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Abstract. In this paper, we study the existence of a.e. monotonic solutions of some general delay
integral problems for both fractional and integer orders in the space of Lebesgue integrable functions
on the interval R+ = [0,∞) and in the space of locally integrable functions Lloc

1 (R+). In particular,
the uniqueness of solutions for considered problems is obtained.
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1 Introduction

In this paper, we investigate some delay integral or integro-differential problems for both
integer or fractional orders. For most of papers devoted to study such problems either on
a finite interval or on a half-line, the expected solutions are continuous (on C([0,∞)),
cf. [29]) or continuous and bounded (on BC([0,∞)), cf. [4, 9, 27, 28]). However, for
integral problems, it is much more natural if solutions are not so regular and they are only
integrable. This approach is not sufficiently investigated, and it requires to investigate
operators acting on different spaces together with different qualitative indices in such
spaces. We concentrate on delay integral equations.

Some particular problems are widely studied, but they are neither unified nor obtained
for common and general assumptions. Delay integral or differential equations are quite
frequent in mathematical biology, medicine, and physics. Let us recall some of our mo-
tivations. Many of the models of machining operations fall into the class of autonomous
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delay differential equations of the form

ẋ = f
(
x(t), x(t− h)

)
,

where the problem is studied in finite-dimensional spaces and h > 0 (cf. [24]).
In [15] the authors formulated a model to explain the observed periodic outbreaks of

certain infectious diseases with periodic contact rate that varies seasonally, and it was also
studied in [16, 32–34]. This model can also be interpreted as an equation describing the
growth of a population when the birth rate varies seasonally. Then this model takes the
form

x′(t) = f
(
t,
(
x(t)

)
− f

(
t− τ, x(t− τ)

)
,

and is usually studied in its integral form.
However, many physical and biological models have been successfully described by

delayed differential or integral problems with discontinuous functions, such as electric,
pneumatic, and hydraulic networks (see [2, 11, 20]). For instance, in [10] the authors
focused on the discontinuity solutions of problem with delays and proved some disconti-
nuity properties for delay differential equations

y′(t) = f
(
t, y(t), y

(
α
(
t, y(t)

)))
, t ∈ [0, T ],

y(t) = ϕ(t), t ∈ [a, 0], where a = inf
t>0

α
(
t, y(t)

)
6 0.

Note that we propose to study such problems with possibly general initial-value func-
tions ϕ, not necessarily continuous. In particular, we will study the delay fractional
integral problem

x(t) = h(t) +m(t) · g
(
t, x(t− τ)

)
+

t∫
0

(t− s)α−1

Γ(α)
f
(
s, x(s− τ)

)
ds, t ∈ R+,

x(t) = ϕ(t), t ∈ [−τ, 0), 0 < α < 1.

(1)

All the problems mentioned above are extensions of earlier results, so we will try to
extend and unify many of them. To achieve our goal, let us consider first the delay integral
problem of Volterra–Hammerstein type

x(t) = h(t) +m(t) · g
(
t, x(t− τ)

)
+

t∫
0

k(t, s)f
(
s, x(s− τ)

)
ds, t ∈ R+,

x(t) = ϕ(t), t ∈ [−τ, 0),

(2)

still being a general form of many previous problems considered, for instance, in [5, 7,
16, 17, 25]. It should be stressed that we will investigate these problems on unbounded
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interval with integrable solutions as well as locally integrable ones. The above mentioned
results are investigated either in the one of cases discussed here or even only on compact
intervals. We will consider here the case of finite delay, and the the initial function
describing the past will be defined on an interval [τ, 0].

More precisely, in this paper, we study the existence and the uniqueness of a.e. mono-
tonic solutions of problem (2). We will also unify some known results being particular
cases of (2), and we will extend some of them from bounded interval to unbounded one
in the space L1(R+) or Lloc

1 (R+). As applications, we discuss the solvability of the
integro-differential problems of fractional order (1). Proofs are based on operators form
for considered problems with operators acting on appropriate function spaces and with the
use of some special measures of noncompactness on these spaces together with the Darbo
fixed point theorem. In particular, we need to investigate different properties of operators
and different properties of considered subsets of functions paces. Thus proofs will be
different than that for continuous solutions and for results about integrable solutions based
on the weak topology argument (cf. [5, 8]).

