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Preface to ”Applied Mathematics and Fractional
Calculus”

In the last three decades, fractional calculus has broken into the field of mathematical analysis, 

both at the theoretical level and at the level of its applications. In essence, the fractional calculus 

theory is a mathematical analysis tool applied to the study of integrals and derivatives of arbitrary 

order, which unifies and generalizes the classical notions of differentiation and i ntegration. These 

fractional and derivative integrals, which until not many years ago had been used in purely 

mathematical contexts, have been revealed as instruments with great potential to model problems 

in various scientific fi elds, su ch as : flu id mec hanics, vis coelasticity, phy sics, bio logy, chemistry, 

dynamical systems, signal processing or entropy theory. Since the differential and integral operators 

of fractional order are nonlinear operators, fractional calculus theory provides a tool for modeling 

physical processes, which in many cases is more useful than classical formulations. This is why 

the application of fractional calculus theory has become a focus of international academic research. 

This Special Issue “Applied Mathematics and Fractional Calculus“ has published excellent research 

studies in the field of applied mathematics and fractional calculus, authored by many well-known 

mathematicians and scientists from diverse countries worldwide such as China, USA, Canada, 

Germany, Mexico, Spain, Poland, Portugal, Iran, Tunisia, South Africa, Albania, Thailand, Iraq, 

Egypt, Italy, India, Russia, Pakistan, Taiwan, Korea, Turkey, and Saudi Arabia.

Francisco Martı́nez González and Mohammed K. A. Kaabar

Editors
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Abstract: We investigate the existence of solutions for a system of m-singular sum fractional q-
differential equations in this work under some integral boundary conditions in the sense of Caputo
fractional q-derivatives. By means of a fixed point Arzelá–Ascoli theorem, the existence of positive
solutions is obtained. By providing examples involving graphs, tables, and algorithms, our funda-
mental result about the endpoint is illustrated with some given computational results. In general,
symmetry and q-difference equations have a common correlation between each other. In Lie algebra,
q-deformations can be constructed with the help of the symmetry concept.

Keywords: Caputo q-derivative; singular sum fractional q-differential; fixed point; equations;
Riemann–Liouville q-integral

MSC: 34A08; 34B16; 39A13

1. Introduction

There are many definitions of fractional derivatives that have been formulated ac-
cording to two basic conceptions: one of a global (classical) nature and the other of a local
nature. Under the first formulation, the fractional derivative is defined as an integral,
Fourier, or Mellin transformation, which provides its non-local property with memory. The
second conception is based on a local definition through certain incremental ratios. This
global conception is associated with the appearance of the fractional calculus itself and
dates back to the pioneering works of important mathematicians, such as Euler, Laplace,
Lacroix, Fourier, Abel, and Liouville, until the establishment of the classical definitions of
Riemann–Liouville and Caputo.

Until relatively recently, the study of these fractional integrals and derivatives was
limited to a purely mathematical context; however, in recent decades, their applications in
various fields of natural Sciences and technology, such as fluid mechanics, biology, physics,
image processing, or entropy theory, have revealed the great potential of these fractional
integrals and derivatives [1–9]. Furthermore, the study from the theoretical and practical
point of view of the elements of fractional differential equations has become a focus for
interested researchers [10–15].

1
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The q-difference equations (qDifEqs) were first proposed by Jackson in 1910 [16].
After that, qDifEqs were investigated in various studies [17–24]. On the contrary, integro-
differential equations (InDifEqs) have been recently studied via various fractional deriva-
tives and formulations based on the original idea of qDifEqs (see [25–32]). The concept
of symmetry and q-difference equations are connected to each other while theoretically
investigating the differential equation symmetries.

The solution existence and uniqueness for the fractional qDifEqs were investigated in
2012 by Ahmad et al. as: cDα

q [u](t) = T(t, u(t)) with boundary conditions (B.Cs):

α1u(0)− β1Dq[u](0) = γ1u(η1), α2u(1)− β2Dq[u](1) = γ2u(η2),

where α ∈ (1, 2], αi, βi, γi, ηi are real numbers, for i = 1, 2 and T ∈ C(J ×R,R) [20]. The
q-integral problem was studied in in 2013 by Zhao et al. as:

Dα
q [u](t) + f (t, u(t)) = 0,

with B.Cs: u(1) = µIβ
q [u](η) and u(0) = 0 almost ∀ t ∈ (0, 1), where q ∈ (0, 1), α ∈ (1, 2],

β ∈ (0, 2], η ∈ (0, 1), µ is positive real number, and Dα
q is the q-derivative of Riemann–

Liouville (RL) and the real values continuous map u defined on I × [0, ∞) [24]. The
problem:

cDβ
q (

cDγ
q + λ)[u](t) = p f (t, u(t)) + kIξ

q [g](t, u(t))

was investigated in 2014 by Ahmad et al. with B.Cs:

α1u(0)− β1(t(1−γ)Dq[u](0))
∣∣
t=0 = σ1u(η1)

and
α2u(1) + β2Dq[u](1) = σ2u(η2),

where t, q ∈ [0, 1], cDβ
q is the Caputo fractional q-derivative (CpFqDr), 0 < β, γ ≤ 1, Iξ

q (.)
represents the RL integral with ξ ∈ (0, 1), f and g are given continuous functions, λ and
p, k are real constants, αi, βi, σi ∈ R and ηi ∈ (0, 1) for i = 1, 2 [19]. The solutions’ existence
was studied in 2019 by Samei et al. for some multi-term q-integro-differential equations
with non-separated and initial B.Cs ([23]).

Inspired by all previous works, we investigate in this work the positive solutions for
the singular fractional q-differential equation (SFqDEqs) as follows:

cDα
q [u](t) + h(t, u(t)) = 0, (1)

with the B.Cs: u(0) = 0, cu(1) = Iγ
q [u](1) and u′′(0) = · · · = u(n−1)(0) = 0, where

t ∈ J = (0, 1), Iγ
q [u] is the RL q-integral of order γ for the given function: u, here q ∈ J,

c ≥ 1, n = [α] + 1, α ≥ 3, γ ∈ [1, ∞), 2Γq(γ) ≥ Γq(α), h : (0, 1] × [0, ∞) → [0, ∞) is
continuous, limt→0+ h(t, .) = +∞ that is, h is singular at t = 0, and cDα

q represents the
CpFqDr of order α, q ∈ J.

This work is divided into the following: some essential notions and basic results of
q-calculus are reviewed in Section 2. Our original important results are stated in Section 3.
In Section 4, illustrative numerical examples are provided to validate the applicability of
our main results.

2. Essential Preliminaries

Assume that q ∈ (0, 1) and a ∈ R. Define [a]q = 1−qa

1−q [16]. The power function:
(x− y)n

q with n ∈ N0 is written as:

(x− y)(n)q =
n−1

∏
k=0

(x− yqk)

2
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for n ≥ 1 and (x− y)(0)q = 1, where x and y are real numbers and N0 := {0} ∪N ([17]). In
addition, for σ ∈ R and a 6= 0, we obtain:

(x− y)(σ)q = xσ
∞

∏
k=0

x− yqk

x− yqσ+k .

If y = 0, then it is obvious that x(σ) = xσ. The q-Gamma function is expressed by

Γq(z) =
(1− q)(z−1)

(1− q)z−1 ,

where z ∈ R\{0,−1,−2, · · · } ([16]). We know that Γq(z + 1) = [z]qΓq(z). The value of the
q-Gamma function, Γq(z), for input values q and z with counting the sentences’ number
n in summation by simplification analysis. A pseudo-code is constructed for estimating
q-Gamma function of order n. The q-derivative of function w, is expressed as:

Dq[w](x) =
(

d
dx

)

q
w(x) =

w(x)− w(qx)
(1− q)x

and Dq[w](0) = limx→0Dq[w](x) ([17]). In addition, the higher order q-derivative of a
function w is defined by Dn

q [w](x) = DqDn−1
q [w](x) for all n ≥ 1, where D0

q [w](x) = w(x)
([17,18]). The q-integral of a function f defined on [0, b] is expressed as:

Iq[w](x) =
∫ x

0
w(s)dqs = x(1− q)

∞

∑
k=0

qkw(xqk),

for 0 ≤ x ≤ b, provided that the series is absolutely convergent ([17,18]). If a in [0, b], then
we have:

∫ b

a
w(u)dqu = Iq[w](b)− Iq[w](a) = (1− q)

∞

∑
k=0

qk
[
bw(bqk)− aw(aqk)

]
,

if the series exists. The operator In
q is given by I0

q [w](x) = w(x) and In
q [w](x) =

IqIn−1
q [w](x) for n ≥ 1 and g ∈ C([0, b]) ([17,18]). It is proven that DqIq[w](x) = w(x)

and IqDq[w](x) = w(x)−w(0) whenever w is continuous at x = 0 ([17,18]). The fractional
RL type q-integral of the function w on J for σ ≥ 0 is defined by I0

q [w](t) = w(t), and

Iα
q [w](t) =

1
Γq(σ)

∫ t

0
(t− qs)(σ−1)w(s)dqs

= tσ(1− q)σ
∞

∑
k=0

qk ∏k−1
i=1

(
1− qσ+i)

∏k−1
i=1

(
1− qi+1

)w(tqk),

for t ∈ J and σ > 0 ([22,33]). In addition, the CpFqDr of a function w is expressed as:

cDσ
q [w](t) = I [σ]−σ

q

[
cD[σ]

q [w]
]
(t)

=
1

Γq([σ]− α)

∫ t

0
(t− qs)([σ]−σ−1) cD[σ]

q [w](s)dqs

=
1

tσ(1− q)σ

∞

∑
k=0

qk ∏k−1
i=1

(
1− qi−σ

)

∏k−1
i=1

(
1− qi+1

)w(tqk), (2)

where t ∈ J and σ > 0 ([22]). It is proven that

Iβ
q

[
Iσ

q [w]
]
(x) = Iσ+β

q [w](x) and cDσ
q

[
Iσ

q [w]
]
(x) = w(x),

3
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where σ, β ≥ 0 ([22]).

Some essential notions and lemmas are now presented as follows: In our work, L1(J)
and CR(J) are denoted by L and B, respectively, where J = [0, 1].

Lemma 1 ([34]). If x ∈ B ∩ L with Dα
q x ∈ B ∩ L, then

Iα
qDα

q x(t) = x(t) +
n

∑
i=1

citα−i,

where n is the smallest integer ≥ α, and ci is some real number.

Here, we restate the well-known Arzelá–Ascoli theorem. Assume that S = {sn}n≥1
is a sequence of bounded and equicontinuous real valued functions on [a, b]. Then, S has
a uniformly convergent subsequence. We need the following fixed point theorem in our
main result:

Lemma 2 ([35]). Assume thatA is a Banach space, P ⊆ A is a cone, andO1, O2 are two bounded
open balls of A centered at the origin with O1 ⊂ O2. Assume that Ω : P ∩ (O2\O1) → P
is a completely continuous operator such that either ‖Ω(a)‖ ≤ ‖a‖ for all a ∈ P ∩ ∂O1 and
‖Ω(a)‖ ≥ ‖a‖ for all a ∈ P ∩ ∂O2, or ‖Ω(a)‖ ≥ ‖a‖ for each a ∈ P ∩ ∂O1 and ‖Ωa‖ ≤ ‖a‖
for a ∈ P ∩ ∂O2. Then, Ω has a fixed point in P ∩ (O2\O1).

3. Main Results
Differential Equation

Let us now present our fundamental lemma as follows:

Lemma 3. The u0 is a solution for the q-differential equation Dα
q [u](t) + g(t) = 0 with the B.Cs:

u(0) = 0, cu(1) = Iγ
q u(1) and u′′(0) = · · · = u(n−1)(0) = 0 if u0 is a solution for the q-integral

equation

u(t) =
∫ 1

0
Gq(t, s) f (s)dqs,

where

Gq(t, s) =





−(t− qs)(α−1)

Γq(α)
s ≤ t,

+t2
Γq(γ + 3)

[
aΓq(α + γ)(1− qs)(α−1) − Γq(α)(1− qs)(c+γ−1)

]

Γq(α)Γq(α + γ)
[
cΓq(γ + 3)− 2Γq(γ)

] ,

t2
Γq(γ + 3)

[
cΓq(α + γ)(1− qs)(α−1) − Γq(α)(1− qs)(c+γ−1)

]

Γq(α)Γq(α + γ)
[
cΓq(γ + 3)− 2Γq(γ)

] , t ≤ s,

(3)

for s, t ∈ J, n = [α] + 1, the function g ∈ B, α ≥ 3 and γ ∈ [1, ∞) with 2Γq(γ) ≥ Γq(α).

Proof. Let us first assume that u0 is a solution for the equation Dα
q u(t) + g(t) = 0 with the

B.Cs. By using Lemma 1, we obtain:

u0(t) = −Iα
q [g](t) + c0 + c1t + c2t2 + . . . cn−1tn−1

and by using the condition u0(0) = u′′0 (0) = · · · = u(n−1)
0 (0) = 0, we have

u0(t) = −Iα
q [g](t) + c2t2.

4



Symmetry 2021, 13, 1235

Indeed,

Iγ
q [u0](t) = −Iα+γ

q [g](t) + c2
2Γq(γ)

Γq(γ + 3)
tγ+2,

and thus

Iγ
q [u0](1) = −I (α+γ)

q [g](t) + c2
2Γq(γ)

Γq(γ + 3)
.

Note that cu0(1) = −cIα
q [g](1) + cc2 and

c2

(
c− 2Γq(γ)

Γq(γ + 3)

)
= cIα

q g(1)− Iα+γ
q g(1)

=
cΓq(α + γ)

Γq(α + γ)
Iα

q [g](1)−
Γq(α)

Γq(α)
Iα+γ

q [g](1)

=
∫ 1

0

cΓq(α + γ)(1− qs)(α−1) − Γq(α)(1− qs(α+γ−1))

Γq(α)Γq(α + γ)
g(s)dqs.

On the other hand,

c− 2Γq(γ)

Γq(γ + 3)
=

cΓq(γ + 3)− 2Γq(γ)

Γq(γ + 3)
.

Hence,

c2 =
∫ 1

0

Γq(γ + 3)
[
cΓq(α + γ)(1− qs)(α−1) − Γq(α)(1− qs)(α+γ−1)

]

Γq(α)Γq(α + γ)
[
cΓq(γ + 3)− 2Γq(γ)

] g(s)dqs.

Therefore, we have

u0(t) = −Iα
q [g](t)

+ t2
∫ 1

0

Γ(γ + 3)
[
cΓq(α + γ)(1− qs)(α−1) − Γq(α)(1− qs)(α+γ−1)

]

Γq(α)Γq(α + γ)
[
cΓq(γ + 3)− 2Γq(γ)

] g(s)dqs

=
∫ 1

0
Gq(s, t)g(s)dqs,

where

Gq(t, s) =
−(t− qs)(α−1)

Γq(α)

+ t2
Γq(γ + 3)

[
cΓq(α + γ)(1− qs)(α−1) − Γq(α)(1− qs)c+γ−1

]

Γq(α)Γq(α + γ)
[
cΓq(γ + 3)− 2Γq(γ)

] ,

whenever 0 ≤ s ≤ t ≤ 1 and

t2
Γq(γ + 3)

[
cΓq(α + γ)(1− qs)(α−1) − Γq(α)(1− qs)(c+γ−1)

]

Γq(α)Γq(α + γ)
[
cΓq(γ + 3)− 2Γq(γ)

]

whenever 0 ≤ t ≤ s ≤ 1. Hence, u0 is an integral equation’s solution. By simple review, we
can see that u0 is a solution for the equation Dα

q u(t) + g(t) = 0 with the B.Cs whenever u0
is an integral equation’s solution.

5
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Remark 1. By applying some simple calculations, one can show that Gq(t, s) ≥ 0 for each s, t ∈ J.
Now, let us define the operator Ω on the Banach space B by

Ω(u(t)) =
∫ 1

0
Gq(t, s)h(s, u(s))dqs.

It is easy to check that u0 is a fixed point of the operator Ω if u0 is a solution for Equation (1).

Consider B together the supremum norm and cone, P is the set of all u ∈ B such that
u(t) ≥ 0 ∀ t ∈ J. Suppose that h : (0, 1]× [0, ∞)→ [0, ∞) is the singular function at t = 0
in the Equation (1) and Gq(t, s) is the q-Green function in Lemma 3. Now, define the self
operator Ω on P by

Ω(u(t)) =
∫ 1

0
Gq(t, s)h(s, u(s))dqs,

for all t ∈ J. At present, we can provide our first main result on the solution’s existence for
problem (1) under some assumptions.

Theorem 1. Problem (1) has a unique solution if the following conditions hold.

I. There exists a continuous function h : (0, 1]× [0, ∞)→ [0, ∞) such that

lim
t→0+

h(t, s) = ∞,

for s ∈ [0, ∞).
II. There exists L > 0, β ∈ J and positive constant k such that

kcΓq(γ + 3) < (cΓq(γ + 3)− 2Γq(γ)),

|tβh(t, 0)| ≤ L for each t ∈ J and

|tβh(t, u(t))− tβh(t, v(t))| ≤ k‖u− v‖,

for each u, v belang to P.

Proof. Note that,

|Ω(u(t))| ≤ t2 cΓq(γ + 3)
cΓq(γ + 3)− 2Γq(γ)

Iα
q [h](1, u(1))

for all t ∈ J. Now, put

` = L
cΓq(γ + 3)Γq(1− β)

cΓq(γ + 3)− 2Γq(γ)

and define B = {u ∈ P : ‖u‖ ≤ `}. Clearly, B is a bounded and closed subset of A, and
thus B is complete. If u ∈ B, then we obtain:

|Ω(u(t))| ≤ cΓq(γ + 3)
Γq(α)

[
cΓ(γ + 3)− 2Γq(γ)

]
∫ 1

0
(1− qs)(α−1)s−βsβh(s, u(s))dqs

∀ t ∈ J and thus

|F(x(t))| ≤ cΓq(γ + 3)
Γq(α)

[
cΓq(γ + 3)− 2Γq(γ)

]

×
∫ 1

0
(1− qs)(α−1)s−βsβ(|h(s, u(s)− h(s, 0)|+ |h(s, 0)|)dqs

≤ (k`+ L)
cΓq(γ + 3)

Γq(α)
[
cΓq(γ + 3)− 2Γq(γ)

]Bq(1− β, α)

6
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= (k`+ L)
cΓ(γ + 3)Γq(1− β)[

cΓq(γ + 3)− 2Γq(γ)
]
Γq(α− β + 1)

≤
[
cΓq(γ + 3)− 2Γq(γ)

]
`

cΓq(γ + s)Γq(1− β)

[
cΓq(γ + 3)Γq(1− β)

(cΓq(γ + 3)− 2Γq(γ))Γq(α− β + 1)

]

+ L
cΓq(γ + 3)Γq(1− β)[

cΓq(γ + 3)− 2Γq(γ)
]
Γq(α− β + 1)

=
`

Γq(α− β + 1)
+

`

Γq(α− β + 1)

<
`

Γq(α)
+

`

Γq(α)
≤ `

2
+

`

2
= `.

Indeed, Ω(B) ⊆ B, and therefore a restriction of Ω on B is an operator on B. Let u,
v ∈ B. Then, we obtain

‖Ω(u(t))−Ω(v(t))‖ ≤ 1
Γq(α)

∫ 1

0
(t− qs)(α−1)|h(s, u(s))− h(s, v(s)|dqs

+
ct2Γq(γ + 3)

Γq(α)
[
cΓq(γ + 3)− 2Γq(γ)

]

×
∫ 1

0
(1− qs)(α−1)s−βsβ‖h(s, u(s))− h(s, v(s))‖dqs

≤ k‖u− v‖

×
[

Γq(1− β)

Γq(α− β + 1)
+

cΓq(γ + 3)Γq(1− β)[
cΓq(γ + 3)− 2Γq(γ)

]
Γq(α− β + 1)

]

≤
[

cΓq(γ + 3)− 2Γq(γ)

cΓq(γ + 3)Γq(α− β + 1)
+

1
Γq(α− β + 1)

]
‖u− v‖

<

[
cΓq(γ + 3)− 2Γq(γ)

cΓq(γ + 3)Γq(α)
+

1
Γq(α)

]
‖u− v‖

for all t ∈ J. Take

λ =
cΓq(ω + 3)− 2Γq(ω)

cΓq(ω + 3)Γq(α)
+

1
Γq(α)

.

Since α ≥ 3, we obtain λ ∈ J, and therefore Ω : B→ B is a contraction. Thus, Ω has a
unique fixed point in B. By employing Lemma 3, the problem (1) has a unique solution
in B.

Lemma 4. Suppose that there exists β ∈ J such that the map tβg(t) is a continuous map on J. If
Gq(t, s) is the q-Green function (3) in Lemma 3, then

Ω(t) =
∫ 1

0
Gq(t, s)g(s)dqs,

is also a continuous map on J. The self-operator Ω is completely continuous whenever there exists
β ∈ J such that the map tβg(t) is a continuous map on J.

Proof. Since the map tβg(t) is continuous and Ω(t) =
∫ t

0 Gq(t, s)s−βsβg(s)dqs, we obtain

|Ω(t)| ≤ sup
s∈δ

∣∣∣Gq(t, s)sβg(s)
∣∣∣
∫ t

0
s−β ds =

mt1−β

1− β
,

where δ = [0, t],
m = sup

s∈δ

∣∣∣Gq(t, s)sβg(s)
∣∣∣ < ∞.

7
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Indeed, Ω(0) = 0. Note that, Gq(t, s) is continuous in J2. First, suppose that t1 = 0
and t2 ∈ (0, 1]. By continuity tβg(t), there exists L > 0 such that

sup
t∈J

∣∣∣tβg(t)
∣∣∣ ≤ L.

Thus, we have:

|Ω(t2)−Ω(t1)| = |Ω(t2)| ≤
∫ t2

0

(1− qs)(α−1)

Γq(α)
s−βsβg(s)dqs

+ t2
2

∫ 1

0

Γq(γ + 3)
[
cΓq(α + γ) + Γq(α)

]

Γq(α)
[
cΓq(γ + 3)− 2Γq(γ)

] (1− qs)(α−1)s−βsβg(s)dqs

≤ L
Γq(α)

Bq(1− β, α)tα−β
2

+ Lt2
2

Γq(γ + 3)
[
cΓq(α + γ) + Γq(α)

]

Γq(α)
[
cΓq(γ + 3)− 2Γq(γ)

] Bq(1− β, α)

=
LΓq(1− β)

Γq(α− β + 1)
tα−β
2

+ L
Γq(γ + 3)Γq(1− β)

[
cΓq(α + γ) + Γq(α)

]
[
cΓq(γ + 3)− 2Γq(γ)

]
Γq(α− β + 1)

t2
2.

This implies that limt2→t1 |Ω(t2)−Ω(t1)| = 0. At present, in the next case, we assume
that t1 ∈ J and t2 ∈ (t1, 1]. Thus, we obtain:

|Ω(t2)−Ω(t1)| ≤
1

Γq(α)

∣∣∣∣−
∫ t2

0
(t2 − qs)(α−1)s−βsβg(s)dqs

+
∫ t1

0
(t1 − qs)(α−1)s−βsβg(s)dqs

∣∣∣∣

+
∣∣t2

2 − t2
1
∣∣Γq(γ + 3)

[
cΓq(γ + 3) + Γq(α)

]

Γq(α)
[
cΓ(γ + 3)− 2Γq(γ)

]

×
∫ 1

0
(1− qs)(α−1)s−βsβg(s)dqs.

On the other hand,

1
Γq(α)

∣∣∣∣−
∫ t2

0
(t2 − qs)(α−1)s−βsβg(s)dqs +

∫ 1

0
(t1 − qs)(α−1)s−βsβg(s)dqs

∣∣∣∣

≤ 1
Γq(α)

∣∣∣∣
∫ t1

0
(t2 − qs)α−1s−βsβg(s)dqs

−
∫ t2

0
(t2 − qs)(α−1)s−βsβg(s)dqs

∣∣∣∣

=
1

Γq(α)

∣∣∣∣
∫ t1

t2

(t2 − qs)(α−1)s−βsβg(s)dqs
∣∣∣∣

≤ L
Γq(α)

∫ t2

t1

(t2 − qs)(α−1)s−β dqs

≤ L
Γq(α)

sup
s∈[t2,t2]

(t2 − qs)(α−1)
∫ t2

t1

s−β dqs

=
L

Γq(α)
(t2 − t1)

α−1 t1−β
2 − t1−β

1
1− β

8
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and therefore limt2→t1 |Ω(t2)−Ω(t1)| = 0. By applying in a similar way, we conclude that

lim
t2→t1

|Ω(t2)−Ω(t1)| = 0,

whenever t1 ∈ J and t2 ∈ [0, t1). Now, we prove that the self-operator Ω is completely
continuous. Assume that ε > 0. Since the function tβh(t, u(t)) is continuous, there exist
δ > 0 such that

|tβh(t, u(t))− tβh(t, v(t))| < ε,

for each u, v ∈ P with ‖u− v‖ < δ. Thus, we obtain

‖Ω(u)−Ω(v)‖ = sup
t∈J
|Ω(u(t))−Ω(v(t))|

= sup
t∈J

∣∣∣∣
∫ t

0

−(t− qs)(α−1)

Γq(α)
s−β(sβh(s, u(s))− sαh(s, v(s)))dqs

+ t2
∫ 1

0

Γq(γ + 3)
[
cΓq(γ + α)(1− qs)(α−1) − Γq(α)(1− qs)(α+γ−1)

]

Γq(α)Γq(α + γ)
[
cΓq(γ + 3)− 2Γq(γ)

]

× s−β
[
sβh(s, u(s))− sβh(s, u(s))

]
dqs
∣∣∣∣

≤ sup
t∈J

[
ε
∫ t

0

(t− qs)(α−1)

Γq(α)
dqs

+ εt2
∫ 1

0

Γq(γ + 3)
[
cΓq(γ + α) + Γq(α)

]

Γq(α)Γq(α + γ)
[
cΓq(γ + 3)− 2Γq(γ)

] (1− qs)(α−1)s−β dqs
]

≤ sup
t∈J

εtα−β Γq(1− β)

Γq(α− β + 1)

+ sup
t∈J

εt2 Γq(γ + 3)Γq(1− β)
[
cΓq(γ + α) + Γq(α)

]

Γq(α + γ)Γq(α− β + 1)
[
cΓq(γ + 3)− 2Γq(γ)

]

=

[
Γq(1− β)

Γq(α− β + 1)
+

Γq(γ + 3)Γq(1− β)
[
cΓq(α + γ) + Γq(α)

]

Γq(α + γ)Γq(α− β + 1)
[
cΓq(γ + 3)− 2Γq(γ)

]
]

ε.

Therefore, Ω is continuous. Let Q ⊂ P be bounded. Choose k > 0 such that ‖u‖ ≤ k
for each u ∈ Q. Since the function tβh(t, u) is continuous on J × [0, ∞), the function:
tβh(t, u) is also continuous on J × [0, k]. Select r ≥ 0 such that |tβh(t, u)| ≤ r for all u ∈ Q,
and t belongs to J. Thus,

|Ω(u(t))| ≤
∫ 1

0
Gq(t, s)s−β|sβh(s, u(s))|dqs

≤ r
[ ∫ t

0

(t− qs)(α−1)

Γq(α)
s−β dqs

+ t2 Γq(γ + 3)
[
cΓq(α + γ) + Γq(α)

]

Γq(α + γ)
[
cΓq(γ + 3)− 2Γq(γ)

]
∫ 1

0
(1− qs)(α−1)s−β dqs

]
,

for each t ∈ J, and thus

‖Ω(x(t))‖ = sup
t∈J
|Ω(x(t))|

≤ Γq(1− β)

Γq(α− β + 1)
+

Γq(γ + 3)Γq(1− β)
[
cΓq(α + γ)− Γq(α)

]

Γq(α + γ)Γq(α− β + 1)
[
cΓq(γ + 3)− 2Γq(γ)

]

< ∞.

9
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This implies that Ω(Q) is bounded. Assume that u ∈ Q and t1, t2 ∈ J with t1 < t2.
Then, we obtain

|Ω(u(t2))−Ω(u(t1))| ≤
∣∣∣∣
∫ t2

0

(t2 − qs)(α−1)

Γq(α)
h(s, u(s))dqs

−
∫ t1

0

(t1 − qs)(α−1)

Γq(α)
h(s, u(s))dqs

∣∣∣∣

+ |t2
2 − t2

1|
Γq(γ + 3)

[
cΓq(α + γ) + Γq(α)

]

Γq(α)
[
cΓq(γ + 3)− 2Γq(γ)

]
∫ 1

0
h(s, u(s))dqs

≤ r
∫ t2

t1

(t2 − qs)(α−1)

Γq(α)
s−β dqs

+ r|t2
2 − t2

1|
∫ 1

0

Γq(γ + 3)
[
cΓq(α + γ) + Γq(α)

]

Γq(α)
[
cΓq(γ + 3)− 2Γq(γ)

] s−β dqs

≤ r
Γq(α)

sup
s∈[t1,t2]

(t2 − qs)(α−1) t1−β
2 − t1−β

1
1− β

+ r(t2
2 − t2

1)
Γq(γ + 3)

[
cΓq(α + γ) + Γq(α)

]
Γq(1− β)

Γq(α)Γq(α− γ + 1)
[
cΓq(γ + 3)− 2Γq(γ)

] .

Thus,
lim

t2→t1
|Ω(u()t2))−Ω(u(t1))| = 0.

In other cases, one can prove a similar result. Hence, Ω(Q) is equicontinuous. Now,
by applying the Arzelà–Ascoli theorem, Ω(Q) is compact, and therefore Ω is completely
continuous.

Theorem 2. The problem (1) has at least one positive solution whenever the hypothesis as follows holds:

I. There exists β ∈ J such that the map tβg(t) is a continuous map on J.
II. There exists r′1 > 0 and r′2 > 0 with r′2 < r′1 such that tβh(t, u) ≤ r′1 and tβh(t, u) ≤ r′2 for

each (t, u) ∈ J × [0, r1] and (t, u) ∈ J × [0, r2], respectively, where

r1 >
Γq(γ + 3)Γq(1− β)

[
cΓq(α + γ) + Γq(α)

]

Γq(α + γ)Γ(α− σ + 1)
[
cΓq(γ + 3)− 2Γq(γ)

] r′1

> r2

>

[
2Γq(γ)Γq(α + γ)− Γq(γ + 3)Γq(α)

]
Γq(1− β)

Γq(α + γ)
[
cΓq(γ + 3)− 2Γq(γ)

]
Γq(α− γ + 1)

r′2.

Proof. We take the set X1 and X2 of all u ∈ P such that

‖u‖ <
[
2Γq(γ)Γq(α + γ)− Γq(γ + 3)Γq(α)

]
Γq(1− β)

Γq(α + γ)
[
cΓq(γ + 3)− 2Γq(γ)

]
Γq(α− β + 1)

r′2

and

‖u‖ < Γq(γ + 3)Γq(1− β)
[
cΓq(α + γ) + Γq(α)

]

Γq(α + γ)Γq(α− β + 1)
[
cΓq(γ + 3)− 2Γq(γ)

] r′1,

respectively. Since 2Γq(γ) > Γq(α) and Γq(α + γ) > Γq(γ + 3), we have:

2Γq(γ)Γq(α + γ)− Γq(γ + 3)Γq(α)

Γq(α + γ)
[
cΓq(γ + 3)− 2Γq(γ)

] > 0.

10
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Since γ ∈ [1, ∞) and r′1 > r′2, 2Γq(γ) < Γq(γ + 3) and

Γq(γ + 3)
[
cΓq(α + γ) + Γq(α)

]
r′1

Γq(α + γ)
[
cΓq(γ + 3)− 2Γq(γ)

] >
2Γq(γ)Γq(α + γ)− Γq(γ + 3)Γq(α)r′2

Γq(c + γ)
[
cΓq(γ + 3)− 2Γq(γ)

] ,

therefore, X1 ⊂ X2. If u ∈ P ∩ ∂X1, then

0 ≤ u(t) ≤
[
2Γq(γ)Γq(α + γ)− Γq(γ + 3)Γq(α)

]
Γq(1− β)

Γq(α + γ)Γq(α− β + 1)
[
cΓq(γ + 3)− 2Γq(γ)

] r′2

∀ t ∈ J, and also

Ω(u(1)) = −
∫ 1

0

(1− qs)(α−1)

Γq(α)
h(s, u(s))dqs

+
∫ 1

0

Γq(γ + 3)
[
cΓq(α + γ)(1− qs)(α−1) − Γq(α)(1− qs)(α+γ−1)

]

Γq(α)Γq(α + γ)
[
cΓq(γ + 3)− 2Γq(γ)

]

× h(s, u(s))dqs

≥
∫ 1

0

Γq(γ + 3)
[
cΓq(α + γ)− Γq(α)

]
− Γq(α + γ)

[
cΓq(γ + 3)− 2Γq(γ)

]

Γq(α)Γq(α + γ)
[
cΓq(γ + 3)− 2Γq(γ)

]

× (1− qs)(α−1)s−βsβh(s, u(s))dqs

≥ r′2
∫ 1

0

2Γq(γ)Γq(α + γ)− Γq(γ + 3)Γq(α)

Γq(α)Γq(α + γ)
[
cΓq(γ + 3)− 2Γq(γ)

] (1− qs)(α−1)s−β dqs

= A2

[
2Γq(γ)Γq(α + γ)− Γq(γ + 3)Γq(α)

]
Γq(1− β)

Γq(α + γ)
[
cΓq(γ + 3)− 2Γq(γ)

]
Γq(α− β + 1)

= ‖u‖.

Hence, ‖Ω(u)‖ ≥ ‖u‖ on P ∩ ∂X1. If u ∈ P ∩ ∂X2, then

Ω(u(t)) =
∫ t

0

−(t− qs)(α−1)

Γq(α)
h(s, u(s))dqs

+ t2
∫ 1

0

Γq(γ + 3)
[
cΓq(α + γ)(1− qs)(α−1) − Γq(α)(1− qs)(α+γ−1)

]

Γq(α)Γq(α + γ)
[
cΓq(γ + 3)− 2Γq(γ)

]

× h(s, u(s))dqs

≤
∫ 1

0

Γq(p + 3)
[
cΓq(α + γ) + Γq(α)

]
(1− qs)(α−1)

Γq(α)Γq(α + γ)
[
cΓq(γ + 3)− 2Γq(γ)

] s−βsβh(s, u(s))dqs

≤ r′1
Γq(γ + 3)

[
cΓq(α + γ) + Γq(α)

]

Γq(α)Γq(α + γ)
[
cΓq(γ + 3)− 2Γq(γ)

]
∫ 1

0
(1− qs)(α−1)s−β dqs

= r′01
Γq(γ + 3)Γq(1− β)

[
cΓq(α + γ) + Γq(α)

]

Γq(α + γ)Γq(α− σ + 1)
[
cΓq(γ + 3)− 2Γq(γ)

] = ‖u‖

for t ∈ J. Thus, ‖Ω(u)‖ ≤ ‖u‖ on P ∩ ∂X2. Since the self-operator Ω defined on P
is completely continuous and P ∩ (X2|X1) is a closed subset of P, the restriction Ω :
P ∩ (X2|X1) → P is completely continuous. At present, by employing Lemma 2, Ω has
a fixed point in P ∩ (X2|X1). By simple review, we can see that the fixed point of Ω is a
positive solution for problem (1).

4. Illustrative Examples with Application

Some illustrative examples are provided in this section to validate our original results.
At the same time, a computational technique is constructed for testing the problem (1) and
(2). A simplified analysis is also studied for executing the q-Gamma function’s values. As

11
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a result, a pseudo-code that describes our simplified method is presented for calculating
the q-Gamma function of order n in Algorithm A1 (for more details, see the following
online resources: https://en.wikipedia.org/wiki/Q-gamma_function and https://www.
dm.uniba.it/members/garrappa/software, accessed on 10 March 2021).

When the analytical solution is impossible to find for certain problems, we need to
find the numerical approximation with a tiny step h via the implicit trapezoidal PI rule,
which usually shows excellent accuracy [36]. Our numerical experiments were performed
with the help of MATLAB software. Some additional supporting information are provided
in Appendix A of this paper including some algorithms of the proposed method (see
Algorithms A1–A5), and Tables A1–A3 present various numerical experiments to provide
additional support to the validity of our results in this work.

Example 1. Consider the SFqDEq with the B.C:




cD
17
5

q [u](t) + | cos t|
t2

[
1 + (u(t))3] = 0,

15
7 u(1) = I

29
7

q [u](1),
u(0) = u′′(0) = u′′′(0) = (0) = 0,

(4)

for all t ∈ J = (0, 1) and q ∈ J.
In Problem (1), define

α =
17
5
≥ 3, n = [

17
5
] + 1 = 4, c =

15
7
≥ 1, γ =

29
7
∈ [1, ∞).

Define the continuous map:

h(t, u(t)) =
| cos t|

t2

[
1 + (u(t))3

]
,

such that
lim

t→0+
h(t, .) = +∞,

that is, h is singular at t = 0. In addition to, Table 1 shows that

2Γq(γ) ≥ Γq(α),

holds for each q.

12
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Table 1. Numerical experiment for calculating Γq(α), Γq(γ) in Example 1 for q = 1
10 , 1

2 , 8
9 .

n
q = 1

10 q = 1
2 q = 8

9

Γq(α) 2Γq(γ) Γq(α) 2Γq(γ) Γq(α) 2Γq(γ)

1 1.1479 2.4817 2.2951 7.2266 34.0843 265.2795
2 1.1467 2.4792 2.0569 6.414 21.5589 153.3424
3 1.1466 2.479 1.9515 6.056 15.299 101.2765
4 1.1466 2.479 1.9018 5.8876 11.7053 73.0841
...

...
...

...
...

...
...

17 1.1466 2.479 1.8539 5.7258 3.4748 16.2557
18 1.1466 2.479 1.8539 5.7258 3.3755 15.6765
19 1.1466 2.479 1.8539 5.7257 3.2907 15.1843
20 1.1466 2.479 1.8539 5.7257 3.2177 14.7638
...

...
...

...
...

...
...

106 1.1466 2.479 1.8539 5.7257 2.709 11.8963
107 1.1466 2.479 1.8539 5.7257 2.709 11.8963
108 1.1466 2.479 1.8539 5.7257 2.709 11.8963
109 1.1466 2.479 1.8539 5.7257 2.709 11.8962
110 1.1466 2.479 1.8539 5.7257 2.709 11.8962

To numerically show our results, we consider the problem (2) as follows:

D
10
3

q [u](t) + Γq(5)t−
1
9 |u| 13 + Γq(4)t−

1
9 |u′| 25

+ Γq(6)t−
1
9 |D

4
15
q [u](t)| 34 + Γq(3)t−

1
9 |vu|

7
9

+
1

1 + u2(t)
+

1
1 + (u′)2 +

1

1 + (D
4
15
q [u])2

+
1

1 + (vu)2

≤ D
10
3

q [u](t) + Γq(5)t−
1
9 |u| 13 + Γq(4)t−

1
9 |u′| 25

+ Γq(6)t−
1
9 |D

4
15
q [u](t)| 34 + Γq(3)t−

1
9 |vu|

7
9

+ (u(t))−2 + (u′)−2 + (D
4
15
q [u])−2 + (vu)

−2 = 0.

Thus,

D
10
3

q [u](t) + Γq(5)t−
1
9 |u| 13 + Γq(4)t−

1
9 |u′| 25

+ Γq(6)t−
1
9 |D

4
15
q [u](t)| 34 + Γq(3)t−

1
9 |vu|

7
9

+ (u(t))−2 + (u′)−2 + (D
4

15
q [u])−2 + (vu)

−2 = 0. (5)

Table 2 shows numerically the values of x(t) in Equation (5). In addition, the curve of x(t)
w.r.t t in Figures 1–3 for q = 1

10 , 1
2 , and 6

7 , respectively (Algorithm A1).

13
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Table 2. Numerical experiment of Equation (5) in Example 1 for q ∈
{

1
10 , 1

2 , 6
7

}
and n = 1, · · · 20

(Algorithm A1).

n
q = 1

10 q = 1
2 q = 6

7

t u(t) t u(t) t u(t)

1 n = 1

1 0 0 0 0 0 0
1 0.25 0.00172 0.25 0.00806 0.25 0.38812
1 0.5 0.01733 0.5 0.08187 0.5 4.1244
1 0.75 0.06744 0.75 0.32299 0.75 17.97576
1 1 0.17909 1 0.87607 1 56.89764
2 n = 2

2 0 0 0 0 0 0
2 0.25 0.00171 0.25 0.0071 0.25 0.21494
2 0.5 0.01731 0.5 0.07216 0.5 2.26527
2 0.75 0.06737 0.75 0.2846 0.75 9.69401
2 1 0.17891 1 0.77148 1 29.82949
...

20 n = 20

0 0 0 0 0 0
0.25 In f 0.25 In f 0.25 In f
0.5 In f 0.5 In f 0.5 In f

0.75 In f 0.75 In f 0.75 In f
1 In f 1 In f 1 In f

1.25 In f 1.25 In f 1.25 In f
1.5 In f 1.5 In f 1.5 In f

1.75 In f 1.75 In f 1.75 In f
...

...
...

...
...

...

We can see that all conditions of Theorem 2 hold. Thus, the fixed point of Ω is a positive
solution for problem (4).

Im
ag
e
u
(t
)

-1

-0.5

0

0.5

1

t0
0.2

0.4
0.6

0.8
1

Real u(t) 0

0.05

0.1

0.15

0.2

q=1/10

t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
ea
l
u
(t
)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

q=1/10

Figure 1. u(t) with respect to t in Equation (5) in Example 1 for q = 1
10 according to Table 2.

Linear motion is the most basic of all motion. According to Newton’s first law of
motion, objects that do not experience any net force will continue to move in a straight line
with a constant velocity until they are subjected to a net force. In the next example, we
consider an application to examine the validity of our theoretical results on the fractional
order representation of the motion of a particle along a straight line.
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Figure 2. u(t) with respect to t in Equation (5) in Example 1 for q = 1
2 according to Table 2.
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Figure 3. u(t) with respect to t in Equation (5) in Example 1 for 6
7 according to Table 2.

Example 2. We consider a constrained motion of a particle along a straight line restrained by
two linear springs with equal spring constants (stiffness coefficient) under an external force and
fractional damping along the t-axis (Figure 4).

The springs, unless subjected to force, are assumed to have free length (unstretched length)
and resist a change in length. The motion of the system along the t-axis is independent of the initial
spring tension. The springs are anchored on the t-axis at t = −1 and t = 1, and the vibration of
the particle in this example is restricted to the t-axis only.

The vibration of the system is represented by a system of equations with the first equation
having similar form of a simple harmonic oscillator, which cannot produce instability. Hence, the
existence solution of the system depends on the following equation represented as the SFqDEq with
the B.C: 




cD
10
3

q [u](t) + 1
8

[
2− 2L− θ2L− θ2L cos t

]
u(t) = ν sin(u(t)),

16
9 u(1) = I

23
6

q [u](1),
u(0) = u′′(0) = u′′′(0) = (0) = 0,

(6)

for all t ∈ J = (0, 1), q ∈ J. Here, θ and ν are constants, and L is the unstretched length of the
spring. In Problem (1),

α =
10
3
≥ 3, n = [

10
3
] + 1 = 4, c =

16
9
≥ 1, γ =

23
6
∈ [1, ∞).

15
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Define the continuous map:

h(t, u(t)) =
1
8

[
2− 2L− θ2L− θ2L cos t

]
u(t)− ν sin(u(t))

for t ∈ (0, 1), such that
lim

t→0+
h(t, .) = +∞,

that is, h is singular at t = 0. Consider particular values of the parameters L = 1.5 m, θ = 0.5. We
consider particular values of the parameter ν = 7.25. Therefore, all conditions of Theorem 2 hold.
Thus, the SFqDEq (6) has a solution.

L

F

Figure 4. A particle along a straight line restrained by two linear springs with equal spring constants.

5. Conclusions

The existence of solutions was successfully investigated for a system of m-singular
sum fractional q-differential equations under some integral B.Cs in the sense of CpFqDr.
The positive solutions’ existence was also studied with the help of a fixed point Arzelà–
Ascoli theorem. Illustrative examples and numerical experiments were provided to validate
our theoretical results.
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Appendix A. Supporting Information

Algorithm A1 The proposed method for calculating Γq(x).

1: function g = qGamma(q, x, n)
2: %q-Gamma Function
3: p=1;
4: for k=0:n
5: p=p*(1-q(̂k+1))/(1- q(̂x+k));
6: end;
7: g=p/(1-q)(̂x-1);
8: end

Algorithm A2 The proposed method for calculating (x− y)(α)q .

1: function p = qfunction1(x, y, q, sigma, n)
2: s=1;
3: if n==0
4: p=1
5: else
6: for k=1:n-1
7: s = s*(x-y*qk̂)/(x-y*q(̂sigma+k));
8: end;
9: p=xŝigma * s;

10: end;
11: end

Algorithm A3 The proposed method for calculating (Dq f )(x).

1: function g = Dq(q, x, n, fun)
2: if x==0
3: g=limit ((fun(x)-fun(q*x))/((1-q)*x),x,0);
4: else
5: g=(fun(x)-fun(q*x))/((1-q)*x);
6: end;
7: end

Algorithm A4 The proposed method for calculating (Dq f )(x).

1: function g = Iq(q, x, n, fun)
2: p=1;
3: for k=0:n
4: p=p+ qk̂*fun(x*qk̂);
5: end;
6: g=x* (1-q) * p;
7: end

17
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Algorithm A5 The proposed method for calculating Iα
q [x].

1: function g = Iq_alpha(q, alpha, x, n, fun)
2: p=0;
3: for k=0:n
4: s1=1;
5: for i=0:k-1
6: s1=s1*(1-q(̂alpha+i));
7: end
8: s2=1;
9: for i=0:k-1

10: s2=s2*(1-q(̂i+1));
11: end
12: p=p + qk̂*s1*eval(subs(fun, t*qk̂))/s2;
13: end;
14: g=round((tâlpha)* ((1-q)âlpha)* p, 6);
15: end

Table A1. Some numerical results for the calculation of Γq(x) with q = 1
3 that is constant,

x = 4.5, 8.4, 12.7 and n = 1, 2, . . . , 15 of Algorithm A1.

n x = 4.5 x = 8.4 x = 12.7 n x = 4.5 x = 8.4 x = 12.7

1 2.472950 11.909360 68.080769 9 2.340263 11.257158 64.351366
2 2.383247 11.468397 65.559266 10 2.340250 11.257095 64.351003
3 2.354446 11.326853 64.749894 11 2.340245 11.257074 64.350881
4 2.344963 11.280255 64.483434 12 2.340244 11.257066 64.350841
5 2.341815 11.264786 64.394980 13 2.340243 11.257064 64.350828
6 2.340767 11.259636 64.365536 14 2.340243 11.257063 64.350823
7 2.340418 11.257921 64.355725 15 2.340243 11.257063 64.350822
8 2.340301 11.257349 64.352456

Table A2. Some numerical results for the calculation of Γq(x) with q = 1
3 , 1

2 , 2
3 , x = 5 and

n = 1, 2, . . . , 35 of Algorithm A1.

n q = 1
3 q = 1

2 q = 2
3 n q = 1

3 q = 1
2 q = 2

3

1 3.016535 6.291859 18.937427 18 2.853224 4.921884 8.476643
2 2.906140 5.548726 14.154784 19 2.853224 4.921879 8.474597
3 2.870699 5.222330 11.819974 20 2.853224 4.921877 8.473234
4 2.859031 5.069033 10.537540 21 2.853224 4.921876 8.472325
5 2.855157 4.994707 9.782069 22 2.853224 4.921876 8.471719
6 2.853868 4.958107 9.317265 23 2.853224 4.921875 8.471315
7 2.853438 4.939945 9.023265 24 2.853224 4.921875 8.471046
8 2.853295 4.930899 8.833940 25 2.853224 4.921875 8.470866
9 2.853247 4.926384 8.710584 26 2.853224 4.921875 8.470747

10 2.853232 4.924129 8.629588 27 2.853224 4.921875 8.470667
11 2.853226 4.923002 8.576133 28 2.853224 4.921875 8.470614
12 2.853224 4.922438 8.540736 29 2.853224 4.921875 8.470578
13 2.853224 4.922157 8.517243 30 2.853224 4.921875 8.470555
14 2.853224 4.922016 8.501627 31 2.853224 4.921875 8.470539
15 2.853224 4.921945 8.491237 32 2.853224 4.921875 8.470529
16 2.853224 4.921910 8.484320 33 2.853224 4.921875 8.470522
17 2.853224 4.921893 8.479713 34 2.853224 4.921875 8.470517
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Table A3. Some numerical results for the calculation of Γq(x) with x = 8.4, q = 1
3 , 1

2 , 2
3 and

n = 1, 2, . . . , 40 of Algorithm A1.

n q = 1
3 q = 1

2 q = 2
3 n q = 1

3 q = 1
2 q = 2

3

1 11.909360 63.618604 664.767669 21 11.257063 49.065390 260.033372
2 11.468397 55.707508 474.800503 22 11.257063 49.065384 260.011354
3 11.326853 52.245122 384.795341 23 11.257063 49.065381 259.996678
4 11.280255 50.621828 336.326796 24 11.257063 49.065380 259.986893
5 11.264786 49.835472 308.146441 25 11.257063 49.065379 259.980371
6 11.259636 49.448420 290.958806 26 11.257063 49.065379 259.976023
7 11.257921 49.256401 280.150029 27 11.257063 49.065379 259.973124
8 11.257349 49.160766 273.216364 28 11.257063 49.065378 259.971192
9 11.257158 49.113041 268.710272 29 11.257063 49.065378 259.969903
10 11.257095 49.089202 265.756606 30 11.257063 49.065378 259.969044
11 11.257074 49.077288 263.809514 31 11.257063 49.065378 259.968472
12 11.257066 49.071333 262.521127 32 11.257063 49.065378 259.968090
13 11.257064 49.068355 261.666471 33 11.257063 49.065378 259.967836
14 11.257063 49.066867 261.098587 34 11.257063 49.065378 259.967666
15 11.257063 49.066123 260.720833 35 11.257063 49.065378 259.967553
16 11.257063 49.065751 260.469369 36 11.257063 49.065378 259.967478
17 11.257063 49.065564 260.301890 37 11.257063 49.065378 259.967427
18 11.257063 49.065471 260.190310 38 11.257063 49.065378 259.967394
19 11.257063 49.065425 260.115957 39 11.257063 49.065378 259.967371
20 11.257063 49.065402 260.066402 40 11.257063 49.065378 259.967357
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Abstract: In this study, we consider regular eigenvalue problems formulated by using the left and
right standard fractional derivatives and extend the notion of a fractional Sturm–Liouville problem to
the regular Prabhakar eigenvalue problem, which includes the left and right Prabhakar derivatives. In
both cases, we study the spectral properties of Sturm–Liouville operators on function space restricted
by homogeneous Dirichlet boundary conditions. Fractional and fractional Prabhakar Sturm–Liouville
problems are converted into the equivalent integral ones. Afterwards, the integral Sturm–Liouville
operators are rewritten as Hilbert–Schmidt operators determined by kernels, which are continuous
under the corresponding assumptions. In particular, the range of fractional order is here restricted
to interval (1/2, 1]. Applying the spectral Hilbert–Schmidt theorem, we prove that the spectrum
of integral Sturm–Liouville operators is discrete and the system of eigenfunctions forms a basis in
the corresponding Hilbert space. Then, equivalence results for integral and differential versions of
respective eigenvalue problems lead to the main theorems on the discrete spectrum of differential
fractional and fractional Prabhakar Sturm–Liouville operators.

Keywords: fractional derivatives; fractional Prabhakar derivatives; fractional differential equations;
fractional Sturm–Liouville problems; eigenfunctions and eigenvalues

1. Introduction

The aim of this paper is to study the fundamental properties of fractional eigenvalue
problems developed by the construction of the Sturm–Liouville operator (SLO) with left
and right fractional derivatives. In classical differential equations theory, this is a linear
differential operator of the second order and yields an eigenvalue problem of the form
(here, x ∈ [0, b] in the case when we consider the problem on a finite interval):

Lqy(x) = − d
dx

p(x)
dy(x)

dx
+ q(x)y(x) = λw(x)y(x)

with boundary conditions appearing as follows:

c1y(0) + c2
dy(0)

dx
= 0, d1y(b) + d2

dy(b)
dx

= 0. (1)

Let us point out that, depending on the choice of coefficient functions and boundary
conditions, such problems provide various systems of orthogonal eigenfunctions, orthog-
onal polynomials and families of special functions. Orthogonal systems of the solutions
of classical Sturm–Liouville problems are widely applied in the analysis and solving of
fundamental differential equations of mathematics, physics, mechanics , and economics.

In most of the FSLPs presented at the beginning of fractional Sturm–Liouville the-
ory, first-order derivatives in a standard Sturm–Liouville problem were replaced with
fractional order derivatives. The resulting equations were solved using some numerical
schemes [1–4]. However, in these works, the essential properties, such as the orthogonality
of the eigenfunctions of the fractional operator, were not investigated. In addition, the
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question of whether the associated eigenvalues are real or not is not addressed. Some
results concerning these properties have been obtained in papers [5,6], where the dis-
cussed equations contain a classical SLO extended by including a sum of the left and the
right derivatives. Then, in paper [7], we proposed the construction of a fractional Sturm–
Liouville operator which preserves the orthogonality of the eigenfunctions corresponding
to distinct eigenvalues and provides real eigenvalues. The FSLO contains both the left and
right derivatives and is a symmetric operator on function space restricted by fractional
boundary conditions which generalize conditions (1).

A fractional version of Bessel SLO has been developed and applied to anomalous
diffusion in [8], where the space-fractional differential operator has a form analogous to the
FSLO proposed in a general form in [7]. Some special cases of singular fractional Sturm–
Liouville problems were also studied in [9,10], where exact solutions and eigenvalues
were calculated.

In our earlier works [7,11–14], we focused on the construction of a fractional version
of operator Lq, which includes standard fractional derivatives. The characteristic feature
of the proposed approach is the mixture of the left and right fractional derivatives in
the fractional Sturm–Liouville operator (FSLO). This construction provides eigenvalue
problems with orthogonal eigenfunctions and discrete spectra under the appropriate
homogeneous boundary conditions.

In recent years, fractional eigenvalue problems have also been discussed within the
framework of tempered and conformable fractional calculus. In the papers [15,16], a frac-
tional Sturm–Liouville operator is built by using the left and right tempered derivatives.
Next, in [17,18], an FSLO is constructed as a composition of conformable fractional deriva-
tives. In addition, in paper [19], the authors show how to build an FSLO with composite
fractional derivatives.

Here, we add the generalization of fractional eigenvalue problems to problems with
operators, including Prabhakar derivatives. The regular fractional and fractional Prabhakar
Sturm–Liouville operators considered here include the left and the right derivatives, and
the derived equations are in fact of a variational nature; i.e., they are Euler–Lagrange
equations for respective actions (compare [11,20] and the references therein for FSLE). The
properties of the spectra and eigenfunctions’ systems of FSLP can be studied by applying
the variational method [12,21]. Here, we shall develop the transformation method for
FSLP and PSLP with Dirichlet boundary conditions, which means that we rewrite the
FSLP/PSLP as the equivalent integral eigenvalue problem.

The paper is organized as follows. In the next section, we present the necessary
definitions and properties of fractional and fractional Prabhakar operators, as well as
the formulation of a regular fractional Sturm–Liouville problem with its generalization
to the Prabhakar Sturm–Liouville problem. In Section 3, we define the problems with
homogeneous Dirichlet boundary conditions and derive equivalence results for both types
of fractional eigenvalue problems. It appears that by applying composition rules for
derivatives and integrals, they can be converted into the equivalent integral ones. Spectral
properties of integral versions of fractional and fractional Prabhakar Sturm–Liouville
operators are discussed in Section 4. We shall prove that these operators are Hilbert–
Schmidt integral operators, which are compact and self-adjoint on the L2

w(0, b) space.
Applying the spectral Hilbert–Schmidt theorem, we derive results on discrete spectra
both for fractional and fractional Prabhakar Sturm–Liouville operators. The equivalence
of differential and integral versions of eigenvalue problems leads to the corresponding
spectral results for differential operators.

The paper closes with a brief discussion of results and future investigations. The
Appendix A contains two parts. First, we present results on Hölder continuity of kernels
defining integral Sturm–Liouville operators. Then, we prove a useful theorem on the
convergence of convolutions’ series in a general case, which is applied in the construction
of integral Sturm–Liouville operators.
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2. Preliminaries

We start with a summary of definitions and properties of fractional integrals and
derivatives which shall be applied in the construction of fractional and fractional Prabhakar
eigenvalue problems. First, we recall the left and right Riemann–Liouville fractional
derivatives of order α ∈ (0, 1) [22,23]:

Dα
0+ y(x) :=

d
dx

I1−α
0+ y(x), Dα

b− y(x) := − d
dx

I1−α
b− y(x), (2)

where the operators Iα
0+ and Iα

b− are respectively the left and the right fractional Riemann–
Liouville integrals of order α > 0 defined by the following formulas

Iα
0+y(x) :=

x∫

0

(x− t)α−1y(t)
Γ(α)

dt, x > 0, (3)

Iα
b−y(x) :=

b∫

x

(t− x)α−1y(t)
Γ(α)

dt, x < b. (4)

Next, we have Caputo fractional derivatives:

cDα
0+y(x) = Dα

0+(y(x)− y(0)), cDα
b−y(x) = Dα

b−(y(x)− y(b)) (5)

and we note that when y(0) = y(b) = 0, both types of derivatives coincide, i.e.,

cDα
0+y(x) = Dα

0+y(x), cDα
b−y(x) = Dα

b−y(x).

We also recall some of the composition rules of fractional operators for the case of
order α ∈ (0, 1]; namely, for the left-sided Caputo derivative and left-sided fractional
integral, we have

Iα
0+

cDα
0+y(x) = y(x)− y(0), (6)

cDα
0+ Iα

0+y(x) = y(x), (7)

while for the right-sided Riemann–Liouville derivatives, the following relations are valid

Iα
b−Dα

b−y(x) = y(x)− I1−α
b− y(b) · (b− x)α−1

Γ(α)
, (8)

Dα
b− Iα

b−y(x) = y(x). (9)

All of the above rules are fulfilled for all points x ∈ [0, b] when function y is a
continuous one. Let us note that for the continuous function fulfilling condition y(0) = 0,
rules (6) and (8) look as follows:

Iα
0+

cDα
0+y(x) = y(x), Iα

b−Dα
b−y(x) = y(x). (10)

The fractional operators, described above, are generalized to Prabhakar integrals and
derivatives. They are defined using a three-parameter Mittag–Leffler function [22,24]:

Eγ
ρ,µ(z) :=

1
Γ(γ)

∞

∑
k=0

Γ(γ + k)
Γ(ρk + µ)

· zk

k!
(11)

and Prabhakar function [24,25]:

eγ
ρ,µ(ωzρ) := zµ−1Eγ

ρ,µ(ωzρ), (12)

both defined on the complex space when Re(ρ) > 0 and Re(µ) > 0.

23



Symmetry 2021, 13, 2265

These functions lead to the left and right Prabhakar derivatives [24]:

Dα
ρ,γ,ω,0+ y(x) :=

d
dx

E1−α
ρ,−γ,ω,0+y(x), Dα

ρ,γ,ω,b− y(x) := − d
dx

E1−α
ρ,−γ,ω,b−y(x), (13)

where operators Eα
ρ,−γ,ω,0+ and Eα

ρ,−γ,ω,b− are respectively the left and the right fractional
Prabhakar integrals:

Eα
ρ,−γ,ω,0+y(x) :=

x∫

0

e−γ
ρ,α (ω(x− t)ρ)y(t)dt, x > 0, (14)

Eα
ρ,−γ,ω,b−y(x) :=

b∫

x

e−γ
ρ,α (ω(x− t)ρ)y(t)dt, x < b. (15)

Similar to Caputo derivatives, given in (5), we have Caputo-type Prabhakar derivatives
defined as follows

cDα
ρ,γ,ω,0+ y(x) = Dα

ρ,γ,ω,0+(y(x)− y(0)), (16)

cDα
ρ,γ,ω,b− y(x) = Dα

ρ,γ,ω,b−(y(x)− y(b)) (17)

coinciding with Prabhakar derivatives (13) when y(0) = 0 or y(b) = 0, respectively.
Restricting function space to continuous functions fulfilling condition y(0) = 0, we arrive
at composition rules of Prabhakar operators analogous to (7), (9), and (10):

cDα
ρ,γ,ω,0+ Eα

ρ,γ,ω,0+y(x) = y(x), (18)

Eα
ρ,γ,ω,0+

cDα
ρ,γ,ω,0+y(x) = y(x), (19)

Dα
ρ,γ,ω,b− Eα

ρ,γ,ω,b−y(x) = y(x), (20)

Eα
ρ,γ,ω,b−Dα

ρ,γ,ω,b−y(x) = y(x). (21)

Now, we shall quote the general formulation of the fractional eigenvalue problem,
introduced and investigated in papers [7,11–14,21].

Definition 1 (compare Definition 5 in [7]). Let α ∈ (0, 1]. With the notation

Lq := Dα
b−p(x) cDα

0+ + q(x), (22)

consider the fractional Sturm–Liouville equation (FSLE)

Lqyλ(x) = λw(x)yλ(x), (23)

where p(x) 6= 0, w(x) > 0 ∀x ∈ [0, b], functions p, q, w are real-valued continuous functions in
[0, b] and boundary conditions are:

c1yλ(0) + c2 I1−α
b− p(x)Dα

0+yλ(x) |x=0= 0, (24)

d1yλ(b) + d2 I1−α
b− p(x)Dα

0+yλ(x) |x=b= 0 (25)

with c2
1 + c2

2 6= 0 and d2
1 + d2

2 6= 0. The problem of finding number λ (eigenvalue) such that the BVP
has a non-trivial solution, yλ (eigenfunction) will be called the regular fractional Sturm–Liouville
eigenvalue problem (FSLP).

We include Prabhakar derivatives into the construction of FSLO and formulate below
the Prabhakar Sturm–Liouville problem.
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Definition 2. Let α ∈ (0, 1]. With the notation

L′q := Dα
ρ,γ,ω,b−p(x) cDα

ρ,γ,ω,0+ + q(x), (26)

consider the fractional Prabhakar Sturm–Liouville equation (PSLE)

L′qyλ(x) = λw(x)yλ(x), (27)

where p(x) 6= 0, w(x) > 0 ∀x ∈ [0, b], functions p, q, w are real-valued continuous functions in
[0, b] and boundary conditions are:

c1yλ(0) + c2E1−α
ρ,−γ,ω,b−p(x)Dα

ρ,γ,ω,0+yλ(x) |x=0= 0, (28)

d1yλ(b) + d2E1−α
ρ,−γ,ω,b−p(x)Dα

ρ,γ,ω,0+yλ(x) |x=b= 0 (29)

with c2
1 + c2

2 6= 0 and d2
1 + d2

2 6= 0. The problem of finding number λ (eigenvalue) such that the
BVP has a non-trivial solution, yλ (eigenfunction) will be called the regular fractional Prabhakar
Sturm–Liouville eigenvalue problem (PSLP).

3. Formulation of the Problem and Methods

In this section, we shall focus on fractional eigenvalue problems subjected to the homo-
geneous Dirichlet boundary conditions. We choose values c2 = d2 = 0 in Definitions 1 and 2
and formulate the corresponding definitions of FSLP and PSLP. First, we have the fractional
Sturm–Liouville problem with Dirichlet boundary conditions.

Definition 3. Let α ∈ (0, 1]. With the notation

Lq := Dα
b−p(x) cDα

0+ + q(x), (30)

consider the fractional Sturm–Liouville Equation (23), where p(x) 6= 0, w(x) > 0 ∀x ∈ [0, b],
functions p, q, w are real-valued continuous functions in [0, b] and the boundary conditions are:

yλ(0) = yλ(b) = 0.

The problem of finding number λ (eigenvalue) such that the BVP has a non-trivial solution,
yλ (eigenfunction) will be called the regular fractional Sturm–Liouville eigenvalue problem (FSLP)
with homogeneous Dirichlet boundary conditions.

Next, we formulate the definition of the Prabhakar Sturm–Liouville problem with
Dirichlet boundary conditions.

Definition 4. Let α ∈ (0, 1]. With the notation

L′q := Dα
ρ,γ,ω,b−p(x) cDα

ρ,γ,ω,0+ + q(x), (31)

consider the fractional Prabhakar Sturm–Liouville Equation (27), where p(x) 6= 0,
w(x) > 0 ∀x ∈ [0, b], functions p, q, w are real-valued continuous functions in [0, b] and
the boundary conditions are:

yλ(0) = yλ(b) = 0.

The problem of finding number λ (eigenvalue) such that the BVP has a non-trivial solution,
yλ (eigenfunction) is the regular fractional Prabhakar Sturm–Liouville eigenvalue problem (PSLP)
with homogeneous Dirichlet boundary conditions.

We shall study the spectral properties of the eigenvalue problems described in the
above definitions. Let us point out that an FSLP with a Dirichlet boundary condition spec-
trum was investigated in papers [12,21] using variational methods. Here, we extend the

25



Symmetry 2021, 13, 2265

study to the Prabhakar Sturm–Liouville problem and develop the results by transforming
both differential fractional problems into the respective equivalent integral ones. Then, we
analyse properties of the integral versions of fractional Sturm–Liouville operators (22) and
(26) and apply the Hilbert–Schmidt spectral theorem to prove that their spectrum is purely
discrete. Equivalence of the respective differential and integral fractional eigenvalue prob-
lems yields the theorems on spectra of the differential fractional and fractional Prabhakar
eigenvalue problems given by Definitions 3 and 4. We begin our considerations with the
case when q = 0.

3.1. Equivalence Results for Differential and Integral FSLP, PSLP: Case q = 0

Here, we shall prove equivalence results for the FSLP/PSLP with an equation contain-
ing the fractional differential operators (22) and (26) and investigate the properties of the
integral eigenvalue problem connected to the FSLE/PSLE in the case of order α fulfilling
condition 1 ≥ α > 1/2 and solutions’ space restricted by the homogeneous Dirichlet
boundary conditions.

In the first part, we transformed the differential fractional Sturm–Liouville problem
(Definition 3) into the integral one on the subspace of the continuous functions defined below:

CD[0, b] := {y ∈ C[0, b]; y(0) = y(b) = 0}. (32)

Let us note that the composition rules of fractional operators (7) and (9) allow us a to
write a fractional Sturm–Liouville Equation (23) on the CD[0, b] space in the case of q = 0
as follows:

L0

(
1− λIα

0+
1
p

Iα
b−w(x)

)
y(x) = 0

which leads to the integral equation

(
1− λIα

0+
1
p

Iα
b−w(x)

)
y(x) = Cw

1 + Cw
2 Iα

0+
(b− x)α−1

p(x)
.

Constants Cw
1 and Cw

2 are determined by the homogeneous Dirichlet boundary
conditions

Cw
1 = 0, Cw

2 = −λ
Iα
0+

1
p Iα

b−w(x)y(x)|x=b

Iα
0+

(b−x)α−1

p(x) |x=b

. (33)

The above calculations lead to the integral form of FSLE (23) with q = 0

1
λ

y(x) = Twy(x), (34)

where linear integral operator Tw is built using the left and right Riemann–Liouville
integrals and acts as follows:

Twy(x) = Iα
0+

1
p

Iα
b−w(x)y(x)−

Iα
0+

1
p Iα

b−w(x)y(x)|x=b

Iα
0+

(b−x)α−1

p(x) |x=b

· Iα
0+

(b− x)α−1

p(x)
. (35)

Similar considerations yield the integral form of PSLE (27) when q = 0

1
λ

y(x) = Twy(x), (36)

where linear integral operator Tw is constructed using the left and right Prabhakar integrals
and acts as follows

Twy(x) = Eα
ρ,γ,ω,0+

1
p

Eα
ρ,γ,ω,b−w(x)y(x) (37)
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−
Eα

ρ,γ,ω,0+
1
p Eα

ρ,γ,ω,b−w(x)y(x)|x=b

Eα
ρ,γ,ω,0+

e−γ
ρ,α (ω(b−x)ρ)

p(x) |x=b

· Eα
ρ,γ,ω,0+

e−γ
ρ,α (ω(b− x)ρ)

p(x)
.

We note that the above integral operators (35) and (37) can be rewritten as operators
indexed by the arbitrary continuous function r (here, r = w) and determined by the
corresponding kernels—G1 for FSLP and G2 for PSLP:

Try(x) :=
∫ b

0
Gj(x, s)r(s)y(s)dx, j = 1, 2, (38)

where kernels are of the form:

G1(x, s) := K1(x, s)− K1(b,x)K1(b,s)
K1(b,b) , (39)

G2(x, s) := KP
1 (x, s)− KP

1 (b,x)KP
1 (b,s)

KP
1 (b,b)

, (40)

K1(x, s) =
∫ min{x,s}

0
(x−t)α−1

Γ(α) · (s−t)α−1

Γ(α)
1

p(t)dt, (41)

KP
1 (x, s) =

∫ min{x,s}
0

e−γ
ρ,α (ω(x−t)ρ)e−γ

ρ,α (ω(s−t)ρ)

p(t) dt. (42)

It is easy to check the following properties of kernels. First, they are symmetric
functions on square ∆ = [0, b]× [0, b]

K1(x, s) = K1(s, x), KP
1 (x, s) = KP

1 (s, x), Gj(x, s) = Gj(s, x) (43)

and, in addition, we have

K1(0, s) = K1(b, 0) = 0, KP
1 (0, s) = KP

1 (b, 0) = 0, Gj(0, s) = Gj(b, s) = 0. (44)

In our results developed in this paper, we apply two types of assumptions.

Hypothesis 1 (H1). 1 ≥ α > 1/2, 1
p ∈ C[0, b] and function 1

p be positive on [0, b] or negative.

Hypothesis 2 (H2). 1 ≥ α > 1/2, 1
p ∈ C[0, b] and function 1

p be positive on [0, b] or negative.
In addition, let the real parameters α, ρ, γ, ω fulfil the conditions:

min{ρ, γ} > 0, ω < 0, α ≥ ργ, ρ < 1.

Proposition 1. If (H1) is fulfilled and function y ∈ L2(0, b), then its image Try ∈ CD[0, b] for
any function r ∈ C[0, b] and operator defined by kernel (39).

If (H2) is fulfilled and function y ∈ L2(0, b), then its image Try ∈ CD[0, b] for any function
r ∈ C[0, b] and operator defined by kernel (40).

Proof. We sketch here the proof of the first part of the discussed proposition and omit the
proof of the second one as it is analogous. By Corollary A1, kernel G1 fulfills the Hölder
condition; therefore, we find

|Try(x′)− Try(x)| ≤
∫ b

0
|G1(x′, s′)− G1(x, s)| · |r(s)y(s)|ds

≤ M1|x′ − x|β
∫ b

0
|r(s)y(s)|ds ≤ M1

√
b · ||r|| · ||y||L2 · |x′ − x|β

and we infer that image Try is a continuous function and is even uniformly continuous on
interval [0, b].
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We check that it obeys the homogeneous Dirichlet boundary conditions as well,
because kernel G1 fulfils the conditions (44):

Try(0) =
∫ b

0
G1(0, s)y(s)r(s)ds = 0,

Try(b) =
∫ b

0
G1(b, s)y(s)r(s)ds = 0.

For functions belonging to the CD[0, b] space, we can prove the equivalence of the
differential and integral form of the FSLP and PSLP, respectively. That is, the following
two propositions are valid when q = 0. The first one concerns differential and integral
fractional Sturm–Liouville problems.

Proposition 2. If (H1) is fulfilled and w ∈ C[0, b], then the following equivalence is valid on the
CD[0, b] space

L0y(x) = λw(x)y(x)⇐⇒ Twy(x) =
1
λ

y(x), (45)

where operator L0 is defined in (22) and operator Tw contains kernel (39).

Proof. Assuming that y ∈ CD[0, b] is an eigenfunction corresponding to eigenvalue λ:

1
w(x)

L0y(x) = λy(x)

we act with the Tw operator on both sides of this equation:

Tw
1

w(x)
L0y(x) = λTwy(x) (46)

and by applying composition rules (10), we obtain the integral eigenvalue equation

1
λ

y(x) = Twy(x). (47)

Next, we assume that function y ∈ L2(0, b) is an eigenfunction of the integral FSLP,
i.e., Equation (47) is fulfilled. According to Proposition 1, eigenfunction y is a continuous
one and belongs to the CD[0, b] space. Then, we calculate composition L0Tw using the
composition rules (7) and (9)

L0Twy(x) = w(x)y(x) (48)

and by applying Equation (47), we arrive at the implication

L0Twy(x) = w(x)y(x) =
1
λ
L0y(x) =⇒ L0y(x) = λw(x)y(x).

Therefore, we conclude that on the CD[0, b] space, the equivalence of the differential
and integral FSLP is valid.

Below, we formulate the extended version of Proposition 2, where we describe the
appropriate equivalence for Prabhakar Sturm–Liouville operators. Its proof is analogous to
that presented above.

Proposition 3. If (H2) is fulfilled and w ∈ C[0, b], then the following equivalence

L′0 f (x) = λw(x) f (x)⇐⇒ Tw f (x) =
1
λ

f (x), (49)

28



Symmetry 2021, 13, 2265

is valid on the CD[0, b] space, where the L′0 operator is defined in (26) and the Tw operator contains
kernel (40).

Equivalence of the integral and differential fractional and fractional Prabhakar eigen-
value problems is an important step in deriving results on the spectrum for the problems
described in Definitions 3 and 4. In the next section, we shall extend the equivalence results
to the case where q 6= 0.

3.2. Equivalence Results for Differential and Integral FSLP, PSLP: General Case q 6= 0

We begin our discussion with the fractional Sturm–Liouville problem. We write
Equation (23) in the following form

(
1
w
Lq − λ

)
y(x) = 0

and apply composition rules for fractional operators (7) and (9)

1
w
L0

(
1 + Iα

0+
1
p

Iα
b−q(x)− λIα

0+
1
p

Iα
b−w(x)

)
y(x) = 0.

The fractional differential Sturm–Liouville Equation (23) now takes the form of integral
equation

y(x) + Iα
0+

1
p

Iα
b−q(x) + Cq

1 + Cq
2 Iα

0+
(b− x)α−1

p(x)

= λIα
0+

1
p

Iα
b−w(x)y(x) + Cw

1 + Cw
2 Iα

0+
(b− x)α−1

p(x)
,

where constants are determined by the homogeneous Dirichlet boundary conditions;
namely, Cw

1 , Cw
2 are given by (33) and for Cq

1 , Cq
2 , we have

Cq
1 = 0, Cq

2 = −
Iα
0+

1
p Iα

b−q(x)y(x)|x=b

Iα
0+

(b−x)α−1

p(x) |x=b

.

To conclude, Equation (23) is now an integral equation

(1 + Tq)y(x) = λTwy(x), (50)

where the Tw operator is given in (35) and the Tq operator is given by the formula below

Tqy(x) = Iα
0+

1
p

Iα
b−q(x)y(x)−

Iα
0+

1
p Iα

b−q(x)y(x)|x=b

Iα
0+

(b−x)α−1

p(x) |x=b

· Iα
0+

(b− x)α−1

p(x)
. (51)

Let us point out that, similar to the calculations presented in the previous part, both of
the above integral operators can also be rewritten as integral operators (38) with kernel (39)
for r = w and r = q, respectively.

Our aim is to reformulate the intermediate integral Equation (50) to the form of an
eigenvalue equation. We apply Theorem A1 to invert the operator on the left-hand side.
First, we check the assumption of Theorem A1, particularly when condition (H1) is fulfilled
and w ∈ C[0, b]. We then apply Corollary A1, denoting K(x, s) = G1(x, s), and obtain:

||Gw(·, s))|| = sup
v∈[0,b]

|Gw(v, s)|

= sup
v∈[0,b]

|G1(v, s)w(s)| ≤ ||w|| sup
v∈[0,b]

|G1(v, s)|

29



Symmetry 2021, 13, 2265

≤ ||w|| sup
v∈[0,b]

(
|G1(v, s)− G1(0, s)|+ |G1(0, s)|

)

≤ ||w|| ·M1 sup
v∈[0,b]

vα−1/2 = ||w|| ·M1 · bα−1/2 < ∞.

Next, we write condition (A8) in the explicit form:

ξ = sup
x∈[0,b]

∫ b

0
|q(s)G1(x, s)|ds (52)

= sup
x∈[0,b]

∫ b

0
|q(s)| ·

∣∣∣∣K1(x, s)− K1(b, x)K1(b, s)
K1(b, b)

∣∣∣∣ds < 1.

All the above considerations lead to the proposition on convergence of the series
associated with the intermediate fractional integral eigenvalue problem given in (50)
and (A5). Analogous convolutions’ series were also studied on the C[a, b] and L2(a, b)
function spaces for FSLPs with homogeneous mixed and Robin boundary conditions,
respectively [13,14].

Proposition 4. Let (H1) be fulfilled, w, q ∈ C[0, b] and function w be positive. If condition (52) is
fulfilled, then for any function y ∈ L2(0, b) series on the right-hand side of the formula below is
uniformly convergent on interval [0, b]:

Ty(x) := (1 + Tq)
−1Twy(x) = Twy(x) +

∞

∑
n=1

(−Tq)
nTwy(x), (53)

where operators Tq, Tw are defined in (A6) and (A7) with K(x, s) = G1(x, s). In addition,
series (A9) determining the kernel of integral operator T in (53) is uniformly convergent on square
∆ and kernel G is continuous on ∆.

Proof. Let us observe that the composition of operators TqTw is an integral operator

TqTwy(x) =
∫ b

0
ds
(

Gq(x, s)
∫ b

0
Gw(s, u)y(u)du

)

=
∫ b

0
du y(u)

(∫ b

0
Gq(x, s)Gw(s, u)ds

)
=
∫ b

0
Gq ∗ Gw(x, u)y(u)du,

where the kernel is defined by the following convolution:

A ∗ B(x, u) :=
∫ b

0
A(x, s)B(s, u)ds.

We shall prove that the compositions (Tq)nTw are also defined by convolutions of
kernels Gq and Gw. We start with the induction hypothesis:

(Tq)
nTwy(x) =

∫ b

0
(G∗nq ) ∗ Gw(x, u)y(u)du (54)

and we prove that this formula is valid for the next step n + 1 as well:

(Tq)
n+1Twy(x) =

∫ b

0
(G∗(n+1)

q ) ∗ Gw(x, u)y(u)du.
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We begin with the left-hand side, applying the induction hypothesis and associativity
property of the convolutions of continuous functions:

(Tq)
n+1Twy(x) =

∫ b

0
dsGq(x, s)(Tq)

nTwy(s)

=
∫ b

0
dsGq(x, s)

(∫ b

0
G∗nq ∗ Gw(s, u)y(u)du

)

=
∫ b

0
du y(u)

(
Gq ∗ G∗nq ∗ Gw(x, u)

)

=
∫ b

0
G∗(n+1)

q ∗ Gw(x, u)y(u)du.

As inductive hypothesis (54) leads to the validity of the next step n + 1; we infer that
formula (54) holds for any natural number n ≥ 1.

Now, we apply Theorem A1 and calculate kernel G for integral operator
T := (1 + Tq)−1Tw:

Ty(x) = Twy(x) +
∞

∑
n=1

(−Tq)
nTwy(x)

=
∫ b

0
Gw(x, s)y(s)ds +

∞

∑
n=1

(−1)n
∫ b

0
G∗nq ∗ Gw(x, s)y(s)ds

=
∫ b

0

(
Gw(x, s) +

∞

∑
n=1

(−1)nG∗nq ∗ Gw(x, s)

)
y(s)ds =

∫ b

0
G(x, s)y(s)ds.

The above calculations lead to the thesis of Proposition 4; namely, operator T, defined
by series (53), is correctly defined on space L2

w(0, b) = L2(0, b) as an integral operator with
a continuous kernel G:

Ty(x) =
∫ b

0
G(x, s)y(s)ds.

Having constructed operator T, we now prove the equivalence result, connecting the
differential and integral fractional Sturm–Liouville problems in the general case.

Proposition 5. If (H1) and condition (52) are fulfilled, w, q ∈ C[0, b] and function w is positive,
then the following equivalence is valid on the CD[0, b] space

Lqy(x) = λw(x)y(x)⇐⇒ Ty(x) =
1
λ

y(x), (55)

where the Lq operator is defined in (22) and the T operator is given in (53) with a kernel determined
by series (A9) with K(x, s) = G1(x, s) .

Proof. We recall that for any function y ∈ CD[0, b], we have (proof of Proposition 2)

Tw
1

w(x)
L0y(x) = y(x),

and we extend this equality to the analogous formula for operators T and Lq

T
1

w(x)
Lqy(x) = T

1
w(x)

L0y(x) + T
q(x)
w(x)

y(x)

=

(
Tw +

∞

∑
n=1

(−Tq)
nTw

)
1

w(x)
L0y(x) + Tqy(x) +

∞

∑
n=1

(−Tq)
nTqy(x)
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= y(x) +
∞

∑
n=1

(−Tq)
ny(x) + Tqy(x) +

∞

∑
n=1

(−Tq)
nTqy(x)

= y(x),

where we calculate the corresponding formulas for series by using the fact that operator
T is a uniformly convergent series (Proposition 4) when acting on the CD[0, b] space. For
differential FSLE,

1
w(x)

Lqy(x) = λy(x)

after calculating the image of the T operator of functions on both sides of FSLE

T
1

w(x)
Lqy(x) = y(x) = λTy(x),

we obtain the integral fractional Sturm–Liouville equation in the form of

Ty(x) =
1
λ

y(x).

In the next step, we assume that the above integral FSLE is fulfilled. Then, function
y ∈ CD[0, b]. We apply the differential operator Lq to both sides of the integral FSLE

LqTy(x) =
1
λ
Lqy(x).

For the composition of operators on the left-hand side, we get for continuous functions
f , y ∈ CD[0, b]

L0Tw f (x) = w(x) f (x), L0Tq f (x) = q(x) f (x),

L0(−Tq)
nTwy(x) = −q(x)(−Tq)

n−1Twy(x).

Applying Proposition 4 again, we obtain the following result for the composition of
the Lq and T operators

LqTy(x) = (q(x) + L0)

(
Twy(x) +

∞

∑
n=1

(−Tq)
nTwy(x)

)

= q(x)Twy(x) + q(x)
∞

∑
n=1

(−Tq)
nTwy(x) + w(x)y(x)− q(x)

∞

∑
n=1

(−Tq)
n−1Twy(x)

= w(x)y(x).

From this relation, we derive the differential fractional eigenvalue equation

w(x)y(x) =
1
λ
Lqy(x)

which leads to the differential fractional Sturm–Liouville equation:

Lqy(x) = λw(x)y(x)

and this ends the proof of equivalence (55).

Now, we generalize the Sturm–Liouville operator Lq by introducing Prabhakar deriva-
tives and we move on to the Prabhakar Sturm–Liouville problem (PSLP) determined in
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Definitions 2 and 4 and discussed in [26] in the case when the solutions’ space is restricted
by the mixed homogeneous boundary conditions.

(
1
w
L′q − λ

)
y(x) = 0

We obtain the intermediate form of the integral fractional Prabhakar eigenvalue
equation applying composition rules (18)–(21)

(1 + Tq)y(x) = Twy(x), (56)

where integral operator Tw is given in Formula (37) and operator Tq looks as follows:

Tqy(x) = Eα
ρ,γ,ω,0+

1
p

Eα
ρ,γ,ω,b−q(x)y(x) (57)

−
Eα

ρ,γ,ω,0+
1
p Eα

ρ,γ,ω,b−q(x)y(x)|x=b

Eα
ρ,γ,ω,0+

e−γ
ρ,α (ω(b−x)ρ)

p(x) |x=b

· Eα
ρ,γ,ω,0+

e−γ
ρ,α (ω(b− x)ρ)

p(x)
.

Similar to the previous calculations for FSLP, operators (37) and (57) can be rewritten
as integral operators (38), with kernel G2 given in (40) for r = w and r = q, respec-
tively. Again, we apply Theorem A1 to invert operator 1 + Tq. First, we check the as-
sumption of Theorem A1, assuming that (H2) is fulfilled and applying Corollary A1 with
K(x, s) = G2(x, s):

||Gw(·, s))|| = sup
v∈[0,b]

|Gw(v, s)|

= sup
v∈[0,b]

|G2(v, s)w(s)| ≤ ||w|| sup
v∈[0,b]

|G2(v, s)|

≤ ||w|| sup
v∈[0,b]

(
|G2(v, s)− G2(0, s)|+ |G2(0, s)|

)

≤ ||w|| ·M2 sup
v∈[0,b]

|v|β = ||w|| ·M2 · bβ < ∞.

Next, we write condition (A8) in the explicit form:

ξ = sup
x∈[0,b]

∫ b

0
|q(s)G2(x, s)|ds (58)

= sup
x∈[0,b]

∫ b

0
|q(s)| ·

∣∣∣∣∣K
P
1 (x, s)− KP

1 (b, x)KP
1 (b, s)

KP
1 (b, b)

∣∣∣∣∣ds < 1.

In the proposition below, we describe the inverse operator (1 + Tq)−1 connected to
the intermediate Equation (56). We omit the proof as it is a straightforward corollary of
Theorem A1, and the full proof is analogous to that of Proposition 4.

Proposition 6. Let (H2) be fulfilled, w, q ∈ C[0, b] and function w be positive. If condition (58) is
fulfilled, then for any function y ∈ L2(0, b) series on the right-hand side of the formula below is
uniformly convergent on interval [0, b]:

Ty(x) := (1 + Tq)
−1Twy(x) = Twy(x) +

∞

∑
n=1

(−Tq)
nTwy(x), (59)

where operators Tq, Tw are defined in (A6) and (A7) with K(x, s) = G2(x, s). In addition, se-
ries (A9) determining kernel of integral operator T in (59) is uniformly convergent on square ∆ and
kernel G is continuous on ∆.
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Similar to Proposition 5, we formulate the equivalence result for integral and differ-
ential version of eigenvalue equations corresponding to PSLP. The proof is based on the
composition rules (18) and (19) and on Proposition 6, which describes inverse integral
operator (1 + Tq)−1. We omit the proof as it is analogous to the proof of Proposition 5.

Proposition 7. If (H2) and condition (58) are fulfilled, w, q ∈ C[0, b] and function w is positive,
then the following equivalence is valid on the CD[0, b] space

L′qy(x) = λw(x)y(x)⇐⇒ Ty(x) =
1
λ

y(x), (60)

where the L′q operator is defined in (26), T operator is given in (59) with the kernel determined by
the series (A9) and K(x, s) = G2(x, s) .

4. Results on the Spectrum of Integral and Differential Fractional and Fractional
Prabhakar Sturm–Liouville Problems

In the previous section, we discussed and proved the results on the equivalence of
differential and integral forms of fractional eigenvalue problems. First, Propositions 2 and 3
describe the equivalence for fractional and fractional Prabhakar Sturm–Liouville problems
when fractional differential operators are respectively L0 and L′0, i.e., q = 0. In this case,
the corresponding integral operators are Tw with kernels G1 and G2. We prove the spectral
results for these operators by applying the Hilbert–Schmidt theorem.

4.1. Case: q = 0

Theorem 1. If (H1) is fulfilled and w ∈ C[0, b] is a positive function, then the spectrum of operator
Tw defined by (38) and (39) is a discrete one, enclosed in the interval (−1, 1), with 0 being its
only limit point. Eigenfunctions belong to the CD[0, b] space and form an orthogonal basis in the
L2

w(0, b) space.
If (H2) is fulfilled and w ∈ C[0, b] is a positive function, then the spectrum of operator

Tw defined by (38) and (40) is a discrete one, enclosed in the interval (−1, 1), with 0 being its
only limit point. Eigenfunctions belong to the CD[0, b] space and form an orthogonal basis in the
L2

w(0, b) space.

Proof. Let us observe that when weight function fulfils the assumptions of the theorem,
we have for functions spaces

L2(0, b) = L2
w(0, b), L2(∆) = L2

w⊗w(∆).

The integral Hilbert–Schmidt operator Tw, defined by kernel G1, is a compact one, as
this kernel is a function continuous on square ∆ and G1 ∈ L2

w⊗w(∆).
It is also a self-adjoint operator on L2

w(0, b), because kernel G1 is a symmetric function
on square ∆, and for an arbitrary pair of functions f , g ∈ L2

w(0, b), we obtain:

〈g, Tw f 〉w =
∫ b

0
dx
(

w(x)g(x)
∫ b

0
G1(x, s) f (s)w(s)ds

)

=
∫ b

0
ds
(

w(s) f (s)
∫ b

0
G1(s, x)g(x)w(x)dx

)

= 〈 f , Twg〉w = 〈Twg, f 〉w.

The thesis is a straightforward result of the Hilbert–Schmidt spectral theorem. We
omit the proof of the second part as it is analogous to the one presented above.

The spectral theorem for integral fractional and Prabhakar Sturm–Liouville opera-
tors together with the equivalence results, included in Propositions 2 and 3, lead to the

34



Symmetry 2021, 13, 2265

theorem on the spectrum of differential fractional eigenvalue problems subjected to the
homogeneous Dirichlet boundary conditions in the case when q = 0.

Theorem 2. If (H1) is fulfilled and w ∈ C[0, b] is a positive function, then the spectrum of
operator L0 defined by (22) and considered on the CD[0, b] space is a discrete one, and |λn| → ∞.
Eigenfunctions belonging to the CD[0, b] space form an orthogonal basis in the L2

w(0, b) space.
If (H2) is fulfilled and w ∈ C[0, b] is a positive function, then the spectrum of operator L′0,

defined by (26) and considered on the CD[0, b] space is a discrete one and |λn| → ∞. Eigenfunctions
belonging to the CD[0, b] space form an orthogonal basis in the L2

w(0, b) space.

4.2. General Case q 6= 0

We observe that the analogous equivalence of differential and integral FSLP holds
in the general case q 6= 0 as well. This result is given by Proposition 5. Analogously,
Proposition 7 gives the equivalence relation of both versions of the fractional Prabhakar
Sturm–Liouville problem. The results, included in the mentioned propositions, allow
us to rewrite eigenvalue equations, replacing the differential FSLO and PSLO with the
corresponding integral operators T. These operators, first determined as operator series
with convergence described in Propositions 4 and 6, are in fact integral Hilbert–Schmidt
operators. Their kernels—sums of a uniformly convergent series of convolutions—are
continuous functions on square ∆. The theorem below describes the spectrum of fractional
integral operators T with kernel G, determined by kernels G1 and G2, respectively.

Theorem 3. If (H1) and condition (52) are fulfilled, w, q ∈ C[0, b] and w is a positive function;
then the spectrum of operator T defined by (53) with kernel G given in (A9) with K(x, s) = G1(x, s)
is a discrete one, enclosed in interval (−1, 1), with 0 being its only limit point. Eigenfunctions
belong to the CD[0, b] space and form an orthogonal basis in the L2

w(0, b) space.
If (H2) and condition (58) are fulfilled, w, q ∈ C[0, b] and w is a positive function, then the

spectrum of operator T is defined by (59), with kernel G given in (A9) and with K(x, s) = G2(x, s)
is a discrete one, enclosed in interval (−1, 1), with 0 being its only limit point. Eigenfunctions
belong to the CD[0, b] space and form an orthogonal basis in the L2

w(0, b) space.

Proof. Let us again observe that when the weight function fulfils assumptions of the
theorem; we have for spaces considered as sets of functions

L2(0, b) = L2
w(0, b), L2(∆) = L2

w⊗w(∆).

Integral Hilbert–Schmidt operator T, defined by kernel G, is a compact one as this
kernel is a continuous function on square ∆ and G ∈ L2

w⊗w(∆).
We recall (proof of Theorem 1) that on the L2

w(0, b) space, the following equality holds
for the arbitrary pair of functions f , g ∈ L2

w(0, b):

〈g, Tw f 〉w = 〈Twg, f 〉w

because kernel G1 is a symmetric function on square ∆. Next, for the composition of
operators TqTw, we obtain the relation

〈g, TqTw f 〉w = 〈g, Tw
q
w

Tw f 〉w = 〈 q
w

Twg, Tw f 〉w = 〈TqTwg, f 〉w.

Now, we apply the mathematical induction principle to prove that such relations hold
for arbitrary n > 1 natural. We formulate an induction hypothesis in the form of

〈g, (Tq)
nTw f 〉w = 〈(Tq)

nTwg, f 〉w (61)

and for step n + 1, we achieve
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〈g, (Tq)
n+1Tw f 〉w = 〈g, Tq(Tq)

nTw f 〉w = 〈 q
w

Twg, (Tq)
nTw f 〉w

= 〈(Tq)
nTw

q
w

Twg, f 〉w = 〈(Tq)
n+1Twg, f 〉w.

Applying the mathematical induction principle, we infer that Formula (61) is valid for
all natural numbers n ≥ 1. We use this formula in the proof of the fact that integral operator
T is a self-adjoint one. Remembering that it is represented by a series, uniformly convergent
on the Hilbert space (Proposition 4), we calculate the scalar product term by term

〈g, T f 〉w =

〈
g,

(
Tw +

∞

∑
n=1

(−Tq)
nTw

)
f

〉

w

= 〈Twg, f 〉w +
∞

∑
n=1

(−1)n〈(Tq)
nTwg, f 〉w

=

〈(
Tw +

∞

∑
n=1

(−Tq)
nTw

)
g, f

〉

w

= 〈Tg, f 〉w.

To conclude, the integral operator T with a kernel G given in (A9) with K(x, s) =
G1(x, s) is a compact and self-adjoint operator on Hilbert space L2

w(0, b). Therefore, the
thesis of the first part of the theorem holds by the Hilbert–Schmidt spectral theorem.

Proof of the second part for operator T, associated with the integral PSLP with homo-
geneous Dirichlet boundary conditions, is analogous.

Now, we apply the above spectral theorem for integral fractional eigenvalue problems,
with equivalence results enclosed in Propositions 5 and 7 to formulate a theorem on discrete
spectra for differential fractional and fractional Prabhakar Sturm–Liouville problems.

Theorem 4. If (H1) and condition (52 ) are fulfilled, w, q ∈ C[0, b] and w is a positive function,
then the spectrum of operator Lq defined by (22) and considered on the CD[0, b] space is a discrete
one, and |λn| → ∞. Eigenfunctions, belonging to the CD[0, b] space, form an orthogonal basis in
the L2

w(0, b) space.
If (H2) and condition (58) are fulfilled, w, q ∈ C[0, b] and w is a positive function; then the

spectrum of operator L′q defined by (26) and considered on the CD[0, b] space, is a discrete one
and |λn| → ∞. Eigenfunctions, belonging to the CD[0, b] space, form an orthogonal basis in the
L2

w(0, b) space.

5. Discussion

In this paper, we presented results on the discrete spectrum of fractional and fractional
Prabhakar Sturm–Liouville problems in a case when eigenfunctions’ space is subjected
to the homogenous Dirichlet boundary conditions. First, we extended the idea of the
fractional to the fractional Prabhakar eigenvalue problem, where the Sturm–Liouville
operator was constructed by using the left and right Prabhakar derivatives.

Prabhakar derivatives, with respect to time, were recently applied in anomalous diffu-
sion models [27,28]. The derived spectral results for regular PSLP with Dirichlet boundary
conditions will be used in developing equations with fractional partial derivatives with
respect to the space–variable.

It appears that the method of converting the differential eigenvalue problem into
the equivalent integral one can be applied to both types of Sturm–Liouville operator.
This approach, developed in [13,14] for fractional eigenvalue problems subject to the
homogeneous mixed and Robin boundary conditions, is extended to the case of FSLP with
Dirichlet boundary conditions and generalized to PSLP with the same type of conditions.
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Let us point out that the spectrum and eigenfunctions of fractional eigenvalue prob-
lems with Dirichlet boundary conditions were also studied in [11,16] by applying varia-
tional methods. The first of these papers describes the spectrum of FSLP for a fractional
order in the range (1/2, 1], and the spectral result was extended to range (0, 1/2] in [16].
Comparing both of the methods—the variational one and the transformation into integral
FSLP/PSLP—we observe that in the case of Dirichlet boundary conditions, the range of
order is wider in the variational method. Nevertheless, the approach proposed here has
an advantage of providing the spectral results for regular PSLP as well. Simultaneously,
we obtain eigenfunctions’ systems for both types of eigenvalue problems, which provide
orthogonal bases in the corresponding Hilbert spaces. Such bases are a meaningful tool
in applications in constructing and solving partial differential fractional equations, for
example, space-fractional diffusion equations in the finite domain, as well as fractional
equations governing control systems (compare references and examples in [29]).

6. Conclusions

The results developed in this paper describe the spectrum and eigenfunctions proper-
ties for FSLP and PSLP subjected to homogeneous Dirichlet boundary conditions. It seems
that the conversion method can also be easily applied to other Prabhakar Sturm–Liouville
problems; in particular, we shall construct the corresponding mixed, Robin, and Neumann
boundary conditions and develop the equivalence results. Then, we will construct the inte-
gral PSLO with kernels analogous to those from the papers [13,14] and study the spectral
properties, both for the integral and differential PSLPs.

Regarding the extension of the range of fractional order for the conversion method,
we observe that so far we proved equivalence results on the space of continuous solutions.
This restriction is connected to the version of Hölder condition for kernels, as discussed
in Lemma A1 and Corollary A1. Thus, the aim of our future work will be to weaken this
condition and to extend the range of fractional order.

Further, our investigations will include numerical simulations in order to derive
approximate values of eigenvalues and eigenfunctions. As was shown in the papers [13,14],
the integral form of the fractional Sturm–Liouville eigenvalue equation is particularly
useful as a first step of the numerical method of solving FSLP. Thus, our aim will be to
discretize integral eigenvalue problems and apply the equivalence results, enclosed in
Propositions 2 and 3 for the case q = 0, and in Propositions 5 and 7, when q 6= 0. In this
way, we shall arrive at numerical solutions of differential FSLP and PSLP with Dirichlet
boundary conditions.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

Appendix A.1

Let us point out that the three-parameter Mittag–Leffler function (11), which appears
in the definition of the Prabhakar function (12), is a completely monotone function [30],
and this property leads to the following two inequalities. First, when parameters α, ρ, γ, ω
are real and obey conditions

α ∈ (0, 1], min{ρ, γ} > 0, ω < 0, α ≥ ργ, ρ ≤ 1,
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the three-parameter Mittag–Leffler function is bounded on any interval [0, b] (Me is a
constant)

|Eγ
ρ,α(ωxρ)| ≤ Me

and it fulfills the Lipschitz condition on this interval (ML is a constant)

|Eγ
ρ,α(ω(x′)ρ)− Eγ

ρ,α(ωxρ)| ≤ ML|(x′)ρ − xρ|.

In addition, we remember that the power function obeys the Hölder condition on
interval [0, 1] when ρ ≤ 1 (Mρ is a constant)

|(y′)ρ − yρ| ≤ Mρ|y′ − y|ρ, y′, y ∈ [0, 1].

All the above inequalities will be applied to derive properties of a fractional integral
operator associated to the differential Prabhakar Sturm–Liouville operator (PSLO). In
particular, they are important in the study of Hölder continuity and the continuity of
kernels of integral versions of Prabhakar Sturm–Liouville operators. The lemma below
summarizes the Hölder continuity properties of kernels K1, KP

1 and was proven in [26]
(compare Properties 3.2 and 3.3).

Lemma A1. If (H1) is fulfilled, then kernel K1, given by (41), obeys the Hölder-type condition, i.e.,
there exists coefficient β ∈ (0, 1] and function m ∈ L2(0, b) such that

|K1(x′, s)− K1(x, s)| ≤ m(s)|x′ − x|β, (A1)

where β = α− 1/2 and

m(s) =
2bα−1/2||1/p||

(Γ(α))2(α− 1/2)

is a constant function.
If (H2) is fulfilled, then kernel KP

1 , given by (42), obeys the Hölder-type condition, i.e., there
exists coefficient β ∈ (0, 1] and function m ∈ L2(0, b) such that

|KP
1 (x′, s)− KP

1 (x, s)| ≤ m(s)|x′ − x|β, (A2)

where β = min{α− 1/2, ρ} and

m(s) = max{bα−1/2, b2α−1−ρ} · ||1/p|| ·Me

α− 1/2
· (2Me + ML Mρbρ)

is a constant function.

Analyzing the construction of kernels G1 and G2, we obtain the following corollary.

Corollary A1. If (H1) is fulfilled, then kernel G1, defined by Formulas (39) and (41), obeys the
Hölder-type condition, i.e., there exists coefficient β ∈ (0, 1] and constant M1 such that

|G1(x′, s)− G1(x, s)| ≤ M1|x′ − x|β, (A3)

where β = α− 1/2 and

M1 =
2bα−1/2||1/p||(1 + ||1/p|| · ||p||)

(Γ(α))2(α− 1/2)
.

