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We address existence and Ulam-Hyers and Ulam-Hyers-Mittag-Leffler stability of fractional nonlinear multiple time-delays systems
with respect to two parameters’ weighted norm, which provides a foundation to study iterative learning control problem for this
system. Secondly, we design PID-type learning laws to generate sequences of output trajectories to tracking the desired trajectory.
Two numerical examples are used to illustrate the theoretical results.

1. Introduction

Fractional differential equations have been used to deal with
many problems from physics, engineering, and other fields.
For some basic results in the theory of fractional differential
equations, one can read the monographs [1-3] or the survey
[4] and reference therein. Recently, considerable attention has
been given to the control and stability of fractional differential
equations; one can refer to [5-25] via Ulam’s type stability
concepts and the references therein. We also note that
there are some contributions on Mittag-Leffler stability of
fractional order systems and stabilization [26-29]. We remark
that there are some difference between the concept of Mittag-
Leffler stability and Ulam-Hyers-Mittag-Leftler stability. The
concept of Mittag-Leftler stability of solution follows the idea
of stability of zero solution for the classical ODEs and gives
an estimate inequality for the norm of solution via Mittag-
Leftler function. The concept of Ulam-Hyers-Mittag-Leffler
stability follows the idea of Ulam-Hyers stability of func-
tional equations and gives an approximate relation via small
parameter and Mittag-Leftler function between the solution
of equations and the solution of inequalities, which is a special
case of Ulam-Hyers-Rassias stability. That is, we try to find

a solution of approximate inequalities close to the solution
of the original equations in the sense of Ulam-Hyers-Mittag-
Leftler stability. The main idea for this concept will provide
an approach to find the explicit solution. However, there are
only few works on existence and Ulam’s type stability for the
nonlinear fractional time-delays differential equations.
Iterative learning control has become a popular strategy
in the intelligent control community since it was proposed by
Uchiyama [30] and developed by Arimoto etal. [31]. Recently,
iterative learning control problems of P-type, D-type, I-type,
or their combination schemes have been widely applied to
various types of repetitive or batch dynamical systems (see,
e.g., [32-38]). The problem on designing an ILC for uncertain
plants with time-delays has not been fully investigated, and
only a limited number of the results are available so far
(see, e.g., [39-41]). However, most of the existing literatures
focus on iterative learning control of the nonlinear fractional
differential system without time-delays, especially multiple
time-delays. Note that PID-type ILC learning algorithm is
one of the popular updating laws. The advantage of PID-type
ILC learning algorithm is simple and very easy to be realized
in tracking problem. The disadvantage of PID-type ILC is
that the error characterization for the signal is not the best
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and there is not a uniform method to design the weighting
coeflicients.

Delay systems are widely used to model dynamical sys-
tems in many scientific and engineering areas, for example,
biology, climatology, and economy. Comparing with systems
with single delay, systems with multidelay are more realistic
models in the interacting complex systems. In fact, dynamics
of multifeedback systems are representative examples of the
multidelay systems.

Motivated by [15, 42], we firstly discuss existence, Ulam-
Hyers stability, and Ulam-Hyers-Mittag-Leftler stability of
solutions to fractional order nonlinear Cauchy problems with
multiple time-delays of the form:

(“Dj.x) ()
=f(tx(),x(t-1),....x(t-7,))
+I(x®),x(t-&),....x(t-&,))u(t), "
te[0,T], 0<a<l,
x(t) =y (0),
t € [-a,0], a = max{r,...

)Tm)gl)-~-)€n}>
where T is a positive constant; ‘D, is the Caputo frac-

tional derivative of order o with the lower limit zero; u €

C([0, T],R); 115+ . » Ty &1 - - -, &, are positive constant time-

delays; x(t) € R; y is the initial continuous function of the

system in t € [-a,0]; f € C([0,T] x Rx---R,R); and
n

IeC(0,T] xRx---R,R).

Secondly, we turn to study PID-type ILC learning algo-
rithm of the following fractional order nonlinear system with
output equation:

(CDg+xk) )
= f(tx @, (E-71)5 o (£ 7))

+I(6x (), x5 (E=8) s (E— &) ue (8),

tel0,T], 0<a<l, @)
X (6) = v (1),
JEa)

t €[-a,0], a=max{r,...,7,,&,...

t

5 =g (x5 0) +d | w©ds, tel0.T),
where k denotes the kth learning iteration; u;(t) € R and
v (t) € R are the states and control input and output of the
system, respectively; v is the initial continuous function of
the system in t € [-a,0]; f, I, and u, are given continuous
functions in [0,T]; and g : [0,T] x R — R is a continuous
function.

The rest of the paper is organized as follows. Section 2
collects some notations and preparation results. Section 3
presents existence and uniqueness of solutions and shows
Ulam-Hyers stability and Ulam-Hyers-Mittag-Leffler stabil-
ity of solutions by using Picard operator method. Section 4
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presents convergence result for PID-type ILC updating law.
Section 5 gives two illustrative examples.

2. Preliminaries

Denote X = C([-a, T], R) as the Banach space of continuous
functions from [—a,T] — R endowed with the (A, «)-norm
Ixle = maxeame ™ x@)] (x € C(-a,TLR), A >
0, 0<a<1).

Definition 1 (see [2]). The Riemann-Liouville fractional inte-
grals I7, f are defined by

f@ i,

« 1
(I f) () = T (x) L (x—1)'"™

(x>a; a>0), (3)

and the Riemann-Liouville fractional derivatives D, f are
defined by

Hos = () i

o (i)

(x>a; a>0;, n=[a] +1),

[0 @

p (X _ t)oc—n+1 ’

where I'(-) is Gamma function.