2 Preliminaries

Let R be the field of real numbers, and let R+ be the interval [0,∞). Denote by L1 =
L1(R+) the Banach space of all real functions defined and Lebesgue integrable on R+

endowed with the norm

‖x‖L1(R+) =

∞∫
0

∣∣x(t)
∣∣ dt

and by Lloc
1 (R+) the Fréchet space of all locally integrable spaces on R+ endowed with

a family of seminorms ‖x‖T =
∫ T
0
|x(t)|dt (T > 0). A nonempty set A in Lloc

1 (R+) is
bounded if it is bounded in every seminorm, i.e., supT>0{‖χ[0,T ]x‖T : x ∈ A} <∞.

Definition 1. (See [1].) Assume that a function f(t, x) = f : R+ × R→ R satisfies the
Carathéodory conditions, i.e., it is measurable in t for any x ∈ R and continuous in x for
almost all t ∈ R+. Then for every function x being measurable on R+, we may assign

Ff (x)(t) = f
(
t, x(t)

)
, t ∈ R+.

The operator Ff defined in such a way is called the superposition (Nemytskii) operator
generated by the function f .

Acting and continuity conditions in the case of σ-finite measure spaces were proved
by Appell and Zabreiko:

Theorem 1. (See [1, Thm. 3.1].) Suppose that f satisfies the Carathéodory conditions.
The superposition operator Ff maps continuously the space L1 into L1 if and only if∣∣f(t, x)

∣∣ 6 a(t) + b|x|

for all t ∈ R+ and x ∈ R, where a ∈ L1 and b > 0. Moreover, this operator Ff :
L1 → L1 is continuous.

Nonlinear Anal. Model. Control, 26(4):661–677, 2021
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Let S = S(I) denotes the set of measurable (in Lebesgue sense) functions on an
interval I . Identifying the functions equal almost everywhere the set S furnished with the
metric

d(x, y) = inf
a>0

[
a+ meas

{
s:
∣∣x(s)− y(s)

∣∣ > a
}]
,

we obtain a complete metric space. Moreover, the convergence in measure on I is
equivalent to the convergence with respect to the metric d in [35, Prop. 2.14].

For σ-finite subsets of R, we say that the sequence xn is convergent in finite measure
to x if it is convergent in measure on each set T of finite measure. The compactness in
such a space is called “compactness in measure”. The following property will be useful
in our investigation.

Theorem 2. (See [12, Thm. 2.3].) Let X be a bounded subset of L1 consisting of
functions, which are a.e. nonincreasing (or a.e. nondecreasing) on the half-line R+. Then
X is compact in measure in L1.

Now, let us recall the concept of measure of noncompactness. Assume that (E, ‖.‖)
is an arbitrary Banach space with zero element θ, and the symbol Br stands for the closed
ball with radius r and centered at θ. Denote by ME the family of all nonempty and
bounded subsets of E and by NE its subfamily consisting of all relatively compact sets.
The symbols X , X

W
stand for the closure, and the weak closure of a set X , respectively,

and the symbol convX will denote the convex closed hull of a set X .

Definition 2. (See [6].) A mapping µ : ME → [0,∞) is called a regular measure of
noncompactness in E if it satisfies the following conditions:

(i) µ(X) = 0⇔ X ∈ NE .
(ii) X ⊂ Y ⇒ µ(X) 6 µ(Y ).

(iii) µ(X) = µ(convX) 6 µ(X).
(iv) µ(λX) = |λ|µ(X) for λ ∈ R.
(v) µ(X + Y ) 6 µ(X) + µ(Y ).

(vi) µ(X
⋃
Y ) = max{µ(X), µ(Y )}.

(vii) If Xn is a sequence of nonempty, bounded, closed subsets of E, Xn = X
W

n

such that Xn+1 ⊂ Xn for n = 1, 2, . . . , and if limn→∞ µ(Xn) = 0, then the set
X∞ =

⋂∞
n=1Xn is nonempty.

An important example of such mappings is the following.

Definition 3. (See [3].) Let X be a nonempty and bounded subset of E. The Hausdroff
measure of noncompactness χ(X) is defined as

χ(X) = inf{r > 0: there exists a finite subset Y of E such that x ⊂ Y +Br}.

We need to construct a measure of noncompactness in L1. For nonempty and bounded
subset X of the space L1, let

µ(X) = c(X) + d(X) (3)
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(cf. [8]), where

c(X) = lim
ε→0

sup
x∈X

{
sup

{∫
D

∣∣x(t)
∣∣ dt: D ⊂ R+, measD 6 ε

}}
= lim
ε→0

sup
D⊂R+

measD6ε

sup
x∈X
‖x · χD‖1 (4)

is a cocalled measure of uniform integrability (cf. [5]), and

d(X) = lim
T→∞

sup

{ ∞∫
T

∣∣x(t)
∣∣dt: x ∈ X}. (5)

Immediately, we get the following.