If (H2) is fulfilled, then kernel G2, defined by Formulas (40) and (42), obeys the Hölder-type
condition, i.e., there exists coefficient β ∈ (0, 1] and constant M2 such that

|G2(x′, s)− G2(x, s)| ≤ M2|x′ − x|β, (A4)
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where β = min{α− 1/2, ρ} and

M2 = max{bα−1/2, b2α−1−ρ} · ||1/p||(1 + ||1/p|| · ||p||) ·Me

α− 1/2
· (2Me + ML Mρbρ).

Proof. We prove the Hölder-type condition for kernel G1 by applying Lemma A1 and the
symmetry property of kernel K1 given in (43). We begin by estimating values K1(b, b) and
K1(b, s):

|K1(b, b)| =
∣∣∣∣
∫ b

a

(b− t)2α−2

(Γ(α))2 p(t)
dt
∣∣∣∣ =

∫ b

a

(b− t)2α−2

(Γ(α))2|p(t)|dt

≥ (b− a)2α−1

(Γ(α))2(2α− 1)||p|| ,

|K1(b, s)| =
∣∣∣∣
∫ s

a

(b− t)α−1

Γ(α)
· (s− t)α−1

Γ(α)
1

p(t)
dt
∣∣∣∣

≤
∣∣∣∣
∣∣∣∣

1
p

∣∣∣∣
∣∣∣∣ ·

(b− a)2α−1

(Γ(α))2(2α− 1)
.

Now, we apply the derived inequalities and condition (A1)

|G1(x′, s)− G1(x, s)| =

=

∣∣∣∣K1(x′, s)− K1(b, x′)K1(b, s)
K1(b, b)

− K1(x, s) +
K1(b, x)K1(b, s)

K1(b, b)

∣∣∣∣

≤ |K1(x′, s)− K1(x, s)|+ |K1(x′, b)− K1(x, b)| ·
∣∣∣∣

K1(b, s)
K1(b, b)

∣∣∣∣

≤ |x′ − x|βm(s)
(

1 +
∣∣∣∣

K1(b, s)
K1(b, b)

∣∣∣∣
)

≤ m(s)(1 + ||1/p|| · ||p||)|x′ − x|β

= M1|x′ − x|β,

where

M1 =
2bα−1/2||1/p||(1 + ||1/p|| · ||p||)

(Γ(α))2(α− 1/2)
.

The proof of the Hölder condition for kernel G2 is analogous.

The next corollary results from the Hölder conditions (A3) and (A4) and symmetry
properties of kernels G1, G2 given in (43) and yields continuity of both kernels on square
∆ = [0, b]× [0, b].

Corollary A2. If (H1) is fulfilled, then kernel G1, defined by Formulas (39) and (41), is continuous
on square ∆ = [0, b]× [0, b].

If (H2) is fulfilled, then kernel G2, defined by Formulas (40) and (42) is continuous on square
∆ = [0, b]× [0, b].

Proof. Let us note that the symmetry of kernel G1 allows us to write condition (A3) in the
following form

|G1(x′, s′)− G1(x, s)| ≤ M1

(
|x′ − x|β + |s′ − s|β

)
.

To prove continuity of the kernel, we apply the Cauchy definition of continuous func-
tion, i.e., we take arbitrary ε > 0 and assume that the distance between points (x′, s′), (x, s)

is smaller than δ(ε) =
(

ε
2M1

)1/β
, which means
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|(x′, s′)− (x, s)| =
√
(x′ − x)2 + (s′ − s)2 < δ(ε).

We observe that the following inequalities are then valid

|x′ − x| < δ(ε), |s′ − s| < δ(ε).

Now, we check the distance between the values of function G1:

|G1(x′, s′)− G1(x, s)| ≤ M1

(
|x′ − x|β + |s′ − s|β

)

≤ M1 · 2(δ(ε))β = ε.

We see that for arbitrary ε > 0, bound δ(ε) for the distance of points exists, such that
the implication below is valid

|(x′, s′)− (x, s)| < δ(ε) =⇒ |G1(x′, s′)− G1(x, s)| < ε.

Thus, kernel G1 is a continuous function on square ∆ by the Cauchy definition of
continuity.

Proof for kernel G2 is analogous.

Appendix A.2

We shall study properties of integral equations of the form:

(1 + Tq)y(x) = λTwy(x) (A5)

determined on the L2
w(a, b) function space. Such an equation is the intermediate stage

of transformation of the fractional differential eigenvalue problems into the equivalent
integral ones (see examples in papers [13,14]). In cases where the integral operator on the
left-hand side of (A5) is invertible, we can convert fractional differential Sturm–Liouville
operator into an integral one. Then, we can study spectral properties of the integral operator
and derive results for the spectrum and eigenfunctions of the fractional differential Sturm–
Liouville problems connected to various homogeneous boundary conditions.

Operators Tq and Tw are integral ones, with kernels given in the form of

Tqy(x) :=
∫ b

a Gq(x, s)y(s)ds, Gq(x, s) = K(x, s)q(s), (A6)

Twy(x) :=
∫ b

a Gw(x, s)y(s)ds, Gw(x, s) = K(x, s)w(s). (A7)

We formulate below a theorem which we shall apply to analyse integral eigenvalue
problems associated with the fractional differential ones.

Theorem A1. Let function q ∈ C[a, b] and function ||Gw(·, s)|| := supv∈[a,b] |Gw(v, s)| be
bounded on interval [a, b]. If condition

ξ := sup
x∈[a,b]

∫ b

a
|Gq(x, v)|dv < 1 (A8)

is fulfilled, then the series

G(x, s) := Gw(x, s) +
∞

∑
n=1

(−1)nG∗nq ∗ Gw(x, s) (A9)

is uniformly convergent on square ∆; i.e., the sum of this series G is determined for all points
(x, s) ∈ ∆.

If, in addition, kernels Gq, Gw ∈ C(∆), then sum G ∈ C(∆).
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Proof. We shall apply the mathematical induction principle to estimate all terms of series
(A9). First, we estimate the absolute value of the first convolution term:

|Gq ∗ Gw(x, s)| =
∣∣∣∣
∫ b

a
Gq(x, v)Gw(v, s)dv

∣∣∣∣ (A10)

≤
∫ b

a
|Gq(x, v)Gw(v, s)|dv ≤ ||Gw(·, s)|| · sup

x∈[a,b]

∫ b

a
|Gq(x, v)|dv = ξ · ||Gw(·, s)||

and for the second term, we obtain

|Gq ∗ Gq ∗ Gw(x, s)| ≤ ξ sup
v∈[a,b]

|Gq ∗ Gw(v, s)| (A11)

≤ ξ2 · ||Gw(·, s)||.
Now, we formulate the induction hypothesis (here, n > 2 is a natural number):

|G∗nq ∗ Gw(x, s)| ≤ ξn · ||Gw(·, s)|| (A12)

and we shall prove that it holds for the next step n + 1

|G∗(n+1)
q ∗ Gw(x, s)| ≤ ξn+1 · ||Gw(·, s)||.

We begin from the left-hand side of the above inequality and we find

|G∗(n+1)
q ∗ Gw(x, s)| = |Gq ∗

(
G∗nq ∗ Gw

)
(x, s)|

≤ ξ sup
v∈[a,b]

|
(

G∗nq ∗ Gw

)
(v, s)|

≤ ξn+1 sup
v∈[a,b]

|Gw(v, s)| ≤ ξn+1 · ||Gw(·, s)||.

The induction hypothesis (A12) implies the validity of the next step for n+ 1; therefore,
we infer that estimation (A12) is valid for all terms indexed by n ≥ 1. Now, we are ready to
consider the convergence of the function series (A9) by using the Weierstrass convergence
test and inequality (A12). We observe that the majorant number series (a geometric one)
is absolutely convergent under the assumption (A8). Thence, the function series (A9) is
absolutely and uniformly convergent, as we achieve for any point (x, s) ∈ ∆

∣∣∣∣∣Gw(x, s) +
∞

∑
n=1

(−1)nG∗nq ∗ Gw(x, s)

∣∣∣∣∣

≤ |Gw(x, s)|+
∞

∑
n=1

ξn||Gw(·, s)|| = |Gw(x, s)|+ ||Gw(·, s)|| · ξ
1− ξ

.

In the second part of Theorem 2, we note that continuity of kernels Gq, Gw implies that
all terms of the series (A9) are continuous as convolutions of continuous functions. The
absolutely and uniformly convergent series (A9) leads to sum G, which is also continuous
on ∆.
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1. Introduction

In his papers [1,2], Abel derived and studied a mathematical model for the tautochrone
problem in the form of the following integral equation (with slightly different notations):

f (t) =
1√
π

∫ t

0

φ′(τ) dτ√
t− τ

. (1)

In fact, he considered the even more general integral equation

f (t) =
1

Γ(1− α)

∫ t

0

φ′(τ) dτ

(t− τ)α
(2)

under an implicit restriction 0 < α < 1. It is easy to see that the right-hand side of (2) is the
operator that is currently referred to as the Caputo fractional derivative ∗Dα

0+ of the order
α, 0 < α < 1. Abel’s solution formula to Equation (2) is nothing else than the operator now
called the Riemann–Liouville fractional integral Iα

0+ of the order α > 0:

φ(t) =
1

Γ(α)

∫ t

0
(t− τ)α−1 f (τ) dτ =: (Iα

0+ f )(t), t > 0. (3)

In modern notation, Formulas (2) and (3) correspond to the second fundamental theorem
of FC for the Caputo fractional derivative of a function that takes the value zero at the
point zero:

(Iα
0+ f )(t) = (Iα

0+ ∗D
α
0+ φ)(t) = φ(t)− φ(0) = φ(t), (4)

where the validity of the condition φ(0) = 0 follows from the construction of Abel’s
mathematical model for the tautochrone problem. For more details regarding Abel’s results
and derivations presented in [1,2], see the recent paper presented in [3].
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To solve the integral Equation (2), in [2], published in 1826, Abel employed the relation

(hα ∗ h1−α)(t) = {1}, t > 0, hα(t) :=
tα−1

Γ(α)
, α > 0, (5)

where the operation ∗ stands for the Laplace convolution,

( f ∗ g)(t) =
∫ t

0
f (t− τ)g(τ) dτ (6)

and {1} is the function that is identically equal to 1 for t ≥ 0.
In [4], published in 1884, Sonine recognized that the relation (5) is the most crucial

ingredient of Abel’s solution method that can be generalized and applied to the analytical
treatment of a larger class of integral equations. In place of (5), Sonine considered a pair of
functions κ, k (Sonine kernels) that satisfy the relation

(κ ∗ k)(t) = {1}, t > 0. (7)

In what follows, we denote the set of the Sonine kernels by S . For a given Sonine
kernel κ, the kernel k that satisfies the Sonine condition (7) is called its associate Sonine
kernel. Following Abel’s solution method, Sonine showed that the integral equation

f (t) =
∫ t

0
κ(t− τ)φ(τ) dτ = (κ ∗ φ)(t) (8)

has a solution in the form

φ(t) =
d
dt

∫ t

0
k(t− τ) f (τ) dτ =

d
dt
(k ∗ f )(t), (9)

provided that the kernels κ, k satisfy the Sonine condition (7). Indeed, we obtain

(k ∗ f )(t) = (k ∗ κ ∗ φ)(t) = ({1} ∗ φ)(t) =
∫ t

0
φ(τ) dτ

which immediately leads to the Formula (9). Of course, any concrete realization of the
Sonine schema requires a precise characterization of the Sonine kernels and the spaces of
functions where the operators from the right-hand sides of (8) and (9) are well defined.
In [4], Sonine introduced a large class of the Sonine kernels in the form

κ(t) = hα(t) · κ1(t), κ1(t) =
+∞

∑
k=0

aktk, a0 6= 0, 0 < α < 1, (10)

k(t) = h1−α(t) · k1(t), k1(t) =
+∞

∑
k=0

bktk, (11)

where the functions κ1 = κ1(t), k1 = k1(t) are analytical on R and their coefficients are
connected by the relations

a0b0 = 1,
n

∑
k=0

Γ(k + 1− α)Γ(α + n− k)an−kbk = 0, n ≥ 1. (12)

The most prominent pair of the Sonine kernels from this class is given by the formulas

κ(t) = (
√

t)α−1 Jα−1(2
√

t), k(t) = (
√

t)−α I−α(2
√

t), 0 < α < 1, (13)
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where

Jν(t) =
+∞

∑
k=0

(−1)k(t/2)2k+ν

k!Γ(k + ν + 1)
, Iν(t) =

+∞

∑
k=0

(t/2)2k+ν

k!Γ(k + ν + 1)
, <(ν) > −1, t ∈ C (14)

are the Bessel and the modified Bessel functions, respectively.
Later, the evolution equations with the integro-differential operators of the convolution

type (compare them with the solution by Sonine in Formula (9)),

(D(k) f )(t) =
d
dt

∫ t

0
k(t− τ) f (τ) dτ, t > 0, (15)

were actively studied in the framework of the abstract Volterra integral equations on the
Banach spaces (see [5] and references therein). For example, in [6], the case of operators
with the completely positive kernels k ∈ L1(0,+∞) was considered. The kernels from this
class satisfy the condition (compare it with the Sonine condition (7))

a k(t) +
∫ t

0
k(t− τ)l(τ) dτ = {1}, t > 0, (16)

where a ≥ 0 and l ∈ L1(0,+∞) is a non-negative and non-increasing function.
However, until recently, no interpretation of these general results in the framework of

fractional calculus (FC) had been suggested. The situation changed with the publication of
the paper presented in [7] (see also [8–10]). In [7], Kochubei introduced a class K of kernels
that satisfy the following conditions:

(K1) The Laplace transform k̃ of k,

k̃(p) = (L k)(p) =
∫ +∞

0
k(t) e−pt dt, (17)

exists for all p > 0;
(K2) k̃(p) is a Stieltjes function (see [11] for details regarding the Stieltjes functions);
(K3) k̃(p)→ 0 and pk̃(p)→ +∞ as p→ +∞;
(K4) k̃(p)→ +∞ and pk̃(p)→ 0 as p→ 0.

Using the technique of the complete Bernstein functions, Kochubei investigated the
integro-differential operators in the form of (15) and their Caputo type modifications

(∗D(k) f )(t) = (D(k) f )(t)− f (0)k(t) (18)

with the kernels from K. In [7], Kochubei showed the inclusion K ⊂ S , introduced the
corresponding integral operator

(I(κ) f )(t) = (κ ∗ f )(t) =
∫ t

0
κ(t− τ) f (τ) dτ, (19)

and proved the validity of the first fundamental theorem of FC; i.e., that the operators
(15) and (18) are left-inverse to the integral operator (19) on the suitable spaces of functions.

Moreover, Kochubei treated some basic ordinary and partial fractional differential
equations with the time-derivative in the form of (18) and proved that the solution to
the Cauchy problem for the relaxation equation with the operator (18) and a positive
initial condition is completely monotonic and that the fundamental solution to the Cauchy
problem for the fractional diffusion equation with the time-derivative in the form of (18)
can be interpreted as a probability density function. These results justified calling the
operators (15) and (18) the general fractional derivatives (GFDs) in the Riemann–Liouville
and Caputo sense, respectively. The integral operator (19) was called the general fractional
integral (GFI).
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The GFDs (15) and (18) with the kernels k ∈ K ⊂ S possess a series of important
properties. However, the conditions (K1)–(K4) are very strong (especially the condition
(K2)), and thus in subsequent publications, the operators (15) and (18) with the Sonine
kernels from some larger classes were considered from the viewpoint of FC and its applica-
tions. In [12], a class of the kernels was introduced that ensures the validity of a maximum
principle for the general time-fractional diffusion equations with the operators of type (18).
Another important class of the Sonine kernels was described in [8] in terms of the com-
pletely monotone functions. As shown in [8], any singular (unbounded in a neighborhood
of the point zero) locally integrable completely monotone function κ is a Sonine kernel, and
its associate kernel k is also a locally integrable completely monotone function.

In the recent publications presented in [9,13], the operators (15) and (18) with the
Sonine kernels from the class S−1 ⊂ S that satisfy only some minimal restrictions were
studied from the viewpoint of FC. The Sonine kernels κ, k ∈ S−1 are continuous on
R+ and possess the integrable singularities of the power function type at the point zero.
In particular, in [9], the first and second fundamental theorems of FC for the operators (15)
and (18) with the kernels k ∈ S−1 were formulated and proved. In [13], an operational
calculus of the Mikusiński type for the operators (18) with the Sonine kernels k ∈ S−1 was
constructed and applied for the analytical treatment of some initial value problems for the
fractional differential equations with these operators.

It is clear that weakening the Kochubei conditions (K1)–(K4) on the Sonine kernels
from K leads to the abandonment of some properties that were derived in [7] for the
GFDs (15) and (18). However, it was shown in [9,13] that the operators (15) and (18) with
the Sonine kernels k ∈ S−1 and the corresponding integral operator (19) still satisfy the
main properties that the fractional derivatives and integrals should fulfill (see [14] and the
references therein). Thus, these operators can also be interpreted as the GFDs and GFIs.

Another important point concerns the “generalized order” of the GFDs (15) and (18)
with the Sonine kernels from the classes mentioned above. While projecting these operators
to the conventional Riemann–Liouville and Caputo fractional derivatives (the case of the
kernel k(t) = h1−α(t)), the derivatives’ order is restricted only to the case of α ∈ (0, 1).
The reason is that the Sonine condition (5) for the power functions hα and h1−α holds true
only in the case 0 < α < 1. Moreover, even in the definition of the Caputo type general
fractional derivative (18), only one initial condition is contained, which again indicates that
the “generalized order” of this operator does not exceed one.

Because the Riemann–Liouville fractional integral and the Riemann–Liouville and
Caputo fractional derivatives are defined for arbitrary order α ≥ 0, an extension of the
GFDs (15) and (18) to the case of arbitrary order is worthy of investigation.

In a recent paper [9], the n-fold GFIs and GFDs were introduced as an attempt to
extend their order behind the interval (0, 1). For example, the two-fold general fractional
derivative constructed for the operator (15) with the kernel κ(t) = h1−α(t), 0 < α < 1 is
the Riemann–Liouville fractional derivative of the order 2α:

(D2α
0+ f )(t) =

{
d2

dt2 (I2−2α
0+ f )(t), 1

2 < α < 1, t > 0,
d
dt (I1−2α

0+ f )(t), 0 < α ≤ 1
2 , t > 0.

(20)

Thus, we cannot ensure that the order of this two-fold GFD is always greater than one.
Depending on the values of α and n, the “generalized order” of the n-fold GFD can be any
number in the interval (0, n).

The main objective of this paper is to introduce the GFIs and GFDs of an arbitrary
order in analogy to the Riemann–Liouville fractional integral and the Riemann–Liouville
and Caputo fractional derivatives. This is done by a suitable generalization of the Sonine
condition (7) and by the corresponding adjustment of Formulas (15) and (18), which define
the GFDs in the Riemann–Liouville and Caputo senses.

The rest of the paper is organized as follows. In Section 2, following [9,13], we provide
some basic definitions and properties of the GFDs (15) and (18) with the Sonine kernels
k ∈ S−1. Section 3 presents our main results. First, a suitable generalization of the Sonine
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condition (7) is introduced and some examples of the kernels that satisfy this condition
are discussed. Then, the GFDs of an arbitrary order with these kernels are defined and
their properties are studied. The conventional Riemann–Liouville and Caputo fractional
derivatives of arbitrary order are particular cases of these GFDs. Another important
example is the integro-differential operators of convolution type with the Bessel and the
modified Bessel functions in the kernels. The constructions introduced in this section allow
the formulation of the fractional differential equations with the GFDs with a generalized
order greater than one with several initial conditions.

2. General Fractional Integrals and Derivatives with the Sonine Kernels

In this section, we provide some basic definitions and results regarding the GFIs and
GFDs with the Sonine kernels from the class S−1 introduced in [9]. For more details, other
relevant results and the proofs, see [9,13].

In what follows, we employ the space of functions C−1(0,+∞) and its sub-spaces.
A family of the spaces Cα(0,+∞), α ≥ −1 was first introduced in [15] as follows:

Cα(0,+∞) := { f : f (t) = tp f1(t), t > 0, p > α, f1 ∈ C[0,+∞)}. (21)

Evidently, the spaces Cα(0,+∞) are ordered by the inclusion α1 ≥ α2 ⇒ Cα1(0,+∞) ⊆
Cα2(0,+∞), and thus the inclusion Cα(0,+∞) ⊆ C−1(0,+∞), α ≥ −1 holds true.

In the further discussions, we also use the sub-spaces Cm
−1(0,+∞), m ∈ N0 = N∪ {0}

of the space C−1(0,+∞), which are defined as follows:

Cm
−1(0,+∞) := { f : f (m) ∈ C−1(0,+∞)}. (22)

The spaces Cm
−1(0,+∞) were first introduced and studied in [16]. In particular, we have

the following properties:

(1) C0
−1(0,+∞) ≡ C−1(0,+∞);

(2) Cm
−1(0,+∞), m ∈ N0 is a vector space over the field R (or C);

(3) If f ∈ Cm
−1(0,+∞) with m ≥ 1, then f (k)(0+) := lim

t→0+
f (k)(t) < +∞, 0 ≤ k ≤ m− 1,

and the function

f̃ (t) =

{
f (t), t > 0,
f (0+), t = 0

belongs to the space Cm−1[0,+∞);
(4) If f ∈ Cm

−1(0,+∞) with m ≥ 1, then f ∈ Cm(0,+∞) ∩ Cm−1[0,+∞).
(5) For m ≥ 1, the following representation holds true:

f ∈ Cm
−1(0,+∞)⇔ f (t) = (Im

0+φ)(t) +
m−1

∑
k=0

f (k)(0)
tk

k!
, t ≥ 0, φ ∈ C−1(0,+∞);

(6) Let f ∈ Cm
−1(0,+∞), m ∈ N0, f (0) = · · · = f (m−1)(0) = 0 and g ∈ C1

−1(0,+∞).
Then, the Laplace convolution h(t) = ( f ∗ g)(t) belongs to the space Cm+1

−1 (0,+∞)

and h(0) = · · · = h(m)(0) = 0.

For our aims, we also need another two-parameter family of sub-spaces of Cα(0,+∞)
that allows us to better control the behavior of the functions at the origin:

Cα,β(0,+∞) = { f : f (t) = tp f1(t), t > 0, α < p < β, f1 ∈ C[0,+∞)}. (23)

In particular, the sub-space C−1,0(0,+∞) contains the functions that are continuous
on R+ and possess the integrable singularities of the power function type at the origin.

As mentioned in [17] (see also [8]), any Sonine kernel has an integrable singularity at
the point zero. On the other hand, the kernels of the fractional integrals and derivatives
should be singular [18]. Thus, the fractional integrals and derivatives with the Sonine
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kernels are worthy of investigation. In what follows, we consider the GFI (19) and the
GFDs (15) and (18) of the Riemann–Liouville and Caputo types, respectively, with the
Sonine kernels κ and k that belong to the sub-space C−1,0(0,+∞) of the space C−1(0,+∞).

Definition 1. Let κ, k ∈ C−1,0(0,+∞) be a pair of the Sonine kernels; i.e., let the Sonine condi-
tion (7) be fulfilled. The set of such Sonine kernels is denoted by S−1:

(κ, k ∈ S−1) ⇔ (κ, k ∈ C−1,0(0,+∞)) ∧ ((κ ∗ k)(t) = {1}). (24)

Several important features of the GFI (19) on the space C−1(0,+∞) follow from the
well-known properties of the Laplace convolution. In particular, we mention the mapping
property

I(κ) : C−1(0,+∞) → C−1(0,+∞), (25)

the commutativity law

I(κ1)
I(κ2)

= I(κ2)
I(κ1)

, κ1, κ2 ∈ S−1, (26)

and the index law
I(κ1)

I(κ2)
= I(κ1∗κ2)

, κ1, κ2 ∈ S−1 (27)

that are valid on the space C−1(0,+∞).
Let κ ∈ S−1 and k be its associate Sonine kernel. The GFDs of the Riemann–Liouville

and the Caputo types associated to the GFI (19) are given by the Formulas (15) and (18),
respectively. It is easy to see that the GFD (18) in the Caputo sense can be rewritten as a
regularized GFD (15) in the Riemann–Liouville sense:

(∗D(k) f )(t) = (D(k) [ f (·)− f (0)])(t), t > 0. (28)

For the functions from C1
−1(0,+∞), the Riemann–Liouville GFD (15) can be represented as

(D(k) f )(t) = (k ∗ f ′)(t) + f (0)k(t), t > 0, (29)

which immediately leads to the useful representation

(∗D(k) f )(t) = (k ∗ f ′)(t), t > 0 (30)

of the Caputo type GFD (18) that is valid on the space C1
−1(0,+∞).

In the rest of this section, we formulate the first and second fundamental theorems of
FC for the GFDs in the Riemann–Liouville and Caputo senses.

Theorem 1 (First Fundamental Theorem for the GFD). Let κ ∈ S−1 and k be its associate
Sonine kernel.

Then, the GFD (15) is a left-inverse operator to the GFI (19) on the space C−1(0,+∞),

(D(k) I(κ) f )(t) = f (t), f ∈ C−1(0,+∞), t > 0, (31)

and the GFD (18) is a left inverse operator to the GFI (19) on the space C−1,(k)(0,+∞):

(∗D(k) I(κ) f )(t) = f (t), f ∈ C−1,(k)(0,+∞), t > 0, (32)

where C−1,(k)(0,+∞) := { f : f (t) = (I(k) φ)(t), φ ∈ C−1(0,+∞)}.

As shown in [9], the space C−1,(k)(0,+∞) can be also characterized as follows:

C−1,(k)(0,+∞) = { f : I(κ) f ∈ C1
−1(0,+∞) ∧ (I(κ) f )(0) = 0}.
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Now, we proceed with the second fundamental theorem of FC for the GFDs in the
Riemann–Liouville and Caputo senses.

Theorem 2 (Second Fundamental Theorem for the GFD). Let κ ∈ S−1 and k be its associate
Sonine kernel.

Then, the relations

(I(κ) ∗D(k) f )(t) = f (t)− f (0), t > 0, (33)

(I(κ)D(k) f )(t) = f (t), t > 0 (34)

hold valid for the functions f ∈ C1
−1(0,+∞).

In [9,13], the n-fold GFIs and GFDs with the Sonine kernels from S−1 were introduced
and studied. For more details, we refer interested readers to these publications.

3. General Fractional Integrals and Derivatives of Arbitrary Order

As already mentioned in the Introduction, the “generalized order” of the GFIs and
GFDs introduced so far is restricted to the interval (0, 1). The order of the n-fold GFIs
and GFDs recently introduced in [9] belongs to the interval (0, n). However, it is hardly
possible to fix their order between two neighboring natural numbers as in the case of the
conventional Riemann–Liouville and Caputo fractional derivatives and thus to study, for
example, the fractional oscillator equations or the time-fractional diffusion-wave equations
with the GFDs of the order from the interval (1, 2).

In this section, we define the GFIs and GFDs of arbitrary order and study their basic
properties. As in the case of the conventional Riemann–Liouville and Caputo fractional
derivatives, for the GFDs, we also have to distinguish between two completely different
cases; namely, between the case of the integer order and the case of non-integer order.
In the first case, the conventional Riemann–Liouville and Caputo fractional derivatives
are defined as the integer-order derivatives, while in the second case, they are non-local
integro-differential operators. Because the conventional Riemann–Liouville and Caputo
fractional derivatives are important particular cases of the GFDs, we have no other choice
but to follow the same strategy; namely, to separately define the GFDs of integer order as
the integer-order derivatives and the GFDs of non-integer order as some integro-differential
operators. In what follows, we focus on the case of the GFDs of non-integer order (the
integer-order GFDs are simply the integer-order derivatives).

To introduce the GFIs and the GFDs of arbitrary non-integer order, we first formulate
a condition on their kernels that generalizes the Sonine condition (7):

(κ ∗ k)(t) = {1}n(t), n ∈ N, t > 0, (35)

where

{1}n(t) := ({1} ∗ . . . ∗ {1}︸ ︷︷ ︸
n times

)(t) = hn(t) =
tn−1

(n− 1)!
.

Evidently, the Sonine condition corresponds to the case n = 1 of the more general
condition (35).

Another important ingredient of our definitions is a set of the kernels that satisfy the
condition (35) and belong to the suitable spaces of functions.

Definition 2. Let the functions κ and k satisfy the condition (35) and the inclusions κ ∈
C−1(0,+∞) and k ∈ C−1,0(0,+∞) hold true.

The set of pairs (κ, k) of such kernels is denoted by Ln.

Remark 1. The set L1 coincides with the set of the Sonine kernels S−1 discussed in the previous
section (see Definition 1). Indeed, in this case, the kernel κ ∈ C−1(0,+∞) is a Sonine kernel,
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and therefore it has an integrable singularity at the point zero. Thus, it belongs to the subspace
C−1,0(0,+∞) as required in Definition 1.

Remark 2. For n > 1, Definition 2 is not symmetrical with respect to the kernels κ and k because
of the non-symmetrical inclusions κ ∈ C−1(0,+∞) and k ∈ C−1,0(0,+∞) (in the case n = 1,
Definition 1 is symmetrical and one can interchange the kernels κ and k).

However, the same statement is valid for the kernel κ(t) = hα(t), α > 0 of the Riemann–
Liouville integral Iα

0+ and the kernel k(t) = hn−α(t) of the Riemann–Liouville and Caputo fractional
derivatives of order α, n− 1 < α < n, n ∈ N, defined as follows:

(Dα
0+ f )(t) :=

dn

dtn (In−α
0+ f )(t), t > 0, (36)

(∗Dα
0+ f )(t) :=

(
Dα

0+

(
f (·)−

n−1

∑
j=0

f (j)(0)hj+1(·)
))

(t), t > 0, (37)

with Iα
0+ being the Riemann-Liouville fractional integral of order α:

(Iα
0+ f )(t) :=

1
Γ(α)

∫ t

0
(t− τ)α−1 f (τ) dτ, t > 0, α > 0. (38)

The solution to defining the integer-order Riemann–Liouville and Caputo fractional derivatives
consists of a separate definition of the Riemann–Liouville fractional integral of the order α = 0:

(I0
0+ f )(t) := f (t). (39)

Of course, the definition (39) is not arbitrary and is justified inter alia by the formula

lim
α→0+

‖Iα
0+ f )(t)− f (t)‖L1(0,T) = 0 (40)

that is valid for f ∈ L1(0, T) in every Lebesgue point of f; i.e., almost everywhere on the interval
(0, T), T > 0 (see, e.g., [19]).

Example 1. The kernels κ(t) = hα(t), α > 0 and k(t) = hn−α(t), n− 1 < α < n, n ∈ N
provide a first example of the kernels from Ln. Please note that the power functions hα and hn−α

build a pair of the Sonine kernels only in the case n = 1; i.e., only in the case when the fractional
derivatives’ order is less than one.

Because both the Sonine condition (7) and its generalization (35) contain the Laplace
convolution of two kernels, it is very natural to transform them into the Laplace domain.
Providing that the Laplace transforms κ̃, k̃ of the functions κ and k exist, the convolution
theorem for the Laplace transform leads to the relation

κ̃(p) · k̃(p) =
1
p

, <(p) > pκ,k ∈ R (41)

for the Laplace transforms of the Sonine kernels and to a more general relation

κ̃(p) · k̃(p) =
1
pn , <(p) > pκ,k ∈ R, n ∈ N (42)

for the kernels from the set Ln introduced in Definition 2.
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Example 2. Formula (42) along with the works in [20,21] for the direct and inverse Laplace
transforms, respectively, can be used to deduce other nontrivial examples of the kernels from Ln.
For instance, we employ the Laplace transform formulas (see [20])

(
L tν/2 Jν(2

√
t)
)
(p) = p−ν−1 exp(−1/p), <(ν) > −1, <(p) > 0,

(
L tν/2 Iν(2

√
t)
)
(p) = p−ν−1 exp(1/p), <(ν) > −1, <(p) > 0

for the Bessel function Jν and the modified Bessel function Iν defined by the power series (14) to
introduce the kernels

κ(t) = tν/2 Jν(2
√

t), k(t) = tn/2−ν/2−1 In−ν−2(2
√

t), n− 2 < ν < n− 1, n ∈ N. (43)

These kernels satisfy the condition (42). Moreover, for n − 2 < ν < n − 1, n ∈ N, the
inclusions κ ∈ C−1(0,+∞) and k ∈ C−1,0(0,+∞) hold true, and thus the pair of the kernels
(κ, k) given by (43) is from Ln.

Now let us consider a pair of the Sonine kernels (κ, k) from L1 (in [4,8,9,13,17] and
other related publications, many pairs of such kernels were presented). There are at least
two reasonable possibilities to construct a pair (κn kn) of the kernels from Ln, n > 1 based
on the Sonine kernels κ, k from L1.

The first strategy consists of building the kernels κn = κn and kn = kn. Evidently,
the kernels κn and kn satisfy the relation (35) because κ and k are the Sonine kernels:

(κn ∗ kn)(t) = (κn ∗ kn)(t) = (κ ∗ k)n(t) = {1}n(t). (44)

However, the pair (κn, kn) does not always belong to the set Ln. This is the case
only under an additional condition; namely, only when the inclusion kn ∈ C−1,0(0,+∞)
holds true (of course, κn ∈ C−1(0,+∞) for any n ∈ N). This is a very strong and restrictive
condition. For example, in the case of the Riemann–Liouville fractional integral Iα

0+ with the
kernel κ(t) = hα(t), 0 < α < 1 and the Riemann–Liouville fractional derivative Dα

0+ with
the kernel k(t) = h1−α, the kernel kn takes the form kn(t) = hn(1−α)(t). It belongs to the
space C−1,0(0,+∞) only under the condition 0 < n(1− α) < 1; i.e., if 1− 1

n < α < 1, which
is very restrictive. Moreover, the example of the kernels (43) shows that not every pair of
the kernels from Ln can be represented in the form (κn, kn) with the kernels (κ, k) ∈ L1.

Another and even more general and important possibility for the construction of a
pair (κn, kn) of the kernels from Ln, n > 1 based on the Sonine kernels κ, k from L1 is
presented in the following theorem:

Theorem 3. Let (κ, k) be a pair of the Sonine kernels from L1.
Then, the pair (κn, kn) of the kernels given by the formula

κn(t) = ({1}n−1 ∗ κ)(t), kn(t) = k(t) (45)

belongs to the set Ln.

Proof. First, we check that the kernels (45) satisfy the condition (35):

(κn ∗ kn)(t) = ({1}n−1 ∗ κ ∗ k)(t) = ({1}n−1 ∗ {1})(t) = {1}n(t). (46)

Moreover, because of the inclusions κ, k ∈ L1, the inclusions κn ∈ C−1(0,+∞) and
kn = k ∈ C−1,0(0,+∞) are satisfied, and thus the kernels κn and kn defined by (45) belong
to the set Ln.

In the rest of this section, we introduce the general fractional integrals and derivatives
of an arbitrary (non-integer) order and discuss their basic properties and examples.
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Definition 3. Let (κ, k) be a pair of the kernels from Ln. The GFI with the kernel κ is specified by
the standard formula

(I(κ) f )(t) :=
∫ t

0
κ(t− τ) f (τ) dτ, t > 0, (47)

whereas the GFDs of the Riemann–Liouville and Caputo types with the kernel k are defined as
follows:

(D(k) f )(t) :=
dn

dtn

∫ t

0
k(t− τ) f (τ) dτ, t > 0, (48)

(∗D(k) f )(t) :=

(
D(k)

(
f (·)−

n−1

∑
j=0

f (j)(0)hj+1(·)
))

(t), t > 0. (49)

Example 3. Evidently, the GFI (47) with the kernel κ(t) = hα(t), α > 0 is reduced to the
Riemann–Liouville fractional integral (38), and the Riemann–Liouville and Caputo fractional
derivatives of the order α, n − 1 < α < n, n ∈ N defined by (36) and (37), respectively, are
particular cases of the GFDs (48) and (49) with the kernel k(t) = hn−α(t). As mentioned in
Example 1, the inclusion (hα, hn−α) ∈ Ln holds valid if and only if n− 1 < α < n, n ∈ N.

It is worth mentioning that the Riemann–Liouville fractional integral (38) and the
Riemann–Liouville and Caputo fractional derivatives of an arbitrary order α, n− 1 < α <
n, n ∈ N can be introduced based on the Sonine pair κ = hβ, k = h1−β, 0 < β < 1 and using
the construction (45) presented in Theorem 3. Indeed, in this case, we have the relations

κn(t) = ({1}n−1 ∗ κ)(t) = ({1}n−1 ∗ hβ)(t) = hn−1+β(t), kn(t) = k(t) = h1−β(t). (50)

Thus, the GFI (47) and the GFDs (48) and (49) with the kernels (κn, kn) ∈ Ln take the
form

(I(κ) f )(t) = (hn−1+β ∗ f )(t) = (In−1+β
0+ f )(t), t > 0, (51)

(D(k) f )(t) =
dn

dtn (h1−β ∗ f )(t) =
dn

dtn (I1−β
0+ f )(t), t > 0, (52)

(∗D(k) f )(t) =
dn

dtn

(
I1−β
0+

(
f (·)−

n−1

∑
j=0

f (j)(0)hj+1(·)
))

(t), t > 0. (53)

Now we introduce a new variable α := n − 1 + β. Then, 1 − β = n − α and the
inequalities n − 1 < α < n are fulfilled because of the condition 0 < β < 1. Thus,
the operator (51) is the Riemann–Liouville fractional integral (38) of the order α, and
the operators (52) and (53) coincide with the Riemann–Liouville and Caputo fractional
derivatives of the order α, n− 1 < α < n, n ∈ N.

Example 4. Another interesting and nontrivial particular case of the GFI (47) and the GFDs
(48) and (49) is constructed for the pair (κ, k) ∈ Ln of the kernels defined by Formula (43) with
n− 2 < ν < n− 1, n ∈ N:

(I(κ) f )(t) =
∫ t

0
(t− τ)ν/2 Jν(2

√
t− τ) f (τ) dτ, t > 0, (54)

(D(k) f )(t) =
dn

dtn

∫ t

0
(t− τ)n/2−ν/2−1 In−ν−2(2

√
t− τ) f (τ) dτ, t > 0, (55)

(∗D(k) f )(t) :=

(
D(k)

(
f (·)−

n−1

∑
j=0

f (j)(0)hj+1(·)
))

(t), t > 0. (56)
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It is worth mentioning that the Caputo type GFD (49) can be represented in a slightly
different form:

(∗D(k) f )(t) =


D(k)


 f (·)−

n−1

∑
j=0

f (j)(0)hj+1(·)



(t) =

(D(k) f )(t)−
n−1

∑
j=0

f (j)(0)(D(k) hj+1)(t) = (D(k) f )(t)−
n−1

∑
j=0

f (j)(0)
dn

dtn (k ∗ hj+1)(t) =

(D(k) f )(t)−
n−1

∑
j=0

f (j)(0)
dn

dtn (I j+1
0+ k)(t) = (D(k) f )(t)−

n−1

∑
j=0

f (j)(0)
dn−j−1

dtn−j−1 k(t), t > 0. (57)

As regards the basic properties of the GFI (47) of an arbitrary order on C−1(0,+∞),
they follow from the well-known properties of the Laplace convolution (compare these to
the properties of the GFI (19) of the order less than one):

I(κ) : C−1(0,+∞) → C−1(0,+∞) (mapping property), (58)

I(κ1)
I(κ2)

= I(κ2)
I(κ1)

(commutativity law), (59)

I(κ1)
I(κ2)

= I(κ1∗κ2)
(index law). (60)

To justify this denotation of GFIs and GFDs, in the rest of this section, we formulate
and prove the two fundamental theorems of FC for the GFDs (48) and (49) of the Riemann–
Liouville and Caputo types.

Theorem 4 (First Fundamental Theorem for the GFD of an Arbitrary Order). Let (κ, k) be a
pair of the kernels from Ln.

Then, the GFD (48) is a left-inverse operator to the GFI (47) on the space C−1(0,+∞),

(D(k) I(κ) f )(t) = f (t), f ∈ C−1(0,+∞), t > 0, (61)

and the GFD (49) is a left-inverse operator to the GFI (47) on the space C−1,(k)(0,+∞):

(∗D(k) I(κ) f )(t) = f (t), f ∈ C−1,(k)(0,+∞), t > 0, (62)

where the space C−1,(k)(0,+∞) is defined as in Theorem 1.

Proof. We start with a proof of the Formula (61):

(D(k) I(κ) f )(t) =
dn

dtn (k ∗ (κ ∗ f ))(t) =
dn

dtn ((k ∗ κ) ∗ f )(t) =

dn

dtn ({1}n ∗ f )(t) =
dn

dtn (In
0+ f )(t) = f (t).

A function f ∈ C−1,(k)(0,+∞) can be represented in the form f (t) = (I(k) φ)(t), φ ∈
C−1(0,+∞), and thus the following chain of equations is valid:

(I(κ) f )(t) = (I(κ) I(k) φ)(t) = ((κ ∗ k) ∗ f )(t) = ({1}n φ)(t) = (In
0+ φ)(t).

The last relation implicates the inclusion I(κ) f ∈ Cn
−1(0,+∞) and the relations

dj

dtj (I(κ) f )(t)
∣∣∣
t=0

= (In−j
0+ φ)(t)

∣∣∣
t=0

= 0, j = 0, . . . , n− 1. (63)
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To derive Formula (62), we employ the representation (57) of the GFD of the Caputo
type, Formula (63) and the relation (61) that we already proved:

(∗D(k) I(κ) f )(t) = (D(k) I(κ) f )(t)−
n−1

∑
j=0

dj

dtj (I(κ) f )(t)
∣∣∣
t=0

dn−j−1

dtn−j−1 k(t) = f (t).

Theorem 5 (Second Fundamental Theorem for the GFD of an Abitrary Order). Let (κ, k)
be a pair of the kernels from Ln.

Then, the relation

(I(κ) ∗D(k) f )(t) = f (t)−
n−1

∑
j=0

f (j)(0) hj+1(t) (64)

holds true on the space Cn
−1(0,+∞) and the formula

(I(κ)D(k) f )(t) = f (t), t > 0 (65)

is valid for the functions f ∈ Cn
−1,(κ)(0,+∞).

Proof. As already mentioned in Section 2, any function f from Cn
−1(0,+∞) can be repre-

sented as follows (see [16]):

f (t) = (In
0+φ)(t) +

n−1

∑
j=0

f (j)(0) hj+1(t), t ≥ 0, φ ∈ C−1(0,+∞). (66)

Then, we employ this representation and Formula (49) and arrive at the following chain of
relations:

(∗D(k) f )(t) = (D(k)

(
f (·)−

n−1

∑
j=0

f (j)(0) hj+1(·)
)
(t) = (D(k) In

0+φ)(t) =

dn

dtn (k ∗ {1}n ∗ φ)(t) =
dn

dtn ({1}n ∗ (k ∗ φ))(t) = (k ∗ φ)(t).

Finally, we take into account the representation (66) and obtain Formula (64):

(I(κ) ∗D(k) f )(t) = (I(κ) (k ∗ φ))(t) = ((κ ∗ k) ∗ φ)(t) =

({1}n ∗ φ)(t) = (In
0+φ)(t) = f (t)−

n−1

∑
j=0

f (j)(0) hj+1(t).

To prove Formula (65), we first mention that a function f ∈ C−1,(κ)(0,+∞) can be repre-
sented in the form f (t) = (I(κ) φ)(t), φ ∈ C−1(0,+∞), and thus the following chain of
equations is valid:

(I(κ)D(k) f )(t) = (I(κ)
dn

dtn (k ∗ f )(t) = (I(κ)
dn

dtn (k ∗ (κ ∗ φ))(t) =

(I(κ)
dn

dtn ({1}n ∗ φ))(t) = (I(κ) φ)(t) = f (t).

In conclusion, we emphasize once again the result of Theorem 3 and its implications
on the definitions of the GFIs and the GFDs of an arbitrary order. If (κ, k) is a pair of the

54



Symmetry 2021, 13, 755

Sonine kernels from L1, the pair (κn, kn) of the kernels given by the Formula (45) belongs
to the set Ln, n > 1. The GFI (47) with the kernel κn = ({1}n−1 ∗ κ)(t) takes the form

(I(κn) f )(t) = (In−1
0+ I(κ) f )(t), t > 0, (67)

whereas the GFDs of the Riemann–Liouville and Caputo types with the kernel kn = k can
be represented as follows:

(D(kn) f )(t) =
dn

dtn (I(k) f )(t), t > 0, (68)

(∗D(kn) f )(t) =
dn

dtn

(
I(k)

(
f (·)−

n−1

∑
j=0

f (j)(0)hj+1(·)
))

(t), t > 0. (69)

As we see, these constructions are completely analogical to the definitions of the
Riemann–Liouville fractional integral and the Riemann–Liouville and Caputo fractional
derivatives of an arbitrary order.

Another point that is worth mentioning is that the kernel κn = ({1}n−1 ∗ κ)(t) of
the GFI (67) possesses an integrable singularity of the power function type at the origin
in the case n = 1; i.e., in the case that its order is less than one (κ1 = κ ∈ C−1,0(0, +∞)).
If the order of the GFI (67) is greater than one (n = 2, 3 . . . ), κn is continuous at the origin
and κn(0) = 0 as in the case of the Riemann–Liouville fractional integral of the order
α > 1. Indeed, as mentioned in [16], the inclusion g ∗ f ∈ Cα1+α2+1(0,+∞) holds true for
the Laplace convolution of the functions f ∈ Cα1(0,+∞), g ∈ Cα2(0,+∞), α1, α2 ≥ −1.
Thus, the function κn = ({1}n−1 ∗ κ)(t) with κ ∈ C−1,0(0, +∞) belongs to the space
Cn−2(0, +∞) and thus can be represented in the form κn(t) = tp f (t), p > n − 2 ≥ 0,
f ∈ C[0, +∞).

4. Conclusions

Starting from the work presented in [7], the so-called GFDs of the Riemann–Liouville
and Caputo types have become a topic of active research in FC. In particular, both the
ordinary and the partial fractional differential equations with these derivatives have been
considered (see [10] for a survey of some recent results). However, the GFDs introduced to
date have been based on the classical Sonine condition, and thus their “generalized order”
was restricted to the interval (0, 1). In particular, the initial value problems for the fractional
differential equations with these derivatives permitted only one initial condition, and thus
no models for the intermediate processes between diffusion and wave propagation could
be formulated in terms of these GFDs.

The main contribution of this paper is an extension of the definitions of the GFIs and
GFDs to the case of arbitrary order. To achieve this aim, a suitable generalization of the
Sonine condition was introduced, and some important classes of the kernels that satisfy
this generalized condition were described. The kernels of the GFDs of an arbitrary order
possess integrable singularities at the point zero. However, the kernels of the GFIs can
be both singular (in the case of an order less than one) and continuous (in the case of
an order greater or equal to one) at the origin. The conventional Riemann–Liouville and
Caputo fractional derivatives of arbitrary order are particular cases of these GFDs. Another
important example is the integro-differential operators of the convolution type with the
Bessel and the modified Bessel functions in the kernels.

To justify the denotation of GFIs and GFDs of arbitrary order, in this paper, two
fundamental theorems of fractional calculus for these operators were formulated and
proved. The constructions introduced in this paper allow the formulation of the initial-
value problems for the fractional differential equations with GFDs of a generalized order
greater than one with several initial conditions. Thus, further research regarding the
properties of the GFIs and GFDs of an arbitrary order introduced in this paper as well as
applications of the fractional differential equations with the GFDs of arbitrary order to

55



Symmetry 2021, 13, 755

model, for instance, the processes intermediate between diffusion and wave propagation
is needed.
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Abstract: An elastic beam equation (EBEq) described by a fourth-order fractional difference equation
is proposed in this work with three-point boundary conditions involving the Riemann–Liouville
fractional difference operator. New sufficient conditions ensuring the solutions’ existence and unique-
ness of the proposed problem are established. The findings are obtained by employing properties
of discrete fractional equations, Banach contraction, and Brouwer fixed-point theorems. Further,
we discuss our problem’s results concerningHyers–U lam (HU ), generalizedHyers–U lam (GHU ),
Hyers–U lam–Rassias (HUR), and generalized Hyers–U lam–Rassias (GHUR) stability. Specific
examples with graphs and numerical experiment are presented to demonstrate the effectiveness of
our results.

Keywords: Riemann–Liouville fractional difference operator; boundary value problem; discrete
fractional calculus; existence and uniqueness; Ulam stability; elastic beam problem

MSC: 34A12; 34B10; 34B15; 39A12; 47H10; 74B20

1. Introduction

Elastic beam (EB) deflections are commonly known phenomena in science and engi-
neering. Based on the significance of their applications such as for aircraft design, chemical
sensors, micro-electromechanical systems, material mechanics, medical diagnostics, and
physics, two-point boundary value problems (BVPs) for EBEqs have received considerable
attention. Recently, many researchers have investigated EBEqs with various boundary con-
ditions (BCs) (refer to [1–6]). Gupta in [6] studied a fourth-order EBEq with two-point BCs:

{
w(4)(κ) = G(κ, w(κ)), κ ∈ (0, 1),
w(0) = 0, w′′(0) = 0, w′(1) = 0, w′′′(1) = 0.

(1)

Equation (1) describes an elastic beam model of length 1, which is clamped with a
displacement and a bending moment that are equal to zero at the left end, and this model
is free to travel with disappearing angular attitude and shear force at the right end.
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In addition, Cianciaruso et al. [1] studied the model of the cantilever beam equation
with three-point BCs:

{
w(4)(κ) = G(κ, w(κ)), κ ∈ (0, 1),
w(0) = w′(0) = w′′(1) = 0, w′′′(1) = h(w(ζ)),

where ζ ∈ (0, 1) is a real constant. The above is a feedback mechanism model where
the shearing force at the beam’s right end responds to the displacement experienced at a
point ζ.

Fractional calculus (FC) is a generalized form of classical integer-order calculus. Frac-
tional calculus examines the properties of fractional-order derivatives and integrals. Due to
its numerous applications in various scientific fields, this research area has gained consider-
able attention over the past few years. FC can be applicable in several fields of science and
engineering, along with aerodynamics, electrical circuits, fluid dynamics, heat conduction,
and physics. We refer to the comprehensive works in [7–10] for a detailed analysis of its
applications, and we refer to [11–15] for the latest trends in the area of FC.

Researchers have explored various aspects of fractional difference equations (FDEs).
Obviously, the solutions’ existence, uniqueness, and stability analysis are some important
features of FDEs. Various analytical approaches and fixed-point theory have been used
to examine the solutions’ existence and stability for FDEs. Several researchers have con-
tributed a number of books and papers in this regard [16]. However, finding the exact
solution of nonlinear FDEs is often too difficult; therefore, the stability analysis of solutions
plays a crucial role in such investigations. Various kinds of stabilities described in the past
are discussed in the literature, such as Lyapunov stability [17], Mittag–Leffler stability [18],
and exponential stability [19]. Presumably, the most dependable stabilities are calledHU
stability. The discussed stability was modified to GHU stability (refer to [20–22]). In 1970,
Rassias further generalized the aforesaid stability. For FDEs with different BCs concerning
Riemann–Liouville and Caputo operators, the addressed fields of existence and stability
analysis are well-equipped (see [23–28]).

A new interesting research field, named discrete fractional calculus (DFC), is attracting
the interest of mathematicians and researchers. With discrete fractional operators, several
real-world problems are being investigated [29–32]. The fractional difference equations
have recently become an interesting field for scientists because of their applications in
biology, ecology, and applied sciences [33]. However, a few research studies that have been
conducted on discrete fractional-order BVPs can be found in [34–47].

The above findings inspired us in this study concerning the solutions’ existence and
uniqueness with various types of Ulam stability results for the proposed discrete fractional
elastic beam equation (FEBE) that is subject to the three-point BCs as follows:

{
∆β
β−4w(κ) = G(κ + β− 1, w(κ + β− 1)), κ ∈ Nn+3

0 ,

w(β− 4) = 0, ∆2w(β− 4) = 0, ∆w(β+ n) = 0, ∆3w(β+ n) + w(ζ) = 0,
(2)

where β ∈ (3, 4] is a fractional order and ζ ∈ Nβ+n+2
β−1 is constant. Here, we have that

G : Nβ+n+3
β−4 × R → R is continuous, w : Nβ+n+3

β−4 → R, ∆β
β−4 is the Riemann–Liouville

discrete fractional operator, and n ∈ N0.
The rest of this research work is structured as follows. Basic background knowledge

on DFC is stated in Section 2. The result for a linear version of the BVP Equation (2)
is discussed in Section 3. Further, by using this solution, the existence and uniqueness
conditions for the proposed discrete FEBE with three-point BCs (Equation (2)) are derived
with the help of contraction mapping and the Brouwer fixed-point theorems. Different
types of stability results are extensively obtained in Section 4 via the findings of nonlinear
analysis. Some illustrative examples with graphs and numerical experiment are presented
in Section 5 as applications to provide a better understanding of our findings. Finally,
Section 6 concludes our research work.
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2. Essential Preliminaries

Some important notions and preliminary lemmas are stated in this section, which are
needed for discussion of our results.

Definition 1 ([30]). For β > 0, the βth order fractional sum of G can be defined as

∆−βG(κ) =
1

Γ(β)

κ−β
∑
i=a

(κ − σ(i))(β−1)G(i),

for κ ∈ Na+β and σ(i) = i + 1 . Define the βth fractional difference for β > 0 by ∆βG(κ) :=
∆M∆β−MG(κ), for κ ∈ Na+M−β, M ∈ N satisfies 0 ≤ M − 1 < β ≤ M, and κ(β) :=

Γ(κ + 1)
Γ(κ + 1− β)

.

Lemma 1 ([30]). Assume that κ and β are any numbers such that κ(β) and κ(β−1) are defined.
Then we have ∆κ(β) = βκ(β−1).

Lemma 2 (see [34,44]). Let 0 ≤ M− 1 < β ≤ M. Then,

∆−β ∆βG(κ) = G(κ) + C1κ(β−1) + C2κ(β−2) + ... + CMκ(β−M),

for some Cj ∈ R, 1 ≤ j ≤ M.

Lemma 3 (see [42]). For κ and i, for which both (κ− σ(i))(β) and (κ− 1− σ(i))(β) are defined,
we obtain that ∆i

[
(κ − σ(i))(β)

]
= −β(κ − 1− σ(i))(β−1).

Lemma 4 (see [43,46]). Let β, ν > 0. Then,

∆−βκ(ν) =
Γ(ν + 1)

Γ(ν + β+ 1)
κ(ν+β) and ∆βκ(ν) =

Γ(ν + 1)
Γ(ν− β+ 1)

κ(ν−β).

3. EB Existence and Uniqueness

The existence and uniqueness of EB is established in this section to the three-point
BCs for the proposed discrete FEBE Equation (2). We now introduce the following theorem
that deals with a linear variant solution of our proposed BVP Equation (2).

Theorem 1. Let H : Nβ+n+3
β−4 → R be given. Then, the linear discrete FEBE with three-point BCs:

{
∆β
β−4w(κ) = H(κ + β− 1), κ ∈ Nn+3

0 ,

w(β− 4) = 0, ∆2w(β− 4) = 0, ∆w(β+ n) = 0, ∆3w(β+ n) + w(ζ) = 0,
(3)

has the unique solution, for κ ∈ Nβ+n+3
β−4 ,

w(κ) =
1

Γ(β)

κ−β
∑
i=0

(κ − σ(i))(β−1)H(i + β− 1)

+E1(κ)

[
1

Γ(β)

ζ−β
∑
i=0

(ζ − σ(i))(β−1) +
1

Γ(β− 3)

n+3

∑
i=0

(β+ n− σ(i))(β−4)

]
H(i + β− 1)

+
E2(κ)

Γ(β− 1)

n+1

∑
i=0

(β+ n− σ(i))(β−2)H(i + β− 1),

(4)
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where

E1(κ) =

[
κ(β−1)

e1
h1 + κ(β−2) f1 f4 − κ(β−3) f1

]

K
; E2(κ) =

[
κ(β−1)h2 − κ(β−2)e1 f4 + κ(β−3)e1

]

K
(5)

such that h1 = f1(e3 − e2 f4)− K, h2 = e2 f4 − e3, K = [e3 f1 − e1 f3]− f4[e2 f1 − e1 f2],
e1 = (β− 1)(3)(β+ n)(β−4) + ζ(β−1), e2 = (β− 2)(3)(β+ n)(β−5) + ζ(β−2),
e3 = (β− 3)(3)(β+ n)(β−6) + ζ(β−3), f1 = (β− 1)(β+ n)(β−2),

f2 = (β− 2)(β+ n)(β−3), f3 = (β− 3)(β+ n)(β−4) and f4 =
(β− 4)
(β− 2)

.

Proof. By applying the fractional sum ∆−β of order β ∈ (3, 4] along with Lemma 2 to
Equation (3), we have

w(κ) =
1

Γ(β) ∑κ−β
i=0 (κ − σ(i))(β−1)H(i + β− 1) + C1κ(β−1) + C2κ(β−2) + C3κ(β−3) + C4κ(β−4), (6)

for κ ∈ Nβ+n+3
β−4 and some constants Cj ∈ R, where j = 1, 2, 3, 4. By applying the first BC

w(β− 4) = 0 in Equation (6), we obtain

w(β− 4) = C1(β− 4)(β−1) + C2(β− 4)(β−2) + C3(β− 4)(β−3) + C4(β− 4)(β−4) = 0. (7)

By using Definition 1, we obtain

(β− 4)(β−1) = (β− 4)(β−2) = (β− 4)(β−3) = 0 and (β− 4)(β−4) = Γ(β− 3). (8)

Equations (7) and (8) imply C4 = 0. Using C4 in Equation (6) provides

w(κ) =
1

Γ(β)

κ−β
∑
i=0

(κ − σ(i))(β−1)H(i + β− 1) + C1κ(β−1) + C2κ(β−2) + C3κ(β−3). (9)

Using Lemma 1 and taking the operator ∆ on both sides of Equation (9), we obtain

∆w(κ) =
1

Γ(β− 1)

κ−β+1

∑
i=0

(κ − σ(i))(β−2)H(i + β− 1)

+C1(β− 1)κ(β−2) + C2(β− 2)κ(β−3) + C3(β− 3)κ(β−4). (10)

From the third BC ∆w(β+ n) = 0 in Equation (10), we obtain

1
Γ(β− 1)

n+1

∑
i=0

(β+ n− σ(i))(β−2)H(i + β− 1) + C1 f1 + C2 f2 + C3 f3 = 0. (11)

The operator ∆ is applied on both sides of Equation (10) with the aid of Lemma 1, and
we obtain

∆2w(κ) =
1

Γ(β− 2)

κ−β+2

∑
i=0

(κ − σ(i))(β−3)H(i + β− 1) + C1(β− 1)(2)κ(β−3)

+C2(β− 2)(2)κ(β−4) + C3(β− 3)(2)κ(β−5). (12)

The second BC of Equation (3) implies

C2(β− 2) + C3(β− 4) = 0. (13)
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Again, using Lemma 1 and taking the operator ∆ on both sides of Equation (12),
we obtain

∆3w(κ) =
1

Γ(β− 3)

κ−β+3

∑
i=0

(κ − σ(i))(β−4)H(i + β− 1) + C1(β− 1)(3)κ(β−4)

+C2(β− 2)(3)κ(β−5) + C3(β− 3)(3)κ(β−6). (14)

Using the last BC ∆3w(β+ n) + w(ζ) = 0 in Equations (9) and (14) yields

w(ζ) =
1

Γ(β)

ζ−β
∑
i=0

(ζ − σ(i))(β−1)H(i + β− 1) + C1ζ(β−1) + C2ζ(β−2) + C3ζ(β−3) (15)

and

∆3w(β+ n) =
1

Γ(β− 3)

n+3

∑
i=0

(β+ n− σ(i))(β−4)H(i + β− 1) + C1(β− 1)(3)(β+ n)(β−4)

+C2(β− 2)(3)(β+ n)(β−5) + C3(β− 3)(3)(β+ n)(β−6). (16)

From Equations (15) and (16), and by employing the last BC Equation (3), we obtain

1
Γ(β− 3)

n+3

∑
i=0

(β+ n− σ(i))(β−4)H(i + β− 1)

+
1

Γ(β)

ζ−β
∑
i=0

(ζ − σ(i))(β−1)H(i + β− 1) + C1e1 + C2e2 + C3e3 = 0. (17)

Solving Equations (11) and (17), we obtain

f1

(
1

Γ(β− 3)

n+3

∑
i=0

(β+ n− σ(i))(β−4) +
1

Γ(β)

ζ−β
∑
i=0

(ζ − σ(i))(β−1)

)
H(i + β− 1)

+ C2(e2 f1 − e1 f2) + C3(e3 f1 − e1 f3)−
e1

Γ(β− 1)

n+1

∑
i=0

(β+ n− σ(i))(β−2)H(i + β− 1) = 0.

(18)

Now, a constant C3 is found by solving Equations (13) and (18) as follows:

C3 =
1
K

[
e1

Γ(β− 1)

n+1

∑
i=0

(β+ n− σ(i))(β−2)H(i + β− 1)

− f1

(
1

Γ(β)

ζ−β
∑
i=0

(ζ − σ(i))(β−1) +
1

Γ(β− 3)

n+3

∑
i=0

(β+ n− σ(i))(β−4)

)
H(i + β− 1)

]
.

Substituting C3 into Equation (13), we have

C2 =
f4

K

[
f1

(
1

Γ(β)

ζ−β
∑
i=0

(ζ − σ(i))(β−1) +
1

Γ(β− 3)

n+3

∑
i=0

(β+ n− σ(i))(β−4)

)
H(i + β− 1)

− e1

Γ(β− 1)

n+1

∑
i=0

(β+ n− σ(i))(β−2)H(i + β− 1)

]
.

By using the value of C2 and C3 in Equation (17), we arrive at

61



Symmetry 2021, 13, 789

C1 =
1

e1K

{
e1h2

Γ(β− 1)

n+1

∑
i=0

(β+ n− σ(i))(β−2)H(i + β− 1)

+h1

(
1

Γ(β)

ζ−β
∑
i=0

(ζ − σ(i))(β−1) +
1

Γ(β− 3)

n+3

∑
i=0

(β+ n− σ(i))(β−4)

)
H(i + β− 1)

}
.

By using the constants Cj for j = 1, 2, 3 in Equation (9), we obtain w(κ) in the form

w(κ) =
1

Γ(β)

κ−β
∑
i=0

(κ − σ(i))(β−1)H(i + β− 1)

+E1(κ)

[
1

Γ(β)

ζ−β
∑
i=0

(ζ − σ(i))(β−1) +
1

Γ(β− 3)

n+3

∑
i=0

(β+ n− σ(i))(β−4)

]
H(i + β− 1)

+
E2(κ)

Γ(β− 1)

n+1

∑
i=0

(β+ n− σ(i))(β−2)H(i + β− 1),

for κ ∈ Nβ+n+3
β−4 . Therefore, the theorem’s proof is complete.

Assume that B∗ : C
(
Nβ+n+3
β−4 ,R

)
is a Banach space with a norm defined by

‖w‖ = max
{
|w(κ)| : κ ∈ Nβ+n+3

β−4

}
.

To discuss the theorems’ existence and uniqueness, we need the following assumptions:

(A1) There exists a constant LG > 0, which satisfies |G(κ, w)− G(κ, ŵ)| ≤ LG|w− ŵ| for
all w, ŵ ∈ B∗ and each κ ∈ Nβ+n+3

β−4 .

(A2) There exists a bounded function χ : Nβ+n+3
β−4 → R with |G(κ, w)| ≤ χ(κ)|w| for all

w ∈ B∗.

Theorem 2. In view of assumption (A1), the discrete FEBE with the three-point BCs in Equation (2)
has a unique solution if

Λ :=

[
(β+ n + 3)(β)

Γ(β+ 1)
+E∗1

(
ζ(β)

Γ(β+ 1)
+

(β+ n)(β−3)

Γ(β− 2)

)
+E∗2

(β+ n)(β−1)

Γ(β)

]
LG < 1, (19)

where

E∗1 =

∣∣∣∣∣
1
K

[
(β+ n + 3)(β−1)

e1
h1 + (β+ n + 3)(β−2) f1 f4 − (β+ n + 3)(β−3) f1

]∣∣∣∣∣,

E∗2 =

∣∣∣∣
1
K

[
(β+ n + 3)(β−1)h2 − (β+ n + 3)(β−2)e1 f4 + (β+ n + 3)(β−3)e1

]∣∣∣∣,
(20)

such that K is defined in Theorem 1

Proof. Let the operator A : B∗ → B∗ be defined as

(Aw)(κ) =
1

Γ(β)

κ−β
∑
i=0

(κ − σ(i))(β−1)gw(κ)

+E1(κ)

[
1

Γ(β)

ζ−β
∑
i=0

(ζ − σ(i))(β−1) +
1

Γ(β− 3)

n+3

∑
i=0

(β+ n− σ(i))(β−4)

]
gw(κ)

+
E2(κ)

Γ(β− 1)

n+1

∑
i=0

(β+ n− σ(i))(β−2)gw(κ),

(21)
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where gw(κ) = G(κ + β− 1, w(κ + β− 1)). Obviously, the fixed point of A is a solution
to Equation (2). To show that A is a contraction, let w, ŵ ∈ B∗ and for each κ ∈ Nβ+n+3

β−4 ,
one has

|(Aw)(κ)− (Aŵ)(κ)| ≤ 1
Γ(β)

κ−β
∑
i=0

(κ − σ(i))(β−1)|gw(i)− gŵ(i)|

+ |E1(κ)|
[

1
Γ(β)

ζ−β
∑
i=0

(ζ − σ(i))(β−1)+

1
Γ(β− 3)

n+3

∑
i=0

(β+ n− σ(i))(β−4)

]
|gw(i)− gŵ(i)|

+
|E2(κ)|

Γ(β− 1)

n+1

∑
i=0

(β+ n− σ(i))(β−2)|gw(i)− gŵ(i)|,

where gw(κ), gŵ(κ) ∈ C
(
Nβ+n+3
β−4 ,R

)
satisfies the following functional equations:

gw(κ) = G(κ + β− 1, w(κ + β− 1)) and gŵ(κ) = G(κ + β− 1, ŵ(κ + β− 1)). (22)

By (A1), we have

|gw(κ)− gŵ(κ)| = |G(κ + β− 1, w(κ + β− 1))− G(κ + β− 1, ŵ(κ + β− 1))|
≤ LG|w(κ + β− 1)− ŵ(κ + β− 1)|

|gw(κ)− gŵ(κ)| ≤ LG‖w− ŵ‖. (23)

From which we obtain

‖Aw−Aŵ‖ ≤ LG‖w− ŵ‖
Γ(β)

κ−β
∑
i=0

(κ − σ(i))(β−1)

+ |E1(κ)|LG‖w− ŵ‖
[

1
Γ(β)

ζ−β
∑
i=0

(ζ − σ(i))(β−1) +
1

Γ(β− 3)

n+3

∑
i=0

(β+ n− σ(i))(β−4)

]

+
|E2(κ)|LG‖w− ŵ‖

Γ(β− 1)

n+1

∑
i=0

(β+ n− σ(i))(β−2).

(24)

By the application of Lemma 3, we have

1
Γ(β)

κ−β
∑
i=0

(κ − σ(i))(β−1) =
1

Γ(β)

[
(κ − i)(β)

−β

]κ−β+1

i=0

=
κ(β)

Γ(β+ 1)
≤ (β+ n + 3)(β)

Γ(β+ 1)
(25)

and

1
Γ(β)

ζ−β
∑
i=0

(ζ − σ(i))(β−1) =
1

Γ(β)

[
(ζ − i)(β)

−β

]ζ−β+1

i=0

=
ζ(β)

Γ(β+ 1)
. (26)

Similarly, by using Lemma 3, we also obtain

1
Γ(β− 1)

n+1

∑
i=0

(β+ n− σ(i))(β−2) =
1

Γ(β− 1)

[
(β+ n− i)(β−1)

−(β− 1)

]n+2

i=0

=
(β+ n)(β−1)

Γ(β)
(27)

and

1
Γ(β− 3)

n+3

∑
i=0

(β+ n− σ(i))(β−4) =
1

Γ(β− 3)

[
(β+ n− i)(β−3)

−(β− 3)

]n+4

i=0

=
(β+ n)(β−3)

Γ(β− 2)
. (28)
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By substituting the relations Equations (25)–(28) into Equation (24), we obtain

‖Aw−Aŵ‖ ≤
[
(β+ n + 3)(β)

Γ(β+ 1)
+E∗1

(
ζ(β)

Γ(β+ 1)
+

(β+ n)(β−3)

Γ(β− 2)

)
+E∗2

(β+ n)(β−1)

Γ(β)

]
LG‖w− ŵ‖.

By Equation (19), we obtain ‖Aw−Aŵ‖ < ‖w− ŵ‖. Hence, A is a contraction. As a
result, according to the Banach fixed-point theorem, the three-point BCs for the discrete
FEBE Equation (2) has a unique solution.

Theorem 3. If the assumption (A2) holds, then the discrete FEBE with three-point BCs in Equation (2)
has at least one solution provided that

χ∗ ≤ Γ(β+ 1)[
(β+ n + 3)(β) +E∗1

(
ζ(β) + β(3)(β+ n)(β−3)

)
+E∗2β(β+ n)(β−1)

] , (29)

where χ∗ = max
{

χ(κ) : κ ∈ Nβ+n+3
β−4

}
.

Proof. Assume that D > 0 and consider the set V = {w ∈ B∗ : ‖w‖ ≤ D}. For proving
this theorem, let us claim that Amaps V in V. Now, for any w ∈ V, one has

|(Aw)(κ)| ≤ 1
Γ(β)

κ−β
∑
i=0

(κ − σ(i))(β−1)|gw(i)|

+ |E1(κ)|
[

1
Γ(β)

ζ−β
∑
i=0

(ζ − σ(i))(β−1) +
1

Γ(β− 3)

n+3

∑
i=0

(β+ n− σ(i))(β−4)

]
|gw(i)|

+
|E2(κ)|

Γ(β− 1)

n+1

∑
i=0

(β+ n− σ(i))(β−2)|gw(i)|,

where gw(κ) is given in Equation (22). Using (A2), we obtain

|gw(κ)| = |G(κ + β− 1, w(κ + β− 1))| ≤ χ(κ)|w(κ + β− 1)| ≤ χ∗‖w‖.

This further implies that

‖Aw‖ ≤ χ∗‖w‖
Γ(β)

κ−β
∑
i=0

(κ − σ(i))(β−1)

+ |E1(κ)|χ∗‖w‖
[

1
Γ(β)

ζ−β
∑
i=0

(ζ − σ(i))(β−1) +
1

Γ(β− 3)

n+3

∑
i=0

(β+ n− σ(i))(β−4)

]

+
|E2(κ)|χ∗‖w‖

Γ(β− 1)

n+1

∑
i=0

(β+ n− σ(i))(β−2).

(30)

Using the relations of Equations (25)–(28) in Equation (30), we obtain

‖Aw‖ ≤


(β+ n + 3)(β) +E∗1

(
ζ(β) + β(3)(β+ n)(β−3)

)
+E∗2β(β+ n)(β−1)

Γ(β+ 1)


χ∗D.

By Equation (29), we have ‖Aw‖ ≤ D, which implies that A : V → V. By using
the Brouwer fixed-point theorem, let us conclude that three-point BCs for discrete FEBE
Equation (2) has at least one solution.
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4. EB Stability Analysis

The Ulam-type stability for the proposed problem Equation (2) is studied in this
section. Now, we present some definitions of Ulam stability, and we also assume that gŵ(κ) :
C
(
Nβ+n+3
β−4 ,R

)
is a continuous function that satisfies gŵ(κ) = G(κ + β− 1, ŵ(κ + β− 1)).

Definition 2 ([46]). If for every function ŵ ∈ B∗ of
∣∣∣∆β

β−4ŵ(κ)− gŵ(κ)
∣∣∣ ≤ ε, κ ∈ Nn+3

0 , (31)

where ε > 0, there exists solution w ∈ B∗ of Equation (2) and positive number δ1 > 0 such that

|ŵ(κ)− w(κ)| ≤ δ1ε, κ ∈ Nβ+n+3
β−4 . (32)

Then, the discrete FEBE Equation (2) isHU stable. It will be GHU stable if we keep Φ(ε) =
δ1ε in inequality Equation (32), where Φ(ε) ∈ C(R+,R+) and Φ(0) = 0.

Definition 3 ([46]). If for every function ŵ ∈ B∗ of
∣∣∣∆β

β−4ŵ(κ)− gŵ(κ)
∣∣∣ ≤ εφ(κ + β− 1), κ ∈ Nn+3

0 , (33)

where ε > 0, there are solutions w ∈ B∗ of Equation (2) and positive number δ2 > 0 such that

|ŵ(κ)− w(κ)| ≤ δ2εφ(κ + β− 1), κ ∈ Nβ+n+3
β−4 . (34)

Then, the discrete FEBE Equation (2) is HUR stable. It will be GHUR stable if
φ(κ + β− 1) = εφ(κ + β− 1) in inequality Equations (33) and (34).

Remark 1 ([46]). A function ŵ ∈ B∗ is a solution to Equation (31) iff there exists Ψ : Nβ+n+3
β−4 →

R that satisifies, for κ ∈ Nn+3
0 , the following:

(A3) |Ψ(κ + β− 1)| ≤ ε,
(A4) ∆β

β−4ŵ(κ) = gŵ(κ) + Ψ(κ + β− 1).

Similarly, a remark can be constructed for inequality Equation (33).

Lemma 5. According to Remark 1, a function ŵ ∈ B∗ that corresponds to the discrete FEBE with
three-point BCs is expressed as:

{
∆β
β−4ŵ(κ) = gŵ(κ) + Ψ(κ + β− 1), κ ∈ Nn+3

0 ,

w(β− 4) = 0, ∆2w(β− 4) = 0, ∆w(β+ n) = 0, ∆3w(β+ n) + w(ζ) = 0,
(35)

satisfying the following inequality:

|ŵ(κ)− (Aŵ)(κ)| ≤ ε

Γ(β+ 1)
(β+ n + 3)(β),

where (Aŵ)(κ) is defined in Equation (21).
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Proof. By using Theorem 1, the corresponding BVP Equation (35) becomes

ŵ(κ) =
1

Γ(β)

κ−β
∑
i=0

(κ − σ(i))(β−1)gŵ(i)

+E1(κ)

[
1

Γ(β)

ζ−β
∑
i=0

(ζ − σ(i))(β−1) +
1

Γ(β− 3)

n+3

∑
i=0

(β+ n− σ(i))(β−4)

]
gŵ(i)

+
E2(κ)

Γ(β− 1)

n+1

∑
i=0

(β+ n− σ(i))(β−2)gŵ(i)

+
1

Γ(β)

κ−β
∑
i=0

(κ − σ(i))(β−1)Ψ(i + β− 1).

Using an operatorA and taking the modulus on both sides of the above solution along
with (A3), we obtain

|ŵ(κ)− (Aŵ)(κ)| ≤ ε

Γ(β+ 1)
(β+ n + 3)(β).

Theorem 4. Under the assumption (A1) with the inequality Equation (19), the discrete FEBE
Equation (2) isHU stable.

Proof. If ŵ(κ) is any solution of the inequality Equation (31), and w(κ) is a unique solution
to Equation (2), then

|ŵ(κ)− w(κ)| = |ŵ(κ)− (Aw)(κ)|
= |ŵ(κ)− (Aŵ)(κ) + (Aŵ)(κ)− (Aw)(κ)|
≤ |ŵ(κ)− (Aŵ)(κ)|+ |(Aŵ)(κ)− (Aw)(κ)|. (36)

By using Lemma 5 in Equation (36), we have

|ŵ(κ)− w(κ)| ≤ ε

Γ(β+ 1)
(β+ n + 3)(β)

+

[
(β+ n + 3)(β)

Γ(β+ 1)
+E∗1

(
ζ(β)

Γ(β+ 1)
+

(β+ n)(β−3)

Γ(β− 2)

)
+E∗2

(β+ n)(β−1)

Γ(β)

]
LG‖ŵ− w‖.

This further implies that

‖ŵ− w‖ ≤ δ1ε,

where

δ1 =
(β+ n + 3)(β)

Γ(β+ 1)−LG
[
(β+ n + 3)(β) +E∗1

(
ζ(β) + β(3)(β+ n)(β−3)

)
+E∗2β(β+ n)(β−1)

] .

Hence, the solution of Equation (2) isHU stable.

Remark 2. If Φ(ε) = δ1ε such that Φ(0) = 0, then we have

‖ŵ− w‖ ≤ Φ(ε).

Hence, the solution of Equation (2) is GHU stable.

For our next result, the following hypotheses hold:
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(A5) For an increasing function φ ∈ Nβ+n+3
β−4 → R+, there exists λ > 0 such that, for

κ ∈ Nn+3
0

(i)
ε

Γ(β)

κ−β
∑

i=0
(κ − σ(i))(β−1)φ(i + β− 1) ≤ λεφ(κ + β− 1),

(ii)
1

Γ(β)

κ−β
∑

i=0
(κ − σ(i))(β−1)φ(i + β− 1) ≤ λφ(κ + β− 1).

Lemma 6. For the three-point BCs of discrete FEBE Equation (35), the following inequality holds:

|ŵ(κ)− (Aŵ)(κ)| ≤ λεφ(κ + β− 1),

where (Aŵ)(κ) is defined in Equation (21).

Proof. From inequality Equation (33), for κ ∈ Nβ+n+3
β−4 , we obtain a function ∆β

β−4ŵ(κ) =

gŵ(κ) + Ψ(κ + β− 1), |Ψ(κ + β− 1)| ≤ εφ(κ + β− 1) and (A5)(i) such that

|ŵ(κ)− (Aŵ)(κ)| ≤ λεφ(κ + β− 1).

Theorem 5. Under the hypothesis (A1) with the inequality Equation (19), the discrete FEBE
Equation (2) isHUR stable.

Proof. By using a similar procedure of Theorem 4 together with Lemma 6 for κ ∈ Nβ+n+3
β−4 ,

we obtain

|ŵ(κ)− w(κ)| ≤λεφ(κ + β− 1)

+

[
(β+ n + 3)(β)

Γ(β+ 1)
+E∗1

(
ζ(β)

Γ(β+ 1)
+

(β+ n)(β−3)

Γ(β− 2)

)
+E∗2

(β+ n)(β−1)

Γ(β)

]
LG‖ŵ− w‖.

This further implies that

‖ŵ− w‖ ≤ δ2εφ(κ + β− 1),

where

δ2 =
λΓ(β+ 1)

Γ(β+ 1)−LG
[
(β+ n + 3)(β) +E∗1

(
ζ(β) + β(3)(β+ n)(β−3)

)
+E∗2β(β+ n)(β−1)

] .

Thus, the solution of Equation (2) isHUR stable.

Remark 3. If φ(κ + β− 1) = εφ(κ + β− 1), then we have

‖ŵ− w‖ ≤ δ2φ(κ + β− 1).

Hence, the solution of Equation (2) is GHUR stable.

5. Applications

Some illustrative examples are provided in this section to demonstrate the applicability
of our results in this research work.

Example 1. Suppose that β = 3.7, n = 2, and H(κ) = κ(13) with different values of ζ. Then, a
linear discrete FEBE with the three-point BCs of Equation (3) becomes

{
∆3.7
−0.3w(κ) = (κ + 2.7)(13), κ ∈ N5

0,
w(−0.3) = 0, ∆2w(−0.3) = 0, ∆w(5.7) = 0, ∆3w(5.7) + w(ζ) = 0.

(37)
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We shall apply Theorem 1 to find a solution w(κ) of Equation (37) that can be expressed as:

w(κ) =
1

Γ(3.7)

κ−3.7

∑
i=0

(κ − σ(i))(2.7)(i + 2.7)(13)

+E1(κ)

[
1

Γ(3.7)

ζ−3.7

∑
i=0

(ζ − σ(i))(2.7) +
1

Γ(0.7)

5

∑
i=0

(5.7− σ(i))(−0.3)

]
(i + 2.7)(13)

+
E2(κ)

Γ(2.7)

3

∑
i=0

(5.7− σ(i))(1.7)(i + 2.7)(13),

(38)

where κ ∈ N8.7
−0.3, E1(κ) and E2(κ) are defined in Theorem 1. With the help of both Definition 1

and Lemma 4, we obtain the expression on right-hand side of Equation (38) as follows:

1
Γ(3.7)

κ−3.7

∑
i=0

(κ − σ(i))(2.7)(i + 2.7)(13) = ∆−3.7(κ + 2.7)(13)

=
Γ(14)

Γ(17.7)
· Γ(κ + 3.7)

Γ(κ − 13)
. (39)

Similarly, we find

1
Γ(3.7)

ζ−3.7

∑
i=0

(ζ − σ(i))(2.7)(i + 2.7)(13) =
Γ(14)

Γ(17.7)
· Γ(ζ + 3.7)

Γ(ζ − 13)
. (40)

1
Γ(2.7)

3

∑
i=0

(5.7− σ(i))(1.7)(i + 2.7)(13) =
Γ(14)

Γ(16.7)
· Γ(9.4)

Γ(−6.3)
. (41)

1
Γ(0.7)

5

∑
i=0

(5.7− σ(i))(−0.3)(i + 2.7)(13) =
Γ(14)

Γ(14.7)
· Γ(9.4)

Γ(−4.3)
. (42)

By substituting the expressions Equations (39)–(42) into Equation (38), we obtain Equation (37)’s
solution for κ ∈ N8.7

−0.3, in the form

w(κ) =

[
Γ(14)

Γ(17.7)
· Γ(κ + 3.7)

Γ(κ − 13)

]
+E2(κ)

[
Γ(14)

Γ(16.7)
· Γ(9.4)

Γ(−6.3)

]

+E1(κ)

[(
Γ(14)

Γ(17.7)
· Γ(ζ + 3.7)

Γ(ζ − 13)

)
+

(
Γ(14)

Γ(14.7)
· Γ(9.4)

Γ(−4.3)

)]
. (43)

On one hand, by choosing different values of ζ = 2.7, 3.7, 4.7, 5.7 in Equation (43), we obtain
different solutions for this problem, as seen in Figure 1a. On the other hand, Figure 1b shows
three-dimensional solution surface plots for various values κ and ζ. In addition, a numerical
experiment for our obtained solutions in Example 1 with step size 1 is presented in Table 1.
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Figure 1. (a) Solution curves for various values of ζ of a discrete FEBE with the three-point BCs of
Equation (37); (b) surface plots for different values of κ and ζ corresponding to Figure 1a.

Table 1. Numerical values of w(κ) for Example 1 with step size 1.

w(κ)

κζ 2.7 3.7 4.7 5.7

−0.3 4.3158 × 105 4.3158 × 105 4.3158 × 105 4.3158 × 105

0.7 −0.5233 × 105 −0.7356 × 105 −0.7410 × 105 −0.8078× 105

1.7 1.5354 × 105 1.0872 × 105 1.0384 × 105 0.8468 × 105

2.7 1.4988 × 105 0.8076 × 105 0.6918 × 105 0.3413 × 105

3.7 2.3044 × 105 1.3849 × 105 1.1846 × 105 0.6559 × 105

4.7 2.5123 × 105 1.3991 × 105 1.1014 × 105 0.3865 × 105

5.7 3.0038 × 105 1.7498 × 105 1.3450 × 105 0.4457 × 105

6.7 2.9459 × 105 1.6211× 105 1.1023 × 105 0.0290× 105

7.7 3.2506 × 105 1.9406 × 105 1.3037 × 105 0.0745× 105

8.7 2.3972 × 105 1.2029 × 105 0.4457 × 105 −0.9137 × 105

Example 2. Consider a discrete FEBE subject to three-point BCs:





∆π
π−4w(κ) =

1
(κ + π − 1) + 650

[
sin(w(κ + π − 1)) +

e−(κ+π−1) cos(κ + π − 1)
10
√

π(κ + π)

]
, κ ∈ N6

0,

w(π − 4) = 0, ∆2w(π − 4) = 0, ∆w(π + 3) = 0, ∆3w(π + 3) + w(2.1416) = 0.

(44)

Clearly, β = π, n = 3, ζ = 2.1416. Set G(κ, w(κ)) =
1

κ + 650

[
sin(w(κ)) +

e−t cos(κ)
10
√

π (1 + κ)

]

which is a continuous function for κ ∈ Nπ+6
π−4. Now, we show that Equation (44) has a unique

solution.
For any w, ŵ ∈ B∗, then

|G(κ, w(κ))− G(κ, ŵ(κ))| =
1

κ + 650

∣∣∣∣sin(w(κ)) +
e−t cos(κ)

10
√

π (1 + κ)
− sin(ŵ(κ))− e−t cos(κ)

10
√

π (1 + κ)

∣∣∣∣

=
1

κ + 650
|sin(w(κ))− sin(ŵ(κ))|

|G(κ, w(κ))− G(κ, ŵ(κ))| ≤ 0.0015|w(κ)− ŵ(κ)|.

So, we have LG = 0.0015, and G is Lipschitz continuous for for κ ∈ Nπ+6
π−4. Furthermore, the

inequality Equation (19) is satisfied with Λ ≈ 0.2944 < 1. Therefore, from Theorem 2, we conclude
that problem Equation (44) has a unique solution.
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Example 3. Assume that β = 3.6, n = 4, and ζ = 2.6 with G(κ, w(κ)) =
κ

100
e−

w2(κ)
100 . Then,

we obtain the following discrete FEBE Equation (2) with BCs:




∆3.6
−0.4w(κ) =

1
100

(κ + 2.6)e−
1

100 w2(κ+2.6), κ ∈ N7
0,

w(−0.4) = 0, ∆2w(−0.4) = 0, ∆w(7.6) = 0, ∆3w(7.6) + w(2.6) = 0.
(45)

Let a Banach space be B∗ :=
{

w(κ)|N10.6
−0.4 → R

}
. Suppose that D = 1000. To verify that

the hypotheses of Theorem 3 hold, it is noticeable that

DΓ(β+ 1)[
(β+ n + 3)(β) +E∗1

(
ζ(β) + β(3)(β+ n)(β−3)

)
+E∗2β(β+ n)(β−1)

] ≈ 2.1790.

Clearly, we have |G(κ, w(κ))| = 0.1060 ≤ 2.1790, whenever ‖w‖ ≤ 1000. Thus, the
problem Equation (45) has at least one solution.

Example 4. Consider the discrete FEBE with three-point BCs as follows:




∆3.2
−0.8w(κ) =

1
700

cos(w(κ + 2.2)) +
1

((κ + 2.2) + 950)
(κ + 2.2)(3.2), κ ∈ N5

0,

w(−0.8) = 0, ∆2w(−0.8) = 0, ∆w(5.2) = 0, ∆3w(5.2) + w(4.2) = 0.
(46)

Here, we have β = 3.2, n = 2, ζ = 4.2 and G(κ, w(κ)) =
1

700
cos(w(κ))+

1
(κ + 950)

κ(3.2)

for κ ∈ N8.2
−0.8. Now, we prove that Equation (46) isHU stable. Since (A1) holds for each κ ∈ N8.2

−0.8,
we obtain

|G(κ, ŵ(κ))− G(κ, w(κ))| =

∣∣∣∣
1

700
cos(ŵ(κ)) +

1
(κ + 950)

κ(3.2) − 1
700

cos(w(κ))− 1
(κ + 950)

κ(3.2)
∣∣∣∣

=
1

700
|cos(ŵ(κ))− cos(w(κ))|

|G(κ, ŵ(κ))− G(κ, w(κ))| ≤ 0.0014|ŵ(κ)− w(κ)|,

so LG = 0.0014 and G is Lipschitz continuous for κ ∈ N8.2
−0.8. Since

1[
(β+ n + 3)(β)

Γ(β+ 1)
+E∗1

(
ζ(β)

Γ(β+ 1)
+

(β+ n)(β−3)

Γ(β− 2)

)
+E∗2

(β+ n)(β−1)

Γ(β)

] ≈ 0.0080,

if LG = 0.0014 < 0.0080. Furthermore, to verify the stability results, from Theorem 4, we see
that Λ = 0.1758 < 1 . Hence, the solution of Equation (46) isHU stable with δ1 = 80.8287. In

addition, it is GHU stable from Remark 2. For illustration, we take ε = 0.6017 and ŵ(κ) =
κ(4)

350
.

We prove that Equation (31) holds. Indeed,
∣∣∣∆3.2
−0.8ŵ(κ)− G(κ + 2.2, ŵ(κ + 2.2))

∣∣∣

=

∣∣∣∣∣∆
3.2
−0.8ŵ(κ)− cos(ŵ(κ + 2.2))

700
− (κ + 2.2)(3.2)

κ + 952.2

∣∣∣∣∣

=

∣∣∣∣∣∆
3.2
−0.8

(
κ(4)

350

)
− 0.0014 cos

[
(κ + 2.2)(4)

350

]
− (κ + 2.2)(3.2)

κ + 952.2

∣∣∣∣∣. (47)
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By using Lemma 4, Equation (47) becomes
∣∣∣∆3.2
−0.8ŵ(κ)− G(κ + 2.2, ŵ(κ + 2.2))

∣∣∣

=

∣∣∣∣0.0736κ(0.8) − 0.0014 cos
[

Γ(κ + 3.2)
350Γ(κ − 0.8)

]
− Γ(κ + 3.2)

(κ + 952.2)Γ(κ)

∣∣∣∣

≤ 0.0736
[

Γ(κ + 1)
Γ(κ + 0.2)

]
+ 0.0014 +

1
(κ + 952.2)

[
Γ(κ + 3.2)

Γ(κ)

]

≤ 0.6017 ≤ ε, for κ ∈ N5
0.

Example 5. Consider a discrete FEBE subject to the three-point BCs:




∆π
π−4w(κ) =

1
700

sin(w(κ + π − 1)) +
1

310
(κ + π − 1)(π), κ ∈ N4

0,

w(π − 4) = 0, ∆2w(π − 4) = 0, ∆w(π + 1) = 0, ∆3w(π + 1) + w(2.1416) = 0.
(48)

In this example, β = π, n = 1, ζ = 2.1416. Set G(κ, w(κ)) =
1

700
sin(w(κ)) +

1
310

κ(π)

for κ ∈ Nπ+4
π−4. Now, we show that Equation (48) is HUR stable. For any ŵ, w ∈ B∗ and each

κ ∈ Nπ+4
π−4, we obtain

|G(κ, ŵ(κ))− G(κ, w(κ))| =

∣∣∣∣
1

700
sin(ŵ(κ)) +

1
310

κ(π) − 1
700

sin(w(κ))− 1
310

κ(π)

∣∣∣∣

=
1

700
|sin(ŵ(κ))− sin(w(κ))|

|G(κ, ŵ(κ))− G(κ, w(κ))| ≤ 0.0014|ŵ(κ)− w(κ)|.

This satisfies (A1) with LG = 0.0014, and G is Lipschitz continuous for κ ∈ Nπ+4
π−4. Further,

by assuming ε = 0.6519 and φ(κ + π − 1) = 1, we have

0.6519
Γ(π)

κ−π

∑
i=0

(κ − σ(i))(π−1)(1) =
(0.6519)Γ(κ + 1)

Γ(π + 1)Γ(κ + 1− π)

≤ (0.6519)Γ(5)
Γ(π + 1)Γ(5− π)

0.6519
Γ(π)

κ−π

∑
i=0

(κ − σ(i))(π−1)(1) ≤ 2.2955, κ ∈ N4
0.

Thus, (A5)(i) holds with λ = 3.5213, ε = 0.6519, and φ(κ + π − 1) = 1. Since

1[
(β+ n + 3)(β)

Γ(β+ 1)
+E∗1

(
ζ(β)

Γ(β+ 1)
+

(β+ n)(β−3)

Γ(β− 2)

)
+E∗2

(β+ n)(β−1)

Γ(β)

] ≈ 0.0137,

if LG = 0.0014 < 0.0137, from Theorem 5, we see that Λ = 0.1023 < 1. Hence, the solution
to Equation (48) is HUR stable with δ2 = 3.9224. For illustration, we take ε = 0.6519 and

ŵ(κ) =
κ(3)

40
. We prove that Equation (33) holds. Indeed,

∣∣∆π
π−4ŵ(κ)− G(κ + π − 1, ŵ(κ + π − 1))

∣∣

=

∣∣∣∣∆π
π−4ŵ(κ)− 1

700
sin(ŵ(κ + π − 1))− 1

310
(κ + π − 1)(π)

∣∣∣∣

=

∣∣∣∣∣∆
π
π−4

(
κ(3)

40

)
− 0.0014 sin

[
(κ + π − 1)(3)

40

]
− (κ + π − 1)(π)

310

∣∣∣∣∣. (49)

71



Symmetry 2021, 13, 789

Using Lemma 4, Equation (49) becomes
∣∣∆π

π−4ŵ(κ)− G(κ + π − 1, ŵ(κ + π − 1))
∣∣

=

∣∣∣∣0.1358κ(3−π) − 0.0014 sin
[

Γ(κ + π)

40Γ(κ + π − 3)

]
− Γ(κ + π)

310Γ(κ)

∣∣∣∣

≤ 0.1358
[

Γ(κ + 1)
Γ(κ − 2 + π)

]
+ 0.0014 +

Γ(κ + π)

310Γ(κ)

≤ 0.6519 ≤ εφ(κ + π − 1), for κ ∈ N4
0.

Furthermore, it is obviously GHUR stable from Remark 3.

6. Conclusions

Three-point BCs for a discrete FEBE have been investigated in this research work. For our
proposed problem involving a Riemann–Liouville discrete fractional operator, some important
conditions for the existence and stability theory have been developed. The required findings
have been obtained with the help of fixed-point techniques such as the contraction mapping
principle and Brouwer fixed-point theorem. Moreover, some new results for various types of
Ulam stability of the proposed three-point BCs for a discrete FEBE have been established with
the aid of nonlinear analysis. Some suitable examples have been provided and accompanied
with numerical experiment for our obtained solutions for various fractional-order values in a
graphical representation in order to study the effectiveness and applicability of our theoretical
results. All in all, our results are new and interesting for the elastic beam problem arising
from mathematical models of engineering and applied science applications.
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1. Introduction

Let 0 < Ωi < ∞ for i = 1, 2, · · · , n, and Ω = [0, Ω1]× [0, Ω2]× · · ·× [0, Ωn] ⊂ Rn. Define:

L(Ω) =

{
u | u is Lebesgue integrable on Ω and ‖u‖ =

∫

Ω
|u(x)|dx < ∞

}
.

Furthermore, the product space L(Ω)× L(Ω) is given by

L(Ω)× L(Ω) = { (u, v) | u, v are Lebesgue integrable on Ω and ‖(u, v)‖ < ∞},

where:
‖(u, v)‖ =

∫

Ω
|u(x)|dx +

∫

Ω
|v(x)|dx.

Clearly, both L(Ω) and L(Ω)× L(Ω) are Banach spaces.
Let Iα

k be the partial Riemann–Liouville fractional integral of order α ∈ R+ with
respect to xk ∈ [0, Ωk], with initial point zero [1]:

(Iα
k u)(x) =

1
Γ(α)

∫ xk

0
(xk − s)α−1u(x1, · · · , xk−1, s, xk+1, · · · , xn)ds

for k = 1, 2, · · · , n.
In particular:

(I0
k u)(x) = u(x).

Assume that λij(x) is the Lebesgue integrable and bounded on Ω for all i = 1, 2, · · · , n ∈
N and j = 1, 2, · · · , m ∈ N. In this paper, we begin to construct a unique solution in the
space L(Ω) using Babenko’s method and properties of the gamma function for the follow-
ing generalized Abel’s integral equation of the second kind with variable coefficients for
f ∈ L(Ω):

u(x) +
m

∑
j=1

{
λ1j(x)I

α1j
1

}{
λ2j(x)I

α2j
2

}
· · ·
{

λnj(x)I
αnj
n

}
u(x) = f (x), (1)
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where each fractional integral I
αkj
k carries its own weight function λkj(x), and all αij ≥ 0

satisfy a certain condition. Then, we further study the uniqueness of solutions in L(Ω) for:

u(x) +
m

∑
j=1

{
λ1j(x)I

α1j
1

}{
λ2j(x)I

α2j
2

}
· · ·
{

λnj(x)I
αnj
n

}
u(x) = g(x, u(x)), (2)

where g(x, y) is a mapping from Ω× R to R. Finally, the sufficient conditions are given for
the uniqueness of solutions in L(Ω)× L(Ω) to the symmetric system:





u(x) +
m

∑
j=1

{
λ1j(x)I

α1j
1

}{
λ2j(x)I

α2j
2

}
· · ·
{

λnj(x)I
αnj
n

}
u(x) = g1(x, u(x), v(x)),

v(x) +
m

∑
j=1

{
µ1j(x)I

β1j
1

}{
µ2j(x)I

β2j
2

}
· · ·
{

µnj(x)I
βnj
n

}
v(x) = g2(x, u(x), v(x)),

(3)

where both g1(x, y1, y2) and g2(x, y1, y2) are mappings from Ω × R × R to R, and all
coefficient functions µij(x) are Lebesgue integrable and bounded on Ω. Equations (1)–(3)
are new in the present studies, and have never been investigated before.

Clearly, Equation (1) turns out to be:

u(x)− cIα11 u(x) = f (x), α11 > 0 (4)

if n = m = 1 and λ11(x) = −c (constant). Equation (4) is obviously the classical Abel’s
integral equation of the second kind. In 1930, Hille and Tamarkin [2] derived its solution as

u(x) = f (x) + c
∫ x

0
(x− τ)α11−1Eα11,α11(c(x− τ)α11) f (τ)dτ,

where:

Eα,β(z) =
∞

∑
j=0

zj

Γ(αj + β)
, α, β > 0

is the Mittag–Leffler function.
There have been many analytic and numerical studies on Abel’s integral equation of

the second kind, including its variants and generalizations in distribution [3–11]. Cameron
and McKee [12] investigated the following Abel’s integral equation of the second kind,
numerically based on the construction and convergence analysis of the high-order prod-
uct integral:

u(x) +
∫ x

0
(x− s)−αk(x, s, u(s))ds = f (x),

where u(x) is the unknown function defined on the interval 0 ≤ x ≤ T < ∞ and the
kernel k(x, s, u(s)) is Lipschitz continuous in its third variable. Pskhu [13] constructed an
explicit solution for the generalized Abel’s integral equation with constant coefficients ck
for k = 1, 2, · · · , n:

u(x)−
n

∑
k=1

ck Iαk
k u(x) = f (x), αk > 0, x ∈ Ω, (5)

using the Wright function:

φ(α, β; z) =
∞

∑
j=0

zj

j!Γ(αj + β)
, α > −1,
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and convolution. Evidently, Equation (5) is a special case of our Equation (1) for particular
values of m, λij(x) and αij. In 2019, Li and Plowman [14] derived a convergent solution for
the following Abel’s integral equation:

u(x)−
(
a1(x)Iα1

1
)
· · · (an(x)Iαn

n )u(x) = f (x), x ∈ Ω, (6)

based on Babenko’s approach in the space L(Ω). Obviously, Equation (6) is also a particular
case of Equation (1) with m = 1, λ11(x) = −a1(x), λ21(x) = a2(x), · · · , λn1(x) = an(x),
and αi1 = αi for i = 1, 2, · · · , n.

In a wide range of scientific and engineering problems, the existence of a solution to
an integral equation is equivalent to the existence of a fixed point for a suitable and well-
defined mapping on spaces under consideration. Fixed points are therefore essential tools
in studying integral equations or systems arising from the real world. Banach’s contractive
principle provides a general condition ensuring that, if it is satisfied, the iteration of the
mapping produces a fixed point [15].

Babenko’s approach [16] is a very useful method in solving differential and integral
equations, which treat differential or integral operators like variables. The method itself
is similar to the Laplace transform when dealing with differential or integral equations
with constant coefficients, but it also works for certain equations with distributions, such
as x−1.5

+ and δ(0.5)(x), whose Laplace transforms do not exist in the classical sense [6,8]. As
an example, we are going to solve Equation (4) using this technique. Clearly:

u(x)− cIα11 u(x) = (1− cIα11)u(x) = f (x).

Informally:

u(x) = (1− cIα11)−1 f (x) =
∞

∑
k=0

(cIα11)k f (x) =
∞

∑
k=0

ck Iα11k f (x)

= f (x) +
∞

∑
k=0

ck+1 Iα11k+α11 f (x)

= f (x) + c
∞

∑
k=0

ck

Γ(α11k + α11)

∫ x

0
(x− τ)α11k+α11−1 f (τ)dτ

= f (x) + c
∫ x

0
(x− τ)α11−1

∞

∑
k=0

ck(x− τ)α11k

Γ(α11k + α11)
f (τ)dτ

= f (x) + c
∫ x

0
(x− τ)α11−1Eα11,α11(c(x− τ)α11) f (τ)dτ,

which coincides with Hille and Tamarkin’s result provided above.