Definition 2 (see [2]). The Caputo derivative of order y for a
function f: [a,00) — R can be written as

n-1 ,k
‘D’ f®)="D!, <f -y = f® (a)) :
;k! (5)

t>0,n-1<y<n

Definition 3 (see [43]). Let (X, d) be a metric space. An A :
X — X is a Picard operator if there exists x* € X such that
(i) F, = x*, where F, = {x € X : A(x) = x} is the fixed point
set of A; (ii) the sequence (A"(x;)),cn converges to x* for all
x, € X.

Lemma 4 (see [43]). Let (X,d, <) be an ordered metric space
and A : X — X be an increasing Picard operator (F, = x*).
Then, for x € X, x < A(x) implies x < x ;.

The following Gronwall inequalities will be used in the
sequel.

Lemma 5 (see [44, Lemma 3.1]). Let u(t) be a continuous
function on t € [0,T] and let v(t — T) be continuous and
nonnegative on the triangle 0 < T < t. Moreover, let w(t) be a
positive continuous and nondecreasing function ont € [0,T].

If
u(t)Sw(t)+Jtv(t—1)u(T)dT, tel0,T], (6)
0
then

w() <w @) el p 0,7 (7)
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Lemma 6 (see [44, Lemma 71.1]). Letz,w : [0,T) — [0, 00)
be continuous functions where T < oo. If w is nondecreasing
and there are constants k > 0 and 0 < « < 1 such that

z(t) <w(t) +x Jt (t-9s)""z(s)ds, te[0,T), (8)
0

then

z@gww+L<ZWNM) —Wﬂw@)m

)
te[0,T).

Remark 7 (see [44]). Under the hypothesis of Lemma 6, let
w(t) be a nondecreasing function on [0, T). Then we have
z(t) < w(t)E, (kT ()tY).

By [45, Lemma 2.12], one can adopt the similar idea to
prove the following result.

Lemma8. Let0 <« < 1and A > 0. Set

t
z:Ja-&*wdatemjLT>a (10)
0

Then
toce/\t"‘ ‘
TS if [A]=0,
i 11)
< w lf [/\] >

aA]*

where T is a positive number and [A] denotes the integer part

of A.

Proof. For completeness we supply the proofs. Denote

Al ckt/([A]+1) e
Z1 = J (t — S)OL_I e g dS,
(k=1)t/([A]+1)
(12)
t (24
Z, = J (t —s)* ' e ds.
[Alt/([A]+1)
Case 1. If [A] = 0 then Z = Z,. Obviously,
t 2
ZZ:J (t—s)*eM ds
[Alt/([A]+1)
(13)
A Jt N ld toceht
<e (t-s)" ds= ————.
AJ/((A)+D) a([A]l+1)*

Case 2. 1f [A] =2 1then Z = Z, + Z,. Obviously,

kt/([A]+1)
[
(k-De/(A1+1)

- Jkl‘/([/\]+l) <S([A] + 1) S)(Xl
— Jk-neaa+n k

_ o
S)ot le/\s ds

3
x 1
e ds(sg K =1t> s([/\]—+)>
Al +1 k
Al +1 a=1 ckt/([A1+1) g«
S(M—l) J M ds
k (k=1)t/([A]+1)
1 (([A] +1) 1)“_1 (e/\(kt/([/\]ﬂ))"
T A k
el((k—l)t/([l]ﬂ))“) .
(14)
Hence, we get
(Al ckt/([A+1) L
Z, = J- (t—s)*"e ds
(k=1)t/([A]+1)
(Al a-1
(AM+1) > AGkt/(A]+1)"
< -1 e
I;/\(x ( k (
_ MDD AL [[A]‘H (X _ )
-1
. <([/\] +1) 1)“ (A _ AGHALDY)
2
A+ 1 ot
+ e 4 (M — 1)
(A]
. (e/\([/\]t/([)\]“rl))“ _ e/\(([/\]—l)t/([/\]+1))°‘)
(15)
L 1 ([A] +1) 1 ot ( A+ 1)
A 1 ‘
< Al +1) 1)“_1 (XD
-1
< A1+1) )“ (wausr _yf o L
A] T A
A [Ml—a (eA([A]t/([/\]H))“ _ 1)
1 « 1
— (e/\([/\]t/([}tlﬂ)) _ 1) < —
a[A] a[A]
At*
MA@ €
- (24
a[A]
Furthermore, we can get
At a At* A% a
e 1+t
Z=Z +Zy<——+ Le = < ( ) (16)
a[A" a([Al+1) a[A]®
The proof is finished. O



3. Existence and Stability Results

We introduce the following assumptions:
(H;) Assume that f € C([0,T] x Rx---R,R), I ¢

C([0, T] x Rx---R,R), and u € C([0,T], R) In addition,

n
set Uy, = max;(orplu(t)].
(H,) For arbitrary x,,x, € C([-a,T],R), there exist
positive constants L ¢, L; such that

If (bxy (1), x5 (E=11)5.. x5 (E = T,))

—ftx, (),x; (t=711),..,x, (t=17,))]

)

(82, ()%, (= §1) 500 %, (£ 8,))
—I(t,x, (), %, (t=&)),... &)l

st<|xz (1) = x; (1)]

(t-7)=x (t-7))

L x (=

Ax) ()
v(t),
B y(0) +

Next, we show that A defined in (19) is a contraction
mapping on X with respect to the previous (A, )-norm |-l ..