Lemma 1. The measure µ is a measure of noncompactness if restricted to the family of
subsets being compact in measure in L1.

Proof. In [8, Lemma 2], it is proved that µ is a measure of weak noncompactness in L1

(see also [8, Thm. 4]). But [18, Thm. 1] implies that for any bounded subset X ⊂ L1

being additionally compact in measure, this quantity is equal to the Hausdorff measure of
(strong) noncompactness (see [6]).

Moreover, measures χ(x) and µ(x) are equivalent:

Theorem 3. (See [5, Thm. 5].) Let X be a nonempty, bounded, and compact in measure
subset of L1. Then

χ(x) 6 µ(x) 6 2χ(x).

Let us recall some fixed point theorems. In the proof of the existence of solutions of
considered problems in L1, the following Darbo fixed point theorem will be useful:

Theorem 4. (See [6, Thm. 3.1].) Let Q be a nonempty, bounded, closed, and convex
subset of E, and let H : Q → Q be a continuous transformation, which is a contraction
with respect to the measure of noncompactness µ, i.e., there exists k ∈ [0, 1) such that

µ
(
H(X)

)
6 kµ(X)

for any nonempty subset X of E. Then H has at least one fixed point in the set Q.

Let E1 be a Fréchet space, and let its topology is defined by a family of seminorms
(‖·‖n). By µn (n ∈ N) denote the family of measures of noncompactness related to this
family of seminorms. For instance, it could be done like in the Hausdorff measure of
noncompactness, i.e.,

µn(X) = inf
{
r > 0: there exists a finite subset Y of E such that x ⊂ Y +Bnr

}
,

where Bnr = {x ∈ E1: ‖x‖n < r}. A detailed study of the case Lloc
1 (R+) can be found,

for instance, in [30].
Because the space Lloc

1 R+ is Fréchet, but not a Banach space, we need the following
version of the Darbo fixed point theorem, which is sufficient for our investigation.
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Theorem 5. (See [21].) Let Q be a nonempty, bounded, closed, and convex subset of
a Fréchet space E1, and let H : Q → Q be a continuous transformation such that for
the family of measures of noncompactness, (µn)n∈N, i.e., there exist constants kn ∈ [0, 1)
(n ∈ N) such that

µn
(
H(X)

)
6 knµn(X)

for any nonempty bounded subset X of E1 and n ∈ N. Then H has at least one fixed
point in the set Q.

Next, we give short notes about fractional operators. We will restrict our attention to
the case of L1 because for Lloc

1 , they will result directly.

Definition 4. (See [26].) Let f ∈ L1 and α ∈ R+. The Riemann–Liouville (RL)
fractional integral of the function f of order α is defined as

Iαa f(t) =

t∫
a

(t− s)α−1

Γ(α)
f(s) ds, α > 0, a 6 t 6 b,

where Γ(α) is the Euler gamma function.

Lemma 2. (See [25, 31].) If f ∈ L1 and α ∈ (0, 1), then

(a) The operator Iαa maps L1 into itself continuously.
(b) The operator Iαa maps the monotonic nondecreasing function into functions of

the same type.

3 Main results

First, let us consider problem (2). We will rewrite it in an operator form. The key dif-
ference between the case of integrable solutions and continuous ones is the action of
operators on appropriate function spaces. It will not be surprising to assume that the
expected solution observed in the past should have the same properties as in the future, so
we will assume that ϕ ∈ L1([−τ, 0]) is a.e. nonincreasing and positive.

3.1 Existence of integrable solution

Rewrite problem (2) in the operator form

x(t) =
(
H(x)

)
(t) = h(t) +m(t)(Fgxτ )(t) +K(Ffxτ )(t), (6)

x(t) = ϕ(t), t ∈ [−τ, 0),

where xτ = x(t− τ), τ < t, Kx(t) =
∫ t
0
k(t, s)x(s) ds, and Ff , Fg be the superposition

operators generated by f and g, respectively. Note that if ϕ is integrable, then for any
integrable function x, a function xτ is integrable too.

First, we will prove the existence of solutions in L1. Consider the following assump-
tions.

https://www.journals.vu.lt/nonlinear-analysis
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(i) Let m,h : R+ → R+ be a.e. nonincreasing functions, where m is a bounded
function with supt∈R+ |m(t)| 6 M and h ∈ L1. Moreover, let ϕ ∈ L1([−τ, 0])
be a.e. nonincreasing and positive.