2. The Main Results

In this section, we are going to present our main outcomes with several examples for
the illustration of the key theorems.

Theorem 1. Assume that f ∈ L(Ω), αij ≥ 0, and λij(x) is Lebesgue integrable and bounded on
Ω for all i = 1, 2, · · · , n and j = 1, 2, · · · , m. In addition, there exists 1 ≤ i ≤ n such that:

α = min{αi1, · · · , αim} ≥ 1.

Then, Equation (1) has a unique solution in the space L(Ω):

u(x) =
∞

∑
k=0

(−1)k ∑
k1+···+km=k

(
k

k1, · · · , km

)

(
λ11(x)Iα11

1 · · · λn1(x)Iαn1
n
)k1 · · ·

(
λ1m(x)Iα1m

1 · · · λnm(x)Iαnm
n
)km f (x). (7)
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Proof. Equation (1) turns out to be:
(

1 +
m

∑
j=1

{
λ1j(x)I

α1j
1

}{
λ2j(x)I

α2j
2

}
· · ·
{

λnj(x)I
αnj
n

})
u(x) = f (x).

Thus, by Babenko’s approach:

u(x) =

(
1 +

m

∑
j=1

{
λ1j(x)I

α1j
1

}{
λ2j(x)I

α2j
2

}
· · ·
{

λnj(x)I
αnj
n

})−1

f (x)

=
∞

∑
k=0

(−1)k

(
m

∑
j=1

{
λ1j(x)I

α1j
1

}{
λ2j(x)I

α2j
2

}
· · ·
{

λnj(x)I
αnj
n

})k

f (x)

=
∞

∑
k=0

(−1)k ∑
k1+···+km=k

(
k

k1, · · · , km

)

(
λ11(x)Iα11

1 · · · λn1(x)Iαn1
n
)k1 · · ·

(
λ1m(x)Iα1m

1 · · · λnm(x)Iαnm
n
)km f (x).

Obviously, there exists M > 0 such that:

sup
x∈Ω
|λij(x)| ≤ M

for all i = 1, 2, · · · , n and j = 1, 2, · · ·m.
Let:

ω = max{Ω1, Ω2, · · · , Ωn},
and:

Φi,αij(x) =
(xi)

αij−1
+

Γ(αij)
.

Then, it follows from reference [17] that:
∥∥∥I

αij
i

∥∥∥ = sup
‖g‖≤1

∥∥∥I
αij
i g
∥∥∥ = sup

‖g‖≤1

∥∥∥Φi,αij ∗ g
∥∥∥ ≤ sup

‖g‖≤1

∥∥∥Φi,αij

∥∥∥‖g‖ ≤
∥∥∥Φi,αij

∥∥∥

=
∫

Ω

(xi)
αij−1
+

Γ(αij)
dx1 · · · dxn

= Ω1 · · ·Ωi−1
Ω

αij
i

Γ(αij + 1)
Ωi+1 · · ·Ωn ≤ ωn−1 ωαij

Γ(αij + 1)
.

Therefore:

u(x) ≤
∞

∑
k=0

(Mn)k ∑
k1+···+km=k

(
k

k1, · · · , km

)∥∥∥Iα11k1+···+α1mkm
1

∥∥∥ · · ·
∥∥∥Iαn1k1+···+αnmkm

n

∥∥∥‖ f ‖.

Clearly:

∥∥∥Iα11k1+···+α1mkm
1

∥∥∥ ≤ ωn−1 ωα11k1+···+α1mkm

Γ(α11k1 + · · ·+ α1mkm + 1)
,

· · · ,
∥∥∥Iαn1k1+···+αnmkm

n

∥∥∥ ≤ ωn−1 ωαn1k1+···+αnmkm

Γ(αn1k1 + · · ·+ αnmkm + 1)
.
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Since there exists 1 ≤ i ≤ n such that:

α = min{αi1, · · · , αim} ≥ 1,

which infers that:
Γ(αi1k1 + · · ·+ αimkm + 1) ≥ Γ(αk + 1)

for all k = 0, 1, · · · by noting that Γ(x + 1) is an increasing function if x ≥ 1. Furthermore:

Γ(αs1k1 + · · ·+ αsmkm + 1) ≥ 4
5

for s = 1, 2, · · · , i− 1, i + 1, · · · , n and k = 0, 1, · · · , since Γ(x + 1) ≥ 4/5 for all x ≥ 0. Let:

W = max
1≤i≤n, 1≤j≤m

{ωαij}.

Applying the identity:

∑
k1+k2+···+km=k

(
k

k1, k2, · · · , km

)
= mk,

we derive that:

‖u(x)‖ ≤ ωn2−n
(

5
4

)n−1

‖ f ‖
∞

∑
k=0

(MnmWn)k

Γ(αk + 1)

= ωn2−n
(

5
4

)n−1

‖ f ‖Eα,1(MnmWn) < ∞. (8)

We still need to show that Equation (7) is a solution of Equation (1). Indeed:

∞

∑
k=0

(−1)k

(
m

∑
j=1

{
λ1j(x)I

α1j
1

}{
λ2j(x)I

α2j
2

}
· · ·
{

λnj(x)I
αnj
n

})k

f (x)

= f (x) +
∞

∑
k=1

(−1)k

(
m

∑
j=1

{
λ1j(x)I

α1j
1

}{
λ2j(x)I

α2j
2

}
· · ·
{

λnj(x)I
αnj
n

})k

f (x),

and:

∞

∑
k=1

(−1)k

(
m

∑
j=1

{
λ1j(x)I

α1j
1

}{
λ2j(x)I

α2j
2

}
· · ·
{

λnj(x)I
αnj
n

})k

f (x)

+
∞

∑
k=0

(−1)k

(
m

∑
j=1

{
λ1j(x)I

α1j
1

}{
λ2j(x)I

α2j
2

}
· · ·
{

λnj(x)I
αnj
n

})
·

(
m

∑
j=1

{
λ1j(x)I

α1j
1

}{
λ2j(x)I

α2j
2

}
· · ·
{

λnj(x)I
αnj
n

})k

f (x) = 0,

by noting that all of the above series are uniformly and absolutely convergent in the space
L(Ω) due to inequality (8).

Evidently, the uniqueness immediately follows from the fact that the homogeneous
integral equation:

u(x) +
m

∑
j=1

{
λ1j(x)I

α1j
1

}{
λ2j(x)I

α2j
2

}
· · ·
{

λnj(x)I
αnj
n

}
u(x) = 0

only has solution zero by Babenko’s method. This completes the proof of Theorem 2.
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Remark 1. Note that Γ(x + 1) is not a monotone increasing function on [0, 1] since Γ(1) = 1,
Γ(1.5) =

√
π/2 and Γ(2) = 1.

Example 1. Abel’s integral equation:

u(x1, x2) + x1 I0.5
1 x2

1 I2u(x1, x2) + x0.1
2 I1.5

2 u(x1, x2) = 1

has the following convergent solution in L(Ω):

u(x) = 1 +
∞

∑
k=1

(−1)k
k

∑
j=0

(
k
j

)
Bj Ak−jΦ1,1+3.5jΦ2,1+j+(k−j)1.6,

where the coefficients Bj and Ak−j are given below.

Proof. Clearly:
α = min{α21, α22} = min{1, 1.5} = 1,

and functions x1, x2
1 and x0.1

2 are Lebesgue integrable and bounded on Ω. By Theorem 1:

u(x) = 1 +
∞

∑
k=1

(−1)k
(

x1 I0.5
1 x2

1 I2 + x0.1
2 I1.5

2

)k
1

= 1 +
∞

∑
k=1

(−1)k
k

∑
j=0

(
k
j

)
(x1 I0.5

1 x2
1 I2)

j(x0.1
2 I1.5

2 )k−j1.

Obviously:

(x0.1
2 I1.5

2 )01 = 1,

(x0.1
2 I1.5

2 )1 = (x0.1
2 I1.5

2 )Φ2,1 = x0.1
2 (Φ2,1.5 ∗Φ2,1) = x0.1

2 Φ2,2.5 =
(x2)

1.6
+

Γ(2.5)

=
Γ(2.6)
Γ(2.5)

Φ2,2.6,

(x0.1
2 I1.5

2 )21 = (x0.1
2 I1.5

2 )
Γ(2.6)
Γ(2.5)

Φ2,2.6 =
Γ(2.6)Γ(4.2)
Γ(2.5)Γ(4.1)

Φ2,4.2,

(x0.1
2 I1.5

2 )31 = (x0.1
2 I1.5

2 )
Γ(2.6)Γ(4.2)
Γ(2.5)Γ(4.1)

Φ2,4.2 =
Γ(2.6)Γ(4.2)Γ(5.8)
Γ(2.5)Γ(4.1)Γ(5.7)

Φ2,5.8

· · · ,

(x0.1
2 I1.5

2 )k−j1 =
Γ(2.6)Γ(4.2) · · · Γ(1 + (k− j)1.6)

Γ(2.5)Γ(4.1) · · · Γ(0.9 + (k− j)1.6)
Φ2,1+(k−j)1.6,

I j
2(x0.1

2 I1.5
2 )k−j1 =

Γ(2.6)Γ(4.2) · · · Γ(1 + (k− j)1.6)
Γ(2.5)Γ(4.1) · · · Γ(0.9 + (k− j)1.6)

Φ2,1+j+(k−j)1.6,

= Ak−jΦ2,1+j+(k−j)1.6,

for k− j = 1, 2, · · · , and:

Ak−j =





Γ(2.6)Γ(4.2) · · · Γ(1 + (k− j)1.6)
Γ(2.5)Γ(4.1) · · · Γ(0.9 + (k− j)1.6)

if k− j ≥ 1,

1 if k− j = 0.
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On the other hand:

(x1 I0.5
1 x2

1)
0 = 1,

x1 I0.5
1 x2

1 = x1Φ1,0.5 ∗ Γ(3)Φ1,3 =
Γ(3)Γ(4.5)

Γ(3.5)
Φ1,4.5,

(x1 I0.5
1 x2

1)
2 =

Γ(3)Γ(4.5)
Γ(3.5)

(x1 I0.5
1 x2

1)Φ1,4.5 =
Γ(3)Γ(6.5)Γ(8)

Γ(3.5)Γ(7)
Φ1,8,

(x1 I0.5
1 x2

1)
3 =

Γ(3)Γ(6.5)Γ(10)Γ(11.5)
Γ(3.5)Γ(7)Γ(10.5)

Φ1,11.5,

· · · ,

(x1 I0.5
1 x2

1)
j =

Γ(3)Γ(6.5) · · · Γ(3 + 3.5(j− 1))Γ(1 + 3.5j)
Γ(3.5)Γ(7) · · · Γ(3.5j)

Φ1,1+3.5j,

= BjΦ1,1+3.5j,

for j = 1, 2, · · · , and:

Bj =





Γ(3)Γ(6.5) · · · Γ(3 + 3.5(j− 1))Γ(1 + 3.5j)
Γ(3.5)Γ(7) · · · Γ(3.5j)

if j ≥ 1,

1 if j = 0.

Therefore:

u(x) = 1 +
∞

∑
k=1

(−1)k
k

∑
j=0

(
k
j

)
Bj Ak−jΦ1,1+3.5jΦ2,1+j+(k−j)1.6.

This completes the proof of Example 1.

Using Banach’s fixed point theorem, we are now ready to show the uniqueness of
solutions in L(Ω) for Equation (2).

Theorem 2. Suppose that αij ≥ 0, and λij(x) is Lebesgue integrable and bounded on Ω for
i = 1, 2, · · · , n and j = 1, 2, · · · , m, and there exists 1 ≤ i ≤ n such that:

α = min{αi1, · · · , αim} ≥ 1.

Let g(x, y) be defined on Ω× R satisfying:

|g(x, y1)− g(x, y2)| ≤ C|y1 − y2|,

and g(x, 0) ∈ L(Ω). Furthermore, assume that:

q = Cωn2−n
(

5
4

)n−1
Eα,1(MnmWn) < 1,

where ω, M, W are given in Theorem 1 as

ω = max{Ω1, Ω2, · · · , Ωn}, sup
x∈Ω
|λij(x)| ≤ M,

W = max
1≤i≤n, 1≤j≤m

{ωαij}.

Then, Equation (2) has a unique solution in L(Ω).

Proof. Let u ∈ L(Ω). We first show that g(x, u(x)) ∈ L(Ω). Indeed:

|g(x, u(x))| = |g(x, u)− g(x, 0) + g(x, 0)| ≤ |g(x, u)− g(x, 0)|+ |g(x, 0)|
≤ C|u|+ |g(x, 0)|,
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which implies that:
∫

Ω
|g(x, u(x))|dx ≤ C

∫

Ω
|u|dx +

∫

Ω
|g(x, 0)|dx < ∞.

Define a nonlinear mapping T on L(Ω) by

T(u) =
∞

∑
k=0

(−1)k ∑
k1+···+km=k

(
k

k1, · · · , km

)

(
λ11(x)Iα11

1 · · · λn1(x)Iαn1
n
)k1 · · ·

(
λ1m(x)Iα1m

1 · · · λnm(x)Iαnm
n
)km g(x, u).

Clearly:

‖T(u)‖ ≤ ωn2−n
(

5
4

)n−1
Eα,1(MnmWn)

∫

Ω
|g(x, u(x))|dx < ∞.

Thus, T is a mapping from L(Ω) to L(Ω). We now need to show that T is a contractive
mapping. In fact:

‖T(u)− T(v)‖ ≤ ωn2−n
(

5
4

)n−1
Eα,1(MnmWn)

∫

Ω
|g(x, u)− g(x, v)|dx

≤ Cωn2−n
(

5
4

)n−1
Eα,1(MnmWn)‖u− v‖ = q‖u− v‖,

which claims that T is contractive since q < 1. This completes the proof of Theorem 2.

Example 2. Let Ω = [0, 1]× [0, 1]× [0, 1]. Then, the generalized Abel’s integral equation:

u(x1, x2, x3) + x1 I0.5
1 sin(x1x2)I1.7

2 cos(x2
3 + 1)I0.2

3 u(x1, x2, x3)

−x3
1 I1.5

1 x0.5
2 I2u(x1, x2, x3) =

1
7π

arctan(x2
1 + x2

2) cos(u(x1, x2, x3) + 1) (9)

has a unique solution in L(Ω).

Proof. Clearly, m = 2, ω = max{1, 1, 1} = 1, W = max
1≤i≤n, 1≤j≤m

{ωαij} = 1, and:

α = min{1.7, 1} = 1.

Furthermore:

|x1| ≤ 1, | sin(x1x2)| ≤ 1, | cos(x2
3 + 1)| ≤ 1,

| − x3
1| ≤ 1, |x0.5

2 | ≤ 1,

on Ω. Therefore, M = 1. Obviously:

g(x1, x2, x3, y) =
1

7π
arctan(x2

1 + x2
2) cos(y + 1),

g(x1, x2, x3, 0) ∈ L(Ω), and:

|g(x1, x2, x3, y1)− g(x1, x2, x3, y2)| ≤
1

7π

π

2
|y1 − y2| =

1
14
|y1 − y2|.
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It remains to compute the value of q:

q =
1
14

(
5
4

)3−1
E1,1(2) =

25
224

∞

∑
j=0

2j

j!

=
25
224

(
1 + 2 +

2 · 2
1 · 2 +

2 · 2 · 2
1 · 2 · 3 +

2 · 2 · 2 · 2
1 · 2 · 3 · 4 +

2 · 2 · 2 · 2 · 2
1 · 2 · 3 · 4 · 5 + · · ·

)

≤ 25
224

(
1 + 2 + 2 +

(
1
3
+

(
2
3

)0
)
+

(
2
3

)1
+

(
2
3

)2
+ · · ·

)
=

625
672

< 1.

By Theorem 2, Equation (9) has a unique solution in L(Ω). This completes the proof
of Example 2.

Finally, we study the uniqueness of solutions of in-symmetry system (3) in the product
space L(Ω)× L(Ω).

Theorem 3. Suppose that αij ≥ 0, βij ≥ 0, and λij(x), µij(x) are Lebesgue integrable and
bounded on Ω for i = 1, 2, · · · , n and j = 1, 2, · · · , m, and there exists 1 ≤ i1, i2 ≤ n such that:

α = min{αi11, · · · , αi1m} ≥ 1,

β = min{βi21, · · · , βi2m} ≥ 1.

Let g1(x, y1, y2) and g2(x, y1, y2) be defined on Ω× R× R satisfying:

|g1(x, y1, y2)− g1(x, z1, z2)| ≤ C1|y1 − z1|+ C2|y2 − z2|,
|g2(x, s1, s2)− g2(x, t1, t2)| ≤ C3|s1 − t1|+ C4|s2 − t2|,

and g1(x, 0, 0), g2(x, 0, 0) ∈ L(Ω). Furthermore, assume that:

q = max{C1, C2}ωn2−n
(

5
4

)n−1
Eα,1(Mn

1 mWn
1 )

+max{C3, C4}ωn2−n
(

5
4

)n−1
Eβ,1(Mn

2 mWn
2 ) < 1,

where M1, W1 and M2, W2 are given as

sup
x∈Ω
|λij(x)| ≤ M1, W1 = max

1≤i≤n, 1≤j≤m
{ωαij},

sup
x∈Ω
|µij(x)| ≤ M2, W2 = max

1≤i≤n, 1≤j≤m
{ωβij}.

Then, the in-symmetry system (3) has a unique solution in L(Ω)× L(Ω).

Proof. Let u, vs. ∈ L(Ω). We first show that g1(x, u(x), v(x)) ∈ L(Ω). Indeed:

|g1(x, u(x), v(x))| = |g1(x, u, v)− g1(x, 0, 0) + g1(x, 0, 0)|
≤ |g1(x, u, v)− g1(x, 0, 0)|+ |g1(x, 0, 0)|
≤ C1|u|+ C2|v|+ |g1(x, 0, 0)|,

which implies that:
∫

Ω
|g1(x, u(x), v(x))|dx ≤ C1

∫

Ω
|u|dx + C2

∫

Ω
|v|dx +

∫

Ω
|g1(x, 0, 0)|dx < ∞.

Similarly, g2(x, u(x), v(x)) ∈ L(Ω).
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Define a mapping T on L(Ω)× L(Ω) as

T(u, v) = (T1(u, v), T2(u, v)),

where:
‖T(u, v)‖ = ‖T1(u, v)‖+ ‖T2(u, v)‖,

and:

T1(u, v) =
∞

∑
k=0

(−1)k ∑
k1+···+km=k

(
k

k1, · · · , km

)

(
λ11(x)Iα11

1 · · · λn1(x)Iαn1
n
)k1 · · ·

(
λ1m(x)Iα1m

1 · · · λnm(x)Iαnm
n
)km g1(x, u, v),

and symmetrically:

T2(u, v) =
∞

∑
k=0

(−1)k ∑
k1+···+km=k

(
k

k1, · · · , km

)

(
µ11(x)Iβ11

1 · · · µn1(x)Iβn1
n

)k1 · · ·
(

µ1m(x)Iβ1m
1 · · · µnm(x)Iβnm

n

)km
g2(x, u, v).

By inequality (8):

‖T1(u, v)‖ ≤ ωn2−n
(

5
4

)n−1
Eα,1(Mn

1 mWn
1 )
∫

Ω
|g1(x, u(x), v(x))|dx < ∞,

‖T2(u, v)‖ ≤ ωn2−n
(

5
4

)n−1
Eβ,1(Mn

2 mWn
2 )
∫

Ω
|g2(x, u(x), v(x))|dx < ∞.

Hence, T is a mapping from L(Ω)× L(Ω) to L(Ω)× L(Ω). It remains to show that T
is contractive. In fact:

‖T(u1, v1)− T(u2, v2)‖ = ‖T1(u1, v1)− T1(u2, v2)‖+ ‖T2(u1, v1)− T(u2, v2)‖.

Clearly:

‖T1(u1, v1)− T1(u2, v2)‖ ≤ max{C1, C2}ωn2−n
(

5
4

)n−1
Eα,1(Mn

1 mWn
1 ) ·

‖(u1, v1)− (u2, v2)‖,

and:

‖T2(u1, v1)− T2(u2, v2)‖ ≤ max{C3, C4}ωn2−n
(

5
4

)n−1
Eβ,1(Mn

2 mWn
2 ) ·

‖(u1, v1)− (u2, v2)‖.

Thus:
‖T(u1, v1)− T(u2, v2)‖ ≤ q‖(u1, v1)− (u2, v2)‖,

where:

q = max{C1, C2}ωn2−n
(

5
4

)n−1
Eα,1(Mn

1 mWn
1 )

+max{C3, C4}ωn2−n
(

5
4

)n−1
Eβ,1(Mn

2 mWn
2 ) < 1.

This completes the proof of Theorem 3.

84



Symmetry 2021, 13, 1064

3. Conclusions

We studied the uniqueness of the solutions of the nonlinear Abel’s integral equations
of the second kind with variable coefficients and the in-symmetry system based on Banach’s
fixed point theorem and Babenko’s approach. The results are new in the current works of
integral equations, which are not feasible by any integral transforms. We also presented
several examples to demonstrate the use of our main theorems via some special functions
and convolutions.
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Abstract: A nonlinear quantum boundary value problem (q-FBVP) formulated in the sense of
quantum Caputo derivative, with fractional q-integro-difference conditions along with its fractional
quantum-difference inclusion q-BVP are investigated in this research. To prove the solutions’ existence
for these quantum systems, we rely on the notions such as the condensing functions and approximate
endpoint criterion (AEPC). Two numerical examples are provided to apply and validate our main
results in this research work.

Keywords: condensing function; approximate endpoint criterion; quantum integro-difference
BVP; existence

MSC: 34A08; 34A12

1. Introduction

It is a fact supported by many researchers that fractional calculus (FC) establishes
a flexible extension for the classical one to arbitrary orders. FC has attracted particular
attention from many researchers of mathematics, applied sciences, and engineering because
of the various important applications of this field in modeling certain scientific phenomena
and complex physical systems. Modeling systems using fractional derivatives can provide
a good interpretation of the physical behavior of the studied systems due to the nonlocality
and memory effects that have been exhibited in some systems. Some studies have been
conducted on the mathematical analysis of FC and its applications such as European op-
tion pricing models [1], p-Laplacian nonperiodic nonlinear boundary value problem [2],
nonlocal Cauchy problem [3], economic models involving time fractal [4], complex in-
tegral [5], incompressible second-grade fluid models [6], complex-valued functions of a
real variable [7], and separated homotopy method [8]. Likewise, quantum calculus is a
corresponding field of the standard infinitesimal one without the concept of limits. In spite
of the long history that they already have, both theories are in the field of mathematical
analysis, the investigation of their properties has emerged not so long ago. The quantum
fractional calculus (q-fractional calculus), considered as the fractional correspondence of
the q-calculus, was initially proposed by Jackson [9–11]. Researchers such as Al-Salam [12]
and Agarwal [13] gave a great boost to the fractional q-calculus and obtained important
theoretical results. Based on these results, the fractional q-calculus has emerged as an
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instrument with great potential in the field of applications [14–17]. Even in recent years,
many articles have been appeared on quantum integro-difference boundary value problems
(BVPs), which are valuable abstract tools for modeling many phenomena in various fields
of science [18–30].

Asawasamrit et al. [31] provided a multi-term q-integro-difference equation subject to
nonlocal multi-quantum integral conditions displayed as





R
q1
D

ς
0+}(r) = φ(r,}(r), R

q2
I

σ1
0+}(r)), (r ∈ [0, K]),

}(0) = 0, νR
q3
Iσ2

0+}(η1) =
R
q4
I

σ3
0+}(η2),

where q1, q2, q3, q4 ∈ (0, 1), ς ∈ (1, 2), σ1, σ2, σ3 > 0, η1, η2 ∈ (0, K) and ν ∈ R. The approach
implemented by them to arrive at the existence property of solutions for the suggested
q-BVP is based on the fixed-point techniques [31]. After that in 2015, Etemad, Ettefagh and
Rezapour [32] concerned the three-term q-difference FBVP

(C
qD

ς
0+})(r) = w(r,}(r), C

qD
1
0+}(r)),

with four-point q-integro-difference conditions

λ1}(0) + ζ1
C

qD
1
0+}(0) = m1

R
qI

β
0+}(ξ1) = m1

∫ ξ1

0

(ξ1 − qv)(β−1)

Γq(β)
}(v)dqv,

λ2}(1) + ζ2
C

qD
1
0+}(1) = m2

R
qI

β
0+}(ξ2) = m2

∫ ξ2

0

(ξ2 − qv)(β−1)

Γq(β)
}(v)dqv,

where 0 ≤ r ≤ 1, 1 < ς ≤ 2, q ∈ (0, 1), β ∈ (0, 2], λ1, λ2, ζ1, ζ2, m1, m2 ∈ R and ξ1, ξ2 ∈
(0, 1) with ξ1 < ξ2. Ntouyas and Samei [33] turned to studying the solutions’ existence for
the q-integro-difference FBVP

C
qD

ς
0+h(r) = w(r, h(r), (φ1h)(r), (φ2h)(r), C

qD
ς1
0+h(r), C

qD
ς2
0+h(r), . . . , C

qD
ςn
0+h(r)),

via boundary conditions h(0) + ah(1) = 0 and h′(0) + bh′(1) = 0, in which r ∈ [0, 1],
q ∈ (0, 1), 1 < ς < 2, ςk ∈ (0, 1) with k = 1, 2, . . . , n, a, b 6= −1, φm are defined by the rule

(φmh)(r) =
∫ r

0
µm(r, v)h(v)dqv for m = 1, 2 and w : [0, 1]×Rn+3 → R is assumed to be

continuous with respect to all (n + 4) variables [33].
Stimulated by the above research studies, the following proposed nonlinear Caputo

fractional quantum BVP is furnished with the fractional quantum integro-conditions:




C
qD

ς
0+}(r) = ϕ∗(r,}(r)), (ς ∈ (2, 3), q ∈ (0, 1)),

}(0) + }(ξ) = `1
R
qI

σ
0+}(1), (`1 ∈ R>0),

C
qD

$
0+}(0) +

C
qD

$
0+}(ξ) = `2

R
qI

σ
0+
[C

qD
$
0+}
]
(1), (`2 ∈ R>0),

C
qD

1
0+}(0) +

C
qD

1
0+}(ξ) = `3

R
qI

σ
0+
[C

qD
1
0+}
]
(1), (`3 ∈ R>0),

(1)

along with its inclusion version given by





C
qD

ς
0+}(r) ∈ T∗(r,}(r)), (ς ∈ (2, 3), q ∈ (0, 1)),

}(0) + }(ξ) = `1
R
qI

σ
0+}(1), (`1 ∈ R>0),

C
qD

$
0+}(0) +

C
qD

$
0+}(ξ) = `2

R
qI

σ
0+
[C

qD
$
0+}
]
(1), (`2 ∈ R>0),

C
qD

1
0+}(0) +

C
qD

1
0+}(ξ) = `3

R
qI

σ
0+
[C

qD
1
0+}
]
(1), (`3 ∈ R>0),

(2)
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where r ∈ [0, 1], ξ ∈ (0, 1), $ ∈ (1, 2) and σ > 0. Two operators C
qD

(·)
0+ and R

qI
(·)
0+ represent

the Caputo quantum derivative (CpQD) and the Riemann-Liouville quantum integral
(RLQI). Furthermore, continuous single-valued function ϕ∗ : [0, 1]×R → R and multi-
valued function T∗ : [0, 1]×R→ P(R) are assumed to be arbitrary equipped with some
required specifications that will be explained subsequently. In comparison to other re-
searches on the quantum difference BVPs that were published in the literature, we here
deal with two abstract and extended structures of new fractional quantum difference
equations/inclusions via q-integro-difference conditions in which the existing property of
the relevant solutions is derived by terms of new notions of the functional analysis such as
the condensing maps and the measure of noncompactness and the approximate endpoint
criterion. These procedures on the suggested q-difference-BVPs (1) and (2) have been
implemented in a limited range of research studies on the quantum fractional modelings.
This yields the novelty and our main motivation to finalize this manuscript.

This research scheme is outlined as follows: We present the main concepts of the
quantum calculus in Section 2. Our main results caused by new fixed-point approaches
about solutions’ existence of quantum BVP (1) and (2) will be obtained in Section 3. In
Section 4, two numerical examples will be provided to support and validate our obtained
results. A conclusion about our research work will be stated in Section 5.

2. Fundamental Preliminaries

In this section, some important issues in the sense of q-calculus are discussed. We
suppose that 0 < q < 1. On the function (m1 −m2)

n given for n ∈ N0, its q-analogue is
defined by (m1 −m2)

(0) = 1, and

(m1 −m2)
(n) =

n−1

∏
k=0

(m1 −m2qk),

so that m1, m2 ∈ R and N0 := {0, 1, 2, . . . } [17]. Now, n = ς is a constant which is assumed
to be contained in R. Let us now display the follwoing q-analogue of the existing power
mapping (m1 −m2)

n in a q-fractional settings:

(m1 −m2)
(ς) = mς

1

∞

∏
n=0

1− (m2
m1

)qn

1− (m2
m1

)qς+n , (3)

for m1 6= 0. We note that by having m2 = 0, an equality m(ς)
1 = mς

1 is obtained
immediately [17]. For the given real number m1 ∈ R, a q-number [m1]q is expressed as:

[m1]q =
1− qm1

1− q
= qm1−1 + · · ·+ q + 1.

The q-Gamma function is illustrated using the following format:

Γq(r) =
(1− q)(r−1)

(1− q)r−1 , (4)

so that r ∈ R \ {0,−1,−2, . . .} [9,17]. It is notable that Γq(r + 1) = [r]qΓq(r) is valid [9].
A pseudo-code inspired by (3) and (4) is proposed in Algorithm 1 for computing various
Gamma function’s values in the proposed quantum settings.

Given a real-valued continuous function }, the quantum derivative of this function
can be formulated by:

( qD0+})(r) =
}(r)− }(qr)
(1− q)r

, (5)

and also ( qD0+})(0) = limr→0( qD0+})(r) [34]. Given a function }, the quantum deriva-
tive of this function can be extended to an arbitrary higher order by ( qD

n
0+})(r) =
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qD0+( qD
n−1
0+ })(r) for any n ∈ N [34]. Obviously, we notice that ( qD

0
0+})(r) = }(r).

Similarly, for computing this kind of q-derivative of }, in Algorithm 2, we propose a
pseudo-code inspired by (5).

Algorithm 1 Pseudo-code for Γq(ς):

Require: ς ∈ R\{0} ∪Z−, q ∈ (0, 1), n
1: w← 1
2: for l = 0 to n do
3: w← w((1− ql+1)/(1− qς+l))
4: end for
5: Γq(ς)← w/(1− q)ς−1

Ensure: Γq(ς)

Algorithm 2 Pseudo-code for qD0+}(r):

Require: q ∈ (0, 1), }(r), r
1: syms b
2: if r = 0 then
3: φ← lim((}(b)− }(q ∗ b))/((1− q)b), b, 0)
4: else
5: φ← (}(r)− }(q ∗ r))/((1− q) ∗ r)
6: end if

Ensure: qD0+}(r)

Given continuous map } : [0, m2]→ R, the quantum integral of this function can be
expressed as:

( qI0+})(r) =
∫ r

0
}(v)dqv = r(1− q)

∞

∑
k=0

}(rqk)qk, (r ∈ [0, m2]) (6)

provided the absolute convergence of the existing series holds [34]. The quantum integral
of } can be similarly extended like quantum derivative to an arbitrary higher order using
an iterative rule ( qI

n
0+})(r) = qI0+( qI

n−1
0+ })(r) for all n ≥ 1 [34]. Moreover, it is clear to

note that ( qI
0
0+})(r) = }(r). A pseudo-code caused by (6) is proposed in in Algorithm 3.

We now suppose that m1 ∈ [0, m2]. This time, the similar q-operator of } from m1 to m2 can
be defined in this case as follows:

∫ m2

m1

}(v)dqv = qI0+}(m2)− qI0+}(m1)

=
∫ m2

0
}(v)dqv−

∫ m1

0
}(v)dqv

= (1− q)
∞

∑
k=0

[m2}(m2qk)−m1}(m1qk)]qk, (7)

when the series exists [34]. A proposed pseudo-code caused by (7) is organized in
Algorithm 4 for such a purpose.

If we assume that a function } is continuous at r = 0, then ( qI0+ qD0+})(r) =
}(r) − }(0) is obtained [34]. Moreover, the equality ( qD0+ qI0+})(r) = }(r) holds for
each r. By considering a real number ς ≥ 0 in this case such that n − 1 < ς < n, i.e.,
n = [ς] + 1, for given function } ∈ CR([0,+∞)), the RLQI of } is introduced by:

R
qI

ς
0+}(r) =

1
Γq(ς)

∫ r

0
(r− qv)(ς−1)}(v)dqv, ς > 0
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provided that the above value is finite and R
qI

0
0+}(r) = }(r) [35,36]. Further, the semi-

group specification for the mentioned q-operator occurs such that R
qI

ς1
0+ (R

qI
ς2
0+})(r) =

R
qI

ς1+ς2
0+ }(r) for σ1, σ2 ≥ 0 [35]. For θ ∈ (−1, ∞),

R
qI

ς
0+rθ =

Γq(θ + 1)
Γq(θ + ς + 1)

rθ+ς, (r > 0).

It is evident that if we take θ = 0, then R
qI

ς
0+1(r) =

1
Γq(ς + 1)

rς for any r > 0. Given a

function } ∈ C(n)R ([0,+∞)), the CpQD for this function is formulated by:

C
qD

ς
0+}(r) =

1
Γq(n− ς)

∫ r

0
(r− qv)(n−ς−1)

qD
n
0+}(v)dqv,

if the integral exists [35,36]. The following property is valid:

C
qD

ς
0+rθ =

Γq(θ + 1)
Γq(θ − ς + 1)

rθ−ς, (r > 0).

It is evident that C
qD

ς
0+1(r) = 0 for any r > 0. For instance, by letting θ = 2, q = 0.5

and }(r) = r2, we have
C
0.5D

ς
0+r2 =

Γ0.5(3)
Γ0.5(3− ς)

r2−ς.

In this direction, the graph of the CpQD for the function }(r) = r2 for q = 0.5 is
available in Figure 1.

Algorithm 3 Pseudo-code for qI
ς
0+}(r):

Require: ς, n, }(r), r, q ∈ (0, 1)
1: P← 0
2: for k = 0 to n do
3: φ← (1− qk+1)ς−1

4: P← P + φ ∗ qk ∗ }(r ∗ qk)
5: end for
6: ψ← (rς ∗ (1− q) ∗ P)/(Γq(r))

Ensure: qI
ς
0+}(r)

Algorithm 4 Pseudo-code for
∫ m2

m1

}(v)dqv:

Require: }(r), m1, k, m2, q ∈ (0, 1)
1: P← 0
2: for l = 0 : k do
3: P← P + ql ∗ (m2 ∗ }(m2 ∗ ql)−m1 ∗ }(m1 ∗ ql))
4: end for
5: φ← (1− q) ∗ P

Ensure:
∫ m2

m1

}(v)dqv
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Figure 1. The graph of the Caputo q-derivative of }(r) = r2 for q = 0.5.

Lemma 1 ([37]). Assume that n− 1 < ς < n and } ∈ C(n)R ([0,+∞)). Then, we have:

(C
qI

ς
0+

C
qD

ς
0+})(r) = }(r)−

n−1

∑
k=0

rk

Γq(k + 1)
( qD

k
0+})(0).

According to the above lemma, the given fractional quantum differential equation,
C

qD
ς
0+}(r) = 0, has a general solution which is obtained by }(r) = µ̃0 + µ̃1r + µ̃2r2 + · · ·+

µ̃n−1rn−1 so that µ̃0, . . . , µ̃n−1 ∈ R, and n = [ς] + 1 [37]. It is worth noting that for each
continuous }, according to Lemma 1, we get:

(R
qI

ς
0+

C
qD

ς
0+})(r) = }(r) + µ̃0 + µ̃1r + µ̃2r2 + · · ·+ µ̃n−1rn−1,

where µ̃0, . . . , µ̃n−1 illustrate constants contained in R, and n = [ς] + 1 [37].
Next, we recall some essential inequalities and concepts. The Kuratowski measure of

noncompactness O is defined by

O(H) := inf{ε > 0 : H =
n⋃

k=1

Hk and diam (Hk) ≤ ε for k = 1, . . . , n},

where diam(Hk) = sup{|}− }′| : },}′ ∈ Hk} andH is bounded subset of Banach space A.
Moreover, it is identified that 0 ≤ O(H) ≤ diam (H) < +∞ [38].

Lemma 2 ([38]). Consider the bounded subsetsH,H1 andH2 of an arbitrary real Banach space
A. Then, the following conditions hold:

(C1) O(H) = 0 iffH is precompact;

(C2) O(H) = O(H̄) = O(cnvx(H)), where H̄ and cnvx(H) are the closure and convex hull
ofH;

(C3) ifH1 ⊆ H2, then O(H1) ≤ O(H2);

(C4) ∀κ ∈ R, O(κ +H) ≤ O(H);
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(C5) ∀κ ∈ R, O(κH) = |κ|O(H);

(C6) O(H1 +H2) ≤ O(H1) +O(H2), whereH1 +H2 = {}1 + }2;}1 ∈ H1,}2 ∈ H2};
(C7) O(H1 ∪H2) ≤ max{O(H1) +O(H2)}.

Lemma 3 ([39]). Regard A as a Banach space. Then, for each bounded setH ⊆ A, a countable set
H0 ⊆ H exists subject to O(H) ≤ 2O(H0).

Lemma 4 ([38]). Regard A as a Banach space. LetH be bounded and equi-continuous set contained
in CA([a, b]). Then, O(H(r)) is continuous on [a, b], and we have O(H) = supr∈[a,b]O(H(r)).

Lemma 5 ([38]). Let A be a Banach space. Let H = {}n}n≥1 ⊆ CA([a, b]) be bounded and
countable set. Then, O(H(r)) is Lebesgue integrable on [a, b], and we have:

O
({∫ r

0
}n(v) dv

}

n≥1

)
≤ 2

∫ r

0
O({}n(v)}n≥1) dv.

Definition 1 ([38]). Regard A as a Banach space and ϕ∗ : S ⊂ A → A as a bounded and
continuous operator. Then, the map ϕ∗ is termed condensing if for any bounded closed setH ⊆ S ,
the inequality O(ϕ∗(H)) < O(H) holds.

Theorem 1 ([38], Sadovskii’s fixed point theorem). Regard A as a Banach space. Let H be a
bounded, closed and convex set contained in A. Furthermore, assume that continuous mapping
ϕ∗ : H → H is condensing. Then, there exists at least one fixed point for the map ϕ∗ inH.

Let us denote the normed space by (A, ‖ · ‖A). Regard P(A),Pbd(A),Pcl(A),Pcm(A)
and Pcx(A) as a family of all non-empty, all bounded, all closed, all compact and all convex
sets contained in A, respectively.

Definition 2 ([40]). An element } ∈ A is termed an endpoint of a multi-valued function T∗ :
A→ P(A) whenever we get T∗(}) = {}}.

The multi-valued map T∗ has an approximate endpoint criterion (AEPC) if

inf
}1∈A

sup
}2∈T∗(}1)

d(}1,}2) = 0,

Ref. [40]. Next, a required theorem related to the proposed quantum boundary problem
is recalled.

Theorem 2 ([40], Endpoint theorem). Let’s assume that (A, d) is a complete metric space, and
ψ : [0, ∞) → [0, ∞) is u.s.c subject to for each r > 0, lim infr→∞(r− ψ(r)) > 0, and ψ(r) < r.
Assume that T∗ : A→ Pcl,bd(A) is a multi-valued map such that for each }1,}2 ∈ A, the following
inequality holds:

Hd(T∗}1,T∗}2) ≤ ψ(d(}1,}2)).

Then, there is exactly one endpoint for T∗ iff T∗ has an approximate endpoint criterion.

3. Main Results

We regard the family of continuous functions on [0, 1] by A = CR([0, 1]) and the
defined sup-norm ‖}‖A = supr∈[0,1] |}(r)|, for all members } ∈ A, confirms that the space
A becomes a Banach space. In the sequel, we will establish the existence results for quantum
BVP (1) and (2). Before moving to the existence results, the following proposition will play
an essential role:
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Proposition 1. Let ϕ∗ ∈ A, ς ∈ (2, 3), $ ∈ (1, 2), ξ ∈ (0, 1), `1, `2, `3 ∈ R>0 and σ > 0. Then,
the function }∗ satisfies as a solution for the given quantum integro-difference FBVP (CpQFP)
formulated by 




C
qD

ς
0+}
∗(r) = ϕ∗(r), (r ∈ [0, 1], q ∈ (0, 1)),

}(0) + }(ξ) = `1
R
qI

σ
0+}(1),

C
qD

$
0+}(0) +

C
qD

$
0+}(ξ) = `2

R
qI

σ
0+
[C

qD
$
0+}
]
(1),

C
qD

1
0+}(0) +

C
qD

1
0+}(ξ) = `3

R
qI

σ
0+
[C

qD
1
0+}
]
(1),

(8)

iff }∗ is a solution for the fractional quantum integral (FQI) equation given by

}∗(r) =
∫ r

0

(r− qv)(ς−1)

Γq(ς)
ϕ∗(v)dqv +

`1

δ1

∫ 1

0

(1− qv)(ς+σ−1)

Γq(ς + σ)
ϕ∗(v)dqv (9)

− 1
δ1

∫ ξ

0

(ξ − qv)(ς−1)

Γq(ς)
ϕ∗(v)dqv + `3Λ1(r)

∫ 1

0

(1− qv)(ς+σ−2)

Γq(ς + σ− 1)
ϕ∗(v)dqv

−Λ1(r)
∫ ξ

0

(ξ − qv)(ς−2)

Γq(ς− 1)
ϕ∗(v)dqv

+ `2Λ2(r)
∫ 1

0

(1− qv)(ς+σ−$−1)

Γq(ς + σ− $)
ϕ∗(v)dqv−Λ2(r)

∫ ξ

0

(ξ − qv)(ς−$−1)

Γq(ς− $)
ϕ∗(v)dqv. (10)

Proof. Firstly, the given function }∗ is regarded as a solution for (8). By virtue of ς ∈ (2, 3),
taking the integral in the RL-settings of order ς to (8), we arrive at

}∗(r) =
∫ r

0

(r− qv)(ς−1)

Γq(ς)
ϕ∗(v)dqv + µ̃0 + µ̃1r + µ̃2r2, (11)

so that µ̃0, µ̃1, µ̃2 ∈ R are some constants that are needed to be obtained. By considering
$ ∈ (1, 2), the following immediate results are obtained

C
qD

1
0+}
∗(r) =

∫ r

0

(r− qv)(ς−2)

Γq(ς− 1)
ϕ∗(v)dqv + µ̃1 + µ̃2(1 + q)r,

C
qD

$
0+}
∗(r) =

∫ r

0

(r− qv)(ς−$−1)

Γq(ς− $)
ϕ∗(v)dqv + µ̃2

2r2−$

Γq(3− $)
,

R
qI

σ
0+}
∗(r) =

∫ r

0

(r− qv)(ς+σ−1)

Γq(ς + σ)
ϕ∗(v)dqv + µ̃0

rσ

Γq(σ + 1)
+ µ̃1

rσ+1

Γq(σ + 2)

+ µ̃2
(1 + q)rσ+2

Γq(σ + 3)
,

R
qI

σ
0+
(C

qD
1
0+}
∗(r)

)
=
∫ r

0

(r− qv)(ς+σ−2)

Γq(ς + σ− 1)
ϕ∗(v)dqv + µ̃1

rσ

Γq(σ + 1)
+ µ̃2

(1 + q)rσ+1

Γq(σ + 2)
,

R
qI

σ
0+
(C

qD
$
0+}
∗(r)

)
=
∫ r

0

(r− qv)(ς+σ−$−1)

Γq(ς + σ− $)
ϕ∗(v)dqv + µ̃2

2rσ+2−$

Γq(σ + 3− $)
.

Now, by virtue of the given boundary conditions, we get

µ̃0 =
`1

δ1

∫ 1

0

(1− qv)(ς+σ−1)

Γq(ς + σ)
ϕ∗(v)dqv− 1

δ1

∫ ξ

0

(ξ − qv)(ς−1)

Γq(ς)
ϕ∗(v)dqv
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− `3Θ1

∫ 1

0

(1− qv)(ς+σ−2)

Γq(ς + σ− 1)
ϕ∗(v)dqv + Θ1

∫ ξ

0

(ξ − qv)(ς−2)

Γq(ς− 1)
ϕ∗(v)dqv

+ `2Θ2

∫ 1

0

(1− qv)(ς+σ−$−1)

Γq(ς + σ− $)
ϕ∗(v)dqv−Θ2

∫ ξ

0

(ξ − qv)(ς−$−1)

Γq(ς− $)
ϕ∗(v)dqv,

µ̃1 =
`3

∆1

∫ 1

0

(1− qv)(ς+σ−2)

Γq(ς + σ− 1)
ϕ∗(v)dqv− 1

∆1

∫ ξ

0

(ξ − qv)(ς−2)

Γq(ς− 1)
ϕ∗(v)dqv

− `2∆2

∆1∆3

∫ 1

0

(1− qv)(ς+σ−$−1)

Γq(ς + σ− $)
ϕ∗(v)dqv +

∆2

∆1∆3

∫ ξ

0

(ξ − qv)(ς−$−1)

Γq(ς− $)
ϕ∗(v)dqv,

and

µ̃2 =
`2

∆3

∫ 1

0

(1− qv)(ς+σ−$−1)

Γq(ς + σ− $)
ϕ∗(v)dqv− 1

∆3

∫ ξ

0

(ξ − qv)(ς−$−1)

Γq(ς− $)
ϕ∗(v)dqv,

where we regard the constants

δ1 =
2Γq(σ + 1)− `1

Γq(σ + 1)
, δ2 =

ξΓq(σ + 2)− `1

Γq(σ + 2)
, δ3 =

ξ2Γq(σ + 3)− `1(1 + q)
Γq(σ + 3)

,

∆1 =
2Γq(σ + 1)− `3

Γq(σ + 1)
, ∆2 =

(1 + q)
(
ξΓq(σ + 2)− `3

)

Γq(σ + 2)
,

∆3 =
2ξ2−$Γq(σ + 3− $)− 2`2Γq(3− $)

Γq(3− $)Γq(σ + 3− $)
, Θ1 =

δ2
δ1∆1

, Θ2 =
δ2∆2 − δ3∆1

δ1∆1∆3
,

along with the functions with respect to r as

Λ1(r) =
r−Θ1∆1

∆1
, Λ2(r) =

r2∆1 − r∆2 + Θ2∆1∆3

∆1∆3
. (12)

By substituting the values of µ̃0, µ̃1 and µ̃2 in (11), integral solution (9) is obtained.
The converse part can be easily deduced.

Remark 1. Note that for simplicity in the subsequent computations, we set the following upper
bounds by virtue of the functions displayed in (12):

|Λ1(r)| ≤
1 + |Θ1||∆1|
|∆1|

:= Λ∗1 > 0,

|Λ2(r)| ≤
|∆1|+ |∆2|+ |Θ2||∆1||∆3|

|∆1||∆3|
:= Λ∗2 > 0. (13)

Theorem 3. Let ϕ∗ : [0, 1] × A → R be continuous. In addition, assume that there exists a
continuous ϑ : [0, 1] → R>0 along with a nondecreasing continuous map ℘ : [0, ∞) → (0, ∞)
such that for each r ∈ [0, 1] and } ∈ A,

|ϕ∗(r,}(r))| ≤ ϑ(r)℘(‖}‖A). (14)

We suppose that there exists a function mϕ∗ : [0, 1] → R such that for each bounded set
H ⊆ A and r ∈ [0, 1],

O(ϕ∗(r,H)) ≤ mϕ∗(r)O(H). (15)
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Then, at least one solution of the given Caputo fractional quantum BVP (1) exists on [0, 1] if
[

m̃ϕ∗
Γq(ς + 1)

+
m̃ϕ∗
|δ1|

(
`1

Γq(ς + σ + 1)
+

ξ(ς)

Γq(ς + 1)

)
+ m̃ϕ∗Λ

∗
1

(
`3

Γq(ς + σ)
+

ξ(ς−1)

Γq(ς)

)

+ m̃ϕ∗Λ
∗
2

(
`2

Γq(ς + σ− $ + 1)
+

ξ(ς−$)

Γq(ς− $ + 1)

)]
<

1
4

, (16)

where m̃ϕ∗ = supr∈[0,1] |mϕ∗(r)|.

Proof. Introduce the mapping G : H→ H defined as:

G(})(r) =
∫ r

0

(r− qv)(ς−1)

Γq(ς)
ϕ∗(v,}(v))dqv (17)

+
`1

δ1

∫ 1

0

(1− qv)(ς+σ−1)

Γq(ς + σ)
ϕ∗(v,}(v))dqv− 1

δ1

∫ ξ

0

(ξ − qv)(ς−1)

Γq(ς)
ϕ∗(v,}(v))dqv

+ `3Λ1(r)
∫ 1

0

(1− qv)(ς+σ−2)

Γq(ς + σ− 1)
ϕ∗(v,}(v))dqv (18)

−Λ1(r)
∫ ξ

0

(ξ − qv)(ς−2)

Γq(ς− 1)
ϕ∗(v,}(v))dqv

+ `2Λ2(r)
∫ 1

0

(1− qv)(ς+σ−$−1)

Γq(ς + σ− $)
ϕ∗(v,}(v))dqv (19)

−Λ2(r)
∫ ξ

0

(ξ − qv)(ς−$−1)

Γq(ς− $)
ϕ∗(v,}(v))dqv,

where H = {} ∈ A : ‖}‖A ≤ ε∗, ε∗ ∈ R>0} ⊆ A and is classified as a convex bounded
closed space. Obviously, the fixed point of the proposed operator G is the quantum
fractional BVP’s solution (1).

Firstly, we verify the continuity of G on H. Take the sequence {}n}n≥1 in H such
that }n → } for each } ∈ H. Since ϕ∗ is continuous on [0, 1] × A, so we can write
limn→∞ ϕ∗(r,}n(r)) = ϕ∗(r,}(r)). Now, with the aid of Lebesgue dominated conver-
gence theorem, we obtain:

lim
n→∞

(G}n)(r) =
∫ r

0

(r− qv)(ς−1)

Γq(ς)
lim

n→∞
ϕ∗(v,}n(v))dqv

+
`1

δ1

∫ 1

0

(1− qv)(ς+σ−1)

Γq(ς + σ)
lim

n→∞
ϕ∗(v,}n(v))dqv

− 1
δ1

∫ ξ

0

(ξ − qv)(ς−1)

Γq(ς)
lim

n→∞
ϕ∗(v,}n(v))dqv

+ `3Λ1(r)
∫ 1

0

(1− qv)(ς+σ−2)

Γq(ς + σ− 1)
lim

n→∞
ϕ∗(v,}n(v))dqv

−Λ1(r)
∫ ξ

0

(ξ − qv)(ς−2)

Γq(ς− 1)
lim

n→∞
ϕ∗(v,}n(v))dqv

+ `2Λ2(r)
∫ 1

0

(1− qv)(ς+σ−$−1)

Γq(ς + σ− $)
lim

n→∞
ϕ∗(v,}n(v))dqv
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−Λ2(r)
∫ ξ

0

(ξ − qv)(ς−$−1)

Γq(ς− $)
lim

n→∞
ϕ∗(v,}n(v))dqv

= (G})(r),

for each r ∈ [0, 1]. Thus, we get limn→∞(G}n)(r) = (G})(r). Hence, the continuity of G on
H is proved. Now, we want to examine uniform boundedness of G on H. To accomplish
this goal, consider } ∈ H. In view of inequalities (13) and (14), we have:

|(G})(r)| =
∫ r

0

(r− qv)(ς−1)

Γq(ς)
|ϕ∗(v,}(v))|dqv

+
`1

|δ1|
∫ 1

0

(1− qv)(ς+σ−1)

Γq(ς + σ)
|ϕ∗(v,}(v))|dqv

+
1
|δ1|

∫ ξ

0

(ξ − qv)(ς−1)

Γq(ς)
|ϕ∗(v,}(v))|dqv

+ `3|Λ1(r)|
∫ 1

0

(1− qv)(ς+σ−2)

Γq(ς + σ− 1)
|ϕ∗(v,}(v))|dqv

+ |Λ1(r)|
∫ ξ

0

(ξ − qv)(ς−2)

Γq(ς− 1)
|ϕ∗(v,}(v))|dqv

+ `2|Λ2(r)|
∫ 1

0

(1− qv)(ς+σ−$−1)

Γq(ς + σ− $)
|ϕ∗(v,}(v))|dqv

+ |Λ2(r)|
∫ ξ

0

(ξ − qv)(ς−$−1)

Γq(ς− $)
|ϕ∗(v,}(v))|dqv

≤ 1
Γq(ς + 1)

ϑ(r)℘(‖}‖A) +
`1

|δ1|Γq(ς + σ + 1)
ϑ(r)℘(‖}‖A)

+
ξ(ς)

|δ1|Γq(ς + 1)
ϑ(r)℘(‖}‖A)

+
`3Λ∗1

Γq(ς + σ)
ϑ(r)℘(‖}‖A) +

Λ∗1ξ(ς−1)

Γq(ς)
ϑ(r)℘(‖}‖A)

+
`2Λ∗2

Γq(ς + σ− $ + 1)
ϑ(r)℘(‖}‖A) +

Λ∗2ξ(ς−$)

Γq(ς− $ + 1)
ϑ(r)℘(‖}‖A).

Set

Ω̂ =
1

Γq(ς + 1)
+

1
|δ1|

(
`1

Γq(ς + σ + 1)
+

ξ(ς)

Γq(ς + 1)

)
+ Λ∗1

(
`3

Γq(ς + σ)
+

ξ(ς−1)

Γq(ς)

)

+ Λ∗2

(
`2

Γq(ς + σ− $ + 1)
+

ξ(ς−$)

Γq(ς− $ + 1)

)
. (20)
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Consequently, we can declare that ‖G}‖A ≤ Ω̂ϑ∗℘(ε) < ∞, and this implies uniform
boundedness of G on H. Next, we ensure the equi-continuity of G. In order to check this,
consider r1, r2 ∈ [0, 1] such that r1 < r2 and } ∈ H. Then, we get:

|(G})(r2)− (G})(r1)| ≤
∫ r1

0

[(r2 − qv)(ς−1) − (r1 − qv)(ς−1)]

Γq(ς)
|ϕ∗(v,}(v))|dqv

+
∫ r2

r1

(r2 − qv)(ς−1)

Γq(ς)
|ϕ∗(v,}(v))|dqv

+ `3[Λ1(r2)−Λ1(r1)]
∫ 1

0

(1− qv)(ς+σ−2)

Γq(ς + σ− 1)
|ϕ∗(v,}(v))|dqv

+ [Λ1(r2)−Λ1(r1)]
∫ ξ

0

(ξ − qv)(ς−2)

Γq(ς− 1)
|ϕ∗(v,}(v))|dqv

+ `2[Λ2(r2)−Λ2(r1)]
∫ 1

0

(1− qv)(ς+σ−$−1)

Γq(ς + σ− $)
|ϕ∗(v,}(v))|dqv

+ [Λ2(r2)−Λ2(r1)]
∫ ξ

0

(ξ − qv)(ς−$−1)

Γq(ς− $)
|ϕ∗(v,}(v))|dqv.

Note that the above inequality’s right hand side goes to zero as r1 → r2 (independent
of }). Hence, it is evident that ‖(G})(r2)− (G})(r1)‖A → 0 as r1 → r2, and this confirms
that G is an equi-continuous. Consequently, we conclude that G is a compact operator on H

in view of the famous Arzela–Ascoli theorem.
At this point, we will check that G is condensing operator on H. By Lemma 3, it is

obvious that a countable set H0 = {}n}n≥1 ⊂ H exists for each bounded subset H ⊂ H

such that O(G(H)) ≤ 2O(G(H0)) holds. Hence, in the light of Lemmas 2, 4 and 5, the
following is obtained

O(G(H)(r)) ≤ 2O(G({}n}n≥1))

≤ 2
∫ r

0

(r− qv)(ς−1)

Γq(ς)
O(ϕ∗(v, {}n(v)}n≥1))dqv

+
2`1
|δ1|

∫ 1

0

(1− qv)(ς+σ−1)

Γq(ς + σ)
O(ϕ∗(v, {}n(v)}n≥1))dqv

+
2
|δ1|

∫ ξ

0

(ξ − qv)(ς−1)

Γq(ς)
O(ϕ∗(v, {}n(v)}n≥1))dqv

+ 2`3Λ1(r)
∫ 1

0

(1− qv)(ς+σ−2)

Γq(ς + σ− 1)
O(ϕ∗(v, {}n(v)}n≥1))dqv

+ 2Λ1(r)
∫ ξ

0

(ξ − qv)(ς−2)

Γq(ς− 1)
O(ϕ∗(v, {}n(v)}n≥1))dqv

+ 2`2Λ2(r)
∫ 1

0

(1− qv)(ς+σ−$−1)

Γq(ς + σ− $)
O(ϕ∗(v, {}n(v)}n≥1))dqv

+ 2Λ2(r)
∫ ξ

0

(ξ − qv)(ς−$−1)

Γq(ς− $)
O(ϕ∗(v, {}n(v)}n≥1))dqv
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≤ 4
∫ r

0

(r− qv)(ς−1)

Γq(ς)
mϕ∗ (v)O({}n(v)}n≥1)dqv

+
4`1
|δ1|

∫ 1

0

(1− qv)(ς+σ−1)

Γq(ς + σ)
mϕ∗ (v)O({}n(v)}n≥1)dqv

+
4
|δ1|

∫ ξ

0

(ξ − qv)(ς−1)

Γq(ς)
mϕ∗ (v)O({}n(v)}n≥1)dqv

+ 4`3Λ1(r)
∫ 1

0

(1− qv)(ς+σ−2)

Γq(ς + σ− 1)
mϕ∗ (v)O({}n(v)}n≥1)dqv

+ 4Λ1(r)
∫ ξ

0

(ξ − qv)(ς−2)

Γq(ς− 1)
mϕ∗ (v)O({}n(v)}n≥1)dqv

+ 4`2Λ2(r)
∫ 1

0

(1− qv)(ς+σ−$−1)

Γq(ς + σ− $)
mϕ∗ (v)O({}n(v)}n≥1)dqv

+ 4Λ2(r)
∫ ξ

0

(ξ − qv)(ς−$−1)

Γq(ς− $)
mϕ∗ (v)O({}n(v)}n≥1)dqv

≤ 4m̃ϕ∗O(H)
∫ r

0

(r− qv)(ς−1)

Γq(ς)
dqv

+
4`1m̃ϕ∗O(H)

|δ1|
∫ 1

0

(1− qv)(ς+σ−1)

Γq(ς + σ)
dqv +

4m̃ϕ∗O(H)

|δ1|
∫ ξ

0

(ξ − qv)(ς−1)

Γq(ς)
dqv

+ 4`3Λ∗1m̃ϕ∗O(H)
∫ 1

0

(1− qv)(ς+σ−2)

Γq(ς + σ− 1)
dqv

+ 4Λ∗1m̃ϕ∗O(H)
∫ ξ

0

(ξ − qv)(ς−2)

Γq(ς− 1)
dqv

+ 4`2Λ∗2m̃ϕ∗O(H)
∫ 1

0

(1− qv)(ς+σ−$−1)

Γq(ς + σ− $)
dqv

+ 4Λ∗2m̃ϕ∗O(H)
∫ ξ

0

(ξ − qv)(ς−$−1)

Γq(ς− $)
dqv

≤ 4m̃ϕ∗O(H)

Γq(ς + 1)
+

4`1m̃ϕ∗O(H)

|δ1|Γq(ς + σ + 1)
+

4ξ(ς)m̃ϕ∗O(H)

|δ1|Γq(ς + 1)
+

4`3Λ∗1m̃ϕ∗O(H)

Γq(ς + σ)

+
4ξ(ς−1)Λ∗1m̃ϕ∗O(H)

Γq(ς)
+

4`2Λ∗2m̃ϕ∗O(H)

Γq(ς + σ− $ + 1)
+

4ξ(ς−$)Λ∗2m̃ϕ∗O(H)

Γq(ς− $ + 1)
.

Hence,

O(G(H)) ≤ 4

[
m̃ϕ∗

Γq(ς + 1)
+

m̃ϕ∗
|δ1|

(
`1

Γq(ς + σ + 1)
+

ξ(ς)

Γq(ς + 1)

)

+ m̃ϕ∗Λ
∗
1

(
`3

Γq(ς + σ)
+

ξ(ς−1)

Γq(ς)

)

+ m̃ϕ∗Λ
∗
2

(
`2

Γq(ς + σ− $ + 1)
+

ξ(ς−$)

Γq(ς− $ + 1)

)]
O(H).
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By applying condition (16), we get O(G(H)) < O(H). This clearly implies that G
is condensing operator on H. Ultimately, by employing Theorem 1, we can infer that
the map G possesses one fixed point leastwise in H. Thus, it is found at least one solu-
tion for the supposed quantum-integro-difference FBVP (1) and finally the proof process
is terminated.

Now, we set up an existence criterion for the given fractional quantum inclusion
BVP (2). The inclusion problem’s solution (2) is determined by an absolutely continuous
function } : [0, 1]→ R whenever it satisfies the given fractional quantum integro-difference
conditions, and a function z ∈ L1([0, 1],R) exists such that the inclusion z(r) ∈ T∗(r,}(r))
holds for almost all r ∈ [0, 1], and we have:

}(r) =
∫ r

0

(r− qv)(ς−1)

Γq(ς)
z(v)dqv +

`1

δ1

∫ 1

0

(1− qv)(ς+σ−1)

Γq(ς + σ)
z(v)dqv

− 1
δ1

∫ ξ

0

(ξ − qv)(ς−1)

Γq(ς)
z(v)dqv

+ `3Λ1(r)
∫ 1

0

(1− qv)(ς+σ−2)

Γq(ς + σ− 1)
z(v)dqv−Λ1(r)

∫ ξ

0

(ξ − qv)(ς−2)

Γq(ς− 1)
z(v)dqv

+ `2Λ2(r)
∫ 1

0

(1− qv)(ς+σ−$−1)

Γq(ς + σ− $)
z(v)dqv−Λ2(r)

∫ ξ

0

(ξ − qv)(ς−$−1)

Γq(ς− $)
z(v)dqv,

for each r ∈ [0, 1]. Let ST∗ ,} represents the collection of all selections of T∗ for each } ∈ A

and is defined as

ST∗ ,} = {z ∈ L1([0, 1]) : z(r) ∈ T∗(r,}(r)) for almost all r ∈ [0, 1]}.

Construct a multi-valued map J : A→ P(A) which is defined as

J (}) = {h ∈ A : h(r) = v(r)}, (21)

where

v(r) =
∫ r

0

(r− qv)(ς−1)

Γq(ς)
z(v)dqv +

`1

δ1

∫ 1

0

(1− qv)(ς+σ−1)

Γq(ς + σ)
z(v)dqv

− 1
δ1

∫ ξ

0

(ξ − qv)(ς−1)

Γq(ς)
z(v)dqv

+ `3Λ1(r)
∫ 1

0

(1− qv)(ς+σ−2)

Γq(ς + σ− 1)
z(v)dqv−Λ1(r)

∫ ξ

0

(ξ − qv)(ς−2)

Γq(ς− 1)
z(v)dqv

+ `2Λ2(r)
∫ 1

0

(1− qv)(ς+σ−$−1)

Γq(ς + σ− $)
z(v)dqv

−Λ2(r)
∫ ξ

0

(ξ − qv)(ς−$−1)

Γq(ς− $)
z(v)dqv, z ∈ ST∗ ,}.

Theorem 4. Let T∗ : [0, 1]×A→ Pcm(A) be a multi-valued map. Suppose that

(A1) an increasing u.s.c map ψ : [0, ∞) → [0, ∞) exists such that lim infr→∞(r− ψ(r)) > 0,
and ψ(r) < r for every r > 0;

(A2) T∗ : [0, 1]× A → Pcm(A) is integrable and bounded and T∗(·,}) : [0, 1] → Pcm(A) is
measurable for every } ∈ A;
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(A3) ζ ∈ C([0, 1], [0, ∞)) exists subject to

Hd(T∗(r,}1(r)),T∗(r,}2(r))) ≤ ζ(r)ψ(|}1(r)− }2(r)|)
1
Q ,

for each r ∈ [0, 1] and }1,}2 ∈ A, where supr∈[0,1] |ζ(r)| = ‖ζ‖ and

Q =

[
1

Γq(ς + 1)
+

1
|δ1|

(
`1

Γq(ς + σ + 1)
+

ξ(ς)

Γq(ς + 1)

)
+ Λ∗1

(
`3

Γq(ς + σ)
+

ξ(ς−1)

Γq(ς)

)

+ Λ∗2

(
`2

Γq(ς + σ− $ + 1)
+

ξ(ς−$)

Γq(ς− $ + 1)

)]
‖ζ‖; (22)

(A4) the multi-valued map J : A → P(A) formulated in (21) satisfies approximate endpoint
criterion.

Then, a solution is found for the given quantum-difference inclusion FBVP (2).

Proof. We are going to determine that an endpoint exists for the multifunction J : A→
P(A) given by (21). Since the map r → T∗(r,}(r)) is measurable and closed-valued set-
valued mappingl therefore, it has a measurable selection. As a result, ST∗ ,} 6= ∅. Firstly,
we show that J (}) is closed for every } ∈ A. Consider the sequence {}n}n≥1 in J (}) such
that }n converges to }. For each n, there exists zn ∈ ST∗ ,} such that

}n(r) =
∫ r

0

(r− qv)(ς−1)

Γq(ς)
zn(v)dqv +

`1

δ1

∫ 1

0

(1− qv)(ς+σ−1)

Γq(ς + σ)
zn(v)dqv

− 1
δ1

∫ ξ

0

(ξ − qv)(ς−1)

Γq(ς)
zn(v)dqv

+ `3Λ1(r)
∫ 1

0

(1− qv)(ς+σ−2)

Γq(ς + σ− 1)
zn(v)dqv−Λ1(r)

∫ ξ

0

(ξ − qv)(ς−2)

Γq(ς− 1)
zn(v)dqv

+ `2Λ2(r)
∫ 1

0

(1− qv)(ς+σ−$−1)

Γq(ς + σ− $)
zn(v)dqv−Λ2(r)

∫ ξ

0

(ξ − qv)(ς−$−1)

Γq(ς− $)
zn(v)dqv,

for almost all r ∈ [0, 1]. Since the multi-valued function T∗ is compact, we have a subse-
quence {zn}n≥1 converging to z ∈ L1([0, 1]). Thus, z ∈ ST∗ ,} and

lim
n→∞

}n(r) =
∫ r

0

(r− qv)(ς−1)

Γq(ς)
z(v)dqv

+
`1
δ1

∫ 1

0

(1− qv)(ς+σ−1)

Γq(ς + σ)
z(v)dqv− 1

δ1

∫ ξ

0

(ξ − qv)(ς−1)

Γq(ς)
z(v)dqv

+ `3Λ1(r)
∫ 1

0

(1− qv)(ς+σ−2)

Γq(ς + σ− 1)
z(v)dqv−Λ1(r)

∫ ξ

0

(ξ − qv)(ς−2)

Γq(ς− 1)
z(v)dqv

+ `2Λ2(r)
∫ 1

0

(1− qv)(ς+σ−$−1)

Γq(ς + σ− $)
z(v)dqv−Λ2(r)

∫ ξ

0

(ξ − qv)(ς−$−1)

Γq(ς− $)
z(v)dqv

= }(r),

for almost all r ∈ [0, 1]. This indicates that } ∈ J and therefore, J is closed-valued. Since
T∗ is compact multi-valued function, it is simple to check that J (}) is bounded for all
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} ∈ A. At last, we prove that Hd(J (}1),J (}2)) ≤ ψ(‖}1 − }2‖) holds. Let }1,}2 ∈ A and
τ1 ∈ J (}2). Select z1 ∈ ST∗ ,} such that

τ1(r) =
∫ r

0

(r− qv)(ς−1)

Γq(ς)
z1(v)dqv

+
`1

δ1

∫ 1

0

(1− qv)(ς+σ−1)

Γq(ς + σ)
z1(v)dqv− 1

δ1

∫ ξ

0

(ξ − qv)(ς−1)

Γq(ς)
z1(v)dqv

+ `3Λ1(r)
∫ 1

0

(1− qv)(ς+σ−2)

Γq(ς + σ− 1)
z1(v)dqv−Λ1(r)

∫ ξ

0

(ξ − qv)(ς−2)

Γq(ς− 1)
z1(v)dqv

+ `2Λ2(r)
∫ 1

0

(1− qv)(ς+σ−$−1)

Γq(ς + σ− $)
z1(v)dqv−Λ2(r)

∫ ξ

0

(ξ − qv)(ς−$−1)

Γq(ς− $)
z1(v)dqv,

for all r ∈ [0, 1]. Since

Hd(T∗(r,}1(r)),T∗(r,}2(r))) ≤ ζ(r)ψ(|}1(r)− }2(r)|)
1
Q

for each r ∈ [0, 1], so there exists z∗ ∈ T∗(r,}1(r)) such that

|z1(r)− z∗| ≤ ζ(r)ψ(|}1(r)− }2(r)|)
1
Q ,

for each r ∈ [0, 1]. Now, the multi-valued map X : [0, 1] → P(A) is considered, which is
characterized by

X(r) =
{
z∗ ∈ A : |z1(r)− z∗| ≤ ζ(r)ψ(|}1(r)− }2(r)|)

1
Q

}
.

Since z1 and η = ζ(ψ(}1 − }2))
1
Q are measurable, so it is obvious that the multifunction

X∩T∗(·,}(·)) is measurable. Now, select z2(r) ∈ T∗(r,}(r)) such that

|z1(r)− z2(r)| ≤ ζ(r)(ψ(|}1(r)− }2(r)|))
1
Q ,

for all r ∈ [0, 1]. Choose τ2 ∈ J (}1) such that

τ2(r) =
∫ r

0

(r− qv)(ς−1)

Γq(ς)
z2(v)dqv

+
`1

δ1

∫ 1

0

(1− qv)(ς+σ−1)

Γq(ς + σ)
z2(v)dqv− 1

δ1

∫ ξ

0

(ξ − qv)(ς−1)

Γq(ς)
z2(v)dqv

+ `3Λ1(r)
∫ 1

0

(1− qv)(ς+σ−2)

Γq(ς + σ− 1)
z2(v)dqv−Λ1(r)

∫ ξ

0

(ξ − qv)(ς−2)

Γq(ς− 1)
z2(v)dqv

+ `2Λ2(r)
∫ 1

0

(1− qv)(ς+σ−$−1)

Γq(ς + σ− $)
z2(v)dqv−Λ2(r)

∫ ξ

0

(ξ − qv)(ς−$−1)

Γq(ς− $)
z2(v)dqv,

for any r ∈ [0, 1]. Then, we get

|τ1(r)− τ2(r)| ≤
∫ r

0

(r− qv)(ς−1)

Γq(ς)
|z1(v)− z2(v)|dqv
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+
`1
|δ1|

∫ 1

0

(1− qv)(ς+σ−1)

Γq(ς + σ)
|z1(v)− z2(v)|dqv

+
1
|δ1|

∫ ξ

0

(ξ − qv)(ς−1)

Γq(ς)
|z1(v)− z2(v)|dqv

+ `3|Λ1(r)|
∫ 1

0

(1− qv)(ς+σ−2)

Γq(ς + σ− 1)
|z1(v)− z2(v)|dqv

+ |Λ1(r)|
∫ ξ

0

(ξ − qv)(ς−2)

Γq(ς− 1)
|z1(v)− z2(v)|dqv

+ `2|Λ2(r)|
∫ 1

0

(1− qv)(ς+σ−$−1)

Γq(ς + σ− $)
|z1(v)− z2(v)|dqv

+ |Λ2(r)|
∫ ξ

0

(ξ − qv)(ς−$−1)

Γq(ς− $)
|z1(v)− z2(v)|dqv

≤ 1
Γq(ς + 1)

‖ζ‖ψ(‖}1 − }2‖)
1
Q

+
`1

|δ1|Γq(ς + σ + 1)
‖ζ‖ψ(‖}1 − }2‖)

1
Q +

ξ(ς)

|δ1|Γq(ς + 1)
‖ζ‖ψ(‖}1 − }2‖)

1
Q

+
`3Λ∗1

Γq(ς + σ)
‖ζ‖ψ(‖}1 − }2‖)

1
Q +

Λ∗1ξ(ς−1)

Γq(ς)
‖ζ‖ψ(‖}1 − }2‖)

1
Q

+
`2Λ∗2

Γq(ς + σ− $ + 1)
‖ζ‖ψ(‖}1 − }2‖)

1
Q +

Λ∗2ξ(ς−$)

Γq(ς− $ + 1)
‖ζ‖ψ(‖}1 − }2‖)

1
Q

=

[
1

Γq(ς + 1)
+

1
|δ1|

(
`1

Γq(ς + σ + 1)
+

ξ(ς)

Γq(ς + 1)

)

+ Λ∗1

(
`3

Γq(ς + σ)
+

ξ(ς−1)

Γq(ς)

)

+ Λ∗2

(
`2

Γq(ς + σ− $ + 1)
+

ξ(ς−$)

Γq(ς− $ + 1)

)]
‖ζ‖ψ(‖}1 − }2‖)

1
Q

= Qψ(‖}1 − }2‖)
1
Q

= ψ(‖}1 − }2‖).

Thus, we get ‖τ1− τ2‖ ≤ ψ(‖}1−}2‖). Hence, Hd(J (}1),J (}1)) ≤ ψ(‖}1−}2‖) for
each }1,}2 ∈ A. By utilizing (A4), we realize that J has an approximate endpoint criterion.
Now by employing Theorem 2, a member }∗ ∈ A exists such that J (}∗) = {}∗}. This
indicates that }∗ is the solution of the fractional quantum-difference inclusion problem (2),
hence, our proof is finally completed.

4. Numerical Examples

This section provides some interesting numerical examples to apply and validate our
results in this research work.

Example 1. Consider the following Caputo quantum-difference FBVP:
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C
0.5D

2.5
0+}(r) =

3r + 1
8000e−r sin(}(r)),

}(0) + }(0.25) = (0.1) R
0.5I

0.75
0+ }(1),

C
0.5D

1.5
0+}(0) +

C
0.5D

1.5
0+}(0.25) = (0.2) R

0.5I
0.75
0+
[C

0.5D
1.5
0+}
]
(1),

C
0.5D

1
0+}(0) +

C
0.5D

1
0+}(0.25) = (0.3) R

0.5I
0.75
0+
[C

0.5D
1
0+}
]
(1),

(23)

such that q = 0.5, `1 = 0.1, ς = 2.5, ξ = 0.25, `2 = 0.2, σ = 0.75, $ = 1.5, `3 = 0.3
and r ∈ [0, 1]. Furthermore, we consider a continuous function ϕ∗(r,}(r)) : [0, 1]× R → R
constructed as:

ϕ∗(r,}(r)) = 3r + 1
8000e−r sin(}(r)).

The graph of this function is shown in Figure 2.

Figure 2. Graph of the function ϕ∗(r,}) on [0, 1]× [0, 50].

Then, for each } ∈ R, we have:

|ϕ∗(r,}(r))| = 3r + 1
8000e−r | sin(}(r))| ≤ 3r + 1

8000e−r = ϑ(r)℘(‖}‖R),

where ϑ : [0, 1]→ R>0 is a continuous function defined by ϑ(r) = 3r+1
8000e−r and ℘ : R≥0 → R>0

is nondecreasing and continuous via ℘(‖}‖R) = 1. Now, for any }1, }2 ∈ R, we can write:

|ϕ∗(r,}1(r))− ϕ∗(r,}2(r))| =
3r + 1

8000e−r | sin(}1(r))− sin(}2(r))|

≤ 3r + 1
8000e−r |}1(r)− }2(r)|.
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Hence, for any bounded setH contained in R, we reach

O(ϕ∗(r,H)) ≤ 3r + 1
8000e−r O(H) := mϕ∗O(H).

We compute m̃ϕ∗ = supr∈[0,1] |mϕ∗ | ' 0.001355. Then, by taking into account the above
calculations and the following inequality, we get
[

m̃ϕ∗
Γq(ς + 1)

+
m̃ϕ∗
|δ1|

(
`1

Γq(ς + σ + 1)
+

ξ(ς)

Γq(ς + 1)

)
+ m̃ϕ∗Λ

∗
1

(
`3

Γq(ς + σ)
+

ξ(ς−1)

Γq(ς)

)

+ m̃ϕ∗Λ
∗
2

(
`2

Γq(ς + σ− $ + 1)
+

ξ(ς−$)

Γq(ς− $ + 1)

)]
' 0.001741 < 0.25 =

1
4

.

We figure out that Theorem 3 is settled. As a result, at least one solution exists for Caputo
fractional quantum-difference FBVP (23).

Example 2. Consider the following Caputo fractional quantum-difference inclusion FBVP:




C
0.8D

2.75
0+ }(r) ∈

[
0,

5(r + 1) arctan(}(r))
256(4 + 3r2)

]
,

}(0) + }(0.9) = (0.11) R
0.8I

0.6
0+}(1),

C
0.8D

1.7
0+}(0) +

C
0.8D

1.7
0+}(0.9) = (0.12) R

0.8I
0.6
0+
[C

0.8D
1.7
0+}
]
(1),

C
0.8D

1
0+}(0) +

C
0.8D

1
0+}(0.9) = (0.13) R

0.8I
0.6
0+
[C

0.8D
1
0+}
]
(1),

(24)

where q = 0.8, ς = 2.75, ξ = 0.9, `1 = 0.11, `2 = 0.12, `3 = 0.13, σ = 0.6, $ = 1.7, and
r ∈ [0, 1]. Now, we introduce a multi-valued function T∗ : [0, 1]×R→ P(R) as follows:

T∗(r,}(r)) =
[

0,
5(r + 1) arctan(}(r))

256(4 + 3r2)

]
.

Next, we regard ψ : [0, ∞)→ [0, ∞) as increasing upper semi-continuous function defined
by ψ(r) = r

4 for any r > 0. It can easily be noted that lim infr→∞(r− ψ(r)) > 0 and ψ(r) < r
for each r > 0. We select ζ ∈ C([0, 1], [0, ∞)) formulated by ζ(r) = 5(r+1)

64(4+3r2)
. Thus, ‖ζ‖ '

0.0390625. For any },}∗ ∈ R, we have:

Hd(T∗(r,}(r))−T∗(r,}∗(r))) = 5(r + 1)
256(4 + 3r2)

| arctan(}(r))− arctan(}∗(r))|

≤ 5(r + 1)
256(4 + 3r2)

|}(r)− }∗(r)|

=
5(r + 1)

64(4 + 3r2)
ψ(|}(r)− }∗(r)|)

≤ ζ(r)ψ(|}(r)− }∗(r)|) 1
Q ,

where

Q =

[
1

Γq(ς + 1)
+

1
|δ1|

(
`1

Γq(ς + σ + 1)
+

ξ(ς)

Γq(ς + 1)

)
+ Λ∗1

(
`3

Γq(ς + σ)
+

ξ(ς−1)

Γq(ς)

)
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+ Λ∗2

(
`2

Γq(ς + σ− $ + 1)
+

ξ(ς−$)

Γq(ς− $ + 1)

)]
‖ζ‖ ' 0.066907.

The graphs of the functions: Λ1(r) and Λ2(r) for r ∈ [0, 1] are shown in Figure 3.

Figure 3. Graphs of functions: Λ1(r) and Λ2(r) for r ∈ [0, 1].

Next, consider the multifunction J : A→ P(A) given by:

J (}) = {h ∈ A : there exists z ∈ ST∗ ,} such that h(r) = v(r) for all r ∈ [0, 1]},

where

v(r) =
∫ r

0

(r− qv)(2.75−1)

Γq(2.75)
z(v)dqv +

0.11
1.8784

∫ 1

0

(1− qv)(2.75+0.6−1)

Γq(2.75 + 0.6)
z(v)dqv

− 1
1.8784

∫ 0.9

0

(0.9− qv)(2.75−1)

Γq(2.75)
z(v)dqv

+ (0.13)Λ1(r)
∫ 1

0

(1− qv)(2.75+0.6−2)

Γq(2.75 + 0.6− 1)
z(v)dqv−Λ1(r)

∫ 0.9

0

(0.9− qv)(2.75−2)

Γq(2.75− 1)
z(v)dqv

+ (0.12)Λ2(r)
∫ 1

0

(1− qv)(2.75+0.6−1.7−1)

Γq(2.75 + 0.6− 1.7)
z(v)dqv

−Λ2(r)
∫ 0.9

0

(0.9− qv)(2.75−1.7−1)

Γq(2.75− 1.7)
z(v)dqv,

with δ1 ' 1.8784 and

Λ1(r) = 0.5387r− 0.2348 and Λ2(r) = 0.53002r2 − 0.4133r− 0.02959.

Hence, by utilizing Theorem 4, it is found a solution for the quantum-difference inclusion
FBVP (24).

5. Conclusions

The proposed nonlinear Caputo quantum-difference FBVP with fractional quantum
integro-conditions along with its fractional quantum-difference inclusion BVP has been
studied in this work. In this direction, we proved the existence of a solution for the first
quantum-difference Equation (1) with the help of some notions in topological degree theory.
In other words, we defined a new operator and checked its properties and finally showed
that it is a condensing function. The existence of a fixed point for this operator ensured
the existence of a solution for the mentioned quantum-difference Equation (1). In the next
step, we considered the inclusion version of the above FBVP which had a form as (2). To
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arrive at the main purpose this time for confirming the existence of solutions of (2), we
used new techniques based on the approximate endpoint property and the existence of
endpoints for a newly-defined multifunction. Numerical illustrative examples have been
provided to display the validity and potentiality of our main results to be applied in future
research works. We recommend that other researchers can study different generalizations
of the proposed q-difference-FBVPs by using novel fractional difference-operators such as
(p, q)-difference ones.
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Abstract: In this article, we present a two-point boundary value problem with separated boundary
conditions for a finite nabla fractional difference equation. First, we construct an associated Green’s
function as a series of functions with the help of spectral theory, and obtain some of its proper-
ties. Under suitable conditions on the nonlinear part of the nabla fractional difference equation,
we deduce two existence results of the considered nonlinear problem by means of two Leray–
Schauder fixed point theorems. We provide a couple of examples to illustrate the applicability of the
established results.

Keywords: nabla fractional difference; boundary value problem; separated boundary conditions;
Green’s function; existence of solutions

1. Introduction

Denote the set of all real numbers and positive real numbers by R and R+, respectively.
Define by Na = {a, a + 1, a + 2, . . .} and Nb

a = {a, a + 1, a + 2, . . . , b} for any a, b ∈ R
such that b− a ∈ N1.

In this article, we consider the following nabla fractional difference equation associated
with separated boundary conditions:

−
(
∇ν−1

a
(
∇u
))

(t) + g(t)u(t) = f (t, u(t)), t ∈ Nb
a+2,

αu(a + 1)− β
(
∇u
)
(a + 1) = 0,

γu(b) + δ
(
∇u
)
(b) = 0.

(1)

Here a, b ∈ R with b− a ∈ N1; 1 < ν < 2; g : Nb
a → R; f : Nb

a ×R→ R; ∇ν−1
a denotes

the (ν− 1)-th order Riemann–Liouville backward (nabla) difference operator; ∇ denotes
the first order backward (nabla) difference operator; α, β, γ, δ ∈ R such that α2 + β2 > 0
and γ2 + δ2 > 0.

Gray and Zhang [1], Atici and Eloe [2] and Anastassiou [3] initiated the study of nabla
fractional sums and differences. The combined efforts of a number of researchers has
resulted in a fairly strong foundation to the basic theory of nabla fractional calculus during
the past decade. For a detailed discussion on the evolution of nabla fractional calculus, we
refer to the recent monograph [4] and the references therein.

We point out that problem (1) is a discrete version of the second order ordinary
differential Hill’s equation, which has a lot of applications in engineering and physics.
We can find, among others, several problems in astronomy, circuits, electric conductivity
of metals and cyclotrons. Hill’s equation is named after the pioneering work of the
mathematical astronomer George William Hill (1838–1914), see [5]. There is a long literature
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in the study of the oscillation of the solutions of such an equation and the constant sign
solutions. The reader can consult the monographs [6,7] and references therein. We note that
the boundary conditions cover the Sturm–Liouville conditions, which include, as particular
cases, the Dirichlet, Neumann and Mixed ones.

Recently, there has been a surge of interest in the development of the theory of nabla
fractional boundary value problems. Brackins [8] initiated the study of boundary value
problems for linear and nonlinear nabla fractional difference equations. Following this
work, several authors have studied nabla fractional boundary value problems extensively.
We refer to [9–18] and the references therein to name a few.

Brackins [8] showed that for all (t, s) ∈ Nb
a ×Nb

a+1 (see Figure 1)

G0(t, s) =

{
v1(t, s), t ∈ Nρ(s)

a ,
v2(t, s), t ∈ Nb

s
(2)

is the Green’s function related to the following boundary value problem:




−
(
∇ν−1

a
(
∇u
))

(t) = 0, t ∈ Nb
a+2,

αu(a + 1)− β
(
∇u
)
(a + 1) = 0,

γu(b) + δ
(
∇u
)
(b) = 0.

(3)

Here,

v1(t, s) =
1
ξ

[
αγHν−1(t, a)Hν−1(b, ρ(s)) + αδHν−1(t, a)Hν−2(b, ρ(s))

+ (β− α)γHν−1(b, ρ(s)) + (β− α)δHν−2(b, ρ(s))
]
,

v2(t, s) = v1(t, s)− Hν−1(t, ρ(s)),

ξ = (β− α)γ + αγHν−1(b, a) + αδHν−2(b, a) 6= 0.

10 15 20 25 30 35 40

0.5

1.0

1.5

2.0

2.5

3.0

Figure 1. Graphic of G0(t, 20) for α = β = γ = 1, δ = 0 (Dirichlet case), µ = 3/2, a = 5 and b = 40.

This result was obtained by expressing the general solution of the nabla fractional
difference equation in (3), using the method of variation of constants. Notice that, for a
non-constant function g the expression of the general solution does not exist and, as a conse-
quence, the method used in [8] is not applicable for the following boundary value problem:
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−
(
∇ν−1

a
(
∇u
))

(t) + g(t)u(t) = 0, t ∈ Nb
a+2,

αu(a + 1)− β
(
∇u
)
(a + 1) = 0,

γu(b) + δ
(
∇u
)
(b) = 0.

(4)

Due to this reason, Graef et al. [19] and Cabada et al. [20] followed a different approach.
Graef et al. [19] studied the following Dirichlet problem:

{
−
(

Dµ
0 u
)
(t) + g(t)u(t) = w(t) f (t, u(t)), 0 < t < 1,

u(0) = u(1) = 0,

where 1 < µ < 2; g : [0, 1] → R, w : [0, 1] → R+ ∪ {0}, f : [0, 1]×R → R are continu-
ous functions, and Dµ

0 denotes the µth-th order Riemann–Liouville fractional derivative.
Cabada et al. [20] studied the following Dirichlet problem:

−
(
∆µu

)
(t) + g(t + µ− 1)u(t + µ− 1) = w(t) f (t + µ− 1, u(t + µ− 1)),

u(µ− 2) = u(µ + b + 1) = 0,

where t ∈ Nb+1
0 , b ∈ N5; 1 < µ < 2; g, w : Nb+1

0 → R with w 6≡ 0 on Nb+1
0 ; f : Nµ+b

µ−1 ×R→
R is a continuous function, and ∆µ denotes the µ-th order Riemann–Liouville forward
(delta) difference operator.

Similar to these works, we obtained the Green’s function related to (4) as a series of
functions by using the spectral theory. Then, under suitable conditions on g, w and f , we
proved the existence of at least one solution of the boundary value problem (1). This work
provides a new approach for constructing Green’s functions for nabla fractional boundary
value problems.

This article is organized as follows: In Section 2, we recall some definitions and
preliminary results. In Section 3, we obtain the Green’s function related to (4), and deduce
some of its important properties. In Section 4, we establish a couple of existence results for
the boundary value problem (1), using two different Leray–Schauder fixed point theorems
and under different assumptions on the data of the problem. Finally, we give some
examples to demonstrate the applicability of these results.

2. Preliminaries

In this section, we recall some elementary definitions and fundamental facts of nabla
fractional calculus, which will be used throughout the article. Denote by Na = {a, a +
1, a + 2, . . .} and Nb

a = {a, a + 1, a + 2, . . . , b} for any a, b ∈ R such that b− a ∈ N1. The
backward jump operator ρ : Na+1 → Na is defined by

ρ(t) = max {a, t− 1}, t ∈ Na.

The Euler gamma function is defined by

Γ(z) =
∫ ∞

0
tz−1e−tdt, <(z) > 0.

Using its reduction formula, the Euler gamma function can also be extended to the half-
plane <(z) ≤ 0 except for z ∈ {. . . ,−2,−1, 0}. For t ∈ R \ {. . . ,−2,−1, 0} and r ∈ R
such that (t + r) ∈ R \ {. . . ,−2,−1, 0}, the generalized rising function is defined by
the following:

tr =
Γ(t + r)

Γ(t)
.
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If t ∈ {. . . ,−2,−1, 0} and r ∈ R such that (t + r) ∈ R \ {. . . ,−2,−1, 0}, then we find
that tr = 0.

Let µ ∈ R \ {. . . ,−2,−1}, define the µ-th order nabla fractional Taylor monomial by
the following:

Hµ(t, a) =
(t− a)µ

Γ(µ + 1)
,

provided that the right-hand side exists. Observe that Hµ(a, a) = 0 and Hµ(t, a) = 0 for all
µ ∈ {. . . ,−2,−1} and t ∈ Na.

Let u : Na → R and N ∈ N1. The first order backward (nabla) difference of u is
defined by the following:

(
∇u
)
(t) = u(t)− u(t− 1), t ∈ Na+1,

and the N-th order nabla difference of u is defined recursively by

(
∇Nu

)
(t) =

(
∇
(
∇N−1u

))
(t), t ∈ Na+N .

Let u : Na+1 → R and N ∈ N1. The N-th order nabla sum of u based at a is given by
the following:

(
∇−N

a u
)
(t) =

t

∑
s=a+1

HN−1(t, ρ(s))u(s), t ∈ Na,

where, by convention,
(
∇−N

a u
)
(a) = 0.

We define
(
∇−0

a u
)
(t) = u(t) for all t ∈ Na+1.

Definition 1. Let u : Na+1 → R and ν > 0. The ν-th order nabla sum of u based at a is given by
the following [4]:

(
∇−ν

a u
)
(t) =

t

∑
s=a+1

Hν−1(t, ρ(s))u(s), t ∈ Na,

where, by convention,
(
∇−ν

a u
)
(a) = 0.

Definition 2. Let u : Na+1 → R, ν > 0 and choose N ∈ N1 such that N− 1 < ν ≤ N. The ν-th
order Riemann–Liouville nabla difference of u is given by the following [4]:

(
∇ν

au
)
(t) =

(
∇N(∇−(N−ν)

a u
))

(t), t ∈ Na+N .

In [21,22], Jonnalagadda obtained the following properties of the Green’s function G0(t, s).

Theorem 1. Assume that the following condition holds [22]:

(A0) α, β, γ, δ ≥ 0, α2 + β2 > 0, γ2 + δ2 > 0 and β ≥ α.

Then,

1. G0(t, s) ≥ 0 for all (t, s) ∈ Nb
a ×Nb

a+1;
2. max

t∈Nb
a

G0(t, s) = G0(ρ(s), s) for all s ∈ Nb
a+1;

3. G0(ρ(s), s) < Λ, where

Λ =
1
ξ

[
αγHν−1(b, a)Hν−1(b, a) + αδHν−1(b, a)

+ (β− α)γHν−1(b, a) + (β− α)δ
]
.
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Theorem 2. Assume that the condition (A0) holds [21]. Then,

b

∑
s=a+1

G0(t, s) ≤ Ω,

for all (t, s) ∈ Nb
a ×Nb

a+1, where

Ω =
1
ξ

[
αγH2ν−1(b, a + 1) + αδH2ν−2(b, a + 1)

+ (β− α)γHν(b, a) + (β− α)δHν−1(b, a)
]
.

We mention the following classical result that will be used in the next section.

Lemma 1. Let X be a Banach space, A : X → X be a linear operator with the operator norm
‖A‖ [23] (page 795). Then, if ‖A‖ < 1, we have that (I − A)−1 exists and

(I − A)−1 =
∞

∑
n=0

An.

Here, I is the identity operator.

3. Green’s Function and Its Properties

In this section, we construct the Green’s function related to problem (4), and deduce
some significant properties.

We denote by X the set of all maps from Nb
a into R. Clearly, X is a Banach space

endowed with the maximum norm ‖ · ‖. We assume the following condition throughout
the paper.

(A1) There exists ḡ > 0 such that

|g(t)| ≤ ḡ <
1
Ω

, t ∈ Nb
a.

We define G : Nb
a ×Nb

a+1 → R by the following:

G(t, s) =
∞

∑
n=0

(−1)nGn(t, s), (5)

where G0(t, s) is given by (2), and set (see Figures 2–4).

Gn(t, s) =
b

∑
τ=a+1

G0(t, τ)Gn−1(τ, s)g(τ), n ∈ N1. (6)

Then, we have the following result.

Theorem 3. Assume that conditions (A0) and (A1) are fulfilled, then function G(t, s), defined in
(5) as a series of functions, is convergent for (t, s) ∈ Nb

a ×Nb
a+1. Moreover, G(t, s) is the Green’s

function for the boundary value problem (4).
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Figure 2. Graphic of G1(t, 20) for α = β = γ = 1, δ = 0 (Dirichlet case), µ = 3/2, a = 5, b = 40 and
g ≡ 1/100.
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Figure 3. Graphic of G2(t, 20) for α = β = γ = 1, δ = 0 (Dirichlet case), µ = 3/2, a = 5, b = 40 and
g ≡ 1/100.
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Figure 4. Graphic of the first three iterates of G(t, 20) for α = β = γ = 1, δ = 0 (Dirichlet case),
µ = 3/2, a = 5, b = 40 and g ≡ 1/100.

Proof. For any h ∈ X and t ∈ Nb
a, consider the following linear boundary value problem:

−
(
∇ν−1

a
(
∇u
))

(t) + g(t)u(t) = h(t), t ∈ Nb
a+2,

αu(a + 1)− β
(
∇u
)
(a + 1) = 0,

γu(b) + δ
(
∇u
)
(b) = 0.

(7)
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By definition of the Green’s function G0, the solutions u of this problem satisfy the
following identity:

u(t) =
b

∑
s=a+1

G0(t, s)[h(s)− g(s)u(s)],

which is the same to

u(t) +
b

∑
s=a+1

G0(t, s)g(s)u(s) =
b

∑
s=a+1

G0(t, s)h(s). (8)

Now, define the operators T1 : X → X and T2 : X → X by the following:

(T1h)(t) =
b

∑
s=a+1

G0(t, s)h(s), t ∈ Nb
a,

(T2u)(t) =
b

∑
s=a+1

G0(t, s)g(s)u(s), t ∈ Nb
a.

Then, (8) can be expressed as the following:

(I + T2)u = T1h.

Using condition (A1) and Theorem 1 the following is true:

‖T2‖ = max
‖u‖=1

‖T2u‖ = max
‖u‖=1

[
max
t∈Nb

a

|(T2u)(t)|
]

= max
‖u‖=1

[
max
t∈Nb

a

∣∣∣∣∣
b

∑
s=a+1

G0(t, s)g(s)u(s)

∣∣∣∣∣

]

≤ max
‖u‖=1

[
max
t∈Nb

a

b

∑
s=a+1

G0(t, s)|g(s)||u(s)|
]

≤ max
‖u‖=1

[
ḡ‖u‖max

t∈Nb
a

b

∑
s=a+1

G0(t, s)

]

< max
‖u‖=1

[ḡ‖u‖Ω] = ḡ Ω < 1.

Then, by Lemma 1, we have the following:

u = (I + T2)
−1T1h =

∞

∑
n=0

(−T2)
nT1h. (9)

Arguing in a similar manner than in [20], we can deduce the following:

(
(−T2)

nT1h
)
(t) =

b

∑
s=a+1

(−1)nGn(t, s)h(s), t ∈ Nb
a, n = 0, 1, 2, . . . (10)

Let us see now that the following inequality is fulfilled:

|(−1)nGn(t, s)| < Λ(ḡΩ)n, n = 0, 1, 2, . . . (11)

From Theorem 1, we have that (11) holds for n = 0. Assume now that (11) is true for
some n = k. Then, the following is true:
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∣∣∣(−1)k+1Gk+1(t, s)
∣∣∣ =

∣∣∣∣∣(−1)k+1
b

∑
τ=a+1

G0(t, τ)Gk(τ, s)g(τ)

∣∣∣∣∣

=

∣∣∣∣∣−
b

∑
τ=a+1

G0(t, τ)(−1)kGk(τ, s)g(τ)

∣∣∣∣∣

≤
b

∑
τ=a+1

G0(t, τ)
∣∣∣(−1)kGk(τ, s)

∣∣∣|g(τ)|

< Λ(ḡΩ)k ḡ
b

∑
τ=a+1

G0(t, τ)

< Λ(ḡΩ)k ḡΩ = Λ(ḡΩ)k+1.

Thus, (11) holds for n = k + 1. By mathematical induction, (11) holds for any n = 0, 1, 2, . . ..
As a direct consequence of previous inequality and condition (A1), we deduce that for

all (t, s) ∈ Nb
a ×Nb

a+1 the following property is fulfilled:

|G(t, s)| =
∣∣∣∣∣

∞

∑
n=0

(−1)nGn(t, s)

∣∣∣∣∣ ≤
∞

∑
n=0
|(−1)nGn(t, s)|

< Λ
∞

∑
n=0

(ḡΩ)n =
Λ

1− ḡΩ
< ∞,

and, a a consequence, G(t, s) converges on Nb
a ×Nb

a+1.
Finally, expressions (5), (9) and (10) imply that for all t ∈ Nb

a the following equality
is fulfilled:

u(t) =
∞

∑
n=0

[
b

∑
s=a+1

(−1)nGn(t, s)h(s)

]
=

b

∑
s=a+1

[
∞

∑
n=0

(−1)nGn(t, s)

]
h(s)

=
b

∑
s=a+1

G(t, s)h(s). (12)

It is not difficult to verify that any function defined by (12) is a solution of the boundary
value problem (7). So we conclude that problem (7) has a unique solution and, as a
consequence, G is its related Green’s function.

Lemma 2. Assume conditions (A0) and (A1). Let G be defined by (5) and the following:

Ḡ(s) =
G0(ρ(s), s)

1− ḡΩ
, s ∈ Nb

a+1. (13)

Then,
|G(t, s)| ≤ Ḡ(s), (t, s) ∈ Nb

a ×Nb
a+1.

Proof. First, we prove the following:

|(−1)nGn(t, s)| < G(s− 1, s)(ḡΩ)n, s ∈ Nb
a+1, n = 0, 1, 2, . . . (14)

Theorem 1 implies that inequality (14) is true for n = 0.
Assume now that (14) holds for some n = k. We will show that (14) holds for

n = k + 1. Consider the following:
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∣∣∣(−1)k+1Gk+1(t, s)
∣∣∣ =

∣∣∣∣∣(−1)k+1
b

∑
τ=a+1

G0(t, τ)Gk(τ, s)g(τ)

∣∣∣∣∣

=

∣∣∣∣∣−
b

∑
τ=a+1

G0(t, τ)(−1)kGk(τ, s)g(τ)

∣∣∣∣∣

≤
b

∑
τ=a+1

G0(t, τ)
∣∣∣(−1)kGk(τ, s)

∣∣∣|g(τ)|

< G(s− 1, s)(ḡΩ)k ḡ
b

∑
τ=a+1

G0(t, τ)

< G(s− 1, s)(ḡΩ)k ḡΩ = G(s− 1, s)(ḡΩ)k+1.

Thus, (14) holds for n = k + 1 and the inequalities are deduced from
mathematical induction.

Now, from (5), (13) and (14), for s ∈ Nb
a+1, we obtain the following:

|G(t, s)| =
∣∣∣∣∣

∞

∑
n=0

(−1)nGn(t, s)

∣∣∣∣∣ ≤
∞

∑
n=0
|(−1)nGn(t, s)|

< G(s− 1, s)
∞

∑
n=0

(ḡΩ)n

=
G0(ρ(s), s)

1− ḡΩ
= Ḡ(s),

and the proof is complete.

From the previous result, we deduce the following consequence for g ≤ 0.

Corollary 1. Assume that condition (A) is fulfilled and

−ḡ < g(t) ≤ 0, t ∈ Nb
a.