For all t € [—a,0] and x(t), z(t) € X, we have ||A(x)(t) —
A(z)(t)|| = 0. This yields that || A(x) — A(2)ll, , = 0.

For any t € [0,T] and x,z € X, according to (H,), we
have

|A () (t) -

ﬁJot(t—s)“_l(f(s,x(s),x(s—rl) ..... x(s-1

A@) 0] < % j (t— )"

Af (sx(s),x(s=71)5....,x(s = T,))
- f(s2(8),2(s—1))5...,2(s = 7,))]
+|(I(s,x(s),x(s=8),...,x(s=&,))

—I(s,z(s),z(s=¢&),...

L a—1
r(“)j(t 9 1x(9) - 2(s)]

L;b,
I' ()

(s—z»—z(s—a))‘)ds

2(s=&,))| lu(s)l ds

(20)

m

D (x

I=1

t
j (t—s)“‘1<|x(s)—z<s>|

+ x(s—-1)-z(s—-1))

0

n

e

I=1

+
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<L; (lxz () — x (t)l

M=

(0 (E=§) —x, (£~ fl))l)

+
1=1
17)
(H;) Suppose the following inequalities hold:
(4
T_<1 m-o
IF'(a+1)
(18)
c(1+7T%)

Ta+ DA =
where ¢ = Lf(m +1)+L;b,(n+1).

Theorem 9. Assume that (H,), (H,), and (Hs) are satisfied.
Then problem (1) has a unique solution in C([-a, T], R).

Proof. Define an operator A : X — X (X := C([-a,T],R))
as follows:

te [—a, 0] N (19)
) HL(sx(s),x(s=&),..., x(s—¢&,))u(s)ds, tel0,T].
Let
GO)=Ix(t-0)-z(t-0),
(21)
Oe{ry,....Tn&,.. .8}

Therefore, (20) can be written as

Ly Jt (t - S)oc—l

|A(x) (1) = A(2) ()] < () );

" Lb
-(|x(s)—z(s)|+ ;G(Tl) >d5+ réa‘;

: Lt (t—s)*" (Ix(S) —z(s)| +

Jt (t _ s)ot—l

0

LM e (Ix (s) =z (s)| + iG (T,)) ds
=1

Y6 (a)])m

I=1

L
I'(x)
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t
+ LIbu j _ S)oc—l

T o

. eAslxe*/\sa (lx (S) -z (S)I + iG (El)) ds.
=1

(22)

Consider G(+) defined in (21); we have

t-9)*ee™™'G(0)ds

= -

t o o
t-5) e |x(s-0)—z(s—0)|ds

s

0
t

(t=9"M e -y @lds=0, tef.0, 23

S 2,

tel0,T],

IN
—_——

.
(t—s)"e™ |lx — zlly . ds,

-

0
t

< | (-9 dslx -zl

—

0

Substituting (23) into (22), using Lemma 8, we can obtain

L t
A () () - A) (O] < L L (t-s)"

I'(«)
M e A <|x (s) —z(s)| + iG (Tl)> ds

=1
LIbu Jt a—1
+ t—s
F(OC) 0( )

e <|x (s) —z(s)| + iG (fl)) ds
I=1

(24)

L (m+1)+L;b,(n+1) (t «
i )+ Lk ) J (t—s)* '™ ds|x

I'(a) 0
_Z“A,oc
CTOCeAtD(
- , [A]l=0,
Tt (e e A
c(1+T%)eM
( ) ”'x _Z"/\’aa [A] > 1.

T (a+1)[A]"

x (1)

z(t),
- 2(0)+Lr(t—s)"‘*‘[f(sx(s) x(s—1)
I'(a) Jo ' ’ o

5
This implies that
[[A (x) = A (2))4
cr”
- > A = 0)
=1 c(1+7T%)
(R PR Al>1,

[(ax+1)[A]"

where c is defined in (H;).
Due to (H;), we can derive that A is a contraction via the
(A, @)-norm | - ||, , on X. The rest of the proof follows from
the Banach contraction principle. O
Let € > 0. Consider (1) and the following inequality:

Dyz(®) = f(tz®),2(t-1),....2(t - 1,))

—I(tz(t),z(t-&),....z(t-E,))u®)] <e,  (26)
te[-a,T], 0<a<l, z€X.

Definition 10. Equation (1) is Ulam-Hyers stable if there exists

¢ > 0 such that for each € > 0 and for each solution z € X of

the inequality (26) there exists a solution x € X of (1) with
z()—x(t)| <Ce te][-a,T]. (27)

Remark 11. A function z € X is a solution of inequality (26)
ifand only if there exists a function w € X (which depend on
Z) such that

(i) lw(t)| <€, t €[-a,T].

(ii) ‘Dy,z(t) = f(&Z(),2(t = 77),...,2(t = T,,)) +
I(t,z(t),z(t — &),....,2(t — ENult) + w(t), t €
[0,T], 0 <a< 1.

Theorem 12. Assume that (H,), (H,), and (Hs) are satisfied;
then (1) is Ulam-Hyers stable.

Proof. Let z € C([-a,T],R) be a solution of inequality (26)
and x(t) be a solution of

(D3.x)
=f(tx(),x(t-1),....x(t-7,))

+I(tx (@), x(t=&),....,x(t-&,))u),
te[0,T], 0<a<l,

(28)

x(t)=2z(),
AT ST N

t € [-a,0], a = max{T,...

Then

te [—61, 0] , (29)

x(s=1,))+I(s,x(8),x(s=&),....,x(s—&,))u(s)|ds, tel0,T].



