the fractional differential equation and the Volterra– Stieltjes integral equation of the second kind. The generalized midpoint rule is applied to solve numerically the integral equation and an estimation for the error is given. Results of numerical experiments demonstrate that satisfactory and reliable results could be obtained by the proposed method.publishe

    Applied Mathematics and Fractional Calculus

    Get PDF
    In the last three decades, fractional calculus has broken into the field of mathematical analysis, both at the theoretical level and at the level of its applications. In essence, the fractional calculus theory is a mathematical analysis tool applied to the study of integrals and derivatives of arbitrary order, which unifies and generalizes the classical notions of differentiation and integration. These fractional and derivative integrals, which until not many years ago had been used in purely mathematical contexts, have been revealed as instruments with great potential to model problems in various scientific fields, such as: fluid mechanics, viscoelasticity, physics, biology, chemistry, dynamical systems, signal processing or entropy theory. Since the differential and integral operators of fractional order are nonlinear operators, fractional calculus theory provides a tool for modeling physical processes, which in many cases is more useful than classical formulations. This is why the application of fractional calculus theory has become a focus of international academic research. This Special Issue "Applied Mathematics and Fractional Calculus" has published excellent research studies in the field of applied mathematics and fractional calculus, authored by many well-known mathematicians and scientists from diverse countries worldwide such as China, USA, Canada, Germany, Mexico, Spain, Poland, Portugal, Iran, Tunisia, South Africa, Albania, Thailand, Iraq, Egypt, Italy, India, Russia, Pakistan, Taiwan, Korea, Turkey, and Saudi Arabia

    International Conference on Mathematical Analysis and Applications in Science and Engineering – Book of Extended Abstracts

    Get PDF
    The present volume on Mathematical Analysis and Applications in Science and Engineering - Book of Extended Abstracts of the ICMASC’2022 collects the extended abstracts of the talks presented at the International Conference on Mathematical Analysis and Applications in Science and Engineering – ICMA2SC'22 that took place at the beautiful city of Porto, Portugal, in June 27th-June 29th 2022 (3 days). Its aim was to bring together researchers in every discipline of applied mathematics, science, engineering, industry, and technology, to discuss the development of new mathematical models, theories, and applications that contribute to the advancement of scientific knowledge and practice. Authors proposed research in topics including partial and ordinary differential equations, integer and fractional order equations, linear algebra, numerical analysis, operations research, discrete mathematics, optimization, control, probability, computational mathematics, amongst others. The conference was designed to maximize the involvement of all participants and will present the state-of- the-art research and the latest achievements.info:eu-repo/semantics/publishedVersio

    Abstract book

    Get PDF
    Welcome at the International Conference on Differential and Difference Equations & Applications 2015. The main aim of this conference is to promote, encourage, cooperate, and bring together researchers in the fields of differential and difference equations. All areas of differential & difference equations will be represented with special emphasis on applications. It will be mathematically enriching and socially exciting event. List of registered participants consists of 169 persons from 45 countries. The five-day scientific program runs from May 18 (Monday) till May 22, 2015 (Friday). It consists of invited lectures (plenary lectures and invited lectures in sections) and contributed talks in the following areas: Ordinary differential equations, Partial differential equations, Numerical methods and applications, other topics

    Analysis of a Class of Fractional Nonlinear Multidelay Differential Systems

    Get PDF
    We address existence and Ulam-Hyers and Ulam-Hyers-Mittag-Leffler stability of fractional nonlinear multiple time-delays systems with respect to two parameters’ weighted norm, which provides a foundation to study iterative learning control problem for this system. Secondly, we design PID-type learning laws to generate sequences of output trajectories to tracking the desired trajectory. Two numerical examples are used to illustrate the theoretical results

    New Trends in Differential and Difference Equations and Applications

    Get PDF
    This is a reprint of articles from the Special Issue published online in the open-access journal Axioms (ISSN 2075-1680) from 2018 to 2019 (available at https://www.mdpi.com/journal/axioms/special issues/differential difference equations)
    • …
    corecore