Then, G(t, s) ≥ 0 for each (t, s) ∈ Nb
a ×Nb

a+1.

Proof. From Theorem 1, we know that G0(t, s) ≥ 0 for each (t, s) ∈ Nb
a ×Nb

a+1. The result
follows immediately from (5) and (6).

4. Existence of Solutions

In this section, we derive two existence results for the nonlinear problem (1). Define
the operator T : X → X (X defined in previous section) by the following:

(
Tu
)
(t) =

b

∑
s=a+1

G(t, s) f (s, u(s)), t ∈ Nb
a. (15)

In view of (12), it is clear that u is a fixed point of T if and only if u is a solution of (1).
For any R > 0 given, we define the following set:

KR = {u ∈ X : ‖u‖ < R}.

Clearly, KR is a non-empty open subset of X, 0 ∈ KR and T : KR → X.
Now, denoting by

max
t∈Nb

a

| f (t, 0)| = M and
b

∑
s=a+1

Ḡ(s) = K (> 0),
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we enunciate the following list of assumptions:

(A2) f : Nb
a ×R→ R is continuous;

(A3) f satisfies the Lipschitz condition with respect to the second variable with the Lips-
chitz constant L on Nb

a ×KR. That is, for all (t, u), (t, v) ∈ Nb
a × [−R, R], the following

inequality holds:
| f (t, u)− f (t, v)| ≤ L|u− v|.

(A4) There exists a continuous function σ : Nb
a → R+ and a continuous nondecreasing

function ψ : R+ → R+ such that

| f (t, u)| ≤ σ(t)ψ(|u|), (t, u) ∈ Nb
a ×R.

(A5) 0 < LK < 1.

First, we present a nonlinear alternative of Leray–Schauder for contractive maps.

Theorem 4. (Theorem 3.2) Suppose U is an open subset of a Banach space X, 0 ∈ U and
F : Ū → X a contraction with F(Ū) bounded [24]. Then, either of the following is true:

1. F has a fixed point in Ū.
2. There exist λ ∈ (0, 1) and u ∈ ∂U with u = λFu,

holds.

Now, we establish sufficient conditions on existence of solutions for (1) using Theorem 4.

Theorem 5. Assume (A0)–(A3), (A5) hold. If we choose R such that

R ≥ MK
1− LK

, (16)

then the boundary value problem (1) has a solution in KR.

Proof. First, we show that T is a contraction. To see this, let u, v ∈ KR, t ∈ Nb
a, and consider

the following:

∣∣(Tu
)
(t)−

(
Tv
)
(t)
∣∣ =

∣∣∣∣∣
b

∑
s=a+1

G(t, s) [ f (s, u(s))− f (s, v(s))]

∣∣∣∣∣

≤
b

∑
s=a+1

|G(t, s)|| f (s, u(s))− f (s, v(s))|

≤ L
b

∑
s=a+1

Ḡ(s)|u(s)− v(s)|

≤ LK‖u− v‖,

implying that
‖Tu− Tv‖ ≤ LK‖u− v‖.

Since
0 < LK < 1,

it follows that T is a contraction.
Next, we prove that T(KR) is bounded.
To see this, let u ∈ KR (‖u‖ ≤ R), t ∈ Nb

a, and consider the following:
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∣∣(Tu
)
(t)
∣∣ =

∣∣∣∣∣
b

∑
s=a+1

G(t, s) f (s, u(s))

∣∣∣∣∣

≤
b

∑
s=a+1

|G(t, s)|| f (s, v(s))|

=
b

∑
s=a+1

|G(t, s)|| f (s, u(s))− f (s, 0) + f (s, 0)|

≤
b

∑
s=a+1

Ḡ(s)| f (s, u(s))− f (s, 0)|+
b

∑
s=a+1

Ḡ(s)| f (s, 0)|

≤ L
b

∑
s=a+1

Ḡ(s)|u(s)|+ M
b

∑
s=a+1

Ḡ(s)

≤ LK‖u‖+ MK ≤ [LR + M]K,

implying the following:
‖Tu‖ ≤ [LR + M]K.

Thus, T(KR) bounded.
Now, suppose there exist v ∈ ∂KR (‖v‖ = R) and λ ∈ (0, 1) such that

v = λTv. (17)

Using the definition of T in (17) and arguing as before, we obtain the following:

|v(t)| =
∣∣λ
(
Tv
)
(t)
∣∣ ≤ [LR + M]λK < [LR + M]K, t ∈ Nb

a,

which implies the following:
R = ‖v‖ < [LR + M]K

or, which is the same,

R <
MK

1− LK
,

in contradiction with (16).
Hence, by Theorem 4, we deduce that operator T has a fixed point in KR and the proof

is complete.

Remark 1. We note that in the previous result, if M = 0 then we have that u ≡ 0 on [0, 1] is a
solution of problem (1). On the contrary, if M > 0 the obtained function is non trivial on [0, 1]

Next, we enunciate a nonlinear alternative of Leray–Schauder for continuous and
compact maps.

Theorem 6. Let E be a Banach space, C a closed, convex subset of E, U an open subset of C and
0 ∈ U [24] (Theorem 6.6). Suppose that F : Ū → C is a continuous, compact map. Then, either of
the following is true:

1. F has a fixed point in Ū, or
2. there is a u ∈ ∂U and λ ∈ (0, 1) with u = λFu.

Now, we establish sufficient conditions on existence of solutions for (1) using Theorem 6.

Theorem 7. Assume that conditions (A0)–(A2), and (A4) hold. If we choose R such that

R
K‖σ‖ψ(R)

≥ 1, (18)
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then the boundary value problem (1) has a solution in KR.

Proof. Since T is a summation operator on a discrete finite set, it is trivially continuous
and compact. Now, suppose that there exist v ∈ ∂KR (‖v‖ = R) and λ ∈ (0, 1) such that
(17) holds. Using the definition of T in (17), we obtain the following:

|v(t)| =
∣∣λ
(
Tv
)
(t)
∣∣

=

∣∣∣∣∣λ
b

∑
s=a+1

G(t, s) f (s, v(s))

∣∣∣∣∣

≤ λ
b

∑
s=a+1

|G(t, s)|| f (s, v(s))|

≤ λ
b

∑
s=a+1

|G(t, s)|σ(s)ψ(|v(s)|)

≤ λ‖σ‖ψ(‖v‖)
b

∑
s=a+1

Ḡ(s)

< K‖σ‖ψ(‖v‖).

So, we deduce the following:

R = ‖v‖ < K‖σ‖ψ(‖v‖).

Thus,
R

K‖σ‖ψ(R)
< 1.

This is a contradiction to (18).
Hence, by Theorem 6, the boundary value problem (1) has a solution in KR. The proof

is complete.

Remark 2. Note that since we have that

max
t∈Nb

a

G0(t, s) < Λ

we can set the following:

K =
Λ

1− gΩ
(b− a) >

b

∑
s=a+1

G(s) = K.

Thus, we can use K instead of K everywhere and we do not need to calculate the Green’s function
at all.

Indeed, in (A5), if we have 0 < LK < 1, this implies that 0 < L K < 1.
In Theorem 4.2, if we choose R ≥ MK

1−LK
, then we will also have that R ≥ MK

1−LK since
MK

1−LK
≥ MK

1−LK .

Finally, in Theorem 4.4, if we choose R
K‖σ‖ψ(R)

≥ 1, then we will also have that R
K‖σ‖ψ(R) ≥ 1

since R
K‖σ‖ψ(R) ≥ R

K‖σ‖ψ(R)
.

5. Examples

In the section, we present some examples to illustrate the applicability of our main results.
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Problem 1. Consider the following nabla fractional boundary value problem:

−
(
∇1/2

0
(
∇u
))

(t) + e−t

10 u(t) = 1
200 sin(u(t) + t), t ∈ N6

2,

u(0) = u(6) = 0.
(19)

Here, α = 1, β = 1, γ = 1 and δ = 0, a = 0, b = 6 and ν = 3/2.
In addition, g(t) = e−t/10 and f (t, u) = (sin(u + t))/200. Clearly, g : N6

0 → R;
f : N6

0 ×R→ R is continuous and satisfies Lipschitz condition with respect to u on N6
0 ×R with

Lipschitz constant L = 0.005.
We have ξ = H0.5(6, 0) ≈ 2.7071, Λ = H0.5(6, 0) ≈ 2.7071, Ω = H2(6, 1) = 3 and

ḡ = 0.1 so that |g(t)| ≤ ḡ < 1
Ω . Further,

K =
Λ

1− gΩ
(b− a)≈23.2037.

Observe that 0 < LK̄ ≈ 0.116 < 1. Additionally,

M = max
t∈N6

0

| f (t, 0)| = max
t∈N6

0

∣∣∣∣
sin t
200

∣∣∣∣ ≈ 0.00479462137.

If we choose

R ≥ MK
1− LK

≈ 0.12585176,

then by Theorem 5 and Remark 2, the boundary value problem (19) has a solution in KR.

Problem 2. Consider the following nabla fractional boundary value problem:

−
(
∇1/2

0
(
∇u
))

(t) + 1
20(t+1)u(t) = u2(t)

10(t2+10) , t ∈ N9
2,

u(0) + u(1) = 0,
u(8) + u(9) = 0.

(20)

Here, α = 2, β = 1, γ = 2 and δ = −1 such that α2 + β2 > 0 and γ2 + δ2 > 0, a = 0, b = 9
and ν = 3/2.

In addition, g(t) = 1
20(t+1) and f (t, u) = u2(t)

10(t2+10) . Clearly, g : N9
0 → R and f : N9

0×R→
R are continuous.

We have ξ ≈ 10.9616, Λ ≈ 2.9403, Ω = 15.8396 and ḡ ≈ 0.05 so that |g(t)| ≤ ḡ <
1
Ω . Further,

K =
Λ

1− gΩ
(b− a) ≈ 127.2245.

In addition,
| f (t, u)| ≤ σ(t)ψ(|u|), (t, u) ∈ N9

0 ×R,

where σ(t) = 1
10(t2+10) and ψ(x) = x2. Observe that σ : N9

0 → R+ is continuous and ψ : R+ →
R+ is continuous non-decreasing with

‖σ‖ = max
t∈N9

0

|σ(t)| = 0.001.

If we choose
R

K‖σ‖ψ(R)
≥ 1,

that is, R ≤ 7.8616, then by Theorem 7 and Remark 2, the boundary value problem (19) has a
solution in KR.
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1. Introduction

In this paper, we are concerned with regularity criteria for the weak solutions to the
incompressible magneto-hydrodynamic (MHD) equations in R3 [1,2]:





∂tu + (u · ∇)u− ∆u +∇p = (b · ∇)b,
∂tb + (u · ∇)b− ∆b = (b · ∇)u,
∇ · u = ∇ · b = 0,
u(x, 0) = u0(x), b(x, 0) = b0(x),

(1)

where u = (u1, u2, u3) is the fluid velocity field, b = (b1, b2, b3) is the magnetic field, p
is a scalar pressure, and u0, b0 is the prescribed initial data satisfying the compatibility
condition ∇ · u0 = ∇ · b0 = 0 in the distributional sense. Physically, Equation (1) govern
the dynamics of the velocity and magnetic fields in electrically conducting fluids, such as
plasmas, liquid metals, and salt water.

Besides its physical applications, the MHD equations (1) have also mathematically
significant. Duvaut and Lions [1] developed a global weak solution to (1) for initial data
withfinite energy, that is,

u, b ∈ L∞
(

0, T; L2(R3)
)
∩ L2

(
0, T; H1

(
R3
))

for any T > 0.

It is well known that the issue of regularity for weak solutions to the 3D incompressible
Navier- Stokes equations has been one of the most challenging open problem in mathematical
fluid mechanics [3], as well as that for the 3D incompressible magneto-hydrodynamics (MHD)
equations (see Sermange and Temam [2]). Many sufficient conditions (see e.g., [4–14] and the
references therein) were derived to guarantee the regularity of the weak solution. He and
Xin [15] first extended the classical Prodi-Serrin conditions of Navier-Stokes equations to the
MHD equations, they obtained regularity criteria involving only on velocity u, i.e.,

u ∈ Lq
(

0, T; Lp
(
R3
))

with
2
q
+

3
p
≤ 1 and 3 < p ≤ ∞ (2)
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or
∇u ∈ Lq

(
0, T; Lp

(
R3
))

with
2
q
+

3
p
≤ 2 and

3
2
< p ≤ ∞. (3)

Later, He and Wang [16] showed that a weak solution (u, b) is regular, provided only
∇ω+ = (u + b) or ∇ω− = (u− b) belongs to Beirao da Veiga’s class, that is,

∇ω+ or ∇ω− ∈ Lq
(

0, T; Lp,∞
(
R3
))

with
2
q
+

3
p
= 2 and 3 ≤ p ≤ ∞. (4)

Ni et al. [17] showed that one of the following conditions hold

{
∇hu ∈ Lq(0, T; Lp(R3)) with 2

q +
3
p ≤ 2 and 3

2 < p ≤ ∞,

∂3b ∈ Lq(0, T; Lp(R3)) with 2
q +

3
p ≤ 2 and 3

2 < p ≤ ∞.
(5)





u3 ∈ Lq(0, T; Lp(R3)
)

with 2
q +

3
p ≤ 1 and 3 < p ≤ ∞,

∂3u ∈ Lp(0, T; Lq(R3)) with 2
q +

3
p ≤ 2 and 3

2 < p ≤ ∞,

b3 ∈ Lq(0, T; Lp(R3)) with 2
q +

3
p ≤ 1 and 3 < p ≤ ∞,

∂3b ∈ Lq(0, T; Lp(R3)) with 2
q +

3
p ≤ 2 and 3

2 < p ≤ ∞,

(6)

{
∇hu ∈ Lq(0, T; Lp(R3)) with 2

q +
3
p ≤ 2 and 3

2 < p ≤ ∞,

∇hb ∈ Lq(0, T; Lp(R3)) with 2
q +

3
p ≤ 2 and 3

2 < p ≤ ∞,
(7)

then the weak solution (u, b) is regular on (0, T], where ∇h = (∂1, ∂2). Recently, Jia [18]
showed that condition (7) can be replaced by

{
∇hũ ∈ Lq(0, T; Lp(R3)) with 2

q +
3
p ≤ 2 and 3

2 < p ≤ ∞,

∇h b̃ ∈ Lq(0, T; Lp(R3)) with 2
q +

3
p ≤ 2 and 3

2 < p ≤ ∞,
(8)

where f̃ = ( f1, f2). Regularity condition (8) was further improved by Xu et al. [19], more
precisely, they proved that if any two quantities of

{
Aq,p

i (T) := ∂iui ∈ Lq(0, T; Lp(R3)) with 2
q +

3
p = 2 and 3

2 < p ≤ ∞,

Bq,p
i (T) := ∂ibi ∈ Lq(0, T; Lp(R3)) with 2

q +
3
p = 2 and 3

2 < p ≤ ∞,
(9)

where i = 1, 2, 3, then the solution is smooth on interval (0,T]. For readers interested in this
topic for partial components, please refer to [20–26] for recent progresses.

Motivated by papers cited above, the aim of this article is to study the regularity
of weak solutions for the 3D MHD equations (1) in term of the two partial derivative
of the velocity components and magnetic components on framework of the anisotropic
Lorentz space. Before stating our main Theorem, we shall first recall the definitions of
some function spaces [27].

Lorentz Spaces

Given a measurable function f : Rn → R define the distribution function of f by

d f (α) = µ({x : | f (x)| > α}),

where µ(A) (or |A|) denotes the Lebesgue measure of a set A. We now define its decreasing
rearrangement f ∗ : [0, ∞)→ [0, ∞] as

f ∗(t) = inf
{

α : d f (α) ≤ t
}

,
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with the convention that inf ∅ = ∞. The point of this definition is that f and f ∗ have the
same distribution function,

d f ∗(α) = d f (α),

but f ∗ is a positive non-increasing scalar function.

Definition 1. Let (p, q) ∈ [1, ∞]2, the Lorentz space Lp,q(R3) consists of all measurable functions
f for which the quantity

‖ f ‖Lp,q :=





(∫ ∞
0 [t

1
p f ∗(t)]q dt

t

) 1
q

q < ∞,

sup
0<t<∞

t
1
p f ∗(t) q = ∞,

is finite.

In order to give the following definition involving anisotropic Lorentz space, we
denote f = f (x1, x2, x3) be a measurable function defined on R3, f ∗(t) = f ∗1,∗2,∗3(t1, t2, t3).
Here f ∗1,∗2,∗3(t1, t2, t3) is the multivariate decreasing rearrangement of f (x1, x2, x3) ob-
tained by applying decreasing rearrangement f ∗1(t1, x2, x3) of f (x1, x2, x3) relating to the
first variable x1, under fixed the second, the third variables x2, x3, and then applying de-
creasing rearrangement f ∗1,∗2(t1, t2, x3) of f ∗1(t1, x2, x3) with respect to the second variable
x2 under fixed the first variable t1 of f ∗1(t1, x2, x3) and variable x3, finally for variable x3,
by the same trick, we obtain the multivariate decreasing rearrangement f ∗1,∗2,∗3(t1, t2, t3).

Recently, many works have been done for mixed-norm spaces. Stefanov-Torres [28]
obtained the boundedness of Calderón-Zygmund operators on mixed-norm Lebesgue
spaces. Georgiadis et al. [29] obtained various properties of anisotropic Triebel-Lizorkin
spaces with mixed norms. In [30], Chen-Sun introduced the iterated weak and weak
mixed-norm spaces and given some applications to geometric inequalities.

Definition 2. Let multi indexes p = (p1, p2, p3), q = (q1, q2, q3) be such that if 0 < pi < ∞,
then 0 < qi ≤ ∞, and if pi = ∞, then qi = ∞ for every i = 1, 2, 3 [31]. An anisotropic Lorentz
space Lp1,q1(Rx1 ; Lp2,q2(Rx2 ; Lp3,q3(Rx3))) is the set of functions for which the following norm
is finite:

∥∥∥∥∥

∥∥∥∥‖ f ‖L
p1,q1
x1

∥∥∥∥
Lp2,q2

x2

∥∥∥∥∥
L

p3,q3
x3

:=



∫ ∞

0



∫ ∞

0

(∫ ∞

0
[t

1
p1
1 t

1
p2
2 t

1
p3
3 f ∗1,∗2,∗3(t1, t2, t3)]

q1
dt1

t1

) q2
q1 dt2

t2




q3
q2

dt3

t3




1
q3

.

Now, our main result reads:

Theorem 1. Suppose that (u0, b0) ∈ L2(R3)∩ L4(R3) and∇ · u0 = ∇ · b0 = 0 in distributional
sense. Let (u, b) be the Leray-Hopf weak solution of (1) on (0, T]. If any two quantities





Ai(T) :=
∫ T

0

∥∥∥∥∥
∥∥∥‖∂iui(t)‖Lp,∞

x1

∥∥∥
Lq,∞

x2

∥∥∥∥∥

2
2−( 1

p + 1
q +

1
r )

Lr,∞
x3

dt,

Bi(T) :=
∫ T

0

∥∥∥∥∥
∥∥∥‖∂ibi(t)‖Lp,∞

x1

∥∥∥
Lq,∞

x2

∥∥∥∥∥

2
2−( 1

p + 1
q +

1
r )

Lr,∞
x3

dt,

(10)

are finite, where i = 1, 2, 3 with 2 < p, q, r ≤ ∞ and 1−
(

1
p + 1

q +
1
r

)
≥ 0, then the weak

solution (u, b) is actually smooth on interval (0, T].
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Remark 1. While Lp(R3) ↪→ Lp,∞(R3), clearly Lp,∞ is a larger space than Lp. Therefore, from
this point of view, condition (10) can be regarded as an extension of (7)–(9). In addition, our
regularity criteria only depends on any two groups functions of (∂1u1, ∂1b1), (∂2u2, ∂2b2) and
(∂3u3, ∂3b3). Hence, (10) can be as a significant improvement of condition (7) and (8). In addition,
when b = 0, it is note that Theorem 1 is also new to the incompressible Navier-Stokes equations.

Remark 2. According to embedding relation Lp(R3) ↪→ Lp,∞(R3), we can obtain the following
regularity criteria on framework of anisotropic Lebesgue space,





Ai(T) :=
∫ T

0

∥∥∥∥∥
∥∥∥‖∂iui(t)‖Lp

x1

∥∥∥
Lq

x2

∥∥∥∥∥

2
2−( 1

p + 1
q +

1
r )

Lr
x3

dt < ∞,

Bi(T) :=
∫ T

0

∥∥∥∥∥
∥∥∥‖∂ibi(t)‖Lp

x1

∥∥∥
Lq

x2

∥∥∥∥∥

2
2−( 1

p + 1
q +

1
r )

Lr
x3

dt < ∞,

(11)

where we should point out that for Equation (1), the regularity criterion (11) still new.

Remark 3. Notice that when fix p = q = r in condition (11), the conditions (9) naturally turn
out as stated in [19]. Furthermore, if let p = q = r in condition (10), it is not difficult to find that
our result improves the condition (4) significantly. Hence, regularity criteria (10) or (11) is much
better. In other words, Theorem 1 can be regarded as a generalization of [16,18,19,23].

Before ending this section, we state the following lemmas, which will be used in the
proof of our main result.

Lemma 1. (Young’s Inequality for Lorentz Spaces [32,33]) Let 1 < p < ∞, 1 ≤ q ≤ ∞ and
1
p′ +

1
p = 1, 1

q′ +
1
q′ = 1. Suppose as well that 1 < p1 < p′ and q′ ≤ q ≤ ∞. If 1

p2
+ 1 = 1

p + 1
p1

and 1
q2

= 1
q +

1
q1

, then the convolution operator,

∗ : Lp,q(Rn)× Lp1,q1(Rn) 7→ Lp2,q2(Rn)

is a bounded bilinear operator.

Lemma 2. (Hölder’s inequality in Lorentz spaces [33]) If 1 ≤ p1, p2, q1, q2 ≤ ∞, then for any
f ∈ Lp1,q1(Rn), g ∈ Lp2,q2(Rn),

‖ f g‖Lp,q(Rn) ≤ C‖ f ‖Lp1,q1 (Rn)‖g‖Lp2,q2 (Rn),

where 1
p = 1

p1
+ 1

p2
and 1

q = 1
q1
+ 1

q2
.

For any s ≥ 0, even if s not an integer, we can define the homogeneous Sobolev space
Ḣs(Rn):

Ḣs(Rn) = { f ∈ S ′ : f̂ ∈ L1
loc(R

n) and
∫

Rn
|ξ|2s| f̂ (ξ)|2dξ < ∞}

with the natural norm

‖ f ‖Ḣs =

(∫

Rn
|ξ|2s| f̂ (ξ)|2dξ

) 1
2
,

where S ′ denotes the space of the tempered distributions on Rn.

Lemma 3. For 2 < p < ∞, there exists a constant C = C(p) such that f ∈ Ḣ
1
p (R), then

f ∈ L
2p

p−2 ,2
(R) and

‖ f ‖
L

2p
p−2 ,2
≤ C‖ f ‖

Ḣ
1
p

. (12)
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Proof. We first make the pointwise definition, γ(ξ) = |ξ|
1
p f̂ (ξ) ; since f ∈ Ḣ

1
p (R), γ ∈

L2(R). If we set g = F−1γ, then g ∈ L2(R) and ‖g‖L2 = ‖γ‖L2 = ‖ f ‖
Ḣ

1
p

. Now,

f̂ (ξ) =
|ξ|

1
p f̂ (ξ)

|ξ|
1
p

= ĝ(ξ)|ξ|−
1
p .

Combining the fact that if Pα(x) = |x|−α, then P̂α(ξ) = CαP1−α(ξ). Thus we obtain f =

g ∗ C−1
1− 1

p
P1− 1

p
. The function P1− 1

p
= |x|−

p−1
p ∈ L

p
p−1 ,∞

(R) but not in L
p

p−1 (R). Applying

Lemma 1, we find that

‖ f ‖
L

2p
p−2 ,2

=

∥∥∥∥g ∗ C−1
1− 1

p
P1− 1

p

∥∥∥∥
L

2p
p−2 ,2

≤ C‖g‖L2

∥∥∥∥|x|
− p−1

p

∥∥∥∥
L

p
p−1 ,∞

≤ C‖ f ‖
Ḣ

1
p

.
(13)

Lemma 4. There exists a positive constant C such that
∥∥∥∥∥∥∥

∥∥∥∥∥∥
‖ f ‖

L
2p

p−2 ,2
x1

∥∥∥∥∥∥
L

2q
q−2 ,2
x2

∥∥∥∥∥∥∥
L

2r
r−2 ,2
x3

≤ C‖∂1 f ‖
1
p

L2‖∂2 f ‖
1
q

L2‖∂3 f ‖
1
r
L2‖ f ‖

1−
(

1
p +

1
q +

1
r

)

L2 , (14)

for every f ∈ C∞
0
(
R3) where 2 < p, q, r ≤ ∞, 1−

(
1
p + 1

q +
1
r

)
≥ 0.

Proof. Let Λp
1 be the Fourier multiplier defined as

F1

(
Λp

1 f
)
(ξ1, x2, x3) = |ξ1|pF1 f (ξ1, x2, x3)

with
F1 f (ξ1, x2, x3) =

∫

R
e−iξ1x1 f (x1, x2, x3)dx1,

Λp
2 and Λp

3 can be defined analogously. Then by Lemma 3, Minkowski’s inequality and
Hölder’s inequality to obtain

∥∥∥∥∥∥∥

∥∥∥∥∥∥
‖ f ‖

L
2p

p−2 ,2
x1

∥∥∥∥∥∥
L

2q
q−2 ,2
x2

∥∥∥∥∥∥∥
L

2r
r−2 ,2
x3

≤ C

∥∥∥∥∥∥∥

∥∥∥∥∥

∥∥∥∥Λ
1
p
1 f
∥∥∥∥

L2
x1

∥∥∥∥∥
L

2q
q−2 ,2
x2

∥∥∥∥∥∥∥
L

2r
r−2 ,2
x3

≤

∥∥∥∥∥∥∥

∥∥∥∥∥∥

∥∥∥∥Λ
1
p
1 f
∥∥∥∥

L
2q

q−2 ,2
x2

∥∥∥∥∥∥
L2

x1

∥∥∥∥∥∥∥
L

2r
r−2 ,2
x3

≤ C

∥∥∥∥∥

∥∥∥∥Λ
1
q
2 Λ

1
p
1 f
∥∥∥∥

L2
x1,x2

∥∥∥∥∥
L

2r
r−2 ,2
x3

≤ C

∥∥∥∥∥

∥∥∥∥Λ
1
q
2 Λ

1
p
1 f
∥∥∥∥

L
2r

r−2 ,2
x3

∥∥∥∥∥
L2

x1,x2

≤ C
∥∥∥∥Λ

1
r
3 Λ

1
q
2 Λ

1
p
1 f
∥∥∥∥

L2
.

(15)

Combining the Fourier-Plancherel formula and the Hölder’s inequality, we have
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C
∥∥∥∥Λ

1
r
3 Λ

1
q
2 Λ

1
p
1 f
∥∥∥∥

L2
≤ C

(∫

R3
|ξ1|

2
p |ξ2|

2
q |ξ3|

2
r |F f (ξ1, ξ2, ξ3)|2dξ1dξ2dξ3

) 1
2

= C
(∫

R3
|ξ1|

2
p |F f (ξ)|

2
p |ξ2|

2
q |F f (ξ)|

2
q |ξ3|

2
r |F f (ξ)| 2r |F f (ξ)|2−

(
2
p +

2
q +

2
r

)
dξ1dξ2dξ3

) 1
2

≤ C‖F f ‖1− 1
p− 1

q− 1
r

L2

(∫

R3
|ξ1|2|F f |2dξ

) 1
2p
(∫

R3
|ξ2|2|F f |2dξ

) 1
2q
(∫

R3
|ξ3|2|F f |2dξ

) 1
2r

≤ C‖∂1 f ‖
1
p

L2‖∂2 f ‖
1
q

L2‖∂3 f ‖
1
r
L2‖ f ‖

1−
(

1
p +

1
q +

1
r

)

L2 .

(16)

Remark 4. In fact, since L
2p

p−2 ,2
↪→ L

2p
p−2 , 2p

p−2 for 2 < p < ∞, we have similar result for estimate
(14) in anisotropic Lebesgue space (for more details refer to [34]). However, we should point out
that Lemma 4 holds in Lorentz space mainly depends on the Sobolev’s embedding in Lemma 3.

2. Proof of Theorem 1

This section is devoted to the proof of Theorem 1. The proof is based on the establish-
ment of a priori estimates under condition (10).

Firstly, we note that, by the energy inequality, for weak solution (u, b), we have

‖u‖2
L2 + ‖b‖2

L2 + 2
∫ T

0
‖∇u‖2

L2 + ‖∇b‖2
L2 dt ≤ ‖u0‖2

L2 + ‖b0‖2
L2 . (17)

Next, let us convert (1) into a symmetric form. Writing

ω± = u± b,

we find by adding and subtracting (1)1 with (1)2,





∂tω
+ + (ω− · ∇)ω+ − ∆ω+ +∇p = 0,

∂tω
− + (ω+ · ∇)ω− − ∆ω− +∇p = 0,

∇ ·ω+ = ∇ ·ω− = 0,
ω+(0) = ω+

0 ≡ u0 + b0, ω−(0) = ω−0 ≡ u0 − b0.

(18)

Taking the inner product of the i-th equation of (18)1 with |ω+
i |2ωi and (18)2 with

|ω−i |2ωi (for i = 1, 2, 3) and integrating by parts in R3 to get

1
4

d
dt

(∥∥ω+
i

∥∥4
L4 +

∥∥ω−i
∥∥q

Lq

)
+

1
2

(∥∥∥∇
∣∣ω+

i

∣∣2
∥∥∥

2

L2
+
∥∥∥∇
∣∣ω−i

∣∣2
∥∥∥

2

L2

)

+
∥∥|ω+

i | · |∇ω+
i |
∥∥2

L2 +
∥∥|ω−i | · |∇ω−i |

∥∥2
L2

=−
∫

R3
∂i p
∣∣ω+

i

∣∣2ω+
i dx−

∫

R3
∂i p
∣∣ω−i

∣∣2ω−i dx ≡ I + J,

(19)

we consider the (u, b) satisfying condition (10) with any two quantities of Ai(T) and Bi(T)
for (i = 1, 2, 3):





Ai(T) :=
∫ T

0

∥∥∥∥∥
∥∥∥‖∂iui(t)‖Lp,∞

x1

∥∥∥
Lq,∞

x2

∥∥∥∥∥

2
2−( 1

p + 1
q +

1
r )

Lr,∞
x3

dt < ∞,

Bi(T) :=
∫ T

0

∥∥∥∥∥
∥∥∥‖∂ibi(t)‖Lp,∞

x1

∥∥∥
Lq,∞

x2

∥∥∥∥∥

2
2−( 1

p + 1
q +

1
r )

Lr,∞
x3

dt < ∞.
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In order to estimate the term I and J of (19), let us first establish an estimate between
the p and the ω. Taking the divergence operator ∇· on both sides of the first equations
of (18), it follows that

−∆p = div
(
w− · ∇w+

)
= div div

(
w− ⊗ w+

)
.

Similarly, taking ∇div operator on both sides of the first equation of (18) to obtain

−∆(∇p) = ∇div
(
w− · ∇w+

)
= ∇div

(
w+ · ∇w−

)
.

By using the boundedness of Riesz transformations in Lp (1 < p < ∞) space, so
we have





‖p‖Lp ≤ C‖w+‖L2p‖w−‖L2p ,
‖∇p‖Lp ≤ C‖w+ · ∇w−‖Lp ,
‖∇p‖Lp ≤ C‖w− · ∇w+‖Lp .

(20)

Using the Hölder’s inequality, Young’s inequality, Lemma 4 and (20), we can deduce that

I =−
∫

R3
∂i p|ω+

i |2ω+
i dx ≤ C

∣∣∣∣
∫

R3
p|ω+

i |2∂iω
+
i dx

∣∣∣∣

≤
∥∥∥∥∥

∥∥∥∥
∥∥∂iω

+
i

∥∥
Lp,∞

x1

∥∥∥∥
Lq,∞

x2

∥∥∥∥∥
Lr,∞

x3

∥∥∥∥∥∥∥

∥∥∥∥∥∥
‖p‖

L
2p

p−2 ,2
x1

∥∥∥∥∥∥
L

2q
q−2 ,2
x2

∥∥∥∥∥∥∥
L

2r
r−2 ,2
x3

∥∥∥|ω+
i |2
∥∥∥

L2

≤C

∥∥∥∥∥

∥∥∥∥
∥∥∂iω

+
i

∥∥
Lp,∞

x1

∥∥∥∥
Lq,∞

x2

∥∥∥∥∥
Lr,∞

x3

‖∂1 p‖
1
p

L2‖∂2 p‖
1
q

L2‖∂3 p‖
1
r
L2‖p‖

1−
(

1
p +

1
q +

1
r

)

L2 ‖|ω+
i |2‖L2

≤C

∥∥∥∥∥

∥∥∥∥
∥∥∂iω

+
i

∥∥
Lp,∞

x1

∥∥∥∥
Lq,∞

x2

∥∥∥∥∥
Lr,∞

x3

‖∇p‖
1
p +

1
q +

1
r

L2 ‖p‖
1−
(

1
p +

1
q +

1
r

)

L2 ‖|ω+
i |2‖L2

≤C

∥∥∥∥∥

∥∥∥∥
∥∥∂iω

+
i

∥∥
Lp,∞

x1

∥∥∥∥
Lq,∞

x2

∥∥∥∥∥
Lr,∞

x3

‖∇p‖
1
p +

1
q +

1
r

L2 ‖ω+‖
3−
(

1
p +

1
q +

1
r

)

L4 ‖ω−‖
1−
(

1
p +

1
q +

1
r

)

L4

≤ε
(∥∥w+ · ∇w−

∥∥2
L2 +

∥∥w− · ∇w+
∥∥2

L2

)
+ C

∥∥∥∥∥

∥∥∥∥
∥∥∂iω

+
i

∥∥
Lp,∞

x1

∥∥∥∥
Lq,∞

x2

∥∥∥∥∥

2
2−( 1

p + 1
q +

1
r )

Lr,∞
x3

(
‖ω+‖4

L4 + ‖ω−‖4
L4

)
.

(21)

Similarly, for J, we have

J =−
∫

R3
∂i p|ω−i |2ω+

i dx ≤ C
∣∣∣∣
∫

R3
p|ω−i |2∂iω

−
i dx

∣∣∣∣

≤ε
(∥∥w+ · ∇w−

∥∥2
L2 +

∥∥w− · ∇w+
∥∥2

L2

)
+ C

∥∥∥∥∥

∥∥∥∥
∥∥∂iω

−
i

∥∥
Lp,∞

x1

∥∥∥∥
Lq,∞

x2

∥∥∥∥∥

2
2−( 1

p + 1
q +

1
r )

Lr,∞
x3

(
‖ω+‖4

L4 + ‖ω−‖4
L4

)
.

(22)

Inserting (21) and (22) into (19) and summing up with respect to the index i from 1 to 3,
we get
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1
4

(∥∥ω+
∥∥4

L4 +
∥∥ω−

∥∥4
L4

)
+

1
2

∫ t

0

(∥∥∥∇
∣∣ω+

∣∣2
∥∥∥

2

L2
+
∥∥∥∇
∣∣ω−

∣∣2
∥∥∥

2

L2

)
ds

+
∫ t

0

(∥∥|ω+| · |∇ω+|
∥∥2

L2 +
∥∥|ω−| · |∇ω−|

∥∥2
L2

)
ds

≤C
∫ t

0

3

∑
i=1



∥∥∥∥∥

∥∥∥∥
∥∥∂iω

+
i

∥∥
Lp,∞

x1

∥∥∥∥
Lq,∞

x2

∥∥∥∥∥

2
2−( 1

p + 1
q +

1
r )

Lr,∞
x3

+

∥∥∥∥∥

∥∥∥∥
∥∥∂iω

−
i

∥∥
Lp,∞

x1

∥∥∥∥
Lq,∞

x2

∥∥∥∥∥

2
2−( 1

p + 1
q +

1
r )

Lr,∞
x3




·
(
‖ω+‖4

L4 + ‖ω−‖4
L4

)
ds + ε

∫ t

0

(∥∥w+ · ∇w−
∥∥2

L2 +
∥∥w− · ∇w+

∥∥2
L2

)
ds + C

(∥∥ω+
0

∥∥4
L4 +

∥∥ω−0
∥∥4

L4

)
,

(23)

where we have used that for any p ≥ 1 and some constant Cγ,p > 0,

C−1
γ,p‖u‖γ

Lp ≤
3

∑
i=1
‖ui‖γ

Lp 6 Cγ,p‖u‖γ
Lp .

Due to the fact ∣∣∣∇
∣∣w+

∣∣2
∣∣∣ ≤ 2

∣∣w+
∣∣∣∣∇w+

∣∣

and the inequality

‖u(t)‖L4 ≤ 1
2
(∥∥w+(t)

∥∥
L4 +

∥∥w−(t)
∥∥

L4

)
,

‖b(t)‖L4 ≤ 1
2
(∥∥w+(t)

∥∥
L4 +

∥∥w−(t)
∥∥

L4

)
.

We rewrite inequality (23) as follows

1
4

(
‖u(t)‖4

L4 + ‖b(t)‖4
L4

)
+

1
4

∫ t

0

(∥∥∥∇|u|2
∥∥∥

2

L2
+
∥∥∥∇|b|2

∥∥∥
2

L2

)
ds

+
∫ t

0

(
‖|u| · |∇u|‖2

L2 + ‖|u| · |∇b|‖2
L2 + ‖|b| · |∇u|‖2

L2 + ‖|b| · |∇b|‖2
L2

)
ds

≤C
∫ t

0

3

∑
i=1



∥∥∥∥∥

∥∥∥∥
∥∥∂iω

+
i

∥∥
Lp,∞

x1

∥∥∥∥
Lq,∞

x2

∥∥∥∥∥

2
2−( 1

p + 1
q +

1
r )

Lr,∞
x3

+

∥∥∥∥∥

∥∥∥∥
∥∥∂iω

−
i

∥∥
Lp,∞

x1

∥∥∥∥
Lq,∞

x2

∥∥∥∥∥

2
2−( 1

p + 1
q +

1
r )

Lr,∞
x3




·
(
‖u‖4

L4 + ‖b‖4
L4

)
ds + ε

∫ t

0

(
‖u · ∇u‖2

L2 + ‖b · ∇u‖2
L2 + ‖u · ∇b‖2

L2 + ‖b · ∇b‖2
L2

)
ds

+ C
(∥∥ω+

0

∥∥4
L4 +

∥∥ω−0
∥∥4

L4

)
,

(24)

and hence we get

1
4

(
‖u(t)‖4

L4 + ‖b(t)‖4
L4

)
+

1
4

∫ t

0

(∥∥∥∇|u|2
∥∥∥

2

L2
+
∥∥∥∇|b|2

∥∥∥
2

L2

)
ds

+
1
4

∫ t

0

(
‖|u| · |∇u|‖2

L2 + ‖|u| · |∇b|‖2
L2 + ‖|b| · |∇u|‖2

L2 + ‖|b| · |∇b|‖2
L2

)
ds

≤C
∫ t

0

3

∑
i=1



∥∥∥∥∥

∥∥∥∥
∥∥∂iω

+
i

∥∥
Lp,∞

x1

∥∥∥∥
Lq,∞

x2

∥∥∥∥∥

2
2−( 1

p + 1
q +

1
r )

Lr,∞
x3

+

∥∥∥∥∥

∥∥∥∥
∥∥∂iω

−
i

∥∥
Lp,∞

x1

∥∥∥∥
Lq,∞

x2

∥∥∥∥∥

2
2−( 1

p + 1
q +

1
r )

Lr,∞
x3




·
(
‖u‖4

L4 + ‖b‖4
L4

)
ds + C

(
‖u0‖4

L4 + ‖b0‖4
L4

)
.

(25)

Applying the Gronwall’s inequality to obtain
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sup
0≤t≤T

(
‖u(t)‖4

L4 + ‖b(t)‖4
L4

)

≤C exp C
∫ T

0

3

∑
i=1



∥∥∥∥∥

∥∥∥∥
∥∥∂iω

+
i

∥∥
Lp,∞

x1

∥∥∥∥
Lq,∞

x2

∥∥∥∥∥

2
2−( 1

p + 1
q +

1
r )

Lr,∞
x3

+

∥∥∥∥∥

∥∥∥∥
∥∥∂iω

−
i

∥∥
Lp,∞

x1

∥∥∥∥
Lq,∞

x2

∥∥∥∥∥

2
2−( 1

p + 1
q +

1
r )

Lr,∞
x3


dt

≤C exp C
∫ T

0

3

∑
i=1



∥∥∥∥∥
∥∥∥‖∂iui‖Lp,∞

x1

∥∥∥
Lq,∞

x2

∥∥∥∥∥

2
2−( 1

p + 1
q +

1
r )

Lr,∞
x3

+

∥∥∥∥∥
∥∥∥‖∂ibi‖Lp,∞

x1

∥∥∥
Lq,∞

x2

∥∥∥∥∥

2
2−( 1

p + 1
q +

1
r )

Lr,∞
x3


dt

<∞.

(26)

Since
u, b ∈ L∞

(
0, T; L4

(
R3
))
⊂ L8

(
0, T; L4

(
R3
))

,

combining the classical Serrin-type regularity criterion (2), as in [15], then we complete the
proof of Theorem 1.

3. Conclusions

This paper studies the MHD equations, and obtains the a regularity criterion only
involving the partial components of the ∇u and ∇b. In addition, the anisotropic Lorentz
space used in this article is broader than the general Lebesgue and Lorentz spaces. It seems
that a slightly modified the technique in Theorem 1 can be applied to other incompressible
fluid equations such as micropolar equations and the magneto-micropolar equations.
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Abstract: The major aim of this paper is the presentation of Aboodh transform of the Atangana–
Baleanu fractional differential operator both in Caputo and Riemann–Liouville sense by using the
connection between the Laplace transform and the Aboodh transform. Moreover, we aim to obtain
the approximate series solutions for the time-fractional differential equations with an Atangana–
Baleanu fractional differential operator in the Caputo sense using the Aboodh transform iterative
method, which is the modification of the Aboodh transform by combining it with the new iterative
method. The relation between the Laplace transform and the Aboodh transform is symmetrical.
Some graphical illustrations are presented to describe the effect of the fractional order. The outcome
reveals that Aboodh transform iterative method is easy to implement and adequately captures the
behavior and the fractional effect of the fractional differential equation.

Keywords: integral transform; Atangana–Baleanu fractional derivative; fractional calculus; Aboodh
transform iterative method; Mittag–Leffler function

MSC: 26A33; 34A08; 35R11

1. Introduction

The role of fractional differential operations in evaluating and simulating history
dependent evolution models in physics and engineering cannot be over emphasized
because of their properties [1–5]. Several definitions of fractional differential operator exist
in literature. For extensive study on fractional derivative operators, refer to [6–10].

Recently, Atangana and Baleanu presented a new fractional differential operator which
utilizes the Mittag–Leffler function as the kernel to replace the exponential function kernel
of the Caputo-Fabrizo fractional differential operator [11,12]. This is performed with the
purpose of introducing a non-local, non-singular kernel and to overcome the limitations
of other fractional differential operators. For instance, the Riemman–Liouville fractional
differential operator did not properly account for the initial condition, while the Caputo
fractional differential operator was able to resolve this issue with the initial condition but
was confronted with the limitation of singular kernel .

The use of an integral transform combined with analytical methods for the solution of
fractional differential equations in the fast convergence series form is popular among re-
searchers [13–17]. The concept of the Caputo–Fabrizio fractional derivative was extended to
the model of HIV-1 infection of CD4+ T-cell using the homotopy analysis transform method
in [18]. The fractional Caputo–Fabrizio derivative was utilized to introduce two types of
new high order derivative with their existence solutions in [19]. The authors in [20] studied
the Laplace transform, Sumudu transform, Fourier transform and Mellin transform of
the Atangana–Baleanu fractional differential operator. Moreover, the Shehu transform
was applied on the Atangana–Baleanu fractional derivative in [21], and some new related
properties are established.
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The novelty of this paper is the establishment of the Aboodh transform of the Atangana–
Baleanu fractional differential operator both in the Caputo and Riemman–Liouville sense
using the connection between the Laplace transform and the Aboodh transform. Moreover,
we validate the Aboodh transform iterative method [4] for the solution of Atangana–Baleanu
fractional differential equation.

We structure this paper as follows. Section 2 consist of the fundamental concept while,
in Section 3, we discuss the basic idea of Aboodh transform iterative method. In Section 4,
we validate the Aboodh transform iterative method for the solution of Atangana–Baleanu
fractional differential equation and provide some concluding remarks in Section 5.

2. Preliminaries

In this section, some definitions, theorems and properties that will be useful in this
paper is given.

Definition 1. The Aboodh transform of a function Q(t) with exponential order over the class of
functions [4]

C = {Q : |Q(t)| < Bepj |t|, i f t ∈ (−1)j × [0, ∞), j = 1, 2; (B, p1, p2 > 0)} (1)

is written as
A [Q(t)] =M(ψ), (2)

and defined as

A [Q(t)] =
1
ψ

∫ ∞

0
Q(t)e−ψtdt =M(ψ), p1 ≤ ψ ≤ p2. (3)

Obviously, The Aboodh transform is linear as the Laplace transform.

Definition 2. The inverse Aboodh transform of a function Q(t) is defined as [4].

Q(t) = A −1[M(ψ)]. (4)

Definition 3. Let Q(t)∈ C , then the Laplace transform is defined by the following integral [22].

Q(t) =
∫ ∞

0
Q(t)e−stdt. (5)

The Laplace transform of Q(t) is written as follows.

L[Q(t)] = Q(s). (6)

If ψ and s are unity, then Equations (3) and (5) are equal; hence, the relationships between the
Aboodh transform and the Laplace transform are symmetrical.

Theorem 1 ([23]). If Q(t) ∈ C with the Aboodh transform A [Q(t)] and Laplace transformL[Q(t)],
then the following is the case.

M(ψ) =
1
ψ
Q(ψ). (7)

Definition 4. The Mittag–Leffler function is a special function that often occurs naturally in the
solution of fractional order calculus, and it is defined as follows [24].

Eβ(Z) =
∞

∑
ρ=0

Zρ

Γ(ρβ + 1)
, β, Z ∈ C, Re(β) ≥ 0, (8)
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In generalized form [24], it is defined as follows.

Eµ
β,γ =

∞

∑
ρ=0

Zρ(µ)ρ

Γ(γ + ρβ)ρ!
, β, γ, Z ∈ C, Re(β) ≥ 0, Re(γ) ≥ 0, (9)

Moreover, we assume (µ)ρ to be the Pochhammer’s symbol.

Definition 5. Let Q ∈ H1(0, 1) and 0 < β < 1, then the Atangana–Baleanu fractional derivative
defined in the Caputo sense is given as follows [11].

ABC
0 Dβ

t Q(t) =
N(β)

1− β

∫ t

0
Q
′
(x)Eβ

(−β(t− x)β

1− β

)
dx. (10)

Definition 6. Let Q ∈ H1(0, 1) and 0 < β < 1, then the Atangana–Baleanu fractional derivative
defined in the Riemann–Liouville sense is given as follows [11].

ABR
0 Dβ

t Q(t) =
N(β)

1− β

d
dt

∫ t

0
Q(x)Eβ

(−β(t− x)β

1− β

)
dx, (11)

The normalization function N(β) > 0 satisfies the condition N(0) = N(1) = 1.

Theorem 2 ([11]). The Laplace transform of Atangana–Baleanu fractional derivative according to
the Caputo sense is derived as follows:

L
[

ABC
0 Dβ

t Q(t)
]
=

N(β)

1− β
× sβF(s)− sβ−1 f (0)

sβ + β
1−β

, (12)

Moreover, the Laplace transform of Atangana–Baleanu fractional derivative according to the
Riemann–Liouville sense is derived as follows.

L
[

ABR
0 Dβ

t Q(t)
]
=

N(β)

1− β
× sβF(s)

sβ + β
1−β

. (13)

Theorem 3. If Ω, β ∈ C, with Re(β) > 0, then the Aboodh transform of Eβ(Ωtβ) is derived as
the following:

M(Eβ(Ωtβ)) =
1

ψ2

(
1− Ω

ψβ

)−1
, (14)

where |Ωψ−β| < 1.

Proof of Theorem 3. Let us use the following Laplace transform formula:

L[Eβ(Ωtβ)] =
1
s
(1−Ωs−β)−1, (15)

then by using Equation (7), we have the following.

M(ψ) =
1
ψ
Q(ψ)

=
1
ψ

(
1
ψ
(1−Ωψ−β)−1

)
(16)

= ψ−2(1−Ωψ−β)−1. (17)
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Theorem 4. Let β, γ ∈ C, with Re(β) > 0, Re(γ) > 0, the Aboodh transform of tγ−1Eµ
β,µ(Ωtβ)

is derived as follows.

tγ−1Eµ
β,µ(Ωtβ) =

1
ψγ+1 (1−Ωψ−β)−µ, |Ωψ−β| < 1. (18)

Proof of Theorem 4. Let us use the Laplace transform formula:

L[tγ−1Eµ
β,γ(Ωtβ)] = s−µ(1−Ωs−β)−µ, (19)

then by using Equation (7), we have the following.

M(tγ−1Eµ
β,γ(Ωtβ)) =

1
ψ
Q(ψ) (20)

=
1
ψ

(
1

ψγ
(1−Ωψ−β)−µ

)

=
1

ψγ+1 (1−Ωψβ)µ. (21)

Theorem 5. IfM(ψ) is the Aboodh transform of Q(t) ∈ C and Q(s) is the Laplace transform of
Q(t)∈ C , then the Aboodh transform of Atangana–Baleanu fractional derivative according to the
Caputo sense is derived as follows.

M(ABC
0 Dβ

t Q(t)) =
N(β)(M(ψ)− ψ−2Q(0))

1− β + βψ−β
. (22)

Proof of Theorem 5. Using the relationship between the Aboodh transform and Laplace
transform, we obtain the following.

M(ABC
0 Dβ

t Q(t)) =
1
ψ


N(β)

1− β
× ψβQ(ψ)− ψβ−1Q(0)

ψβ + β
1−β




= ψβ

(
N(β)× M(ψ)− ψ−2Q(0)

ψβ(1− β + βψ−β)

)
(23)

= N(β)× (M(ψ)− ψ−2Q(0))
1− β + βψ−β

.

Theorem 6. Assume thatM(ψ) is the Aboodh transform of Q(t) ∈ C and Q(s) is the Laplace
transform of Q(t) ∈ C , then the Aboodh transform of Atangana–Baleanu fractional derivative
according to the Riemann–Liouville sense is derived as follows.

M(ABR
0 Dβ

t Q(t)) =
N(β)M(ψ)

1− β + βψ−β
. (24)

Proof of Theorem 6. By using the relationship between the Aboodh transform transform
and the Laplace transform, we obtain the following.

M(ABR
0 Dβ

t Q(t)) =
1
ψ


N(β)

1− β
× ψβQ(ψ)

ψβ + β
1−β
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=
1
ψ

(
N(β)Q(ψ)

1− β + βψ−β

)
(25)

=
N(β)M(ψ)

1− β + βψ−β
.

3. Aboodh Transform Iterative Method

In this section, we consider the fundamental solution of the initial value problem
using the Aboodh transform iterative method. This iterative method is a combination of
the new iterative method introduced by Daftardar–Gejji and Jafari [25] with the Aboodh
transform which is a modification of the Laplace transform [4].

Basic Idea of Aboodh Transform Iterative Method

Consider the fractional differential equation of the following:

ABC
0 Dβ

t Q(x, t) = R(Q(x, t)) +F (Q(x, t)) + Φ(x, t), 0 < β ≤ 1, (26)

that is subject to the following initial condition.

Q(x, 0) = Q0(x), (27)

ABC
0 Dβ

t is the Atangana–Baleanu fractional differential operator, Φ(x, t) is the source
term, R and F are the linear and non-linear operators. Using the Aboodh transform on
both sides of Equation (26) with the initial condition, we obtain the following.

A [Q(x, t)] =
1− β + βψ−β

N(β)

(
N(β)ψ−2Q(x, 0)

1− β + βψ−β
+A [R(Q(x, t)) +F (Q(x, t)) + Φ(x, t)]

)
, (28)

By simplifying further and taking the inverse Aboodh transform, we obtain the following.

Q(x, t) = A −1

[
1− β + βψ−β

N(β)

(
N(β)ψ−2Q(x, 0)

1− β + βψ−β
+A [Φ(x, t)] +A [R(Q(x, t)) +F (Q(x, t))]

)]
. (29)

The non-linear term in Equation (29) can be decompose as follows [25].

F (Q(x, t)) = F

(
∞

∑
q=0

Qq(x, t)

)

= F (Q0(x, t)) +
∞

∑
q=1

{
F

(
q

∑
j=0

Qq(x, t)

)
− F

(
q−1

∑
j=0

Qq(x, t)

)}
. (30)

Now, we define the k-th order approximate series as the following.

Q(k)(x, t) =
k

∑
m=0

Qm(x, t)

= Q0(x, t) + Q1(x, t) + Q2(x, t) + · · ·+ Qk(x, t), k ∈ N. (31)

Assume that the solution of Equation (26) is in a series form given as follow.

Q(x, t) = lim
k→∞

Q(k)(x, t) =
∞

∑
m=0

Qm(x, t), (32)
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Then, substituting Equations (31) and (30) into Equation (29), we obtain the following.

∞

∑
q=0

Qq(x, t) =

A −1

[
1− β + βψ−β

N(β)

(
N(β)ψ−2Q(x, 0)

1− β + βψβ
+ Φ(x, t)+ A [R(Q0(x, t)) +F (Q0(x, t))]

)]
+

A −1

[
1− β + βψ−β

N(β)

(
A

[
∞

∑
q=1

(
R(Qq(x, t))+

{
F

(
q

∑
j=0

(x, t)

)
− F

(
q−1

∑
j=0

Qq(x, t)

)})])]
. (33)

From Equation (33), we define the following iterations.

Q0(x, t) = A −1
[

1− β + βψ−β

N(β)

(
N(β)ψ−2Q(x, 0)

1− β + βψβ
+ Φ(x, t)

)]
, (34)

Q1(x, t) = A −1
[

1− β + βψ−β

N(β)
(A [R(Q0(x, t)) +F (Q0(x, t))])

]
, (35)

...

Qq+1 =

A −1

[
1− β + βψ−β

N(β)

(
A

[
∞

∑
q=1

(
R(Qq(x, t))+

{
F

(
q

∑
j=0

(x, t)

)
− F

(
q−1

∑
j=0

Qq(x, t)

)})])]
,

q = 1, 2, . . . (36)

Convergence Analysis

We establish the convergence analysis of the series in Equation (32) here.

Theorem 7. Suppose that the nonlinear operator and the linear operator are from the Banach space
X relative to itself, and Q(x,t) is analytic about t. Then the infinite series defined in Equation (32)
computed by Equations (34), (35),. . . , (36) converges to the solution of Equation (26) if 0 < ρ ≤ 1,
where ρ is a nonnegative real number.

Proof. Let
{

Sq
}

be the partial sum of the series in Equation (32). Then, we have to show
that

{
Sq
}

is Cauchy sequence in X.
Consider the following.

||Sq+1(x, t)− Sq(x, t)|| = ||Qq+1(x, t)|| ≤ ρ||Qq(x, t)|| ≤ ρ2||Qq−1(x, t)|| ≤ · · · ≤ ρq+1||Q0(x, t)||.

For every q, r ∈ N (r ≤ q), the following is the case.

||Sq − Sr || = ||(Sq − Sq−1) + (Sq−1 − Sq−2) + · · ·+ (Sr+1 − Sr)||

≤ ||(Sq − Sq−1)||+ ||(Sq−1 − Sq−2)||+ · · ·+ ||(Sr+1 − Sr)||

≤ (ρq + ρq+1 + · · ·+ ρr+1)||Q0(x, t)||

≤ ρr+1(ρq−r−1 + ρq−r−2 + ρ + 1)||Q0(x, t)||

≤ ρr+1
(

1− ρq−r

1− ρ

)
||Q0(x, t)||.

However, 0 < ρ ≤ 1; therefore, ||Sq − Sr|| = 0. Hence, the sequence
{

Sq
}

is a
Cauchy sequence.
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4. Applications

Here, we consider five distinct differential equations with the Atangana–Baleanu
fractional derivative in order to validate the application of the scheme with different
initial conditions.

Example 1. Consider Equation (26) as the time-fractional gas dynamics equation:

ABC
0 Dβ

t Q +
1
2
(Q2)x − Q(1−Q) = 0, 0 < β ≤ 1. (37)

with the following initial condition.

Q0(x) = e−x . (38)

From Equation (37) and (38), we set the following.

R(Q(x, t)) = −Q,

F(Q(x, t)) =
1
2

(
Q2
)

x
+ Q2,

Q0(x, 0) = e−x.

By employing the iteration procedure described in Section 3, we obtain the following.

Q0 = A −1

[
1− β + βψ−β

N(β)

(
N(β)ψ−2Q(x, 0)

1− β + βψ−β

)]
, 0 < β ≤ 1

= A −1[ψ−2Q(x, 0)] (39)

= A −1[ψ−2e−x]

= e−x ,

Q1 = A −1

[
1− β + βψ−β

N(β)
(A [R(Q0(x, t)) + F(Q0(x, t))])

]

= A −1

[
1− β + βψ−β

N(β)

(
A

[
Q0 −

(
1
2
(Q2

0)x + Q2
0

)])]
(40)

= A −1

[(
(1− β)ψβ + β

N(β)

)
e−x

ψ2+β

]

=

(
(1− β)ψβ + β

N(β)

)
e−x

Γ(β + 1)
,

Q2 = A −1

[
1− β + βψ−β

N(β)
(A [R(Q1(x, t))+ {F(Q0(x, t) + Q1(x, t))− F(Q0(x, t))}])

]

= A −1

[
1− β + βψ−β

N(β)

(
A

[
Q1 +

{(
1
2
((Q0 + Q1)

2)x + (Q0 + Q1)
2
)
+
(

1
2
(Q2

0)x + Q2
0

)}])]

= A −1

[(
(1− β)ψβ + β

N(β)

)2
e−x

ψ2+2β

]
(41)

=

(
(1− β)ψβ + β

N(β)

)2
e−x

Γ(2β + 1) ,

...
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Qk = A −1

[
1− β + βψ−β

N(β)

(
A

[
R(Qk−1(x, t))+

{
F

(
k

∑
j=0

Qj(x, t)

)
+ F

(
k−1

∑
j=0

Qj(x, t)

)}])]

= A −1

[
1− β + βψ−β

N(β)

(
A

[(
(1− β)ψβ + β

N(β)

)k−1
Qk−1(x, t)

])]
(42)

= A −1

[(
(1− β)ψβ + β

N(β)

)k
e−x

ψ2+kβ

]

=

(
(1− β)ψβ + β

N(β)

)k
e−xtkβ

Γ(kβ + 1)
.

We derived the k-th approximate series solution as follows:

Q(k)(x, t) =
k

∑
m=0

Qm(x, t) = Q0(x, 0) + Q1(x, t) + Q2(x, t) + · · ·+ Qk(x, t)

= e−x

(
1 +

(
(1− β)ψβ + β

N(β)

)
tβ

Γ(β + 1)
+ · · ·+

(
(1− β)ψβ + β

N(β)

)k
tkβ

Γ(kβ + 1)

)

= e−x
k

∑
m=0

(
(1− β)ψβ + β

N(β)

)m
tmβ

Γ(mβ + 1)
, (43)

when k→ ∞, the k-th order approximate series results in the exact solution.

Q(x, t) = lim
k→∞

Q(k)(x, t)

= e−x lim
k→∞

k

∑
m=0

(
(1− β)ψβ + β

N(β)

)m
tmβ

Γ(mβ + 1)
(44)

= e−xEβ

(
((1− β)ψβ + β)tβ

N(β)

)
.

When β = 1, we obtain the exact solution as follows:

= e−xE1(t)

= et−x, (45)

which is the exact solution obtained in [2]. Figure 1 reveals the effect of α and the natural behavior of the
model at distinct values of α. Moreover, Figure 2a,b is the surface plot at α = 0.5 and 1, respectively.

Figure 1. Comparison plot of the exact and approximate solutions for Example 1.
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(a) α = 0.5 (b) α = 1
Figure 2. The surface plot for Example 1.

Example 2. Consider Equation (26) as the one dimensional time-fractional biological population
model according to Verhulst law [26]:

ABC
0 Dβ

t Q = (Q2)xx + Q
(

1− 4
25

Q
)

, t > 0, 0 < β ≤ 1, (46)

with the following initial condition.

Q0(x) = e
1
5 . (47)

From Equations (46) and (47), we set the following.

R(Q(x, t)) = Q,

F(Q(x, t)) = (Q2)xx −
4
25

Q2,

Q0(x, 0) = e
1
5 x.

By employing the iteration procedure described in Section 3, we obtain the following.

Q0 = A −1

[
1− β + βψ−β

N(β)

(
N(β)ψ−2Q(x, 0)

1− β + βψ−β

)]
, 0 < β ≤ 1

= A −1[ψ−2Q(x, 0)] (48)

= A −1
[

ψ−2e
1
5 x
]

= e
1
5 x,

Q1 = A −1

[
1− β + βψ−β

N(β)
(A [R(Q0(x, t)) + F(Q0(x, t))])

]

= A −1

[
1− β + βψ−β

N(β)

(
A

[
Q0 + (Q2

0)xx −
4
25

Q2
0

])]

= A −1

[(
(1− β)ψβ + β

N(β)

)
e

x
5

ψ2+β

]
(49)

=

(
(1− β)ψβ + β

N(β)

)
e

x
5 tβ

Γ(β + 1)
,

Q2 = A −1

[
1− β + βψ−β

N(β)
(A [R(Q1(x, t))+ {F(Q0(x, t) + Q1(x, t))− F(Q0(x, t))}])

]
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= A −1

[
1− β + βψ−β

N(β)

(
A

[
Q1 +

{
((Q0 + Q1)

2)xx −
4
25

(Q0 + Q1)
2 − (Q2

0)xx +
4

25
Q2

0

}])]

= A −1

[(
(1− β)ψβ + β

N(β)

)2
e

x
5

ψ2+2β

]
(50)

=

(
(1− β)ψβ + β

N(β)

)2
e

x
5 t2β

Γ(2β + 1) ,

...

Qk = A −1

[
1− β + βψ−β

N(β)

(
A

[
R(Qk−1(x, t))+

{
F

(
k

∑
j=0

Qj(x, t)

)
+ F

(
k−1

∑
j=0

Qj(x, t)

)}])]

= A −1

[
1− β + βψ−β

N(β)

(
A

[(
(1− β)ψβ + β

N(β)

)k−1
Qk−1(x, t)

])]
(51)

= A −1

[(
(1− β)ψβ + β

N(β)

)k
e

x
5

ψ2+kβ

]

=

(
(1− β)ψβ + β

N(β)

)k
e

x
5 tkβ

Γ(kβ + 1)
.

We derived the k-th approximate series solution as the following:

Q(k)(x, t) =
k

∑
m=0

Qm(x, t) = Q0(x, 0) + Q1(x, t) + Q2(x, t) + · · ·+ Qk(x, t)

= e
x
5

(
1 +

(
(1− β)ψβ + β

N(β)

)
tβ

Γ(β + 1)
+ · · ·+

(
(1− β)ψβ + β

N(β)

)k
tkβ

Γ(kβ + 1)

)
(52)

= e
x
5

k

∑
m=0

(
(1− β)ψβ + β

N(β)

)m
tmβ

Γ(mβ + 1)
,

when k→ ∞, the k-th order approximate series results in the exact solution.

Q(x, t) = lim
k→∞

Q(k)(x, t)

= e
x
5 lim

k→∞

k

∑
m=0

(
(1− β)ψβ + β

N(β)

)m
tmβ

Γ(mβ + 1)
(53)

= e
x
5 Eβ

(
((1− β)ψβ + β)tβ

N(β)

)
,

When β = 1, we obtain the exact solution as follows.

= e
x
5 E1(t)

= e(
x
5 +t). (54)

Figure 3 reveals the effect of α and the natural behavior of the model at distinct values of α.
Moreover, Figure 4a,b are the surface plots at α = 0.5 and 1, respectively.
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Figure 3. Comparison plot of the exact and approximate solutions for Example 2.

(a) α = 0.5 (b) α = 1
Figure 4. The surface plot for Example 2.

Example 3. Consider Equation (26) as the time-fractional Fokker–Plane equation [2]:

ABC
0 Dβ

t Q +
(

4
x

Q2
)

x
−
(

x
3

Q
)

x
− (Q2)xx = 0, t > 0, 0 < β ≤ 1, (55)

with the following initial condition.

Q0(x) = x2. (56)

From Equations (55) and (56), we set the following.

R(Q(x, t)) = −
(

x
3

Q
)

x
,

F(Q(x, t)) = −(Q2)xx +
(

4
x

Q2
)

x
,

Q0(x, 0) = x2.

By employing the iteration procedure described in Section 3, we obtain the following.

Q0 = A −1

[
1− β + βψ−β

N(β)

(
N(β)ψ−2Q(x, 0)

1− β + βψ−β

)]
, 0 < β ≤ 1

= A −1[ψ−2Q(x, 0)] (57)

= A −1[ψ−2x2]

= x2,

Q1 = A −1

[
1− β + βψ−β

N(β)
(A [R(Q0(x, t)) + F(Q0(x, t))])

]
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= A −1

[
1− β + βψ−β

N(β)

(
A

[(
x
3

Q
)

x
−
(
(Q2

0)xx +
(

4
x

Q2
0

)
x

)])]
(58)

= A −1

[(
(1− β)ψβ + β

N(β)

)
x2

ψ2+β

]

=

(
(1− β)ψβ + β

N(β)

)
x2tβ

Γ(β + 1)
,

Q2 = A −1

[
1− β + βψ−β

N(β)
(A [R(Q1(x, t))+ {F(Q0(x, t) + Q1(x, t))− F(Q0(x, t))}])

]

= A −1

[
1− β + βψ−β

N(β)

(
A

[
x
3

Q1 +
{
((Q0 + Q1)

2)xx −
(

4
x
(Q0 + Q1)

2
)

x
− (Q2

0)xx +
(

4
x

Q2
0

)
x

}])]

= A −1

[(
(1− β)ψβ + β

N(β)

)2
x2

ψ2+2β

]
(59)

=

(
(1− β)ψβ + β

N(β)

)2
x2t2β

Γ(2β + 1)
,

...

Qk = A −1

[
1− β + βψ−β

N(β)

(
A

[
R(Qk−1(x, t))+

{
F

(
k

∑
j=0

Qj(x, t)

)
+ F

(
k−1

∑
j=0

Qj(x, t)

)}])]

= A −1

[
1− β + βψ−β

N(β)

(
A

[(
(1− β)ψβ + β

N(β)

)k−1
Qk−1(x, t)

])]
(60)

= A −1

[(
(1− β)ψβ + β

N(β)

)k
x2

ψ2+kβ

]

=

(
(1− β)ψβ + β

N(β)

)k
x2tkβ

Γ(kβ + 1)
,

We derived the k-th approximate series solution as the following:

Q(k)(x, t) =
k

∑
m=0

Qm(x, t) = Q0(x, 0) + Q1(x, t) + Q2(x, t) + · · ·+ Qk(x, t)

= x2

(
1 +

(
(1− β)ψβ + β

N(β)

)
tβ

Γ(β + 1)
+ · · ·+

(
(1− β)ψβ + β

N(β)

)k
tkβ

Γ(kβ + 1)

)
(61)

= x2
k

∑
m=0

(
(1− β)ψβ + β

N(β)

)m
tmβ

Γ(mβ + 1)
,

when k→ ∞, the k-th order approximate series results in the exact solution.

Q(x, t) = lim
k→∞

Q(k)(x, t)

= x2 lim
k→∞

k

∑
m=0

(
(1− β)ψβ + β

N(β)

)m
tmβ

Γ(mβ + 1)
(62)

= x2Eβ

(
((1− β)ψβ + β)tβ

N(β)

)
,
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When β = 1, we obtain the exact solution as follows:

= x2E1(t)

= x2et, (63)

which is the exact solution obtained in [2]. Figure 5 reveals the effect of α and the natural behavior of the
model at distinct values of α. Moreover, Figure 6a,b is the surface plot at α = 0.5 and 1, respectively.

Figure 5. Comparison plot of the exact and approximate solutions for Example 3.

(a) α = 0.5 (b) α = 1
Figure 6. The surface plot for Example 3.

Example 4. Consider Equation (26) to be the time-fractional Klomogorov equation [2]:

ABC
0 Dβ

t Q + x2etQxx − (x + 1)Qx = xt, t > 0, 0 < β ≤ 1, (64)

which is subject to the following initial condition.

Q0(x) = x + 1. (65)

From Equations (64) and (65), we set the following.

R(Q(x, t)) = −x2etQxx + (x + 1)Qx ,

F(Q(x, t)) = 0,

Φ(x, t) = xt,

Q0(x, 0) = x + 1.

By employing the iteration procedure described in Section 3, we obtain the following.

Q0 = A −1

[
1− β + βψ−β

N(β)

(
N(β)ψ−2Q(x, 0)

1− β + βψ−β
+A [Φ(x, t)]

)]
, 0 < β ≤ 1
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= A −1

[
ψ−2Q(x, 0)+

(
1− β + βψ−β

N(β)

)
A [Φ(x, t)]

]
(66)

= A −1

[
ψ−2(x + 1)+

(
(1− β)ψβ + β

N(β)

)
x

ψ3+β

]

= (x + 1)+

(
(1− β)ψβ + β

N(β)

)
xtβ+1

Γ(β + 2)
,

Q1 = A −1

[
1− β + βψ−β

N(β)
(A [R(Q0(x, t)) + F(Q0(x, t))])

]

= A −1

[
1− β + βψ−β

N(β)
(A [−x2et(Q0)xx + (x + 1)(Q0)x])

]
(67)

= A −1

[
1− β + βψ−β

N(β)

(
A

[
(x + 1)

(
1 +

(
(1− β)ψβ + β

N(β)

)
tβ+1

Γ(β + 2)

)])]

= (x + 1)

((
(1− β)ψβ + β

N(β)

)
tβ

Γ(β + 1)
+

(
(1− β)ψβ + β

N(β)

)2
t2β+1

Γ(2β + 2)

)
,

Q2 = A −1

[
1− β + βψ−β

N(β)
(A [R(Q1(x, t))+ {F(Q0(x, t) + Q1(x, t))− F(Q0(x, t))}])

]

= A −1

[
1− β + βψ−β

N(β)
(A [−x2et(Q1)xx + (x + 1)(Q1)x])

]
(68)

= A −1

[
1− β + βψ−β

N(β)

(
A

[
(x + 1)

(
1− β + βψ−β

N(β)

)
tβ

Γ(β + 1)
+

(
1− β + βψ−β

N(β)

)2
t2β+1

Γ(2β + 2)

])]

= (x + 1)

((
(1− β)ψβ + β

N(β)

)2
t2β

Γ(2β + 1)
+

(
(1− β)ψβ + β

N(β)

)3
t3β+1

Γ(3β + 2)

)
,

...

Qk = A −1

[
1− β + βψ−β

N(β)

(
A

[
R(Qk−1(x, t))+

{
F

(
k

∑
j=0

Qj(x, t)

)
+ F

(
k−1

∑
j=0

Qj(x, t)

)}])]

= A −1

[
1− β + βψ−β

N(β)

(
A

[(
(1− β)ψβ + β

N(β)

)k−1

(Qk−1(x, t))x

])]
(69)

= A −1

[
(x + 1)

(
1

ψ2+kβ

(
(1− β)ψβ + β

N(β)

)k
+

1
ψ3+(k+1)β

(
(1− β)ψβ + β

N(β)

)k+1
)]

= (x + 1)

((
(1− β)ψβ + β

N(β)

)k
tkβ

Γ(kβ + 1)
+

(
(1− β)ψβ + β

N(β)

)k+1
t(k+1)β+1

Γ((k + 1)β + 2)

)
,

We derived the k-th approximate series solution as the following.

Q(k)(x, t) =
k

∑
m=0

Qm(x, t) = Q0(x, 0) + Q1(x, t) + Q2(x, t) + · · ·+ Qk(x, t)

= (x + 1)+ ((x + 1)− 1)
tβ+1

Γ(β + 2)

(
(1− β)ψβ + β

N(β)

)
+

(x + 1)

((
(1− β)ψβ + β

N(β)

)
tβ

Γ(β + 1)
+

(
(1− β)ψβ + β

N(β)

)2
t2β+1

Γ(2β + 2)

)
+ (70)
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(x + 1)

((
(1− β)ψβ + β

N(β)

)2
t2β

Γ(2β + 1)
+

(
(1− β)ψβ + β

N(β)

)3
t3β+1

Γ(3β + 2)

)
+

· · ·+ (x + 1)

((
(1− β)ψβ + β

N(β)

)k
tkβ

Γ(kβ + 1)
+

(
(1− β)ψβ + β

N(β)

)(k+1)
t(k+1)β+1

Γ((k + 1)β + 2)

)
,

when k→ ∞, the k-th order approximate series results in the exact solution:

Q(x, t) = lim
k→∞

Q(k)(x, t)

=
−tβ+1

Γ(β + 2)

(
(1− β)ψβ + β

N(β)

)
+ (x + 1)

(
Eβ

(
(1− β)ψβ + β

N(β)

))
+ (71)

(x + 1) lim
k→∞

k

∑
m=0

(
(1− β)ψβ + β

N(β)

)m+1
t(m+1)β+1

Γ((m + 1)β + 2)
,

When β = 1, we obtain the exact solution as follows:

=
−t2

2
+ (x + 1)

(
E1(t) + lim

k→∞

k

∑
m=0

tm+2

Γ(m + 3)

)

=
−t2

2
+ (x + 1)(2et − t− 1), (72)

which is the exact solution obtained [2]. Figure 7 reveals the effect of α and the natural behavior of the
model at distinct values of α. Moreover, Figure 8a,b is the surface plot at α = 0.5 and 1, respectively.

Figure 7. Comparison plot of the exact and approximate solutions for Example 4.

(a) α = 0.5 (b) α = 1
Figure 8. The surface plot for Example 4.
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Example 5. Consider Equation (26) as the one dimensional time-fractional biological population
model according to Verhulst law [26]:

ABC
0 Dβ

t Q = (Q2)xx +
1
4

Q, t > 0, 0 < β ≤ 1, (73)

that is subject to the following initial condition.

Q0(x) = x
1
2 . (74)

From Equations (73) and (74), we set the following.

R(Q(x, t)) =
1
4

Q,

F(Q(x, t)) = (Q2)xx,

Q0(x, 0) = x
1
2 .

By employing the iteration procedure described in Section 3, we obtain the following.

Q0 = A −1

[
1− β + βψ−β

N(β)

(
N(β)ψ−2Q(x, 0)

1− β + βψ−β

)]
, 0 < β ≤ 1

= A −1[ψ−2Q(x, 0)] (75)

= A −1
[

ψ−2x
1
2
]

= x
1
2 .

Q1 = A −1

[
1− β + βψ−β

N(β)
(A [R(Q0(x, t)) + F(Q0(x, t))])

]

= A −1

[
1− β + βψ−β

N(β)

(
A

[
1
4

Q0 + (Q2
0)xx

])]

= A −1

[(
(1− β)ψβ + β

N(β)

)
( 1

4 )

ψ2+β
x

1
2

]
(76)

=

(
(1− β)ψβ + β

N(β)

)
( 1

4 )t
β

Γ(β + 1)
x

1
2 ,

Q2 = A −1

[
1− β + βψ−β

N(β)
(A [R(Q1(x, t))+ {F(Q0(x, t) + Q1(x, t))− F(Q0(x, t))}])

]

= A −1

[
1− β + βψ−β

N(β)

(
A

[
1
4

Q1 +
{(

(Q0 + Q1)
2
)

xx

}])]

= A −1

[(
(1− β)ψβ + β

N(β)

)2 ( 1
4 )

2

ψ2+2β
x

1
2

]
(77)

=

(
(1− β)ψβ + β

N(β)

)2 ( 1
4 tβ)2

Γ(2β + 1)
x

1
2 ,

,
...,

Qk = A −1

[
1− β + βψ−β

N(β)

(
A

[
R(Qk−1(x, t))+

{
F

(
k

∑
j=0

Qj(x, t)

)
+ F

(
k−1

∑
j=0

Qj(x, t)

)}])]
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= A −1

[
1− β + βψ−β

N(β)

(
A

[(
(1− β)ψβ + β

N(β)

)k−1
1
4

Qk−1(x, t)

])]
(78)

= A −1

[(
(1− β)ψβ + β

N(β)

)k
e

1
5 x

ψ2+kβ

]

=

(
(1− β)ψβ + β

N(β)

)k ( 1
4 tβ)k

Γ(kβ + 1)
x

1
2 ,

We derived the k-th approximate series solution as the following.

Q(k)(x, t) =
k

∑
m=0

Qm(x, t) = Q0(x, 0) + Q1(x, t) + Q2(x, t) + · · ·+ Qk(x, t)

= x
1
2

(
1 +

(
(1− β)ψβ + β

N(β)

)
1
4 tβ

Γ(β + 1)
+ · · ·+

(
(1− β)ψβ + β

N(β)

)k ( 1
4 tβ)k

Γ(kβ + 1)

)

= x
1
2

k

∑
m=0

(
(1− β)ψβ + β

N(β)

)m ( 1
4 tβ)m

Γ(mβ + 1)
, (79)

when k→ ∞, the k-th order approximate series results in the exact solution.

Q(x, t) = lim
k→∞

Q(k)(x, t)

= x
1
2 lim

k→∞

k

∑
m=0

(
(1− β)ψβ + β

N(β)

)m ( 1
4 tβ)m

Γ(mβ + 1)
(80)

= x
1
2 Eβ

(
((1− β)ψβ + β) 1

4 tβ

N(β)

)
,

When β = 1, we obtain the exact solution as the following:

= x
1
2 E1

(
1
4

t
)

= x(
1
2 )e

t
4 , (81)

which is the exact solution obtained in [4]. Figure 9 reveals the effect of α and the natural behavior of the
model at distinct values of α. Moreover, Figure 10a,b is the surface plot at α = 0.5 and 1, respectively.

Figure 9. Comparison plot of the exact and approximate for Example 5.
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(a) α = 0.5 (b) α = 1
Figure 10. The surface plot for Example 5.

5. Conclusions

In this paper, we utilized the connection between the Aboodh transform and the
Laplace transform to establish the Aboodh transform of Atangana–Baleanu fractional
differential operator. The accuracy and validity of the Aboodh transform iterative method
for fractional differential equation with Atangana–Baleanu fractional differential operator
are also presented.

The graphical illustration in Figures 1–10 is presented to validate the effectiveness of
the Aboodh transform iterative method and to capture the natural behavior of differential
equation with the Atangana–Baleanu fractional differential operator.

Finally, we conclude that Atangana–Baleanu fractional differential operator contains a
local and a singular kernel that makes the Atangana–Baleanu fractional differential operator
more suitable for real life applications and that the Aboodh transform iterative method can
adequately capture the effect and the behavior of fractional differential equations.
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Abstract: The goal of this paper is to consider a new class of ϕ-Hilfer fractional differential equations
with impulses and nonlocal conditions. By using fractional calculus, semigroup theory, and with
the help of the fixed point theorem, the existence and uniqueness of mild solutions are obtained for
the proposed fractional system. Symmetrically, we discuss the existence of optimal controls for the
ϕ-Hilfer fractional control system. Our main results are well supported by an illustrative example.

Keywords: ϕ-Hilfer fractional system with impulses; semigroup theory; nonlocal conditions; optimal
controls

1. Introduction

In recent years, a lot of research attention has been paid to the study of fractional
calculus, which is considered as a generalization of classical derivatives and integrals
to non-integer order. Phenomena with memory and hereditary characteristics that arise
in ecology, biology, medicine, electrical engineering, and mechanics, etc, may be well
modelled by using fractional differential equations (FDEs for short). For more details on
FDEs and its applications, see [1–5] and the references therein. In [6], Hilfer derived a
new two-parameter fractional derivative Dσ1,σ2

a+ of order σ1 and type σ2, which is called
Hilfer fractional derivative that combines the Riemann-Liouville and Caputo fractional
derivatives. This kind of parameter produces more types of stationary states and gives
an extra degree of freedom on the initial conditions. Systems based on Hilfer fractional
derivatives are considered by many authors, see [7–11] and the references therein. Recently,
Sousa and Oliveira [12] introduced a new fractional derivative with respect to another
ϕ-function the so-called ϕ-Hilfer fractional derivative, and discussed their properties as
well as important results of the fractional calculus. For more recent works on ϕ-Hilfer
fractional derivative and its applications, we refer to [13–17] and the references therein.

Many real-world phenomena and processes which are subjected to external influences
for a small time interval during their evolution can be represented as an impulsive differ-
ential equations. The impulsive differential equations have become the natural framework
for modelling of many evolving processes and phenomena studied in the field of science
and engineering such as in mechanical systems, biological systems, population dynamics,
physics, economy, and control theory. Recently, based on the theory of semigroup and
fixed point approach, many authors studied the qualitative properties of solutions for
impulsive differential equations of order one and non-integer [18–24] and the references
therein. The optimal control problem (OCP for short) plays a crucial role in biomedicine,
for example, model cancer chemotherapy and recently applied to epidemiological models.
When FDEs describe the system dynamics and the cost functional, an OCP reduces to a
fractional optimal control problem. The fractional OCP refers to optimize the cost func-
tional subject to dynamical constraints on the control parameter and state variables that
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having fractional models. For more recent works on OCP, see [25–30] and the references
therein. Harrat et al. [31] investigated the existence of optimal controls for Hilfer fractional
impulsive evolution inclusions with Clarke subdifferential. Moreover, optimal control
problems for ϕ-Hilfer fractional impulsive differential equations are rarely available in the
literature which serves as a motivation to our research work in this paper.

Motivated by the above facts, we consider following ϕ-Hilfer fractional impulsive
differential system:





HDσ1,σ2 :ϕ
tγ

+ z(t) = Az(t) + ∆(t, z(t)), t ∈ (0, b]− {t1, t2, . . . , tH},
I(1−σ1)(1−σ2);ϕ
tγ

+ z(t+γ ) = z(t−γ ) + Iγ(z(t−γ )), γ = 1, 2, . . . ,H,

I(1−σ1)(1−σ2);ϕ
0+ [z(t)]t=0 + G(z) = z0,

(1)

where HDσ1,σ2;ϕ
tγ

+ denotes the ϕ-Hilfer fractional derivative of order 1/2 < σ1 < 1, 0 < σ2 < 1

and the state z(·) takes values in a Hilbert space E and J0 = [0, b], 0 = t0 < t1 < · · · <
tH < tH+1 = b. A is the generator of a C0-semigroup {T (t)}t≥0 on E. As usual z(t+γ ) and
z(t−γ ) are the right and left limits of z at the point tγ, respectively. Iγ : E→ E are impulsive
functions that characterize the jump of z at points tγ. The functions ∆ : J0 × E → E,
G : C(J0, E)→ E are some suitable functions that will be specified later.

The rest of the manuscript is organized as follows. In Section 2, we recall some
important concepts and results. In Sections 3 and 4, we derived the mild solution by
using semigroup as well as probability density function and proved the existence of mild
solutions for the proposed fractional system, receptively. In Section 5, we investigated
the existence of optimal controls for the ϕ-Hilfer fractional control system. Moreover,
in Section 6, an example is presented to demonstrate the applicability of the obtained
symmetry results.

2. Preliminaries

Let J1 = [a, b] and ϕ ∈ Cm(J1,R) an increasing function such that ϕ′(t) 6= 0, ∀ t ∈ J1.

Definition 1. The ϕ-Riemann fractional integral of order σ1 > 0 of the functionR is given by

Iσ1;ϕ
a+ R(t) =

1
Γ(σ1)

∫ t

a
(ϕ(t)− ϕ(s))σ1−1R(s)ϕ′(s)ds.

Definition 2. The ϕ-Riemann-Liouville fractional derivative of functionR of order σ1 (m− 1 <
σ1 < m, m ∈ N), is defined by

Dσ1;ϕ
a+ R(t) =

(
1

ϕ′(t)
d
dt

)m
Im−σ1;ϕ
a+ R(t) =

(
1

ϕ′(t)
d
dt

)m

Γ(m−σ1)

∫ t
a (ϕ(t)− ϕ(s))m−σ1−1R(s)ds,

where m = [σ1] + 1.

Definition 3. The ϕ-Hilfer fractional derivative of function R of order σ1 (m− 1 < σ1 < m,
m ∈ N) and type 0 ≤ σ2 ≤ 1, is defined by

HDσ1,σ2;ϕ
a+ R(t) = Iσ2(m−σ1);ϕ

a+

(
1

ϕ′(t)
d
dt

)m

I(1−σ2)(m−σ1);ϕ
a+ R(t).

The ϕ-Hilfer fractional derivative can be written as

HDσ1,σ2;ϕ
a+ R(t) = Iδ−σ1;ϕ

a+ Dδ;ϕ
a+R(t),

with δ = (σ1 + σ2(m− σ1)).
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Lemma 1 ([12]). IfR ∈ Cm[a, b], m− 1 < σ1 < m and 0 ≤ σ2 ≤ 1, then

Iσ1;ϕ
a+

HDσ1,σ2;ϕ
a+ R(t) = R(t)−

m

∑
k=1

(ϕ(t)− ϕ(a))δ−k

Γ(δ− k + 1)
R[m−k]

ϕ I(1−σ2)(m−σ1);ϕ
a+ R(a).

Lemma 2 ([12]). Let σ1 > 0 and σ2 > 0, then Iσ1,ϕ
a+ (ϕ(t) − ϕ(a))σ2−1 = Γ(σ2)

Γ(σ2+σ1)
(ϕ(t) −

ϕ(a))σ2+σ1−1.

Definition 4. Let z, ϕ : [c, ∞)→ R be the functions such that ϕ(t) is continuous and ϕ′(t) > 0
on [0, ∞). Then the generalized Laplace transform of function z(t) is given by

Lϕ{z(t)}(s) =
∫ ∞

c
e−s(ϕ(t)−ϕ(a))z(t)ϕ′(t)dt, for all s.

For comprehensive details on ϕ-Hilfer fractional derivative and its properties, we
refer to papers [12,14,17].
Consider the weighted space [14] defined as

C1−ρ;ϕ(J0, E) = {z : [0, b]→ E : (ϕ(t)− ϕ(tγ))
1−ρz(t) ∈ C(J0, E)}.

Define the space of piecewise continuous functions as

PC1−ρ;ϕ(J0, E) = {z : [0, b]→ E : z ∈ C1−ρ;ϕ((tγ, tγ+1], E), γ = 1, 2, . . . ,H, I(1−ρ);ϕ
tγ

+ z(t+γ )

and I(1−ρ);ϕ
tγ

+ z(t−γ ) = I(1−ρ);ϕ
tγ

+ z(tγ) exists for γ = 1, 2, . . . ,H, ρ = σ1 + σ2 − σ2σ1}

Clearly, PC(E) = PC1−ρ;ϕ(J0, E) is a Banach space with the norm

‖z‖PC = max
γ=1,2,...,H



 sup

t∈(tγ ,tγ+1]

∥∥∥[ϕ(t)− ϕ(tγ)]
1−ρz(t)

∥∥∥



.

3. Representation of Mild Solution

Lemma 3. To reduce the generalized form (1), we consider the linear ϕ-Hilfer fractional differential
system: {

HDσ1,σ2 :ϕ
0+ z(t) = Az(t) + ∆(t), t ∈ (0, b]

I(1−σ1)(1−σ2);ϕ
0+ [z(t)]t=0 = z0,

(2)

has a mild solution, which is defined as

z(t) = Sσ1,σ2
ϕ (t, 0)z0 +

∫ t

0
(ϕ(t)− ϕ(s))σ1−1T σ1

ϕ (t, s)∆(s)ϕ′(s)ds, (3)

where

Pσ1
ϕ (t, s)z =

∫ ∞

0
φσ1(θ)T ((ϕ(t)− ϕ(s))σ1 θ)zdθ,

Sσ1,σ2
ϕ (t, s)z = I(1−σ1)(σ2−1);ϕ

a+ Pσ1
ϕ (t, s)z,

T σ1
ϕ (t, s)z = σ1

∫ ∞

0
θφσ1(θ)T ((ϕ(t)− ϕ(s))σ1 θ)zdθ, 0 ≤ s ≤ t ≤ b,

with

φσ1(θ) ≥ 0 for θ ≥ 0,
∫ ∞

0
φσ1(θ)dθ = 1, and

∫ ∞

0
θφσ1(θ)dθ =

1
Γ(1 + σ1)

.

Proof. Rewrite the problem (2) in the equivalent integral equation
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z(t) =
(ϕ(t)− ϕ(0))(1−σ1)(σ2−1)

Γ(σ2(1− σ1) + σ1)
z0 +

1
Γ(σ1)

∫ t

0
(ϕ(t)− ϕ(s))σ1−1[Az(s) + ∆(s)]ϕ′(s)ds, (4)

provided that the integral in Equation (4) exists. Let β > 0. Applying the generalized
Laplace transform

Z(β) =
1

βσ2(1−σ1)+σ1
z0 +

1
βσ1

(
AZ(β) + ∆̂(β)

)
,

where

Z(β) =
∫ ∞

0
e−β(ϕ(µ)−ϕ(0))z(µ)ϕ′(µ)dµ,

∆̂(β) =
∫ ∞

0
e−β(ϕ(µ)−ϕ(0))∆(µ)ϕ′(µ)dµ.

It follows that

Z(β) = βσ2(σ1−1)(βσ1 I −A)−1z0 + (βσ1 I −A)−1∆̂(β)

= βσ2(σ1−1)
∫ ∞

0
e−βσ1 sT (s)z0ds +

∫ ∞

0
e−βσ1 sT (s)∆̂(β)ds.

Taking s = t̂σ1 , we obtain

Z(β) = σ1β(σ1−1)(σ2−1)
∫ ∞

0
(βt̂)σ1−1e−(βt̂)σ1T (t̂σ1)z0dt̂ + σ1

∫ ∞

0
t̂σ1−1e−(βt̂)σ1T (t̂σ1)∆̂(β)dt̂

= β(σ1−1)(σ2−1) I1 + I2,

where

I1 = σ1

∫ ∞

0
(βt̂)σ1−1e−(βt̂)σ1T (t̂σ1)z0dt̂,

I2 = σ1

∫ ∞

0
t̂σ1−1e−(βt̂)σ1T (t̂σ1)∆̂(β)dt̂.

Taking t̂ = ϕ(t)− ϕ(0), we obtain

I1 = σ1

∫ ∞

0
βσ1−1(ϕ(t)− ϕ(0))σ1−1e−(β(ϕ(t)−ϕ(0)))σ1T ((ϕ(t)− ϕ(0))σ1)z0 ϕ′(t)dt

=
∫ ∞

0

−1
β

d
dt

(
e−(β(ϕ(t)−ϕ(0)))σ1

)
T ((ϕ(t)− ϕ(0))σ1)z0dt.

I2 = σ1

∫ ∞

0
(ϕ(t)− ϕ(0))σ1−1e−(β(ϕ(t)−ϕ(0)))σ1T ((ϕ(t)− ϕ(0))σ1)∆̂(β)ϕ′(t)dt

=
∫ ∞

0

∫ ∞

0
σ1(ϕ(t)− ϕ(0))σ1−1e−(β(ϕ(t)−ϕ(0)))σ1T ((ϕ(t)− ϕ(0))σ1)

×e−(β(ϕ(s)−ϕ(0)))∆(s)ϕ′(s)ϕ′(t)dsdt.

We consider the following one-sided stable probability density

ρσ1(θ) =
1
π

∞

∑
k=1

(−1)k−1θ−σ1k−1 Γ(σ1k + 1)
k!

sin(kπσ1), θ ∈ (0, ∞),
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whose integration is given by
∫ ∞

0
e−βθρσ1(θ)dθ = e−βσ1 , σ1 ∈ (0, 1). (5)

Using Equation (5), we obtain

I1 =
∫ ∞

0

−1
β

d
dt

(∫ ∞

0
e−(β(ϕ(t)−ϕ(0)))θρσ1(θ)dθ

)
T ((ϕ(t)− ϕ(0))σ1)z0dt

=
∫ ∞

0

∫ ∞

0
θρσ1(θ)e

−(β(ϕ(t)−ϕ(0)))θT ((ϕ(t)− ϕ(0))σ1)z0 ϕ′(t)dθ dt

=
∫ ∞

0
e−(β(ϕ(t)−ϕ(0)))

(∫ ∞

0
ρσ1(θ)T

(
(ϕ(t)− ϕ(0))σ1

θσ1

)
dθ

)
z0 ϕ′(t)dt.

and

I2 =
∫ ∞

0

∫ ∞

0

∫ ∞

0
σ1(ϕ(t)− ϕ(0))σ1−1ρσ1(θ)e

−(β(ϕ(t)−ϕ(0)))θT ((ϕ(t)− ϕ(0))σ1)e−(β(ϕ(s)−ϕ(0)))

×∆(s)ϕ′(s)ϕ′(t)dθ dsdt

=
∫ ∞

0

∫ ∞

0

∫ ∞

0
σ1e−(β(ϕ(t)+ϕ(s)−2ϕ(0))) (ϕ(t)− ϕ(0))σ1−1

θσ1
ρσ1(θ)T

(
(ϕ(t)− ϕ(0))σ1

θσ1

)

×∆(s)ϕ′(s)ϕ′(t)dθ dsdt

=
∫ ∞

0

∫ µ

0

∫ ∞

0
σ1e−(β(ϕ(µ)−ϕ(0)))ρσ1(θ)

(ϕ(t)− ϕ(0))σ1−1

θσ1
T
(
(ϕ(t)− ϕ(0))σ1

θσ1

)

×∆(ϕ−1(ϕ(µ)− ϕ(t) + ϕ(0))))ϕ′(µ)ϕ′(t)dθdtdµ

=
∫ ∞

0
e−(β(ϕ(µ)−ϕ(0)))

( ∫ µ

0

∫ ∞

0
σ1ρσ1(θ)

(ϕ(µ)− ϕ(s))σ1−1

θσ1
T
(
(ϕ(µ)− ϕ(s))σ1

θσ1

)

×∆(s)ϕ′(s)dθds
)

ϕ′(µ)dµ.

Hence, we obtain

Z(β) = β(σ1−1)(σ2−1)
∫ ∞

0
e−(β(ϕ(t)−ϕ(0)))

(∫ ∞

0
ρσ1(θ)T

(
ϕ(t)− ϕ(0))σ1

θσ1

)
z0dθ

)
ϕ′(t)dt

+
∫ ∞

0
e−(β(ϕ(µ)−ϕ(0)))

( ∫ µ

0

∫ ∞

0
σ1ρσ1(θ)

(ϕ(µ)− ϕ(s))σ1−1

θσ1
T
(
(ϕ(µ)− ϕ(s))σ1

θσ1

)

×∆(s)ϕ′(s)dθds
)

ϕ′(µ)dµ.

By using inverse Laplace transform, we obtain

z(t) = I(1−σ1)(σ2−1);ϕ
a+

∫ ∞

0
ρσ1(θ)T

(
ϕ(t)− ϕ(0))σ1

θσ1

)
z0dθ

+
∫ t

0

∫ ∞

0
σ1ρσ1(θ)

(ϕ(t)− ϕ(s))σ1−1

θσ1
T
(
(ϕ(t)− ϕ(s))σ1

θσ1

)
∆(s)ϕ′(s)dθds.

Thus, we obtain

z(t) = I(1−σ1)(σ2−1);ϕ
a+

∫ ∞

0
φσ1(θ)T (ϕ(t)− ϕ(0))σ1 θ)z0dθ

+ σ1

∫ t

0

∫ ∞

0
θφσ1(θ)(ϕ(t)− ϕ(s))σ1−1T ((ϕ(t)− ϕ(s))σ1 θ)∆(s)ϕ′(s)dθds,
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where φσ1(θ) =
1
σ1

θ
−1− 1

σ1 ρσ1(θ
− 1

σ1 ) is the probability density function defined on (0, ∞).
For any z ∈ E, the operators Sσ1 σ2

ϕ (t, s) and T σ1
ϕ (t, s) defined as

Pσ1
ϕ (t, s)z =

∫ ∞

0
φσ1(θ)T ((ϕ(t)− ϕ(s))σ1 θ)zdθ,

Sσ1,σ2
ϕ (t, s)z = I(1−σ1)(σ2−1);ϕ

a+ Pσ1
ϕ (t, s)z,

and
T σ1

ϕ (t, s)z = σ1

∫ ∞

0
θφσ1(θ)T ((ϕ(t)− ϕ(s))σ1 θ)zdθ, 0 ≤ s ≤ t ≤ b.

Hence, we obtain

z(t) = Sσ1,σ2
ϕ (t, 0)z0 +

∫ t

0
(ϕ(t)− ϕ(s))σ1−1T σ1

ϕ (t, s)∆(s)ϕ′(s)ds.

Remark 1. Let A be the generator of a C0-semigroup {T (t)}t≥0 on E. Then there existsM≥ 1
such thatM = supt∈[0,b] T (t)

Lemma 4 ([17,32]). The operators Sσ1,σ2
ϕ and T σ1

ϕ have the subsequent conditions

1. Sσ1,σ2
ϕ (t, s) and T σ1

ϕ (t, s) are linear and bounded operators for any fixed t ≥ s ≥ 0, and

‖Sσ1,σ2
ϕ (t, s)(z)‖ ≤ M(ϕ(b)− ϕ(0))(1−σ1)(σ2−1)

Γ(σ1 + σ2 − σ1σ2)
‖z‖ =M1‖z‖,

‖T σ1
ϕ (t, s)(z)‖ ≤ σ1M

Γ(1 + σ1)
‖z‖ = M

Γ(σ1)
‖z‖ =M2‖z‖.

2. If T (t) is compact operator for all t > 0, then Sσ1,σ2
ϕ (t, s), T σ1

ϕ (t, s) are compact for all
t, s > 0. Hence, Sσ1,σ2

ϕ (t, s) and T σ1
ϕ (t, s) are strongly continuous.

3. The operators Sσ1,σ2
ϕ (t, s) and T σ1

ϕ (t, s) are strongly continuous. For every z ∈ E and
0 ≤ s ≤ t1 < t2 ≤ b, we have

‖Sσ1,σ2
ϕ (t2, s)z− Sσ1,σ2

ϕ (t1, s)z‖ → 0 and ‖T σ1
ϕ (t2, s)z− T σ1

ϕ (t1, s)z‖ → 0 as t1 → t2.

Definition 5. A function z ∈ PC(E) is called a mild solution of problem (1) if for every
t ∈ J0, z(t) fulfills I(1−σ1)(1−σ2);ϕ

0+ [z(t)]t=0 + G(z) = z0, I(1−σ1)(1−σ2);ϕ
tγ

+ z(t+γ ) = z(t−γ ) +

Iγ(z(t−γ )), γ = 1, 2, . . . ,H, and

z(t) = Sσ1,σ2
ϕ (t, 0)[z0 − G(z)] +

∫ t

0
(ϕ(t)− ϕ(s))σ1−1T σ1

ϕ (t, s)∆(s, z(s))ϕ′(s)ds,

for every t ∈ [0, t1] and

z(t) = Sσ1,σ2
ϕ (t, tγ)

[
z(t−γ ) + Iγ(z(t−γ ))

]
+
∫ t

tγ

(ϕ(t)− ϕ(s))σ1−1T σ1
ϕ (t, s)∆(s, z(s))ϕ′(s)ds,

for every t ∈ (tγ, tγ+1].

4. Existence and Uniqueness

In this section, we prove the existence outcomes of the proposed system (1). Let us
assume the following hypotheses

[X1]: T (t) is compact for every t > 0.
[X2]: The function ∆ : J0 × E→ E satisfies
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(a) For all z ∈ E, the function t→ ∆(t, z) is strongly measurable and the function
∆(t, · ) : E→ E is continuous for a.e t ∈ J0.

(b) There exists a continuous function K̂∆ ∈ L1(J0,R+) such that

‖∆(t, z)‖ ≤ K̂∆(t) ‖z‖, ∀ (t, z) ∈ J0 × E,

with K∆ = supt∈J0
K̂∆(t).

[X3]: The function G : C(J0, E) → E is Lipschitz continuous, i.e.; there exists a positive
constant K̂G such that

‖G(z1)− G(z2)‖ ≤ K̂G‖z1 − z2‖, ∀ z1, z2 ∈ E.