(ii) Assume that the functions f, g : R+ × R → R satisfy Carathéodory conditions.
Moreover, f(t, x) > 0, g(t, x) > 0 for x > 0, and f , g are a.e. nonincreasing
with respect to t and nondecreasing with respect to x.

(iii) There are positive integrable functions ai ∈ L1 and constants bi > 0 (i = 1, 2)
such that |f(t, x)| 6 a1(t) + b1|x|, |g(t, x)| 6 a2(t) + b2|x| for all t ∈ R+ and
x ∈ R.

(iv) k : R+×R+ → R satisfies Carathéodory conditions such that the linear operator
K : L1 → L1 is continuous and maps the set of a.e. nonincreasing and positive
functions into functions of the same type.

(v) b2M + b1‖K‖L1
< 1/2, where ‖K‖L1

is an operator norm ‖K‖L1→L1
.

Let us recall that some sufficient conditions for the acting and continuity conditions
in (iv) can be found in [22] (a full description is unknown). Some conditions guaranteeing
preservation of monotonicity of functions by K exactly on R+ can be found in [23,
Sect. 4]. As this paper is not easily accessible, let us recall that criterion:

Proposition 1. (See [23].) The operatorK with the kernel k(t, s) being locally integrable
with respect to s on R+ for each fixed t preserves the monotonicity of functions from
Lloc
1 (R+) if and only if

b∫
0

k(t1, s) ds >

b∫
0

k(t2, s) ds (7)

for t1 < t2, t1, t2 ∈ [0, T ] and for any b > 0.

Our main result is the following.

Theorem 6. Let assumptions (i)–(v) be satisfied. Then problem (2) has at least one
solution x ∈ L1, which is additionally a.e. nonincreasing function on R+.

Proof. We need to investigate acting, continuity, and contraction conditions for all oper-
ators describing equation (6).

By assumptions (ii), (iii) and due to Theorem 1, we can conclude that Ff , Fg map L1

into itself continuously. By assumption (iv) the operator K : L1 → L1 is continuous, and
then KFf : L1 → L1 and is continuous too. For a given x ∈ L1, by assumption (i) we
can deduce that H(x) belongs to L1 and H is continuous. Then

∥∥H(x)
∥∥
L1

=

∞∫
0

∣∣∣∣∣h(t) +m(t) · g
(
t, x(t− τ)

)
+

t∫
0

k(t, s)f
(
s, x(s− τ)

)
ds

∣∣∣∣∣ dt
6

∞∫
0

∣∣h(t)
∣∣ dt+

∞∫
0

∣∣m(t)
∣∣ · ∣∣g(t, x(t− τ)

)∣∣dt
Nonlinear Anal. Model. Control, 26(4):661–677, 2021
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+

∞∫
0

t∫
0

∣∣k(t, s)
∣∣∣∣f(s, x(s− τ)

)∣∣dsdt

6 ‖h‖L1 +M

∞∫
0

(
a2(t) + b2

∣∣x(t− τ)
∣∣) dt

+

∞∫
0

∞∫
s

∣∣k(t, s)
∣∣(a1(s) + b1

∣∣x(s− τ)
∣∣)dtds

6 ‖h‖L1
+M‖a2‖L1

+ b2M

τ∫
0

∣∣x(t− τ)
∣∣dt+ b2M

∞∫
τ

∣∣x(t− τ)
∣∣ dt

+ ‖K‖L1‖a1‖L1 + b1‖K‖L1

τ∫
0

∣∣x(s− τ)
∣∣ ds

+ b1‖K‖L1

∞∫
τ

∣∣x(s− τ)
∣∣ds.

Put t− τ = u, so du = dt and then

∥∥H(x)
∥∥
L1

6 ‖h‖L1
+M‖a2‖L1

+ b2M

0∫
−τ

∣∣x(u)
∣∣du+ b2M

∞∫
0

∣∣x(u)
∣∣du

+ ‖K‖L1
‖a1‖L1

+ b1‖K‖L1

0∫
−τ

∣∣x(u)
∣∣du+ b1‖K‖L1

∞∫
0

∣∣x(u)
∣∣ du

6 ‖h‖L1
+M‖a2‖L1

+ ‖K‖L1
‖a1‖L1

+ b2M

0∫
−τ

∣∣ϕ(u)
∣∣du+ b2M‖x‖L1

+ b1‖K‖L1

0∫
−τ

∣∣ϕ(u)
∣∣du+ b1‖K‖L1‖x‖L1

6 ‖h‖L1
+M‖a2‖L1

+ ‖K‖L1
‖a1‖L1

+ ‖ϕ‖L1([−τ,0])
(
b2M + b1‖K‖L1

)
+
(
b2M + b1‖K‖L1

)
‖x‖L1

.