Obviously,
Dy, Z ()
=f(tz®),z(t-1),..., zZ(t-1,))

+1(6z2(1),2(t-&),....2(t=&,))u®)
+w(t), tel0,T],

(30)

which can be turned to
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According to Remark 11, one has

Z(0) - Z“’)‘mj (t— 5!

Af(sz2(),2(s—17)5-., zZ(s-1,))

-1(s,2(s),2(s-&),..., Z(s=&,))u(s)]ds

(32)
z(t)—z(0)+—j (t- 9"
T () 1 Jf a1
- < | -9 |w(s)|ds<—J(t
f(sz6),z2(s~-1,)5...,2(s = 7,)) (31) I'() I' ()
+1(s,2(s),2(s=&),..., Z(s—§,))u(s) ) ds<qe g r
IF'(w+1)
+w(s)]ds, tel0,T],
where w € X (which depend on z). Therefore
Z(4) -x0)] < |2()-Z(0) - % J E=9 (F(52(),2(s-7)), . 2(s—1,,))
+1(s,2(s),2(s—-&),..., Z(s—&,))u(s)+w(s))ds| + % r( _ st
X[(f(ssx(s),x(s=17),..0,x(s=7,) +I(sx(s),x(s=&),..., x(s=&,))u(s))
-(f(sz(s),z(s—19),..., Z(s—1,)+1(s2(s),2(s—&),..., Z(s—&,))u(s))]ds Sc16+JO (t—s)*" (33)
L m
75 (Fo-s1+[§ G- m-xte-n )+ 2 (20 -0
I'(e) =
cT”
n € + o ”2_ x"/\,oc) [/\] = 0) te [0’ T] >
N o
= C1€+m||z—x||m> Al =1, tel0,T].
Now multiplying by the fact e on both side of the above _ e’
inequalities, one can derive that () - x ()] < 1—c(1+T% /T (ax+1)[A]"
<1 cT* > _ - el (a+1)[A)" M
“Tarnarp® ) F s ae TT@r DA —c(+T9
[A] =0, t€[0,T], [A] =1, t€[0,T].
(34) (35)

) c(1+T%)
( S T(a+ 1) [A

) ”z - x”/\,a < 6
A]>1, te[0,T].

So, we obtain

o e

|z (t) —x (£)] < 1-cT*T(x+1)(1+ [A])a

el (a+ 1) (1+ A e
S T(a+ 1)1+ [AD* =T’
[A] =0, te[0,T],

Furthermore, according to (H;), combined with the fact of
|z(t) — x(t)| = 0, t € [—a, 0], we can get
z(t) - x(t)| <Ce te€l[-aT], (36)

where

c

- ql (a+1)(1+ A%
T T e DA+ AN =T

ol (a+1) [A]* M
Fla+1)[A]*=—c(Q+T%|"

Therefore, (1) is Ulam-Hyers stable. ]

(37)
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Different from the above stability result in the Theo-
rem 12, in the following part, we will discuss Ulam-Hyers-
Mittag-Leffler stability of (1) on the time interval [-a, T]. So
we first introduce the following Ulam-Hyers-Mittag-Leftler
stability definition.

Consider problem (1) with

O-ftz@®),z(t-1),....z2(t-1,))

0,t
~I(tz(),2(t-§),....z(t= &) u ()| (38)
<eE, (t), T], 0<a<]l,

where E, is the Mittag-LefHler function [2] defined by

00 Zk

E,(z)=) ——, z€C, Re(a)>0. 39

2 (2) ;J&“+D (@) (39)
Definition 13 ([46]). Equation (1) is Ulam-Hyers-Mittag-
Leffler stable with respect to E, (") if there exists ¢z > 0 such
that for each € > 0 and for each solution z € X to (38), there
exists a solution x € X to (1) with

|z (t) = x (t)] < cg €E, (t%), te[-aT]. (40)

x (t)

z(t),
B Z(O)+mjt ,x(s—

) f (%), x(s—7,),...

On the other hand, from [47, Remark 2] via Remark 14,
we can know that z satisfied the following inequality:

2(t) - am——i—fa—9*1

['(«)
f(sz(8),2(s=11),...,2(s—7,))
z(s=&))u(s)]ds

+1(s,2(s),2(s=&)),..., (43)

1 ! a—1 a—-1
Smj (t—s)" " |w(s)|ds < e )J (t-ys)

E,(s")ds <€E,(t*), tel0,T].

Then, for t € [0, T], according to (H,), we have

1 ! a—1
20— x ()] < |z (1) - zw%~——Ju—ﬂ

I'(a)
2 (5= 1,))

(f(s2(),2(s=11),...

+1(s,2(s),2(s=&),..., &,))ul(s))ds

z(s-

)+ 1(s,x(s),x(s=&),.

Remark 14 ([46]). A functionz € X isa solution of inequality
(38) if and only if there exists a function w € X (which
depends on z) such that

(i) lw(®)| < €E, (t*) forall t € [0,T];

(ii) ‘Dg,z(t) = f(t2z(t),z(t = 7),...,2(t = T,,)) +

I(t, z(t),z(t — &),...,z(t — Eu) + w(t), t €
[0,T], 0 <a<.

Theorem 15. Assume that (H,), (H,), and (Hs) are satisfied;
then (1) is Ulam-Hyers-Mittag-Leffler stable.

Proof. Letz € X beasolution to (38) and x € X be the unique
solution of the following problem:

“Dy,x (1)
=f(tx(@),x(t-1),....x(t—1,))
I(t,x(t),x(t=&),....,x(t-&))u(®), (41)
tel[0,T],
x(t)=z(t), te€[-a0].