[X4]: For every z, z1, z2 ∈ E and all t ∈ (tγ, tγ+1], γ = 1, 2, . . . ,H, there exist Dγ,Kγ > 0,
satisfies

‖Iγ(z(t−γ ))‖ ≤ Kγ, ‖Iγ(z1(t−γ ))− Iγ(z2(t−γ ))‖ ≤ Dγ‖z1(t−γ )− z2(t−γ )‖.

[X5]: The following inequalities hold

Ô = max
1≤γ≤H

[
M1K̂G , M1(1 +Dγ)

]
< 1.

[X6]: There exists a constant R̂∆ > 0 such that

‖∆(t, z1)− ∆(t, z2)‖ ≤ R̂∆ ‖z1 − z2‖, ∀ z1, z2 ∈ E.

Theorem 1. Suppose the hypotheses [X1]–[X5] are fulfilled. If

M1K̂G +M2K∆
Γ(σ1)Γ(ρ)
Γ(ρ + σ1)

(ϕ(b)− ϕ(0))σ1 < 1, (6)

then ϕ-fractional system (1) has at least one mild solution on J0.

Proof. For any π > 0, we define

Ωπ = {z ∈ PC(E) : ‖z‖PC ≤ π}.

Clearly, Ωπ is closed convex and bounded subset of PC(E). Define an operator
Π : Ωπ → PC(E) by

(Πz)(t) =





Sσ1,σ2
ϕ (t, 0)[z0 − G(z)]

+
∫ t

0 (ϕ(t)− ϕ(s))σ1−1T σ1
ϕ (t, s)∆(s, z(s))ϕ′(s)ds, t ∈ [0, t1], γ = 0,

Sσ1,σ2
ϕ (t, tγ)

[
z(t−γ ) + Iγ(z(t−γ ))

]

+
∫ t

tγ
(ϕ(t)− ϕ(s))σ1−1T σ1

ϕ (t, s)∆(s, z(s))ϕ′(s)ds, t ∈ (tγ, tγ+1], γ ≥ 1.

Now, we split Π as Π1 + Π2, where

(Π1z)(t) =

{
Sσ1,σ2

ϕ (t, 0)[z0 − G(z)], t ∈ [0, t1], γ = 0,

Sσ1,σ2
ϕ (t, tγ)

[
z(t−γ ) + Iγ(z(t−γ ))

]
, t ∈ (tγ, tγ+1], γ ≥ 1,

and

(Π2z)(t) =

{∫ t
0 (ϕ(t)− ϕ(s))σ1−1T σ1

ϕ (t, s)∆(s, z(s))ϕ′(s)ds, t ∈ [0, t1], γ = 0,∫ t
tγ
(ϕ(t)− ϕ(s))σ1−1T σ1

ϕ (t, s)∆(s, z(s))ϕ′(s)ds, t ∈ (tγ, tγ+1], γ ≥ 1.
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Step 1. There exists π > 0 such that Π(Ωπ) ⊂ Ωπ . If we assume that the assertion
is not true, then for π > 0, we take t ∈ J0 and zπ ∈ Ωπ such that ‖Π(zπ)‖PC > π.
For t ∈ [0, t1], we obtain

π < ‖Π(zπ)‖PC ≤
∥∥∥(ϕ(t)− ϕ(0))1−ρSσ1,σ2

ϕ (t, 0)[z0 − G(zπ)]
∥∥∥

+

∥∥∥∥(ϕ(t)− ϕ(0))1−ρ
∫ t

0
(ϕ(t)− ϕ(s))σ1−1T σ1

ϕ (t, s)∆(s, zπ(s))ϕ′(s)ds
∥∥∥∥

≤ M1
[
‖z0‖PC + K̂Gπ + ‖G(0)‖PC

]

+ M2K∆(ϕ(t1)− ϕ(0))1−ρ
∫ t

0
(ϕ(t)− ϕ(s))σ1−1‖zπ(s)‖ϕ′(s)ds

≤ M1
[
‖z0‖PC + K̂Gπ + ‖G(0)‖PC

]

+ πM2K∆(ϕ(t1)− ϕ(0))1−ρ
∫ t

0
(ϕ(t)− ϕ(s))σ1−1(ϕ(s)− ϕ(0))ρ−1 ϕ′(s)ds

≤ M1
[
‖z0‖PC + K̂Gπ + ‖G(0)‖PC

]

+ πM2K∆(ϕ(t1)− ϕ(0))1−ρΓ(σ1)Iσ1 :ϕ
0+ (ϕ(s)− ϕ(0))ρ−1

≤ M1
[
‖z0‖PC + K̂Gπ + ‖G(0)‖PC

]

+ πM2K∆(ϕ(t1)− ϕ(0))1−ρ Γ(σ1)Γ(ρ)
Γ(ρ + σ1)

(ϕ(t1)− ϕ(0))ρ+σ1−1

≤ M1
[
‖z0‖PC + K̂Gπ + ‖G(0)‖PC

]

+ πM2K∆
Γ(σ1)Γ(ρ)
Γ(ρ + σ1)

(ϕ(t1)− ϕ(0))σ1 .

For every t ∈ (tγ, tγ+1], γ = 1, 2 . . . ,H, we obtain

π < ‖Π(zπ)‖PC ≤
∥∥∥(ϕ(t)− ϕ(tγ))

1−ρSσ1,σ2
ϕ (t, tγ)

[
zπ(t−γ ) + Iγ(zπ(t−γ ))

]∥∥∥

+

∥∥∥∥(ϕ(t)− ϕ(tγ))
1−ρ

∫ t

tγ

(ϕ(t)− ϕ(s))σ1−1T σ1
ϕ (t, s)∆(s, zπ(s))ϕ′(s)ds

∥∥∥∥

≤ M1

[
‖zπ(t−γ )‖PC + (ϕ(tγ+1)− ϕ(tγ))

1−ρKγ

]

+ M2K∆(ϕ(tγ+1)− ϕ(tγ))
1−ρ

∫ t

tγ

(ϕ(t)− ϕ(s))σ1−1‖zπ(s)‖ϕ′(s)ds

≤ M1

[
‖zπ(t−γ )‖PC + (ϕ(tγ+1)− ϕ(tγ))

1−ρKγ

]

+ πM2K∆(ϕ(tγ+1)− ϕ(tγ))
1−ρ

∫ t

tγ

(ϕ(t)− ϕ(s))σ1−1(ϕ(s)− ϕ(tγ))
ρ−1 ϕ′(s)ds

≤ M1

[
‖zπ(t−γ )‖PC + (ϕ(tγ+1)− ϕ(tγ))

1−ρKγ

]

+ πM2K∆(ϕ(tγ+1)− ϕ(tγ))
1−ρΓ(σ1)Iσ1 :ϕ

t+γ
(ϕ(s)− ϕ(tγ))

ρ−1

≤ M1

[
‖zπ(t−γ )‖PC + (ϕ(tγ+1)− ϕ(tγ))

1−ρKγ

]

+ πM2K∆(ϕ(tγ+1)− ϕ(tγ))
1−ρ Γ(σ1)Γ(ρ)

Γ(ρ + σ1)
(ϕ(tγ+1)− ϕ(tγ))

ρ+σ1−1

≤ M1

[
‖zπ(t−γ )‖PC + (ϕ(tγ+1)− ϕ(tγ))

1−ρKγ

]

+ πM2K∆
Γ(σ1)Γ(ρ)
Γ(ρ + σ1)

(ϕ(tγ+1)− ϕ(tγ))
σ1 .

For every t ∈ J0, we obtain

π < ‖Π(zπ)‖PC ≤ W∗ +M1K̂Gπ + πM2K∆
Γ(σ1)Γ(ρ)
Γ(ρ + σ1)

(ϕ(b)− ϕ(0))σ1 , (7)
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where

W∗ = max
1≤γ≤H

{
M1[‖z0‖PC + ‖G(0)‖PC ] +M1

[
‖zπ(t−γ )‖PC + (ϕ(tγ+1)− ϕ(tγ))

1−ρKγ

]}
.

Here,W∗ is independent of π, both sides of Equation (7) are dividing by π and taking
π → ∞, we obtain

1 <M1K̂G +M2K∆
Γ(σ1)Γ(ρ)
Γ(ρ + σ1)

(ϕ(b)− ϕ(0))σ1 ,

which contradicts to Equation (6). Hence, for some π > 0, Π(Ωπ) ⊂ Ωπ .
Step 2. We will prove that Π1 is a contraction map.
For z∗, z∗∗ ∈ Ωπ , if t ∈ [0, t1], then we obtain

‖Π1z∗ −Π1z∗∗‖PC = ‖(ϕ(t)− ϕ(0))1−ρSσ1,σ2
ϕ (t, 0)[G(z∗)− G(z∗∗)]‖

≤ M1K̂G‖z∗ − z∗∗‖PC . (8)

Similarly, if t ∈ (tγ, tγ+1], γ = 1, 2, . . . ,H, then we get

‖Π1z∗ −Π1z∗∗‖PC = ‖(ϕ(t)− ϕ(tγ))
1−ρSσ1,σ2

ϕ (t, tγ)[z∗(t−γ )− z∗∗(t−γ )]‖
+ ‖(ϕ(t)− ϕ(tγ))

1−ρSσ1,σ2
ϕ (t, tγ)[Iγ(z∗(t−γ ))− Iγ(z∗∗(t−γ ))]‖

≤ M1(1 +Dγ)‖z∗ − z∗∗‖PC . (9)

From Equations (8) and (9), we obtain

‖Π1z∗ −Π1z∗∗‖PC ≤ Ô‖z∗ − z∗∗‖PC ,

where Ô = max1≤γ≤H
[
M1K̂G , M1(1 +Dγ)

]
. By [X5], we see that Ô < 1. Hence, Π1 is a

contraction mapping.
Step 3. We will prove that Π2 : Ωπ → Ωπ is continuous.
Let {zk} ⊂ Ωπ with zk → z as k→ ∞. By [X2], we obtain

∆(t, zk)→ ∆(t, z) as k→ ∞,

and
‖∆(t, zk(t))− ∆(t, z(t))‖ ≤ 2K̂∆(t)π.

For every t ∈ (tγ, tγ+1], γ = 0, 1, . . . ,H, we obtain

‖Π2(zk)−Π2(z)‖PC ≤
∥∥∥∥(ϕ(t)− ϕ(tγ))

1−ρ
∫ t

tγ

(ϕ(t)− ϕ(s))σ1−1T σ1
ϕ (t, s)

× [∆(s, zk(s))− ∆(s, z(s))]ϕ′(s)ds
∥∥∥∥

≤ M2(ϕ(tγ+1)− ϕ(tγ))
1−ρ

×
∫ t

tγ

(ϕ(t)− ϕ(s))σ1−1‖∆(s, zk(s))− ∆(s, z(s))‖ϕ′(s)ds.

By the Lebesgue dominated convergence theorem, we obtain

‖Π2(zk)−Π2(z)‖PC → 0 as k→ ∞.

Hence, Π2 is continuous.
Step 4. We prove that {Π2z : z ∈ Ωπ} is equicontinuous.
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Let κ1, κ2 ∈ (tγ, tγ+1], with tγ < κ1 < κ2 ≤ tγ+1, then we obtain for every t ∈
(tγ, tγ+1], γ = 0, 1, . . . ,H,

‖(ϕ(κ2)− ϕ(tγ))
1−ρ(Π2z)(κ2)− (ϕ(κ1)− ϕ(tγ))

1−ρ(Π2z)(κ1)‖

≤
∫ κ1

tγ

‖(ϕ(κ2)− ϕ(tγ))
1−ρ(ϕ(κ2)− ϕ(s))σ1−1T σ1

ϕ (κ2, s)

−(ϕ(κ1)− ϕ(tγ))
1−ρ(ϕ(κ1)− ϕ(s))σ1−1T σ1

ϕ (κ1, s)‖‖∆(s, z(s))‖ϕ′(s)ds

+
∫ κ2

κ1

‖(ϕ(κ2)− ϕ(tγ))
1−ρ(ϕ(κ2)− ϕ(s))σ1−1T σ1

ϕ (κ2, s)‖‖∆(s, z(s))‖ϕ′(s)ds. (10)

As κ2 → κ1, the right-hand side of Equation (10) tends to zero. Thus, the equicontinuity
of {Π2z : z ∈ Ωπ} is obtained.

Step 5. We prove that δ(t) = {(Π2z)(t) : z ∈ Ωπ} is relatively compact in E.
Obviously, δ(0) = {0} is relatively compact. Let t ∈ (tγ, tγ+1] be fixed, 0 < ε < t, and

ε is real number. For z ∈ Ωπ , we define

(Πε
2z)(t) =

{∫ t−ε
0 (ϕ(t)− ϕ(s))σ1−1T σ1

ϕ (t, s)∆(s, z(s))ϕ′(s)ds, t ∈ [0, t1], γ = 0,∫ t−ε
tγ

(ϕ(t)− ϕ(s))σ1−1T σ1
ϕ (t, s)∆(s, z(s))ϕ′(s)ds, t ∈ (tγ, tγ+1], γ ≥ 1.

By [X1], we obtain δε(t) = {(Πεz)(t) : z ∈ Ωπ} is relatively compact in E. for every
z ∈ Ωπ , we get

‖(ϕ(t)− ϕ(tγ))
1−ρ[(Π2z)(t)− (Πε

2z)(t)]‖ ≤ πM2K∆(ϕ(tγ+1)− ϕ(tγ))
1−ρ

×
∫ t

t−ε
(ϕ(t)− ϕ(s))σ1−1(ϕ(s)− ϕ(tγ))

ρ−1 ϕ′(s)ds

→ 0 as ε→ 0.

Then δ(t) is relatively compact in E. By steps 3–5 and Arzela-Ascoli theorem, Π2 is
completely continuous. Hence, by the fixed point theorem of Krasnoselskii’s [33], there
exists at least one mild solution on J0.

Theorem 2. Suppose the hypotheses [X1]–[X6] are fulfilled. Then ϕ-fractional system (1) has a
unique mild solution on J0.

Proof. Let z1 and z2 be the mild solutions of the ϕ-fractional system (1) in Ωπ . Then,
for each k ∈ {1, 2}, the mild solutions zk satisfies

(Πzk)(t) =





Sσ1,σ2
ϕ (t, 0)[z0 − G(zk)]

+
∫ t

0 (ϕ(t)− ϕ(s))σ1−1T σ1
ϕ (t, s)∆(s, zk(s))ϕ′(s)ds, t ∈ [0, t1], γ = 0,

Sσ1,σ2
ϕ (t, tγ)

[
zk(t−γ ) + Iγ(zk(t−γ ))

]

+
∫ t

tγ
(ϕ(t)− ϕ(s))σ1−1T σ1

ϕ (t, s)∆(s, zk(s))ϕ′(s)ds, t ∈ (tγ, tγ+1], γ ≥ 1.

For every t ∈ [0, t1], γ = 0, we obtain
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‖(ϕ(t)− ϕ(0))1−ρ[z1(t)− z2(t)]‖ = ‖(ϕ(t)− ϕ(0))1−ρ[(Πz1)(t)− (Πz2)(t)]‖
≤ M1K̂G‖(ϕ(t)− ϕ(0))1−ρ[z1(t)− z2(t)]‖

+ M2R̂∆(ϕ(t1)− ϕ(0))1−ρ
∫ t

0
(ϕ(t)− ϕ(s))σ1−1

× (ϕ(s)− ϕ(0))ρ−1‖(ϕ(s)− ϕ(0))1−ρ[z1(s)− z2(s)]‖ϕ′(s)ds

≤ M1K̂G‖(ϕ(t)− ϕ(0))1−ρ[z1(t)− z2(t)]‖

+ M2R̂∆K∗0(ϕ(t1)− ϕ(0))1−ρ
∫ t

0
(ϕ(t)− ϕ(s))σ1−1

× ‖(ϕ(s)− ϕ(0))1−ρ[z1(s)− z2(s)]‖ϕ′(s)ds,

where K∗0 = sup0≤s≤t1
(ϕ(s)− ϕ(0))ρ−1.

Then we obtain

‖(ϕ(t)− ϕ(0))1−ρ[z1(t)− z2(t)]‖ ≤
M2R̂∆K∗0(ϕ(t1)− ϕ(0))1−ρ

(1−M1K̂G)

∫ t

0
(ϕ(t)− ϕ(s))σ1−1

× ‖(ϕ(s)− ϕ(0))1−ρ[z1(s)− z2(s)]‖ϕ′(s)ds,

whereM1K̂G < 1.
For every t ∈ (tγ, tγ+1], γ = 1, 2, . . . ,H, we get

‖(ϕ(t)− ϕ(tγ))
1−ρ[z1(t)− z2(t)]‖ = ‖(ϕ(t)− ϕ(tγ))

1−ρ[(Πz1)(t)− (Πz2)(t)]‖
≤ M1(1 +Dγ)‖(ϕ(t)− ϕ(tγ))

1−ρ[z1(t−γ )− z2(t−γ )]‖

+ M2R̂∆(ϕ(tγ+1)− ϕ(tγ))
1−ρ

∫ t

tγ

(ϕ(t)− ϕ(s))σ1−1

× (ϕ(s)− ϕ(tγ))
ρ−1‖(ϕ(s)− ϕ(tγ))

1−ρ[z1(s)− z2(s)]‖ϕ′(s)ds

≤ M1(1 +Dγ)‖(ϕ(t)− ϕ(tγ))
1−ρ[z1(t−γ )− z2(t−γ )]‖

+ M2R̂∆K∗γ(ϕ(tγ+1)− ϕ(tγ))
1−ρ

∫ t

tγ

(ϕ(t)− ϕ(s))σ1−1

× ‖(ϕ(s)− ϕ(tγ))
1−ρ[z1(s)− z2(s)]‖ϕ′(s)ds,

where K∗γ = suptγ≤s≤tγ+1
(ϕ(s)− ϕ(0))ρ−1, γ = 1, 2, . . . ,H.

Then we obtain

‖(ϕ(t)− ϕ(tγ))
1−ρ[z1(t)− z2(t)]‖ ≤

M2R̂∆K∗γ(ϕ(tγ+1)− ϕ(tγ))1−ρ

(1−M1(1 +Dγ))

∫ t

tγ

(ϕ(t)− ϕ(s))σ1−1

× ‖(ϕ(s)− ϕ(tγ))
1−ρ[z1(s)− z2(s)]‖ϕ′(s)ds,

whereM1(1 +Dγ) < 1.
By using the Gronwall’s inequality (Theorem 2.11, [17]), we get

‖z1 − z2‖PC = 0,

which implies that z1 ≡ z2. Therefore, ϕ-fractional system (1) has a unique mild solution
on J0.
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5. Existence of Optimal Controls

Let v takes the value in the separable reflexive Banach space T and V f (T ) is a class of
subsets of T , which is nonempty convex and closed. The multifunction g : J → V f (T ) is
measurable and g(·) ⊂ 4, the admissible control set

Uad = {v ∈ L2(4) : v(t) ∈ g(t) a.e.},

where4 is a bounded set of T . Then Uad 6= φ.
Consider following ϕ-Hilfer fractional impulsive differential control system:





HDσ1,σ2 :ϕ
tγ

+ z(t) = Az(t) +Dv(t) + ∆(t, z(t)), t ∈ (0, b]− {t1, t2, . . . , tH},
I(1−σ1)(1−σ2);ϕ
tγ

+ z(t+γ ) = z(t−γ ) + Iγ(z(t−γ )), γ = 1, 2, . . . ,H,

I(1−σ1)(1−σ2);ϕ
0+ [z(t)]t=0 + G(z) = z0.

(11)

Let us assume the following hypotheses

[X7]: D ∈ L∞(J0, L(T , E)), that implies that Dv ∈ L2(J0, E) for v ∈ Uad.
[X8]: K∗ = supt∈J0

ϕ′(t) < ∞.

Theorem 3. Suppose the hypotheses of Theorem 2 and [X7]–[X8] are fulfilled. Then for each
v ∈ Uad, ϕ-fractional system (11) has a mild solution which is given by

zv(t) =





Sσ1,σ2
ϕ (t, 0)[z0 − G(z)]

+
∫ t

0 (ϕ(t)− ϕ(s))σ1−1T σ1
ϕ (t, s)[Dv(s) + ∆(s, z(s))]ϕ′(s)ds, t ∈ [0, t1], γ = 0,

Sσ1,σ2
ϕ (t, tγ)

[
z(t−γ ) + Iγ(z(t−γ ))

]

+
∫ t

tγ
(ϕ(t)− ϕ(s))σ1−1T σ1

ϕ (t, s)[Dv(s) + ∆(s, z(s))]ϕ′(s)ds, t ∈ (tγ, tγ+1], γ ≥ 1.

Proof. Let us consider

H(t) =
∫ t

tγ

(ϕ(t)− ϕ(s))σ1−1T σ1
ϕ (t, s)Dv(s)ϕ′(s)ds.

By Hölder’s inequality and [X7], we get

‖(ϕ(t)− ϕ(tγ))
1−ρH(t)‖ ≤ M2‖D‖∞(ϕ(tγ+1)− ϕ(tγ))

1−ρ
∫ t

tγ

(ϕ(t)− ϕ(s))σ1−1‖v(s)‖T ϕ′(s)ds

≤ M2‖D‖∞(ϕ(tγ+1)− ϕ(tγ))
1−ρ

×
(∫ t

tγ

(ϕ(t)− ϕ(s))2(σ1−1)ϕ′(s)ds
)1/2(∫ t

tγ

‖v(s)‖2
T ϕ′(s)ds

)1/2

≤ M2‖D‖∞(ϕ(tγ+1)− ϕ(tγ))σ1−ρ+(1/2)

(2σ1 − 1)1/2

(∫ t

tγ

‖v(s)‖2
T ϕ′(s)ds

)1/2

≤ M2K1/2
∗ ‖D‖∞(ϕ(tγ+1)− ϕ(tγ))σ1−ρ+(1/2)

(2σ1 − 1)1/2 ‖v‖L2(J0,T ).

It follows that (ϕ(t) − ϕ(s))σ1−1T σ1
ϕ (t, s)Dv(s)ϕ′(s)ds are integrable on J0, here,

‖D‖∞ is the norm of D in Banach space L∞(J0, L(T , E)). Hence, H(·) ∈ Ωπ . Using
Theorem 2, we get the required results.

We consider the Lagrange problem

(LP)
{

Find (z∗, v∗) ∈ PC(E)×Uad

such that J (z∗, v∗) ≤ J (zv, v), (zv, v) ∈ PC(E)×Uad,
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where the cost functional is

J (zv, v) =
H
∑

γ=0

∫ tγ+1

tγ

L(t, zv(t), v(t))dt,

where zv be the mild solution of (11) with respect to control v ∈ Uad.
Next, we assume

[X9]: 1. The functional L : J0 × E× T → R∪ {∞} is Borel measurable.
2. For almost all t ∈ J0, L(t, ·, ·) is sequentially lower semicontinuous on E× T .
3. For each zv ∈ E and almost all t ∈ J0, L(t, zv, ·) is convex on T .
4. There exist constants d1 ≥ 0, d2 > 0, φ is non-negative function in L1(J0,R)

such that
L(t, zv, v) ≥ φ(t) + d1‖zv‖+ d2‖v‖2

T .

[X10]:D is a strongly continuous operator.

Theorem 4. If the assumptions [X1]–[X10] are fulfilled, then the problem (LP) admits at least
one optimal pair.

Proof. Assume that inf{J (zv, v) : v ∈ Uad} = ε < +∞. By using [X9], we obtain ε > −∞.
By definition of infimum there exists a minimizing sequence feasible pair (zk, vk) ⊂ Pad,
wherePad = {(zv, v) : zv is a solution of (11) with respect to v ∈ Uad} such thatJ (zk, vk)→
ε as k→ +∞. Since vk ⊆ Uad, vk is bounded in L2(J0, T ), there exists a subsequence which
is still represented by vk and v∗ ∈ L2(J0, T ) such that

vk w−→ v∗

in L2(J0, T ). Since Uad is convex and closed, by using Marzur Lemma, we get v∗ ∈ Uad.
Let zk and z∗ be the mild solution of system (11) with respect to vk and v∗, respectively

zk(t) =





Sσ1,σ2
ϕ (t, 0)[z0 − G(zk)]

+
∫ t

0 (ϕ(t)− ϕ(s))σ1−1T σ1
ϕ (t, s)[Dvk(s) + ∆(s, zk(s))]ϕ′(s)ds, t ∈ [0, t1], γ = 0,

Sσ1,σ2
ϕ (t, tγ)

[
zk(t−γ ) + Iγ(zk(t−γ ))

]

+
∫ t

tγ
(ϕ(t)− ϕ(s))σ1−1T σ1

ϕ (t, s)[Dvk(s) + ∆(s, zk(s))]ϕ′(s)ds, t ∈ (tγ, tγ+1], γ ≥ 1,

and

z∗(t) =





Sσ1,σ2
ϕ (t, 0)[z0 − G(z∗)]

+
∫ t

0 (ϕ(t)− ϕ(s))σ1−1T σ1
ϕ (t, s)[Dv∗(s) + ∆(s, z∗(s))]ϕ′(s)ds, t ∈ [0, t1], γ = 0,

Sσ1,σ2
ϕ (t, tγ)

[
z∗(t−γ ) + Iγ(z∗(t−γ ))

]

+
∫ t

tγ
(ϕ(t)− ϕ(s))σ1−1T σ1

ϕ (t, s)[Dv∗(s) + ∆(s, z∗(s))]ϕ′(s)ds, t ∈ (tγ, tγ+1], γ ≥ 1.

It follows from the boundedness of {vk}, {v∗} and Theorem 2, we obtain there exists
a constant Θ > 0 such that ‖zk‖∞, ‖z∗‖∞ ≤ Θ.

For every t ∈ [0, t1], γ = 0, we get
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‖(ϕ(t)− ϕ(0))1−ρ[zk(t)− z∗(t)]‖ ≤ M1K̂G‖(ϕ(t)− ϕ(0))1−ρ[zk(t)− z∗(t)]‖

+ M2R̂∆(ϕ(t1)− ϕ(0))1−ρ
∫ t

0
(ϕ(t)− ϕ(s))σ1−1

× (ϕ(s)− ϕ(0))ρ−1‖(ϕ(s)− ϕ(0))1−ρ[zk(s)− z∗(s)]‖ϕ′(s)ds

+ M2(ϕ(t1)− ϕ(0))1−ρ
∫ t

0
(ϕ(t)− ϕ(s))σ1−1

× ‖Dvk(s)−Dv∗(s)‖L2(J0,E)ϕ′(s)ds

≤ M1K̂G‖(ϕ(t)− ϕ(0))1−ρ[zk(t)− z∗(t)]‖

+ M2R̂∆(ϕ(t1)− ϕ(0))1−ρ
∫ t

0
(ϕ(t)− ϕ(s))σ1−1

× (ϕ(s)− ϕ(0))ρ−1‖(ϕ(s)− ϕ(0))1−ρ[zk(s)− z∗(s)]‖ϕ′(s)ds

+
M2K1/2

∗ (ϕ(t1)− ϕ(0))σ1−ρ+(1/2)

(2σ1 − 1)1/2 ‖Dvk −Dv∗‖L2(J0,E).

For every t ∈ (tγ, tγ+1], γ = 1, 2, . . . ,H, we get

‖(ϕ(t)− ϕ(tγ))
1−ρ[zk(t)− z∗(t)]‖ ≤ M1(1 +Dγ)‖(ϕ(t)− ϕ(tγ))

1−ρ[zk(t−γ )− z∗(t−γ )]‖

+ M2R̂∆(ϕ(tγ+1)− ϕ(tγ))
1−ρ

∫ t

tγ

(ϕ(t)− ϕ(s))σ1−1

× (ϕ(s)− ϕ(tγ))
ρ−1‖(ϕ(s)− ϕ(tγ))

1−ρ[zk(s)− z∗(s)]‖ϕ′(s)ds

+ M2(ϕ(tγ+1)− ϕ(tγ))
1−ρ

∫ t

tγ

(ϕ(t)− ϕ(s))σ1−1

× ‖Dvk(s)−Dv∗(s)‖L2(J0,E)ϕ′(s)ds

≤ M1(1 +Dγ)‖(ϕ(t)− ϕ(tγ))
1−ρ[zk(t−γ )− z∗(t−γ )]‖

+ M2R̂∆(ϕ(tγ+1)− ϕ(tγ))
1−ρ

∫ t

tγ

(ϕ(t)− ϕ(s))σ1−1

× (ϕ(s)− ϕ(0))ρ−1‖(ϕ(s)− ϕ(tγ))
1−ρ[zk(s)− z∗(s)]‖ϕ′(s)ds

+
M2K1/2

∗ (ϕ(tγ+1)− ϕ(tγ))σ1−ρ+(1/2)

(2σ1 − 1)1/2 ‖Dvk −Dv∗‖L2(J0,E).

For every t ∈ J0, we obtain

‖zk − z∗‖PC ≤ M1(1 +Dγ)‖zk − z∗‖PC +M1K̂G‖zk − z∗‖PC
+ M2R̂∆

Γ(σ1)Γ(ρ)
Γ(ρ + σ1)

(ϕ(b)− ϕ(0))σ1‖zk − z∗‖PC

+
M2K1/2

∗ (ϕ(b)− ϕ(0))σ1−ρ+(1/2)

(2σ1 − 1)1/2 ‖Dvk −Dv∗‖L2(J0,E),

then there exists a constant N ∗ > 0 such that

‖zk − z∗‖PC ≤ N ∗‖Dvk −Dv∗‖L2(J0,E), (12)

where

N ∗ = M2K1/2
∗ (ϕ(b)− ϕ(0))σ1−ρ+(1/2)

(2σ1 − 1)1/2
(

1−M1(1 +Dγ)−M1K̂G −M2R̂∆
Γ(σ1)Γ(ρ)
Γ(ρ + σ1)

(ϕ(b)− ϕ(0))σ1

) ,
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withM1(1+Dγ)+M1K̂G +M2R̂∆
Γ(σ1)Γ(ρ)
Γ(ρ + σ1)

(ϕ(b)− ϕ(0))σ1 < 1 forevery γ = 1, 2, . . . ,H.

Since D is strongly continuous, we obtain

‖Dvk −Dv∗‖L2(J0,E) −→ 0 as k→ ∞.

Thus, we have

‖zk − z∗‖PC −→ 0 as k→ ∞,

this yields that zk −→ z∗ in PC(E) as k→ ∞. Since PC(E) ⊂ L1(J0, E), by using [X9] and
Balder’s theorem, we obtain

ε = lim
k→∞

H
∑

γ=0

∫ tγ+1

tγ

L(t, zk(t), vk(t))dt

≥
H
∑

γ=0

∫ tγ+1

tγ

L(t, z∗(t), v∗(t))dt = J (z∗, v∗) ≥ ε, γ = 0, 1, . . . ,H.

Thus J attains its minimum at v∗ ∈ Uad.

6. Example

Consider the following ϕ-Hilfer fractional impulsive differential control system to
verify the proposed results:





HDσ1,σ2;ϕ
t+γ

z(t, α) = zαα(t, α) + v(t, α) +
t e−tz(t, α)

18(1 + |z(t, α)|) , t ∈ (0, 1]− {t1}, α ∈ [0, π],

I(1−σ1)(1−σ2);ϕ
t1
+ z(t+1 , α) = z(t−1 , α) +

1
100

z(t−1 , α), α ∈ [0, π],

I(1−σ1)(1−σ2);ϕ
0+ [z(t, α)]t=0 +

1
15

z(t, α) = z0(α),

z(t, 0) = 0 = z(t, π),

(13)

with cost functional as

J (zv, v) =
H
∑

γ=0

[∫ tγ+1

tγ

∫ π

0
|zv(t, α)|2dα dt +

∫ tγ+1

tγ

∫ π

0
|v(t, α)|2dα dt

]

subject to the problem (13), where γ = 0, 1, σ1 = 2/3, σ2 = 1/4 and 0 = t0 < t1 < t2 = b
with t1 = 0.5, b = 1. Let ϕ(t) = t and E = T = L2([0, π]). Define an operator A : D(A) ⊆
E→ E by Aψ = ψ′′ with

D(A) = {ψ ∈ E : ψ, ψ′ are absolutely continuous and ψ′′ ∈ E, ψ(0) = 0 = ψ(π)}.

A has a discrete spectrum, the normalized eigenvectors en(α) =
√

2/π sin(nα) corre-
sponding to eigenvalue are -n2, n ∈ N and A generates an analytic semigroup {T (t)}t≥0
in E, which uniformly bounded and defined as

T (t)α =
∞

∑
n=1

e−n2t〈α, en〉en, α ∈ E,

with ‖T (t)‖ ≤ e−t ∀ t ≥ 0. Thus, we chooseM = 1 that implies that supt∈[0,∞) ‖T (t)‖ = 1
and [X1] is fulfilled. We obtainM1 = 0.8161 andM2 = 0.7385. The admissible controls set

Uad = {v ∈ T : ‖v‖ ∈ L2([0, 1], T ) ≤ 1}.
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Let z(t)(α) = z(t, α) and the functions ∆, I1 and G are defined as

∆(t, z)(α) =
t e−tz(t, α)

18(1 + |z(t, α)|) , I1 =
1

100
z(t−1 , α), G(z)(α) = 1

15
z(t, α).

We obtain K∆ = R∆ = 1/18, K̂G = 1/15, D1 = 1/100 and

1. Ô = max
[
M1K̂G , M1(1 +D1)

]
= max[0.0544, 0.8243] < 1,

2. M1K̂G +M2K∆
Γ(σ1)Γ(ρ)
Γ(ρ + σ1)

(ϕ(b)− ϕ(0))σ1 = 0.1312 < 1,

3. M1(1 +D1) +M1K̂G +M2R̂∆
Γ(σ1)Γ(ρ)
Γ(ρ + σ1)

(ϕ(b)− ϕ(0))σ1 = 0.9555 < 1.

The system (13) can be transformed into (11) with the functional

J (zv, v) =
H
∑

γ=0

∫ tγ+1

tγ

[
‖zv(t)‖2 + ‖v(t)‖2

T
]
dt.

All hypotheses of Theorems 3 and 4 are satisfied. Hence, the problem (13) has at least
one optimal pair.

7. Discussion

The solvability and optimal control results for a class of ϕ-Hilfer fractional differen-
tial equations with impulses and nonlocal conditions have been investigated. Standard
techniques combined with the notion of piecewise continuous mild solutions were used
for the main results. Moreover, by using the minimizing sequence concept, we proved
the optimal controls for deriving the optimality conditions. At end, we presented an
illustrative example to provide the obtained theoretical results. In the forthcoming papers,
as new direction, we intend to investigate the relaxation in nonconvex optimal control
problems for a new class of ϕ-Hilfer fractional stochastic differential equations driven by
the Rosenblatt process with non-instantaneous impulses [34,35].
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1. Introduction

In a recent paper [1], we presented a unified formulation for the one-sided Tempered
Fractional Calculus, that includes the classic, tempered, substantial, and shifted fractional
operators [2–9].

Here, we continue in the same road by presenting a study on the two-sided tempered
operators that generalize and include the one-sided. The most interesting is the tempered
Riesz potential that was proposed in analogy with the one-sided tempered derivatives [10].
However, a two-sided tempering was introduced before, in the study of the called variance
gamma processes [11,12], in Statistical Physics for modelling turbulence, under the concept
of truncated Lévy flight [8,13–17], and for defining the Regular Lévy Processes of Expo-
nential type [2,10,18]. The tempered stable Lévy motion appeared in a previous work [19].
Meanwhile, the Feynman–Kac equation used in normal diffusion was generalized for
anomalous diffusion and tempered [20,21]. These studies led to the introduction of the
tempered Riesz derivative [14] and some applications. Sabzikar et al. [22] described a new
variation on the fractional calculus which was called tempered fractional calculus and
introduced the tempered fractional diffusion equation. The solutions to this equation are
tempered stable probability densities, with semi-heavy tails that state a transition from
power law to Gaussian. They proposed a new stochastic process model for turbulence,
based on tempered fractional Brownian motion. Li et al. [23] designed a high order
difference scheme for the tempered fractional diffusion equation on bounded domain.
Their approach is based in properties of the tempered fractional calculus using first order
Grünwald type difference approximations. Alternatively, Arshad et al. [24] proposed
another difference scheme to solve time–space fractional diffusion equation where the
Riesz derivative is approximated by means of a centered difference. They obtained Volterra
integral equations which were approximated using the trapezoidal rule. For solving space–
time tempered fractional diffusion-wave equation in finite domain another fourth-order
technique was proposed in [25,26]. D’Ovidio et al. [27] presented fractional equations
governing the distribution of reflecting drifted Brownian motions. In Zhang et al. [28]
approximated the tempered Riemann–Liouville and Riesz derivatives by means of second-
order difference operator. In [29] new computational methods for the tempered fractional
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Laplacian equation were introduced, including the cases with the homogeneous and non-
homogeneous generalized Dirichlet type boundary conditions. In [30], by means of a
linear combination of the left and right normalized tempered Riemann–Liouville frac-
tional operators, tempered fractional Laplacian (tempered Riesz fractional derivative) was
defined as (∆ + λ)β/2. This operator was used to develop finite difference schemes to
solve the tempered fractional Laplacian equation that governs the probability distribution
function of the positions of particles. Similarly, Duo et al. [31] presented a finite difference
method to discretize the d-dimensional (for d ≥ 1) tempered integral fractional Laplacian
(−∆ + λ)α/2. By means of this approximation they resolved fractional Poisson problems.
Hu et al. [32] present the implicit midpoint method for solving Riesz tempered fractional
diffusion equation with a nonlinear source term. The Riesz tempered fractional derivative
was worked in finite domain. An interesting application of the tempered Riesz derivative
in solving the fractional Schrödinger equation was described in [33].

These works suggest us that the tempered Riesz derivative (TRD) is a very important
operator. However, and despite such importance, there are no significative theoretical
results about such operator. Furthermore, nobody has placed the question: is the tempered
Riesz derivative really a derivative?

In this paper, we follow the work described in our previous paper [1] where a deep
study on the tempered one-sided derivative was performed. Therefore, we intend here
to enlarge the results we obtained previously by combining them with the two-sided
derivatives studied in [34]. This approach intends to show that the TRD is not really a
fractional derivative according to the criterion introduced in [35]. Instead, we propose
a formulation for general tempered two-sided derivatives defined with the help of the
Tricomi function [36].

The paper is outlined as follows. In Section 2.1 two preliminary descriptions are done:
the one-sided tempered fractional derivatives (TFDs) and the two-sided (non tempered)
fractional derivatives (TSFDs). The Riesz–Feller tempered derivatives are introduced
and studied in Section 3. Their study in frequency domain shows that they should not
be considered as derivatives. The bilateral tempered fractional derivatives (BTFDs) are
studied in Section 4. Both versions, continuous- and discrete-time are considered and
compared with Riesz-Feller’s. Finally, some conclusions are drawn.

Remark 1. We adopt here the assumptions in [1], namely

• We work on R.
• We use the two-sided Laplace transform (LT):

F(s) = L[ f (t)] =
∫

R

f (t)e−stdt, (1)

where f (t) is any function defined on R and F(s) is its transform, provided that it has a non
empty region of convergence (ROC).

• The Fourier transform (FT), F [ f (t)], is obtained from the LT through the substitution s = iκ,
with κ ∈ R.

2. Preliminaries
2.1. The Unilateral Tempered Fractional Derivatives

The one-sided (unilateral) Tempered Fractional Derivatives TFD (UTFD) were formally
introduced and studied in [1]. In Table 1 we depict the most important characteristics of
the most interesting derivatives, namely the transfer function and corresponding region
of convergence (ROC). The tempering parameter λ is assumed to be a nonnegative real
number. We present only the stable derivatives. This stability manifests in the fact that the
ROC of the LT of stable TFD include the imaginary axis. Therefore, the corresponding FT
exist and are obtained by setting s = iκ. The ROC abscissa is −λ in the causal (forward)
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and λ in the anti-causal (backward) cases. The parameter α ∈ R is the derivative order and
N = bαc.

Table 1. Stable TFD with λ ≥ 0.

Derivative λDα
±α f (t) LT ROC

Forward Grünwald-Letnikov lim
h→0+

h−α
∞
∑

n=0

(−α)n
n! e−nλh f (t− nh) (s + λ)α Re(s) > −λ

Backward Grünwald-Letnikov lim
h→0+

h−α
∞
∑

n=0

(−α)n
n! e−nλh f (t + nh) (−s + λ)α Re(s) < λ

Regularised forward Liouville
∫ ∞

0

[
f (t− τ)− ε(α)∑N

0
(−1)m f (m)(t)

m! τm
]

e−λτ τ−α−1

Γ(−α)
dτ (s + λ)α Re(s) > −λ

Regularised backward Liouville
∫ ∞

0

[
f (t + τ)− ε(α)∑N

0
f (m)(t)

m! τm
]

e−λτ τ−α−1

Γ(−α)
dτ (−s + λ)α Re(s) < λ

Relatively to [1], a complex factor in the backward derivatives was removed to keep
coherence with the mathematical developments presented below. The corresponding LT
was changed accordingly. Throughout the paper, we will use the designations “Grünwald–
Letnikov” (GL) and “Liouville derivative” (L) for the cases corresponding to λ = 0.

2.2. The Two-Sided Fractional Derivatives

Definition 1. In [34], we introduced formally a general two-sided fractional derivative (TSFD),

0Dβ
θ , through its Fourier transform

F
[

0Dβ
θ f (x)

]
= |κ|βei π

2 θ·sgn(κ)F(κ), (2)

where β and θ are any real numbers that we will call derivative order and asymmetry parameter,
respectively.

The inverse Fourier transform computation of (2) is not important here (see, [34]). In
Table 2 we present the most interesting definitions of the two-sided derivatives together
with the corresponding Fourier transform. It is important to note that we present the
regularised Riesz and Feller derivatives.

Table 2. TSFD (λ = 0).

Derivative 0Dβ
θ f (t) FT

TSGL symmetric limh→0+ h−β ∑+∞
n=−∞

(−1)nΓ(β+1)
Γ( β

2−n+1)Γ( β
2 +n+1)

f (x− nh) |κ|β

TSGL anti-symmetric limh→0+ h−β ∑+∞
n=−∞

(−1)nΓ(β+1)
Γ( β+1

2 −n+1)Γ( β−1
2 +n+1)

f (x− nh) i|κ|βsgn(κ)

TSGL general limh→0+ h−β ∑+∞
n=−∞

(−1)nΓ(β+1)
Γ( β+θ

2 −n+1)Γ( β−θ
2 +n+1)

f (x− nh) |κ|βei π
2 θ·sgn(κ)

Riesz derivative 1
2 cos(β π

2 )Γ(−β)

∫ ∞
−∞

[
f (x− y)− 2 ∑M

k=0
f (2k)(x)
(2k)! y2k

]
|y|−β−1dy, |κ|β

Feller derivative 1
2 sin(β π

2 )Γ(−β)

∫ ∞
−∞

[
f (x− y)− 2 ∑M

k=0
f (2k+1)(x)
(2k+1)! y2k+1

]
|y|−β−1sgn(y)dy i|κ|βsgn(κ)

Riesz-Feller potential 1
2 sin(βπ)Γ(−β)

∫
R f (x− y) sin[(β + θ · sgn(y))π/2]|y|−β−1dy |κ|βei π

2 θ·sgn(κ)

Some properties of this definition can be drawn [34,37,38]. Here we are mainly
interested in the folowing
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1. Eigenfunctions
Let f (x) = eiκx, κ, x ∈ R. Then

0Dβ
θ eiκx = |κ|βei π

2 θ·sgn(κ)eiκx, (3)

meaning that the sinusoids are the eigenfunctions of the TSFD.
2. The Liouville and GL derivatives as particular cases

With θ = ±β we obtain the forward (left) (+) and backward (−) Liouville one-
sided derivatives:

F
[

0Dβ
±β f (x)

]
= (±κ)βF(κ). (4)

3. The Riesz and Feller derivatives as special cases

F
[

0Dβ
0 f (x)

]
= |κ|βF(κ), (5)

and
F
[

0Dβ
1 f (x)

]
= i|κ|β · sgn(κ)F(κ). (6)

4. Relations involving the sum/difference of Liouville derivatives [39]
Let κ, β ∈ R. It is a simple task to show that

|κ|β =
(iκ)β + (−iκ)β

2 cos(β π
2 )

, β 6= 1, 3, 5 · · · (7)

i|κ|βsgn(κ) =
(iκ)β − (−iκ)β

2 sin(β π
2 )

, β 6= 2, 4, 6 · · · (8)

which means that the Riesz derivative is, aside a constant, equal to the sum of the left
and right Liouville derivatives. Similarly, the Feller derivative is the difference. Then,

0Dβ
0 =

0Dβ
β + 0Dβ

−β

2 cos(β π
2 )

, β 6= 1, 3, 5 · · · (9)

0Dβ
1 =

0Dβ
β − 0Dβ

−β

2 sin(β π
2 )

, β 6= 2, 4, 6 · · · (10)

5. Relations involving the composition of Liouville derivatives [34]
The composition of the GL, or L, derivatives in (4) is defined by:

F
[

0Dβ1
β1 0Dβ2

−β2
f (x)

]
= (iκ)β1(−iκ)β2 F(κ). (11)

Setting β = β1 + β2 and θ = β1 − β2 we obtain

Ψβ
θ (κ) = (iκ)β1(−iκ)β2 = |κ|βei π

2 θ·sgn(κ), (12)

showing that any bilateral fractional derivative can be considered as the composition
of a forward and a backward GL, or L, derivatives.

6. The TSFD as a linear combination of Riesz and Feller derivatives [34]

0Dβ
θ f (x) = cos

(π

2
θ
)

0Dβ
0 f (x) + sin

(π

2
θ
)

0Dβ
1 f (x). (13)

Therefore, any TSFD can be expressed as a linear combinations of pairs: causal/anti-
causal GL, or L, or Riesz/Feller derivatives.
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3. Riesz–Feller Tempered Derivatives

The Riesz tempered potential has been used by several authores as referred in Section 1.
Here, we will deduce its general regularised form from the TFD in Section 2.1 while using
the relation (9).

Definition 2. We define the tempered Riesz derivative by:

λDβ
0 =

λDβ
β + λDβ

−β

2 cos(β π
2 )

β 6= 1, 3, 5 · · · (14)

This definition allows us to state that

Theorem 1.

λDβ
0 f (x) =

1
2Γ(−β) cos(β π

2 )

∫ ∞

−∞

[
f (x− τ)−

M

∑
m=0

f (2m)(x)
(2m)!

τ2m

]
e−λ|τ||τ|−β−1dτ, (15)

for 2M < β < 2M + 2, M ∈ Z+.

Remark 2. The integer order case leads to a singular situation that we can solve using the relations
introduced in [34]. We will not do it here.

Proof. We only have to insert the expressions from Table 1 into (14). Let N = bβc If we use
the Liouville derivatives, we obtain:

λDβ
0 f (x) =

1
2Γ(−β) cos(β π

2 )

∫ ∞

0

[
f (x− τ)− ε(β)

N

∑
m=0

(−1)m f (m)(x)
m!

τm

]
e−λττ−β−1dτ

+
1

2Γ(−β) cos(β π
2 )

∫ ∞

0

[
f (x + τ)− ε(β)

N

∑
0

(+1)m f (m)(x)
m!

τm

]
e−λττ−β−1dτ

or

λDβ
0 f (x) =

1
2Γ(−β) cos(β π

2 )
∫ ∞

0

{
f (x− τ) + f (x + τ)− ε(β)

[
N

∑
0

(−1)m f (m)(x)
m!

τm +
N

∑
m=0

f (m)(x)
m!

τm

]}
e−λ|τ||τ|−β−1dτ.

The odd terms in the inner summation are null. Therefore,

λDβ
0 f (x) =

1
2Γ(−β) cos(β π

2 )
∫ ∞

0

{
f (x− τ) + f (x + τ)− 2ε(β)

M

∑
m=0

f (2m)(x)
(2m)!

τ2m

}
e−λ|τ||τ|−β−1dτ.

As the integrand is an even function, we are led to (15).

In which concerns the Laplace and Fourier transforms, we remark that

L
[

λDβ
0 f (x)

]
=

(s + λ)β + (−s + λ)β

2 cos(β π
2 )

F(s),
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for |Re(s)| < λ, meaning that the ROC is a vertical strip that contains the imaginary axis,

s = iκ. Therefore, as (±iκ + λ)β =
∣∣κ2 + λ2

∣∣ β
2 e±iβ arctan( κ

λ ), and using relation (7), we obtain

F
[

λDβ
0 f (x)

]
=

∣∣κ2 + λ2
∣∣ β

2 cos
(

β arctan( κ
λ )
)

cos(β π
2 )

F(iκ), (16)

that is coherent with the usual Riesz derivative (λ = 0).

Definition 3. Similarly to the Riesz case, we use the relation (10) to find expressions for the
tempered Feller derivative that we can define through

λDβ
0 =

λDβ
β − λDβ

−β

2 sin(β π
2 )

, β 6= 2, 4, 6 · · · (17)

Theorem 2. The tempered Feller derivative is given by:

λDβ
0 f (x) =

1
2Γ(−α) sin(β π

2 )

∫ ∞

−∞

[
f (x− τ)−

M

∑
m=0

f (2m+1)(x)
(2m + 1)!

τ(2m+1)

]
e−λ|τ||τ|−β−1dτ, (18)

for 2M + 1 < β < 2M + 3.

The proof is similar to the Riesz derivative. Therefore we omit it.
Now, the corresponding Laplace transform is

L
[

λDβ
0 f (x)

]
=

(s + λ)β − (−s + λ)β

2 sin(β π
2 )

,

for |Re(s)| < λ. Therefore, using relation (8), we obtain

F
[

λDβ
0 f (x)

]
= i

∣∣κ2 + λ2
∣∣ β

2 sin
(

β arctan( κ
λ )
)

sin(β π
2 )

F(κ), (19)

that is coherent with the usual Feller derivative (λ = 0). In fact lim
λ→0+

sin
(

β arctan( κ
λ )
)
=

sin
[
β π

2 sgn(κ)
]
.

Remark 3. These procedures and the TSGL derivative (3) suggest that the GL type tempered
Riesz–Feller derivatives should read

λDβ
0 f (x) = lim

h→0+
h−β

+∞

∑
n=−∞

(−1)nΓ(β + 1)

Γ( β+θ
2 − n + 1)Γ( β−θ

2 + n + 1)
e−λ|n|h f (x− nh). (20)

We will not study it, since it leads to the results stated above.

The relation (13) allows us to obtain the general tempered Riesz–Feller derivatives.
We only have to insert there the expressions (14) and (18). Proceeding as in [34] we obtain:

Definition 4. Let β ∈ RrZ and f (x) in L1(R) or in L2(R). The generalised TSFD is defined by

λDβ
θ f (x) :=

1
2 sin(βπ)Γ(−β)

∫

R
f (x− τ) sin[(β + θ · sgn(τ))π/2]e−λ|τ||τ|−β−1dτ. (21)
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In terms of the Fourier transform, we have from (13)

F
[

λDβ
θ f (x)

]
= 2

∣∣∣κ2 + λ2
∣∣∣

β
2

[
cos
(
θ π

2
)

cos
(

β arctan( κ
λ )
)

cos
(

β π
2
) + i

sin
(
θ π

2
)

sin
(

β arctan( κ
λ )
)

sin
(

β π
2
)

]
F(κ). (22)

Remark 4. It is important to note that none of these operators, tempered Riesz and Feller, and the
general Riesz–Feller, can be considered as fractional derivatives. This is easy to see, for example,
from (16) that

λDα+β
0 f (x) 6= λDα

0 λDβ
0 f (x),

for any pairs α, β ∈ R, since

2
∣∣∣κ2 + λ2

∣∣∣
α+β

2 cos
(
(α + β) arctan

( κ

λ

))
6=

2
∣∣∣κ2 + λ2

∣∣∣
α
2 cos

[
α arctan

( κ

λ

)]
· 2
∣∣∣κ2 + λ2

∣∣∣
β
2 cos

[
β arctan

( κ

λ

)]
.

(23)

These considerations show that although appealing this way into bilateral tempered
fractional derivatives is not correct, since we do not obtain effectively derivatives according
to the criteria stated in [35]. In Figure 1, we observe the effect of the tempering on the
spectra and on the time kernel corresponding to β = −1.8 and λ = 0, 0.25, 0.5, 0.75.
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Figure 1. Frequency responses and kernels of Riesz potential (β = −1.8) without and with tempering (λ = 0.25, 0.5, 0.75).

4. Bilateral Tempered Fractional Derivatives

Above, we profit the fact that Riesz and Feller derivatives are expressed as sum and
difference of one-sided derivatives. However, such approach was not successful, attending
to the characteristics of the obtained operators that do not make them derivatives. Anyway,
there is an alternative approach.

Definition 5. We define the Bilateral Tempered Fractional Derivatives (BTFD), λDα
θ , as a compo-

sition of forward and backward unilateral TFD derivatives, Liouville or Grünwald–Letnikov. Let a,
b, α, and θ be real numbers, such that α = a + b and θ = a− b. Then

λDα
θ f (x) = λDa

a

[
λDb
−b f (x)

]
, (24)

or, using the Fourier transform:

F (λDα
θ f (x)] = (iκ + λ)a(−iκ + λ)b

=
∣∣∣κ2 + λ2

∣∣∣
α
2 eiθ arctan( κ

λ )F(κ).
(25)
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It is important to note that limλ→0+ arctan( κ
λ ) =

π
2 sgn(κ).

Let
λψα

θ (t) = F−1[λΨα
θ (ω)], (26)

and

T(α, θ, 2λ|t|) = 1

Γ
(
− α+sgn(t)θ

2

)
Γ
(

α−sgn(t)θ
2

)
∫ ∞

0
e−2λ|t|uu−

α+sgn(t)θ
2 −1(u + 1)−

α−sgn(t)θ
2 −1du, (27)

closely related (aside a factor) with the Tricomi function [36]. Then

Theorem 3. For α, β < 0,

λψα
θ (t) = e−λ|t||t|−α−1T(α, θ, 2λ|t|). (28)

Proof. Suppose that a, b < 0. As

∫ ∞

0
f (t + τ)e−λτ τ−a−1

Γ(−a)
dτ =

∫ 0

−∞
f (t− τ)eλτ (−τ)−a−1

Γ(−a)
dτ,

then

λDα
θ f (t) =

[
e−λt t−a−1

Γ(−a)
ε(t)

]
∗
[

eλt (−t)−b−1

Γ(−b)
ε(−t)

]
∗ f (t), (29)

where ∗ denotes the usual convolution. Let

λψα
θ (t) =

[
e−λt t−a−1

Γ(−a)
ε(t)

]
∗
[

eλt (−t)−b−1

Γ(−b)
ε(−t)

]
.

Hence

λψα
θ (t) =

∫ ∞

0
e−λτ τ−a−1

Γ(−a)
eλ(t−τ) (τ − t)−b−1

Γ(−b)
ε(τ − t)dτ.

We have two possibilities

1. t ≥ 0

λψα
θ (t) =

∫ ∞

t
e−λτ τ−a−1

Γ(−a)
eλ(t−τ) (τ − t)−b−1

Γ(−b)
dτ =

∫ ∞

0
e−λ(τ+t) (τ + t)−a−1

Γ(−a)
eλ(−τ) τ−b−1

Γ(−b)
dτ

2. t < 0

λψα
θ (t) =

∫ ∞

0
e−λτ τ−a−1

Γ(−a)
eλ(t−τ) (τ − t)−b−1

Γ(−b)
dτ =

∫ ∞

0
e−λτ τ−a−1

Γ(−a)
e−λ(|t|+τ) (τ + |t|)−b−1

Γ(−b)
dτ

Setting a = α+θ
2 and b = α−θ

2 we can write

λψα
θ (t) =

e−λ|t|

Γ(− α+sgn(t)θ
2 )Γ(− α−sgn(t)θ

2 )

∫ ∞

0
e−2λττ−

α+sgn(t)θ
2 −1(τ + |t|)−

α−sgn(t)θ
2 −1dτ

=
|t|−α−1

Γ(− α+sgn(t)θ
2 )Γ(− α−sgn(t)θ

2 )

∫ ∞

0
e−λ|t|(1+2 τ

|t| )
(

τ

|t|

)− α+sgn(t)θ
2 −1( τ

|t| + 1
)− α−sgn(t)θ

2 −1 dτ

|t| ,

and

λψα
θ (t) =

e−λ|t||t|−α−1

Γ(− α+sgn(t)θ
2 )Γ(− α−sgn(t)θ

2 )

∫ ∞

0
e−2λ|t|uu−

α+sgn(t)θ
2 −1(u + 1)−

α−sgn(t)θ
2 −1du. (30)
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Remark 5. With (29) we can write

λDα
θ f (t) =

∫ ∞

−∞
f (t− τ)e−λ|τ||τ|−α−1T(α, θ, 2λ|τ|)dτ, (31)

that is valid for α ≤ 0. We can extend its validity for α > 0, through a regularization as shown
above in Section 4. It is important to note the similarity between (31) and (15).

Another version of this derivative can be obtained from the tempered unilateral GL
derivatives in Table 1. It has the advantage of not needing any regularization.

Theorem 4. For any α, θ ∈ R,

λDα
θ f (t) = lim

h→0+
h−α

∞

∑
m=−∞

Tm(α, θ, 2λh)e−|m|λh f (t−mh), (32)

where Tm(α, β, 2λh) is defined below (37).

Proof. We have successively

g(t) =
∞

∑
n=0

(−a)n

n!
e−nλh

∞

∑
k=0

(−b)k
k!

e−kλh f (t− (n− k)h)

=
∞

∑
m=−∞




∞

∑
n=max(0,m)

e−2nλh (−a)n

n!
(−b)n−m

(n−m)!
e(m−2n)λh


 f (t−mh).

Let us work out the series

∞

∑
n=max(m,0)

(−a)n

n!
(−b)n−m

(n−m)!
e(m−2n)λh.

For m ≥ 0

∞

∑
n=max(m,0)

(−a)n

n!
(−b)n−m

(n−m)!
e(m−2n)λh =

∞

∑
n=0

(−a)n+m

(n + m)!
(−b)n

n!
e(−m−2n)λh. (33)

Therefore,

∞

∑
n=max(m,0)

(−a)n

n!
(−b)n−m

(n−m)!
e(−2n+m)λh =





∑∞
n=0

(−a)n+m

(n + m)!
(−b)n

n!
e(−m−2n)λh, m ≥ 0

∑∞
n=0

(−a)n

n!
(−b)n−m

(n−m)!
e(m−2n)λh, m < 0

(34)

Using the relations (−a)n+|m| = (−a)|m|(−a + |m|)n and (−b)n+|m| = (−b)|m|(−b + |m|)n
and simplifying, we get





e−mλh (−a)m

m! ∑∞
n=0

(−a + m)n

(m + 1)n

(−b)n

n!
e−2nλh, m ≥ 0

e−|m|λh (−b)|m|
|m|! ∑∞

n=0
(−b + |m|)n

(|m|+ 1)n

(−a)n

n!
e−2nλh, m < 0.

(35)
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From this relation, we define a new discrete function Tm(a, b, 2λh) by

T(a, b, 2λh) =





(−a)m

m! ∑∞
n=0

(−a + m)n

(m + 1)n

(−b)n

n!
e−2nλh, m ≥ 0

(−b)|m|
|m|! ∑∞

n=0
(−b + |m|)n

(|m|+ 1)n

(−a)n

n!
e−2nλh, m < 0

(36)

Therefore,

g(t) =
∞

∑
m=−∞

Tm(a, b, 2λh)e−|m|λh f (t−mh).

It is interesting to note that T−m(a, b, 2λh) = Tm(b, a, 2λh). Setting α = a + b and θ = a− b,
we obtain

Tm(α, θ, 2λh) =





(− α+θ
2 )m

m! ∑∞
n=0 e−2nλh (− α+θ

2 +m)n
(m+1)n

(− α−θ
2 )n

n! m ≥ 0
(− α−θ

2 )|m|
|m|! ∑∞

n=0 e−2nλh (− α−θ
2 +|m|)n

(|m|+1)n

(− α+θ
2 )n

n! m < 0.

Then
Tm(α, θ, 2λh) = T−m(α,−θ, 2λh), m ∈ Z

and consequently,

Tm(α, θ, 2λh) =
(− α+θ

2 )|m|
|m|!

∞

∑
n=0

e−2nλh (− α+θ
2 + |m|)n

(|m|+ 1)n

(− α−θ
2 )n

n!
, (37)

for any integer m.

Remark 6. The similarity of (37) and (27) must be noted.
We can give a more symmentric form of the summation in (37) using a Pfaff transformation, but it
seems not to be of particular interest.

To verify the coherence of this result, we note that:

1. The second term in (37) is the Hypergeometric function;
2. If λ = 0, using a well-known property of the Hypergeometric function, we have

∞

∑
n=0

(− α+θ
2 + |m|)n

(|m|+ 1)n

(− α−θ
2 )n

n!
=

Γ(1 + α)|m|!
Γ( α+θ

2 + 1)Γ( α−θ
2 + |m|+ 1)

,

and,

Tm(α, θ, 0) =
(− α+θ

2 )|m|
|m|!

Γ(1 + α)|m|!
Γ( α+θ

2 + 1)Γ( α−θ
2 + |m|+ 1)

. (38)

3. As (1− z)n = (−1)nΓ(z)/Γ(z− n),

(−α + θ

2
)|m| = (−1)m Γ(1 + α+θ

2 )

Γ( α+θ
2 − |m|+ 1)

,

and

Tm(α, θ, 0) = (−1)m Γ(1 + α)

Γ( α+θ
2 − |m|+ 1)Γ( α−θ

2 + |m|+ 1)
, (39)
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in agreement with (20). Another interesting result can be obtained by dividing (37) by (38)
to obtain the factor

Qm(α, θ, 2λh) =
Γ( α+θ

2 + 1)Γ( α−θ
2 + |m|+ 1)

Γ(1 + α)|m|!
∞

∑
n=0

e−2nλh (− α+θ
2 + |m|)n

(|m|+ 1)n

(− α−θ
2 )n

n!
, (40)

that expresses the “deviation” of the BTFD from the tempered Riesz–Feller derivative (22).
In Figure 2 we illustrate the behavour of this factor for two derivative orders, α = ±0.5
and three values of the tempering exponent, λ = 0.25, 0.5, 1 with θ = 0.4. It is important to
note that

• In the derivative case, Qm increases slowly and monotonuously with m, contributing
for an enlargement of the kernel duration;

• In the anti-derivative case, Qm decreases slowly and monotonuously to zero with in-
creasing m reducing the kernel duration and consequently the memory of the operator.
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Figure 2. The Q-factor for β = ±0.5; θ = 0.4, and λ = 0.25, 0.5, 1.

Knowing that the first term in (37) tends asymptotically to 1
|m|α+1 [39], it will be

interesting to study the behaviour of the summation term. In Figure 3 we examplify its
variation for positive and negative derivative orders for three values of λ.
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Figure 3. The summation factor in (37) for β = ±0.5; θ = 0.4, and λ = 0.25, 0.5, 1.

As seen, it seems to approach a constant depending on λ.
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Can We Consider the BTFD as Fractional Derivatives?

In Section 4 we noted that the tempered Riesz and Feller potentials could not be
considered as fractional derivatives, since the composition property was not valid for any
pairs of orders. We wonder if this is also true for the BTFD. We will base our study in the
SSC as proposed in [35].

It is not a hard task to show that the BTFD verify the following properties

P1 Linearity
The BTFD we introduced in the last sub-section is linear.

P2 Identity
The zero order BTFD of a function returns the function itself, since (iκ + λ)0 = 1, for
any λ, κ ∈ R.

P3 Backward compatibility
When the order is integer, the BTFD gives the same result as the integer order two-
sided TD and recovers the ordinary bilateral derivative, for λ = 0.

P4 The index law holds

λDα
θ λDβ

η f (t) = λDα+β
θ+η f (t), (41)

for any α and β, since

∣∣∣κ2 + λ2
∣∣∣

α
2 eiθ arctan( κ

λ )
∣∣∣κ2 + λ2

∣∣∣
β
2 eiη arctan( κ

λ ) =
∣∣∣κ2 + λ2

∣∣∣
α+β

2 ei(θ+η) arctan( κ
λ )

P5 The generalised Leibniz rule reads

λDα
θ [ f (t)g(t)] =

∞

∑
i=0

(
α

i

)
Di f (t)λDα−i

θ g(t), (42)

a bit different from the usual. Its deduction is similar to the one described in [1].

We conclude that the BTFD verifies the SSC and therefore can be considered a derivative.

5. Conclusions

This paper addressed the study of tempered two-sided derivatives. Two versions
were considered: integral and GL like. The conformity of these operators as studied in
the perspective of a criterion for fractional derivatives was stated. In passing we showed
that a simple tempering of the traditional Riesz and Feller potentials does not lead to
fractional derivatives.
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Abbreviations
The following abbreviations are used in this manuscript:

LT Laplace transform
FT Fourier transform
FD Fractional derivative
FP Feller Potential
GL Grünwald-Letnikov
L Liouville
RL Riemann-Liouville
TF Transfer function
TFD Tempered Fractional Derivative
BTFD Bilateral Tempered Fractional Derivatives
RP Riesz Potential
RD Riesz Derivative
RFD Riesz-Feller Derivative
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1. Introduction

As a mathematical model arising from the combustion theory [1,2], the following two-
point Boundary Value Problem (BVP) has been well studied by a number of authors [3–10]:

{
u′′(t) + λ exp

(
αu(t)

α+u(t)

)
= 0, −1 < t < 1,

u(−1) = u(1) = 0,
(1)

where λ > 0 is the Frank–Kamenetskii parameter, α > 0 is the activation energy parameter,
u is the dimensionless temperature, and the reaction term exp

(
αu

α+u
)

shows the temperature
dependence. Representing the steady case in the thermal explosion, BVP (1.1) is well-
known as the one-dimensional perturbed Gelfand problem [1,2,5].

In the literature, bifurcation curve, existence, and multiplicity of positive solutions
for BVP (1.1) have been extensively studied. In particular, Shivaji [8] first shows that, for
every α > 0, BVP (1.1) has a unique nonnegative solution when λ is small enough or large
enough. Hastings and McLeod [4] and Brown et al. [3] prove that the bifurcation curve of
(1.1) is S-shaped on the (λ, ||u||) plane when α is large enough, where ‖u‖ is the norm in
the space C[−1, 1]. That is, when α is large enough, there exist λ∗, λ∗ such that (1.1) has a
unique nonnegative solution for 0 < λ < λ∗, λ > λ∗, exactly three nonnegative solutions
for λ∗ < λ < λ∗, and exactly two nonnegative solutions for λ = λ∗(α) and λ∗(α). Later,
it was proved that the BVP (1.1) has multiple solutions when α > 4.4967 [11]. This lower
bound was improved to 4.35 by Korman and Li [12]. Recently, it was shown in [5,6] that
the number can be as close to 4 as 4.166. The problem has also been considered for general
operator equations in abstract Banach spaces [10]. Most recently, a similar problem has
been studied for the Neumann boundary value problem [9]. The techniques applied mostly
are the quadrature method.
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In this paper, we first apply a new result on a unique solution for a class of concave
operators in a partially ordered Banach space [13] to prove that there exists a unique
solution for BVP (1.1) when α ≤ 4. Previously, it was shown that, when α ≤ 4, the
bifurcation curve for (λ, ||u||) is monotonically increasing, which implies that the sup
norm of the solutions must be unique [11]. With a totally different approach, we are
able to directly prove the uniqueness of solutions. Then, we prove a general result for
all parameters on the existence of a solution using a new fixed point theorem on order
intervals that was recently introduced in [14]. As an advantage of this new method, we
obtain upper and lower bounds of the solutions depending on the values of λ and α. Next,
assuming that α > 4, it is known that there exists an λ-interval (λ∗, λ∗) such that BVP (1.1)
has at least three nonnegative solutions for λ ∈ (λ∗, λ∗) [3–6,11,12]. However, nothing is
known for the range of the λ-interval, or the values of λ∗ and λ∗. We obtain a range of
λ∗ by an upper bound and a lower bound. The accuracy of the estimation is shown by
the fact that the range is usually very small. From our knowledge, this is the first time
to give a concrete estimation for the λ-intervals that ensure solution multiplicity. Lastly,
some numerical results are given to illustrate the upper and lower bounds and multiplicity
of solutions.

The rest of the paper is organized as the following: Section 2 provides some prelim-
inary results that will be used in the sequel. Section 3 proves the uniqueness theorem.
Section 4 discusses existence, upper, and lower bounds of solutions. Section 5 gives the
λ-intervals for multiplicity. Numerical solutions obtained by MatLab are presented in
Section 6.

2. Preliminary

Let (E, ||.||) be a real Banach space and θ be the zero element of E. We first introduce
the concept of order cone.

Definition 1 ([15], p. 276). A subset P of E is called an order cone iff:

(i) P is closed, nonempty, and P 6= {0};
(ii) a, b ∈ R, a, b ≥ 0, x, y ∈ P⇒ ax + by ∈ P;
(iii) x ∈ P and −x ∈ P⇒ x = 0.

A Banach space E is partially ordered by an order cone P, i.e., x ≤ y if and only if
y− x ∈ P for any x, y ∈ E. P is normal if there exists N > 0 such that ||x|| ≤ N||y|| if
x, y ∈ E and θ ≤ x ≤ y. The infimum of such constants N is called the normality constant
of P. Following the notation of [13,16], for x, y ∈ E, x ∼ y means that there exist λ > 0 and
µ > 0 such that λx ≤ y ≤ µx. It is clear that ∼ is an equivalence relation. For fixed h > θ,
Ph = {x ∈ E | x ∼ h}. It is easy to see that Ph ⊂ P.

Definition 2. An operator A : E→ E is increasing if x ≤ y implies Ax ≤ Ay.

Definition 3 ([13]). Let e ∈ P with θ ≤ e ≤ h. Define the set

Ph,e = {x ∈ E | x + e ∈ Ph}.

An operator A : Ph,e → E is said to be a φ-(h, e)-concave operator if there exists φ(λ) > λ for
λ ∈ (0, 1) such that

A(λx + (λ− 1)e) ≥ φ(λ)Ax + (φ(λ)− 1)e for any x ∈ Ph,e.

Theorem 1 ([16]). Suppose that A is an increasing φ-(h, θ)-concave operator, P is normal, and
Ah ∈ Ph. Then, A has a unique fixed point x∗ in Ph. Moreover, for any given point w0 ∈ Ph,
||wn − x∗|| → 0 as n→ ∞ if wn = Awn−1 for n = 1, 2, . . .
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Theorem 2 ([14]). Assume that X is an ordered Banach space with the order cone X+. Let
0 ≤ u0 ≤ φ be such that ||u0|| ≤ 1 and ||φ|| = 1 satisfying the condition that if x ∈ X+, ||x|| ≤ 1,
then x ≤ φ. If there exist positive numbers, 0 < a < b such that T : Pu0

⋂
(Ωb\Ωa) → Pu0 is a

completely continuous operator. If the conditions

||T(x)||x∈[au0,aφ] ≤ a, and ||T(x)||x∈[bu0,bφ] ≥ b (2)

or
||T(x)||x∈[au0,aφ] ≥ a, and ||T(x)||x∈[bu0,bφ] ≤ b (3)

are satisfied, then T has a fixed point x0 ∈ [au0, bφ].

3. Uniqueness for α ≤ 4

In this section, we apply Theorem 1 to prove the following theorem on existence and
uniqueness of solutions for BVP (1.1) with the assumption of α ≤ 4.

Let X = C[−1, 1] with the standard norm u ∈ X, ‖u‖ = max−1≤t≤1 |u(t)|. Let
P = {u| u ∈ X, u(t) ≥ 0, t ∈ [−1, 1]}. It is clear that P is a normal cone of C[−1, 1].

Theorem 3. BVP problem (1.1) has a unique solution for all α ≤ 4.

Proof. It can be verified that u ∈ X is a solution of BVP (1.1) if and only if Tu = u, where
T : X → X is the Hammerstein integral operator defined as

(Tu)(t) =
λ

2

∫ 1

−1
G(s, t) exp

(
αu(s)

α + u(s)

)
ds, t ∈ [−1, 1], (4)

and the Green’s function G(s, t) is calculated as

G(s, t) =
{

(1− t)(1 + s), − 1 < s ≤ t < 1,
(1 + t)(1− s), − 1 < t ≤ s < 1.

It is easy to see that (1− |s|)(1− |t|) < G(s, t) ≤ 1− s2 for all −1 < s < 1 and −1 < t < 1
and

∫ 1
−1 G(s, t)ds = 1− t2.

Since both λ and G are positive and the function f (x) = exp
( ax

a+x
)

is increasing with
respect to x, the operator T is increasing. Let h(t) = 1− t2 . One can easily find that

λ

2
(1− t2) ≤ Tu(t) ≤ λ

2
eα(1− t2).

Therefore, Th(t) ∈ Ph,θ , where Ph,θ is defined by Definition 3.
To prove that T : Ph,θ → X is a φ-(h, θ)-concave operator, denote f (x) = exp

( x
1+εx

)

for ε = 1
a and let φ(µ) = f (µx)

f (x) = exp( µx
1+εµx − x

1+εx ). Then,

φ′(µ)(x) = φ(µ)(x)
µ(1 + εx)2 − (1 + εµx)2

(1 + εx)2(1 + εµx)2 .

Since φ(µ) > 0, the numerator is the only part that may change sign. It can be verified
that the numerator is less than 0 when x ∈ [0, 1

ε
√

µ ] and greater than 0 when x ∈ [ 1
ε
√

µ , ∞].

Therefore, φ(µ) has only one critical point at x = 1
ε
√

µ and it has its minimum value

φ(µ)( 1
ε
√

µ ) = exp
( √

µ−1
(
√

µ+1)ε

)
. Hence, f (µx) ≥ φ(µ) f (x).

Next, denoting k(µ) =
√

µ−1
(
√

µ+1) ln µ
< ε, we show that k′(µ) > 0. Let q(µ) = ln µ− µ

1
2 +

µ−
1
2 . Then, q′(µ) = − 1

2 µ−
3
2 (
√

µ− 1)2 < 0, q(1) = 0 and q(µ) > 0 ensure that k′(µ) > 0
for all µ ∈ (0, 1). It follows that k is increasing and its superum over (0, 1) is 1

4 . Hence,
the inequality ε ≥ 1

4 or α ≤ 4 implies that φ(µ) > µ with all µ ∈ (0, 1). Consequently, the
operator T defined (3.1) satisfies all the conditions of Theorem 1 when α ≤ 4, and it has a

189



Symmetry 2021, 13, 1606

unique fixed point in Ph,θ . Since operator (3.1) guarantees that all solutions are in Ph, BVP
(1.1) has a unique solution when α ≤ 4 for every λ > 0.

Remark 1. Existence of solutions for BVP (1.1) was previously shown by the S-shaped bifurcation
curve on (λ, ‖u‖) [3,4,6,11]. Since the bifurcation curve depends on ‖u‖, some qualitative proper-
ties for the maximum of solutions can be observed. For example, it was proved in [3] that the sup
norm of the solutions of BVP (1.1) is unique when α ≤ 4.

4. Upper, Lower Bounds and Order Sequence of Solutions

In this section, we prove the existence of upper and lower bounds for the general case
of BVP (1.1). The approach is by Theorem 2, a new fixed point theorem on order intervals
recently introduced in [14].

Let X, P and f be defined as in the proof of Theorem 3 and g(x) = f (x)
x . Then, g has

the properties of
lim

x→0+
g(x) = ∞, lim

x→∞
g(x)→ 0. (5)

Theorem 4. Select positive parameters a, b, and δ such that

a =
λ

2
, g(b) =

2
λ

, δ =
λ

2b
. (6)

Then BVP (1.1) has a solution u such that

λ

2
δ(1− t2) ≤ δu(0)(1− t2) ≤ u(t) ≤ b(1− t2), t ∈ [0, 1]. (7)

Proof. From the proof of Theorem 3, u ∈ X is a solution of BVP (1.1) if and only if Tu = u,
where T is defined by (4). Let u0 = δ(1 − t2) and ϕ = 1. Then, u0 and ϕ satisfy the
conditions of Theorem 2. Define

Pu0 = {u ∈ P| ‖u‖ = u(0), u(−t) = u(t), u(t) ≥ δu(0)(1− t2), t ∈ [−1, 1]}.

It can be verified that Pu0 is a subcone of P. To prove T : Pu0 ∩ (Ωb \Ωa)→ Pu0 , let u ∈ Pu0

with ‖u‖ ≤ b. We have

(Tu)(t) =
λ

2

∫ 1

−1
G(s, t) exp

(
αu

α + u

)
ds ≥ λ

2
(1− t2). (8)

On the other hand,

δ(Tu)(0) =
λδ

2

∫ 1

−1
G(s, 0) exp

(
αu

α + u

)
ds

≤ λδ

2
exp

(
αb

α + b

) ∫ 1

−1
G(s, 0)ds

=
λ

2
.

Therefore, (Tu)(t) ≥ δ(Tu)(0)(1− t2). Assume that u(t) = u(−t) for t ∈ [−1, 1].

(Tu)(t) =
λ

2

∫ t

−1
(1 + s)(1− t) f (u(s))ds +

λ

2

∫ 1

t
(1− s)(1 + t) f (u(s))ds. (9)
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(Tu)(−t) =
λ

2

∫ −t

−1
(1 + s)(1 + t) f (u(s))ds +

λ

2

∫ 1

−t
(1− s)(1− t) f (u(s))ds

=
λ

2

∫ 1

t
(1− x)(1 + t) f (u(x))dx +

λ

2

∫ t

−1
(1 + x)(1− t) f (u(x))dx

= (Tu)(t),

where x = −s. To show that ‖Tu‖ = (Tu)(0), let g(t) = (Tu)(t), by (4.5),

g′(t) = −λ

2

∫ t

−1
(1 + s) f (u(s))ds +

λ

2

∫ 1

t
(1− s) f (u(s))ds.

Hence, g′(−1) > 0, g′(1) < 0 and g′′(t) = −λ f (u(t)) ≤ 0. This implies that g′ is
decreasing and only has one zero point. Since g is symmetric about zero, g′(0) = 0 and
‖g‖ = g(0). This implies that Tu ∈ Pu0 . The Hammerstein integral operator T is completely
continuous. For u ∈ [au0, aϕ], we have

‖Tu‖ = (Tu)(0) =
1
2

λ
∫ 1

−1
G(s, 0) exp

(
αu

α + u

)
ds

≥ λ

2
= a.

On the other hand, let δb(1− t2) ≤ u(t) ≤ b,

(Tu)(t) =
1
2

λ
∫ 1

−1
G(s, t) exp

(
αu(s)

α + u(s)

)
ds

≤ λ

2
exp

(
αb

α + b

) ∫ 1

−1
G(s, t)ds

=
λ

2
exp

(
αb

α + b

)
(1− t2)

= b(1− t2) ≤ b.

By Theorem 2, BVP (1.1) has a solution u such that u(t) ∈ [aδ(1− t2), b] and u ∈ Pu0 . From
(4.5), we can see that u(0) = (Tu)(0) ≥ λ

2 = a. It follows that the solution u satisfies

λ

2
δ(1− t2) ≤ δu(0)(1− t2) ≤ u(t) ≤ b. (10)

Moreover, from ‖u‖ = u(0) ≤ b, we obtain

u(t) = Tu(t) =
λ

2

∫ 1

−1
G(s, t) exp

(
αu

α + u

)
ds

≤ λ

2
exp

(
αb

α + b

) ∫ 1

−1
G(s, t)ds

= b(1− t2).

Combining it with (4.6), we have

λ

2
δ(1− t2) ≤ δu(0)(1− t2) ≤ u(t) ≤ b(1− t2).

The proof is complete.

The lower bound given in Theorem 4 depends on both parameters b and λ. When
λ >

(
π
2
)2, a uniform lower bound can be obtained for all values of λ.
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Theorem 5. Let x0 be the smallest value satisfying g(x0) = 1. BVP (1.1) has a solution u(t) ≥
x0 sin(π

2 t + π
2 ) provided that λ ≥

(
π
2
)2.

Proof. We will construct a bounded increasing sequence using the Hammerstein operator
T defined as (3.1). Let

u0(t) = x0 sin(
π

2
t +

π

2
) and u1(t) =

λ

2

∫ 1

−1
G(s, t) f (u0(s))ds.

By the definition of x0, we have g(u0(t)) ≥ 1 or f (u0(t)) ≥ u0(t) and

u1(t) ≥
λ

2

∫ 1

−1
G(s, t)u0(s)ds

≥ π2

8

∫ 1

−1
G(s, t)u0(s)ds.

Since
(

π
2
)2 is an eigenvalue of the linear equation u′′(t) = −λu(t) and sin(π

2 t + π
2 ) is

its corresponding eigenvector, we have

π2

8

∫ 1

−1
G(s, t)u0(s)ds = u0(t) ≤ u1(t), t ∈ [−1, 1].

Construct the sequence

un(t) =
λ

2

∫ 1

−1
G(s, t) f (un−1(s))ds, n = 2, 3, . . . (11)

The fact that f is increasing ensures that un is increasing. Let x3 > x0 be a constant such
that λ

2 g(x3) < 1, then u0(t) < x3 and

un(t) =
λ

2

∫ 1

−1
G(s, t) f (un−1(s))ds

≤ λ

2

∫ 1

−1
G(s, t) f (x3)ds

≤ x3

∫ 1

−1
G(s, t)ds

= x3(1− t2) ≤ x3.

Therefore, the sequence un is bounded above and it converges to a solution u of BVP (1.1).
Obviously, the solution satisfies that

u(t) ≥ u0(t) = x0 sin(
π

2
t +

π

2
).

The construction method used in the proof of Theorem 5 has the advantage to provide
numerical approximation with iterations. Following the similar idea, we can show that, for
the same α value, a solution sequence can be constructed according to the order of the λ
values.

Theorem 6. For each λ > 0, there exists a positive solution uλ(t) for BVP (1.1) such that for
λ1 < λ2, uλ1(t) < uλ2(t), t ∈ [−1, 1].
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Proof. As in the proof of Theorem 4, let b1, b2 > 0 satisfy g(bi) =
2
λi

, i = 1, 2. Then,

λ1

2
g(b2) <

λ2

2
g(b2) = 1.

Letting

u0(t) = b2

∫ 1

−1
G(s, t)ds = b2(1− t2),

‖u0(t)‖ = b2. Define u(1)
λ1

(t) = λ1
2

∫ 1
−1 G(s, t) f (u0(s))ds, we have

u(1)
λ1

(t) ≤ λ1

2

∫ 1

−1
G(s, t) exp

(
α‖u0‖

α + ‖u0‖

)
ds

=
λ1

λ2
b2

∫ 1

−1
G(s, t)ds

≤ b2(1− t2) = u0(t),

and

u(2)
λ1

(t) =
λ1

2

∫ 1

−1
G(s, t) exp


 αu(1)

λ1

α + u(1)
λ1


ds

≤ λ1

2

∫ 1

−1
G(s, t) exp

(
αu0

α + u0

)
ds = u(1)

λ1
(t).

By iteration, we can obtain the sequence

u0 ≥ u(1)
λ1
≥ u(2)

λ1
≥ · · · ≥ uk

λ1
≥ uk+1

λ1
≥ · · · ≥ 0.

Let limk→∞ u(k)
λ1

(t) = uλ1(t), t ∈ [−1, 1], then uλ1(t) is a positive solution for BVP (1.1) with

parameter λ1. Similarly, we can obtain the monotonic sequence u(k)
λ2

, k = 1, 2, 3, · · · and

u(1)
λ2

(t) =
λ2

2

∫ 1

−1
G(s, t) exp

(
αu0(s)

α + u0(s)

)
ds

>
λ1

2

∫ 1

−1
G(s, t) exp

(
αu0(s)

α + u0(s)

)
ds = u(1)

λ1
(t).

By mathematical induction, u(k)
λ2
≥ u(k)

λ1
for k = 1, 2, 3, · · · .

Let limk→∞ u(k)
λ2

(t) = uλ2(t), t ∈ [−1, 1]. Then, uλ2(t) is a positive solution for BVP
(1.1) with parameter λ2 and uλ1(t) ≤ uλ2(t).

5. λ-Interval for Triple Positive Solutions

The existence of multiple solutions is always a challenge. It is known that there exists
α0 such that the bifurcation curve of (λ, ‖u‖) is S-shaped when α > α0, and this result
ensures that there exist λ∗ and λ∗ such that BVP (1.1) has at least three solutions when
λ∗ < λ < λ∗, at least two solutions for λ = λ∗ and λ = λ∗ and at least one solution
otherwise. Over the last two decades, the value of α0 has been a focus of a series of
publications [3–5,11,12,14]. Consequently, the estimation for α0 has been improved again
and again. Most recently, it is shown by numerical methods that α0 ≈ 4.069 [5,6]. However,
there is no result on the range of the λ-intervals or estimations for λ∗ and λ∗.

In this section, we give an estimation for the value of λ∗ by obtaining both upper and
lower bounds and also show that the estimation is accurate since the difference between
the upper bound and lower bound is actually very small. We use the functions f and g
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defined in Section 4 again. When α > 4, the following lemma shows the different behavior
of function g from the case of α ≤ 4.

Lemma 1. Let f (x) = exp( αx
α+x ) and g(x) = f (x)

x . Then,

1. When α ≤ 4, g is decreasing over (0, ∞).

2. When α > 4, g has a local minimum at x1 = α2−2α−
√

α4−4α3

2 and a local maximum at

x2 = α2−2α+
√

α4−4α3

2 .
3. When α > 4, g(x1) is increasing with respect to α and e2

4 < g(x1) <
e2

2 .

Theorem 7. If α > 4, and 2x1
f (x1)

≥ λ > 4x2
f (x2)+0.5 . BVP (1.1) has at least two non-negative

solutions.

Proof. For λ ≤ 2x1
f (x1)

, since g(x) is decreasing for x ∈ (0, x1), we have x1 ≥ b, where b is
selected for condition (6). Therefore, Theorem 4 guarantees that BVP (1.1) has a solution
u∗(t) ≤ x1(1− t2).

Next, using the idea of Brown, Ibrahin, and Shivaji [6], we construct another solution
using the condition λ > 4x2

f (x2)+0.5 . Define

u0(t) =
{

x2, − 1
2 ≤ t ≤ 1

2 ,
0, − 1 < t < − 1

2 or 1
2 < t < 1,

(12)

and

u1(t) =
λ

2

∫ 1

−1
G(s, t) f (u0(s))ds. (13)

When −1 < t < − 1
2 or 1

2 < t < 1, it is clear that u1(t) ≥ u0(t). For − 1
2 ≤ t ≤ 1

2 , we have

u1(t) =
λ

2

∫ 1
2

− 1
2

G(s, t) f (x2)ds +
λ

2

∫ − 1
2

−1
G(s, t)ds +

λ

2

∫ 1

1
2

G(s, t)ds

=
λ

2
f (x2)(

3
4
− t2) +

λ

8

≥ λ

4
f (x2) +

λ

8
.

The condition λ > 4x2
f (x2)+0.5 implies u1(t) ≥ u0(t) and the sequence defined as

un(t) =
λ

2

∫ 1

−1
G(s, t) f (un−1(s))ds, n = 0, 1, 2, · · · (14)

is increasing. It is also clear that un(t) < λ
2 eαx2, n = 0, 1, 2, · · · . Therefore, this sequence

converges and its limit u∗∗(t) is a solution of BVP (1.1). The inequality

u∗∗(t) ≥ x2 > x1 ≥ x1(1− t2) ≥ u∗(t) (15)

shows that problem (1.1) has at least two solutions.

Remark 2. Theorem 7 gives the estimation of λ∗ ≤ 2x1
f (x1)

= λ.

Remark 3. It is shown by numerical calculation that, when α > 5.758, the condition 2x1
f (x1)

>
4x2

f (x2)+0.5 is always true.

Remark 4. We can calculate that f ′(x) = f (x) α2

(x+α)2 has an absolute maximum value 4eα−2

α2 . The
fixed point problem for the Hammerstein operator T defined by (4) has a unique solution when
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2λeα−2

α2 < 1 or λ < α2

2eα−2 = λ by the standard contraction mapping theorem. This implies that
λ∗ > λ. It is reasonable to conjecture that λ∗ = 2x2

f (x2)
. The comparison in Table 1 indicates that the

interval [λ, λ] is in fact very small.

Table 1. Upper and lower bounds for the value of λ∗.

α λ 2x2
f (x2)

λ

4.01 1.0773 1.0798 1.08155
4.02 1.0719 1.07676 1.07776
5 0.6223 0.70256 0.959057
5.5 0.4567 0.5329 0.92795
6 0.3297 0.3945 0.904837
100 1.374392504× 10−39 2.002116× 10−39 0.743229

6. Numerical Solutions

In this section, we produce some numerical solutions using Matlab to give some direct
illustration for the solutions. Figure 1 shows that the order sequence of solutions follow the
value of λ as proved in Theorem 6. In both cases of α < 4 (Figure 1a) and α > 4 (Figure 1b),
the order of the solutions follows the order of the parameter λ.

Figure 1. Order sequences for λ values.

Lemma 2 ([5], p. 479). If u(t) is a solution of BVP (1.1), then u(t) is symmetric about t = 0.
Thus, u(t) = u(−t).

The following property on the norm and order of the solutions are new, to our
knowledge.

Proposition 1. If u1(t) and u2(t) are two solutions of BVP (1.1) for the same λ and ‖u1‖ > ‖u2‖,
then u1(t) > u2(t) for t ∈ (−1, 1).
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Proof. Since u1(t) and u2(t) are symmetric about t = 0, it is sufficient to prove that
u1(t) > u2(t) for t ∈ (−1, 0]. First, we prove that u1(t) ≥ u2(t) for t ∈ (−1, 0]. Let
f (x) = exp

(
αx

α+x
)

for x ≥ 0 and F(u) =
∫ u

0 f (s)ds. From (1.1), we have

u′′u′ + λ f (u)u′ = 0.

Integrating both sides from 0 to u(t), we obtain

1
2
(u′(t))2 + λF(u) = C,

where C is a constant. Since u(0) = ‖u‖ and u′(0) = 0, we find C = λF(‖u‖). Therefore,

1
2
(u′(t))2 + λF(u) = λF(‖u‖). (16)

At t = −1, u′(−1) =
√

2λF(‖u‖). Thus,

u′1(−1) =
√

2λF(‖u1‖) >
√

2λF(‖u2‖) = u′2(−1).

There exists an interval (−1, c) such that u1(t) > u2(t) for t ∈ (−1, c). Suppose that
−1 < r < 0 is the first value such that u1(r) = u2(r) and u1(t) < u2(t) for t > r in an
interval. Using (6.1), we have

u′1(r) =
√

2λF(‖u1‖)− 2λF(u1(r))

>
√

2λF(‖u2‖)− 2λF(u2(r)) = u′2(r).

This is clearly a contradiction. Next, from the corresponding integral equation, we have

u1(t) =
λ

2

∫ 1

−1
G(s, t) exp

(
αu1(s)

α + u1(s)

)
ds

>
λ

2

∫ 1

−1
G(s, t) exp

(
αu2(s)

α + u2(s)

)
ds = u2(t).

The proof is complete.

It is interesting to see that all three solutions were found, as shown in Figure 2, where
α = 6 and λ = 0.7. In addition, λ

2 = 0.35 and the value of b satisfying 0.7 f (b)
2b = 1 is 0.608.

Figure 2a is consistent with Theorem 5. The value of x2 = 22.39 and the solution curve in
Figure 2c clearly supports the result in Theorem 7.

(a) The first solution (b) The second solution (c) The third solution

Figure 2. Three solutions.
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Remark 5. When λ >
(

π
2
)2 ≈ 2.4674, combining Theorems 4 and 5, there exist solutions u1 and

u2 such that
u1(t) ≤ b(1− t2) and u2(t) ≥ x0 sin(

π

2
t +

π

2
),

where the constant b satisfying g(b) = 2
λ , x0 is the smallest value satisfying g(x0) = 1. Since

λ ≥
(

π
2
)2, g(b) < g(x0). Thus, b > x0 because they must be values exceeding x2 in Theorem 7

when α > 4. If α ≤ 4, g is decreasing. Assuming a unique solution exists, then u1 = u2 = u, and
we have

x0 sin(
π

2
t +

π

2
) ≤ u(t) ≤ b(1− t2) if λ ≥

(π

2

)2
. (17)

Figure 3 illustrates the upper bound and lower bound given by (17). In (A), the
solution of BVP (1.1) for λ = 2.47 ≥

(
π
2
)2 and α = 5 > 4. In this case, x0 = 121.869 and

b = 157.093, and so 121.869 sin(π
2 t + π

2 ) < u(t) < 157.093(1− t2). In (B), one calculated
the solution of BVP (1.1) for λ = 2.47 and α = 2 < 4, In this case, x0 = 3.632 and b = 5.26
and so 3.632 sin(π

2 t + π
2 ) < u(t) < 3.26(1− t2).

(a) α > 4 (b) α < 4
Figure 3. Upper and lower bounds for solutions.

Remark 6. With the advantages of the concrete equation (1.1), we are able to obtain more detailed
quantitative properties for the solutions as given in the above sections. The results provide ideas
for solving similar problems for more abstract problems. For example, similar approaches may be
applied to study parameter dependent operator equations in abstract partial ordered Banach spaces.

In conclusion, we studied a two-point boundary value problem arising from the
combustion theory. The second-order system of differential equations involves two positive
parameters λ and α that are physically significant in the process.

Using topological methods, we proved results on uniqueness, existence, and multi-
plicity of positive solutions depending on the range of the two parameters. The results
enriched previous work on this important application problem.
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Abstract: In this paper, we establish several necessary conditions to confirm the uniqueness-existence
of solutions to an extended multi-order finite-term fractional differential equation with double-order
integral boundary conditions with respect to asymmetric operators by relying on the Banach’s fixed-
point criterion. We validate our study by implementing two numerical schemes to handle some
Riemann–Liouville fractional boundary value problems and obtain approximate series solutions that
converge to the exact ones. In particular, we present several examples that illustrate the closeness of
the approximate solutions to the exact solutions.

Keywords: approximate solutions; boundary value problem; existence; Riemann–Liouville derivative

1. Introduction

Fractional calculus is extending quickly, and its interesting and attractive applica-
tions are perfectly utilized in different parts of science [1–3]. It has appeared in financial
models [4], optimal control [5,6], chaotic systems [7], epidemiological models [8,9], engi-
neering [10,11], etc. Particularly, the fractional systems of boundary value problems (FBVP)
of fractional differential equations usually yield other operational mathematical models
for the description of special chemical, physical, and biological processes, which one can
find in recently published works [12–19]. Along with these real models describing the
phenomena, many mathematicians conduct research on the existence theory of solutions
for different abstract structures of FBVPs with general boundary conditions including
three-point, multi-point, multi-order, multi-strip, and nonlocal integral ones [20–29].

Several studies have also concentrated on the numerical techniques to obtain the
analytical and approximate solutions of FBVPs. New numerical methods are introduced
by researchers that have improved the convergence rate and error resulting from the
approximate solutions. Examples of these methods and how to use them are Haar
wavelet method [30,31], CAS wavelet method [32], homotopy analysis transform method
(HATM) [33], q-HATM [34], Bernstein polynomials [35], iterative reproducing kernel
Hilbert space method [36], Legendre functions with fractional orders [37], variational
iteration method [38], and so on.
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Since multi-term multi-order fractional differential equations have appeared in a
wide range of fields, many mathematicians have started to review the properties and
numerical solutions of this type of fractional differential equations. On the other side,
because most of the time the exact solution cannot be found or it is very difficult to find,
various numerical techniques have been applied for such FBVPs to obtain the approximate
solutions. For instance, Bolandtalat, Babolian and Jafari [39] compared the convergence
effects of exact and numerical solutions of multi-order fractional differential equations by
means of Boubaker polynomials. In 2016, Hesameddini, Rahimi, and Asadollahifard [40]
presented a new version of the reliable algorithm to solve multi-order fractional differential
equations and investigated the convergence of it. Firoozjaee et al. [41] implemented a
numerical approach on a multi-order fractional differential equation with mixed boundary-
initial conditions. Recently, Dabiri and Butcher [42] invoked a numerical technique based
on the spectral collocation methods and obtained the numerical solutions of multi-order
fractional differential equations subject to multiple delays.

In recent years, many FBVPs with integral boundary conditions have been formulated
by researchers of this field. Ali, Sarwar, Zada, and Shah [43] developed some conditions
with the aid of topological degree results for confirming the existence of solutions to the
nonlinear integral FBVP





cD
$
0+υ(z) = h

(
z, υ(µz)

)
, z ∈ I := [0, 1], µ ∈ (0, 1),

c1υ(0) + c2υ(1) = I
$
0+ ϕ1(1, υ(1)), c3υ′(0) + c4υ′(1) = I

$
0+ ϕ2(1, υ(1)),

in which $ ∈ (1, 2], c1, c2, c3, c4 ∈ R+ and h, ϕ1, ϕ2 ∈ C(I ×R,R). cD
$
0+ denotes the Caputo

fractional derivative of order $ and I
$
0+ is the Riemann–Liouville fractional integral of

order $. Liu, Li, Dai, and Liu [44] implemented the fixed point techniques to establish the
existence and uniqueness of solutions for the nonlocal integral FBVP




D

$
0+υ(z) + ψ(z)h

(
z, υ(z)

)
= 0, z ∈ (0, 1),

υ(0) = υ′(0) = · · · = υ(k−2)(0) = 0, υ′(1) = pIµ
0+υ(ξ),

where $ ∈ (k − 1, k], ξ ∈ (0, 1], p, µ > 0,
pΓ($)ξ$+µ−1

Γ($ + µ)
< 1 and D

$
0+ is the Riemann–

Liouville fractional derivative of order $. In 2018, Padhi, Graef, and Pati [45] studied
positive solutions for the given fractional differential equation with Riemann–Stieltjes
integral conditions





D
$
0+υ(z) + ψ(z)h

(
z, υ(z)

)
= 0, z ∈ (0, 1),

υ(0) = υ′(0) = · · · = υ(k−2)(0) = 0, Dv
0+υ(1) =

∫ 1

0
ϕ(r, υ(r))dA(r),

where $ ∈ (k− 1, k] with k > 2 and 1 ≤ v ≤ $− 1.
In 2021, Thabet, Etemad, and Rezapour [46] designed and discussed the notion of the

existence for possible solutions of a coupled system of the Caputo conformable FBVPs of
the pantograph differential equation by





CCD$,σ∗1
z0 v(z) = P̃1(z, m(z), m(`z)), z ∈ [z0, K̃], z0 ≥ 0,

CCD$,σ∗2
z0 m(z) = P̃2(z, v(z), v(`z)),
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with three-point RL-conformable integral conditions




v(z0) = 0, c1v(K̃) + c2
RCI$,θ∗

z0 v(δ) = w∗1 ,

m(z0) = 0, c∗1m(K̃) + c∗2
RCI$,θ∗

z0 m(ν) = w∗2 ,

in which $ ∈ (0, 1], σ∗1 , σ∗2 ∈ (1, 2), δ, ν ∈ (z0, K̃), c1, c2, c∗1 , c∗2 , w∗1 , w∗2 ∈ R, ` ∈ (0, 1) and
P̃1, P̃2 ∈ C([z0, K̃]×R×R,R). In all the above fractional models with integral conditions,
only the required conditions of the existence of solutions have been investigated and FBVPs
have not been solved numerically. Due to the complexity of the structure of these FBVPs
with integral boundary conditions and the difficulty associated with finding their exact
solutions, some modern numerical algorithms have been developed to find approximate
and analytical solutions.

In 2005, Dafterdar-Gejji and Jafari [47] employed the Adomian decomposition method
(ADM) to find solutions to a generalized initial system of multi-order fractional differential
equations. One year later, they [48] presented an iterative algorithm jointly for solving
a general functional equation approximately and called it the Dafterdar-Gejji and Jafari
method (DGJIM). Among other numerical algorithms, these two methods, i.e., DGJIM and
ADM, are known as two numerical tools with high accuracy and rapid convergence to an
exact solution. For more details, one can point out to some works in this regard [49–51].
We apply these two strong numerical tools to approximate possible solutions of our sug-
gested FBVP.

In precise terms and with the help of the above ideas, in this paper, we propose
a double-order integral FBVP of the multi-term multi-order differential equation in the
framework of the Riemann–Liouville (RL) asymmetric derivation operators displayed as




D

$
0+u(z) = }̂

(
z, u(z),Dσ1

0+u(z),Dσ2
0+u(z), . . . ,Dσn−1

0+ u(z),Dσn
0+u(z)

)
,

u(0) = 0, u(1) = pIµ
0+k1(ξ, u(ξ)) + qIν

0+k2(η, u(η)),
(1)

where 0 ≤ z ≤ 1, 1 < $ < 2, 0 < σ1 < σ2 < · · · < σn < 1, $ > σn + 1, }̂ : [0, 1]×Rn+1 →
R, k j : [0, 1] × R → R, (j = 1, 2) are continuous functions; D$

0+ ,Dσ1
0+ , . . . ,Dσn

0+ are RL-
derivatives of order $, σ1, . . . , σn, respectively; and I

γ
0+ denotes the RL-integral of order

γ ∈ {µ, ν} with µ, ν, p, q > 0 and 0 < ξ, η < 1. Here, we first obtain the corresponding
integral equation of the given multi-term multi-order RLFBVP (1) based on a theoretical
argument and then establish the existence and uniqueness results with the aid of the fixed
point tool. After that, we propose two numerical algorithms entitled DGJIM along with
ADM to find approximate solutions.