From the above estimate we deduce that the function H(x) is bounded on R+, thus H :
L1 → L1. Moreover, we get∥∥H(x)

∥∥
L1

6 ‖h‖L1
+M‖a2‖L1

+ ‖K‖L1
‖a1‖L1

+ ‖ϕ‖L1([−τ,0])
(
b2M + b1‖K‖L1

)
+
(
b2M + b1‖K‖L1

)
r

= r,

https://www.journals.vu.lt/nonlinear-analysis
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where

r =
‖h‖L1 +M‖a2‖L1 + ‖K‖L1‖a1‖L1 + ‖ϕ‖L1([−τ,0])(b2M + b1‖K‖L1)

1− (b2M + b1‖K‖L1
)

> 0.

The inequality obtained above infer that the operator H maps the ball Br into itself, i.e.,
H : Br → Br and is continuous.

Further, letQr denote the subset ofBr consisting of all function being a.e. nonincreas-
ing and positive on R+. The set Qr is nonempty, bounded, closed, convex, and compact
in measure in view of Theorem 2 (cf. [13], for instance).

Now, we will show thatH preserves the monotonicity and positivity of functions from
Qr. Take an arbitrary x ∈ Qr, then x(t) is a.e. nonincreasing and positive on R+, and
consequently, f , g are also of the same type virtue of assumption (ii). By assumption (i)
m, h are a.e. nonincreasing and positive functions on R+, and from assumption (iv) the
operator K maps a.e. nonincreasing and positive functions into functions of the same
type.

Thus, we can deduce that (H(x)) is also a.e. nonincreasing and positive on R+. This
fact gives that H : Qr → Qr and is continuous.

Next, to prove that H is a contraction, we will assume that ∅ 6= X ⊂ Qr, and let
a constant ε > 0 be arbitrary, but fixed.

Then for an arbitrary x ∈ X ⊂ Qr and for any measurable set D⊂R+, measD6ε,
we obtain∫

D

∣∣(H(x)
)
(t)
∣∣dt 6 ∫

D

∣∣h(t)
∣∣ dt+

∫
D

∣∣m(t)
∣∣∣∣g(t, x(t− τ)

)∣∣dt
+

∫
D

t∫
0

∣∣k(t, s)
∣∣∣∣f(s, x(s− τ)

)∣∣ dsdt

6
∫
D

∣∣h(t)
∣∣ dt+

∫
D

∣∣m(t)
∣∣∣∣g(t, x(t)

)∣∣ dt
+

∫
D

t∫
0

∣∣k(t, s)
∣∣∣∣f(s, x(s)

)∣∣dsdt

6 ‖h‖L1(D) +M

∫
D

(
a2(t) + b2

∣∣x(t)
∣∣) dt

+ ‖K‖L1(D)

∫
D

(
a1(s) + b1

∣∣x(s)
∣∣) ds

= ‖h‖L1(D) +M‖a2‖L1(D) + ‖K‖L1(D)‖a1‖L1(D)

+
(
b2M + b1‖K‖L1(D)

) ∫
D

∣∣x(s)
∣∣ds,

Nonlinear Anal. Model. Control, 26(4):661–677, 2021
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where the symbol ‖K‖L1(D) denotes the norm of the operator K acting from the space
L1(D) into itself. Recall that D is arbitrary, so the set D ∩ [0, τ ] need not be empty.
Then the above estimation require the use of assumption (i) as for such points we get
t − τ ∈ [−τ, 0], on this interval, we have x(s) = ϕ(s). Hence we keep the expected
properties of a.e. monotonicity and positivity of functions.

It suffice to prove that H is a contraction with respect to some regular measure of
noncompactness. Since h, ai ∈ L1, i = 1, 2, then we have the equality

lim
ε→0

{
sup
{
‖h‖L1(D) +M‖a2‖L1(D) + ‖K‖L1(D)‖a1‖L1(D):

D ⊂ R+, measD 6 ε
}}

= 0.