Obviously,

t € [-a,0], (42)
cox(s=&))u(s)ds, tel[0,T].

ju 9%

(f(sz(s),2(s-11)5..,2(s—1,))
+1(s,2(5),2(s=&;),....,z(s=&,))u(s))ds

I‘ (oc)

(f(sx(s),x(s=17),....x(s—1,))

+1(s,x(s),x(s=&),....x(s=&,))u(s))ds
@ 1 ! a—1

<eB, () + i | -9 (I

(52(),2(s—11),..,2 (s — 7))

~fl&x(9).x(s=1).....x(s = 7,))]
+11(s,2(9),2(s = &),....2(s =&,))
—1(s,x(5),x(s=&1)s s x (s =)



d E, (t* Ly tt ol
. < —
lu(s)|) ds < €E, (¢ )+F()J( s)

-(Ix(S)—Z(S)I

(s-7)-2z(s-7))

Lb
T

F(x) ()

0,
" e () + L—f Jt (t-9)""%(s)ds + J- (t-s)" Z (s-1
* I'(a) 0 l

where x € C([-a,T],R,).

Next, we verify that F is a Picard operator. In fact, for all
t € [0,T] and arbitrary X,z € C([-a,T],R,), it follows the
proof in Theorem 9; one can show that F is a contraction via
the (A, )-norm on C([-a, T], R,) due to (H;).

Applying the Banach contraction principle to F, we derive
that F is a Picard operator and G = {x"}. Then, we have
x* =0, fort € [-a,0] and

_E o L a—1 d
x"(t) =€ (t)+r() I(t—s) x" (s)ds

+ Jot (t—s)*" Ii (x"(s-1)) ds)

(46)

LIbu ! el
+F(<x) (L(t )" x" (s)ds

+ Jt (t—s)*" Zn: (x*(s-¢)) ds> ,
0 I=1

€[0,T].

We go on to verify that the solution x* is increasing. Now,
denote m; = ming,p[x"(s) + Y2, x"(s — )] € R, and

m, = ming o [x"(s) + YL x" (s - )] € R,.
Then, for 0 < t, <t, < T, we have

X" (6) = x" () = € [Eq (£5) - Ea (67)]

F(oc) (J [( 2
. (x* (s) + ix* (s- Tl)> ds)

r ([ le-g -

- (tl - S)DH]

Lb,

I%u ! AN t _ge-l c — (e
r(q)(L(t s) x(s)ds+L(t s) l;(x(s
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t
- L (t— o) <|x(s) _2(9)]

(s=&)-2z(s-§))

)i

Note the fact |z(t) — x(t)| = 0, t € [—a,0]. Consider the
operator F : C([-a,T],R,) — C([-a,T],R,) defined by

(44)

t e[

o (45)

a,
Ez))) ds, tel0,T],

. (x* (s) + Zn:x* (s- fl)> ds>
=1
Lf 2 aml
+ m (J;l (t2 —S)
. (x* (s) + ix* (s- Tl)> ds)
=1
LIbu t2 a—1
T (L (t2=5)

. (x* (s) + ix* (s- E,)) ds> >e[E, (t5)

=1

o Lfml LIbum2 h a-1
—Ea(t1>1+<r(a) » JIRCED

- L Lb,
—(t; - s) 1]ds+< l“f(i:)l +—ll"(:)12>

: fz (t, —5)" ' ds = € [E, (15) - Eo (£)]

Lm L;bm
S IMu'""2 o1 o
(F(oc+l) r(a+1)>(t2_t1)>0'
(47)
So, x* is increasing. Thus, x* (t —6) < x" () due tot -0 <
t@ef{r,....tp&,...,&,)) and
x* (t)SGEa(t“)+%J (t—9)"" x" (s)ds
%J (t — )" x* (s)ds < €E, (t¥) (48)
Lf(m+1)+Lb(n+1) el
@ J (t—s)"" x" (s)ds.
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Using Lemma 6, Remark 7, and the fact of x* = 0, for
t € [—a, 0], we obtain

x* (1)
< €E, (t)E, ((Lym+ 1)+ Lb, (n+1))T%)  (49)

<p B, (1), tel-aTl,

where ¢z = E,((L ((m + 1) + L;b,(n + 1))T%).

In particular, if X(t) = |z(¢t) — x(¢)|, from (44), x < Fx and
applying the Lemma 4, we obtain X < x}, where F is a Picard
and an increasing operator. As a result, we know

|z (t) = x (t)] < cg €E, (tY), te[-aT]. (50)

Thus, (2) is Ulam-Hyers-Mittag-Leffler stable. O

Remark 16. One can find that we use Gronwall’s inequality
method to derive asymptotic stability of the corresponding
systems instead of using the Lyapunov direct method in
[28, 29]. We do not need to assume that Lyapunov function
satisfies some certain condition, for example, [28, Theorem
5, (12)-(13)]. Next, note that E,(z) < 1if z < 0; then the
definition of Mittag-Leffler stability can be turned to stability
of zero solutions. However, the concept of Ulam-Hyers-
Mittag-Leffler is more general since E_(t") is not necessarily
less than 1 on the whole interval [-a, T'].