Indeed, we must emphasize that the novelty and motivation of our work is that,
although other papers use the ADM and DGJIM methods for solving IVPs, we here intend
to compute approximate solutions for a complicated multi-order multi-term RLFBVP with
boundary conditions including double-order RL-fractional integrals. In addition, note that,
in the second boundary condition, the value of the unknown function at the end point
z = 1 is proportional to a linear combination of RL-integrals with different orders µ, ν > 0
at the intermediate points z = ξ, η ∈ (0, 1), respectively. Along with this, we consider
the right-hand side nonlinear term }̂ as a multi-variable function including multi-order
RL-derivatives finitely.

The rest of this paper is organized as follows. Section 2 recalls fundamental notions
on fractional calculus. Section 3 is devoted to establishing some criteria for confirming the
existence of solutions. Section 4 introduces the two numerical methods named ADM and
DGJIM. In Section 5, the proposed approximation techniques are described using different
examples. Some concluding remarks are provided in Section 6.
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2. Basic Concepts

First, for the convenience of the readers, we need some fundamental properties and
lemmas on fractional calculus which are used further in this paper.

Definition 1. [3] Let $ > 0 and φ : [0, ∞)→ R be a continuous function. The following integral

(
I

$
0+φ

)
(z) =

1
Γ($)

∫ z

0
(z− s)$−1φ(s)ds,

is called the Riemann–Liouville integral of order $ such that the integral on the right-hand side exists.

Definition 2. [3] Let n− 1 < $ < n. Then, the $th Riemann–Liouville derivative of a continuous
function φ : [0, ∞)→ R is defined as

D
$
0+φ(z) =

1
Γ(n− $)

(
d
dz

)n ∫ z

0
(z− s)n−$−1φ(s)ds

=

(
d
dz

)n

I
n−$
0+ φ(z),

provided that the integral on the right-hand side exists and n = [$] + 1, where [$] denotes the
greatest integer less than $.

The following properties of the fractional operators are necessary for our paper.

Lemma 1. [2] Let u ∈ L1(0, 1) and σ > $ > 0. Then,

• Iσ
0+I

$
0+u(z) = I

σ+$
0+ u(z),

• D
$
0+I

σ
0+u(z) = I

σ−$
0+ u(z),

• Dσ
0+I

σ
0+u(z) = u(z).

Lemma 2. [2] If $ > 0 and ν > 0, then

• D
$
0+zν−1 =





Γ(ν)
Γ(ν− $)

zν−$−1,

D
$
0+zν−1 = 0, if ν− $ ∈ {0} ∪Z−,

• I
$
0+zν =

Γ(ν + 1)
Γ(ν + $ + 1)

zν+$.

Lemma 3. [2] Let n− 1 < $ < n and u ∈ C(0, 1) and D
$
0+u ∈ L1(0, 1). Then,

I
$
0+D

$
0+u(z) = u(z)−

n

∑
j=1

I
n−$
0+ u(0)

Γ($− j + 1)
z$−j,

where n = [$] + 1 and [$] denotes the greatest integer less than $.

3. Results of the Existence Criterion

In this section, we first derive an integral equation corresponding to the given multi-
term multi-order RLFBVP (1) and then establish required conditions to confirm the exis-
tence of solutions for (1).

Definition 3. The function u(z) is called a solution for the suggested multi-term multi-order
RLFBVP (1) if u satisfies (1) and D

$
0+u(z) ∈ C[0, 1] and u(z) ∈ C[0, 1].
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Theorem 1. Let 1 < $ < 2, 0 < σ1 < σ2 < · · · < σn < 1, $ > σn + 1, µ, ν, p, q > 0,
and 0 < ξ, η < 1. Then, the function u(z) is a solution of the RLFBVP (1) if and only if
m(z) = Dσn

0+u(z) satisfies the integral equation

m(z) = I
$−σn
0+ }̂

(
z, Iσn

0+m(z), Iσn−σ1
0+ m(z), . . . , Iσn−σn−1

0+ m(z), m(z)
)

+
Γ($)

Γ($− σn)

[
p

Γ(µ)

∫ ξ

0
(ξ − s)µ−1k1

(
s, Iσn

0+m(s)
)
ds

+
q

Γ(ν)

∫ η

0
(η − s)ν−1k2

(
s, Iσn

0+m(s)
)
ds

− I
$
0+ }̂
(
z, Iσn

0+m(z), Iσn−σ1
0+ m(z), . . . , Iσn−σn−1

0+ m(z), m(z)
)∣∣∣

z=1

]
z$−σn−1. (2)

Proof. In the first step, let u(z) ∈ C[0, 1] be a solution of the multi-term multi-order
RLFBVP (1) which it gives m(z) = Dσn

0+u(z) ∈ C[0, 1]. Applying the RL-operator Iσn
0+ on

both sides of equation m(z) = Dσn
0+u(z), we get

Iσn
0+m(z) = Iσn

0+D
σn
0+u(z) = u(z)−

(
I1−σn

0+ u
)
(0)

Γ(σn)
zσn−1. (3)

Since
(
I1−σn

0+ u
)
(0) = 0, then we have

u(z) = Iσn
0+m(z). (4)

In view of the second property in Lemma 1 and by (4), it follows that

D
σn−1
0+ u(z) = D

σn−1
0+ Iσn

0+m(z) = I
σn−σn−1
0+ m(z),

... =
...

D
σ1
0+u(z) = D

σ1
0+I

σn
0+m(z) = I

σn−σ1
0+ m(z).

Since 1 < $ < 2, by definition of the Riemann–Liouville fractional derivative, D$
0+u(z) =

D2
0+I

2−$
0+ u(z). Now, by (4), we get D$

0+u(z) = D2
0+I

2−$
0+ Iσn

0+m(z). Now, by Lemma 1, if we
use the semi-group property for Riemann–Liouville fractional integrals, we have

I
2−$
0+ Iσn

0+m(z) = I
2−$+σn
0+ m(z).

Again, by definition of the Riemann–Liouville fractional derivative, we have

D2
0+I

2−$+σn
0+ m(z) = D

−(−$+σn)
0+ m(z) = D

$−σn
0+ m(z),

and so
D

$
0+u(z) = D

$−σn
0+ m(z).

Consequently, the multi-term multi-order equation illustrated by (1), becomes

D
$−σn
0+ m(z) = }̂

(
z, Iσn

0+m(z), Iσn−σ1
0+ m(z), . . . ,Iσn−σn−1

0+ m(z), m(z)
)
, 0 ≤ z ≤ 1. (5)

Setting λ = $− σn > 1, λj = σn − σj, σ0 = 0 (j = 0, 1, . . . n), then (5) can be rewritten as

Dλ
0+m(z) = }̂

(
z, Iλ0

0+m(z), Iλ1
0+m(z), . . . , Iλn−1

0+ m(z), m(z)
)
, 0 ≤ z ≤ 1. (6)
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Hence, by (4), it follows that u(0) = 0, and one can determine the value of the initial
condition m(0). Therefore, since m(z) ∈ C[0, 1],

Iσn
0+m(z) =

1
Γ(σn)

∫ z

0
(z− s)σn−1m(s)ds,

and so we can arbitrarily provide the initial value of m(z) such that u(0) = Iσn
0+m(z)

∣∣∣
z=0

= 0.

We assume that
m(0) = 0. (7)

Now, taking the Riemann–Liouville fractional integral Iλ
0+ on both sides of (6), we find that

Iλ
0+D

λ
0+m(z) = Iλ

0+ }̂
(
z, Iλ0

0+m(z), Iλ1
0+m(z), . . . ,Iλn−1

0+ m(z), m(z)
)
, 0 ≤ z ≤ 1. (8)

By the hypothesis of the theorem, we have λ = $− σn > 1. Then, from Lemma 3, the
left-hand side of (8) becomes

Iλ
0+D

λ
0+m(z) = m(z) + c1zλ−1 + c2zλ−2,

hence Equation (8) is rewritten in the following form

m(z) = Iλ
0+ }̂
(
z, Iλ0

0+m(z), Iλ1
0+m(z), . . . ,Iλn−1

0+ m(z), m(z)
)
− c1zλ−1 − c2zλ−2. (9)

By (7), since m(0) = 0 and 2 > λ > 1, we get c2 = 0. Therefore, Equation (9) becomes

m(z) = Iλ
0+ }̂
(
z, Iλ0

0+m(z), Iλ1
0+m(z), . . . , Iλn−1

0+ m(z), m(z)
)
− c1zλ−1. (10)

By using the second boundary condition given in (1) and by (4), we have

u(1) = Iσn
0+m(z)

∣∣∣
z=1

= pIµ
0+k1(ξ, Iσn

0+m(ξ)) + qIν
0+k2(η, Iσn

0+m(η)). (11)

With the help of Lemma 1 and from (10) and (11), we figure out that

u(1) = Iσn
0+m(z)

∣∣∣
z=1

= Iσn+λ
0+ }̂

(
z, Iλ0

0+m(z), Iλ1
0+m(z), . . . , Iλn−1

0+ m(z), m(z)
)∣∣∣

z=1
− c1I

σn
0+zλ−1

∣∣∣
z=1

= Iσn+λ
0+ }̂

(
z, Iλ0

0+m(z), Iλ1
0+m(z), . . . , Iλn−1

0+ m(z), m(z)
)∣∣∣

z=1
− c1

Γ(λ)
Γ(λ + σn)

zλ+σn−1
∣∣∣∣
z=1

=
p

Γ(µ)

∫ ξ

0
(ξ − s)µ−1k1(s, Iσn

0+m(s))ds +
q

Γ(ν)

∫ η

0
(η − s)ν−1k2(s, Iσn

0+m(s))ds.

However, we have λ + σn − 1 = $− σn + σn − 1 = $− 1 > 0. Then, one can write

p
Γ(µ)

∫ ξ

0
(ξ − s)µ−1k1(s, Iσn

0+m(s))ds +
q

Γ(ν)

∫ η

0
(η − s)ν−1k2(s, Iσn

0+m(s))ds

= Iσn+λ
0+ }̂

(
z, Iλ0

0+m(z), Iλ1
0+m(z), . . . ,Iλn−1

0+ m(z), m(z)
)∣∣∣

z=1
− c1

Γ(λ)
Γ(λ + σn)

= I
$
0+ }̂
(
z, Iσn

0+m(z), Iσn−σ1
0+ m(z), . . . ,Iσn−σn−1

0+ m(z), m(z)
)∣∣∣

z=1
− c1

Γ($− σn)

Γ($)
.
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Thus, we get

c1 =
Γ($)

Γ($− σn)

[
I

$
0+ }̂
(
z, Iσn

0+m(z), Iσn−σ1
0+ m(z), . . . ,Iσn−σn−1

0+ m(z), m(z)
)∣∣∣

z=1

− p
Γ(µ)

∫ ξ

0
(ξ − s)µ−1k1(s, Iσn

0+m(s))ds

− q
Γ(ν)

∫ η

0
(η − s)ν−1k2(s, Iσn

0+m(s))ds

]
.

By substituting the value of c1 into Equation (10), we obtain the following equation

m(z) = I
$−σn
0+ }̂

(
z, Iσn

0+m(z), Iσn−σ1
0+ m(z), . . . , Iσn−σn−1

0+ m(z), m(z)
)

+
Γ($)

Γ($− σn)

[
p

Γ(µ)

∫ ξ

0
(ξ − s)µ−1k1

(
s, Iσn

0+m(s)
)
ds

+
q

Γ(ν)

∫ η

0
(η − s)ν−1k2

(
s, Iσn

0+m(s)
)
ds

− I
$
0+ }̂
(
z, Iσn

0+m(z), Iσn−σ1
0+ m(z), . . . , Iσn−σn−1

0+ m(z), m(z)
)∣∣∣

z=1

]
z$−σn−1,

which implies that m(z) = Dσn
0+u(z) ∈ C[0, 1] is a solution of (2).

Conversely, suppose that m(z) = Dσn
0+u(z) ∈ C[0, 1] is a solution of (2). By applying

the Riemann–Liouville fractional integral Iσn
0+ on both sides of m(z) = Dσn

0+u(z), we have

Iσn
0+m(z) = Iσn

0+D
σn
0+u(z) = u(z)−

(
I1−σn

0+ u
)
(0)

Γ(σn)
zσn−1.

Due to
(
I1−σn

0+ u
)
(0) = 0, we obtain u(z) = Iσn

0+m(z). In the next steps, we obtain other
fractional derivatives recursively and the second property in Lemma 1 as follows

u(z) = Iσn
0+m(z),

D
σn−1
0+ u(z) = D

σn−1
0+ Iσn

0+m(z) = I
σn−σn−1
0+ m(z),

... =
...

D
σ1
0+u(z) = D

σ1
0+I

σn
0+m(z) = I

σn−σ1
0+ m(z). (12)

By taking the Riemann–Liouville operator Iσn
0+ on both sides of (2), it becomes

Iσn
0+m(z) = I

$
0+ }̂
(
z, Iσn

0+m(z), Iσn−σ1
0+ m(z), . . . ,Iσn−σn−1

0+ m(z), m(z)
)

+
Γ($)

Γ($− σn)

[
p

Γ(µ)

∫ ξ

0
(ξ − s)µ−1k1

(
s, Iσn

0+m(s)
)
ds

+
q

Γ(ν)

∫ η

0
(η − s)ν−1k2

(
s, Iσn

0+m(s)
)
ds

− I
$
0+ }̂
(
z, Iσn

0+m(z), Iσn−σ1
0+ m(z), . . . , Iσn−σn−1

0+ m(z), m(z)
)∣∣∣

z=1

]
Iσn

0+z$−σn−1,
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and so

u(z) = I
$
0+ }̂
(
z, Iσn

0+m(z), Iσn−σ1
0+ m(z), . . . , Iσn−σn−1

0+ m(z), m(z)
)

+
Γ($)

Γ($− σn)

[
p

Γ(µ)

∫ ξ

0
(ξ − s)µ−1k1

(
s, Iσn

0+m(s)
)
ds

+
q

Γ(ν)

∫ η

0
(η − s)ν−1k2

(
s, Iσn

0+m(s)
)
ds

− I
$
0+ }̂
(
z, Iσn

0+m(z), Iσn−σ1
0+ m(z), . . . , Iσn−σn−1

0+ m(z), m(z)
)∣∣∣

z=1

]
Iσn

0+z$−σn−1. (13)

In the sequel, by applying the Riemann–Liouville operator D
$
0+ on both sides of (13),

it follows

D
$
0+u(z) = D

$
0+I

$
0+ }̂
(
z, Iσn

0+m(z), Iσn−σ1
0+ m(z), . . . , Iσn−σn−1

0+ m(z), m(z)
)

+
Γ($)

Γ($− σn)

[
p

Γ(µ)

∫ ξ

0
(ξ − s)µ−1k1

(
s, Iσn

0+m(s)
)
ds

+
q

Γ(ν)

∫ η

0
(η − s)ν−1k2

(
s, Iσn

0+m(s)
)
ds

− I
$
0+ }̂
(
z, Iσn

0+m(z), Iσn−σ1
0+ m(z), . . . ,Iσn−σn−1

0+ m(z), m(z)
)∣∣∣

z=1

]
D

$
0+I

σn
0+z$−σn−1.

Since, by Lemma 2, Iσn
0+z$−σn−1 =

Γ($− σn)

Γ($)
z$−1 and D

$
0+z$−1 = 0, we get

D
$
0+u(z) = }̂

(
z, Iσn

0+m(z), Iσn−σ1
0+ m(z), . . . ,Iσn−σn−1

0+ m(z), m(z)
)

+

[
p

Γ(µ)

∫ ξ

0
(ξ − s)µ−1k1

(
s, Iσn

0+m(s)
)
ds

+
q

Γ(ν)

∫ η

0
(η − s)ν−1k2

(
s, Iσn

0+m(s)
)
ds

− I
$
0+ }̂
(
z, Iσn

0+m(z), Iσn−σ1
0+ m(z), . . . ,Iσn−σn−1

0+ m(z), m(z)
)∣∣∣

z=1

]
D

$
0+z$−1

= }̂
(
z, Iσn

0+m(z), Iσn−σ1
0+ m(z), . . . ,Iσn−σn−1

0+ m(z), m(z)
)
. (14)

According to (12), the fractional differential Equation (14) reduces to

D
$
0+u(z) = }̂

(
z, u(z),Dσ1

0+u(z),Dσ2
0+u(z), . . . ,Dσn−1

0+ u(z),Dσn
0+u(z)

)
.

Finally, we check both boundary conditions of problem (1). In view of Equation (2) and by
definition of the Riemann–Liouville integral of the function

}̂
(
z, Iσn

0+m(z), Iσn−σ1
0+ m(z), . . . , Iσn−σn−1

0+ m(z), m(z)
)

of order $− σn at point z = 0, it is immediately deduced that

m(0) = I
$−σn
0+ }̂

(
z, Iσn

0+m(z), Iσn−σ1
0+ m(z), . . . ,Iσn−σn−1

0+ m(z), m(z)
)∣∣∣

z=0
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+
Γ($)

Γ($− σn)

[
p

Γ(µ)

∫ ξ

0
(ξ − s)µ−1k1

(
s, Iσn

0+m(s)
)
ds

+
q

Γ(ν)

∫ η

0
(η − s)ν−1k2

(
s, Iσn

0+m(s)
)
ds

− I
$
0+ }̂
(
z, Iσn

0+m(z), Iσn−σ1
0+ m(z), . . . , Iσn−σn−1

0+ m(z), m(z)
)∣∣∣

z=1

]
z$−σn−1

∣∣∣∣∣
z=0

= 0 + 0 = 0. (15)

Thus, m(0) = 0. Hence, we have u(z) = Iσn
0+m(z), and so u(0) = Iσn

0+m(z)
∣∣
z=0 = 0. Thus,

u(0) = 0. This means that the first boundary condition holds. Now, to check the second
boundary condition, by substituting z = 1 into (13), we obtain

u(1) = I
$
0+ }̂
(
z, Iσn

0+m(z), Iσn−σ1
0+ m(z), . . . , Iσn−σn−1

0+ m(z), m(z)
)∣∣∣

z=1

+
Γ($)

Γ($− σn)

[
p

Γ(µ)

∫ ξ

0
(ξ − s)µ−1k1

(
s, Iσn

0+m(s)
)
ds

+
q

Γ(ν)

∫ η

0
(η − s)ν−1k2

(
s, Iσn

0+m(s)
)
ds

− I
$
0+ }̂
(
z, Iσn

0+m(z), Iσn−σ1
0+ m(z), . . . ,Iσn−σn−1

0+ m(z), m(z)
)∣∣∣

z=1

]
Iσn

0+z$−σn−1

∣∣∣∣∣
z=1

= I
$
0+ }̂
(
z, Iσn

0+m(z), Iσn−σ1
0+ m(z), . . . , Iσn−σn−1

0+ m(z), m(z)
)∣∣∣

z=1

+
Γ($)

Γ($− σn)

[
p

Γ(µ)

∫ ξ

0
(ξ − s)µ−1k1

(
s, Iσn

0+m(s)
)
ds

+
q

Γ(ν)

∫ η

0
(η − s)ν−1k2

(
s, Iσn

0+m(s)
)
ds

− I
$
0+ }̂
(
z, Iσn

0+m(z), Iσn−σ1
0+ m(z), . . . ,Iσn−σn−1

0+ m(z), m(z)
)∣∣∣

z=1

]
Γ($− σn)

Γ($)
z$−1

∣∣∣∣∣
z=1

= pIµ
0+k1(ξ, u(ξ)) + qIν

0+k2(η, u(η)).

Therefore, we figure out that u(z) satisfies the multi-term multi-order RLFBVP (1) and so u
will be a solution of the mentioned RLFBVP, and the proof is completed.

Here, we introduce the Banach space E = C[0, 1] with the norm ‖m‖ = max
z∈[0,1]

|m(z)|,
and, along with this, by Theorem 1, we define an operator Ψ : E −→ E by

(Ψm)(z) = I
$−σn
0+ }̂

(
z, Iσn

0+m(z), Iσn−σ1
0+ m(z), . . . ,Iσn−σn−1

0+ m(z), m(z)
)

+
Γ($)

Γ($− σn)

[
p

Γ(µ)

∫ ξ

0
(ξ − s)µ−1k1

(
s, Iσn

0+m(s)
)
ds

+
q

Γ(ν)

∫ η

0
(η − s)ν−1k2

(
s, Iσn

0+m(s)
)
ds

− I
$
0+ }̂
(
z, Iσn

0+m(z), Iσn−σ1
0+ m(z), . . . , Iσn−σn−1

0+ m(z), m(z)
)∣∣∣

z=1

]
z$−σn−1. (16)
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We clearly have the following equation

Ψm = m, m ∈ E, (17)

which is equivalent to Equation (2). If Ψ has a fixed point, then it will be the solution of the
multi-term multi-order RLFBVP (1). On the other side, notice that the continuity of all three
functions }̂, k1, and k2 confirms that of the operator Ψ. In this place, we want to express the
existence theorem in relation to solutions of the multi-term multi-order RLFBVP (1).

Theorem 2. Assume that these assumptions are valid:

(AS1)There exist real constants Mj(j = 0, 1, . . . , n) such that

∣∣∣∣}̂(z, u0, u1, . . . , un)− }̂(z, U0, U1, . . . , Un)

∣∣∣∣ ≤
n

∑
j=0

Mj|uj −Uj|,

for all z ∈ [0, 1] and (u0, u1, . . . , un), (U0, U1, . . . , Un) ∈ Rn+1.
(AS2)There exist two real constants θ1, θ2 > 0 such that

∣∣k1(z, m)− k1(z, u)
∣∣ ≤ θ1|m− u|, m, u ∈ R,

∣∣k2(z, m)− k2(z, u)
∣∣ ≤ θ2|m− u|, m, u ∈ R.

(AS3) Let

0 < Φ =
Γ($)pθ1ξµ

Γ($− σn)Γ(µ + 1)Γ(σn + 1)
+

Γ($)qθ2ην

Γ($− σn)Γ(ν + 1)Γ(σn + 1)

+
n

∑
j=0

[ Mj

Γ($− σj + 1)
+

MjΓ($)
Γ($− σn)Γ($ + σn − σj + 1)

]
< 1.

Then, the multi-term multi-order RLFBVP (1) has a unique solution.

Proof. In view of Theorem 1, it is explicit that the existence of solutions to the multi-term
multi-order RLFBVP (1) is derived from the existence of solutions to Equation (16) or (17).
Thus, it suffices to prove that (16) has a unique fixed point. Now, let λ = $− σn, σ0 = 0,
and λj = σn − σj for j = 0, 1, . . . , n. Then, from (AS1), it follows that for any m1, m2 ∈ E,
we have

∣∣∣}̂
(
z, Iλ0

0+m1(z), . . . , Iλn−1
0+ m1(z), m1(z)

)
− }̂

(
z, Iλ0

0+m2(z), . . . , Iλn−1
0+ m2(z), m2(z)

)∣∣∣

≤
n

∑
j=0

Mj

∣∣∣Iλj
0+m1(z)− I

λj
0+m2(z)

∣∣∣. (18)

Taking the Riemann–Liouville operator Iλ
0+ on both sides of inequality (18), we find that

Iλ
0+

∣∣∣}̂
(
z, Iλ0

0+m1(z), . . . ,Iλn−1
0+ m1(z), m1(z)

)
− }̂

(
z, Iλ0

0+m2(z), . . . , Iλn−1
0+ m2(z), m2(z)

)∣∣∣

≤ Iλ
0+

n

∑
j=0

Mj

∣∣∣Iλj
0+m1(z)− I

λj
0+m2(z)

∣∣∣ ≤
n

∑
j=0

MjI
λ+λj
0+

∣∣∣m1(z)−m2(z)
∣∣∣

≤
∥∥m1 −m2

∥∥
n

∑
j=0

Mj

Γ(λ + λj + 1)
=
∥∥m1 −m2

∥∥
n

∑
j=0

Mj

Γ($− σn + σn − σj + 1)

208



Symmetry 2021, 13, 1341

=
∥∥m1 −m2

∥∥
n

∑
j=0

Mj

Γ($− σj + 1)
. (19)

On the other side, by using (AS2), we get

∣∣∣∣∣
Γ($)
Γ(λ)

[
p

Γ(µ)

∫ ξ

0
(ξ − s)µ−1k1

(
s, Iσn

0+m1(s)
)
ds +

q
Γ(ν)

∫ η

0
(η − s)ν−1k2

(
s, Iσn

0+m1(s)
)
ds

− Iσn+λ
0+ }̂

(
z, Iλ0

0+m1(z), . . . ,Iλn−1
0+ m1(z), m1(z)

)∣∣∣
z=1

]
zλ−1

− Γ($)
Γ(λ)

[
p

Γ(µ)

∫ ξ

0
(ξ − s)µ−1k1

(
s, Iσn

0+m2(s)
)
ds +

q
Γ(ν)

∫ η

0
(η − s)ν−1k2

(
s, Iσn

0+m2(s)
)
ds

− Iσn+λ
0+ }̂

(
z, Iλ0

0+m2(z), . . . ,Iλn−1
0+ m2(z), m2(z)

)∣∣∣
z=1

]
zλ−1

∣∣∣∣∣

≤ Γ($)
Γ(λ)

[
p

Γ(µ)

∫ ξ

0
(ξ − s)µ−1

∣∣∣k1
(
s, Iσn

0+m1(s)
)
− k1

(
s, Iσn

0+m2(s)
∣∣∣ds

+
q

Γ(ν)

∫ η

0
(η − s)ν−1

∣∣∣k2
(
s, Iσn

0+m1(s)
)
− k2

(
s, Iσn

0+m2(s)
∣∣∣ds

+ Iσn+λ
0+

∣∣∣}̂
(
z, Iλ0

0+m1(z), . . . ,Iλn−1
0+ m1(z), m1(z)

)
− }̂

(
z, Iλ0

0+m2(z), . . . ,Iλn−1
0+ m2(z), m2(z)

)∣∣∣
∣∣∣∣
z=1

]

≤ Γ($)
Γ(λ)

[
pθ1

Γ(µ)

∫ ξ

0
(ξ − s)µ−1

∣∣∣Iσn
0+m1(s)− Iσn

0+m2(s)
∣∣∣ds

+
qθ2

Γ(ν)

∫ η

0
(η − s)ν−1

∣∣∣Iσn
0+m1(s)− Iσn

0+m2(s)
∣∣∣ds + Iσn+λ

0+

n

∑
j=0

MjI
λj
0+
∣∣m1(z)−m2(z)

∣∣
∣∣∣∣
z=1

]
(20)

≤ Γ($)
Γ(λ)

[
pθ1ξµ

Γ(µ + 1)Γ(σn + 1)
+

qθ2ην

Γ(ν + 1)Γ(σn + 1)
+

n

∑
j=0

Mj

Γ(σn + λ + λj + 1)

]
∥∥m1 −m2

∥∥

=
Γ($)

Γ($− σn)

[
pθ1ξµ

Γ(µ + 1)Γ(σn + 1)
+

qθ2ην

Γ(ν + 1)Γ(σn + 1)
+

n

∑
j=0

Mj

Γ(σn + $− σj + 1)

]
∥∥m1 −m2

∥∥.

Consequently, by adding both sides of (19) and (20) and according to the definition of Ψ in
(16), we have

∣∣Ψm1(z)−Ψm2(z)
∣∣ ≤

[
Γ($)pθ1ξµ

Γ($− σn)Γ(µ + 1)Γ(σn + 1)
+

Γ($)qθ2ην

Γ($− σn)Γ(ν + 1)Γ(σn + 1)

+
n

∑
j=0

( Mj

Γ($− σj + 1)
+

MjΓ($)
Γ($− σn)Γ($ + σn − σj + 1)

)]∥∥m1 −m2
∥∥.

By using (AS3), we find
∥∥Ψm1 −Ψm2

∥∥ ≤ Φ
∥∥m1 −m2

∥∥,
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where Φ ∈ (0, 1). Hence, by the Banach fixed point theorem [52], it follows that Ψ has a
unique fixed point which points out that the suggested multi-term multi-order RLFBVP (1)
has a unique solution.

4. Approximation of Solutions via DGJIM and ADM Methods

This section is devoted to implementing the numerical methods named DGJIM and
ADM. Indeed, we here state how we can employ these methods to our suggested multi-term
multi-order RLFBVP. In both algorithms, appropriate recursion relations are formulated to
approximate the solutions of (1) along with their convergence. Our techniques are inspired
by [47,48].

4.1. DGJIM Numerical Method

We prove above that the solutions of Equations (1) and (2) are equivalent. Thus, we
now suppose that the right-hand side of (17) is written under the following decomposition
(not uniquely)

(Ψm)(z) = L̃(m(z)) + Ñ(m(z)) + ζ(z),

where the operator L̃ is linear, the operator Ñ stands for the nonlinear terms, and ζ is a
known function. Then, one can rewrite (2) in the decomposed form

m(z) = L̃(m(z)) + Ñ(m(z)) + ζ(z). (21)

Suppose that the solution of (21) is written as a series as follows

m(z) =
+∞

∑
n=0

mn(z). (22)

By combining (22) and (21), we get

+∞

∑
n=0

mn(z) = L̃
( +∞

∑
n=0

mn(z)
)
+ Ñ

( +∞

∑
n=0

mn(z)
)
+ ζ(z). (23)

Since L̃ is linear, by a simple manipulation, we obtain the following algorithm known as
the DGJIM numerical method:





m0(z) = ζ(z),

m1(z) = L̃
(
m0(z)

)
+ Ñ

(
m0(z)

)
,

m2(z) = L̃
(
m1(z)

)
+ Ñ

(
m0(z) + m1(z)

)
− Ñ

(
m0(z)

)
,

m3(z) = L̃
(
m2(z)

)
+ Ñ

(
m0(z) + m1(z) + m2(z)

)
− Ñ

(
m0(z) + m1(z)

)
,

... =
...

mn(z) = L̃
(
mn−1(z)

)
+ Ñ

( n−1

∑
i=0

mi(z)
)
− Ñ

( n−2

∑
i=0

mi(z)
)

,

... =
...

(24)

Therefore, we can obtain the n-term approximate solution of the integral Equation (2) as

wn(z) =
n

∑
i=0

mi(z). (25)
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In view of (25), we simply get

mn(z) = wn(z)− wn−1(z). (26)

Thus, a combination of (24) and (26) gives

wn(z) = wn−1(z) + L̃
(
wn−1(z)− wn−2(z)

)
+ Ñ

(
wn−1(z)

)
− Ñ

(
wn−2(z)

)
. (27)

Now, let
∥∥L̃m− L̃u

∥∥ ≤ µ1‖m− u‖, 0 < µ1 < 1,

∥∥Ñm− Ñu
∥∥ ≤ µ2‖m− u‖, 0 < µ2 < 1,

where µ1 + µ2 < 1. Therefore, the Banach fixed point principle guarantees the existence
of a unique solution w̃(z) for (21) and so for the integral Equation (2). According to the
relation (27), the following iterative expression is derived

∥∥wn − wn−1
∥∥ ≤ µ1

∥∥wn−1 − wn−2
∥∥+ µ2

∥∥wn−1 − wn−2
∥∥

= (µ1 + µ2)
∥∥wn−1 − wn−2

∥∥

≤ (µ1 + µ2)
2∥∥wn−2 − wn−3

∥∥

≤ ...
...
...

≤
(
µ1 + µ2

)n−1∥∥w1 − w0
∥∥,

which implies the absolute convergence and the uniform convergence of the sequence
{wn} to the exact solution w̃(z).

4.2. ADM Numerical Method

To implement the ADM numerical method, the nonlinear term Ñ
( +∞

∑
n=0

mn(z)
)

intro-

duced in (23) is decomposed into a series of Adomian polynomials as

Ñ
( +∞

∑
n=0

mn(z)
)
=

+∞

∑
n=0

An
(
m0, m1, . . . , mn

)
,

where An
(
m0, m1, . . . , mn

)
is produced by

An
(
m0, m1, . . . , mn

)
=

1
n!

∂n

∂zn

[
Ñ
( +∞

∑
k=0

mkzk
)]

z=0
, (n ∈ N∪ {0}). (28)

Consequently, Equation (23) reduces to

+∞

∑
n=0

mn(z) = L̃
( +∞

∑
n=0

mn(z)
)
+

+∞

∑
n=0

An
(
m0(z), m1(z), . . . , mn(z)

)
+ ζ(z),
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which gives us the following iterative schemes called the ADM method:




m0(z) = ζ(z),

m1(z) = L̃
(
m0(z)

)
+ A0

(
m0(z), m1(z), . . . , mn(z)

)
,

m2(z) = L̃
(
m1(z)

)
+ A1

(
m0(z), m1(z), . . . , mn(z)

)
,

m3(z) = L̃
(
m2(z)

)
+ A2

(
m0(z), m1(z), . . . , mn(z)

)
,

...
...
...
...
...
...

mn(z) = L̃
(
mn−1(z)

)
+ An−1

(
m0(z), m1(z), . . . , mn(z)

)
,

...
...
...
...
...
...

(29)

Finally, by writing M-term approximate solution of the integral Equation (2) as

wM(z) =
M

∑
n=0

mn(z), (30)

we obtain the exact solution of (2) by

m(z) = lim
M→+∞

wM(z). (31)

Lastly, we find that the approximate solutions and the exact solution of the multi-term multi-
order RLFBVP (1) are extracted as un(z) = Iσn

0+wn(z) and u(z) = Iσn
0+m(z), respectively.

5. Application

Here, we prepare two distinct examples. In the first, the theoretical existence results are
examined, and, in the second, the approximate solutions of a given RLFBVP are obtained
with the help of the DGJIM and ADM numerical methods introduced above. Note that, in
the second example, we compare the approximate solutions obtained by two mentioned
numerical methods with the exact ones for different given fractional orders.

Example 1. Let us consider the following RLFBVP





D1.8
0+u(z) = z2 +

1
8

sin(2u(z)) +
1
4
D0.4

0+u(z) +
2
10

arctan
(
D0.5

0+u(z)
)
, z ∈ (0, 1),

u(0) = 0,

u(1) = 6
∫ 1

2

0

(1− 2s)3(1 + u(s)
)

8Γ(4)(4 + s2)
ds + 24

∫ 1
4

0

(1− 4s)4(e−s + sin(u(s))
)

Γ(5)1024
ds,

where we take data $ = 1.8, n = 2, σ0 = 0, σ1 = 0.4, σ2 = 0.5, ξ =
1
2

, η =
1
4

, p = 6, q = 24,
µ = 4, and ν = 5. Along with these, continuous functions

}(z, s(z), x(z), y(z)) = z2 +
1
8

sin(2s(z)) +
1
4

x(z) +
2

10
arctan

(
y(z)

)
,

and

k1(z, u(z)) =
1 + u(z)

4 + z2 , k2(z, u(z)) =
e−z + sin(u(z))

4
,
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are defined on their domain. Clearly, M0 = M1 = 0.25 and M2 = 0.2. On the other side, we get

|k1(z, u(z))− k1(z, U(z))| ≤
∣∣∣1 + u(z)

4 + z2 −
1 + U(z)

4 + z2

∣∣∣ ≤ 1
4 + z2 |u(z)−U(z)|,

and

|k2(z, u(z))− k2(z, U(z))| ≤
∣∣∣ e
−z + sin(u(z))

4
− e−z + sin(U(z))

4

∣∣∣ ≤ 1
4
|u(z)−U(z)|.

Thus, θ1 = θ2 = 0.25. In addition,

Φ =
Γ($)pθ1ξµ

Γ($− σn)Γ(µ + 1)Γ(σn + 1)
+

Γ($)qθ2ην

Γ($− σn)Γ(ν + 1)Γ(σn + 1)

+
n

∑
j=0

[ Mj

Γ($− σj + 1)
+

MjΓ($)
Γ($− σn)Γ($ + σn − σj + 1)

]
≈ 0.8951 < 1

In consequence, by Theorem 2, a unique solution exists for the multi-term multi-order RLFBVP
considered above.

For the next example, we consider three different cases for the order of the proposed
RLFBVP and compare obtained approximate results with exact outcomes, which shows the
effectiveness of both DGJIM and ADM numerical methods together.

Example 2. In the present example, we consider three distinct values for $ as $ = 1.4, $ = 1.7
and $ = 1.9.
• Case(I) :$ = 1.4: Let us consider the following RLFBVP which has a structure as





D1.4
0+u(z) = u(z) +D0.3

0+u(z) + ϕ̂(z), z ∈ (0, 1),

u(0) = 0, u(1) = 8
∫ 1

2

0
u(s) ds + 54

∫ 1
3

0
u(s) ds,

(32)

where
ϕ̂(z) =

2
Γ(1.6)

z0.6 − 2
Γ(2.7)

z1.7 − z2.

In this problem, we have taken data $ = 1.4, ξ = 1/2, η = 1/3, σn = 0.3, µ = ν = 1, p = 8 and
q = 54. It is known that $− σn = 1.1 > 1. In addition, k1(z, u(z)) = k2(z, u(z)) = u(z) for
z ∈ [0, 1]. By assuming m(z) = D0.3

0+u(z), the equivalent integral equation of the problem (32) is
the following

m(z) = I1.1
0+
[
I0.3

0+m(z) + m(z) + ϕ̂(z)
]
+

Γ(1.4)
Γ(1.1)

(
8
∫ 1

2

0
I0.3

0+m(s)ds

+ 54
∫ 1

3

0
I0.3

0+m(s)ds− I1.4
0+
[
I0.3

0+m(z) + m(z) + ϕ̂(z)
]∣∣∣

z=1

)
z0.1

= I1.4
0+m(z) + I1.1

0+m(z) + I1.1
0+ ϕ̂(z) + z0.1 8Γ(1.4)

Γ(1.1)

∫ 1
2

0
I0.3

0+m(s)ds

+ z0.1 54Γ(1.4)
Γ(1.1)

∫ 1
3

0
I0.3

0+m(s)ds− Γ(1.4)z0.1

Γ(1.1)
(
I1.7

0+m(z)
∣∣
z=1

)

− Γ(1.4)z0.1

Γ(1.1)
(
I1.4

0+m(z)
∣∣
z=1

)
− Γ(1.4)z0.1

Γ(1.1)
(
I1.4

0+ ϕ̂(z)
∣∣
z=1

)
. (33)
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Thus, we decompose the right-hand side of (33) as

m(z) = L̃(m(z)) + Ñ(m(z)) + ζ(z),

where

L̃(m(z)) = I1.4
0+m(z)− I1.1

0+m(z),

Ñ
(
m(z)

)
=

8Γ(1.4)z0.1

Γ(1.1)

∫ 1
2

0
I0.3

0+m(s)ds +
54Γ(1.4)z0.1

Γ(1.1)

∫ 1
3

0
I0.3

0+m(s)ds

− Γ(1.4)z0.1

Γ(1.1)
(
I1.7

0+m(z)
∣∣
z=1

)
− Γ(1.4)z0.1

Γ(1.1)
(
I1.4

0+m(z)
∣∣
z=1

)
,

and

ζ(z) = I1.1
0+ ϕ̂(z)− Γ(1.4)z0.1

Γ(1.1)
(
I1.4

0+ ϕ̂(z)
∣∣
z=1

)
.

Then, the sequence of approximate solutions of (32) and (33) are obtained by means of algorithms of
the DGJIM and ADM methods as follows:

•• Approximate solutions via DGJIM method for $ = 1.4:
By using the suggested algorithm known as DGJIM numerical method in (24), we get

m0(z) = 1.2948z1.7 − 0.4262z2.8 − 0.2936z3.1 − 0.4748z0.1,

m1(z) = 0.2936z3.1 − 0.1228z4.2 − 0.0382z4.5 − 0.2398z1.5 + 0.4261z2.8 − 0.0968z3.9,

m2(z) = 0.172z3.5 − 0.0165z5.6 − 0.0033z5.9 − 0.0852z2.9 + 0.1228z4.2 − 0.0297z5.3

− 0.0430z2.6 − 0.0315z1.6 + 0.0968z3.9 − 0.0167z5 − 0.1683z2.3 ∗ 0.4086z1.2 + 4.4196z0.1.

Therefore,

w0(z) = 1.2948z1.7 − 0.4262z2.8 − 0.2936z3.1 − 0.4748z0.1,

w1(z) = 1.2948z1.7 − 0.1228z4.2 − 0.0382z4.5 − 0.3398z1.5

− 0.0968z3.9 − 0.4100z1.2 − 4.4292z0.1,

w2(z) = 1.2948z1.7 − 0.0165z5.6 − 0.0033z5.9 − 0.0852z2.9

− 0.0297z5.3 − 0.0430z2.6 − 0.0315z1.6 − 0.0167z5

− 0.0683z2.3 − 0.0014z1.2 − 0.0096z0.1 − 0.0382z4.5 + 0.2398z1.5,

and

u0(z) = z2 − 0.2937z3.1 − 0.1973z3.4 − 0.5091z0.4,

u1(z) = z2 − 0.0764z4.5 − 0.0234z4.8 − 0.2694z1.8

− 0.0614z4.2 − 0.3398z1.5 − 4.7491z0.4,
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u2(z) = z2 − 0.0095z5.9 − 0.0019z6.9 − 0.0582z3.2 − 0.0174z5.6

− 0.0302z2.9 − 0.0246z1.9 − 0.0099z5.3 − 0.0493z2.6 − 0.0012z1.5

− 0.0103z0.4 − 0.0234z4.8 + 0.1901z1.8.

•• Approximate solutions via ADM method for $ = 1.4:
By using the suggested algorithm known as ADM numerical method in (29), we get

m0(z) = 1.2948z1.7 − 0.4262z2.8 − 0.2936z3.1 − 0.4748z0.1,

m1(z) = 0.2936z3.1 − 0.1228z4.2 − 0.0382z4.5 − 0.3398z1.5 + 0.4261z2.8 − 0.0968z3.9 − 0.4100z1.2 − 3.9544z0.1,

m2(z) = 0.1720z3.5 − 0.0165z5.6 − 0.0033z5.9 − 0.0852z2.9 + 0.1228z4.2 − 0.0297z5.3 − 0.2430z2.6

− 0.0015z1.6 + 0.0968z3.9 − 0.0167z5 − 0.1683z2.3 + 0.4050z1.2.

Therefore,

w0(z) = 1.2948z1.7 − 0.4262z2.8 − 0.2936z3.1 − 0.4748z0.1,

w1(z) = 1.2948z1.7 + 4.4110z0.1 − 0.1228z4.2 − 0.0382z4.5

+ 0.3398z1.5 − 0.0968z3.9 − 0.4100z1.2,

w2(z) = 1.2948z1.7 + 0.1720z3.5 − 0.0166z5.6 − 0.0033z5.9 − 0.0852z2.9

− 0.0297z5.3 − 0.2430z2.6 − 0.0015z1.6 − 0.0167z5 − 0.1683z2.3

− 0.0044z1.2 − 0.0282z0.1 − 0.0382z4.5 + 0.3398z1.5,

and

u0(z) = z2 − 0.0716z4.1 − 0.1973z3.4 − 0.5091z0.4,

u1(z) = z2 + 4.7296z0.4 − 0.0764z4.5 − 0.0234z4.8

+ 0.2694z1.8 − 0.0614z4.2 − 0.3398z1.5,

u2(z) = z2 + 0.1122z3.8 − 0.0095z5.9 − 0.0019z6.2 − 0.0582z3.2

− 0.0174z5.6 − 0.1704z2.9 − 0.0012z1.9 − 0.0099z5.3 − 0.1215z2.6

− 0.0036z1.5 − 0.0302z0.4 − 0.0234z4.8 + 0.2694z1.8.

In this case, the graphs of the three-term approximate solutions obtained by the DGJIM and
ADM algorithms for the suggested RLFBVP (32) and the integral Equation (33) are plotted in
Figure 1.

Note that, in view of Theorem 1, we prove that u(z) is the solution of RLFBVP (1) if and only
if m(z) = Dσn

0+u(z) is the solution of the integral Equation (2). Now, in the case $ = 1.4, since the
exact solution of RLFBVP is given by u(z) = z2, the corresponding exact solution of the equivalent
integral equation is

m(z) = Dσn
0+z2 = D0.3

0+ z2 =
2

Γ(2.7)
z1.7 = 1.2948z1.7.
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(a)

(b)

Figure 1. Graphs of the exact solutions of the (a) integral Equation (33) and (b) RLFBVP (32)
compared with their third-DGJIM and third-ADM approximate solutions for $ = 1.4.

• Case(II) :$ = 1.7
In the next case, we consider the same problem for $ = 1.7. In fact, at this time, we consider the
following RLFBVP





D1.7
0+u(z) = u(z) +D0.3

0+u(z) + ϕ̂(z), z ∈ (0, 1),

u(0) = 0,

u(1) = 8
∫ 1

2

0
u(s) ds + 54

∫ 1
3

0
u(s) ds,

(34)

where
ϕ̂(z) =

2
Γ(1.3)

z0.3 − 2
Γ(2.7)

z1.7 − z2,
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such that we consider parameters $ = 1.7, ξ = 1/2, η = 1/3, σn = 0.3, µ = ν = 1, p = 8,
and q = 54. Obviously, $− σn = 1.4 > 1. In addition, k1(z, u(z)) = k2(z, u(z)) = u(z) for
z ∈ [0, 1]. By assuming m(z) = D0.3

0+u(z), the equivalent integral equation of the problem (34) is
given by

m(z) = I1.4
0+
[
I0.3

0+m(z) + m(z) + ϕ̂(z)
]
+

Γ(1.7)
Γ(1.4)

(
8
∫ 1

2

0
I0.3

0+m(s)ds

+ 54
∫ 1

3

0
I0.3

0+m(s)ds− I1.7
0+
[
I0.3

0+m(z) + m(z) + ϕ̂(z)
]∣∣∣

z=1

)
z0.4

= I1.7
0+m(z) + I1.4

0+m(z) + I1.4
0+ ϕ̂(z) + z0.4 8Γ(1.7)

Γ(1.4)

∫ 1
2

0
I0.3

0+m(s)ds

+ z0.4 54Γ(1.7)
Γ(1.4)

∫ 1
3

0
I0.3

0+m(s)ds− Γ(1.7)z0.4

Γ(1.4)
(
I2

0+m(z)
∣∣
z=1

)

− Γ(1.7)z0.4

Γ(1.4)
(
I1.7

0+m(z)
∣∣
z=1

)
− Γ(1.7)z0.4

Γ(1.4)
(
I1.7

0+ ϕ̂(z)
∣∣
z=1

)
. (35)

Then, we decompose the right-hand side of (35) as

m(z) = L̃(m(z)) + Ñ(m(z)) + ζ(z),

where

L̃(m(z)) = I1.7
0+m(z) + I1.4

0+m(z),

Ñ
(
m(z)

)
=

8Γ(1.7)z0.4

Γ(1.4)

∫ 1
2

0
I0.3

0+m(s)ds +
54Γ(1.7)z0.4

Γ(1.4)

∫ 1
3

0
I0.3

0+m(s)ds

− Γ(1.7)z0.4

Γ(1.4)
(
I2

0+m(z)
∣∣
z=1

)
− Γ(1.7)z0.4

Γ(1.4)
(
I1.7

0+m(z)
∣∣
z=1

)
,

ζ(z) = I1.4
0+ ϕ̂(z)− Γ(1.7)z0.4

Γ(1.4)
(
I1.7

0+ ϕ̂(z)
∣∣
z=1

)
.

Then, the sequence of approximate solutions of (34) and (35) are obtained by means of two DGJIM
and ADM methods as follows:

•• Approximate solutions via DGJIM method for $ = 1.7:

w0(z) = 1.2948z1.7 − 0.3186z3.1 − 0.1973z3.4 − 0.6893z0.4,

w1(z) = 1.2948z1.7 + 0.0169z3.4 − 2.7346z0.4 − 0.0487z4.8

− 0.1040z5.1 − 0.2783z2.1 − 0.1886z4.5 − 0.3839z1.8,

w2(z) = 1.2948z1.7 + 0.0169z3.4 − 0.0115z0.4 − 0.0234z4.8

− 0.0888z5.1 − 0.0019z2.1 − 0.1471z4.5 + 0.2654z1.8

− 0.0033z6.5 − 0.1078z3.5 + 0.0044z5.8 − 0.0165z5.9,

217



Symmetry 2021, 13, 1341

and

u0(z) = z2 − 0.2141z3.4 − 0.1296z3.7 − 0.6731z0.7,

u1(z) = z2 + 0.0111z3.7 − 2.6703z0.7 − 0.1493z5.1

− 0.0615z5.4 − 0.2052z2.4 − 0.0982z4.8 − 0.2921z2.1,

u2(z) = z2 + 0.0111z3.7 − 0.0112z0.7 − 0.0141z5.1 − 0.0525z5.4

− 0.0014z2.4 − 0.0002z7.1 − 0.0449z4.1 − 0.0075z6.5 − 0.0703z3.8

+ 0.0025z6.1 − 0.0018z6.8 − 0.0094z6.2 − 0.0899z4.8 + 0.2025z2.1.

•• Approximate solutions via ADM method for $ = 1.7:

w0(z) = 1.2948z1.7 − 0.3186z3.1 − 0.1973z3.4 − 0.6893z0.4,

w1(z) = 1.2948z1.7 + 0.0169z3.4 − 0.0346z0.4 − 0.0487z4.8

− 0.1040z5.1 − 0.2783z2.1 − 0.1886z4.5 − 0.3839z1.8,

w2(z) = 1.2948z1.7 + 0.0169z3.4 − 0.0346z0.4 − 0.0234z4.8 + 0.0012z5.1

+ 1.7119z2.1 − 0.1471z4.5 − 1.3654z1.8 − 0.0033z6.5 − 0.0005z6.8

− 0.0703z3.8 − 0.0134z6.2 − 0.1078z3.5 + 0.0044z5.8 − 0.0165z5.9,

and

u0(z) = z2 − 0.2141z3.4 − 0.1296z3.7 − 0.6731z0.7,

u1(z) = z2 + 0.1055z3.7 − 0.0338z0.7 − 0.0111z3.7 − 0.0293z5.1

− 0.0083z5.4 − 0.2052z2.4 − 0.1153z4.8 − 0.2921z2.1,

u2(z) = z2 + 0.0111z3.7 − 0.0338z0.7 + 0.0111z3.7 − 0.0141z5.1

+ 0.0007z5.4 + 1.2619z2.4 − 0.0899z4.8 − 1.0416z2.1 − 0.0018z6.8

− 0.0002z7.1 − 0.0449z4.1 − 0.0075z6.5 − 0.0703z3.8 + 0.0025z6.1 − 0.0094z6.2.

In consequence, the graphs of the three-term approximate solutions obtained by the DGJIM and
ADM algorithm for the suggested RLFBVP (34) and the integral Equation (35) are plotted in
Figure 2.
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(a)

(b)

Figure 2. Graphs of the exact solutions of (a) the integral Equation (35) and (b) RLFBVP (34)
compared with their third-DGJIM and third-ADM approximate solutions for $ = 1.7.

• Case(III) :$ = 1.9
Finally, we consider the first problem for $ = 1.9 as the third case. Consider the following RLFBVP





D1.9
0+u(z) = u(z) +D0.3

0+u(z) + ϕ̂(z), z ∈ (0, 1),

u(0) = 0,

u(1) = 8
∫ 1

2

0
u(s) ds + 54

∫ 1
3

0
u(s) ds,

(36)

where
ϕ̂(z) =

2
Γ(1.1)

z0.1 − 2
Γ(2.7)

z1.7 − z2.
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The parameters $ = 1.9, ξ = 1/2, η = 1/3, σn = 0.3, µ = ν = 1, p = 8, and q = 54 are assumed
here. Evidently, $− σn = 1.6 > 1. In addition, k1(z, u(z)) = k2(z, u(z)) = u(z) for z ∈ [0, 1].
By assuming m(z) = D0.3

0+u(z), the equivalent integral equation of the problem (36) is given in the
following form

m(z) = I1.6
0+
[
I0.3

0+m(z) + m(z) + ϕ̂(z)
]
+

Γ(1.9)
Γ(1.6)

(
8
∫ 1

2

0
I0.3

0+m(s)ds

+ 54
∫ 1

3

0
I0.3

0+m(s)ds− I1.9
0+
[
I0.3

0+m(z) + m(z) + ϕ̂(z)
]∣∣∣

z=1

)
z0.6

= I1.9
0+m(z) + I1.6

0+m(z) + I1.6
0+ ϕ̂(z) + z0.6 8Γ(1.9)

Γ(1.6)

∫ 1
2

0
I0.3

0+m(s)ds

+ z0.6 54Γ(1.9)
Γ(1.6)

∫ 1
3

0
I0.3

0+m(s)ds− Γ(1.9)z0.6

Γ(1.6)
(
I2.2

0+m(z)
∣∣
z=1

)

− Γ(1.9)z0.6

Γ(1.6)
(
I1.9

0+m(z)
∣∣
z=1

)
− Γ(1.9)z0.6

Γ(1.6)
(
I1.9

0+ ϕ̂(z)
∣∣
z=1

)
. (37)

By decomposing the right-hand side of (37), we get

m(z) = L̃(m(z)) + Ñ(m(z)) + ζ(z),

where

L̃(m(z)) = I1.9
0+m(z) + I1.6

0+m(z),

Ñ
(
m(z)

)
=

8Γ(1.9)z0.6

Γ(1.6)

∫ 1
2

0
I0.3

0+m(s)ds +
54Γ(1.9)z0.6

Γ(1.6)

∫ 1
3

0
I0.3

0+m(s)ds

− Γ(1.9)z0.6

Γ(1.6)
(
I2.2

0+m(z)
∣∣
z=1

)
− Γ(1.9)z0.6

Γ(1.6)
(
I1.9

0+m(z)
∣∣
z=1

)
,

ζ(z) = I1.6
0+ ϕ̂(z)− Γ(1.9)z0.6

Γ(1.6)
(
I1.9

0+ ϕ̂(z)
∣∣
z=1

)
.

Then, the sequence of approximate solutions are obtained by means of two DGJIM and ADM
methods illustrated as:

•• Approximate solutions via DGJIM method for $ = 1.9:

w0(z) = 1.2948z1.7 − 0.2259z3.3 − 0.1495z3.6 − 0.8114z0.6,

w1(z) = 1.2948z1.7 − 1.8726z0.6 − 0.0236z5.2 − 0.0069z5.5

− 0.2182z2.5 − 0.0198z4.9 − 0.2991z2.2,

w2(z) = 1.2948z1.7 + 0.0427z0.6 + 0.0017z5.2 − 0.5008z2.5

+ 0.4866z2.2 − 0.0009z7.1 − 0.0001z7.4 − 0.0163z4.4

− 0.0017z6.8 − 0.0520z4.1 − 0.0011z6.5 − 0.0406z3.8,
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and

u0(z) = z2 − 0.1495z3.6 − 0.0968z3.9 − 0.7538z0.9,

u1(z) = z2 − 1.7397z0.9 − 0.0139z5.5 − 0.0040z5.8

− 0.1545z2.8 − 0.0118z5.2 − 0.2182z2.5,

u2(z) = z2 + 0.0397z0.9 + 0.0010z5.5 − 0.3546z2.8

+ 0.3549z25 − 0.0004z7.4 − 0.0005z7.7 − 0.0118z4.7

− 0.0009z7.1 − 0.0326z4.4 − 0.0006z6.8 − 0.0025z4.1.

•• Approximate solutions via ADM method for $ = 1.9:

w0(z) = 1.2948z1.7 − 0.2259z3.3 − 0.1495z3.6 − 0.8114z0.6,

w1(z) = 1.2948z1.7 − 1.8626z0.6 − 0.0236z5.2 − 0.0069z5.5

− 0.2182z2.5 − 0.0198z4.9 − 0.2991z2.2,

w2(z) = 1.2948z1.7 − 0.0126z0.6 + 0.0017z5.2 − 0.5008z2.5

+ 0.4866z2.2 − 0.0009z7.1 − 0.0001z7.4 − 0.0163z4.4

− 0.0017z6.8 − 0.0520z4.1 − 0.0011z6.5 − 0.0406z3.8,

and

u0(z) = z2 − 0.1495z3.6 − 0.0968z3.9 − 0.7528z0.9,

u1(z) = z2 − 1.7304z0.9 − 0.0139z5.5 − 0.0040z5.8

− 0.1545z2.8 − 0.0118z5.2 − 0.2182z2.5,

u2(z) = z2 − 0.0117z0.9 + 0.0010z5.5 − 0.3546z2.8

+ 0.3549z2.5 − 0.0004z7.41 − 0.0005z7.7 − 0.0100z4.7

− 0.0009z7.1 − 0.0626z4.4 − 0.0006z6.8 − 0.0259z4.1.

In consequence, the graphs of the three-term approximate solutions obtained by the DGJIM
and ADM algorithm for the suggested RLFBVP (36) and the integral Equation (37) are plotted in
Figure 3.

221



Symmetry 2021, 13, 1341

(a)

(b)

Figure 3. Graphs of the exact solutions of (a) the integral Equation (37) and (b) RLFBVP (36) compared
with their third-DGJIM and third-ADM approximate solutions for $ = 1.9.

6. Conclusions

In this paper, we study the existence of solutions for a multi-term multi-order RLF-
BVP with integral boundary conditions in the first step. Next, we apply two numerical
methods (i.e., DGJIM and ADM algorithms) for solving the suggested multi-term fractional
differential equation based on the decomposition technique. We show by an example that
the approximate solutions obtained by these methods are in excellent agreement with the
exact solutions. These give the solution as a series that quickly converges to the exact one
if it exists. Therefore, this paper states that these two numerical methods can be utilized in
many other multi-term FBVPs with different boundary value conditions by terms of some
symmetric and asymmetric operators.
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Abstract: Among the many different definitions of the fractional derivative, the Riemann–Liouville
and Gerasimov–Caputo derivatives are most commonly used. In this paper, we consider the equations
with the Dzhrbashyan–Nersesyan fractional derivative, which generalizes the Riemann–Liouville and
the Gerasimov–Caputo derivatives; it is transformed into such derivatives for two sets of parameters
that are, in a certain sense, symmetric. The issues of the unique solvability of initial value problems
for some classes of linear inhomogeneous equations of general form with the fractional Dzhrbashyan–
Nersesyan derivative in Banach spaces are investigated. An inhomogeneous equation containing a
bounded operator at the fractional derivative is considered, and the solution is presented using the
Mittag–Leffler functions. The result obtained made it possible to study the initial value problems
for a linear inhomogeneous equation with a degenerate operator at the fractional Dzhrbashyan–
Nersesyan derivative in the case of relative p-boundedness of the operator pair from the equation.
Abstract results were used to study a class of initial boundary value problems for equations with the
time-fractional Dzhrbashyan–Nersesyan derivative and with polynomials in a self-adjoint elliptic
differential operator with respect to spatial variables.

Keywords: fractional differential equation; fractional Dzhrbashyan–Nersesyan derivative; degener-
ate evolution equation; initial value problem; initial boundary value problem

MSC: 34G10; 35R11; 34A08

1. Introduction

One of the rapidly developing areas of modern mathematics is the theory of fractional
differential equations and their applications [1–7] (also see the references therein). Among
the many different definitions of the fractional derivative, the Riemann–Liouville [8]
and Gerasimov–Caputo [8–10] derivatives are most commonly used. In this paper, we
consider the equations with the Dzhrbashyan–Nersesyan fractional derivative [11], which
generalizes the Riemann–Liouville and Gerasimov–Caputo derivatives; it is transformed
into such derivatives for two sets of parameters that are, in a certain sense, symmetric.
In this sense, the concepts of the Riemann–Liouville and Gerasimov–Caputo derivatives
are symmetric. We investigate initial value problems with the Dzhrbashyan–Nersesyan
fractional derivative, and the results obtained in these symmetric cases will be valid for
the initial problems of equations with the Riemann–Liouville and the Gerasimov–Caputo
derivatives, respectively. To begin , let us give the following definition.

Let {αk}n
0 = {α0, α1, . . . , αn} be the set of real numbers satisfying the condition

0 < αk ≤ 1, k = 0, 1, . . . , n, n ∈ N∪ {0}. We denote

Dσ0 z(t) = Dα0−1
t z(t), (1)
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Dσk z(t) = Dαk−1
t Dαk−1

t Dαk−2
t . . . Dα0

t z(t), k = 1, 2, . . . , n. (2)

The fractional Dzhrbashyan–Nersesyan derivative of the order σn associated with the
sequence {αk} is determined by the relations (1) and (2), and it includes the Riemann–
Liouville (α0 ∈ (0, 1), αk = 1, k = 1, 2, . . . , n) and the Gerasimov–Caputo (αk = 1,
k = 0, 1, . . . , n− 1, αn ∈ (0, 1)) fractional derivatives.

In [11], M.M. Dzhrbashyan and A.B. Nersesyan proved the existence of a unique
continuous solution lying in Lp(0, l;R) for the initial value problem

Dσk z(0) = zk, k = 0, 1, . . . , n− 1 (3)

for the equation Dσn z(t) + p0(t)Dσn−1 z(t) + · · ·+ pn−1(t)Dσ0 z(t) + pn(t)z(t) = f (t) with
some functions pk : (0, T) → R, k = 0, 1, . . . n − 1, f : (0, T) → R. In the partial case,
p0 ≡ p1 ≡ · · · ≡ pn−1 ≡ f (t) = 0, pn ≡ a ∈ R, the solution is presented in the form of a
linear combination of the Mittag–Leffeler functions.

Various differential equations with the Dzhrbashyan–Nersesyan derivative were
considered in the works of A.V. Pskhu. For example, in [12], the fundamental solution of
a diffusion-wave equation with the Dzhrbashyan–Nersesyan time-fractional derivative
was obtained, and the unique solvability of the initial value problem Dσk z(x, 0) = zk(x),
k = 0, 1, . . . , n − 1, x ∈ Rn for the equation in Rn × (0, T] was studied. In [13], similar
issues were researched for the case of the discretely distributed Dzhrbashyan–Nersesyan
time-fractional derivative.

In this paper, we study the unique solvability issues (in the classical sense) for some
classes of linear equations with operator coefficients in Banach spaces. In Section 2, the
formula of the Laplace transform for the fractional Dzhrbashyan–Nersesyan derivative is
obtained, and the initial value problem (3) with zk from a Banach spaceZ , k = 0, 1, . . . , n− 1,
for the class of homogeneous equations Dσn z(t) = Az(t) with a linear bounded operator
in Z is studied; z : R+ → Z . Using the Laplace transform, we obtain the resolving
operators’ families for this equation, which are presented in the form of the Mittag–Leffler
functions with an operator argument. In Section 3, the same initial value problem for the
inhomogeneous equation

Dσn z(t) = Az(t) + f (t), (4)

with a function f ∈ C([0, T];Z) is investigated.
These results are used for the proof of the unique solvability of the problem

Dσk x(0) = xk, k = 0, 1, . . . , n− 1, (5)

Dσn Lx(t) = Mx(t) + g(t). (6)

Here, X , Y are Banach spaces, L ∈ L(X ;Y) (linear and continuous operator from X
into Y), and M ∈ C l(X ;Y) (linear closed operator with a dense domain DM in the space
X and with an image in Y). We consider the case ker L 6= {0}; hence, Equation (5) is
called a degenerate evolution equation. For this equation, we will use the condition of
(L, p)-boundedness of the operator M. It allows us to reduce this equation to a system of
two equations on two mutual subspaces. One of them has the form (4), and the other has a
nilpotent operator at the fractional derivative. It is shown that the initial value problem

Dσk Px(0) = xk, k = 0, 1, . . . , n− 1, (7)

is more natural for the degenerate Equation (6). Here, P is a projector on one of the above-
mentioned subspaces along the other subspace. A theorem of the existence and uniqueness
of a classical solution of the problem in (6) and (7) is also obtained.

Abstract results for non-degenerate and degenerate equations in Banach spaces are
applied to the investigation of a class of initial boundary value problems for partial differ-
ential equations with a time-fractional derivative and with polynomials in a self-adjoint
elliptical differential operator with respect to spatial variables.
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This article is a continuation of the previous work of the authors, who investigated
equations in Banach spaces with other fractional derivatives [14–17] with applications to
initial boundary value problems for partial differential equations and systems of equations.

2. Homogeneous Equation with the Dzhrbashyan–Nersesyan Fractional Derivative

Consider the fractional Dzhrbashyan–Nersesyan derivative, which is a generaliza-
tion of two well-known fractional derivatives: the Riemann–Liouville and Gerasimov–
Caputo [11] derivatives. Let us present their definitions.

Let α > 0, z : [0, T]→ Z , for some T > 0 and Banach space Z . The Riemann–Liouville
fractional integral of an order α > 0 of a function z has the form

Jα
t z(t) :=

t∫

0

(t− s)α−1

Γ(α)
z(s)ds, t > 0.

The Riemann–Liouville fractional derivative of an order α > 0 for a function z is
defined as

RDα
t z(t) := Dm

t Jm−α
t z(t),

where m− 1 < α ≤ m ∈ N, and Dm
t := dm

dtm is the integer-order derivative. Further, we
use the notations RDα

t := Dα
t , D−α

t := Jα
t for α > 0. The Gerasimov—Caputo fractional

derivative of an order α > 0 is defined as

CDα
t z(t) := RDα

t

(
z(t)−

m−1

∑
k=0

z(k)(0)
tk

k!

)
.

Let {αk}n
0 = {α0, α1, . . . , αn} be the set of real numbers that satisfy the condition

0 < αk ≤ 1, k = 0, 1, . . . , n ∈ N. We denote

σk :=
k

∑
j=0

αj − 1, k = 0, 1, . . . , n,

so −1 < σk ≤ k− 1. Further, it is assumed that the condition σn > 0 is met everywhere.
We define the Dzhrbashyan–Nersesyan fractional derivatives, which are associated with a
sequence {αk}n

0 , with the relations

Dσ0 z(t) := Dα0−1
t z(t), (8)

Dσk z(t) := Dαk−1
t Dαk−1

t Dαk−2
t . . . Dα0

t z(t), k = 1, 2, . . . , n. (9)

Let function z : R+ → Z , α > 0, m = dαe; then, the Laplace transform, which we
will denote as ẑ—or when the expressions are too large for z, we denote it as Lap[z]—has
the form

D̂α
t z(λ) = λα ẑ(λ)−

m−1

∑
k=0

λkDα−m+k
t z(0).

Therefore,
D̂σn z(λ) = λαn−1Lap[Dαn−1

t Dαn−2
t . . . Dα0

t z](λ) =

= λαn−1+αn−1Lap[Dαn−2
t . . . Dα0

t z](λ)− λαn−1Dσn−1 z(0) = · · · =

= λα1+···+αn−1D̂α0
t z(λ)− λαn−1Dσn−1 z(0)− λαn−1+αn−1Dσn−2 z(0)−
− · · · − λα2+···+αn−1Dσ1 z(0) =

= λα0+···+αn−1ẑ(λ)− λαn−1Dσn−1 z(0)− λαn−1+αn−1Dσn−2 z(0)−
− · · · − λα1+···+αn−1Dσ0 z(0) =
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= λσn ẑ(λ)− λσn−σn−1−1Dσn−1 z(0)− λσn−σn−2−1Dσn−2 z(0)− · · · −

− λσn−σ0−1Dσ0 z(0) = λσn ẑ(λ)−
n−1

∑
k=0

λσn−σk−1Dσk z(0). (10)

Let L(Z) be the Banach space of all linear bounded operators on Z , A ∈ L(Z), and let
Dσn be the Dzhrbashyan–Nersesyan fractional derivative, which is defined by a set of num-
bers {αk}n

0 = {α0, α1, . . . , αn}, 0 < αk ≤ 1, k = 0, 1, . . . , n ∈ N using Formulas (8) and (9).
It is required that the inequality σn > 0 is satisfied. Consider the equation

Dσn z(t) = Az(t), t > 0, (11)

with the initial conditions

Dσk z(0) = zk, k = 0, 1, . . . , n− 1. (12)

A function z ∈ C(R+;Z) is called a solution to problem (11), (12), if Dσk
t z ∈ C(R+;Z),

k = 0, 1, . . . , n− 1, Dσn
t z ∈ C(R+;Z), equality (11) is fulfilled for all t ∈ R+, and conditions (12)

are true. Here, R+ := R+ ∪ {0}.
Let a solution of (11) have the Laplace transform; then, Equation (11) implies that

λσn ẑ(λ)−
n−1

∑
k=0

λσn−σk−1Dσk z(0) = Aẑ(λ). (13)

For a fixed value l ∈ {0, 1, . . . , n− 1}, consider the problem

Dσl z(0) = zl , Dσk z(0) = 0, k ∈ {0, 1, . . . , n− 1} \ {l}. (14)

for Equation (11). If its solution has the Laplace transform, then the equality (13) for it has
the form

λσn ẑ(λ)− λσn−σl−1zl = Aẑ(λ).

From here, we have

ẑ(λ) = λσn−σl−1(λσn I − A)−1zl ,

z(t) =
1

2πi

∫

γ

λσn−σl−1(λσn I − A)−1eλtdλ zl ,

where γ = {λ = re−iπ ∈ C : r ∈ (∞, a]} ∪ {λ = aeiϕ ∈ C : ϕ ∈ (−π, π)} ∪ {λ = reiπ ∈ C :
r ∈ [a; ∞)} with a > ‖A‖1/σn

L(Z).
So, we define the operators for k = 0, 1, . . . , n− 1:

Zk(t) =
1

2πi

∫

γ

λσn−σk−1(λσn I − A
)−1eλtdλ, t > 0.

Note that due to the boundedness of the operator A,

Zk(t) =
∞

∑
j=0

Aj

2πi

∫

γ

λ−σk−1−jσn eλtdλ =
∞

∑
j=0

tjσn+σk Aj

2πi

∫

γt

eνdν

νjσn+σk+1 =

=
∞

∑
j=0

tjσn+σk Aj

Γ(jσn + σk + 1)
= tσk Eσn ,σk+1(tσn A).
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The Mittag–Leffler function is used here:

Eα,β(Z) =
∞

∑
j=0

Zj

Γ(αj + β)
, Z ∈ L(Z).

Lemma 1. Let A ∈ L(Z), zl ∈ Z for l ∈ {0, . . . , n− 1}, σn > 0, αn + σl > 0. Then, function
Zl(t) = tσl Eσn ,σl+1(tσn A) is the unique solution to the problem in (11) and (14).

Proof. We have

Dσ0 tσl Eσn ,σl+1(tσn A) = Dα0−1
t

∞

∑
j=0

tjσn+σl Aj

Γ(jσn + σl + 1)
=

∞

∑
j=0

tjσn+σl−σ0 Aj

Γ(jσn + σl − σ0 + 1)
,

σl − σ0 > 0 for l > 0, so Dσ0 Zl(0) = 0, Dσ0 Z0(0) = I. For k ∈ {0, 1, . . . , l},

Dσk Zl(t) = Dαk−1
t Dαk−1

t Dαk−2
t . . . Dα0

t Zl(t) =
∞

∑
j=0

tjσn+σl−σk Aj

Γ(jσn + σl − σk + 1)
,

at k < l σl − σk = αk+1 + αk+2 + · · ·+ αl > 0; hence, Dσk Zl(0) = 0, Dσl Zl(0) = I.

Further,

Dσl+1 Zl(t) = Dαl+1−1
t Dαl

t Dαl−1
t . . . Dα0

t Zl(t) = Dαl+1−1
t Dαl

t

∞

∑
j=0

tjσn+αl−1 Aj

Γ(jσn + αl)
=

= Dαl+1−1
t

∞

∑
j=1

tjσn−1 Aj

Γ(jσn)
=

∞

∑
j=1

tjσn+σl−σl+1 Aj

Γ(jσn + σl − σl+1 + 1)
,

for k ∈ {l + 1, l + 2, . . . , n− 1}

Dσk Zl(t) =
∞

∑
j=1

tjσn+σl−σk Aj

Γ(jσn + σl − σk + 1)
.

For l ∈ {0, 1, . . . , n− 2}, k ∈ {l + 1, l + 2, . . . , n− 1}, we have

σn + σl − σk ≥ σn + σl − σn−1 = αn + σl > 0.

Therefore, Dσk Zl(0) = 0.
Finally,

Dσn Zl(t) =
∞

∑
j=1

tjσn+σl−σn Aj

Γ(jσn + σl − σn + 1)
= A

∞

∑
j=0

tjσn+σl Aj

Γ(jσn + σl + 1)
= AZl(t).

We will prove the uniqueness of the solution. Suppose that z1(t) and z2(t) are two
solutions of the problem in (11) and (14). Let us fix some T > 0; then, y(t) = z1(t)− z2(t)
is a solution of the problem Dσk y(0) = 0, k = 0, 1, . . . , n, for Equation (11) on the interval
(0, T). We define the function y(t) as zero on [T,+∞). Such a function is bounded and is
also a solution to this problem for Equation (11) for t > 0, except it may be a point t = T.
After acting with the Laplace transform on both parts of the equality Dσn

t y(t) = Ay(t), we
get λσn ŷ(λ) = Aŷ(λ). Therefore, (λσn − A)ŷ(λ) ≡ 0. If |λ| > ‖A‖1/σn

L(Z); then, ŷ(λ) = 0.
Consequently, z1(t)− z2(t) = y(t) ≡ 0 for all t ∈ (0, T). Because T > 0 can be chosen at a
large enough value, then z1(t) = z2(t) for all t > 0.
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Theorem 1. Let A ∈ L(Z), zk ∈ Z , k = 0, 1 . . . , n− 1, 0 < αk ≤ 1, k = 0, 1 . . . , n, σn > 0,
α0 + αn > 1. Then, the function

z(t) =
n−1

∑
k=0

tσk Eσn ,σk+1(tσn A)zk

is a unique solution of the problem in (11) and (12).

Proof. For any l ∈ {0, 1, . . . , n− 1}, we have

σl + αn ≥ σ0 + αn = α0 + αn − 1 > 0.

Therefore, Lemma 1 is valid for all l. From the linearity of the problem in (11) and
(12), we get what we need.

Remark 1. The result for Z = R was obtained in [11].

3. Inhomogeneous Equation

Consider the inhomogeneous equation

Dσn z(t) = Az(t) + f (t), t ∈ (0, T], (15)

for some f ∈ C([0, T];Z). A function z ∈ C((0, T];Z) is called a solution of the problem in
(12) and (15) if Dσk

t z ∈ C([0, T];Z), k = 0, 1, . . . , n− 1, Dσn
t z ∈ C((0, T];Z), equality (15) is

satisfied for all t ∈ (0, T], and conditions (12) are true.
Assuming the convergence of the corresponding integrals, we denote

Z(t) =
1

2πi

∫

γ

(λσn I − A)−1eλtdλ =
∞

∑
j=0

Aj

2πi

∫

γ

λ−(j+1)σn eλtdλ =

=
∞

∑
j=0

t(j+1)σn−1 Aj

2πi

∫

γt

eνdν

ν(j+1)σn
=

∞

∑
j=0

t(j+1)σn−1 Aj

Γ((j + 1)σn)
= tσn−1Eσn ,σn(t

σn A),

for k = 0, 1, . . . , n− 1, and

Zσk (t) =
1

2πi

∫

γ

λσk (λσn I − A)−1eλtdλ =
∞

∑
j=0

Aj

2πi

∫

γ

λσk−(j+1)σn eλtdλ =

=
∞

∑
j=0

t(j+1)σn−σk−1 Aj

2πi

∫

γt

eνdν

ν(j+1)σn−σk
=

∞

∑
j=0

t(j+1)σn−σk−1 Aj

Γ((j + 1)σn − σk)
= tσn−σk−1Eσn ,σn−σk (t

σn A).

We note that σn − σk > 0, and by assumption, σn > 0; hence, as t→ 0+,

Z(t) ∼ tσn−1

Γ(σn)
, Zσk (t) ∼

tσn−σk−1

Γ(σn − σk)
, k = 0, 1, . . . , n− 1. (16)

Lemma 2. Let A ∈ L(Z), 0 < αk ≤ 1, k = 0, 1 . . . , n, σn > 0, α0 + αn > 1, f ∈ C([0, T];Z).
Then, the function

z f (t) =
t∫

0

(t− s)σn−1Eσn ,σn((t− s)σn A) f (s)ds

is a unique solution for the problem

Dσk z(0) = 0, k = 0, 1, . . . , n− 1, (17)
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for Equation (15).

Proof. We have

‖z f (t)‖Z ≤ max
s∈[0,T]

‖Eσn ,σn(s
σn A)‖L(Z) max

s∈[0,T]
‖ f (s)‖Z

tσn

σn
,

so z f (0) = 0. For α0 ∈ (0, 1),

‖Dσ0 z f (t)‖Z =

∥∥∥∥∥∥
1

Γ(1− α0)

t∫

0

(t− s)−α0 z f (s)ds

∥∥∥∥∥∥
Z

≤
max

s∈[0,T]
‖z f (s)‖Z

Γ(1− α0)

t1−α0

1− α0
.

Therefore, Dσ0 z f (0) = 0.
The Laplace transform is

Ẑ(µ) =
1

2πi

∫

γ

(λσn I − A)−1
∞∫

0

e(λ−µ)tdtdλ =

=
1

2πi

∫

γ

(λσn I − A)−1 dλ

µ− λ
= (µσn I − A)−1,

because ∥∥∥∥
1

µ− λ
(λσn I − A)−1

∥∥∥∥
Z
≤ C
|λ|1+σn

.

We define f with zero outside the segment [0, T]. We have z f = Z ∗ f ; consequently,

ẑ f (µ) = Ẑ(µ) f̂ (µ) = (µσn I − A)−1 f̂ (µ),

D̂σ0 z f (µ) = µσ0(µσn I − A)−1 f̂ (µ), Dσ0 z f (t) =
t∫

0

Zσ0(t− s) f (s)ds,

D̂σ1 z f (µ) = µσ1(µσn I − A)−1 f̂ (µ), Dσ1 z f (t) =
t∫

0

Zσ1(t− s) f (s)ds

due to (10). Then, for k = 0, 1, by virtue of (16),

‖Dσk z f (t)‖ ≤ Ck max
s∈[0,T]

‖ f (s)‖Z
t∫

0

(t− s)σn−σk−1ds =
Cktσn−σk

σn − σk
max

s∈[0,T]
‖ f (s)‖Z .

Consequently, Dσk z f (0) = 0, and

D̂σ2 z f (µ) = µσ2(µσn I − A)−1 f̂ (µ), Dσ2 z f (t) =
t∫

0

Zσ2(t− s) f (s)ds.

Continuing these arguments, we get

Dσk z f (t) =
t∫

0

Zσk (t− s) f (s)ds, k = 0, 1, . . . , n,

Dσk z f (0) = 0, k = 0, 1, . . . , n− 1.

Therefore, conditions (17) are valid.
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Due to the boundedness of the operator A,

Âz f (µ) = Aẑ f (µ) = A(µσn I − A)−1 f̂ (µ) = µσn(µσn I − A)−1 f̂ (µ)− f̂ (µ),

so

Az f (t) =
t∫

0

Zσn(t− s) f (s)ds− f (t) = Dσn z f (t)− f (t)

for all t > 0. Thus, equality (15) is satisfied for the function z f .
The uniqueness of the solution can be proved in the same way as for the homogeneous

equation above.

From Theorem 1 and Lemma 2, we immediately get the following result.

Theorem 2. Let A ∈ L(Z), zk ∈ Z , k = 0, 1 . . . , n− 1, 0 < αk ≤ 1, k = 0, 1 . . . , n, σn > 0,
α0 + αn > 1, f ∈ C([0, T];Z). Then, function

z(t) =
n−1

∑
k=0

tσk Eσn ,σk+1(tσn A)zk +

t∫

0

(t− s)σn−1Eσn ,σn((t− s)σn A) f (s)ds

is a unique solution of the problem (12) in (15).

4. Degenerate Equation

Let L ∈ L(X ;Y) and M ∈ C l(X ;Y); DM is a domain of an operator M. We define the
L-resolvent set ρL(M) = {µ ∈ C : (µL−M)−1 ∈ L(Y ;X )} of an operator M and denote
RL

µ(M) := (µL−M)−1L, LL
µ := L(µL−M)−1.

An operator M is called (L, σ)-bounded if

∃a > 0 ∀µ ∈ C (|µ| > a)⇒ (µ ∈ ρL(M)) .

Lemma 3. ([18], pp. 89, 90). Let an operator M be (L, σ)-bounded; γ = {µ ∈ C : |µ| = r > a}.
Then, operators

P =
1

2πi

∫

γ

RL
µ(M) dµ ∈ L(X ), Q =

1
2πi

∫

γ

LL
µ(M) dµ ∈ L(Y)

are projections.

Set X 0 = ker P, X 1 = imP, Y0 = ker Q, Y1 = imQ. We denote by Lk (Mk) the
restriction of the operator L (M) on X k (DMk = DM ∩ X k), k = 0, 1.

Theorem 3. ([18], pp. 90, 91). Let an operator M be (L, σ)-bounded. Then,

(i) M1 ∈ L
(
X 1;Y1), M0 ∈ C l

(
X 0;Y0), Lk ∈ L

(
X k;Y k), k = 0, 1;

(ii) there exist operators M−1
0 ∈ L

(
Y0;X 0), L−1

1 ∈ L
(
Y1;X 1).

We denote G := M−1
0 L0. For p ∈ N0 := N ∪ {0}, the operator M is called (L, p)-

bounded if it is (L, σ)-bounded; Gp 6= 0, Gp+1 = 0.
Consider the initial problem

Dσk x(0) = xk, k = 0, 1, . . . , n− 1, (18)

for a linear inhomogeneous fractional-order equation

Dσn Lx(t) = Mx(t) + g(t), (19)
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in which, as before, Dσn is the Dzhrbashyan–Nersesyan fractional derivative, which is
defined by a set of numbers {α0, α1, . . . , αn}, 0 < αk ≤ 1, k = 0, 1, . . . , n, g ∈ C([0, T];Y).

A solution to the problem in (18) is (19) is called a function x : (0, T] → DM, for
which Mx ∈ C((0, T];Y), Dσk x ∈ C([0, T];X ), k = 0, 1, . . . , n− 1, Dσn Lx ∈ C((0, T];X ),
the equality (19) is valid for all t ∈ (0, T], and conditions (18) are true.

Lemma 4. Let H ∈ L(X ) be a nilpotent operator with a power p ∈ N0, h : [0, T] → X ,
such that (Dσn H)lh ∈ C((0, T];X ) at l = 0, 1, . . . , p, Dσk (Dσn H)lh ∈ C([0, T];X ) for
k = 0, 1, . . . , n− 1, l = 0, 1, . . . , p. Then, there exists a unique solution to the equation

Dσn Hx(t) = x(t) + h(t). (20)

It has the form

x(t) = −
p

∑
l=0

(Dσn H)lh(t). (21)

Proof. Let z = z(t) be a solution of Equation (20). We act with the operator H on both parts
of (20) and get the equality HDσn Hz(t) = Hz(t) + Hh(t). Due to the theorem’s conditions,
there exists a fractional derivative Dσn for the the right-hand side of this equality, as well
as for its left-hand side. Acting with the operator Dσn on both parts of this equality, we
will have

(Dσn H)2z = Dσn Hz + Dσn
t Hh = z + h + Dσn Hh.

At the p-th step, sequentially continuing this reasoning, we obtain the equality

(Dσn H)p+1z = z +
p

∑
l=0

(Dσn H)lh.

By virtue of the continuity and nilpotency of the operator H, we have

(Dσn H)p+1z = (Dσn)p+1Hp+1z ≡ 0.

Hence, equality (21) for is true the function z. This equality implies the existence of
a solution to Equation (20) (it is checked by substituting this function into the equation)
and its uniqueness. Indeed, the difference of two solutions corresponds to a solution of
Equation (20) with the function h ≡ 0. According to Formula (21), its solution is identically
equal to zero. The lemma has been proved.

Theorem 4. Let an operator M be (L, p)-bounded, 0 < αk ≤ 1, k = 0, 1 . . . , n, σn > 0,
α0 + αn > 1, g ∈ C([0, T];Y), (Dσn G)l M−1

0 (I − Q)g ∈ C((0, T];X ), l = 0, 1, . . . , p,
Dσk (Dσn G)l M−1

0 (I − Q)g ∈ C([0, T];X ) for k = 0, 1, . . . , n − 1, l = 0, 1, . . . , p, and let
xk ∈ X satisfy the conditions

(I − P)xk = −Dσk

p

∑
l=0

(Dσn G)l M−1
0 (I −Q)g(t)|t=0, k = 0, 1, . . . n− 1. (22)

Then, there exists a unique solution to the problem (18) in (19); it has the form

x(t) =
n−1

∑
k=0

tσk Eσn ,σk+1(tσn L−1
1 M)Pxk +

t∫

0

(t− s)σn−1Eσn ,σn((t− s)σn L−1
1 M)L−1

1 Qg(s)ds−

−
p

∑
l=0

(Dσn G)l M−1
0 (I −Q)g(t). (23)
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Proof. Acting on (19) with the operator L−1
1 Q ∈ L(Y1;X 1), we get the equation

Dσn v(t) = L−1
1 Mv(t) + L−1

1 Qg(t), (24)

where v(t) = Px(t). Indeed, L−1
1 QDσn Lx(t) = Dσn L−1

1 QLx(t) = Dσn L−1
1 L1Px(t) =

Dσn v(t) = L−1
1 Q(Mx(t) + g(t)) = L−1

1 MPx(t) + L−1
1 Qg(t) = L−1

1 Mv(t) + L−1
1 Qg(t). In

this case, the equality MP = QM is used (see Lemma 3 and Theorem 3).
If we use the operator M−1

0 (I − Q) ∈ L(Y0;X 0) in the same way, then we get the
equation

Dσn Gw(t) = w(t) + M−1
0 (I −Q)g(t), (25)

w(t) = (I − P)x(t). Here, we use the equalities MP0 = M(I − P) = (I −Q)M = Q0M.
Equations (24) and (25) are endowed with the initial conditions

Dσk v(0) = Pxk, k = 0, 1, . . . , n− 1, (26)

Dσk w(0) = (I − P)xk, k = 0, 1, . . . , n− 1. (27)

By Theorem 2 and with Z = X 1, A = L−1
1 M1 ∈ L(X 1) (see Theorem 3), f (t) =

L−1
1 Qg(t), zk = Pxk, k = 0, 1, n− 1, the problem in (24) and (26) has a unique solution, and

it has the form

v(t) =
n−1

∑
k=0

tσk Eσn ,σk+1(tσn L−1
1 M)Pxk +

t∫

0

(t− s)σn−1Eσn ,σn((t− s)σn L−1
1 M)L−1

1 Qg(s)ds.

By virtue of Lemma 4, if conditions (22) are fulfilled, the problem in (25) and (27) has
a unique solution:

w(t) = −
p

∑
l=0

(Dσn G)l M−1
0 (I −Q)g(t).

In this case, the following conditions are used: Dσk (Dσn G)l M−1
0 (I−Q)g ∈ C([0, T];X )

for k = 0, . . . , n− 1, l = 0, 1, . . . , p.

To avoid the need to satisfy the approval conditions (22), consider the problem

Dσk Px(0) = xk, k = 0, 1, . . . , n− 1, (28)

for Equation (19). Its solution is called a function x : (0, T]→ DM, for which x ∈ C((0, T]; DM),
Dσk Px ∈ C([0, T];X ), k = 0, 1, . . . , n− 1, Dσn Lx ∈ C((0, T];X ), equality (19) are fulfilled for
all t ∈ (0, T], and conditions (28) are valid.

Remark 2. It is not difficult to make sure that, for p = 0, the initial conditions (28) are equivalent
to the conditions

Dσk Lx(0) = yk, k = 0, 1, . . . , n− 1, (29)

where yk = Lxk, or xk = L−1
1 yk, k = 0, 1, . . . , n− 1.

The existence and uniqueness theorem for the problem in (19) and (28) is proved
similarly with help of a reduction to the system in (24) and (25) with initial conditions (26)
and without conditions (27).

Theorem 5. Let an operator M be (L, p)-bounded, 0 < αk ≤ 1, k = 0, 1 . . . , n, σn > 0,
α0 + αn > 1, g ∈ C([0, T];Y), (Dσn G)l M−1

0 (I−Q)g ∈ C((0, T];X ), l = 0, 1, . . . , p, xk ∈ X 1,
k = 0, 1, . . . n− 1. Then, there exists a unique solution to the problem in (19) and (28), and it has
the form of (23).
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5. Application to a Class of Initial Boundary Value Problems

Let P$(λ) =
$

∑
j=0

cjλ
j, Q$(λ) =

$

∑
j=0

djλ
j, cj, dj ∈ C, j = 0, 1, . . . , $ ∈ N0, c$ 6= 0, Ω ⊂ Rd

be a bounded region with a smooth boundary ∂Ω,

(Λu)(s) := ∑
|q|≤2r

aq(s)
∂|q|u(s)

∂sq1
1 ∂sq2

2 . . . ∂sqd
d

, aq ∈ C∞(Ω),

(Blu)(s) := ∑
|q|≤rl

blq(s)
∂|q|u(s)

∂sq1
1 ∂sq2

2 . . . ∂sqd
d

, blq ∈ C∞(∂Ω), l = 1, 2, . . . , r,

q = (q1, q2, . . . , qd) ∈ Nd
0, |q| = q1 + · · ·+ qd, and let the operator pencil Λ, B1, B2, . . . , Br be

regularly elliptical [19]. Let an operator Λ1 ∈ C l(L2(Ω)) with the domain

DΛ1 = H2r
{Bl}(Ω) := {v ∈ H2r(Ω) : Blv(s) = 0, l = 1, 2, . . . , r, s ∈ ∂Ω}

act as Λ1u := Λu. Assume that Λ1 is a self-adjoint operator; then, the spectrum σ(Λ1) of
the operator Λ1 is real and discrete, with finite multiplicity [19]. In addition, the spectrum
σ(Λ1) is bounded from the right and does not contain zero; {ϕk : k ∈ N} is orthonormal
in the L2(Ω) system of eigenfunctions of the operator Λ1, which is numbered in the non-
increasing order of the corresponding eigenvalues {λk : k ∈ N}, taking their multiplicity
into account.

Consider the initial boundary value problem

Dσk
t u(s, 0) = uk(s), k = 0, 1, . . . , n− 1, s ∈ Ω, (30)

BlΛ
ku(s, t) = 0, k = 0, 1, . . . , $− 1, l = 1, 2, . . . , r, (s, t) ∈ ∂Ω× (0, T], (31)

Dσn
t P$(Λ)u(s, t) = Q$(Λ)u(s, t) + h(s, t), (s, t) ∈ Ω× (0, T], (32)

where Dσk
t are the Dzhrbashyan–Nersesyan fractional derivatives with respect to the

variable t, corresponding to the set {αk}n
k=0, αk ∈ (0, 1], k = 0, 1, . . . , n, h : Ω× [0, T]→ R.

Take

X = {v ∈ H2r$(Ω) : BlΛ
kv(s) = 0, k = 0, 1, . . . , $− 1, l = 1, 2, . . . , r, s ∈ ∂Ω},

Y = L2(Ω), L = P$(Λ), M = Q$(Λ) ∈ L(X ;Y).
Let P$(λk) 6= 0 for all k ∈ N; then, there exists an inverse operator L−1 ∈ L(Y ;X ),

and the problem in (30)–(32) is representable as the problem in (12) and (15), where Z = X ,
A = L−1M ∈ L(Z), zk = uk(·), k = 0, 1, . . . , n− 1, f (t) = L−1h(·, t). By Theorem 2, for
σn > 0, α0 + αn > 1, there exists a unique solution to problem (30)–(32) for any uk ∈ X ,
k = 0, 1, . . . , n− 1, and h ∈ C([0, T]; L2(Ω)) (in this case, L−1h ∈ C([0, T];X )).

Example 1. Take $ = 2, P2(λ) = λ2, Q2(λ) = a0 + a1λ, d = 1, Ω = (0, π), r = 1, Λu = ∂2u
∂s2 ,

B1 = I. Then, the problem in (30)–(32) has the form

Dσn
t

∂4u
∂s4 (s, t) = a0u(s, t) + a1

∂2u
∂s2 (s, t) + h(s, t), (s, t) ∈ (0, π)× (0, T],

u(0, t) = u(π, t) =
∂2u
∂s2 (0, t) =

∂2u
∂s2 (π, t) = 0, t ∈ (0, T],

Dσk
t u(s, 0) = uk(s), k = 0, 1, . . . , n− 1, s ∈ (0, π).
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Now, consider the degenerate case. Suppose that P$(λk) = 0 for some k ∈ N. If
the polynomials P$ and Q$ have no common roots on the set {λk}, the operator M is
(L, 0)-bounded (see [20]), and the projectors have the form

P = ∑
P$(λk) 6=0

〈·, ϕk〉ϕk, Q = ∑
P$(λk) 6=0

〈·, ϕk〉ϕk,

where 〈·, ϕk〉 is the inner product in L2(Ω). Considering Remark 2, the initial conditions
can be given in the form

Dσk
t P$(Λ)u(s, 0) = yk(s), k = 0, 1, . . . , n− 1, s ∈ Ω. (33)

Then, the problem in (31)–(33) is represented as (19) and (29) with the spaces X ,Y
and the operators L and M selected above. Theorem 5 implies the unique solvability of
the problem in (31)–(33) if σn > 0, α0 + αn > 1, h ∈ C([0, T]; L2(Ω)), and yk ∈ L2(Ω),
k = 0, 1, . . . , n− 1, such that 〈yk, ϕl〉 = 0 for all l ∈ N, for which P$(λl) = 0 (in other words,
yk ∈ Y1, k = 0, 1, . . . , n− 1).

Example 2. Let $ = 2, P2(λ) ≡ λ(λ + 9), Q2(λ) = 1 + λ, d = 1, Ω = (0, π), r = 1,
Λu = ∂2u

∂s2 , B1 = I. Then, the degenerate problem in (31)–(33) has the form

Dσn
t

(
∂4u
∂s4 + 9

∂2u
∂s2

)
(s, t) =

(
u +

∂2u
∂s2

)
(s, t), (s, t) ∈ (0, π)× (0, T],

u(0, t) = u(π, t) =
∂2u
∂s2 (0, t) =

∂2u
∂s2 (π, t) = 0, t ∈ (0, T],

Dσk
t

(
∂4u
∂s4 + 9

∂2u
∂s2

)
(s, 0) = yk(s), k = 0, 1, . . . , n− 1, s ∈ (0, π).

Here, P2(0) = P2(−9) = 0, 0 /∈ σ(Λ1), −9 = −32 ∈ σ(Λ1); therefore, X 0 = Y0 =
span{sin 3s}, X 1, and Y1 are closures of span{sin ks : k ∈ N \ {3}} in H4(0, π) and L2(0, π),
respectively. Thus, the conditions

〈yk, sin 3s〉 =
π∫

0

yk(s) sin 3sds = 0, k = 0, 1, . . . , n− 1,

must be satisfied for the solvability of this initial boundary value problem.

Author Contributions: Conceptualization, V.E.F. and M.V.P.; methodology, V.E.F.; software, E.M.I.;
validation, E.M.I. and M.V.P.; formal analysis, E.M.I.; investigation, E.M.I. and V.E.F.; resources, E.M.I.;
data curation, E.M.I.; writing—original draft preparation, E.M.I.; writing—review and editing, V.E.F.
and M.V.P.; visualization, E.M.I.; supervision, V.E.F. and M.V.P.; project administration, V.E.F.; funding
acquisition, M.V.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Russian Foundation for Basic Research, grant number 21-
51-54003. The APC was funded by the Research Support Foundation of Chelyabinsk State University.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives. Theory and Applications; Gordon and Breach Science

Publishers: Philadelphia, PA, USA, 1993.
2. Kiryakova, V. Generalized Fractional Calculus and Applications; Longman Scientific & Technical: Harlow, UK, 1994.

236



Symmetry 2021, 13, 1058

3. Podlubny, I. Fractional Differential Equations; Academic Press: Boston, MA, USA, 1999.
4. Tarasov, V.E. Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media; Springer: New York,

NY, USA, 2011.
5. Agarwal, R.P.; Gala, S.; Ragusa, M.A. A regularity criterion of the 3D MHD equations involving one velocity and one current

density component in Lorentz space. Z. Angew. Math. Und Phys. 2020, 71, 95. [CrossRef]
6. Ahmad, B.; Alsaedi, A.; Alruwaily, Y. On Riemann—Stieltjes integral boundary value problems of Caputo—Riemann—Liouville

type fractional integro-differential equations. Filomat 2020, 34, 2723–2738. [CrossRef]
7. Mamchuev, M. Cauchy problem for a linear system of ordinary differential equations of the fractional order. Mathematics 2020,

8, 1475. [CrossRef]
8. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier Science Publishing:

Amsterdam, The Netherlands, 2006.
9. Gerasimov, A.N. Generalization of linear laws of deformation and their application to problems of internal friction. Appl. Math.

Mech. 1948, 12, 251–260. (In Russian)
10. Caputo, M. Linear model of dissipation whose Q is almost frequancy independent. II. Geophys. J. R. Astron. Soc. 1967, 13, 529–539.

[CrossRef]
11. Dzhrbashyan, M.M.; Nersesyan, A.B. Fractional derivatives and the Cauchy problem for differential equations of fractional order.

Izv. Akad. Nauk. Armyanskoy Ssr. Mat. 1968, 3, 3–28. (In Russian)
12. Pskhu, A.V. The fundamental solution of a diffusion-wave equation of fractional order. Izv. Math. 2009, 73, 351–392. [CrossRef]
13. Pskhu, A.V. Fractional diffusion equation with a discretely distributed differentiation operator. Sib. Elektron. Math. Rep. 2016, 13,

1078–1098.
14. Plekhanova, M.V. Nonlinear equations with degenerate operator at fractional Caputo derivative. Math. Methods Appl. Sci. 2016,

40, 41–44. [CrossRef]
15. Fedorov, V.E.; Plekhanova, M.V.; Nazhimov R.R. Degenerate linear evolution equations with the Riemann—Liouville fractional

derivative. Sib. Math. J. 2018, 59, 136–146. [CrossRef]
16. Fedorov, V.E. Generators of analytic resolving families for distributed order equations and perturbations. Mathematics 2020,

8, 1306. [CrossRef]
17. Fedorov, V.E.; Phuong, T.D.; Kien, B.T.; Boyko, K.V.; Izhberdeeva, E.M. A class of semilinear distributed order equations in Banach

spaces. Chelyabinsk Phys. Math. J. 2020, 5, 343–351.
18. Sviridyuk, G.A.; Fedorov, V.E. Linear Sobolev Type Equations and Degenerate Semigroups of Operators; VSP: Utrecht, The Nether-

lands, 2003.
19. Triebel, H. Interpolation Theory. Function Spaces. Differential Operators; North-Holland Publishing Company: Amsterdam,

The Netherlands, 1978.
20. Fedorov, V.E. Strongly holomorphic groups of linear equations of Sobolev type in locally convex spaces. Differ. Equ. 2004, 40,

753–765. [CrossRef]

237





symmetryS S

Article

Bessel Collocation Method for Solving Fredholm–Volterra
Integro-Fractional Differential Equations of Multi-High Order
in the Caputo Sense

Shazad Shawki Ahmed * and Shabaz Jalil MohammedFaeq *

Citation: Ahmed, S.S.;

MohammedFaeq, S.J. Bessel

Collocation Method for Solving

Fredholm–Volterra Integro-Fractional

Differential Equations of Multi-High

Order in the Caputo Sense. Symmetry

2021, 13, 2354. https://doi.org/

10.3390/sym13122354

Academic Editors: Francisco

Martínez González and Mohammed

KA Kaabar

Received: 3 November 2021

Accepted: 20 November 2021

Published: 7 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Mathematics, College of Science, University of Sulaimani, Sulaymaniyah 46001, Iraq
* Correspondence: shazad.ahmed@univsul.edu.iq (S.S.A.); shabaz.mohammedfaeq@univsul.edu.iq (S.J.M.)

Abstract: The approximate solutions of Fredholm–Volterra integro-differential equations of multi-
fractional order within the Caputo sense (F-VIFDEs) under mixed conditions are presented in this
article apply a collocation points technique based completely on Bessel polynomials of the first kind.
This new approach depends particularly on transforming the linear equation and conditions into the
matrix relations (some time symmetry matrix), which results in resolving a linear algebraic equation
with unknown generalized Bessel coefficients. Numerical examples are given to show the technique’s
validity and application, and comparisons are made with existing results by applying this process in
order to express these solutions, most general programs are written in Python V.3.8.8 (2021).