As ‖K‖L1(D) 6 ‖K‖L1 , from definition 4 it follows that

c
(
H(X)

)
6
(
b2M + b1‖K‖L1

)
c(X). (8)

For any T > 0, we have the following estimate:

∞∫
T

∣∣(H(x)
)
(t)
∣∣dt 6 ‖h‖L1(T ) +M‖a2‖L1(T ) + ‖K‖L1(T )‖a1‖L1(T )

+
(
b2M + b1‖K‖L1(T )

) ∞∫
T

|x(u)|du,

where the symbol ‖·‖L1(T ) denotes the operator norm acting from the space L1[T,∞)
into itself. Because T →∞, by the definition 5 we get

d
(
H(X)

)
6
(
b2M + b1‖K‖L1(T )

)
d(X). (9)

By combining (8) and (9) and by applying definition 3 we have

µ
(
H(X)

)
6
(
b2M + b1‖K‖L1

)
µ(X).

Since X ⊂ Qr and we know that Qr is compact in measure, by Theorem 3 we have

χ
(
H(X)

)
6 2
(
b2M + b1‖K‖L1

)
χ(X).

Using all properties of Qr, by assumption (iv) 2(b2M + b1‖K‖L1
) < 1, then we can

apply Theorem 4, which completes the proof.

Corollary 1. This theorem is also true for solutions in Lp(R+) (p > 1) with a suitable
set of modified assumptions assuring acting and continuity conditions for considered
operators (cf. [14]).
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We are interested in studying delay integral problem, but in view of our proof, we can
also formally generalize our main theorem by considering functional integral problem:

x(t) = h(t) +m(t) · g
(
t, x(t− τ)

)
+

t∫
0

k(t, s)f
(
s, x
(
ψ(s)

))
ds, t ∈ R+,

x(t) = ϕ(t), t ∈ [−τ, 0).

(10)

Corollary 2. Under the assumption of Theorem 6, there exists solution x ∈ L1, which
is additionally a.e. nonincreasing function on R+ of the functional integral problem (10),
provided the functional delay ψ : R+ → R+ is increasing, absolutely continuous, and
there is a constant B > 0 such that ψ′(t) > B for a.e. t ∈ R+ and when assumption (v)
is modified to the form

(v′) b2M + b1‖K‖L1/B < 1/2.

3.2 Locally integrable solutions

Let us present some results for solutions of the considered problem being only locally in-
tegrable. On the one hand, it will weaken the assumptions, but on the other hand, we need
to proceed in a Fréchet space Lloc

1 (R+). Now, we describe the differences between sets
of assumptions in two considered cases, and we will emphasize on differences between
them.

Let us present a set of modified assumptions:

(i1) Let m,h : R+ → R+ be a.e. nonincreasing functions, where m is a measurable
essentially bounded function with ess supt∈R+ |m(t)| 6M and h ∈ Lloc

1 (R+).
Moreover, let ϕ ∈ L1([−τ, 0]) be a.e. nonincreasing and positive.

(ii1) Assume that the functions f, g : R+ ×R→ R satisfy Carathéodory conditions.
Moreover, f(t, x) > 0, g(t, x) > 0 for x > 0, and f , g are a.e. nonincreasing
with respect to both variables t and x, separately.

(iii1) There are positive integrable functions ai ∈ Lloc
1 (R+) and measurable

essentially bounded functions bi : R+ → R+ (i = 1, 2) such that |f(t, x)| 6
a1(t) + b1(t)|x|, |g(t, x)| 6 a2(t) + b2(t)|x| for all t ∈ R+ and x ∈ R.

(iv1) k : R+×R+ → R satisfies Carathéodory conditions such that the linear operator
K : Lloc

1 (R+)→ Lloc
1 (R+) is continuous and maps the set of a.e. nonincreasing

and positive functions into functions of the same type.
(v1) For any T > 0, the following inequality holds true: b2(T )M + b1(T )‖K‖T <

1/2, bi(T ) = essupt∈[0,T ] bi(t) (i = 1, 2), and ‖K‖T denotes the operator norm
‖K‖L1([0,T ])→L1([0,T ]).

Theorem 7. Let assumptions (i1)–(v1) be satisfied. Then problem (2) has at least one lo-
cally integrable solution x ∈ Lloc

1 (R+), which is additionally a.e. nonincreasing function
on R+.
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Sketch of the proof. We fix an arbitrary T > 0 (or even T/τ , in fact), and then we follow
the lines of the proof of Theorem 6 with some necessary changes. All estimations should
be done on interval [0, T ], so they are correct. Note that for a fixed T > 0, assumption (v1)
is the same as (v), so any additional changes in the proof are not necessary.