4. PID-Type ILC

In this section, we consider the open-loop and close-loop
PID-type ILC updating laws of fractional order nonlinear
system with multiple time-delays (2) via (A, «)-weighted
norm [ - || 4-

4.1. Open-Loop Case. For system (2), consider the open-loop
PID-type ILC updating law with initial state learning:

Xie1 (0) = x4 (0) + 0ey (0),
t (51)

Upepy (8) = g (8) + 1185 () + 126 (£) + 173 L e (s)ds,

where ¢ and #; (i = 1,2,3) are unknown parameters to be
determined.

For the sake of brevity, the following notations will be
used:

i@ =ftxe @), x (t—10)5.. % (- 1,)),
L =1(tx @), x(t=&),....x.(t-E,)), (52)

9k () = g (6, (1)

And we denote that Auy(t) = w1 (t) — u(t), Ax(t) =
X1 (1) — x,(1), and e (t) = y,(t) — y(¢) which is called

tracking error at kth repetition, where y,(¢) denotes desired
output bounded trajectory satistying

(CDngxd) (t)
= ftxg (1), x4(t—11),.. %5 (£ 7))

+I(t,xd(t),xd(t—El),...,xd(t—EH))ud(t),

x4 () =y, (t),
€t

t€[-a,0], a=max{r,...,7,,&,...

ya(t)=g(t,xs(t))+d Jo uy(s)ds, te[0,T],

and u, is a desired control.

In this section, we imposed the following assumptions on
the class of system described by (2).

(H,) The function g is continuous and differentiable for
all x and t with partial derivatives g, and g,. For the constant
Bj» j=1,2,set

e
g;x") <B, (54)

0< Py < g (o) =
(Hs) The function I(t,x(t),x(t — &)),...,x(t — &,,)) is
uniformly bounded on [0, T']; that is, there exists b; > 0 such

that [I(t, x(¢), x(t = &,),...,x(t = &,,))| < b, forany t € [0, T].

Theorem 17. Assume that (H,)-(H;) hold. If

max {|1 - Bo|, |1 = Brol} <75 < 1, (55)
T2
r =L =dy,| +|dy, T| + % <1, (56)

then the nonlinear fractional multiple time-delays differential
system (2) with the open-loop PID-type ILC updating law (51)
guarantees that y, tends to y; as k — oo in the sense of (A, «)-
norm for all t € [0,T], where w,(t) is the desired initial state
on [—a, 0] and y,(t) is the desired output trajectory.

Proof. Note that
e (1) = e (8) + g () = Gpeyr ()

= ex (t) = g (g (£) 1) Ay (1) (57)

t
- dj Auy (s) ds,

0

where . (t) lies in the segment with end point x;(¢) and
Xp (t) for t € [0, T7].

In what follows, we show that [lei[l, , — 0 as k — oo for
a.e.t € [0, T]. By using mean value theorem we have

€1 (0) = € (0) + i (0) = yiyq (0)

= ¢ (0) = g, (1 (0),0) Axy (0).

(58)
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Substituting (51) into (58) and taking the absolute value,

we have

lex1 (0)] = lex (0) + ¥ (0) = ¥y (0)]

= lex (0) = g, (i (0),0) Axy (0)]

(59)
= lex (0) = g, (1 (0),0) gey (0)]
< |1 - 0g, (4 (0),0)] ex (0)] < 1 Jex (0)] .
It follows from (55) that
Jlim e (0], = 0. (60)

Now we turn to give an estimation for the upper bound
of Axy. One has

A (1) = % (0 = 5,0 = A, O+ s j (t
= )" (frerr () + Ly (8) thieyy () = fie (5)
1 () ds = A0+ o | -

=" ((fenr (8) = fi (5))
+ (Ik+1 (5) - Ik (5)) Uit (5)

+ L (8) (thyy (5) — 1 (5))) ds.

Repeating the same procedure in Theorem 9, we can get

|51 0] = e (8) = 2 ()] < 8% O] + ah
- 5)0‘_1 |fk+1 (8) + Ly () Uy (8) = fic (5)
— I () e ()| ds < |Ax (0)] + T () Jt y

—5)*! (|fk+1 ($) = fx (S)l
T () = I (9)] e (5)]

+ I ()| |ttrar (8) = uge (5)]) ds < |Ax (0)]

Lf ‘ a-1
+ m Jo (t—s) |x,chl (s) — x; (s)|
Lb,

T (oS JO (t—s)*" <|xk+1 (s) = x; (3)|

- x(s— 1))

Discrete Dynamics in Nature and Society

—&) —x (s - Ez))D ds

b (x 1
F( ) J (t- |Avy (s)| ds < |Ax; (0)]
Lf ! a-1
+ T L (=) (Lym+1)+Lib, (n+ 1)
b P
) J (t—s)*" |Auk (s)|ds
(62)
where by, b, are defined in (Hy).
Using Lemma 5, we get
|Ax (8)]
b,
<|Axk (0)| + 7 I (t - 5)*" |Auy ()] ds)
. ec/r(zx) Jot(t—s)“_lds (63)
b,
<|Axk 0)| + T j (t -9 A (s)] ds>
. ecT"‘/l"(oc+1))
where ¢ = Lf(m +1)+L;b,(n+1).
We know
e () = € (1) = (Vi1 () = 3 (1))
= €k (t) — Yx (/”k (t) > t) A'xk (t) (64)
t
-d L Auy (s) ds.
Taking (51) into (64), one obtains
err (1) = e (1) = (Viar () = i (1) = €, (1)

~ 9x (."lk (t) > t) A-xk (t) -d L Auk (S) ds = € (t)
— g (e (6),) A () —d (m [ etras

t t s
+1, L ér (s)ds + 13 L L e (1) d‘rds) =¢. (1)
~ 0. 0.0 85,0 —d (1, [ 9 ds

t rt
+1, (e (1) — €, (0)) + 15 L L e, (1)ds dT> =(1
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—dny) ex (1) = g (i (1) 1) Axy (1)