Keywords: Fredholm–Volterra integral Equations; fractional derivative; Bessel polynomials; Caputo
derivative; collocation points

1. Introduction

Fractional calculus (FC) deals with the differentiation and integration of arbitrary
order and it is used in the real world to model and analyze big problems. Fluid flow,
electrical networks, fractals theory, control theory, electromagnetic theory, probability,
statistics, optics, potential theory, biology, chemistry, diffusion, and viscoelasticity are just
a few of the many fields where fractional calculus is used [1–4].

In recent years, fractional differential equations and integro-fractional differential equa-
tions (IFDEs) have captivated the hobby of many researchers in various fields of science and
era due to the reality that realistic modeling of a bodily phenomenon with dependencies
not only in the immediate time, but also in the past time history can be accomplished
effectively using FC. However, in addition to modeling, the solution approaches and their
dependability are crucial in detecting key points when a rapid divergence, convergence,
or bifurcation begins. As a result, high-precision solutions are always required. Several
strategies for solving fractional order differential equations were presented for this pur-
pose (or integro-differential equations), [1,3,4]. The Adomian decomposition method [5],
variational iteration method [6], fractional differential transform method [7], fractional
difference method [8], and power series method [9] are the most commonly used ideas.

However, from the beginning of 1994, Laguerre, Legendre, Taylor, Fourier, Hermite,
and Bessel polynomials have been employed in works [10–15] to solve linear differential,
integral, and integro-differential difference equations and related systems. In addition, the
Bessel polynomial of the first kind method has been used to find approximate solutions
of differential, fractional differential equations, integro-differential equations of fractional
order, LVIDEs, and LF-VIDEs [16–19].

The aim of this paper is to expand and apply the first kind of Bessel polynomial in
matrix form, as well as the collocation techniques, to evaluate the approximate solution
for the multi-high-order linear Fredholm–Volterra integro-fractional differential equations
(FVIFDEs) of the general type:
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c
aDσn

x u(x) +
n−1
∑

l = 1
pl(x)c

aDσn−l
x u(x) + pn(x)u(x)

= g(x) +
m1
∑

i = 0
λi

b∫
a

Fi(x, t)c
aDαi

t u(t)dt +
m2
∑

j = 0
λj

x∫
a

Vj(x, t)c
aD

β j
t u(t)dt, x ∈ [a, b]

(1)

together with mixed conditions:

µ−1

∑
` = 0

{
hk`u(`)(a) +hk`u(`)(b)

}
= Ck, k = 0, 1, . . . , µ− 1. (2)

where the fractional orders: σn > σn−1 > · · · > σ1 > σ0 = 0, αm1 > αm1−1 > · · · > α1 >
α0 = 0, and βm2 > βm2−1 > · · · > β1 > β0 = 0, and µ = max{dσne, dαm1e, dβm2e}. In
addition, u(x) is an unknown function, the functions pl(x), g(x) ∈ C([a, b], R), for all
l = 1, 2, . . . , n, and Fi(x, t), Vj(x, t) ∈ C(S,R), (with S = {(x, t) : a ≤ t ≤ x ≤ b}) are
known, with constants hk`, hk`, λi, λj and Ck ∈ R for all k, ` = 0, 1, . . . , µ − 1,
i = 0, 1, . . . , m1, j = 0, 1, . . . , m2, (n, m1, m2 ∈ Z+) are given.

2. Preliminary Considerations
2.1. Basic Definitions and Some Lemmas

Many mathematical definitions of fractional integration and differentiation have
come to light in recent years. The most frequently used definitions of fractional calculus
involves the Riemann–Liouville fractional derivative and Caputo derivative. In terms of
applicability, the Caputo concept is more dependable than the Riemann–Liouville definition.
In this section, we are interested some basic definitions and lemmas which are used later
on in this paper [1,3,4,20,21].

Definition 1 [22]. A real valued function u defined on closed bounded interval [a, b] = I be in
the space Cγ(I), γ ∈ R, if there exist a real number k > γ, such that u(x) = (x− a)ku0(x),
where u0(x) ∈ C(I), and it is said to be in the space Cγ(I), γ ∈ R, if there exist a real number
k > γ, such that u(x) = (x− a)ku0(x), where u0(x) ∈ C(I), and it is said to be in the space
Cn

γ(I) i f f u(n)(x) ∈ Cγ(I), where n ∈ Z+ ∪ {0}.

Definition 2 [23]. The Riemann–Liouville (R-L) fractional integral operator, a Jα
x , of order α > 0 of

a function u ∈ Cγ(I), γ ≥ −1 is defined as:

a Jα
x u(x) = 1

Γ(α)

x∫
a
(x− t)α−1u(t)dt, α ∈ R+

a J0
xu(x) = u(x).

Definition 3 [24]. The Riemann–Liouville (R-L) fractional derivative operator, R
a Dα

x, of order
α ≥ 0 of a function u(x) and u ∈ Cm

−1(I), m = α is normally defined as:

R
a Dα

xu(x) = Dm
x a Jm−α

x u(x), m− 1 < α ≤ m, m ∈ N.

Definition 4 [23]. The Caputo fractional derivative operator, C
a Dα

x, of a function u ∈ Cm
−1(I) and

m = dαe, (ceiling function), is defined as:

C
a Dα

x = a Jm−α
x [Dm

x u(x)]

=





1
Γ(m−α)

∫ x
a (x− t)m−α−1 ∂mu(t)

∂tm dt, m− 1 < α < m

∂mu(x)
∂xm , α = m, m ∈ N
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where the parameter α is the order of the derivative and is allowed to be any positive real
number. The operators a Jα

x and C
a Dα

x are linear operators. Furthermore, we have

Lemma 1 [4]. Let x > a, a ∈ R and for u(x) = (x− a)β f or some β 6= −m is not negative
integer, then

a Jα
x(x− a)β =

Γ(β + 1)
Γ(β + α + 1)

(x− a)β+α.

Lemma 2 [20]. The Caputo derivative of order α ≥ 0 with n = dαe of the power function
u(x) = (x− a)β for some β ≥ 0 is formed by:

C
a Dα

xu(x) =





0 i f β ∈ {0, 1, 2, · · · , n− 1}
Γ(β + 1)

Γ(β − α + 1) (x− a)β−α i f β ∈ N and β ≥ n
or β /∈ N and β > n− 1

Lemma 3 [20]. Let α ≥ 0, m = dαe. Moreover, assume that u ∈ Cm
−1(I). Then the Caputo

fractional derivative C
a Dα

xu(x) is continuous on I = [a, b] and lim
x→a

[C
a Dα

xu(x)
]
= 0.

2.2. Bessel Polynomial of the First Kind

The r-th degree N-truncated Bessel polynomials of the first kind, [25,26], Jr(x),
r = 0, 1, . . . , N are defined by

Jr(x) =
J N−r

2 K

∑
k=0

(−1)k

k!(k+ r)!

( x
2

)2k+r
, r ∈ N, 0 ≤ x < ∞.

Here, N is a positive integer that is selected in such a way that N ≥ r. On the other hand,
we may express the Jr(x) as follows in the matrix form.

J(x) = X(x)DT or JT(x) = DXT(x). (3)

where J(x) = [J0(x) J1(x) . . . JN(x)]and X(x) =
[
1 x x2 . . . xN]

If N is odd

D =




1
0! 0! 20 0 −1

1! 1! 22 · · · (−1)
N−1

2

( N−1
2 )! ( N−1

2 )! 2N−1 0

0 1
0! 1! 21 0 · · · 0 (−1)

N−1
2

( N−1
2 )! ( N−1

2 )! 2N

0 0 1
0! 2! 22 · · · (−1)

N−3
2

( N−3
2 )! ( N+1

2 )! 2N−1 0

...
...

...
. . .

...
...

0 0 0 · · · 1
0! (N−1)! 2N−1 0

0 0 0 · · · 0 1
0! N! 2N



(N+1)×(N+1)

If N is even
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D =




1
0! 0! 20 0 −1

1! 1! 22 · · · 0 (−1)
N
2

( N
2 )! ( N

2 )! 2N

0 1
0! 1! 21 0 · · · (−1)

N−2
2

( N−2
2 )! ( N

2 )! 2N−1 0

0 0 1
0! 2! 22 · · · 0 (−1)

N−2
2

( N+2
2 )! ( N+1

2 )! 2N

...
...

...
. . .

...
...

0 0 0 · · · 1
0! (N−1)! 2N−1 0

0 0 0 · · · 0 1
0! N! 2N



(N+1)×(N+1)

3. Fundamental Matrix Relations

Recall Equation (1) and rewrite it as follows:

D
(
{σl}n

l = 1, x
)
= g(x) + I f

(
{αi}m1

i = 0, x
)
+ Iv

({
β j
}m2

j = 0, x
)

. (4)

where

D
(
{σl}n

l = 1, x
)
= c

aDσn
x u(x) +

n − 1

∑
l = 1

pl(x)c
aDσn−l

x u(x) + pn(x)u(x)

and the integral parts:

I f
(
{αi}m1

i = 0, x
)
=

m1
∑

i = 0
λi

b∫
a

Fi(x, t)c
aDαi

t u(t)dt, Iv

({
β j
}m2

j = 0, x
)
=

m2
∑

j = 0
λj

x∫
a

Vj(x, t)c
aD

β j
t u(t)dt .

our purpose is to find a close approximation of Equation (1) in the N-truncated Bessel
series arrangement

u(x) ∼=
N

∑
r = 0

arJ∇(x). (5)

So that a∇, for all ∇ = 0, 1, . . . , N are the unknown Bessel coefficients. Before we
begin the approximate solution we must convert the solution u(x) and its c

aDσn
x u(x),

c
aDσn−l

x u(x), c
aDαi

x u(x) and c
aD

β j
x u(x), for all l = 1, 2, . . . , n − 1, i = 0, 1, . . . , m1,

j = 0, 1, . . . , m2 in the parts D
(
{σl}n

l = 1, x
)
, I f

(
{αi}m1

i = 0, x
)

and Iv

({
β j
}m2

j = 0, x
)

, to ma-
trix form, within the mixed conditions of Equation (2).

3.1. Matrix Relation for the Fractional Derivative Part D

To describe the solution u(x) of Equation (1), which is specified by the N-truncated
Bessel series of Equation (5). The function defined in relation (5) in a matrix form

[u(x)] = J(x)A ; A = [a0 a1 a2 . . . aN ]
T (6)

or from Equation (3)

[u(x)] = X(x)DTA. (7)

The relationship between the matrix X(x) and its derivative X(1)(x) is also written
as follows:

X(1)(x) = X(x)BT . (8)
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where

BT =




0 1 0 0 · · · 0
0 0 2 0 · · · 0
0 0 0 3 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · N
0 0 0 0 · · · 0




(N+1)×(N+1)

We will also get the recurrence relations from Equation (8):

X(0)(x) = X(x)

X(1)(x) = X(x)BT

X(2)(x) = X(1)(x)BT = X(x)
(
BT)2

...

X(j)(x) = X(j−1)(x)BT = X(x)
(
BT)j .

(9)

Here, note that
(
BT)0

= [I](N+1)×(N+1) is an identity matrix of dimension (N + 1).
Using mathematical induction, we can prove that Equation (9) is correct. By applying the
same concept to Equation (7) and using Equation (9), we attain matrix relation

u(|)(x) = X(|)(x)DTA

u(|)(x) = X(x)
(
BT)|DTA, for each| = 0, 1, . . . , µ and µ = max{dσne, dαm1e, dβm2e}

(10)

By using Equation (7) with (9) and applying the Caputo Definition 4, with Lemma 1
and 2, we can convert the fractional terms c

aDσn−l
x u(x), n(σn−l)− 1 < σn−l ≤ n(σn−l), that

is n(σn−l) = dσn−le, for all l = 0, 1, . . . , n− 1 to matrix form:

c
aDσn−l

x u(x) = c
aDσn−l

x X(x)DTA

= a J (n(σn−l)−σn−l)
x D n(σn−l) X(x)DTA

= a J (n(σn−l)−σn−l)
x X(x)

(
BT)n(σn−l)DTA

= xn(σn−l)−σn−l X(x) C(n(σn−l)− σn−l)
(
BT)n(σn)DTA.

Since

a J (n(σn−l)−σn−l)
x X(x) = a J (n(σn−l)−σn−l)

x

[
1 x x2 . . . xN

]

= [
Γ(1)

Γ( n(σn−l)− σn−l + 1)
xn(σn−l)−σn−l+0,

Γ(2)
Γ( n(σn−l)− σn−l + 2)

xn(σn−l)−σn−l+1,

. . . ,
Γ(N + 1)

Γ( n(σn−l)− σn−l + N + 1)
xn(σn−l)−σn−l+N ]

= xn(σn−l)−σn−l
[
1xx2 . . . xN

]




Γ(1)
Γ( n(σn−l) − σn−l + 1) 0 · · · 0

0 Γ(2)
Γ( n(σn−l) − σn−l + 2) · · · 0

...
...

. . .
...

0 0 · · · Γ(N + 1)
Γ( n(σn−l) − σn − l+ N + 1)
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Putting

C(n(σn−l)− σn−l) =




Γ(1)
Γ( n(σn−l) − σn−l + 1) 0 · · · 0

0 Γ(2)
Γ( n(σn−l) − σn−l + 2) · · · 0

...
...

. . .
...

0 0 · · · Γ(N + 1)
Γ( n(σn−l) − σn−l + N + 1)




(11)

Thus, for all l = 1, 2, . . . , n− 1 in general we obtain

c
aDσn−l

x u(x) = c
aDσn−l

x X(x)DTA = xn(σn−l)−σn−l X(x) C(n(σn−l)− σn−l)
(

BT
)n(σn−l)

DTA. (12)

and

c
aDσn

x u(x) = c
aDσn

x X(x)DTA = xn(σn)−σn X(x) C(n(σn)− σn)
(

BT
)n(σn)

DTA. (13)

Using mathematical induction, we can prove that Equations (12) and (13) are correct.
By substituting expressions (7), (12) and (13) into (4), As well we can make this assump-
tion y(n, x) = xn(σn)−σn , y(n− l, x) = xn(σn−l)−σn−l , for all l = 1, 2, . . . , n− 1, we have

D
(
{σl}n

l = 1, x
)

= [y(n, x) X(x) C(n(σn)− σn)
(
BT)n(σn)DT

+
n−1
∑

l = 1
pl(x)y(n− l, x) X(x) C(n(σn−l)− σn−l)

(
BT)n(σn−l)DT + pn(x)X(x)DT ]A.

(14)

3.2. Matrix Relation for the Fredholm Integral Part I f

The N-truncated Taylor series around (0,0), [27] and the N-truncated Bessel series can
be used to approximate the Fredholm kernel functions Fi(x, t), i = 0, 1, . . . , m1, respectively

Fi(x, t) =
N

∑
m=0

N

∑
\=0

tF
i
m\x
mt\ and Fi(x, t) =

N

∑
m=0

N

∑
\=0

bF i
m\Jm(x)J\(t), i = 0, 1, . . . , m1 (15)

where [
tF

i
m\
]
=

1
m!\!

∂m+\Fi(0, 0)
∂xm∂t\

, i = 0, 1, . . . , m1, m, \ = 0, 1, . . . , N.

In matrix forms, the Equation (15) may be written as Equations (16) and (17), respectively

Fi(x, t) = X(x)Fi
tX

T(t), Fi
t =

[
tF

i
m\
]
, i = 0, 1, . . . , m1, m, \ = 0, 1, . . . , N. (16)

and

Fi(x, t) = J(x)Fi
bJT(t), Fi

b =
[

bF i
m\
]
, i = 0, 1, . . . , m1, m, \ = 0, 1, . . . , N. (17)

From Equations (16) and (17), it also comes out according to Equation (3), the
following relation

X(x)Fi
tX

T(t) = J(x)Fi
bJT(t), i = 0, 1, . . . , m1

X(x)Fi
tX

T(t) = X(x)DTFi
bDXT(t), i = 0, 1, . . . , m1

Fi
t = DTFi

bD or Fi
b =

(
DT)−1Fi

tD
−1, i = 0, 1, . . . , m1

(18)

In the same way from Equations (12) and (13), convert c
aDαi

x u(x), and n(αi)− 1 <
αi ≤ n(αi), i.e., n(αi) = dαie for all i = 0, 1, . . . , m1, by apply the Caputo Definition 4
with Lemma 1 to the matrix form, we obtain
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c
aDαi

x u(x) = c
aDαi

x X(x)DTA

= a J (n(αi)−αi)
x D n(αi) X(x)DTA

= a J (n(αi)−αi)
x X(x)

(
BT)n(αi)DTA

= xn(αi)−αi X(x) C(n(αi)− αi)
(
BT)n(αi)DTA, i = 0, 1, . . . , m1

(19)

where C(n(αi)− αi) is defined at Equation (11). We obtain the matrix relation (20), put
the Equation (3) into (17), and then replace the obtained matrix with matrix (19) in the
Fredholm integral part I f in Equation (4)

I f
(
{αi}m1

i=0, x
)

=
m1
∑

i=0
λi

b∫
a

Fi(x, t)c
aDαi

t u(t)dt

=
m1
∑

i=0
λi

b∫
a

J(x)Fi
bJT(t)tn(αi)−αi X(t) C(n(αi)− αi)

(
BT)n(αi)DTAdt

=
m1
∑

i=0
λi

b∫
a

X(x)DTFi
bDXT(t)tn(αi)−αi X(t) C(n(αi)− αi)

(
BT)n(αi)DTAdt

=
m1
∑

i=0
λiX(x)DTFi

bD

(
b∫
a

XT(t) X(t)tn(αi)−αi dt

)
C(n(αi)− αi)

(
BT)n(αi)DTA

=
m1
∑

i=0
λiX(x)DTFi

bD H f ,i C(n(αi)− αi)
(
BT)n(αi)DTA.

(20)

where

H f ,i =
b∫
a

XT(t) X(t)tn(αi)−αi dt =
[

h f ,i
rs

]
, i = 0, 1, . . . , m1, r, s = 0, 1, . . . , N.

[
h f ,i

rs

]
= bn(αi)−αi+r+s+1−an(αi)−αi+r+s+1

n(αi)−αi+r+s+1 , i = 0, 1, . . . , m1, r, s = 0, 1, . . . , N.

We can get the last matrix form (21) by replacing the matrix relation (18) into expression (20).

I f
(
{αi}m1

i=0, x
)
=

m1

∑
i=0

λiX(x)Fi
t H f ,i C(n(αi)− αi)

(
BT
)n(αi)

DTA. (21)

3.3. Matrix Relation for the Volterra Integral Part Iv

The N-truncated Taylor series around (0,0), [27] and the N-truncated Bessel series can
be used to approximate the Volterra kernel functions Vj(x, t), j = 0, 1, . . . , m2, respectively

Vj(x, t) =
N

∑
m=0

N

∑
\=0

tV
j
m\x
mt\ and Vj(x, t) =

N

∑
m=0

N

∑
\=0

bV j
m\Jm(x)J\(t), j = 0, 1, . . . , m2 (22)

where [
tV

j
m\
]
=

1
m!\!

∂m+\Vj(0, 0)

∂xm∂t\
, j = 0, 1, . . . , m2, m, \ = 0, 1, . . . , N.

The relations in Equation (22) can be transformed into matrix forms:

Vj(x, t) = X(x)Vj
tX

T(t), Vj
t =

[
tV

j
m\
]
, j = 0, 1, . . . , m2, m, \ = 0, 1, . . . , N (23)

and
Vj(x, t) = J(x)Vj

bJT(t), Vj
b =

[
bV j
m\
]
, j = 0, 1, . . . , m2, m, \ = 0, 1, . . . , N (24)

from Equations (23) and (24), it also comes out according to Equation (3) we obtain the
following relation:
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X(x)Vj
tX

T(t) = J(x)Vj
bJT(t), j = 0, 1, . . . , m2

X(x)Vj
tX

T(t) = X(x)DTVj
bDXT(t), j = 0, 1, . . . , m2

Vj
t = DTVj

bD or Vj
b =

(
DT)−1Vj

tD
−1, j = 0, 1, . . . , m2

(25)

Finally, in the same way from Equations (12) and (13), convert c
aD

β j
x u(x), n

(
β j
)
− 1 <

β j ≤ n
(

β j
)
, i.e., n

(
β j
)
=
⌈

β j
⌉
, for all j = 0, 1, . . . , m2, by applying the Caputo Definition 4

with Lemma 1, 2 and 3 to matrix form, we obtain

c
aD

β j
x u(x) = c

aD
β j
x X(x)DTA

= a J
(n(β j)−β j)
x D n(β j) X(x)DTA

= a J
(n(β j)−β j)
x X(x)

(
BT)n(β j)DTA

= xn(β j)−β j X(x) C
(
n
(

β j
)
− β j

) (
BT)n(β j)DTA, j = 0, 1, . . . , m2

(26)

where C
(
n
(

β j
)
− β j

)
define at Equation (11). We obtain the matrix relation (27), put the

Equation (3) into (24) and then replace the obtained matrix with matrix (26) in Fredholm
integral part Iv in Equation (4)

Iv

({
β j
}m2

j=0, x
)

=
m2
∑

j=0
λj

x∫
a

Vj(x, t)c
aD

β j
t u(t)dt

=
m2
∑

j=0
λj

x∫
a

J(x)Vj
bJT(t)tn(β j)−β j X(t) C

(
n
(

β j
)
− β j

) (
BT)n(β j)DTAdt

=
m2
∑

j=0
λj

x∫
a

X(x)DTVj
bDXT(t)tn(β j)−β j X(t) C

(
n
(

β j
)
− β j

) (
BT)n(β j)DTAdt

=
m2
∑

j=0
λjX(x)DTVj

bD
( x∫

a
XT(t) X(t)tn(β j)−β j dt

)
C(n

(
β j
)

−β j)
(
BT)n(β j)DTA

=
m2
∑

j=0
λjX(x)DTVj

bDHv,j(x)C
(
n
(

β j
)
− β j

) (
BT)n(β j)DTA.

(27)

where

Hv,j(x) =
x∫
a

XT(t) X(t)tn(β j)−β j dt =
[

hv,j
rs (x)

]
, j = 0, 1, . . . , m2, r, s = 0, 1, . . . , N.

[
hv,j

rs (x)
]
= xn(βj)−βj+r+s+1−an(βj)−βj+r+s+1

n(β j)−β j+r+s+1
, j = 0, 1, . . . , m2, r, s = 0, 1, . . . , N.

We can get the last matrix form (28) by replacing the matrix relation (25) into expression (27).

Iv

({
β j
}m2

j=0, x
)
=

m2

∑
j=0

λjX(x)Vj
tHv,j(x)C

(
n
(

β j
)
− β j

) (
BT
)n(β j)

DTA. (28)

3.4. Matrix Relation for the Conditions

For each k = 0, 1, . . . , µ− 1 and µ = max{dσne, dαm1e, dβm2e}, applying the relation (10)
to each mixed condition of Equation (2), we obtain the corresponding condition matrix
forms as follows.

µ−1

∑
`=0

{
〈k`X(a)

(
BT
)`

DTA + 〈k`X(b)
(

BT
)`

DTA
}

= [Ck], k = 0, 1, . . . , µ− 1
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Thus

µ−1

∑
`=0

[
〈k`X(a) + 〈k`X(b)

](
BT
)`

DTA = [Ck], k = 0, 1, . . . , µ− 1. (29)

4. Method of Solution

To construct the fundamental matrix equation that corresponds to Equation (1), in-
sert the matrix relations (14), (21), and (28) into Equation (4) to obtain the following
matrix equation

[y(n, x)X(x) C(n(σn)− σn)
(
BT)n(σn)DT +

n−1
∑

l=1
pl(x)y(n− l, x)X(x) C(n(σn−l)− σn−l)

(
BT)n(σn−l)DT

+ pn(x)X(x)DT ]A

= g(x) +
m1
∑

i=0
λiX(x)Fi

t H f ,i C(n(αi)− αi)
(
BT)n(αi)DTA

+
m2
∑

j=0
λjX(x)Vj

tHv,j(x)C
(
n
(

β j
)
− β j

) (
BT)n(β j)DTA.

(30)

We get the following system of equations by setting the collocation points, [28], de-
scribed by xi = a + b−a

N i, i = 0, 1, . . . , N:

[y(n, xi) X(xi) C(n(σn)− σn)
(
BT)n(σn)DT +

n−1
∑

l=1
pl(xi)y(n− l, xi) X(xi) C(n(σn−l)− σn−l)

(
BT)n(σn−l)DT

+ pn(xi)X(xi)DT ]A

= g(xi) +
m1
∑

i=0
λiX(xi)Fi

t H f ,i C(n(αi)− αi)
(
BT)n(αi)DTA

+
m2
∑

j=0
λjX(xi)V

j
tHv,j(xi)C

(
n
(

β j
)
− β j

) (
BT)n(β j)DTA, i = 0, 1, . . . , N.

or in brief, the most important matrix equation is[
y(n)X C(n(σn)− σn)

(
BT)n(σn)DT +

n−1
∑

l=1
ply(n− l)X C(n(σn−l)− σn−l)

(
BT)n(σn−l)DT + pnXDT

−
m1
∑

i=0
λiXFi

t H f ,i C(n(αi)− αi)
(
BT)n(αi)DT −

m2
∑

j=0
λjXVjHjCjB

jD

]
A = G.

(31)

where

y(n− l) =




x(n(σn−l)−σn−l)
0 0 · · · 0

0 x(n(σn−l)−σn−l)
1 · · · 0

...
...

. . .
...

0 0 · · · x(n(σn−l)−σn−l)
N




, pl =




pl(x0) 0 · · · 0
0 pl(x1) · · · 0
...

...
. . .

...
0 0 · · · pl(xN)




for all l = 0, 1, . . . , n, and y(0) = [I](N+1)×(N+1), p0 = [I](N+1)×(N+1) are the
unit matrix,

X =




X(x0)
X(x1)

...
X(xN)


 =




1 x0 x2
0 · · · xN

0
1 x1 x2

1 · · · xN
1

...
...

... · · · ...
1 xN x2

N · · · xN
N


, X =




X(x0) 0 · · · 0
0 X(x1) · · · 0
...

...
. . .

...
0 0 · · · X(xN)




also, for each fractional order γ = {σn, σn−l , αi and β j, for all l = 1, 2, . . . , n, i = 0, 1, . . . , m1,
j = 0, 1, . . . , m2} we are putting
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C(n(γ)− γ) =




Γ(1)
Γ(n(γ)−γ+1) 0 · · · 0

0 Γ(2)
Γ(n(γ)−γ+2) · · · 0

...
...

. . .
...

0 0 · · · Γ(N+1)
Γ(n(γ)−γ+N+1)




(
BT)n(γ)

=




0 1 0
0 0 2
0 0 0

0 . . . 0
0 . . . 0
3 . . . 0

...
...

...
0 0 0
0 0 0

...
. . .

...
0 . . . N
0 . . . 0




n(γ)

,Fi
t =




tF i
00 tF i

01 · · · tF i
0N

tF i
10 tF i

11 · · · tF i
1N

...
...

. . .
...

tF i
N0 tF i

N1 · · · tF i
NN




,Vj
t =




tV
j
00 tV

j
01 · · · tV

j
0N

tV
j
10 tV

j
11 · · · tV

j
1N

...
...

. . .
...

tV
j
N0 tV

j
N1 · · · tV

j
NN




i = 0, 1, . . . , m1, j = 0, 1, . . . , m2
where

[
tF

i
m\
]
= 1
m!\!

∂m+\Fi(0,0)
∂xm∂t\

, i = 0, 1, . . . , m1, m, \ = 0, 1, . . . , N
[

tV
j
m\
]
= 1
m!\!

∂m+\Vj(0,0)
∂xm∂t\

, j = 0, 1, . . . , m2, m, \ = 0, 1, . . . , N

H f ,i =




h f ,i
00 h f ,i

01 · · · h f ,i
0N

h f ,i
10 h f ,i

11 · · · h f ,i
1N

...
...

. . .
...

h f ,i
N0 h f ,i

N1 · · · h f ,i
NN




, Hv,j(xi) =




hv,j
00 (xi) hv,j

01 (xi) · · · hv,j
0N(xi)

hv,j
10 (xi) hv,j

11 (xi) · · · hv,j
1N(xi)

...
...

. . .
...

hv,j
N0(xi) hv,j

N1(xi) · · · hv,j
NN(xi)




,i = 0, 1, . . . , N

where, respectively

[
h f ,i

rs

]
= bn(αi)−αi+r+s+1−an(αi)−αi+r+s+1

n(αi)−αi+r+s+1 , i = 0, 1, . . . , m1, r, s = 0, 1, . . . , N
[

hv,j
rs (xi)

]
= xi

n(βj)−βj+r+s+1−an(βj)−βj+r+s+1

n(β j)−β j+r+s+1
, j = 0, 1, . . . , m2, r, s = 0, 1, . . . , N

i = 0, 1, . . . , N

Vj
=




Vj
t 0 · · · 0

0 Vj
t · · · 0

...
...

. . .
...

0 0 · · · Vj
t




, Cj =




C
(
n
(

β j
)
− β j

)
0 · · · 0

0 C
(
n
(

β j
)
− β j

)
· · · 0

...
. . . . . .

...
0 0 · · · C

(
n
(

β j
)
− β j

)




Hj =




Hv,j(x0) 0 · · · 0
0 Hv,j(x1) · · · 0
...

...
. . .

...
0 0 · · · Hv,j(xN)


, Bj

=




(
BT)n(β j) 0 · · · 0

0
(
BT)n(β j) · · · 0

...
...

. . .
...

0 0 · · ·
(
BT)n(β j)




j = 0, 1, . . . , m2

D =




DT

DT

...
DT


, G =




g(x0)
g(x1)

...
g(xN)


, and A =




a0
a1
...

aN
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When the matrices
y(n), y(n− l), pn, pl , X, C(n(σn)− σn), C(n(σn−l)− σn−l), C(n(αi)− αi), C

(
n
(

β j
)
− β j

)
,

(
BT)n(σn),

(
BT
)n(σn−l)

,
(

BT
)n(αi)

,
(

BT
)n(β j)

, Fi
t, Vj

t, H f ,i, Hv,j(xi) and DT

For all l = 1, 2, . . . , n − 1, i = 0, 1, . . . , m1, j = 0, 1, . . . , m2, i = 0, 1, . . . , N. In
Equation (31) we have explained that their dimensions are similar to those of (N + 1)×
(N + 1). Moreover, in Equation (31), these matrices X, Vj, Hj, Cj, Bj and D,
for all j = 0, 1, . . . , m2 are written in full, their measured dimensions can be observed
by (N + 1) × (N + 1)2, (N + 1)2 × (N + 1)2, (N + 1)2 × (N + 1)2, (N + 1)2 × (N + 1)2,
(N + 1)2 × (N + 1)2, and (N + 1)2 × (N + 1) respectively.

As a result, the fundamental matrix Equation (31) that corresponds to Equation (1)
may be expressed as

WA = G or [W : G]. (32)

where

W = y(n)X C(n(σn)− σn)
(
BT)n(σn)DT +

n−1
∑

l=1
ply(n− l)X C(n(σn−l)− σn−l)

(
BT)n(σn−l)DT

+pnXDT −
m1
∑

i=0
λiXFi

t H f ,i C(n(αi)− αi)
(
BT)n(αi)DT −

m2
∑

j=0
λjXVjHjCjB

jD.

Note that, Equation (32) is a set of (N + 1) linear algebraic equations with unknown
Bessel coefficients A = [a0, a1, . . . , aN ]. The matrix form (29) for the conditions, on the
other hand, may be represented as

UkA = [Ck] or [Uk : Ck]; k = 0, 1, . . . , µ− 1, µ = max{dσne, dαm1e, dβm2e}. (33)

Uk =
µ−1
∑
`=0

[
〈k`X (a) + 〈k`X (b)

](
BT)`DTA.

= [uk0 uk1 uk2 . . . ukN ], k = 0, 1, . . . , µ− 1

Hence, we may solve Equation (1) under mixed conditions (2) by substituting the
rows of the matrices W and G for the rows of the matrices Uk and Ck, respectively.

W̃A = G̃.

The new augmented matrix (some time may be symmetry) of the preceding system is
as follows if the last µ-rows of the matrix (32) are replaced for simplicity:

[
W̃ : G̃

]
=




w00 w01 w02 · · · w0N : g(x0)
w10 w11 w12 · · · w1N : g(x1)
w20 w21 w22 · · · w2N : g(x2)

...
...

...
. . .

...
...

wN−m,0 wN−m,1 wN−m,2 · · · wN−m,N : g(xN−m)
u00 u01 u02 · · · u0N : c0
u10 u11 u12 · · · u1N : c1
u20 u21 u22 · · · u2N : c2

...
...

...
. . .

...
...

uµ−1,0 uµ−1,1 uµ−1,2 · · · uµ−1,N : cµ−1




(34)

Take note that rank W̃ = rank
[
W̃ : G̃

]
= N + 1. If it isn’t, the suggested technique

fails to offer a solution; but in this case, in this situation, the number of collocation points
(or, equivalently, the dimension of the matrix W̃) can be increased to get the specific or
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general answer. As a result, we may write A =
(

W̃
)−1

G̃, and therefore the elements
a0, a1, . . . , aN o f A are uniquely determined.

Moreover, select that N we define needs to be greater than µ, i.e.,
N > µ = max{dσne, dαm1e, dβm2e}. If it is not, the proposed strategy is thus unable
to give a solution, because matrix BT becomes a zero matrix, we only get zero solution.

5. Numerical Examples

In this work, we choose several examples where the exact solution already exists to
demonstrate the accuracy. They were all carried out on a computer using a Python program

V3.8.8 (2021). The least square errors (L.S.E) in tables are the values of
M
∑
i=0

[u(xi)− ũN(xi)]
2,

M ∈ N at M-selected collocation points xi . and the running time is also provided in
tabular form.

Example 1. Consider the linear Fredholm–Volterra integro-differential equation of multi-higher
fractional order, given by

C
0 D1.2

x u(x) + xC
0 D0.1

x u(x)− xu(x) = g(x) +
1∫

0

(
exu(t)− tC

0 D0.9
t u(t)

)
dt +

x∫

0

(
−(x− t)u(t) + 2xC

0 D1.8
t u(t)

)
dt

where 0 ≤ x, t ≤ 1

g(x) =
−2

Γ(1.8)
x0.8 − 2

Γ(2.9)
x2.9 +

1
Γ(1.9)

x1.9 +
4

Γ(2.2)
x2.2 − 1

6
ex +

1.1
Γ(3.1)

− 4.2
Γ(4.1)

− x2 +
7
6

x3 − 1
12

x4

with the boundary conditions

2u(1)(0) + u(1)(1) = 1 and u(1)(1) = −1

which is the exact solution u(x) = x(1− x).
Let us now determine the N-truncated Bessel series approximate solution uN(x)

u(x) ∼= uN(x) =
N

∑
∇=0

a∇J∇(x)

Here, from the considered, example we have:

σ0 = 0, σ1 = 0.1, σ2 = 1.2 → n(σ0) = σ0 = 0, n(σ1) = σ1 = 1, n(σ2) = σ2 = 2

α0 = 0, α1 = 0.9 → n(α0) = α0 = 0, n(α1) = α1 = 1

β0 = 0, β1 = 1.8 → n(β0) = β0 = 0, n(β1) = β1 = 2

µ = max{d1.2e, d0.9e, d1.8e } = 2

p1(x) = x, p2(x) = −x, F0(x, t) = ex, F1(x, t) = t, V0(x, t) = x− t, V1(x, t) = x,

λ0 = 1, λ1 = −1, λ0 = −1, λ1 = 2

Hence µ = 2 so take, the collocation point sets are
{

x0 = 0, x1 = 1
3 , x2 = 2

3 , x3 = 1
}

,
and the fundamental matrix equation of the given (LF-VFIDEs) is derived from Equation (31),
written as
[
y(2)X C(n(σ2)− σ2)

(
BT)n(σ2)DT + p1y(1)X C(n(σ1)− σ1)

(
BT)n(σ1)DT + p2XDT

−
1
∑

i=0
λiXFi

t H f ,i C(n(αi)− αi)
(
BT)n(αi)DT −

1
∑

j=0
λjXVjHjCjB

jD

]
A = G
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where

X(x) =
[
1 x x2 x3] , X =




X(0)
X(1/3)
X(2/3)

X(1)


 =




1 0 0 0
1 1/3 1/9 1/27
1 2/3 4/9 8/27
1 1 1 1


,

p1 =




0 0 0 0
0 1/3 0 0
0 0 2/3 0
0 0 0 1


, p2 =




0 0 0 0
0 − 1

3 0 0
0 0 − 2

3 0
0 0 0 −1


,

y(2) =




0 0 0 0
0 (1/3)0.8 0 0
0 0 (2/3)0.8 0
0 0 0 1


, y(1) =




0 0 0 0
0 (1/3)0.9 0 0
0 0 (2/3)0.9 0
0 0 0 1




C(n(σ2)− σ2) =




1
Γ(1.8) 0 0 0

0 1
Γ(2.8) 0 0

0 0 2
Γ(3.8) 0

0 0 0 6
Γ(4.8)




, C(n(σ1)− σ1) =




1
Γ(1.9) 0 0 0

0 1
Γ(2.9) 0 0

0 0 2
Γ(3.9) 0

0 0 0 6
Γ(4.9)




,

C(n(α1)− α1) =




1
Γ(1.1) 0 0 0

0 1
Γ(2.1) 0 0

0 0 2
Γ(3.1) 0

0 0 0 6
Γ(4.1)




, C(n(β1)− β1) =




1
Γ(1.2) 0 0 0

0 1
Γ(2.2) 0 0

0 0 2
Γ(3.2) 0

0 0 0 6
Γ(4.2)




BT =
(
BT)n(σ1) =

(
BT)n(α1) =




0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0


,
(
BT)2

=
(
BT)n(σ2) =

(
BT)n(β1) =




0 0 2 0
0 0 0 6
0 0 0 0
0 0 0 0


,

F0
t =




1 0 0 0
1 0 0 0
1
2 0 0 0
1
6 0 0 0


, F1

t =




0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0


, V0

t =




0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


, V1

t =




0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0


,

H f ,0 =




1
1

1
2

1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7


, H f ,1 =




1
1.1

1
2.1

1
3.1

1
4.1

1
2.1

1
3.1

1
4.1

1
5.1

1
3.1

1
4.1

1
5.1

1
6.1

1
4.1

1
5.1

1
6.1

1
7.1


, DT =




1 0 0 0
0 1

2 0 0
−1
4 0 1

8 0
0 −1

16 0 1
48


,

X =




X(0) 0 0 0
0 X(1/3) 0 0
0 0 X(2/3) 0
0 0 0 X(1)


, V0

=




V0
t 0 0 0

0 V0
t 0 0

0 0 V0
t 0

0 0 0 V0
t


, V1

=




V1
t 0 0 0

0 V1
t 0 0

0 0 V1
t 0

0 0 0 V1
t




H0 =




Hv,0(0) 0 0 0
0 Hv,0(1/3) 0 0
0 0 Hv,0(2/3) 0
0 0 0 Hv,0(1)


, H1 =




Hv,1(0) 0 0 0
0 Hv,1(1/3) 0 0
0 0 Hv,1(2/3) 0
0 0 0 Hv,1(1)


,

Hv,0(0) =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


,Hv,0(1/3) =




1
3

( 1
3 )

2

2
( 1

3 )
3

3
( 1

3 )
4

4
( 1

3 )
2

2
( 1

3 )
3

3
( 1

3 )
4

4
( 1

3 )
5

5
( 1

3 )
3

3
( 1

3 )
4

4
( 1

3 )
5

5
( 1

3 )
6

6
( 1

3 )
4

4
( 1

3 )
5

5
( 1

3 )
6

6
( 1

3 )
7

7




, Hv,0(2/3) =




2
3

( 2
3 )

2

2
( 2

3 )
3

3
( 2

3 )
4

4
( 2

3 )
2

2
( 2

3 )
3

3
( 2

3 )
4

4
( 2

3 )
5

5
( 2

3 )
3

3
( 2

3 )
4

4
( 2

3 )
5

5
( 2

3 )
6

6
( 2

3 )
4

4
( 2

3 )
5

5
( 2

3 )
6

6
( 2

3 )
7

7




,
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Hv,0(1) =




1
1

1
2

1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7


,Hv,1(0) =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


,Hv,1(1/3) =




( 1
3 )

1.2

1.2
( 1

3 )
2.2

2.2
( 1

3 )
3.2

3.2
( 1

3 )
4.2

4.2
( 1

3 )
2.2

2.2
( 1

3 )
3.2

3.2
( 1

3 )
4.2

4.2
( 1

3 )
5.2

5.2
( 1

3 )
3.2

3.2
( 1

3 )
4.2

4.2
( 1

3 )
5.2

5.2
( 1

3 )
6.2

6.2
( 1

3 )
4.2

4.2
( 1

3 )
5.2

5.2
( 1

3 )
6.2

6.2
( 1

3 )
7.2

7.2




,

Hv,1(2/3) =




( 2
3 )

1.2

1.2
( 2

3 )
2.2

2.2
( 2

3 )
3.2

3.2
( 2

3 )
4.2

4.2
( 2

3 )
2.2

2.2
( 2

3 )
3.2

3.2
( 2

3 )
4.2

4.2
( 2

3 )
5.2

5.2
( 2

3 )
3.2

3.2
( 2

3 )
4.2

4.2
( 2

3 )
5.2

5.2
( 2

3 )
6.2

6.2
( 2

3 )
4.2

4.2
( 2

3 )
5.2

5.2
( 2

3 )
6.2

6.2
( 2

3 )
7.2

7.2




,Hv,1(1) =




1
1.2

1
2.2

1
3.2

1
4.2

1
2.2

1
3.2

1
4.2

1
5.2

1
3.2

1
4.2

1
5.2

1
6.2

1
4.2

1
5.2

1
6.2

1
7.2


,

C1 =




C(n(β1)− β1) 0 0 0
0 C(n(β1)− β1) 0 0
0 0 C(n(β1)− β1) 0
0 0 0 C(n(β1)− β1)


,

B1
=




(
BT)n(β1) 0 0 0

0
(
BT)n(β1) 0 0

0 0
(
BT)n(β1) 0

0 0 0
(
BT)n(β1)




, G =




−0.28262788
−0.90165393
−0.47693449
0.94267344


 and D =




DT

DT

DT

DT




putting all above matrices in matrix Equation (32) and calculating it, this fundamental
matrix equation’s augmented matrix is:

[W : G] =




−1.07079233 −0.02572358 0.03539616 0.00866477 : −0.28262788
−1.85498405 −0.12829141 0.09107227 0.01393314 : −0.90165393
−2.40595015 −0.22844205 0.01161705 0.01241051 : −0.47693449
−2.7722549 −0.23879802 −0.19720588 −0.02479584 : 0.94267344




For our consider example, the boundary conditions from Equation (33) have the
following matrix forms:

UkA = [Ck] or [Uk : Ck]; k = 0, 1

or clearly
[U0 : C0] =

[
−0.5 1.3125 0.25 0.0625 : 1

]

[U1 : C1] =
[
−0.5 0.3125 0.25 0.0625 : −1

]

The new augmented matrix depending on conditions is constructed as follows from
the system (34):

[
W̃ : G̃

]
=




−1.07079233 −0.02572358 0.03539616 0.00866477 : −0.28262788
−1.85498405 −0.12829141 0.09107227 0.01393314 : −0.90165393
−0.5 1.3125 0.25 0.0625 : 1
−0.5 0.3125 0.25 0.0625 : −1




The Bessel coefficient matrix A is obtained by solving this system.

A =
[
−1.98357176× 10−06 2.00000000 − 8.00269502 6.01076421

]T

hence, for N = 3 the approximate solution of the problem is formed as

u3(x) = 0.0002242544x3 − 1.0003363816x2 + 1.0x− 0.0000019836
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for N = 6 and N = 10, similarly as steps above and running the general python pro-
gram which are written for this purpose we obtain the approximate solution of the
problem, respectively.

u6(x) = −0.0003537963x6 + 0.0007932088x5 − 0.0006209581x4 + 0.000229553x3

−1.0000240462x2 + 1.0x + 0.0000090551

and

u10(x) = 0.0000000661x10 − 0.0000002889x9 + 0.00000052947x8 − 0.00000053514x7

+0.000000328x6 − 0.00000012512x5 + 0.0000000293x4

−0.00000000370x3 − 0.999999999656939x2 + 1.0x + 0.00000000015

In Table 1, Comparison the exact solution u(x) with the approximate solution uN(x) of
Example 1 for N = 3, 6 and 10, respectively, in terms of least square error and running time.

Table 1. Compares the exact solution u(x) with the approximate solution uN(x) of Example 1.

xi
Exact Solution

Example 1.
N-Approximate Solution uN(x)

N = 3 N = 6 N = 10

0.0 0.00 −1.9835710× 10−06 9.05511829× 10−06 1.53060853× 10−10

0.1 0.09 8.99948769× 10−02 9.00089897 × 10−02 9.00000002× 10−02

0.2 0.16 1.59986355× 10−01 1.60009167× 10−01 1.60000000× 10−01

0.3 0.21 2.09973797 × 10−01 2.10009729× 10−01 2.10000000× 10−01

0.4 0.24 2.39958548× 10−01 2.40010676× 10−01 2.40000000× 10−01

0.5 0.25 2.49941953× 10−01 2.50012188× 10−01 2.50000000× 10−01

0.6 0.24 2.39925358× 10−01 2.40014679× 10−01 2.40000000× 10−01

0.7 0.21 2.09910109× 10−01 2.10018608× 10−01 2.10000000× 10−01

0.8 0.16 1.59897550× 10−01 1.60024025× 10−01 1.60000000× 10−01

0.9 0.09 8.98890288× 10−02 9.00298712× 10−02 9.00000005× 10−02

1.0 0.00 −1.141107× 10−04 3.30162295× 10−05 5.74892312× 10−10

L.S.E. 5.5474382× 10−08 3.72530728× 10−09 1.13502895× 10−18

Running Time/Sec 0.47589683 0.227055311 0.57032561

Example 2. Let us now consider the LF-VIFDEs on the closed bounded interval [0, 1] given by

C
0 D1.3

x u(x) +
x
2

C
0 D0.8

x u(x)+
√

xC
0 D0.5

x u(x) +
(

x2 + 1
)

u(x)

= g(x)+
1∫

0

(
(sin(x)− t)C

0 D0.9
t u(t) + 2(ex − t)C

0 D1.1
t u(t)

)
dt + 3

x∫

0

tsinh(x)C
0 D1.9

t u(t)dt

where

g(x) = 2
Γ(1.7) x0.7+ 1

Γ(2.2) x2.2 + 1
Γ(1.2) x1.2 + 2

Γ(2.5) x1.5√x + 2
Γ(1.5) x +

(
x2 + 1

)
(x + 1)2

−
(

2
Γ(3.1) +

2
Γ(2.1)

)
sin(x)− 4

Γ(2.9) ex − 6.6
Γ(3.1) x2.1sinh(x) +

(
4.2

Γ(4.1) +
2.2

Γ(3.1) +
7.6

Γ(3.9)

)

with the boundary conditions:

u (0) + u(1)(1) = 5 and u (1) + u(1)(0) = 6
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The exact solution is u(x) = (x + 1)2.
Let us now calculate the coefficients a∇, ∇ = 0 : N of approximate solution with the

aid of the truncated Bessel series:

u(x) ∼= uN(x) =
N

∑
∇=0

a∇J∇(x)

Here, from the considered example we have:

σ1 = 0.5, σ2 = 0.8, , σ3 = 1.3→ n(σ1) = σ1 = 1, n(σ2) = σ2 = 1, n(σ3) = σ3 = 2

α1 = 0.9, α2 = 1.1 → n(α1) = α1 = 1, n(α2) = α2 = 2

β1 = 1.9 → n(β1) = β1 = 2 , µ = max{d1.3e, d1.1e, d1.9e } = 2 and λ1 = 1, λ2 = 2, λ1 = 3

p1(x) = x
2 , p2(x) =

√
x, p3(x) =

(
x2 + 1

)
, F1(x, t) = sin(x)− t, F2(x, t) = (ex − t), V1(x, t) = tsinh(x)

Hence µ = 2 so take N = 3, the set of collocation points, and the fundamental matrix
equation of the given (LF-VFIDEs) is derived from Equation (31), written as

[y(3)X C(n(σ3)− σ3)
(
BT)n(σ3)DT + p1y(2)X C(n(σ2)− σ2)

(
BT)n(σ2)DT

+p2y(1)X C(n(σ1)− σ1)
(
BT)n(σ1)DT + p3XDT

−λ1XF1
t H f ,1 C(n(α1)− α1)

(
BT)n(α1)DT

−λ2XF2
t H f ,2 C(n(α2)− α2)

(
BT)n(α2)DT − λ1XV1H1C1B1D ]A = G

After inputting each of the parameters above by running the general python program,
which are written for this purpose for N = 3, we obtain the approximate solution of
the problem,

u3(x) = 0.0029061023x3 + 0.99568824199x2 + 2.0015004466x + 0.9984047624

Similarly, the approximate solution of the problem for N = 6 and 11, respectively,
we obtain

u6(x) = 4.353138854× 10−7x6 − 4.54065912× 10−5x5 + 5.511176789× 10−5x4

−1.135105524× 10−5x3 + 1.0000204x2 + 1.999983583x

+1.000013642

and

u11(x) = 3.2299188319× 10−7x11 − 1.5377530537× 10−6x10

+3.1687057159× 10−6x9 − 3.716458436× 10−6x8

+2.73904171× 10−6x7 − 1.319310342× 10−6x6

+4.181528996× 10−7x5 − 8.549654914× 10−8x4

+1.082189316× 10−8x3 + 0.9999999996x2 + 1.9999999996x

+1.0000000003.

In Table 2 comparison in terms of least square error and running time the exact solution
u(x) with the approximate solution uN(x) of example 2 for N = 3, 6 and 11, respectively.
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Table 2. Compares the exact solution u(x) with the approximate solution uN(x) of Example 2.

xi
Exact Solution

Example 2.
N-Approximate Solutions uN(x)

N = 3 N = 6 N = 11

0.0 1.00 0.99840476 1.00001364 1.00

0.1 1.21 1.2085146 1.2100122 1.21

0.2 1.44 1.43855563 1.44001116 1.44

0.3 1.69 1.6885453 1.69001058 1.69

0.4 1.96 1.95850105 1.96001056 1.96

0.5 2.25 2.24844031 2.25001115 2.25

0.6 2.56 2.55838052 2.56001232 2.56

0.7 2.89 2.88833911 2.89001391 2.89

0.8 3.24 3.23833352 3.24001556 3.24

0.9 3.61 3.60838119 3.6100167 3.61

1.0 4.00 3.99849955 4.00001642 4.00

L.S.E. 2.66633874× 10−05 1.94276005× 10−09 7.33991398× 10−19

Running Time/Sec 0.2821376323 0.6396300792

Figures 1 and 2 illustrate a comparison between the exact solution and approximate
solution of LF-VIFDEs of Examples 1 and 2, respectively. To show the result of the proposed
method to an exact solution, we present Tables 1 and 2, respectively. Each of the plots is
drawn with our Python program version 3.8.8 (2021).
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Example 3. Let us consider the linear Fredholm–Volterra fractional integro-differential equation
on the closed bounded interval [0,1]:

C
0 D0.73

x u(x) = g(x) +
1∫

0

(
t sin (

x
2
)C

0 D0.64
t u(t) + 2(x− t

2
)C

0 D1.64
t u(t)

)
dt +

x∫

0

(
−exC

0 D0.5
t u(t) + (−2)texC

0 D1.5
t u(t)

)
dt

where

g(x) =
∞

∑
i=0

[
2x

Γ(i + 2.36)
− xi+0.27

Γ(i + 1.27)
+

sin
( x

2
)
(i + 1.36)

Γ(i + 3.36)
− (i + 1.36)

Γ(i + 3.36)
− exxi+1.5

Γ(i + 2.5)
− 2(i + 1.5)exxi+2.5

Γ(i + 3.5)

]

with the boundary conditions

u(0) + u(1)(0) = −1 and u(1)− u(1)(1) = 1

which is the exact solution u(x) = 1− ex.
Let us now calculate the coefficients ar, r = 0 : N of approximate solution with the

aid of the truncated Bessel series:

u(x) ∼= uN(x) =
N

∑
r=0

arJr(x)

Here, from consider example we have:
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σ1 = 0.73→ n(σ1) = σ1 = 1

α1 = 0.64 → n(α1) = α1 = 1, α2 = 1.64 → n(α2) = α2 = 2

β1 = 0.5 → n(β1) = β1 = 1, β2 = 1.5 → n(β1) = β1 = 2

µ = max{dσ1e, dα2e, dβ2e} = max{d0.73e, d1.64e, d1.5e } = 2

p1(x) = 0, F1(x, t) = t sin
( x

2
)
, F2(x, t) =

(
x− t

2
)
, V1(x, t) = ex, V2(x, t) = tex and λ1 = 1, λ2 =

1, λ1 = −1, λ2 = −2.

Suppose that, we take N terms from the homogeneous part g(x):

g(x) =
N

∑
i=0

[
2x

Γ(i + 2.36)
− xi+0.27

Γ(i + 1.27)
+

sin
( x

2
)
(i + 1.36)

Γ(i + 3.36)
− (i + 1.36)

Γ(i + 3.36)
− exxi+1.5

Γ(i + 2.5)
− 2(i + 1.5)exxi+2.5

Γ(i + 3.5)

]

Hence µ = 2, the fundamental matrix equation of the given (LF-VFIDEs) is derived
from Equation (31), written as

[
y(1)X C(n(σ1)− σ1)

(
BT)n(σ1)DT − λ1XF1

t H f ,1 C(n(α1)− α1)
(
BT)n(α1)DT

−λ2XF2
t H f ,2 C(n(α2)− α2)

(
BT)n(α2)DT − λ1XV1H1C1B1D− λ2XV2H2C2B2D

]
A = G

We choose if N = 5, the approximate solution of the problem for N = 4, 10,
21, respectively

u4(x) = −0.0569736258x4 − 0.1665069441x3 − 0.49426610634x2 − 1.0017991281x

+0.001799128086

u10(x) = −0.0112791176x10 + 0.04361473251x9 − 0.07167515469x8 + 0.06498524957x7

−0.03711020557x6 + 0.00378578712x5 − 0.0441096211x4

−0.1664357675x3 − 0.4999839118x2 − 0.999999027x

−9.72893359856624× 10−7,

and

u21(x) = 2649.390397x21 − 26487.723779x20 + 123552.0169x19 − 357222.928001x18

+717359.135397x17 − 1062540.52114x16 + 1203203.42788x15

−1065423.12951x14 + 748326.26838x13 − 420462.50002x12

+189747.93897x11 − 68792.817648x10 + 19970.45119x9 − 4609.812041x8

+836.75503981x7 − 117.510711061x6 + 12.4665060412x5

−1.0098682157x4 − 0.11440971986x3 − 0.50180747163x2

−0.99996814632x − 3.1859671582× 10−5

we choose if N = 10, the approximate solution of the problem for N = 4, 10, 21,
respectively

u4(x) = −0.05759757087x4 − 0.1652553696x3 − 0.4950425756x2 − 1.001653973x + 0.001653973
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u10(x) = 3.399204141e− 6x10 − 2.0679446987e− 5x9 + 1.254303583e− 5x8

−0.000242474208x7 − 0.001356395456x6 − 0.008348879766x5

−0.0416618228x4 − 0.166667629x3 − 0.4999998846x2

−1.0000000056x + 5.656145543× 10−9,

and

u21(x) = 0.0366737297x21 − 0.36713669x20 + 1.714854990x19 − 4.9651991545x18

+9.9858420757x17 − 14.8143137167x16 + 16.8038086x15

−14.90654178x14 + 10.49049965x13 − 5.9069139812x12

+2.6719828271x11 − 0.97127108855x10 + 0.282792909x9

−0.0655249586x8 + 0.0117379624x7 − 0.00307302784x6

−0.008153528584x5 − 0.041680721487x4 − 0.1666659001x3

−0.5000000273x2 − 0.9999999995x − 4.670435338× 10−10

Similarly doing it for N = 16, the approximate solution of the problem for
N = 4, 10, 21, respectively

u4(x) = −0.057597577x4 − 0.165255357x3 − 0.495042583x2 − 1.001653971x + 0.0016539713

u10(x) = 3.4214653141e− 6x10 − 2.0612514452e− 5x9 + 1.2077128326e− 5x8

−0.000241586656x7 − 0.0013572657x6 − 0.0083483752x5

−0.0416620032x4 − 0.1666675894x3 − 0.499999889x2

−1.000000005x + 5.395456491× 10−9

and

u21(x) = −0.000949182285x21 + 0.00893091688x20 − 0.03880287140x19

+0.103101802x18 − 0.186859983473284x17 + 0.24354820561x16

−0.2337645213x15 + 0.1652048762x14 − 0.08287855594x13

+0.0253870484x12 − 0.0005131248x11 − 0.0043926365x10

+0.00281921684x9 − 0.0010956089x8 + 8.623002860e− 5x7

−0.00144403537x6 − 0.00832553568x5 − 0.0416674549x4 − 0.16666661x3

−0.500000002x2 − 0.99999999995x − 4.983565034× 10−11.

In Table 3 presents a comparison between the exact solution u(x) and approximate
solution uN(x), when we choose N = 5, 10, and 16, respectively. For each of them we chose
N = 4, 10, and 21, respectively depending on the least square error and running time.
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Table 3. Comparison between the exact solution u(x) and approximate solution uN(x) for Example 3.

(a)

xi
Exact Solution

Example 3.

N = 5

N-Approximate Solution uN(x)

N = 4 N = 10 N = 21

0.0 0.0 0.00179913 −9.72893360 × 10−7 −3.1859672× 10−5

0.1 −0.10517092 −0.10349565 −0.105171555 −0.10520278

0.2 −0.22140276 −0.21975456 −0.221402690 −0.22143482

0.3 −0.34985881 −0.34818173 −0.349857839 −0.34989091

0.4 −0.4918247 −0.49011807 −0.491822593 −0.49185648

0.5 −0.64872127 −0.64704118 −0.648717441 −0.64875193

0.6 −0.8221188 −0.82056543 −0.822111722 −0.82214657

0.7 −1.01375271 −1.0124419 −1.01373901 −1.01377394

0.8 −1.22554093 −1.22455843 −1.22551392 −1.22554873

0.9 −1.45960311 −1.45893959 −1.45955258 −1.45958517

1.0 −1.71828183 −1.71774668 −1.71820801 −1.71823455

L.S.E. 2.3130923× 10−05 8.99107006× 10−09 9.87875607× 10−09

Running Time/Sec 0.171678066 0.49988222 2.92118477

(b)

xi
Exact Solution

Example 3.

N = 10

N-Approximate Solution uN(x)

N = 4 N = 10 N = 21

0 0.0 1.65397131× 10−03 5.65614554× 10−09 −4.67043534× 10−10

0.1 −0.10517092 −1.03632867× 10−01 −1.05170912× 10−01 −1.05170919× 10−01

0.2 −0.22140276 −2.19892725× 10−01 −2.21402752× 10−01 −2.21402758 × 10−01

0.3 −0.34985881 −3.48324488× 10−01 −3.49858802 × 10−01 −3.49858808× 10−01

0.4 −0.4918247 −4.90265271× 10−01 −4.91824692× 10−01 −4.91824698× 10−01

0.5 −0.64872127 −6.47190428× 10−01 −6.48721264× 10−01 −6.48721271× 10−01

0.6 −0.8221188 −8.20713545 × 10−01 −8.22118794× 10−01 −8.22118801× 10−01

0.7 −1.01375271 −1.01258644 −1.01375270 −1.01375271

0.8 −1.22554093 −1.22469917 −1.22554092 −1.22554093

0.9 −1.45960311 −1.45908002 −1.45960311 −1.45960311

1 −1.71828183 −1.71789552 −1.71828182 −1.71828183

L.S.E. 1.89772271× 10−05 3.87412311× 10−16 2.32392057× 10−18

Running Time/Sec 0.187295436 0.515326499 2.749377012
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Table 3. Cont.

(c)

xi
Exact Solution

Example 3.

N = 16

N-Approximate Solution uN(x)

N = 4 N = 10 N = 21

0.0 0. 1.65397131 × 10−03 5.39545649× 10−09 −4.98356503× 10−11

0.1 −0.10517092 −1.03632867× 10−01 −1.05170913× 10−01 −1.05170918× 10−01

0.2 −0.22140276 −2.19892725× 10−01 −2.21402753× 10−01 −2.21402758× 10−01

0.3 −0.34985881 −3.48324488× 10−01 −3.49858802× 10−01 −3.49858808× 10−01

0.4 −0.4918247 −4.90265271× 10−01 −4.91824692× 10−01 −4.91824698× 10−01

0.5 −0.64872127 −6.47190428× 10−01 −6.48721265× 10−01 −6.48721271× 10−01

0.6 −0.8221188 −8.20713545× 10−01 −8.22118794× 10−01 −8.22118800× 10−01

0.7 −1.01375271 −1.01258644 −1.01375270 −1.01375271

0.8 −1.22554093 −1.22469917 −1.22554092 −1.22554093

0.9 −1.45960311 −1.45908002 −1.45960311 −1.45960311

1.0 −1.71828183 −1.71789552 −1.71828182 −1.71828183

L.S.E. 1.89771908× 10−05 3.4403856× 10−16 3.45079782× 10−20

Running Time/Sec 0.203105688 0.5199816226 2.90862059

Figure 3a–c illustrates a comparison between the exact solution and approximate
solution of (LF-VIFDEs) of equation above, respectively. To show the result of the proposed
method to an exact solution, we present Table 3, respectively. Each of the plots is drawn
with our Python program version 3.8.8 (2021).

Example 4. Suppose that the following linear Fredholm–Volterra fractional integro-differential
equation given by

C
0 D0.8

x u(x) = g(x) +
2∫

0

(
1
2 (t− 2)C

0 D0.3
t u(t) + (t + cos(x))C

0 D1.3
t u(t)

)
dt

+
x∫

0

(
1
4
( x−t

2
)
u(t) + [tan(x)t]C0 D2.7

t u(t)
)

dt, 0 ≤ x, t ≤ 2

where

g(x) = 2
Γ(2.2) x1.2 − 1

Γ(1.2) x0.2 − (2.7)
Γ(4.7)23.7 − 1

Γ(3.7)

(
(1.7)23.7 − 23.7 − (1.7)21.7)

− 1
Γ(2.7)

(
21.7 + 22.7 cos(x)

)
− 1

16

(
1
6 x4 − 1

3 x3 + x2
)

with the boundary conditions

u (0) + u (2) = 4, u(1)(0) + u(1)(2) = 2 and u(2)(0) + u(2)(2) = 4

which is the exact solution u(x) = x2 − x + 1.
Now let us find the approximate solution given by the N-truncated Bessel series

u(x) ∼= uN(x) =
N

∑
r=0

ar Jr(x)
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Here, from consider example we have:

σ1 = 0.8→ n(σ1) = σ1 = 1

α1 = 0.3, α2 = 1.3→ n(α1) = α1 = 1, n(α2) = α2 = 2

β0 = 0, β1 = 2.7 → n(β0) = β0 = 0, n(β1) = β1 = 3

µ = max{d0.8e, d1.3e, d2.7e} = 3 , λ1 = 1
2 , λ2 = 1, λ0 = 1

4 , λ1 = 1

and p1(x) = 0, F1(x, t) = t− 2, F2(x, t) = t + cos(x), V0(x, t) =
( x−t

2
)
, V1(x, t) = tan(x)t,

from Equation (31), the fundamental matrix equation of the given problem is written as
[
y(1) X C(n(σ1)− σ1)

(
BT)n(σ1)DT − λ1XF1

t H f ,1 C(n(α1)− α1)
(
BT)n(α1)DT

−λ2XF2
t H f ,2 C(n(α2)− α2)

(
BT)n(α2)DT − λ0XV0H0D− λ1XV1H1C1B1D

]
A = G

Thus, the approximate solution of the problem for N = 5, 9, 12, respectively

u5(x) = 0.00595039974990515x5 − 0.0295085156834566x4 + 0.0436273982107945x3

+ 0.98520400357289x2 − 0.998052135471447x + 0.99399626495166,

u9(x) = −6.93792068979952× 10−7x9 + 6.12616976553793× 10−6x8 − 2.13390478665744× 10−5x7

+3.69079850914571× 10−5x6 − 3.01713615634192× 10−5x5

+1.16291867668927× 10−6x4 + 1.66943823538962× 10−5x3

+0.999993226980557x2 − 0.999998942794685x + 0.99999725431996,

and
u12(x) = −5.96684668513465× 10−10x12 + 6.51569719257085× 10−9x11

−3.10471674650442× 10−8x10 + 8.49087433427835× 10−8x9

−1.47156926969634× 10−7x8 + 1.67915537193858× 10−7x7

−1.26723286902409× 10−7x6 + 6.23462096628266× 10−8x5

−2.05277535525461× 10−8x4 + 5.82167120066757× 10−9x3

+0.999999998891922x2 − 0.999999999885384x + 0.999999999582705.

In Table 4. presents a comparison between the exact solution u(x) and approximate
solution uN(x) for N = 5, 9 and 12, respectively, depending on the least square error and
running time.

Table 4. Comparison between the exact solution u(x) and approximate solution uN(x) for Example 4.

xi
Exact Solution

Example 4.
N-Approximate Solution uN(x)

N = 5 N = 9 N = 12

0.0 1.00 0.99399626 0.99999725 1.00

0.1 0.91 0.90408383 0.90999731 0.91

0.2 0.84 0.83409771 0.83999732 0.84

0.3 0.79 0.78420236 0.78999737 0.79

0.4 0.76 0.75450572 0.7599975 0.76

0.5 0.75 0.74506629 0.74999774 0.75
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Table 4. Cont.

xi
Exact Solution

Example 4.
N-Approximate Solution uN(x)

N = 5 N = 9 N = 12

0.6 0.76 0.75590034 0.75999808 0.76

0.7 0.79 0.78698902 0.78999852 0.79

0.8 0.84 0.83828549 0.83999904 0.84

0.9 0.91 0.90972207 0.90999961 0.91

1.0 1.00 1.00121742 1.00000023 1.00

L.S.E. 0.0002244 4.72053254× 10−11 1.11096853× 10−18

Running Time/Sec 0.568155527 1.649296999 6.3344522

Figure 4 illustrates a comparison between the exact solution and approximate solution
of linear (FVIFDEs). To show the result of the proposed method to an exact solution, we
present Table 4. Each of the plots is drawn with our Python program version 3.8.8 (2021).
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6. Conclusions

Multi-fractional order linear integro-differential equations are generally difficult to
solve analytically. In many situations, it is necessary to approximate solutions. In this
work, we present a new technique for numerically solving the linear Fredholm–Volterra
integro-fractional differential equation of multi-fractional order of the Caputo sense using
first-order Bessel polynomials. The comparison of the results achieved with the exact
solution, the exact solution, and the other methods suggests that the procedure is very
effective and convenient. We introduced this with some illustrative examples of the
approach and their least square error to minimize the error terms on the specified domain
and running time are also given in tabular form. It is obvious that as N rises, the error rate
reduces and the answer becomes closer to the exact solution. One significant benefit of
the technique is that the Bessel coefficients of the solution may be determined relatively
quickly using computer code developed in Python v3.8.8 (2021). As an example, consider
the Python v3.8.8 (2021).

Future directions: Using the residual error function, we can enhance the Bessel col-
location method for solving the multi-high fractional-order system of Fredholm–Volterra
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integro-differential equations and their delay. This technique can also be used to make an
accurate error estimation.
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Abstract: In this paper, we develop a Hermite cubic spline collocation method (HCSCM) for solving
variable-order nonlinear fractional differential equations, which apply C1-continuous nodal basis
functions to an approximate problem. We also verify that the order of convergence of the HCSCM
is about O(hmin{4−α,p}) while the interpolating function belongs to Cp(p ≥ 1), where h is the mesh
size and α the order of the fractional derivative. Many numerical tests are performed to confirm
the effectiveness of the HCSCM for fractional differential equations, which include Helmholtz
equations and the fractional Burgers equation of constant-order and variable-order with Riemann-
Liouville, Caputo and Patie-Simon sense as well as two-sided cases.

Keywords: collocation method; fractional calculus; hermite cubic spline; fractional burgers equation

1. Introduction

As a powerful tool for modeling a broad range of non-classical phenomena, fractional
calculus has already gained much attention from various science and engineering fields
during recent decades. For models of anomalous transport processes and diffusion, there
are a lot of fractional partial differential equations proposed in publications [1,2] as well as
for the modeling of frequency dependent damping behavior such as in viscoelastic, contin-
uum and statistical mechanics, solid mechanic, economics [3,4], and so on. For modelling
the energy supply-demand system, the Caputo-Fabrizio fractional derivative is applied
and leads to an interesting fractional energy supply-demand equation [5]. With extensive
applications of fractional calculus operators, many fractional differential equations (FDEs)
are presented.

Meanwhile, there is increasing demand for a robust method to produce a high accuracy
solution to FDEs. Publications on numerical methods for FDEs are largely substantial.
A considerable number of them are based on finite difference, see [6–17] and the references
therein. There are many works based on finite element methods, see [18–23]. Methods
based on spectral/pseudo-spectral or collocation methods, even the spectral element
method, can be seen in [24–33].

The main challenge of approximating FDEs is the precision deterioration caused by
singularity of fractional derivatives [34]. For the spectral-type methods, which are one of
the most popular numerical methods due to their high accuracy [35–38], the singularity
of endpoints may damage “the spectral accuracy”. Spectral or collocation methods using
fractional polynomials rather than polynomials as basis functions provide a promising way
to develop an efficient algorithm for numerically solving FDEs and even fractional operator-
related problems. There are theoretical and practical efforts involved in publications such
as [29,39–48].

The demand of flexibility may lead researchers to pursue a multi-domain method or
domain decomposition method. A multi-domain spectral collocation method (MDSCM)
is suggested to numerically solve FDEs [49]. Authors make use of piecewise continuous
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(C0) nodal basis functions to approximate the problem. However, a piecewise continuous
function may have infinite derivatives of fractional-order. Let us introduce the following
result from [49]:

Lemma 1. Let α ∈ (0, 2) be a constant, and a, b, c ∈ R such that a < c < b. If u ∈ C2[a, c] ∩
C2[c, b] ∩ C[a, b] and u′(c−) and u′(c+) exist, then

RLDα
a,xu(x) =

1

∑
k=0

(x− a)k−α

Γ(k + 1− α)
u(k)(a) +

(x− c)1−α

Γ(2− α)
[u′(c+)− u′(c−)] + s(x),

for any x ∈ (c, b), where

s(x) =

{ 1
Γ(3−α)

d
dx
[∫ x

a u′′(τ)(x− τ)2−αdτ
]
, if α ∈ (0, 1),

1
Γ(4−α)

d2

dx2

[∫ x
a u′′(τ)(x− τ)3−αdτ

]
, if α ∈ (1, 2).

Here, the RLDα
a,x denotes the left Riemann-Liouville fractional derivative of α-order; we will

give its definition in the following section. The above lemma shows that limx→c RLDα
a,xu(x) =

∞ if the conditions u′(c+) 6= u′(c−) and α > 1 are satisfied. To overcome this drawback,
C1-continuous nodal basis functions are needed. It is well-known that spline functions are
a special class of piecewise polynomials, which provide continuous differentiable solutions over
the whole spatial domain with great accuracy. One promising candidate as a C1-continuous
nodal basis function is the Hermite cubic spline function.

Spline collocation methods are successfully applied to numerical approximation of
differential equations (see [50–52] and references therein). However, there are a few publica-
tions devoted to the spline collocation method for FDEs. Recently, Liu et al. [53] presented
an interesting result of stability and convergence of quadratic spline collocation method for
time-dependent fractional diffusion equations. Majeed et al. [54] applied the cubic B-spline
collocation method to solve time fractional Burgers’ and Fisher’s equations. Khalid et al. [55]
presented a non-polynomial quintic spline collocation method to solve fourth-order fractional
boundary value problems involving products terms. Emadifar et al. [56] explored exponential
spline interpolation with multiple parameters to find solutions of fractional boundary value
problem and conducted the convergence analysis for this technique.

In this paper, our aim is to develop a Hermite cubic spline collocation method
(HCSCM) for solving variable-order nonlinear fractional differential equations, which
makes use of C1-continuous nodal basis functions to approximate a problem. In particular,
the collocation fractional differentiation matrix is derived for fractional derivatives in vari-
ous senses including Riemann-Liouville, Caputo, Patie-Simon. The main contributions of
this work are as follows:

• A set of C1 nodal basis functions are constructed and the corresponding collocation
fractional differentiation matrix is derived for the discretization.

• Making use of the Hermite cubic spline collocation method, numerical solution could
be found for variable-order nonlinear fractional differential equations. The order of
convergence of the HCSCM is also analysed for the left Riemann-Liouville case.

• The effectiveness of the HCSCM is confirmed by solving fractional Helmholtz equa-
tions of constant-order and variable-order. With application the HCSCM to the frac-
tional Burgers equation, the numerical fractional diffusion is simulated with differ-
ent senses.

The paper is organized as follows: in the next Section, some definitions and properties
are reviewed for later discussion. The Hermite cubic spline collocation method (HCSCM)
is presented in Section 3. The key part is to set up the collocation fractional differentiation
matrix. In Section 4, the order of convergence of the HCSCM approximation is analyzed
for the left Riemann-Liouville case. Several numerical tests are presented in Section 5.
This includes applying HCSCM to fractional Helmholtz equations and fractional Burgers
equations. Finally, we conclude in Section 6.
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2. Preliminaries

In this Section, some definitions of fractional calculus are reviewed for subsequent
discussions. The most common-used definitions of fractional derivatives are possibly the
Riemann-Liouville’s and the Caputo’s, found in various publications, such as ([57,58]).
The following definitions are variable-order versions, which provide constant-order defini-
tions when α(x) ≡ α is a constant in the formulas.

Definition 1. For a function f (x), x ∈ [xL, xR], the left Riemann-Liouville fractional integral of
order α(x) > 0 is defined as

xL Iα(x)
x f (x) :=

1
Γ(α(x))

∫ x

xL

(x− s)α(x)−1 f (s)ds, (1)

and the right Riemann-Liouville fractional integral of order α(x) > 0 is defined as

x Iα(x)
xR f (x) :=

1
Γ(α(x))

∫ xR

x
(s− x)α(x)−1 f (s)ds, (2)

where Γ(·) is the Euler’s gamma function.

Definition 2. For a function f (x), x ∈ [xL, xR], the left Riemann-Liouville fractional derivative
of order α(x) > 0 is defined as

RLDα(x)
xL ,x f (x) :=

1
Γ(n− α(x))

[
dn

dξn

∫ ξ

xL

(ξ − s)n−α(x)−1 f (s)ds
]

ξ=x
, (3)

and the right Riemann-Liouville fractional derivative of order α(x) > 0 is defined as

RLDα(x)
x,xR f (x) :=

(−1)n

Γ(n− α(x))

[
dn

dξn

∫ xR

ξ
(s− ξ)n−α(x)−1 f (s)ds

]

ξ=x
, (4)

where n is the positive integer such that n− 1 < α(x) < n.

Definition 3. For a function f (x), x ∈ [xL, xR], the left Caputo fractional derivative of order
α(x) > 0 is defined as

CDα(x)
xL ,x f (x) :=

1
Γ(n− α(x))

∫ x

xL

(x− s)n−α(x)−1 f (n)(s)ds, (5)

and the right Caputo fractional derivative of order α(x) > 0 is defined as

CDα(x)
x,xR f (x) :=

(−1)n

Γ(n− α(x))

∫ xR

x
(s− x)n−α(x)−1 f (n)(s)ds, (6)

where n is the positive integer such that n− 1 < α(x) < n.

The well-known relationship between Riemann-Liouville and the Caputo derivative
is as follows:

Lemma 2. If RLDα(x)
xL ,x f (x), CDα(x)

xL ,x f (x), RLDα(x)
x,xR f (x) and CDα(x)

x,xR f (x) exist, then

RLDα(x)
xL ,x f (x) = CDα(x)

xL ,x f (x) +
n−1

∑
k=0

f (k)(xL)

Γ(k + 1− α(x))
(x− xL)

k−α(x), (7)

and

RLDα(x)
x,xR f (x) = CDα(x)

x,xR f (x) +
n−1

∑
k=0

(−1)n−j f (k)(xR)

Γ(k + 1− α(x))
(xR − x)k−α(x). (8)
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Besides the common-used definitions above, the fractional diffusion operators which
limit the order 1 < α(x) ≤ 2 are also considered. A definition was proposed by Patie and
Simon in [59] as follows.

Definition 4. For a function f (x), x ∈ [xL, xR], the left Patie-Simon (or mixed Caputo) fractional
derivative of order 1 < α(x) < 2 is defined as

PSDα(x)
xL ,x f (x) :=

1
Γ(2− α(x))

[
d

dξ

∫ ξ

xL

(ξ − s)1−α(x) f
′
(s)ds

]

ξ=x
, (9)

and the right Patie-Simon (or mixed Caputo) fractional derivative of order 1 < α(x) < 2 is
defined as

PSDα(x)
x,xR f (x) :=

1
Γ(2− α(x))

[
d

dξ

∫ xR

ξ
(s− ξ)1−α(x) f

′
(s)ds

]

ξ=x
. (10)

From the above definitions and Lemma 2, hold the following relationships:

Lemma 3. If 1 < α(x) < 2 and RLDα(x)
xL ,x f (x), CDα(x)

xL ,x f (x), PSDα(x)
xL ,x f (x), RLDα(x)

x,xR f (x), CDα(x)
x,xR

and PSDα(x)
x,xR f (x) exist, then

RLDα(x)
xL ,x f (x) = PSDα(x)

xL ,x f (x) +
f (xL)

Γ(1− α(x))
(x− xL)

−α(x), (11)

and

RLDα(x)
x,xR f (x) = PSDα(x)

x,xR f (x) +
f (xR)

Γ(1− α(x))
(xR − x)−α(x), (12)

and

PSDα(x)
xL ,x f (x) = CDα(x)

xL ,x f (x) +
f ′(xL)

Γ(2− α(x))
(x− xL)

1−α(x), (13)

and

PSDα(x)
x,xR f (x) = CDα(x)

x,xR f (x) +
f ′(xR)

Γ(2− α(x))
(xR − x)1−α(x). (14)

Proof. Since

∫ ξ

xL

(ξ − s)1−α(x) f (s)ds =
(ξ − xL)

2−α(x)

2− α(x)
f (xL) +

1
2− α(x)

∫ ξ

xL

(ξ − s)2−α(x) f ′(s)ds.

Then note that 1 < α(x) < 2,

d2

dξ2

[∫ ξ

xL

(ξ − s)1−α(x) f (s)ds
]

= (1− α(x))(ξ − xL)
−α(x) f (xL) +

d
dξ

∫ ξ

xL

(ξ − s)1−α(x) f ′(s)ds].

The equality (11) is obtained by dividing factor Γ(2− α(x)). Other results can be
derived by a similar argument.

There exist the following well-known properties:

270



Symmetry 2021, 13, 872

Lemma 4. Let m be an integer number, the following properties hold for x ∈ [xL, xR] and Riemann-
Liouville fractional calculus

xL Iα(x)
x (x− xL)

m =
m!

Γ(m + α(x) + 1)
(x− xL)

m+α(x),

x Iα(x)
xR (xR − x)m =

m!
Γ(m + α(x) + 1)

(xR − x)m+α(x),

RLDα(x)
xL ,x (x− xL)

m =
m!

Γ(m− α(x) + 1)
(x− xL)

m−α(x),

RLDα(x)
x,xR (xR − x)m =

m!
Γ(m− α(x) + 1)

(xR − x)m−α(x),

(15)

and for the Caputo fractional derivative,

CDα(x)
xL ,x (x− xL)

m =

{
m!

Γ(m−α(x)+1) (x− xL)
m−α(x), if m > α(x),

0, if m < α(x),

CDα(x)
x,xR (xR − x)m =

{
m!

Γ(m−α(x)+1) (xR − x)m−α(x), if m > α(x),
0, if m < α(x),

(16)

and for the Patie-Simon fractional derivative of 1 < α(x) < 2,

PSDα(x)
xL ,x (x− xL)

m =

{
m!

Γ(m−α(x)+1) (x− xL)
m−α(x), if m > 0,

0, if m = 0,

PSDα(x)
x,xR (xR − x)m =

{
m!

Γ(m−α(x)+1) (xR − x)m−α(x), if m > 0,
0, if m = 0.

(17)

The following operators with top-tilde are useful in HCSCM for x > xR,

xL∗ Ĩα(x)
xR f (x) :=

1
Γ(α(x))

∫ xR

xL

(x− s)α(x)−1 f (s)ds, (18)

and for x < xL,

xL Ĩα(x)
xR∗ f (x) :=

1
Γ(α(x))

∫ xR

xL

(s− x)α(x)−1 f (s)ds, (19)

and for x > xR,

RLD̃α(x)
xL∗,xR f (x) :=

1
Γ(n− α(x))

[
dn

dξn

∫ xR

xL

(ξ − s)n−α(x)−1 f (s)ds
]

ξ=x
, (20)

and for x < xL,

RLD̃α(x)
xL ,xR∗ f (x) :=

(−1)n

Γ(n− α(x))

[
dn

dξn

∫ xR

xL

(s− ξ)n−α(x)−1 f (s)ds
]

ξ=x
. (21)

Operators CD̃α(x)
xL∗,xR , CD̃α(x)

xL ,xR∗,PSD̃α(x)
xL∗,xR , PSD̃α(x)

xL ,xR∗ are defined similarly.

Lemma 5. Let xL < xc < xR and x ∈ (xc, xR], then

xL Iα(x)
x f (x) = xL∗ Ĩα(x)

xc
f (x) + xc Iα(x)

x f (x),

RLDα(x)
xL ,x f (x) = RLD̃α(x)

xL∗,xc f (x) + RLDα(x)
xc ,x f (x),

CDα(x)
xL ,x f (x) = CD̃α(x)

xL∗,xc f (x) + CDα(x)
xc ,x f (x),

PSDα(x)
xL ,x f (x) = PSD̃α(x)

xL∗,xc f (x) + PSDα(x)
xc ,x f (x),

(22)
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and when x ∈ [xL, xc), we have

x Iα(x)
xR f (x) = x Iα(x)

xc f (x) + xc Ĩα(x)
xR∗ f (x),

RLDα(x)
x,xR f (x) = RLDα(x)

x,xc f (x) + RLD̃α(x)
xc ,xR∗ f (x),

CDα(x)
x,xR f (x) = CDα(x)

x,xc f (x) + CD̃α(x)
xc ,xR∗ f (x),

PSDα(x)
x,xR f (x) = PSDα(x)

x,xc f (x) + PSD̃α(x)
xc ,xR∗ f (x).

(23)

Proof. Since
∫ x

xL

(x− s)α(x)−1 f (s)ds =
∫ xc

xL

(x− s)α(x)−1 f (s)ds +
∫ x

xc
(x− s)α(x)−1ds,

Then the first equality in (22) is obtained by dividing factor Γ(α(x)) and the definitions
(1) and (18). Other results can be derived by a similar argument.

If D∗α(x) and Dα(x)∗ represent all left-sided and right-sided definitions of the above-
mentioned, respectively, then the two-sided fractional derivative can be written as

Dα(x)
r := rD∗α(x) + (1− r)Dα(x)∗, 0 ≤ r ≤ 1. (24)

3. Hermite Cubic Spline Collocation Method(HCSCM)

In the Section, the HCSCM is presented. The key role of HCSCM is the collocation
fractional differentiation matrix.

3.1. Fractional Differentiation Matrix (FDM) for HCSCM

Let Λ := (xL, xR), the first step is to divide the interval Λ into N elements, that is,

xL = x0 < x1 < · · · < xN = xR.

Denote Ii = [xi−1, xi], i = 1, 2, ..., N the i−th element and hi = xi − xi−1 the length
of Ii. Let PI

N be the collection of all algebraic polynomials defined on interval I with degree
at most N. The piecewise Hermite cubic polynomial space is

VN = {v ∈ C1(Λ) : v|Ii ∈ PIi
3 , i = 1, 2, ..., N}.

which is defined by the following set of nodal basis functions. It contains 2N + 2 functions
as follows. The first two functions as

ϕ0(x) =

{ (
1 + 2 x−x0

h1

)(
1− x−x0

h1

)2
, if x ∈ I1,

0, otherwise,

and

φ0(x) =

{ (
x−x0

h1

)(
1− x−x0

h1

)2
h1, if x ∈ I1,

0, otherwise.

For i = 1, 2, ..., N − 1,

ϕi(x) =





(
3− 2 x−xi−1

hi

)(
x−xi−1

hi

)2
, if x ∈ Ii,(

1 + 2 x−xi
hi+1

)(
1− x−xi

hi+1

)2
, if x ∈ Ii+1,

0, otherwise,
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and

φi(x) =





−
(

1− x−xi−1
hi

)(
x−xi−1

hi

)2
hi, if x ∈ Ii,(

x−xi
hi+1

)(
1− x−xi

hi+1

)2
hi+1, if x ∈ Ii+1,

0, otherwise.

and the last two functions as

ϕN(x) =

{ (
3− 2 x−xN−1

hN

)(
x−xN−1

hN

)2
, if x ∈ IN ,

0, otherwise,

and

φN(x) =

{
−
(

1− x−xN−1
hN

)(
x−xN−1

hN

)2
hN , if x ∈ IN ,

0, otherwise.

Therefore,
VN = span {ϕi, φi, i = 0, 1, ..., N}.

If uN ∈ VN , then can be expanded as

uN(x) =
N

∑
i=0

(
uN(xi)ϕi(x) + u′N(xi)φi(x)

)
.

In each element Ii, xc
i,1, xc

i,2 ∈ Ii are the collocation points, where

xc
i,1 = xi−1 + σi,1hi, xc

i,2 = xi−1 + σi,2hi, i = 1, 2, ..., N,

and 0 ≤ σi,1 < σi,2 ≤ 1. In fact, a choice of this points is the Gauss-type quadrature

nodes, σi,1 = (1− σi,2) =
√

3
3 , which is named by orthogonal spline collocation. However,

the stable collocation points may not be symmetric in the view of [60,61].
As a collocation approximation to the α(x)th-order differential operators defined

in Section 2, we denote by Dα the collocation fractional differentiation matrix, which satis-
fies

(DαuN)l = Dα(xc
ij)uN(xc

ij), j = 1, 2; i = 1, 2, ..., N. (25)

The structure of the collocation fractional differentiation matrix (FDM) may dif-
fer with the ordering of the collocation points and the unknowns. In natural ordering
l = 2(i− 1) + j, we have

u = [u′0, u1, u′1, · · · , uN−1, u′N−1, u′N ]
T ,

xc = [xc
11, xc

12, xc
21, xc

22, · · · , xc
N1, xc

N2]
T .

(26)

and Dα with Dirichlet boundary conditions is

Dα =




Dφ0(xc
11) Dϕ1(xc

11) Dφ1(xc
11) · · · DφN(xc

11)
Dφ0(xc

12) Dϕ1(xc
12) Dφ1(xc

12) · · · DφN(xc
12)

...
...

...
...

Dφ0(xc
N1) Dϕ1(xc

N1) Dφ1(xc
N1) · · · DφN(xc

N1)
Dφ0(xc

N2) Dϕ1(xc
N2) Dφ1(xc

N2) · · · DφN(xc
N2)




, (27)

hereD = Dα(xc
ij) is one of the fractional differential operators defined in Section 2. Typically,

the matrix D is block-triangular for left and right fractional operators.

Remark 1. According to the Lemma 2, Lemma 3 and the special nodal basis functions, the col-
location FDM Dα of the Riemann-Liouville operators is equal to the corresponding FDM of
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the Patie-Simon operators. For the Caputo operators, the corresponding FDM is different only from
the first or last column.

3.2. Computing the Entries of FDM

For ease of computing, operations are shifted from an arbitrary interval [a, b] to
the reference interval [−1, 1]. Let the linear transformation

x =
h
2
(y + 1) + a, or y =

2
h
(x− a)− 1, h := b− a (28)

shift functions f (x), α(x) defined on the interval [a, b] to f̂ (y), α̂(y) on the reference interval
[−1, 1]. Then we have the following relations:

a Iα(x)
x f (x) =

(
h
2

)α̂(y)

−1 Iy
α̂(y) f̂ (y),

x Iα(x)
b f (x) =

(
h
2

)α̂(y)

y I1
α̂(y) f̂ (y),

Dα(x) f (x) =
(

2
h

)α̂(y)
Dα̂(y) f̂ (y),

(29)

here Dα(x) be one of the seven: RLDα(x)
a,x , RLDα(x)

x,b , CDα(x)
a,x , CDα(x)

x,b ,PSDα(x)
a,x ,PSDα(x)

x,b , Dα(x)
r .

For the tilde operators, the following relations also hold:

a∗ Ĩα(x)
b f (x) =

(
h
2

)α̂(y)

−1∗ Ĩ α̂(y)
1 f̂ (y),

a Ĩα(x)
b∗ f (x) =

(
h
2

)α̂(y)

−1 Ĩ1∗
α̂(y) f̂ (y),

D̃α(x) f (x) =
(

2
h

)α̂(y)
D̃α̂(y) f̂ (y),

(30)

here D̃α(x) can be one of the six: RLD̃α(x)
a∗,b , RLD̃α(x)

a,b∗ , CD̃α(x)
a∗,b , CD̃α(x)

a,b∗ ,PSD̃α(x)
a∗,b , PSD̃α(x)

a,b∗ .
The nodal basis functions presented in Section 3, are the so-called shape functions

after being transferred by (28), that is,

ξ1(y) : = (2 + y)
(

1− y + 1
2

)2
,

ξ2(y) : =
(

y + 1
2

)(
1− y + 1

2

)2
, (except factor hi),

ξ3(y) : = (2− y)
(

y + 1
2

)2
,

ξ4(y) : = −
(

1− y + 1
2

)(
y + 1

2

)2
, (except factor hi),

(31)

and y ∈ [−1, 1]. The Hermite Spline collocation method will perform all the operators
mentioned above on the shape functions (31).

4. Order of Convergence of the Approximation with HCSCM

In this Section, the order of convergence of the approximation with HCSCM is anal-
ysed. Typically, the left Riemann-Liouville fractional derivative is considered. For conve-
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nience of analysis, denote Dα = RLDα(x)
xL ,x and let hi = xi − xi−1 = h, σi,1 = σ1, σi,2 = σ2, i =

1, 2, ..., N. Then xi = x0 + ih, i = 0, 1, ..., N and the collocation points

xc
i,1 = x0 + (i− 1 + σ1)h, xc

i,2 = x0 + (i− 1 + σ2)h, i = 1, 2, ..., N.

Let ΠN : C1(Λ)→ VN be the piecewise Hermite cubic interpolation operator, deter-
mined uniquely by

ΠN f (xi) = f (xi),
d

dx
(ΠN f )(xi) = f ′(xi), i = 0, 1, ..., N,

for every f ∈ C1(Λ).
For a function u(x) ∈ C(Λ), the maximum norm is defined by

‖u‖∞ = max
x∈Λ
|u(x)|.

The following results are related to the interpolation errors [62].

Lemma 6. Let u(x) ∈ C4(Λ). Then
∥∥∥∥

dj

dxj (u−ΠNu)
∥∥∥∥

∞
≤ Ch4−j‖u(4)‖∞, 0 ≤ j ≤ 3, (32)

where C is a constant number which do not dependent on N.

If u(x) ∈ Cp(Λ)(p ≥ 1), the interpolation error holds (see [63]):

∥∥∥∥
dj

dxj (u−ΠNu)
∥∥∥∥

∞
≤ Chs−j‖u(s)‖∞, 0 ≤ j ≤ p. (33)

where s = min{p, 4}.
In the following, the error bound is presented for ‖Dα(ΠNu− u)‖∞ with constant-

order α ∈ (1, 2). Let τ(x) = ΠNu− u, we have

Dατ(x) =
1

Γ(2− α)

d2

dx2

∫ x

xL

τ(s)
(x− s)α−1 ds.

Assume that x ∈ [xj−1, xj] for some j, then the above integration can be split as

∫ x

xL

τ(s)
(x− s)α−1 ds =

j−1

∑
i=1

∫ xi

xi−1

τ(s)
(x− s)α−1 ds +

∫ x

xj−1

τ(s)
(x− s)α−1 ds. (34)

Let xi = (xi−1 + xi)/2, i = 1, 2, ..., N. Under the assumption of u(x) ∈ C4(Λ), from
Taylor’s theorem we have

d2

dx2

∫ xi

xi−1

τ(s)
(x− s)α−1 ds =

3

∑
k=0

τ(k)(xi)

k!
d2

dx2

∫ xi

xi−1

(s− xi)
k

(x− s)α−1 ds

+
1

24
d2

dx2

∫ xi

xi−1

u(4)(ζi)(s− xi)
4

(x− s)α−1 ds =:
3

∑
k=0

Jk(x) + J4(x),

(35)

where ζi ∈ (xi−1, xi). Now from the Mean Value Theorem for integrals for k = 0, 1, 2, 3

Jk(x) =
τ(k)(xi)

k!
(ζ̂i,k − xi)

k(α− 1)[(x− xi)
−α − (x− xi−1)

−α], (36)
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and

J4(x) =
u(4)(ζ̃i)(ζ̂i,4 − xi)

4

24
(α− 1)

[
(x− xi)

−α − (x− xi−1)
−α
]
, (37)

where ζ̃i, ζ̂i,k ∈ (xi−1, xi). For the second integral in (34), we have

d2

dx2

∫ x

xj−1

τ(s)
(x− s)α−1 ds = τ(xj)(1− α)(x− xj−1)

−α

+ τ′(xj)

[
−h

2
(1− α)(x− xj−1)

−α + (x− xj−1)
1−α

]

+
τ′′(xj)

2

[h2

4
(1− α)(x− xj−1)

−α − h(x− xj−1)
1−α

+
2

2− α
(x− xj−1)

2−α
]

+
τ′′′(xj)

6

[
− h3

8
(1− α)(x− xj−1)

−α +
3h2

4
(x− xj−1)

1−α

+
3h

2− α
(x− xj−1)

2−α +
6

(2− α)(3− α)
(x− xj−1)

3−α
]

+
u(4)(ζ̃ j)(ζ̂ j − xj)

4

24
(1− α)(x− xj−1)

−α =: J(x).

(38)

Let σh = x− xj−1. Note that σ ∈ (0, 1), it is easy to know that

σ−α > σ−α − (σ + 1)−α > (σ + 1)−α − (σ + 2)−α > ... (39)

Hence, by Lemma 6, for k = 0, 1, 2, 3 and every i < j we have

|Jk(x)| ≤ |τ
(k)(xi)|

k!
hk−α(α− 1)

[
σ−α − (σ + 1)−α

]
≤ Ch4−α‖u(4)‖∞, (40)

and

|J4(x)| ≤ |u
(k)(ζ̃i)|

4!
h4−α(α− 1)

[
σ−α − (σ + 1)−α

]
≤ Ch4−α‖u(4)‖∞, (41)

and

|J(x)| ≤
∣∣τ(xj)h−α

[
(1− α)σ−α

]∣∣

+

∣∣∣∣τ′(xj)h1−α

[
− (1− α)

2
σ−α + σ1−α

]∣∣∣∣

+

∣∣∣∣τ′′(xj)h2−α

[
1− α

8
σ−α − 1

2
σ1−α +

1
2− α

σ2−α

]∣∣∣∣

+

∣∣∣∣τ′′′(xj)h3−α

[
α− 1

48
σ−α +

σ1−α

8
+

σ2−α

2(2− α)
+

σ3−α

(2− α)(3− α)

]∣∣∣∣

+

∣∣∣∣∣(ζ̂ j − xj)
4h−α

[
u(4)(ζ̃ j)

24
(1− α)σ−α

]∣∣∣∣∣

≤Ch4−α‖u(4)‖∞.

(42)

Now collecting the inequalities (40)–(42) gives the following result for the case of
p = 4.

Theorem 1. If u(x) ∈ Cp(Λ) and p ≥ 1 an integer number, then it holds the error estimate:

‖Dα(ΠNu− u)‖∞ ≤ Chmin{p,4−α}‖u(p)‖∞, (43)

where C independent on N.
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Proof of Theorem 1. When p = 1, the Taylor’s theorem gives

d2

dx2

∫ xi

xi−1

τ(s)
(x− s)α−1 dx = [τ(xi) + τ′(ζ̃i)(ζ̂i − xi)](α− 1)[(x− xi)

−α − (x− xi−1)
−α],

and
d2

dx2

∫ x

xj−1

τ(s)
(x− s)α−1 dx = [τ(xj) + τ′(ζ̃ j)(ζ̂ j − xj)](α− 1)[(x− xj−1)

−α].

So, by (33), the estimate (43) follows. For the cases p = 2 and p = 3, the estimate (43)
can be obtained by a similar argument.

Remark 2. For a real number p ∈ (0, 1), the numerical tests show that the estimate (43) also holds.

5. Applications to Fractional Differential Equations

In this Section, some numerical examples are presented to demonstrate the efficiency
of our approximation method. The following three types of meshes are used in numeri-
cal tests:

• Uniform mesh (Mesh 1):

xj = xL +
(xR − xL)j

N
, j = 0, 1, ..., N.

• Graded mesh (Mesh 2):

xj = xL + (xR − xL)

(
j

N

)q
, q > 1, j = 0, 1, ..., N.

Note: For the two-sided operator, two-sided graded mesh will be used with an even
number N:

xj = xL +
(xR − xL)

2

(
j

Nh

)q1

, j = 0, 1, ..., Nh

xj = xR −
(xR − xL)

2

(
N − j

Nh

)q2

, j = Nh + 1, Nh + 2, ...N,

where Nh = N
2 and when q = q1 = q2, the two-sided mesh is symmetric.

• Geometric mesh(Mesh 3):

x0 = xL, xj = xL + (xR − xL) ∗ qN−j, 0 < q < 1, j = 1, 2, ..., N.

5.1. Fractional Helmholtz Equations

To measure the accuracy of the HCSCM when the exact solution is known, we define
the errors by

E0 = max
x∈{x1,x2,...,xN−1}

{|uN(x)− u(x)|},

where uN(x) and u(x) are numerical and exact solution respectively. Let Λ := (xL, xR) and
1 < α(x) < 2. In this subsection we apply the HCSCM to the following variable-order
fractional Helmholtz equation with homogeneous boundary conditions

λ2u(x)−Dα(x)u(x) = f (x), x ∈ Λ, u(xL) = u(xR) = 0. (44)

The HCSCM for (44) is to find uN ∈ VN , such that

λ2uN(x)−Dα(x)uN(x) = f (x), x ∈ xc, uN(xL) = uN(xR) = 0. (45)
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The above equation leads to the following linear system:
(

λ2M−Dα
)

u = f (46)

where M = [φ0(xc), ϕ1(xc), φ1(xc), · · · , ϕN−1(xc), φN−1(xc), φN(xc)] is the collocation ma-
trix, xc and u as in (26), f = f (xc) and Dα is the fractional differentiation matrix with
respect to the fractional operator Dα(x) as in (27).

Example 1. Our first test of HCSCM is to consider the problem (44) with exact solution
u(x) = sin(πx) at [xL, xR] = [−1, 1].

The right-hand side function f (x) = λ2u(x) − Dα(x)u(x) in which the fractional
derivative term is approximated by when Dα(x) = RLDα(x)

−1,x

RLDα(x)
−1,x sin(πx) =

L

∑
k=0

(−1)k+1 π2k+1(x + 1)2k+1−α(x)

Γ(2k + 2− α(x))
,

and when Dα(x) = RLDα(x)
x,1

RLDα(x)
x,1 sin(πx) =

L

∑
k=0

(−1)k π2k+1(1− x)2k+1−α(x)

Γ(2k + 2− α(x))
,

with L = 50, respectively.
For α(x), we consider the following two cases:

1. The constant-order α = 1.1, 1.2, 1.4, 1.5, 1.6, 1.8, 1.9.
2. The variable-order α(x) = 1.1 + x+1

2.5 .

The aim of this example is to test the accuracy of the proposed method for the smooth
solution. In this example, the uniform mesh is used. The error E0 and the orders of conver-
gence are listed in Table 1. It is shown that the order of convergence of the approximation
is 4− α.

Table 1. Error E0 and the order of convergence (OC), for Example 1 with Mesh 1:
α(x) = 1.2, 1.4, 1.6, 1.8, (σ1, σ2) = (0.2, 0.8), λ = 0.