Clearly, Theorem 1 should be replaced by a result in Lloc
1 (R+); cf. [30, Thm. 4.2]

and [30, Lemma 4.3]. Note that the setQr consists of functions not necessarily integrable
on R+, but in this case, it is compact in finite measure, and the remaining part holds true
on every finite subinterval [0, T ] ⊂ R+.

Moreover, a contraction condition on every [0, T ] holds true for a measure µT , and
finally, fixed point Theorem 5 should be applied.

Remark 1. The result presented in Theorem 7 remains true if we replace assumptions
about nonincreasing functions by appropriate conditions with nondecreasing ones. How-
ever, as globally integrable functions cannot be a.e. increasing on R+, this remark cannot
be applied for the case of Theorem 6.

3.3 Uniqueness of solutions

We are able to discusses the uniqueness of solution of problem (2) in the case of integrable
solutions (the case of locally integrable solutions can be studied in a similar manner).

Theorem 8. Let assumptions of Theorem 6 be satisfied, but instead of assumption (iii),
consider the following condition holds:

(vi) There exist constants bi > 0 and positive functions ai ∈ L1, i = 1, 2, such that
|f(t, x) − f(t, y)| 6 b1|x − y|, |g(t, x) − g(t, y)| 6 b2|x − y|, x, y ∈ Qr, and
|f(t, 0)| 6 a1(t), |g(t, 0)| 6 a2(t), where Qr is defined in Theorem 6.

Then problem (2) has a unique solution in Qr.

Proof. From assumption (vi) we have∣∣∣∣f(t, x)
∣∣− ∣∣f(t, 0)

∣∣∣∣ 6 ∣∣f(t, x)− f(t, 0)
∣∣ 6 b1|x|

=⇒
∣∣f(t, x)

∣∣ 6 ∣∣f(t, 0)
∣∣+ b1|x| 6 a1(t) + b1|x|.

Similarly, |g(t, x)| 6 a2(t)+ b2|x|. Thus, all assumptions of Theorem 6 be satisfied, then
problem (2) has at least one solution x ∈ L1.

To prove the uniqueness of a solution of problem (2), suppose that x, y be any two
different solutions of problem (2), and then we have

‖x− y‖L1 =

∥∥∥∥∥h(t) +m(t) · g
(
t, x(t− τ)

)
+

t∫
0

k(t, s)f
(
s, x(s− τ)

)
ds

− h(t)−m(t) · g
(
t, y(t− τ)

)
−

t∫
0

k(t, s)f
(
s, y(s− τ)

)
ds

∥∥∥∥∥
L1
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6

∞∫
0

∣∣m(t)
∣∣∣∣g(t, x(t− τ)

)
− g
(
t, y(t− τ)

)∣∣dt
+

∞∫
0

t∫
0

∣∣k(t, s)
∣∣∣∣f(s, x(s− τ)

)
− f

(
s, y(s− τ)

)∣∣dsdt

6Mb2

∞∫
0

∣∣x(t− τ)− y(t− τ)
∣∣dt

+ b1

∞∫
0

∞∫
s

∣∣k(t, s)
∣∣∣∣x(s− τ)− y(s− τ)

∣∣dtds

6Mb2

τ∫
0

∣∣x(t− τ)− y(t− τ)
∣∣dt+Mb2

∞∫
τ

∣∣x(t− τ)− y(t− τ)
∣∣ dt

+ b1‖K‖L1

τ∫
0

∣∣x(s− τ)− y(s− τ)
∣∣ds

+ b1‖K‖L1

∞∫
τ

∣∣x(s− τ)− y(s− τ)
∣∣ds.

As x(t) = y(t) = ϕ(t) on [−τ, 0), letting u = t− τ , we have

‖x− y‖L1 6Mb2

0∫
−τ

∣∣x(u)− y(u)
∣∣du+Mb2

∞∫
0

∣∣x(u)− y(u)
∣∣du

+ b1‖K‖L1

0∫
−τ

∣∣x(u)− y(u)
∣∣du+ b1‖K‖L1

∞∫
0

∣∣x(u)− y(u)
∣∣ du

=
(
Mb2 + b1‖K‖L1

)
‖x− y‖L1

.

Therefore, (
1−

(
Mb2 + b1‖K‖L1

))
‖x− y‖L1

6 0,

which implies that ‖x− y‖L1 = 0⇒ x = y a.e., which completes the proof.