—d <;71 r e (s) ds - e, (0)

0

o (t—s)ek@>ds)::(l—cbh)eka>

0

t t
e <1 = il 0 + kil O + £ O o | [ e s+ i [ 69 e (9] s

b t - . ¢ t
< |1 dnp|[ex ()] + |dra] ex (O)] +E(|Axk O] + —L L (t - 9% Ay (s)lds) T |d;11|J leg (5)]ds + |d,13|j (t - 5) ey (9)] ds

I
I'(x)

b]gecT"‘/r(o&l)

% s

11
+die (0) = gy (e (1) 1) Axy (1)
t t
_dn, I e (s) ds — dn, I (t - ) ey (s) ds.
0 0
(65)
Combining with (64) and Lemma 8, we can get
0 0 (66)

|1 - d’lzl Iek (f)I + (|d’Iz| + erCTa/r(Ml)) |ek (0)| +

<

1= dn,| |ex )] + (|dr,| + Ege™ /D) |e, (0] +

T  a(A]+
b]gecT"/F(sz) eAt“ (1 +t

« 2
% NAuael + ldm 2™ el + sl S € leiles  [AT=0,

o « t2 «
)IIAukIIA,wIdmIfeM el + ldmsl- 5 e el 121

I'(x)

where & = max{|, ], |5,[}.

||ek+1 ”A,oz

T2
<|1 —dny| + |dm | T +|dns| - 5
<

T2 C o
<|1 —dny| + |dn| T + |dys| - 7) lexle + (Jdna] + E0e™ ") e (O], +

Set

>

- bIEeCT“/F(OH'l)F (a) . TOC
H= max a(1+ [A])°
(68)

bIEECT"/I‘(oHl)r ((X) . (1 4 Ttx)
a [A] '

There exists a sufficiently large A such that y is very small
and using (56) and (60) we can derive lim;_,llexll,, = O.
The proof is completed.

4.2. Closed-Loop Case. For system (2), consider the close-
loop PID-type ILC updating law with initial state learning:

Xa1 (0) = x; (0) + Ceyyy (0),

Uy (1) = g (8) + Ky€ppy (B) + K4y (2) (69)

t
+ K5 J ey (8)ds,
0

where ¢ and «; (i = 1,2,3) are unknown parameters to be
determined.

a[A]*

e (il £ ) oy O+

Multiplying e on both sides of (66) and taking the
maximum value on [0, T'], we can get

b]fec'l'“/r(aJrl)r (OC) . T(x

a(l+[AD" [Awe], > A =0, (67)
b]gecT"/I‘(aﬂ)r (@) - (1 N T“)
a[A]® "Auk”,\ﬂ, [A] > 1.

Theorem 18. Assume that (H,)-(Hs) hold. If
min {|1 + B,¢|, |1+ B} =70 > 1, (70)

2
|dies| T > 1

ry = |1+ diy| - |di,| - (71)

then the nonlinear multiple time-delays system (2) with the
close-loop PID-type ILC updating law (69) guarantees that y,
tends to y; as k — o0 in the sense of A, a-norm for all t €
[0, T], where w,(t) is the desired initial state on [—a, 0] and
y,4(t) is the desired output trajectory.

Proof. Note that
e (1) = e (1) + gic () = Gpeyr ()

= e (t) = g (e (£) 1) Ay (1) 72)
-d L Auy (s) ds,

where p(t) lies in the segment with end points x;(t) and
X1 (t) fort € [0, T7].

In what follows, we show that [lei[l, , — 0 as k — oo for
a.e.t € [0,T]. By using mean value theorem we have

€kt1 (0) =€ (0) + Vi (0) = Vi1 (0)

= ¢ (0) = g, (1 (0),0) Axy (0).

(73)
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I . ) .
e s;zstltutlng (69) into (73) and taking the absolute value, g (i (6),) Ax (B) - d <K1 J 00 () ds

|1 + 9. (1. (0),0) (| |ek+1 (0)| _ lek (0)|. (74) + K, Jo ey (8)ds + 15 L J.o ey (T)dT ds>

= e (1) = g (e (£) 1) Ay (1)
It follows from (70) that

-d <K1 L exs1 (5)ds + 1, (e (1) = exyy (0))

klggo llex (0)"/\)0‘ =0. (75) t oot
+ K3 J J e, (1)ds d‘r) = e (t) — dryep,, (1)
0 Jr
Similar to the proof of Theorem 17, we can get +diye,, (0) — g, (i (£),1) Axy (£)
t t
—dk, J sy (8)ds — diy J (t —s) e, (s)ds.
e (1) = € (1) = (Vor (8) = i (1) = e, (1) 0 0
t (76)
= gy (1 () 1) Axy (8) — d L Auy (s) ds = ey (t) Then, one has
t t
|1+ i Jegar (O] < Jex (O] + || ey ()] + E[Axe ()] + |y | L lear ()] ds + |dcs| L (t = 5) lews (5)] ds
bI ! a—1 T /T (a+1) t t
< |ek (t)|+|dx2||ek+1 (0)|+E<|Axk (0)|+ J (t—s) |Auk (s)|ds)e +|dK1|J |e,<+1 (s)|ds+|dK3|J (t-s) |ek+1 (s)|ds
I'(a) Jo o 0
T T b . F s
< Jeg (0] + (i + 86T e (0§D [ (e ]+ ] [ € ds el
I'(a) Jo o« 0 o (77)
t &
| [ =96 ds el
0
lex (8] + (|d1< |+EcecT“/l"(¢x+l)) legs (O] + by T T . Mg gl + s 1€ [eun]. + |dx |-ﬁe’”a lewa =0
- k 2 k+1 r((x) O‘A(l + [A])a ki« 1 k+11I2« 3 2 k+1l)a > >
= . - b cT%/T(a+1) e t* 1+ . t2 N
lex (0] + (ldrey| + &G D) ey (0)] + I‘Eel" @ oc([)t]“ : NAute] o + lddrer | 02 il + s Eelt lexiilie, 121,
where & = max{|,], 13,1} Multiplying ¢ ™" on both sides of (77) and taking A, a-
norm, we can derive
|1 + dK2| |lek+1||/\,o¢
bIEecT"‘/F(zXJrI) T T2

lexl + (] + &6/ ) e (O], +

T (OC) : « (1 + [A])‘x "Auk”)x,(x + |dK1| T ”ek+l|IA,a + |dk3| ' 7 "ek+1"/\,a > [)L] =0, (78)

<
= . - b EecTa/l'((x+l) (1 + T(X) TZ
e+ (] + 86T ey O+ 25 C Pl o b b+l Sl 121
Set There exists a sufficiently large A such that i is very small
and using (71) and (75) we can derive limy_,,llex[l, , = 0. This
completes the proof of Theorem 18. O

R bIEec’Ia/l"(oﬁl) T bIEecT“/F(aﬁl)
”:ma"{ T  a(+AD)" T

(79) 5. Examples

o
. w} . In this section, we give two examples to illustrate our results
a[A] above.
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Example 1. Let o = 1/2,Lf =1/8,L; =1/12,m=2,n=1,
and T = 0.2. We consider the following nonlinear fractional
multiple time-delays differential equations

x2(t-1)
81+x2(t—1)

el 1)

‘Dix (1) = = sm (5x () +

+1—125in<3x (t— —))u(t) 0
t €[0,02],
x(0)=1, te[-1,0]
and the inequalities
‘D%z () - f(t,z(t)z(t— 1),z<t - %))
+I<t,z(t— %))u(t)l <e
(81)

‘Dz (1) - f(t,z(t)Z(t— 1)’Z<t_ %)>

+ I<t,z(t— %))u(t)l <eBy, (1'7).

Define f(t, x(t), x(t — 1), x(t — 1/2)) = (1/8) sin(5x(t)) +
(1/8)(x*(t — 1)/(1 + x*(t — 1))) + (1/8) cos(x(t — 1/2)) and
I(t, x(t — 1/3)) = (1/12) sin(3x(t — 1/3)) and setb, =1 ,A =
4.2. Thus ¢ = 0.5417; then c(1 + T%)/T(ac + 1)[A]* = 0.4423 <
1. Now all the assumptions in Theorems 9, 12, and 15 are
satisfied, problem (80) has a unique solution, and the first
equation in (80) is Ulam-Hyers stable with |z(t) — x(¢)| <
ce, t € [-1,0.2] and Ulam-Hyers-Mittag-Leftler stable with

z2(0) - x (O] < g, €Eyp (£7%), te[-1,02], (82)

where ¢ = 26.9701, Cp,, = 1.3447.

Example 2. Leta = 1/2, L= 1/8, L, =1/12,m=2,n=1,
and T' = 0.2. We consider the following nonlinear fractional
multiple time-delays differential equations

1 x(t—1
D= LanGon )+ LD

e (e-3))

+ %sin <3xk (t— é))uk ®, .
€[0,0.2],

x(0)=1, te[-1,0],
3 t

Vi (1) = 2% (t) + = sinxg (£) + ZJ u (s) ds,
2 0

t €[0,0.2]

13

ya(®), yi(t)

Tracking error

10 20 30 40 50 60 70 80 90 100

Iterative times

(b)

FIGURE 1: The system output y, () (blue line), the desired trajectory
y,4(t) (red line), and the tracking error for (83).

and the desired reference trajectory y;(¢) = 10 sin(107¢)(1 +
cos(107t)) + 2, t € [0,0.2].

Consider problem (83) and the open-loop PID-type ILC
updating law with initial state learning:

X1 (0) = %, (0) + e, (0),
1 1 1(* (54
Upeyy (£) =1y (8) + To%k (t) + Eék (t) + 3 L ey (s) ds.

Obviously, r, = 0.9 < 1 and r; = 0.048 < 1. All the
conditions of Theorem 17 are satisfied.

Next, consider problem (83) and the close-loop PID-type
ILC updating law with initial state learning:

51 (0) = %, 0) + S (0),

ot (0 = 0+ 20 (04 2600 ) (859

t
+6 J €y () ds.
0

Thus 7, = 1.75 > 1 and r, = 2.76 > 1. All the conditions of
Theorem 18 are satisfied.

Numerical simulation diagram for the open-loop control
is shown in Figure 1(a).

Figure 1(b) shows the supremum norm of the tracking
error in each iteration and the 100th error is 0.0979.

6. Conclusions

This paper is twofold: in the first part we show the existence
and uniqueness result and present Ulam-Hyers and Ulam-
Hyers-Mittag-Leftler stability results for fractional nonlinear
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multiple time-delays systems. In the second part we apply
PID-type learning updating laws to obtain sequences of
tracking trajectory to approximate a given trajectory. In the
future, we will study the related topic of noninstantaneous
impulsive systems [48].
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