4 Applications

As fractional integral equations are special forms of a general results of Hammerstein–
Volterra equations with a convolutions kernelK, then the continuity property is dependent
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on it. It is worthwhile to note that in a particular case of Riemann–Liouville fractional
integral operators, i.e., with the kernel

k(t, s) =
1

Γ(α)
(t− s)α−1χ[a,t](s),

for α = 1, it is not continuous from L1([0, T ]) into L∞([0, T ]) ( [19, Remark 4.1.2])
and discontinuous as an operator from L1([0, T ]) into itself ( [19, Remark 4.1.1]). But in
a considered case 0 < α < 1, it is continuous (see Lemma 2).

Despite that the lemma presented below seems to be known, we are unable to find its
proof, so let us prove it (it is also claimed in Lemma 2):

Lemma 3. For any 0 < α < 1, the kernel k of the Riemann–Liouville fractional integral
operator satisfies condition (7), so our result applies also for the fractional problems of
any order α.

Proof. Let t1 < t2, t1, t2 ∈ [0, T ]. Recall that in the kernel, we apply the characteristic
function, so the limits of integration depend on the choice b. As

y∫
x

(t− s)α−1 ds =
1

α

(
(t− x)α − (t− y)α

)
,

then, in view of arbitrariness of b > 0, we need to consider three cases.
1. Let b > t2. Then

∆ =

b∫
0

k(t1, s) ds−
b∫

0

k(t2, s) ds =
1

α

(
tα2 − tα1

)
> 0.

2. Let 0 < t1 < b < t2. Then

∆ =

b∫
0

k(t1, s) ds−
b∫

0

k(t2, s) ds =
1

α

(
tα2 − tα1 − (t2 − b)α

)
.

But t2 − b < t2 − t1 and then ∆ > (tα2 − tα1 − (t2 − t1)α)/α.
We need to use the fact that for any 0 < α < 1, a function g(t) = xα is concave.
For arbitrary points x1, x2 ∈ [0, T ], we have g((x1 + x2)/2) > (g(x1) + g(x2))/2.

Put x1 = t1, x2 = t2 − t1. Then (x1 + x2)/2 = t2/2 and g((x1 + x2)/2) = 2−αtα2 .
Consequently, 2 · g((x1 + x2)/2) = 21−α · tα2 > tα2 .

Therefore tα2 > tα1 + (t2 − t1)α and ∆ > 0.
3. Let 0 < b < t1 < t2. Then

∆ =

b∫
0

k(t1, s) ds−
b∫

0

k(t2, s) ds =
1

α

([
tα2 − tα1

]
−
[
(t2 − b)α − (t1 − b)α

])
.

As in this case tα2 − tα1 > 0 and (t2 − b)α − (t1 − b)α > 0, we get the thesis.
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Consequently, we get an existence result for the fractional problem (1):

Theorem 9. Let assumptions of Theorem 7 be satisfied. Then for any 0 < α < 1, the
fractional integral problem (1) has at least one locally integrable solution on R+.

The uniqueness results can be also obtained in the same manner.

5 Example

We give an example to illustrate the applicability of our assumptions.
Consider the following delay integral problem for t ∈ R+:

x(t) = h(t) + e−t
1 + x(t− τ)

(t+ 19)2
+

t∫
0

1

t2 + s2

(
1

(s+ 2)3
+

1

20
x(s− τ)

)
ds,

x(t) = x0, t ∈ [−τ, 0).

(11)

It is clear that problem (11) is a particular case of problem (2), where ϕ(t) = x0 =
const, m(t) = e−t, g(t, x) = (1 + x(t− τ))/(t+ 19)2, k(t, s) = 1/(t2 + s2), f(t, x) =
1/(t+ 2)3 + (x(t− τ))/20, and

h(t) =

{
0, t is rational,
π
2 − arctan t, t is irrational.

One can easily check that

(a1) supt∈R+ m(t) = supt∈R+ e−t 6 1 = M ;
(a2) |f(t, x)| 6 1/(t + 2)3 + |x|/20 and |g(t, x)| 6 1/(t + 19)2 + |x|/20 with

b1 = b2 = 1/20;
(a3)

∫∞
0
k(t, s) dt =

∫∞
0

1/(t2 + s2) dt = (1/s) arctan(t/s)|∞0 6 π/2;
(a4) (Mb2 + b1‖K‖L1

) 6 1/20 + 1/20 · π/2 < 1/2.

Thus, all assumptions of Theorem 6 are satisfied. Then problem (11) has at least
one integrable solution a.e. nonincreasing on R+. Clearly, this problem cannot have
continuous solutions.
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