N α(x) = 1.2 OC α(x) = 1.4 OC α(x) = 1.6 OC α(x) = 1.8 OC

20 1.1797 × 10−4 - 1.1326 × 10−4 - 1.8116 × 10−4 - 2.9010 × 10−4 -
40 1.6776 × 10−5 2.81 1.7641 × 10−5 2.68 3.3277 × 10−5 2.45 6.2240 × 10−5 2.22
80 2.4257 × 10−6 2.79 2.8890 × 10−6 2.61 6.2306 × 10−6 2.42 1.3406 × 10−5 2.22
120 7.8179 × 10−7 2.79 1.0058 × 10−6 2.60 2.3442 × 10−6 2.41 5.4714 × 10−6 2.21
160 3.5026 × 10−7 2.79 4.7588 × 10−7 2.60 1.1740 × 10−6 2.40 2.8984 × 10−6 2.21
200 1.8588 × 10−7 2.84 2.6617 × 10−7 2.60 6.8516 × 10−7 2.41 1.7712 × 10−6 2.21
240 1.1199 × 10−7 2.78 1.6566 × 10−7 2.60 4.4209 × 10−7 2.40 1.1876 × 10−6 2.19

The error E0 and CPU time for α = 1.4 are listed in Table 2. Similar results can be
obtained for other cases. All the computations are performed by Matlab R2020a on pc
with AMD PRO A10-8770 R7, 10 COMPUTE CORES 4C+6G 3.50GHz. The Matlab route
inv is used to solve the linear system (46) in our numerical tests. Other faster solver such
as LU decomposition, iteration-type methods and so forth might be used to improve
the efficiency.
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Table 2. Error E0 and the CPU time for Example 1 with Mesh 1: α = 1.4, (σ1, σ2) = (0.2, 0.8), λ = 0.

N E0 CPU Time (s)

10 3.6097 × 10−3 0.018
50 8.8401 × 10−5 0.165

100 1.5063 × 10−5 0.479
150 5.2966 × 10−6 1.046
200 2.5185 × 10−6 1.831
250 1.4119 × 10−6 2.721
300 8.8569 × 10−7 3.397
500 2.3094 × 10−7 7.363
1000 1.0710 × 10−7 23.029

The error E0 is given in Figures 1 and 2. In Figure 1, it is clearly shown that the orders
of convergence of approximation is about 4− α which confirms the estimate in Theorem 1.
In Figure 2, the orders of convergence of approximation is about

4− max
−1≤x≤1

α(x)

for the variable-order case.
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N

10-7

10-6
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10-3

10-2

E
0

Left Riemann-Liouville: =1,
1
=0.2, 

2
=0.7.

=1.1
=1.5
=1.9

N-2.9

N-2.5

N-2.1

Figure 1. Error for Example 1 with Mesh 1: α(x) = 1.1, 1.5, 1.9.
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E
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Left Riemann-Liouville: =1, 
1
=0.2, 

2
=0.7.

(x)=1.1+(x+1)/2.5

N-2.1

Figure 2. Error for Example 1 with Mesh 1: α(x) = 1.1 + x+1
2.5 .

Example 2. Our second test of HCSCM is to consider the problem (44) with an exact solution that
has low regularity.

When we take u(x) = (1 − x)(1 + x)α(x) with xL = −1, xR = 1, the right-hand
functions are same for left Riemann-Liouville, left Caputo and left Patie-Simon cases,
that is,

f (x) = λ2u(x)− 2Γ(1 + α(x)) + Γ(2 + α(x))(1 + x).

In fact, here we have u(x) ∈ Cα(Λ).
The error E0 and the orders of convergence are listed in Table 3. It is shown that

the order of convergence of the approximation is α.

Table 3. Error E0 and the order of convergence (OC) for Example 2 with Mesh 1:
α(x) = 1.2, 1.4, 1.6, 1.8, (σ1, σ2) = (0.2, 0.8), λ = 0.

N α(x) = 1.2 OC α(x) = 1.4 OC α(x) = 1.6 OC α(x) = 1.8 OC

20 3.6965 × 10−3 - 3.5347 × 10−3 - 1.9174 × 10−3 - 5.9525 × 10−4 -
40 1.6497 × 10−3 1.16 1.3360 × 10−3 1.40 6.3033 × 10−4 1.60 1.6984 × 10−4 1.81
80 7.2079 × 10−4 1.19 5.0527 × 10−4 1.40 2.0733 × 10−4 1.60 4.8498 × 10−5 1.81
120 4.4317 × 10−4 1.20 2.8620 × 10−4 1.40 1.0824 × 10−4 1.60 2.3318 × 10−5 1.81
160 3.1379 × 10−4 1.20 1.9124 × 10−4 1.40 6.8268 × 10−5 1.60 1.3874 × 10−5 1.80
200 2.4007 × 10−4 1.20 1.3990 × 10−4 1.40 4.7751 × 10−5 1.60 9.2759 × 10−6 1.80
240 1.9289 × 10−4 1.20 1.0836 × 10−4 1.40 3.5659 × 10−5 1.60 6.6766 × 10−6 1.80

The error E0 for uniform mesh and for α = 1.1, 1.5, 1.9 are shown in Figure 3. It is clear
that the order of convergence of E0 is α.

The error E0 for α = 1.2 with three types of mesh are shown in Figure 4. It is shown
that the uniform mesh achieves an α order of convergence of E0 and the graded mesh
improves significantly the order of convergence. We can also observe that the geometric
mesh might achieve “higher accuracy” (see the dotted line with squares Figure 3), although
the precisions are damaged for large N. The errors E0 for the Caputo case and Patie-Simon
case are plotted in Figures 5 and 6.

280



Symmetry 2021, 13, 872

100 101 102 103

N

10-8

10-7

10-6

10-5

10-4

10-3

10-2

E
0

Left Riemann-Liouville( =0)

=1.1
=1.5
=1.9

N-1.1

N-1.5

N-1.9

Figure 3. Error for Example 2 with exact solution: u(x) = (1 − x)(1 + x)α(x) and

(σ1, σ2) = (
√

3
3 , 1−

√
3

3 ). Mesh 1 for α = 1.1, 1.5, 1.9.
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Figure 4. Error for Example 2 with exact solution: u(x) = (1 − x)(1 + x)α(x) and

(σ1, σ2) = (
√

3
3 , 1−

√
3

3 ).
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=1.1, Mesh 2: q=1.7
=1.1, Mesh 3: q=0.88
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Figure 5. Error for Example 2 with exact solution: u(x) = (1 − x)(1 + x)α(x) and

(σ1, σ2) = (
√

3
3 , 1−

√
3

3 ) of left Caputo case (α = 1.1).
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Figure 6. Error for Example 2 with exact solution: u(x) = (1 − x)(1 + x)α(x) and

(σ1, σ2) = (
√

3
3 , 1−

√
3

3 ) of left Patie-Simon(α = 1.1).

If we take u(x) = (1− x)(1 + x)α(x)−1, it means that u(x) ∈ Cα−1(Λ), which has very
low regularity with xL = −1, xR = 1 and then the right-hand function

f (x) = λ2u(x) + Γ(1 + α(x))

for left Riemann-Liouville and left Patie-Simon cases (but not for left Caputo case).
The error E0 and the orders of convergence are listed in Table 4. It is shown that

the order of convergence of the approximation is α− 1.
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Table 4. Error E0 and the order of convergence (OC) for Example 2 with Mesh 1:
α(x) = 1.2, 1.4, 1.6, 1.8, (σ1, σ2) = (0.2, 0.8), λ = 0.

N α(x) = 1.2 OC α(x) = 1.4 OC α(x) = 1.6 OC α(x) = 1.8 OC

20 1.1624 × 10+0 - 4.0781 × 10−1 - 1.0764 × 10−1 - 1.8809 × 10−2 -
40 1.0453 × 10+0 0.15 3.1153 × 10−1 0.39 7.1834 × 10−2 0.58 1.0960 × 10−2 0.78
80 9.1739 × 10−1 0.19 2.3697 × 10−1 0.39 4.7653 × 10−2 0.59 6.3385 × 10−3 0.79
120 8.4738 × 10−1 0.20 2.0173 × 10−1 0.40 3.7430 × 10−2 0.60 4.5930 × 10−3 0.79
160 8.0061 × 10−1 0.20 1.7991 × 10−1 0.40 3.1524 × 10−2 0.60 3.6528 × 10−3 0.80
200 7.6601 × 10−1 0.20 1.6460 × 10−1 0.40 2.7588 × 10−2 0.60 3.0577 × 10−3 0.80
240 7.3879 × 10−1 0.20 1.5306 × 10−1 0.40 2.4738 × 10−2 0.60 2.6439 × 10−3 0.80

The errors E0 are plotted in Figures 7–10. Compared the Figure 4 with the Figure 7,
we can find that the orders of convergence of E0 are dropped to α− 1 for the exact solution
that belongs to Cα−1(Λ), which agree with the results in Theorem 1. It is also observed
that the orders of convergence of E0 are improved by making use of the graded mesh and
the geometric mesh similarly.
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Figure 7. Error for Example 2 with exact solution u(x) = (1 − x)(1 + x)α(x)−1 and

(σ1, σ2) = (
√

3
3 , 1−

√
3

3 ) by the uniform mesh.
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Figure 8. Error for Example 2 with exact solution: u(x) = (1 − x)(1 + x)α(x)−1 and

(σ1, σ2) = (
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√
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3 ).

The HCSCM is comparable to the MDSCM [49] since both of them are applied
piecewise polynomial to approximation problems. The numerical errors are compared
by using the HCSCM and the MDSCM. The maximum errors with the degree of free-
dom are plotted for the constant-order α = 1.1, 1.5 and 1.9 and for the variable-order
α(x) = 1.1+ (x + 1)/2.5 in Figures 9 and 10. The black lines are for the MDSCM with fixed
N = 3 and the penalty parameter τ = 100, 000. By the choice of N = 3 of the MDSCM,
the degree of piecewise polynomial in the HCSCM is the same as ones in the MDSCM.
Both the uniform meshes are applied for two methods. It is shown that the accuracy of
the HCSCM is better than those of the MDSCM [49] with h-refinement but the orders of
convergence are almost same.

Figure 9. Error for Example 2 with exact solution u(x) = (1 − x)(1 + x)α(x)−1 and

λ = 0, (σ1, σ2) = (
√

3
3 , 1−

√
3

3 ) of left Riemann-Liouville with constant-order case.
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Figure 10. Error for Example 2 with exact solution u(x) = (1 − x)(1 + x)α(x)−1 and

λ = 0, (σ1, σ2) = (
√

3
3 , 1−

√
3

3 ) of left Riemann-Liouville with variable-order case.

5.2. Fractional Burgers Equations

In this subsection, we try to solve the fractional Burgers equation as

∂tu(x, t) + u(x, t)∂xu(x, t) = εDα(x,t)
r u(x, t), (47)

subject to homogeneous Dirichlet boundary condition and initial condition u(x, 0) = u0(x),
where ε > 0, 1 < α(x, t) < 2 and (x, t) ∈ (−1, 1)× (0, 1].

The two-step Crank-Nicolson/leapfrog scheme is first employed for time stepping,
then the HCSCM is applied to the resulting equations. Thus, the full discretization scheme
reads as: for k = 1, 2, ...,





(
M− ∆tεDαk+1

)
uk+1 = g,

Mu1 =
(

M + ∆tεDα0
)

u0 − ∆t
(
Mu0). ∗

(
Su0)

Mu0 = u0(x),

(48)

where
g =

(
M + ∆tεDαk−1

)
uk−1 − 2∆t

(
Muk

)
. ∗
(

Suk
)

,

and ∆t is the time stepsize, M the collocation matrix, Dαk
the fractional differentiation

matrix of order αk = α(x, k∆t) with respect to the fractional operator Dα(x,t) = Dα(x,t)
r as

in (25), S the collocation first-order differentiation matrix which defines as

S = [φ′0(x
c), ϕ′1(x

c), φ′1(x
c), · · · , ϕ′N−1(x

c), φ′N−1(x
c), φ′N(x

c)],

and notation .∗ the entry-to-entry multiplication.

Example 3. In this example, we consider the fractional Burgers Equation (47) with the initial
condition u0(x) = sin(πx).
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Our first test is the numerical solutions to the Equation (47) of the left Riemann-
Liouville fractional derivative. The following five cases of fractional order are considered
in [40,49]:

• Case 1:(constant-order) α(x, t) = 1.1, 1.2, 1.3, 1.5, 1.8;
• Case 2:(monotonic increasing-order) α(x, t) = 1 + 5+4x

10 ;
• Case 3:(monotonic decreasing-order) α(x, t) = 1 + 5−4x

10 ;
• Case 4:(nonsmooth order) α(x, t) = 1.1 + 4

5 | sin(10π(x− t))|;
• Case 5:(nonsmooth order) α(x, t) = 1.1 + 4|xt|

5 .

In Figure 11, the numerical solutions at t = 1 is plotted for constant-order cases
(Case 1). The obtained numerical result is the same as the one in Fig4.6 ([49]). We also
compare some results by the multi-domain spectral collocation method(MDSCM) with
those by the presented method(HCSCM) for α = 1.1, 1.5 in Figures 12 and 13. It is shown
that by the HCSCM one get smoother numerical solution near the left boundary x = −1
than that by the MDSCM.
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Figure 11. Numerical solutions at t = 1 for Example 3 (Case 1) with the graded mesh (Mesh 2).
ε = 1, N = 200, ∆t = 10−3 and (σ1, σ2) = (0.09, 0.88) for α = 1.1, 1.3, (σ1, σ2) = (0.09, 0.85) for
α = 1.2, (σ1, σ2) = (0.3, 0.7) for α = 1.5, 1.8.
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Figure 12. Numerical solutions at t = 1 for Example 3 with left Riemann-Liouville case(α = 1.1, r = 1):
MDSCM vs HCSCM. (σ1, σ2) = (0.09, 0.88) for N = 200, 400 and the two-sided graded mesh (Mesh 2)
are used for all cases in HCSCM.
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Figure 13. Numerical solutions at t = 1 for Example 3 with left Riemann-Liouville case(r = 1, α = 1.5):
MDSCM vs HCSCM. (σ1, σ2) = (0.2, 0.7) for N = 50, 100, 200 and the two-sided graded mesh
(Mesh 2) are used for all cases in HCSCM.

The numerical solutions at t = 1 for variable-order cases(Case 2–5) are plotted in
Figures 14–17, which are agree with the results in [40,49].
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Figure 14. Numerical solutions at t = 1 for Example 3 with left Riemann-Liouville case (r = 1) and
ε = 1: α(x) = 1 + 5+4x

10 .
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Figure 15. Numerical solutions at t = 1 for Example 3 with left Riemann-Liouville case (r = 1) and
ε = 1: α(x) = 1 + 5−4x

10 .
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Figure 16. Numerical solutions at t = 1 for Example 3 with left Riemann-Liouville case (α(x, t) = 1.1+
4
5 | sin(10π(x− t))|, r = 1) and ε = 1. where (σ1, σ2) = (0.35, 0.85) for N = 50, (σ1, σ2) = (0.28, 0.75)
for N = 100, (σ1, σ2) = (0.2, 0.75) for N = 200.
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Figure 17. Numerical solutions at t = 1 for Example 3 with left Riemann-Liouville case
(α(x, t) = 1.1 + 4|xt|

5 , r = 1) and ε = 1. where(σ1, σ2) = (0.2, 0.75) for all three Ns.

The numerical solutions are also computed to the fractional Burgers equation with
two-sided operators. The numerical solutions at t = 1 for various α’s and r’s are plotted
in Figures 18–23.
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Figure 18. Numerical solutions at t = 1 for Example 3 of two-sided Riemann-Liouville case

(r = 0.3): ε = 1, (σ1, σ2) = (
√

3
3 , 1−

√
3

3 ) for all cases.
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Figure 19. Numerical solutions at t = 1 for Example 3 of two-sided Riemann-Liouville case

(r = 0.5): ε = 1, (σ1, σ2) = (
√

3
3 , 1−

√
3

3 ) for all cases.
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Figure 20. Numerical solutions at t = 1 for Example 3 of two-sided Riemann-Liouville case

(α = 1.22): ε = 1, (σ1, σ2) = (
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3
3 , 1−

√
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3 ) for all cases.
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Figure 21. Numerical solutions at t = 1 for Example 3 of two-sided Riemann-Liouville case

(α = 1.5): ε = 1, (σ1, σ2) = (
√

3
3 , 1−

√
3

3 ) for all cases.
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Figure 22. Numerical solutions at t = 1 for Example 3 of two-sided Riemann-Liouville case

(α = 1.9): ε = 1, (σ1, σ2) = (
√

3
3 , 1−

√
3

3 ) for all cases.
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Figure 23. Numerical solutions at t = 1 for Example 3 of two-sided Riemann-Liouville case

(α = 1.99): ε = 1, (σ1, σ2) = (
√

3
3 , 1−

√
3

3 ) for all cases.

6. Conclusions

In this paper, a Hermite cubic spline collocation method (HCSCM) are developed
for solving variable-order nonlinear fractional differential equations, which apply C1-
continuous nodal basis functions to approximate problem. It is verified that the order of
convergence of the HCSCM is O(hmin{4−α,p}), while the interpolating function belongs to
Cp(p ≥ 1), where h is the mesh-size and α the order of the fractional derivative. The ef-
fectiveness of the HCSCM is demonstrated by solving fractional Helmholtz equations
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of constant-order and variable-order, and solving the fractional Burgers equation. The
numerical fractional diffusions are compared with different senses.

The HCSCM can be applied to fractional-order differential equations on a two or
three dimensional Descartes product domain by nodal basis tensor. Through adjusting
the location of collocation points, the stability of the HCSCM can be observed numerically.
Our future work will focus on the stability and error analysis of the HCSCM for some FDEs.
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Abstract: In this article, we also introduced two well-known computational techniques for solving
the time-fractional Fornberg–Whitham equations. The methods suggested are the modified form
of the variational iteration and Adomian decomposition techniques by ρ-Laplace. Furthermore, an
illustrative scheme is introduced to verify the accuracy of the available methods. The graphical
representation of the exact and derived results is presented to show the suggested approaches
reliability. The comparative solution analysis via graphs also represented the higher reliability and
accuracy of the current techniques.

Keywords: ρ-Laplace variational iteration method; ρ-Laplace decomposition method; partial differ-
ential equation; caputo operator; fractional Fornberg–Whitham equation (FWE)

1. Introduction

With engineering and science development, non-linear evolution models have been
analyzed as the problems to define physical phenomena in plasma waves, fluid mechanics,
chemical physics, solid-state physics, etc. For the last few years, therefore, a lot of interest
has been paid to the result (both numerical and analytical) of these significant models [1–4].
Different methods are available in the literature for the approximate and exact results of
these models. In current years, fractional calculus (FC) applied in many phenomena in
applied sciences, fluid mechanics, physics and other biology can be described as very
effective using mathematical tools of FC. The fractional derivatives have occurred in many
applied sciences equations such as reaction and diffusion processes, system identification,
velocity signal analysis, relaxation of damping behaviour fabrics and creeping of polymer
composites [5–8].

The investigation of non-linear wave models and their application is significant in
different areas of engineering. Travelling wave notions are between the most attractive
results for non-linear fractional-order partial differential equations (NLFPDEs). NLFPDEs
are usually identified as mechanical processes and complex physical. Therefore, it is impor-
tant to get exact results for non-linear time-fractional partial differential equations [9–12].
Overall, travelling wave results are between the exciting forms of products for NFPDEs. On
the other hand, other NLFPDEs, such as the Camassa–Holm or the Kortewegde–Vries equa-
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tions, have been well-known to have some moving wave solutions. These are non-linear
multi-directional dispersive waves in shallow water design problems [13–16].

The FWE study is of crucial significance in different areas of mathematical physics.
The FWEs [15,16] is defined as

Dδ
=µ− Dϕϕ=µ + Dϕµ =µDϕϕϕµ− µDϕµ + 3DϕµDϕϕµ. (1)

The quantities performance of wave deformation, a non-linear dispersive wave model,
is shown in the investigation. The FWE is presented as a mathematical model for limiting
wave heights and wave breaks, allowing peakon results as a numerical model. In 1978,

Fornberg and Whitham achieved a measured outcome of the form µ(ϕ, η) = Ce(
−ϕ
2 − 4=

3 ),
where C is constant. The investigation of FWEs has been carried out by several analyti-
cal and numerical techniques, such as Adomian decomposition transform method [17],
variational iteration technique [18], Lie Symmetry [19], new iterative method [20], differ-
ential transformation method [21], homotopy analysis transformation technique [22] and
homotopy-perturbation technique [23].

Recently, Abdeljawad and Fahd [24] introduced the Laplace transformation of the
fractional-order Caputo derivatives. We suggested a new iterative technique with ρ-Laplace
transformation to investigate fractional-order ordinary and partial differential equations
with fractional-order Caputo derivative. We apply this novel method for solving many
fractional-order differential equations such as linear and non-linear diffusion equation,
fractional-order Zakharov–Kuznetsov equation and Fokker–Planck equations. We ana-
lyzed the impact of δ and ρ in the process. The Variational iteration method (VIM) was
first introduced by He [25,26] and was effectively implemented to the autonomous or-
dinary differential equation in [27], to non-linear polycrystalline solids [28], and other
areas. Similarly, this technique is modified with ρ-Laplace transformation, so the modified
method is called the ρ-Laplace variational iteration method. Many types of differential
equations and partial differential equations have solved VITM. For example, this technique
is analyzed for solving the time-fractional differential equation (FDEs) in [27]. In [28],
this technique is applied to solve non-linear oscillator models. Compared to Adomian’s
decomposition process, VITM solves the problem without the need to compute Adomian’s
polynomials. This scheme provides a quick result to the equation, whereas the [29] mesh
point techniques provide an analytical solution. This method can also be used to get a close
approximation of the exact result. G. Adomian, an American mathematician, developed
the Adomian decomposition technique. It focuses on finding series-like results and de-
composing the non-linear operator into a sequence, with the terms presently computed
using Adomian polynomials [30]. This method is modified with ρ-Laplace transform, so
the modified approach is the ρ-Laplace decomposition method. This technique is used for
the non-homogeneous FDEs [31–36].

This paper has implemented the ρ-Laplace variational iteration method and ρ-Laplace
decomposition method to solve the time-fractional Fornberg–Whitham equations with the
Caputo fractional derivative operator. The ρ-LDM and ρ-LVIM achieve the approximate
results in the form of series results.

2. Basic Definitions

In this section, the fractional generalized derivative, the fractional generalized integral,
the Mittag-Lefller function the ρ-Laplace transform have been discussed.

Definition 1. The generalized fractional-order integral δ of a continuous function f : [0,+∞]→ R
is expressed as [24]

(Iδ,ρ f )(ζ) =
1

Γ(δ)

∫ ζ

0

(
ζρ − sρ

ρ

)δ−1
f (s)ds
s1−ρ

,

the gamma function denote by Γ, ρ > 0, ζ > 0 and 0 < δ < 1.
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Definition 2. The generalized fractional-order derivative of δ of a continuous function f : [0,+∞]→ R
is given as [24].

(Dδ,ρ f )(ζ) = (I1−δ,ρ f )(ζ) =
1

Γ(1− δ)

(
d

dζ

) ∫ ζ

0

(
ζρ − sρ

ρ

)−δ
f (s)ds
s1−ρ

.

where define the gamma function Γ, ρ > 0, ζ > 0 and 0 < δ < 1.

Definition 3. The Caputo fractional-order derivative δ of a continuous function f : [0,+∞]→ R
is expressed as [24]

(Dδ,ρ f )(ζ) =
1

Γ(1− δ)

∫ ζ

0

(
ζρ − sρ

ρ

)−δ

βn f (s)ds
s1−ρ

.

where n = 1, ρ > 0, ζ > 0, β = ζ1−ρ d
dζ and 0 < δ < 1.

Definition 4. The ρ-Laplace transformation of a continuous function f : [0,+∞]→ R is given
as [24]

Lρ{ f (ζ)} =
∫ ∞

0
e−s ζρ

ρ f (ζ)
dζ

ζ1−ρ
.

The Caputo generalized fractional-order ρ-Laplace transform derivative of a continuous func-
tion f is defined by [24].

Lρ{Dδ,ρ f (ζ)} = sδLρ{ f (ζ)} −
n−1

∑
k=0

sδ−k−1(Iδ,ρβn f )(0) n = 1.

3. The General Methodology of ρ-LDM

The ρ-LDM is a combination of the Laplace decomposition method and the ρ-Laplace
transformation. In this section, we solve the ρ-LDM solution of fractional partial differential
equation. The main steps of this method are described as follows:

Dδ,ρ
= ω(ϕ,=) + L̄(ϕ,=) +N (ϕ,=)−H(ϕ,=) = 0, 0 < δ ≤ 1, (2)

where L̄ and N are linear and nonlinear functions,H is the sources function.
The initial condition is

ω(ϕ, 0) = f (ϕ), (3)

Apply ρ-Laplace transform to Equation (2),

Lρ[D
δ,ρ
= ω(ϕ,=)]+Lρ[L̄(ϕ,=) +N (ϕ,=)−H(ϕ,=)] = 0. (4)

Applying the ρ-Laplace transformation differentiation property, we get

Lρ[ω(ϕ,=)] = 1
s

ω(ϕ, 0) +
1
sδ

Lρ[H(ϕ,=)]− 1
sδ

Lρ{L̄(ϕ,=) +N (ϕ,=)}]. (5)

ρ-LDM solution of infinite series ω(ϕ,=),

ω(ϕ,=) =
∞

∑
j=0

ωm(ϕ,=). (6)

The N is the nonlinear term defined as

N (ϕ,=) =
∞

∑
j=0
Am. (7)
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So the with the help of Adomian polynomial we can define the nonlinear terms

Am =
1
j!

[
∂m

∂λm

{
N
(

∞

∑
k=0

λkωk

)}]

λ=0

. (8)

Putting Equations (6) and (7) into (5), we get

Lρ

[
∞

∑
j=0

ωm(ϕ,=)
]
=

1
s

ω(ϕ, 0) +
1
sδ

S{H(ϕ,=)} − 1
sδ

Lρ

{
L̄(

∞

∑
j=0

ωm) +
∞

∑
j=0
Am

}
. (9)

Using the inverse ρ-Laplace transform with Equation (9),

∞

∑
j=0

ωm(ϕ,=) = L−1
ρ

[
1
s

ω(ϕ, 0) +
1
sδ

Lρ{H(ϕ,=)} − 1
sδ

Lρ

{
L̄
(

∞

∑
j=0

ωm

)
+

∞

∑
j=0
Am

}]
. (10)

we define the next terms,

ω0(ϕ,=) =L−1
ρ

[
1
s

ω(ϕ, 0) +
1
sδ

Lρ{H(ϕ,=)}
]

, (11)

ω1(ϕ,=) = −L−1
ρ

[
1
sδ

Lρ{L̄1(ω0) +A0}
]

.

For m ≥ 1, is expressed as

ωj+1(ϕ,=) = −L−1
ρ

[
1
sδ

Lρ{L̄(ωm) +Am}
]

.

4. Convergence Analysis

Theorem 1. [37] (Uniqueness theorem) Equation has a unique solution whenever 0 < ε < 1

where ε = (h1+h2+h3)=δ+1

(δ−1)! .

Theorem 2. [37] (Convergence Theorem) The series solution (11) and (12) of the problem (3) using
ρ-LTADM and ρ-LTVIM converges if 0 < ε < 1.

Proof. Let S` be the mth partial sum, i.e., S` = ∑m
j=0 ω`(ϕ,=). We shall prove that S` is a

Cauchy sequence in Banach space E. By using a new formulation of Adomian polynomials
we get [37]

R(S`) = Â` +
m−1

∑
j=0

Âj

ℵ(S`) = Â` +
m−1

∑
n=0

Ân
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||S` − Sm−1|| = max
=∈I
|S` − Sm−1| = max

=∈I

∣∣∣∣∣
m

∑
j=n+1

ω̂j(ϕ,=)
∣∣∣∣∣, j = 0, 1, 2 · · ·

≤ max
=∈I

∣∣∣∣∣∣∣∣

L−1
ρ { 1

sδ Lρ{[∑m
j=n+1 k[ωj−1(ϕ,=)]]}

+L−1
ρ { 1

sδ Lρ{[∑m
j=n+1 M[ωj−1(ϕ,=)]]}

+L−1
ρ { 1

sδ Lρ{[∑m
j=n+1[Aj−1(ϕ,=)]]}

∣∣∣∣∣∣∣∣
,

≤ max
=∈I

∣∣∣∣∣∣∣∣

L−1
ρ { 1

sδ Lρ{[∑m
j=n+1 k[ωj(ϕ,=)]]}

+L−1
ρ { 1

sδ Lρ{[∑m
j=n+1 M[ωj(ϕ,=)]]}

+L−1
ρ { 1

sδ Lρ{[∑m
j=n+1[Aj(ϕ,=)]]}

∣∣∣∣∣∣∣∣
,

≤ max
=∈I

∣∣∣∣∣∣∣∣

L−1
ρ { 1

sδ Lρ{[∑m
j=n+1 k[Sm1−1 − Sm2−1]]}

+L−1
ρ { 1

sδ Lρ{[∑m
j=n+1 M[Sm1−1 − Sm2−1]]}

+L−1
ρ { 1

sδ Lρ{[∑m
j=n+1[Sm1−1 − Sm2−1]]}

∣∣∣∣∣∣∣∣
,

≤ max
=∈I

∣∣∣∣∣∣∣∣

L−1
ρ { 1

sδ Lρ{[k[Sm1−1 − Sm2−1]]}
+L−1

ρ { 1
sδ Lρ{[M[Sm1−1 − Sm2−1]]}

+L−1
ρ { 1

sδ Lρ{[[Sm1−1 − Sm2−1]]}

∣∣∣∣∣∣∣∣
,

≤ k1 max
=∈I

∣∣∣L−1
ρ { 1

sδ Lρ{[Sm1−1 − Sm2−1]}
∣∣∣,

+ k2 max
=∈I

∣∣∣L−1
ρ { 1

sδ Lρ{[Sm1−1 − Sm2−1]}
∣∣∣,

+ k3 max
=∈I

∣∣∣L−1
ρ

1
sδ Lρ{[Sm1−1 − Sm2−1]}

∣∣∣,

=
(k1 + k2 + k3)=δ−1

(δ− 1)!

∣∣∣∣Sm1−1 − Sm2−1
∣∣∣∣.

Letting m1 = m2 + 1, we get

∣∣∣∣Sm2+1 − Sm2

∣∣∣∣ ≤ ε
∣∣∣∣Sm2 − Sm2−1

∣∣∣∣ ≤ ε2∣∣∣∣Sm2−1 − Sm2−2
∣∣∣∣ ≤ · · · ≤ εm2

∣∣∣∣S1 − S0
∣∣∣∣,

where ε = (k1+k2+k3)=δ−1

(δ−1)! similarly, we have from the triangle inequality we get

∣∣∣∣Sm1−1 − Sm2−1
∣∣∣∣ ≤

∣∣∣∣Sm1+1 − Sm2

∣∣∣∣+
∣∣∣∣Sm1+2 − Sm2+1

∣∣∣∣+ · · ·+
∣∣∣∣Sm1 − Sm1−1

∣∣∣∣,

≤
[
εm2 + εm2+1 + · · ·+ εm1−1

]
≤
∣∣∣∣S1 + S0

∣∣∣∣,

≤ εm2(
1− εm1−m2

ε
)
∣∣∣∣ω1

∣∣∣∣.

Since 0 < ε < 1 we have 1− εm1−m2 < 1

∣∣∣∣Sm1 + Sm2

∣∣∣∣ ≤ εm2

1− ε
≤ max
=∈I

∣∣∣∣ω
∣∣∣∣.

However |ω| < ∞ so, as m2 → ∞ then ||Sm1 − Sm2 || → 0, hence Sm1 is a Cauchy
sequence, the series ∑∞

m1=0 ωm1 converges and the proof is complete.

Theorem 3. [37] (Error estimate) The maximum absolute error of the series solution can be given
the following formula

max
=∈I

∣∣ω(ϕ,=)−∑∞
`=1 ω`(ϕ,=)

∣∣ ≤ εm2

1− ε
max
=∈I

∣∣∣∣ω1
∣∣∣∣.
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5. The General Methodology of ρ-Laplace Variational Iteration Method

In this section we show the general methodology of the ρ-Laplace variational iteration
method solution for fractional partial differential equations.

Dδ,ρ
= ω(ϕ,=) + L̄(ϕ,=) +N (ϕ,=)−H(ϕ,=) = 0, 0 < δ ≤ 1, (12)

with the initial condition
ω(ϕ, 0) = f (ϕ), (13)

The using ρ-Laplace transformation to Equation (12),

Lρ[D
δ,ρ
= ω(ϕ,=)]+Lρ[L̄(ϕ,=) +N (ϕ,=)−H(ϕ,=)] = 0. (14)

Applying the differentiation property of ρ-Laplace transform, we get

sδLρ[ω(ϕ,=)]− sδ−1ω(ϕ, 0) = −Lρ

[
L̄(ϕ,=) +N (ϕ,=)−H(ϕ,=)

]
. (15)

The Lagrange multiplier is used in the iterative method

Lρ[ωj+1(ϕ,=)] =Lρ[ωj(ϕ,=)] + λ(s)
[
sδLρ[ωj(ϕ,=)]− sδ−1ωj(ϕ, 0)

−Lρ{L̄(ϕ,=) +N (ϕ,=)} − Lρ[H(ϕ,=)]
]
.

(16)

The Lagrange multiplier is

λ(s) = − 1
sδ

, (17)

using inverse ρ-Laplace transform L−1, Equation (16), we get

ωj+1(ϕ,=) =ωj(ϕ,=)− L−1
ρ

[
1
sδ

[
−Lρ{L̄(ϕ,=) +N (ϕ,=)}

]
− Lρ[H(ϕ,=)]

]
, (18)

the initial value can be defined as

ω0(ϕ,=) = L−1
ρ

[
1
sδ

{
sδ−1ω(ϕ, 0)

}]
. (19)

6. Implementation of Techniques

We now proceed to derive an approximate solution to the time-fractional nonlinear
FW equations using suggested techniques with generalized Caputo fractional derivative.

6.1. Problem

Consider the time-fractional nonlinear FWE is given as

Dδ,ρ
= ω− Dϕϕ=ω + Dϕω =ωDϕϕϕω−ωDϕω + 3DϕωDϕϕω, 0 < δ ≤ 1, (20)

the initial condition is
ω(ϕ, 0) = e(

ϕ
2 ). (21)

Taking ρ-Laplace transform of (20),

sδLρ[ω(ϕ,=)]−sδ−1ω(ϕ, 0) = Lρ

[
Dϕϕ=ω− Dϕω + ωDϕϕϕω−ωDϕω + 3DϕωDϕϕω

]
.

Applying inverse ρ-Laplace transform

ω(ϕ,=) =L−1
ρ

[
ω(ϕ, 0)

s
− 1

sδ
Lρ

[
Dϕϕ=ω− Dϕω + ωDϕϕϕω−ωDϕω + 3DϕωDϕϕω

]]
.
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Using ADM procedure, we get

ω0(ϕ,=) = L−1
ρ

[
ω(ϕ, 0)

s

]
= L−1

ρ

[
e(

ϕ
2 )

s

]
,

ω0(ϕ, t) = e(
ϕ
2 ), (22)

∞

∑
`=0

ω`+1(ϕ,=) = L−1
ρ

[
1
sδ

Lρ

[
∞

∑
`=0

(Dϕϕ=ω)` −
∞

∑
`=0

(Dϕω)` +
∞

∑
`=0

A` −
∞

∑
`=0

B` + 3
∞

∑
`=0

C`

]]
, ` = 0, 1, 2, · · ·

A0(ωDϕϕϕω) = ω0Dϕϕϕω0,

A1(ωDϕϕϕω) = ω0Dϕϕϕω1 + ω1Dϕϕϕω0,

A2(ωDϕϕϕω) = ω1Dϕϕϕω2 + ω1Dϕϕϕω1 + ω2Dϕϕϕω0,

B0(ωDϕω) = ω0Dϕω0,

B1(ωDϕω) = ω0Dϕω1 + ω1Dϕω0,

B2(ωDϕω) = ω1Dϕω2 + ω1Dϕω1 + ω2Dϕω0,

C0(DϕωDϕϕω) = Dϕω0Dϕϕω0,

C1(DϕωDϕϕω) = Dϕω0Dϕϕω1 + Dϕω1Dϕϕω0,

C2(DϕωDϕϕω) = Dϕω1Dϕϕω2 + Dϕω1Dϕϕω1 + Dϕω2Dϕϕω0,

for ` = 1

ω1(ϕ,=) = L−1
ρ

[
1
sδ

Lρ

[
Dϕϕ=ω0 − Dϕω0 + A0 − B0 + 3C0

]]
,

ω1(ϕ, t) = −1
2

L−1
ρ

[
e(

ϕ
2 )

sδ+1

]
= −1

2
e(

ϕ
2 )

(
=ρ

ρ

)δ

Γ(δ + 1)
.

(23)

for ` = 2

ω2(ϕ,=) = L−1
ρ

[
1
sδ

Lρ

[
Dϕϕ=ω1 − Dϕω1 + A1 − B1 + 3C1

]]
,

ω2(ϕ,=) = −1
8

e(
ϕ
2 )

(
=ρ

ρ

)2δ−1

Γ(2δ)
+

1
4

e(
ϕ
2 )

(
=ρ

ρ

)2δ

Γ(2δ + 1)
,

(24)

for ` = 3

ω3(ϕ,=) =L−1
ρ

[
1
sδ

Lρ

[
Dϕϕ=ω2 − Dϕω2 + A2 − B2 + 3C2

]]
,

ω3(ϕ,=) =− 1
32

e(
ϕ
2 )

(
=ρ

ρ

)3δ−2

Γ(3δ− 1)
+

1
8

e(
ϕ
2 )=

3δ−1

Γ(3δ)
− 1

8
e(

ϕ
2 )

(
=ρ

ρ

)3δ

Γ(3δ + 1)
,

(25)

The ρ-LDM result of Example 1 is

ω(ϕ,=) = ω0(ϕ,=) + ω1(ϕ,=) + ω2(ϕ,=) + ω3(ϕ,=) + ω4(ϕ,=) + · · · ,
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ω(ϕ,=) = e(
ϕ
2 ) − 1

2
e(

ϕ
2 )

(
=ρ

ρ

)δ

Γ(δ + 1)
− 1

8
e(

ϕ
2 )

(
=ρ

ρ

)2δ−1

Γ(2δ)
+

1
4

e(
ϕ
2 )

(
=ρ

ρ

)2δ

Γ(2δ + 1)
− 1

32
e(

ϕ
2 )

(
=ρ

ρ

)3δ−2

Γ(3δ− 1)

+
1
8

e(
ϕ
2 )=

3δ−1

Γ(3δ)
− 1

8
e(

ϕ
2 )

(
=ρ

ρ

)3δ

Γ(3δ + 1)
− · · · .

(26)

The simplify we can write Equation (26), we get

ω(ϕ,=) =e(
ϕ
2 )


1−

(
=ρ

ρ

)δ

2Γ(δ + 1)
− 1

8

(
=ρ

ρ

)2δ−1

Γ(2δ)
+

1
4

(
=ρ

ρ

)2δ

Γ(2δ + 1)
− 1

32

(
=ρ

ρ

)3δ−2

Γ(3δ− 1)
+

1
8

(
=ρ

ρ

)3δ−1

Γ(3δ)
− 1

8

(
=ρ

ρ

)3δ

Γ(3δ + 1)
+ · · ·


. (27)

The analytical result by ρ-LVIM.
The iteration method apply for Equation (20), we get

ω`+1(ϕ,=) = ω`(ϕ,=)−L−1
ρ

[
1
sδ

Lρ

{
sδD=ω` − Dϕϕ=ω` + Dϕω` −ω`Dϕϕϕω` + ω`Dϕω` −3Dϕω`Dϕϕω`

}]
, (28)

where

ω0(ϕ,=) = e(
ϕ
2 ). (29)

For ` = 0, 1, 2, · · ·

ω1(ϕ,=) = ω0(ϕ,=)− L−1
ρ

[
1
sδ

Lρ

{
sδD=ω0 − Dϕϕ=ω0 + Dϕω0 −ω0Dϕϕϕω0

+ω0Dϕω0 − 3Dϕω0Dϕϕω0
}]

,

ω1(ϕ,=) = −1
2

e(
ϕ
2 )

(
=ρ

ρ

)δ

Γ(δ + 1)
,

(30)

ω2(ϕ,=) = ω1(ϕ,=)− L−1
ρ

[
1
sδ

Lρ

{
sδD=ω1 − Dϕϕ=ω1 + Dϕω1 −ω1Dϕϕϕω1

+ω1Dϕω1 − 3Dϕω1Dϕϕω1
}]

,

ω2(ϕ,=) = −1
8

e(
ϕ
2 )

(
=ρ

ρ

)2δ−1

Γ(2δ)
+

1
4

e(
ϕ
2 )

(
=ρ

ρ

)2δ

Γ(2δ + 1)
,

(31)

ω3(ϕ,=) = ω2(ϕ,=)− L−1
ρ

[
1
sδ

Lρ

{
sδD=ω2 − Dϕϕ=ω2 + Dϕω2 −ω2Dϕϕϕω2

+ω2Dϕω2 − 3Dϕω2Dϕϕω2
}]

,

ω3(ϕ,=) = − 1
32

e(
ϕ
2 )

(
=ρ

ρ

)3δ−2

Γ(3δ− 1)
+

1
8

e(
ϕ
2 )

(
=ρ

ρ

)3δ−1

Γ(3δ)
− 1

8
e(

ϕ
2 )

(
=ρ

ρ

)3δ

Γ(3δ + 1)
,

(32)

ω(ϕ,=) =
∞

∑
m=0

ωm(ϕ) = e(
ϕ
2 ) − 1

2
e(

ϕ
2 )

(
=ρ

ρ

)δ

Γ(δ + 1)
− 1

8
e(

ϕ
2 )

(
=ρ

ρ

)2δ−1

Γ(2δ)
+

1
4

e(
ϕ
2 )

(
=ρ

ρ

)2δ

Γ(2δ + 1)

− 1
32

e(
ϕ
2 )

(
=ρ

ρ

)3δ−2

Γ(3δ− 1)
+

1
8

e(
ϕ
2 )=

3δ−1

Γ(3δ)
− 1

8
e(

ϕ
2 )

(
=ρ

ρ

)3δ

Γ(3δ + 1)
− · · · .

(33)

The exact result of Equation (20) at δ = 1,

ω(ϕ,=) = e(
ϕ
2− 2=

3 ). (34)
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Figure 1 shows the ρ-LDM and ρ-LVIM solution of the fractional Fornberg–Whitham
defined by generalized fractional-order Caputo derivative in the space coordinate and
time 0 < = ≤ 0.5, ρ = 1 and δ = 1. Figure 2, the 3D graph shows approximate and exact
solutions graph at δ = 1 and ρ = 0.9; the figure shows that different fractional-order at δ.
Similarly, in Figure 3, the 2D graph of exact and approximate solutions plot at δ = 1 and
ρ = 0.9 the figure shows that different fractional-order at δ.

Figure 1. The graph of Exact and analytical solutions of δ = 1 and ρ = 1 of problem 1.

Figure 2. The first 3D graph of Exact and analytical solutions graph at δ = 1 and ρ = 0.9 and second
plot of the approximate different fractional-order of δ = 1 of problem 1.
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Figure 3. The first 2D graph of Exact and analytical solutions graph at δ = 1 and ρ = 0.9 and second plot of the approximate
different fractional-order of δ = 1 of problem 1.

6.2. Problem

Consider the time-fractional non-linear FWE given as

Dδ,ρ
= ω− Dϕϕ=ω + Dϕω =ωDϕϕϕω−ωDϕω + 3DϕωDϕϕω, = > 0, 0 < δ ≤ 1, (35)

with the initial condition
ω(ϕ, 0) = cosh2

( ϕ

4

)
. (36)

Taking ρ-Laplace transform of (35),

sδLρ[ω(ϕ,=)]−sδ−1ω(ϕ, 0) = Lρ

[
Dϕϕ=ω− Dϕω + ωDϕϕϕω−ωDϕω + 3DϕωDϕϕω

]
.

Applying inverse ρ-Laplace transform

ω(ϕ,=) =L−1
ρ

[
ω(ϕ, 0)

s
− 1

sδ
Lρ

{
Dϕϕ=ω− Dϕω + ωDϕϕϕω−ωDϕω + 3DϕωDϕϕω

}]
.

Using ADM procedure, we get

ω0(ϕ,=) = L−1
ρ

[
ω(ϕ, 0)

s

]
= L−1

ρ

[
cosh2( ϕ

4
)

s

]
,

ω0(ϕ,=) = cosh2
( ϕ

4

)
, (37)

∞

∑
`=0

ω`+1(ϕ,=) = L−1
ρ

[
1
sδ

Lρ

[
∞

∑
`=0

(Dϕϕ=ω)` −
∞

∑
`=0

(Dϕω)` +
∞

∑
`=0

A` −
∞

∑
`=0

B` + 3
∞

∑
`=0

C`

]]
, ` = 0, 1, 2, · · ·
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for ` = 0

ω1(ϕ,=) = L−1
ρ

[
1
sδ

Lρ

[
Dϕϕ=ω0 − Dϕω0 + A0 − B0 + 3C0

]]
,

ω1(ϕ,=) = −11
32

L−1
ρ

[
sinh

( x
2
)

sδ+1

]
= −11

32
sinh

( ϕ

4

)
(
=ρ

ρ

)δ

Γ(δ + 1)
.

(38)

for ` = 1

ω2(ϕ,=) =L−1
ρ

[
1
sδ

Lρ

[
Dϕϕ=ω1 − Dϕω1 + A1 − B1 + 3C1

]]
,

ω2(ϕ,=) =− 11
28

sinh
( ϕ

4

)
(
=ρ

ρ

)δ

Γ(δ + 1)
+

121
1024

cosh
( ϕ

4

)
(
=ρ

ρ

)2δ

Γ(2δ + 1)
,

(39)

for ` = 2

ω3(ϕ,=) =L−1
ρ

[
1
sδ

Lρ

[
Dϕϕ=ω2 − Dϕω2 + A2 − B2 + 3C2

]]
,

ω3(ϕ,=) =− 11
512

sinh
( ϕ

4

)
(
=ρ

ρ

)δ

Γ(δ + 1)
+

121
2048

cosh
( ϕ

4

)
(
=ρ

ρ

)2δ

Γ(2δ + 1)
− 1331

49152
sinh

( ϕ

4

)
(
=ρ

ρ

)3δ

Γ(3δ + 1)
,

(40)

The ρ-LDM result for problem 2 is

ω(ϕ,=) = ω0(ϕ,=) + ω1(ϕ,=) + ω2(ϕ,=) + ω3(ϕ,=) + ω4(ϕ,=) + · · · ,

ω(ϕ,=) = cosh2
( ϕ

4

)
− 11

32
sinh

( ϕ

4

)
(
=ρ

ρ

)δ

Γ(δ + 1)
− 11

28
sinh

( ϕ

4

)
(
=ρ

ρ

)δ

Γ(δ + 1)
+

121
1024

cosh
( ϕ

4

)
(
=ρ

ρ

)2δ

Γ(2δ + 1)

− 11
512

sinh
( ϕ

4

)
(
=ρ

ρ

)δ

Γ(δ + 1)
+

121
2048

cosh
( ϕ

4

)
(
=ρ

ρ

)2δ

Γ(2δ + 1)
− 1331

49152
sinh

( ϕ

4

)
(
=ρ

ρ

)3δ

Γ(3δ + 1)
· · · .

(41)

The analytical solution by ρ-LVIM.
The iteration method is apply by Equation (35), we get

ω`+1(ϕ,=) = ω`(ϕ,=)− L−1
ρ

[
1
sδ

Lρ

{
sδD=ω` − Dϕϕ=ω` + Dϕω` −ω`Dϕϕϕω` + ω`Dϕω` − 3Dϕω`Dϕϕω`

}]
, (42)

where

ω0(ϕ, t) = cosh2
( ϕ

4

)
. (43)

For ` = 0, 1, 2, · · ·

ω1(ϕ,=) = ω0(ϕ,=)− L−1
ρ

[
1
sδ

Lρ

{
sδD=ω0 − Dϕϕ=ω0 + Dϕω0 −ω0Dϕϕϕω0 + ω0Dϕω0 − 3Dϕω0Dϕϕω0

}]
,

ω1(ϕ,=) = cosh2
( ϕ

4

)
− 11

32
sinh

( ϕ

4

)
(
=ρ

ρ

)δ

Γ(δ + 1)
,

(44)
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ω2(ϕ,=) = ω1(ϕ,=)− L−1
ρ

[
1
sδ

Lρ

{
sδD=ω1 − Dϕϕ=ω1 + Dϕω1 −ω1Dϕϕϕω1 + ω1Dϕω1 − 3Dϕω1Dϕϕω1

}]
,

ω2(ϕ,=) = cosh2
( ϕ

4

)
− 11

32
sinh

( ϕ

4

)
(
=ρ

ρ

)δ

Γ(δ + 1)
− 11

28
sinh

( ϕ

4

)
(
=ρ

ρ

)δ

Γ(δ + 1)
+

121
1024

cosh
( ϕ

4

)
(
=ρ

ρ

)2δ

Γ(2δ + 1)
,

(45)

ω3(ϕ,=) = ω2(ϕ,=)−L−1
ρ

[
1
sδ

Lρ

{
sδD=ω2 − Dϕϕ=ω2 + Dϕω2 −ω2Dϕϕϕω2 + ω2Dϕω2 − 3Dϕω2Dϕϕω2

}]
,

ω3(ϕ,=) = cosh2
( ϕ

4

)
− 11

32
sinh

( ϕ

4

)
(
=ρ

ρ

)δ

Γ(δ + 1)
− 11

28
sinh

( ϕ

4

)
(
=ρ

ρ

)δ

Γ(δ + 1)
+

121
1024

cosh
( ϕ

4

)
(
=ρ

ρ

)2δ

Γ(2δ + 1)
,

− 11
512

sinh
( ϕ

4

)
(
=ρ

ρ

)δ

Γ(δ + 1)
+

121
2048

cosh
( ϕ

4

)
(
=ρ

ρ

)2δ

Γ(2δ + 1)
− 1331

49152
sinh

( ϕ

4

)
(
=ρ

ρ

)3δ

Γ(3δ + 1)
,

(46)

ω(ϕ,=) =
∞

∑
m=0

ωm(ϕ) = cosh2
( ϕ

4

)
− 11

32
sinh

( ϕ

4

)
(
=ρ

ρ

)δ

Γ(δ + 1)
− 11

28
sinh

( ϕ

4

)
(
=ρ

ρ

)δ

Γ(δ + 1)
+

121
1024

cosh
( ϕ

4

)
(
=ρ

ρ

)2δ

Γ(2δ + 1)
,

− 11
512

sinh
( ϕ

4

)
(
=ρ

ρ

)δ

Γ(δ + 1)
+

121
2048

cosh
( ϕ

4

)
(
=ρ

ρ

)2δ

Γ(2δ + 1)
− 1331

49152
sinh

( ϕ

4

)
(
=ρ

ρ

)3δ

Γ(3δ + 1)
− · · · .

(47)

The exact result of Equation (35) at δ = 1,

ω(ϕ,=) = cosh2
(

ϕ

4
− 11=

24

)
. (48)

Figure 4 shows the ρ-LDM and ρ-LVIM solution of the fractional Fornberg–Whitham
defined by generalized Caputo fractional-order derivative in the space coordinate and
time 0 < = ≤ 0.5, ρ = 1 and δ = 1. Figure 5, the 3D graph shows exact and approximate
solutions plot at δ = 1 and ρ = 0.9; the figure shows that different fractional-order at δ.
Similarly, in Figure 6, the 2D graph of exact and approximate solutions plot at δ = 1 and
ρ = 0.9 the figure shows that different fractional-order at δ.

Figure 4. The graph of Exact and approximate solutions of δ = 1 and ρ = 1 of Example 2.
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Figure 5. The first 3D graph of Exact and approximate solutions plot at δ = 1 and ρ = 0.9 and second
plot of the approximate different fractional-order of δ = 1 of Example 2.

Figure 6. The first 2D graph of Exact and approximate solutions plot at δ = 1 and ρ = 0.9 and second plot of the approximate
different fractional-order of δ = 1 of Example 2.

7. Conclusions

In this article, different semi-analytical techniques are implemented to solve time-
fractional Fornberg–Whitham equation. The approximate solution of the equations is
evaluated to confirm the validity and reliability of the proposed methods. Graphs of
the solutions are plotted to display the closed relation between the obtained and exact
results. In addition, the suggested techniques provide easily computable components for
the series-form tests. It is investigated that the results achieved in the series form have a
higher convergence rate towards the exact results. The proposed methods have a small
number of calculations to achieve the approximate solution. In conclusion, it is found that
the proposed technique is a sophisticated method for solving other NLFPDEs. In the future,
the analytical result of non-linear fractional-order boundary values problems achieved
using this technique is in the form of uniform convergence series.
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Abstract: This work presents optimality conditions for several fractional variational problems where
the Lagrange function depends on fractional order operators, the initial and final state values, and a
free parameter. The fractional derivatives considered in this paper are the Riemann–Liouville and
the Caputo derivatives with respect to an arbitrary kernel. The new variational problems studied
here are generalizations of several types of variational problems, and therefore, our results generalize
well-known results from the fractional calculus of variations. Namely, we prove conditions useful
to determine the optimal orders of the fractional derivatives and necessary optimality conditions
involving time delays and arbitrary real positive fractional orders. Sufficient conditions for such
problems are also studied. Illustrative examples are provided.
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1. Introduction

Fractional calculus refers to the integration and differentiation of a non-integer order
and is as old as the classical (integer order) calculus [1]. It is a subject that has gained
much popularity and importance in the last few decades and has been applied in sev-
eral fields of knowledge, such as mechanics [2,3], bioengineering [4], signal and image
processing [5], physics [6,7], viscoelasticity [8], electrical engineering [9], economics [10],
epidemiology [11,12], control theory [13,14], energy supply-demand systems [15], and
fuzzy problems [16].

One of the specificities of fractional calculus is that there are many definitions of
fractional derivatives that allow the researcher to choose the one that best corresponds to a
given problem. Some of the most commonly used fractional derivatives are the Riemann–
Liouville, the Erdélyi–Kober, the Caputo, the Hadamard, and the Grünwald–Letnikov
derivatives. For a detailed study on this subject, see [1,17]. In this present work, we consider
fractional operators with respect to an arbitrary kernel (see [17] for the Riemann–Liouville
sense and [18] for the Caputo sense).

Fractional calculus of variations is a recent field that consists of minimizing or maxi-
mizing functionals that depend on fractional operators. The first works in this scientific
area are due to Riewe [3,19]. Since then, many papers were published on different topics of
the fractional calculus of variations for different types of fractional operators (see [2,20–29]
and the references therein). For more details, we recommend the works [30–32].

By considering a more general form of the fractional derivative, like the Caputo frac-
tional derivative with respect to an arbitrary kernel (see [18]), we can generalize different
fractional variational problems. In [23,33], necessary and sufficient optimality conditions
were proven for different variational problems depending on the Caputo fractional deriva-
tive with respect to an arbitrary kernel.
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In [33], the following problem was studied: determine x ∈ C1([a, b],R) and ζ ∈ R that
extremize:

J (x, ζ) :=
∫ b

a
L
(

t, x(t), (CDγ,g
a+ x)(t), (CDδ,g

b− x)(t), x(a), x(b), ζ
)

dt, (1)

where L ∈ C1([a, b]×R6,R) and CDγ,g
a+ x and CDδ,g

b− x denote, respectively, the left and right
g-Caputo fractional derivatives of x of order γ and δ, with γ, δ ∈]0, 1[ (see Definition 3).
The main results of [33] are optimality conditions for variational problems with or without
isoperimetric and holonomic constraints. The aim of this paper is to generalize these
previous results. It is important to mention that this type of generalized fractional varia-
tional problem cannot be solved using the classical theory. Moreover, since the g-Caputo
fractional derivatives are generalizations of several fractional derivatives and the varia-
tional problem (1) is a generalization of several kinds of the calculus of variation problems,
the results obtained in [33] not only generalize some known results, but also give new
contributions to the theory of the fractional calculus of variations.

In this paper, we prove optimality conditions for different fractional variational prob-
lems that are generalizations of the one introduced in [33]. Namely, we prove the general-
ized fractional variational principle for problems with optimal orders, with time delay and
with arbitrary real order fractional derivatives. In addition, we prove sufficient optimality
conditions for all of the problems considered in the paper.

This main structure of this paper is as follows. In Section 2, we present some prelimi-
naries on fractional calculus. In Section 3, we exhibit the main results. We finish the paper
with two examples and some conclusions.

2. Preliminaries

We begin with a brief review of some important concepts and results that will be used
in this paper. In what follows, Γ represents the well-known Gamma function, and the
integer part of γ ∈ R is denoted by [γ].

Definition 1. [17] Let γ be a positive real, g : [a, b]→ R a C1 function with positive derivative,
and x ∈ L1([a, b],R). The left Riemann–Liouville fractional integral of x of order γ, with respect
to the kernel g, is defined as:

(Iγ,g
a+ x)(t) :=

1
Γ(γ)

∫ t

a
g′(τ)(g(t)− g(τ))γ−1x(τ) dτ, t > a,

and the right derivative is given by:

(Iγ,g
b− x)(t) :=

1
Γ(γ)

∫ b

t
g′(τ)(g(τ)− g(t))γ−1x(τ) dτ, t < b.

Next, we present the definitions of the g-Riemann–Liouville fractional derivatives of a
function x of order γ.

Definition 2. [17] Let γ be a positive real, g : [a, b]→ R a Cn function with positive derivative,
and x ∈ L1([a, b],R). The left Riemann–Liouville fractional derivative of x of order γ, with respect
to the kernel g, is given by:

(Dγ,g
a+ x)(t) :=

( 1
g′(t)

d
dt

)n
(In−γ,g

a+ x)(t), t > a,

and the right derivative by:

(Dγ,g
b− x)(t) :=

(
− 1

g′(t)
d
dt

)n
(In−γ,g

b− x)(t), t < b,
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where n = [γ] + 1.

Remark 1. It is easily seen that:

1. for certain choices of the kernel g, we recover well-known fractional derivatives, such as
Riemann–Liouville (g(t) = t), Hadamard (g(t) = ln(t), a > 0), and Erdélyi–Kober
fractional derivatives (g(t) = tσ, σ > 0);

2. if γ = m ∈ N, then:

(Dγ,g
a+ x)(t) =

( 1
g′(t)

d
dt

)m
x(t) and (Dγ,g

b− x)(t) =
(
− 1

g′(t)
d
dt

)m
x(t).

Next, the concept of g-Caputo fractional derivatives of x of order γ is presented, which
is fundamental for the formulation of our problem.

Definition 3. [18] Let γ be a positive real and:

n =

{
[γ] + 1 if γ /∈ N
γ if γ ∈ N

Let x, g be two real Cn functions defined on [a, b], where g satisfies g′(t) > 0. The left Caputo
fractional derivative of x of order γ, with respect to the kernel g, is defined as:

(CDγ,g
a+ x)(t) :=

(
In−γ,g
a+

( 1
g′(t)

d
dt

)n
x
)
(t), t > a,

and the right derivative as:

(CDγ,g
b− x)(t) :=

(
In−γ,g
b−

(
− 1

g′(t)
d
dt

)n
x
)
(t), t < b.

Remark 2. It is clear that if g is the identity, then CDγ,g
a+ x and CDγ,g

b− x are the usual Caputo
fractional derivatives of x. Notice that if γ = m ∈ N, then:

(CDγ,g
a+ x)(t) =

(
1

g′(t)
d
dt

)m
x(t) and (CDγ,g

b− x)(t) =
(
− 1

g′(t)
d
dt

)m
x(t).

Otherwise,

(CDγ,g
a+ x)(t) =

1
Γ(n− γ)

∫ t

a
g′(τ)(g(t)− g(τ))n−γ−1

( 1
g′(τ)

d
dτ

)n
x(τ) dτ

and:

(CDγ,g
b− x)(t) =

1
Γ(n− γ)

∫ b

t
g′(τ)(g(τ)− g(t))n−γ−1

(
− 1

g′(τ)
d

dτ

)n
x(τ) dτ.

Since the integration by parts formula is of great importance in the calculus of varia-
tions, we state here this basic result.

Theorem 1. [18] Let x be a continuous function and y, g two Cn functions, with domain [a, b].
Then,

∫ b

a
x(t) · (CDγ,g

a+ y)(t) dt =
∫ b

a
y(t) ·

(
Dγ,g

b−
x
g′
)
(t)g′(t) dt

+

[
n−1

∑
k=0

(
− 1

g′(t)
d
dt

)k(
In−γ,g
b−

x
g′
)
(t) ·

( 1
g′(t)

d
dt

)n−k−1
y(t)

]t=b

t=a
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and:
∫ b

a
x(t) · (CDγ,g

b− y)(t) dt =
∫ b

a
y(t) ·

(
Dγ,g

a+
x
g′
)
(t)g′(t) dt

+

[
n−1

∑
k=0

(−1)n−k
( 1

g′(t)
d
dt

)k(
In−γ,g
a+

x
g′
)
(t) ·

( 1
g′(t)

d
dt

)n−k−1
y(t)

]t=b

t=a

.

Remark 3. In particular, if 0 < γ < 1, Theorem 1 reduces to:

∫ b

a
x(t) · (CDγ,g

a+ y)(t) dt =
∫ b

a
y(t) ·

(
Dγ,g

b−
x
g′
)
(t)g′(t) dt +

[(
I1−γ,g
b−

x
g′
)
(t) · y(t)

]t=b

t=a

and:

∫ b

a
x(t) · (CDγ,g

b− y)(t) dt =
∫ b

a
y(t) ·

(
Dγ,g

a+
x
g′
)
(t)g′(t) dt−

[(
I1−γ,g
a+

x
g′
)
(t) · y(t)

]t=b

t=a
.

Next, we present the following result, which is useful in applications. For a more
detailed study of the g-Caputo fractional derivatives, we refer to [18].

Lemma 1. [18] If n < σ ∈ R, then:

CDγ,g
a+ (g(t)− g(a))σ−1 =

Γ(σ)
Γ(σ− γ)

(g(t)− g(a))σ−γ−1

and:
CDγ,g

b− (g(b)− g(t))σ−1 =
Γ(σ)

Γ(σ− γ)
(g(b)− g(t))σ−γ−1.

Throughout the text, the partial derivative of L with respect to its i-th argument is
denoted by ∂iL.

3. Main Results

Now, we are ready to present the main contributions of this work, by proving some
generalizations of the fractional variational problem studied in [33]. The results of the
paper are trivially generalized for the case of vector functions x.

3.1. Generalized Fractional Variational Principle with Optimal Orders

One of the advantages of fractional derivatives is that, in many real problems, they
better describe the dynamics of the problems compared to the classical derivative. With
this in mind, a natural issue is to include the order of the fractional derivatives in the
optimization process, that is, the variational problem under study consists of finding a
curve x, a parameter ζ, and the order of the fractional derivatives γ and δ that extremize
the variational functional.

Consider the following problem:

Problem 1. Determine the functions x : [a, b] → R of class C1, the parameters ζ ∈ R, and
fractional orders γ, δ ∈]0, 1[ that minimize or maximize:

J1(x, ζ, γ, δ) :=
∫ b

a
L
(

t, x(t), (CDγ,g
a+ x)(t), (CDδ,g

b− x)(t), x(a), x(b), ζ
)

dt, (2)

where L ∈ C1([a, b]×R6,R) and x(a) and x(b) can be fixed or free.
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For simplification, we use the notation:

[x, ζ, γ, δ](t) :=
(

t, x(t), (CDγ,g
a+ x)(t), (CDδ,g

b− x)(t), x(a), x(b), ζ
)

.

The next result is the optimal fractional order variational principle for Problem 1.

Theorem 2. If (x?, ζ?, γ?, δ?) is an extremizer of functional J1 defined by (2) and if the maps:

t 7→
(

Dγ? ,g
b−

∂3L[x?, ζ?, γ?, δ?]

g′
)
(t) and t 7→

(
Dδ? ,g

a+
∂4L[x?, ζ?, γ?, δ?]

g′
)
(t)

are continuous, then, for all t,

∂2L[x?, ζ?, γ?, δ?](t) +
(

Dγ? ,g
b−

∂3L[x?, ζ?, γ?, δ?]

g′
)
(t)g′(t)

+
(

Dδ? ,g
a+

∂4L[x?, ζ?, γ?, δ?]

g′
)
(t)g′(t) = 0. (3)

Furthermore, the following conditions hold:

∫ b

a
∂7L[x?, ζ?, γ?, δ?](t) dt = 0, (4)

∫ b

a
f ′t (γ

?) · ∂3L[x?, ζ?, γ?, δ?](t) dt = 0, (5)

∫ b

a
g′t(δ

?) · ∂4L[x?, ζ?, γ?, δ?](t) dt = 0, (6)

where, for each t ∈ [a, b], ft : ]0, 1[→ R and gt : ]0, 1[→ R are the functions defined as follows:

ft(γ) = (CDγ,g
a+ x?)(t) and gt(δ) = (CDδ,g

b− x?)(t).

If x(a) is not fixed, the following is verified:

∫ b

a
∂5L[x?, ζ?, γ?, δ?](t) dt

=
(

I1−γ? ,g
b−

∂3L[x?, ζ?, γ?, δ?]

g′
)
(a)−

(
I1−δ? ,g
a+

∂4L[x?, ζ?, γ?, δ?]

g′
)
(a); (7)

Furthermore, if x(b) is not fixed,

∫ b

a
∂6L[x?, ζ?, γ?, δ?](t) dt

=
(

I1−δ? ,g
a+

∂4L[x?, ζ?, γ?, δ?]

g′
)
(b)−

(
I1−γ? ,g
b−

∂3L[x?, ζ?, γ?, δ?]

g′
)
(b). (8)

Proof. Suppose that (x?, ζ?, γ?, δ?) is an extremizer for functional J1. Hence, for any
(fixed) η ∈ C1([a, b],R), ∆ζ, ∆γ, ∆δ ∈ R such that 0 < γ? + ε∆γ < 1 and 0 < δ? + ε∆δ < 1,
with ε in a neighborhood of zero, we conclude that:

d
dε
J1(x? + εη, ζ? + ε∆ζ, γ? + ε∆γ, δ? + ε∆δ)

∣∣∣
ε=0

= 0.
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Therefore, the following condition holds:

∫ b

a

(
∂2L[x?, ζ?, γ?, δ?](t) · η(t) + ∂3L[x?, ζ?, γ?, δ?](t) ·

(
f ′t (γ

?)∆γ + (CDγ? ,g
a+ η)(t)

)

+ ∂4L[x?, ζ?, γ?, δ?](t) ·
(

g′t(δ
?)∆δ + (CDδ? ,g

b− η)(t)
)

+ ∂5L[x?, ζ?, γ?, δ?](t) · η(a) + ∂6L[x?, ζ?, γ?, δ?](t) · η(b) + ∂7L[x?, ζ?, γ?, δ?](t) · ∆ζ

)
dt = 0.

Integration by parts gives (see Remark 3):

∫ b

a

(
∂2L[x?, ζ?, γ?, δ?](t) +

(
Dγ? ,g

b−
∂3L[x?, ζ?, γ?, δ?]

g′
)
(t)g′(t)

+
(

Dδ? ,g
a+

∂4L[x?, ζ?, γ?, δ?]

g′
)
(t)g′(t)

)
·η(t) dt +

[(
I1−γ? ,g
b−

∂3L[x?, ζ?, γ?, δ?]

g′
)
(t) · η(t)

]t=b

t=a

−
[(

I1−δ? ,g
a+

∂4L[x?, ζ?, γ?, δ?]

g′
)
(t) · η(t)

]t=b

t=a

+ ∆γ
∫ b

a
f ′t (γ

?) · ∂3L[x?, ζ?, γ?, δ?](t) dt + ∆δ
∫ b

a
g′t(δ

?) · ∂4L[x?, ζ?, γ?, δ?](t) dt

+
∫ b

a

(
∂5L[x?, ζ?, γ?, δ?](t) · η(a) + ∂6L[x?, ζ?, γ?, δ?](t) · η(b)

+ ∂7L[x?, ζ?, γ?, δ?](t) · ∆ζ

)
dt = 0. (9)

We first consider functions η such that η(a) = η(b) = 0. In this case, Equation (9) becomes:

∫ b

a

(
∂2L[x?, ζ?, γ?, δ?](t) +

(
Dγ? ,g

b−
∂3L[x?, ζ?, γ?, δ?]

g′
)
(t)g′(t)

+
(

Dδ? ,g
a+

∂4L[x?, ζ?, γ?, δ?]

g′
)
(t)g′(t)

)
·η(t) dt + ∆γ

∫ b

a
f ′t (γ

?) · ∂3L[x?, ζ?, γ?, δ?](t) dt

+ ∆δ
∫ b

a
g′t(δ

?) · ∂4L[x?, ζ?, γ?, δ?](t) dt + ∆ζ
∫ b

a
∂7L[x?, ζ?, γ?, δ?](t) dt = 0. (10)

By the arbitrariness of ∆γ, ∆δ, and ∆ζ, if we consider that all of them are null, using Lemma 2.2.2
in [34], we get:

∂2L[x?, ζ?, γ?, δ?](t) +
(

Dγ? ,g
b−

∂3L[x?, ζ?, γ?, δ?]

g′
)
(t)g′(t)

+
(

Dδ? ,g
a+

∂4L[x?, ζ?, γ?, δ?]

g′
)
(t)g′(t) = 0,

for all t, proving the Euler–Lagrange Equation (3). Since (x?, ζ?, γ?, δ?) satisfies Equality (3) for all
t ∈ [a, b], the first integral in (10) vanishes, and then, it takes the form:

∆γ
∫ b

a
f ′t (γ

?) · ∂3L[x?, ζ?, γ?, δ?](t) dt + ∆δ
∫ b

a
g′t(δ

?) · ∂4L[x?, ζ?, γ?, δ?](t) dt

+ ∆ζ
∫ b

a
∂7L[x?, ζ?, γ?, δ?](t) dt = 0. (11)

By the arbitrariness of ∆γ, ∆δ, and ∆ζ, we deduce from (11) the necessary conditions (4)–(6).
We now seek the natural boundary conditions.
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1. If x(a) is not fixed in the formulation of the problem, then η need not to be null at t = a.
Restricting η to be null at t = b and substituting the necessary conditions (3)–(6) into (9), it
follows that:

((
I1−δ? ,g
a+

∂4L[x?, ζ?, γ?, δ?]

g′
)
(a)−

(
I1−γ? ,g
b−

∂3L[x?, ζ?, γ?, δ?]

g′
)
(a)

+
∫ b

a
∂5L[x?, ζ?, γ?, δ?](t) dt

)
·η(a) = 0.

Since η(a) is an arbitrary real, we prove (7).
2. Suppose now that x(b) is not fixed. Restricting η to be null at t = a and using similar arguments

as previously, we get Equation (8).

Remark 4. We note that if L does not depend on (CDδ,g
b− x)(t), x(a), x(b), and ζ, then Theorem 2

reduces to Theorem 2.9 from [23] if the final time is fixed.

3.2. Generalized Variational Problems with Time Delay

It is known that a delay is inherent in many problems, such as in control theory,
bioengineering, electrochemistry, and social sciences. Differential equations with time
delays have been used to model complex systems and have led to an intense topic of
research for many years. Although fractional derivatives are not local in nature and are
capable of modeling memory effects, delays are also very important because they take into
account the system’s history from a previous state. For these reasons, many real-world
problems can be modeled more precisely, including fractional derivatives and time delays.
In recent years, delayed fractional differential equations have started to attract the attention
of many researchers [35–37]. Few works are yet devoted to fractional variational problems
with time delay so far [38–40].

Encouraged by the importance of considering a delay in many real-world problems,
we study here the following fractional problem with a time delay τ, where τ ∈ R satisfies
0 ≤ τ < b− a.

Problem 2. Determine a C1 function x : [a − τ, b] → R, subject to x(t) = X(t), for all
t ∈ [a− τ, a], where X is a given initial function of class C1 and ζ ∈ R that minimize or maximize:

J2(x, ζ) :=
∫ b

a
L
(

t, x(t), x(t− τ), (CDγ,g
a+ x)(t), (CDδ,g

b− x)(t), x(a), x(b), ζ
)

dt, (12)

where L ∈ C1([a, b]×R7,R).

Define:

[x, ζ]τ(t) :=
(

t, x(t), x(t− τ), (CDγ,g
a+ x)(t), (CDδ,g

b− x)(t), x(a), x(b), ζ
)

.

Theorem 3. Suppose that (x?, ζ?) is an extremizer of J2 defined by (12) and that the functions
exist and are continuous:

t 7→
(

Dγ,g
(b−τ)−

∂4L[x?, ζ?]τ
g′

)
(t) and t 7→

(
Dδ,g

a+
∂5L[x?, ζ?]τ

g′
)
(t) on [a, b− τ]

and:

t 7→
(

Dγ,g
b−

∂4L[x?, ζ?]τ
g′

)
(t) and t 7→

(
Dδ,g
(b−τ)+

∂5L[x?, ζ?]τ
g′

)
(t) on [b− τ, b].
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Then, for all t ∈ [a, b− τ],

∂2L[x?, ζ?]τ(t) + ∂3L[x?, ζ?]τ(t + τ) +
(

Dγ,g
(b−τ)−

∂4L[x?, ζ?]τ
g′

)
(t) · g′(t)

+
(

Dδ,g
a+

∂5L[x?, ζ?]τ
g′

)
(t) · g′(t)− 1

Γ(1− γ)

d
dt

∫ b

b−τ
(g(s)− g(t))−γ∂4L[x?, ζ?]τ(s) ds = 0, (13)

and for all t ∈ [b− τ, b],

∂2L[x?, ζ?]τ(t) +
(

Dγ,g
b−

∂4L[x?, ζ?]τ
g′

)
(t) · g′(t) +

(
Dδ,g
(b−τ)+

∂5L[x?, ζ?]τ
g′

)
(t) · g′(t)

+
1

Γ(1− δ)

d
dt

∫ b−τ

a
(g(t)− g(s))−δ∂5L[x?, ζ?]τ(s) ds = 0. (14)

Moreover, ∫ b

a
∂8L[x?, ζ?]τ(t) dt = 0 (15)

and if x(b) is not fixed, then:

∫ b

a
∂7L[x?, ζ?]τ(t) dt =

(
I1−δ,g
a+

∂5L[x?, ζ?]τ
g′

)
(b)−

(
I1−γ,g
b−

∂4L[x?, ζ?]τ
g′

)
(b). (16)

Proof. Let η : [a− τ, b]→ R be a C1 function vanishing on [a− τ, a], and let ∆ζ be a real.
Consider:

v(ε) = J2(x? + εη, ζ? + ε∆ζ)

defined on an open interval containing zero. Since (x?, ζ?) is an extremizer of J2, then
v′(0) = 0, and therefore:

∫ b

a

(
∂2L[x?, ζ?]τ(t) · η(t) + ∂3L[x?, ζ?]τ(t) · η(t− τ) + ∂4L[x?, ζ?]τ(t) · (CDγ,g

a+ η)(t)

+ ∂5L[x?, ζ?]τ(t) · (CDδ,g
b− η)(t) + ∂6L[x?, ζ?]τ(t) · η(a) + ∂7L[x, ζ](t) · η(b)

+ ∂8L[x?, ζ?]τ(t) · ∆ζ

)
dt = 0. (17)

Considering t = u + τ, we obtain:

∫ b

a
∂3L[x?, ζ?]τ(t) · η(t− τ) dt =

∫ b−τ

a
∂3L[x?, ζ?]τ(t + τ) · η(t) dt. (18)

Observe that, for a ≤ t ≤ b− τ,

(
Dγ,g

b−
∂4L[x?, ζ?]τ

g′
)
(t) =

(
Dγ,g
(b−τ)−

∂4L[x?, ζ?]τ
g′

)
(t)

− 1
Γ(1− γ)

( 1
g′(t)

d
dt

) ∫ b

b−τ
(g(s)− g(t))−γ∂4L[x?, ζ?]τ(s) ds (19)

and for b− τ ≤ t ≤ b,

(
Dδ,g

a+
∂5L[x?, ζ?]τ

g′
)
(t) =

(
Dδ,g
(b−τ)+

∂5L[x?, ζ?]τ
g′

)
(t)

+
1

Γ(1− δ)

( 1
g′(t)

d
dt

) ∫ b−τ

a
(g(t)− g(s))−δ∂5L[x?, ζ?]τ(s) ds. (20)
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By Theorem 1 and (19), we obtain:

∫ b

a
∂4L[x?, ζ?]τ(t) · (CDγ,g

a+ η)(t) dt =
∫ b−τ

a

((
Dγ,g
(b−τ)−

∂4L[x?, ζ?]τ
g′

)
(t) · g′(t)

− 1
Γ(1− γ)

d
dt

∫ b

b−τ
(g(s)− g(t))−γ∂4L[x?, ζ?]τ(s) ds

)
·η(t) dt

+
∫ b

b−τ

(
Dγ,g

b−
∂4L[x?, ζ?]τ

g′
)
(t)g′(t) · η(t) dt +

[(
I1−γ,g
b−

∂4L[x?, ζ?]τ
g′

)
(t) · η(t)

]t=b

t=a
. (21)

Again, by Theorem 1 and (20), we obtain:

∫ b

a
∂5L[x?, ζ?]τ(t) · (CDδ,g

b− η)(t) dt =
∫ b−τ

a

(
Dδ,g

a+
∂5L[x?, ζ?]τ

g′
)
(t)g′(t) · η(t) dt

−
[(

I1−δ,g
a+

∂5L[x?, ζ?]τ
g′

)
(t) · η(t)

]t=b

t=a
+
∫ b

b−τ

((
Dδ,g
(b−τ)+

∂5L[x?, ζ?]τ
g′

)
(t) · g′(t)

+
1

Γ(1− δ)

d
dt

∫ b−τ

a
(g(t)− g(s))−δ∂5L[x?, ζ?]τ(s) ds

)
·η(t) dt. (22)

Introducing (18), (21), and (22) into Equation (17), we can conclude that:

∫ b−τ

a

(
∂2L[x?, ζ?]τ(t) + ∂3L[x?, ζ?]τ(t + τ) +

(
Dγ,g
(b−τ)−

∂4L[x?, ζ?]τ
g′

)
(t)g′(t)

− 1
Γ(1− γ)

d
dt

∫ b

b−τ
(g(s)− g(t))−γ∂4L[x?, ζ?]τ(s) ds+

(
Dδ,g

a+
∂5L[x?, ζ?]τ

g′
)
(t)g′(t)

)
·η(t) dt

+
∫ b

b−τ

(
∂2L[x?, ζ?]τ(t) +

(
Dγ,g

b−
∂4L[x?, ζ?]τ

g′
)
(t)g′(t) +

(
Dδ,g
(b−τ)+

∂5L[x?, ζ?]τ
g′

)
(t)g′(t)

+
1

Γ(1− δ)

d
dt

∫ b−τ

a
(g(t)− g(s))−δ∂5L[x?, ζ?]τ(s) ds

)
·η(t) dt

+

[(
I1−γ,g
b−

∂4L[x?, ζ?]τ
g′

)
(t) · η(t)

]t=b

t=a
−
[(

I1−δ,g
a+

∂5L[x?, ζ?]τ
g′

)
(t) · η(t)

]t=b

t=a

+
∫ b

a

(
∂6L[x?, ζ?]τ(t) · η(a) + ∂7L[x?, ζ?]τ(t) · η(b) + ∂8L[x?, ζ?]τ(t) · ∆ζ

)
dt = 0. (23)

Since Equation (23) is valid for any variations η and all ∆ζ, assuming that η vanishes
on the interval [b − τ, b] and taking ∆ζ = 0, from Lemma 2.2.2 in [34], we prove that
Condition (13) holds on [a, b− τ]. Restricting the variations η to those functions that satisfy
η(b) = 0 and introducing Condition (13) into (23), we obtain:

∫ b

b−τ

(
∂2L[x?, ζ?]τ(t) +

(
Dγ,g

b−
∂4L[x?, ζ?]τ

g′
)
(t)g′(t) +

(
Dδ,g
(b−τ)+

∂5L[x?, ζ?]τ
g′

)
(t)g′(t)

+
1

Γ(1− δ)

d
dt

∫ b−τ

a
(g(t)− g(s))−δ∂5L[x?, ζ?]τ(s) ds

)
·η(t) dt

+
∫ b

a
∂8L[x?, ζ?]τ(t) · ∆ζ dt = 0. (24)
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Since the last equality holds for all ∆ζ, then, in particular, it holds for ∆ζ = 0; hence,
from Lemma 2.2.2 in [34], Condition (14) holds on the interval [b− τ, b]. Introducing (14)

into (24), we conclude, from the arbitrariness of ∆ζ, that
∫ b

a
∂8L[x?, ζ?]τ(t) dt = 0, proving

the necessary condition (15). If x(b) is free, η(b) need not to be null; in this case, we get
from (23) that:

∫ b

a
∂7L[x?, ζ?]τ(t) · η(b) dt +

(
I1−γ,g
b−

∂4L[x?, ζ?]τ
g′

)
(b) · η(b)

−
(

I1−δ,g
a+

∂5L[x?, ζ?]τ
g′

)
(b) · η(b) = 0.

From the arbitrariness of η(b), we prove Condition (16), as desired.

Remark 5. We remark that:

1. if the delay is removed (τ = 0), then Problem 2 coincides with the problem given by (1) if we
consider x(a) fixed, and therefore, the fractional variational principle given by Theorem 3 in
[33] can be obtained from Theorem 3;

2. when the final time is fixed, Theorem 2.7 in [23] can be obtained from Theorem 3.

3.3. Generalized Higher Order Fractional Variational Principle

In this subsection, we consider an extension of the generalized variational problem
given by (1), by including in the Lagrangian function arbitrary real fractional orders
γ, δ > 0. With this, we obtain what is known as a fractional variational problem with
arbitrary higher order fractional derivatives. The problem formulation is the following.

Problem 3. Find functions x : [a, b]→ R of class Cn and ζ ∈ R that minimize or maximize the
functional:

J3(x, ζ) :=
∫ b

a
L
(

t, x(t), (CDγ1,g
a+ x)(t), (CDδ1,g

b− x)(t), . . . , (CDγn ,g
a+ x)(t),

(CDδn ,g
b− x)(t), x(a), x(b), ζ

)
dt, (25)

where L ∈ C1([a, b]×R2n+4,R), and k− 1 < γk, δk < k, for k = 1, . . . , n. Furthermore, the
boundary conditions:

x(k)(a) = xk
a and x(k)(b) = xk

b, k = 1, . . . , n− 1, (26)

are assumed to hold, where xk
a, xk

b ∈ R are fixed, for all k.

To abbreviate, define:

[x, ζ]n(t) :=
(

t, x(t), (CDγ1,g
a+ x)(t), (CDδ1,g

b− x)(t), . . . , (CDγn ,g
a+ x)(t), (CDδn ,g

b− x)(t), x(a), x(b), ζ
)

.

Theorem 4. If (x?, ζ?) is an extremizer of functional J3 defined by (25) and the functions exist
and are continuous:

t 7→
(

Dγi ,g
b−

∂2i+1L[x?, ζ?]n
g′

)
(t) and t 7→

(
Dδi ,g

a+
∂2i+2L[x?, ζ?]n

g′
)
(t),
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for all i = 1, . . . , n, then:

∂2L[x?, ζ?]n(t) +
n

∑
i=1

[(
Dγi ,g

b−
∂2i+1L[x?, ζ?]n

g′
)
(t) · g′(t)

+
(

Dδi ,g
a+

∂2i+2L[x?, ζ?]n
g′

)
(t) · g′(t)

]
= 0 (27)

and: ∫ b

a
∂2n+5L[x?, ζ?]n(t) dt = 0. (28)

If x(a) is not fixed, then:

∫ b

a
∂2n+3L[x?, ζ?]n(t) dt =

[
n

∑
i=1

((
− 1

g′(t)
d
dt

)i−1(
Ii−γi ,g
b−

∂2i+1L[x?, ζ?]n
g′

)
(t) (29)

−
( 1

g′(t)
d
dt

)i−1(
Ii−δi ,g
a+

∂2i+2L[x?, ζ?]n
g′

)
(t)

)]

t=a

,

and if x(b) is not fixed, then:

∫ b

a
∂2n+4L[x?, ζ?]n(t) dt =

[
n

∑
i=1

(( 1
g′(t)

d
dt

)i−1(
Ii−δi ,g
a+

∂2i+2L[x?, ζ?]n
g′

)
(t) (30)

−
(
− 1

g′(t)
d
dt

)i−1(
Ii−γi ,g
b−

∂2i+1L[x?, ζ?]n
g′

)
(t)

)]

t=b

.

Proof. Consider the pair given by (x? + εη, ζ? + ε∆ζ), where η ∈ Cn([a, b],R) satisfies
η(i)(a) = 0 and η(i)(b) = 0, for all i ∈ {1, . . . , n − 1}, and ∆ζ, ε are two arbitrary real
numbers. Observe that:

( 1
g′(t)

d
dt

)i
η(t) = 0 at t ∈ {a, b}, ∀i ∈ {1, . . . , n− 1}.

Defining:
ν(ε) = J3(x? + εη, ζ? + ε∆ζ),

the condition ν′(0) = 0 implies that:

∫ b

a

(
∂2L[x?, ζ?]n(t) · η(t) +

n

∑
i=1

[
∂2i+1L[x?, ζ?]n(t) · (CDγi ,g

a+ η)(t)

+∂2i+2L[x?, ζ?]n(t) · (CDδi ,g
b− η)(t)

]
+ ∂2n+3L[x?, ζ?]n(t) · η(a)

+ ∂2n+4L[x?, ζ?]n(t) · η(b) + ∂2n+5L[x?, ζ?]n(t) · ∆ζ

)
dt = 0.

Applying Theorem 1, we get, for each i ∈ {1, . . . , n},
∫ b

a
∂2i+1L[x?, ζ?]n(t)·(CDγi ,g

a+ η)(t) dt =
∫ b

a

(
Dγi ,g

b−
∂2i+1L[x?, ζ?]n

g′
)
(t)g′(t) · η(t) dt

+

[(
− 1

g′(t)
d
dt

)i−1(
Ii−γi ,g
b−

∂2i+1L[x?, ζ?]n
g′

)
(t) · η(t)

]t=b

t=a
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and:
∫ b

a
∂2i+2L[x?, ζ?]n(t)·(CDδi ,g

b− η)(t) dt =
∫ b

a

(
Dδi ,g

a+
∂2i+2L[x?, ζ?]n

g′
)
(t)g′(t) · η(t) dt

−
[( 1

g′(t)
d
dt

)i−1(
Ii−δi ,g
a+

∂2i+2L[x?, ζ?]n
g′

)
(t) · η(t)

]t=b

t=a
.

Thus,

∫ b

a

(
∂2L[x?, ζ?]n(t) +

n

∑
i=1

[(
Dγi ,g

b−
∂2i+1L[x?, ζ?]n

g′
)
(t)g′(t)

+
(

Dδi ,g
a+

∂2i+2L[x?, ζ?]n
g′

)
(t)g′(t)

])
·η(t) dt

+
n

∑
i=1

[((
− 1

g′(t)
d
dt

)i−1(
Ii−γi ,g
b−

∂2i+1L[x?, ζ?]n
g′

)
(t)

−
( 1

g′(t)
d
dt

)i−1(
Ii−δi ,g
a+

∂2i+2L[x?, ζ?]n
g′

)
(t)

)
·η(t)

]t=b

t=a

+
∫ b

a

(
∂2n+3L[x?, ζ?]n(t) · η(a) + ∂2n+4L[x?, ζ?]n(t) · η(b) + ∂2n+5L[x?, ζ?]n(t) · ∆ζ

)
dt = 0.

Since η and ∆ζ are arbitrary, we prove Equations (27)–(30).

Remark 6. We remark that:

1. we considered the constraints (26) for the simplicity of presentation; of course, we could
consider the case when x(k)(a) and x(k)(b), k = 1, . . . , n− 1, are free, and at the end deduce
the respective natural boundary conditions;

2. Theorem 2.8 in [23] with the final time fixed is a corollary of Theorem 4.

3.4. Sufficient Optimality Conditions

In this subsection, we give sufficient conditions of optimization for all the problems
considered previously, first for Problem 1.

Theorem 5. Suppose that L satisfies the inequality:

L
(

t, x1 + ∆x1,C Dγ+∆γ,g
a+ (x1 + ∆x1),C Dδ+∆δ,g

b− (x1 + ∆x1), x4 + ∆x4, x5 + ∆x5, x6 + ∆x6

)

− L
(

t, x1,C Dγ,g
a+ x1,C Dδ,g

b− x1, x4, x5, x6

)
≥ (resp. ≤) ∂2L[•]∆x1 +

6

∑
i=4

∂i+1L[•]∆xi

+ ∂3L[•]
(

f ′t (γ).∆γ +C Dγ,g
a+ ∆x1

)
+ ∂4L[•]

(
g′t(δ).∆δ +C Dδ,g

b−∆x1

)
(31)

for all x1, ∆x1 ∈ C1([a, b],R), x4, x5, x6, ∆x4, ∆x5, ∆x6 ∈ R, and ∆γ, ∆δ ∈ R such that 0 <

γ + ∆γ < 1 and 0 < δ + ∆δ < 1, where [•] := (t, x1,C Dγ,g
a+ x1,C Dδ,g

b− x1, x4, x5, x6) and
ft, gt as defined in Theorem 2. If (x?, ζ?, γ?, δ?) satisfies the necessary conditions (3)–(8), then
(x?, ζ?, γ?, δ?) is a minimizer (resp. maximizer) of functional J1.

Proof. We present the proof only when the inequality (31) holds for ≥; the other case is
similar. Let η ∈ C1([a, b],R), ∆ζ ∈ R, and ∆γ, ∆δ ∈ R such that 0 < γ? + ∆γ < 1 and
0 < δ? + ∆δ < 1. In what follows, we denote:

[?](t) :=
(

t, x?(t), (CDγ? ,g
a+ x?)(t), (CDδ? ,g

b− x?)(t), x?(a), x?(b), ζ?
)

.
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Observe that:

J1(x? + η, ζ? + ∆ζ, γ? + ∆γ, δ? + ∆δ)−J1(x?, ζ?, γ?, δ?)

=
∫ b

a

(
L
(

t, x?(t) + η(t), (CDγ?+∆γ,g
a+ (x? + η))(t), (CDδ?+∆δ,g

b− (x? + η))(t), x?(a) + η(a),

x?(b) + η(b), ζ? + ∆ζ
)
− L

(
t, x?(t), (CDγ? ,g

a+ x?)(t), (CDδ? ,g
b− x?)(t), x?(a), x?(b), ζ?

))
dt

≥
∫ b

a

(
∂2L[?](t) · η(t) + ∂3L[?](t)

(
f ′t (γ

?).∆γ + (CDγ? ,g
a+ η)(t)

)

+ ∂4L[?](t)
(

g′t(δ
?).∆δ + (CDδ? ,g

b− η)(t)
)
+ ∂5L[?](t) · η(a)

+ ∂6L[?](t) · η(b) + ∂7L[?](t) · ∆ζ

)
dt

=
∫ b

a

(
∂2L[?](t) +

(
Dγ? ,g

b−
∂3L[?]

g′
)
(t)g′(t) +

(
Dδ? ,g

a+
∂4L[?]

g′
)
(t)g′(t)

)
·η(t) dt

+ ∆γ
∫ b

a
f ′t (γ

?) · ∂3L[?](t) dt + ∆δ
∫ b

a
g′t(δ

?) · ∂4L[?](t) dt

+ η(a)

(∫ b

a
∂5L[?](t) dt +

(
I1−δ? ,g
a+

∂4L[?]
g′

)
(a)−

(
I1−γ? ,g
b−

∂3L[?]
g′

)
(a)

)

+ η(b)

(∫ b

a
∂6L[?](t) dt +

(
I1−γ? ,g
b−

∂3L[?]
g′

)
(b)−

(
I1−δ? ,g
a+

∂4L[?]
g′

)
(b)

)
+∆ζ

∫ b

a
∂7L[?](t) dt.

Using Conditions (3)–(8), we conclude that:

J1(x? + η, ζ? + ∆ζ, γ? + ∆γ, δ? + ∆δ)−J1(x?, ζ?, γ?, δ?) ≥ 0

proving the desired result.

Definition 4. Let m ∈ N and c, d ∈ R such that c < d. Function L(t, x1, . . . , xm) is said to be
jointly convex in S ⊆ [c, d]×Rm if, for all i = 2, 3, . . . , m + 1, ∂iL are continuous and satisfy:

L(t, x1 + ∆x1, . . . , xm + ∆xm)− L(t, x1, . . . , xm) ≥
m

∑
i=1

∂i+1L(t, x1, . . . , xm)∆xi,

for all (t, x + ∆x1, . . . , xm + ∆xm), (t, x1, . . . , xm) ∈ S. We say that L is jointly concave in
S ⊆ [c, d]×Rm if the previous inequality holds, replacing ≥ by ≤.

Next, we present a sufficient optimality condition for the problem considered in
Section 3.2.

Theorem 6. Let L be jointly convex (respectively jointly concave) in [a− τ, b]×R7. If (x?, ζ?)
satisfies the necessary conditions (13)–(16), then (x?, ζ?) is a minimizer (respectively maximizer)
of functional J2.

Proof. Consider a function η : [a− τ, b] → R, of class C1, vanishing at [a− τ, a], and let
∆ζ be an arbitrary real number. Using the same ideas used to prove Theorem 3, one gets:

J2(x? + η, ζ? + ∆ζ)−J2(x?, ζ?) ≥ H(x?, ζ?),
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where H(x?, ζ?) denotes the left-hand side of Equation (23). Introducing (13)–(16) into the
last expression, we get that J2(x? + η, ζ? + ∆ζ)−J2(x?, ζ?) ≥ 0, as desired.

The following result can be proven using the same methods as before.

Theorem 7. Suppose that L is jointly convex (respectively jointly concave) in [a, b]×R2n+4. If
(x?, ζ?) satisfies the necessary conditions (27)–(30), then (x?, ζ?) is a minimizer (respectively
maximizer) of functional J3.

4. Illustrative Examples

In this section, we provide two examples that show the applicability of some of our
results.

Example 1. Suppose we want to find a minimizer of the following functional:

J (x, ζ, γ) =
∫ 1

0

(
(CDγ,g

0+ x)2(t)
(g(t)− g(0))γ

Γ(γ + 1)
− 2 (CDγ,g

0+ x)(t)(g(t)− g(0))γ

+
(x(0))2

2
+

(ζ − 1)4

2

)2

dt,

subject to the boundary condition x(1) = (g(1)− g(0))γ, for the case 0 < γ < 1. Let x?(t) =
(g(t)− g(0))γ, ζ? = 1, and γ? be given later. Using Lemma 1, we get:

(CDγ,g
0+ x?)(t) = Γ(γ + 1),

and therefore,

∂3L[x?, ζ?, γ?] = 2

(
(CDγ? ,g

0+ x?)2(t)
(g(t)− g(0))γ?

Γ(γ? + 1)
− 2 (CDγ? ,g

0+ x)(t)(g(t)− g(0))γ?

+
(x?(0))2

2
+

(ζ? − 1)4

2

)(
2(CDγ? ,g

0+ x?)(t)
(g(t)− g(0))γ?

Γ(γ? + 1)
− 2(g(t)− g(0))γ?

)
= 0.

Following Theorem 2, we observe that x? and ζ? solve Equation (3), Equation (4), and the
natural boundary condition (7). Moreover,

∫ 1

0
f ′t (γ

?) · ∂3L[x?, ζ?, γ?](t) dt = 0,

where ft(γ) = Γ(γ + 1), and so, f ′t (γ) = g0(γ + 1)Γ(γ + 1), where g0 denotes the Digamma
function, proving that Equation (5) holds. Let:

Ψ(γ) := J (x?, ζ?, γ) =
∫ 1

0

(
Γ(γ + 1)(g(t)− g(0))γ

)2
dt.

In Figure 1, we present the graphs of function Ψ, with respect to three different kernels g(t) = t
(Figure 1a), g(t) = 2 sin(t) (Figure 1b), and g(t) = (t + 1)3/2 (Figure 1c). The optimal values
are γ? ≈ 0.9010, γ? ≈ 0.4139, and γ? ≈ 0.4335, respectively.
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(a) g(t) = t (b) g(t) = 2 sin(t)

(c) g(t) = (t + 1)3/2

Figure 1. Plots of function Ψ.

As we can observe, the value of the functional depends on the value of the fractional order when
we evaluated it at the optimal solution (x?, ζ?). Thus, it is also an important question to determine
the optimal value γ? in these types of variational problems.

Example 2. We now consider an example containing higher order derivatives. Let γ ∈ [1, 2] and
δ ∈ [0, 1]. Suppose we want to find a minimizer of:

J (x, ζ) =
∫ 1

0

((
(CDγ,g

0+ x)(t)− 2(g(t)− g(0))2−γ

Γ(3− γ)

)2

+
(
(CDδ,g

1− x)(t)− 2(g(1)− g(t))2−δ

Γ(3− δ)
− 2(g(0)− g(1))(g(1)− g(t))1−δ

Γ(2− δ)

)2

+ (x(1)− (g(1)− g(0))2)2 + ζ2
)

dt,

under the constraints x(0) = x′(0) = 0 and x′(1) = 2(g(1)− g(0)). Let x?(t) = (g(t)− g(0))2

and ζ? = 0. Using Lemma 1, we get:

(CDγ,g
0+ x?)(t) =

2(g(t)− g(0))2−γ

Γ(3− γ)
,
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and:

(CDδ,g
1− x?)(t) =

(
CDδ,g

1− ((g(1)− g) + (g(0)− g(1)))2
)
(t)

=
(

CDδ,g
1− (g(1)− g)2

)
(t) + 2(g(0)− g(1))

(
CDδ,g

1− (g(1)− g)
)
(t)

=
2(g(1)− g(t))2−δ

Γ(3− δ)
+

2(g(0)− g(1))(g(1)− g(t))1−δ

Γ(2− δ)
.

Clearly, (x?, ζ?) satisfies (27), (28), and (30), proving that the pair (x?, ζ?) is a candidate to
be a solution of the problem. Since L is jointly convex, we can conclude by Theorem 7 that (x?, ζ?)
is a solution of the proposed problem.

5. Concluding Remarks

Optimization problems are an important issue in several fields of research. In par-
ticular, variational problems are useful in Newton’s laws of motion, geometric optics,
mathematical economics, hydrodynamics, minimal surfaces, Noether’s theorems, etc. For
centuries, the considered problems involved integer order derivatives only, but in the last
few years, generalizations of such a rich theory were considered, by including fractional
derivatives in the formulation of the variational problems. However, due to the large
number of choices for such fractional derivatives, we considered here a general form of
the fractional derivative. We continued our study initiated in [33], by considering three
new questions: first, how to find the best order of the fractional derivatives that extremizes
the functional, secondly to determine the necessary conditions of optimization with time
delay, and finally, when the Lagrangian function contains higher order derivatives. To end,
sufficient conditions were proven and some examples were given.

For the future, one important problem is to develop numerical methods to deal directly
with the variational problems of these types, without the use of necessary conditions, for
example: using discretizations of the fractional derivatives and of the integral, reduce each
problem to a finite dimensional one or, using appropriate approximations of the derivatives,
depending only on the first order derivative, convert the fractional variational system as an
ordinary optimal control problem. Other possibilities can be studied to enrich this theory.
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1. Introduction

In the field of fractional order differential equations, prevalent advancement is cur-
rently speculated. The dominant use of multifarious projects which are masked by frac-
tional differential equations (FDEs), lies in the field of nano-technology, bio-informatics,
control system, chemical engineering, heat conduction, ion-acoustic wave, mechanical
engineering, diffusion equations and, additionally, several other sciences. Because of its
prodigious scope and applications in the various area of science and technology, congruent
consideration has been given to the exact solutions of FDEs. There are many techniques that
can be used to analyze NLFPDEs [1–14]. The exact solution provides a proper understand-
ing of the physical phenomena modeled by NLFPDEs. Finding exact solutions to NLFPDEs
are quite difficult as compared to approximate solutions. The Lie symmetry method is
one of the most powerful methods used to find the exact solution of NLFPDEs [15–23].
This technique is used to reduce the NLFPDEs into a lower dimension. The conservation
laws can be investigated for nonlinear FPDEs, which are very important tool for the study
of differential equations. Noether’s theorem involves a methodology for constructing
conservation laws, using symmetries associated with Noether’s operator [19–22,24–29].
In general, there is no technique that provides specific solutions for the system. In recent
years, many researchers have concentrated on the approximate analytical solutions to the
FDE system and some methods have been developed. One of the most useful techniques
for solving the linear system and non-linear system of fractional differential equations with
a quick convergence rate and small calculation error is the fractional power series method.
Another major benefit is that this approach can be used directly, without requiring lineariza-
tion, discretization, Adomian polynomials, etc., to the non-linear fractional PDE system.
The power series method is applied to finding an exact solution in the form of a power
series of a fractional differential equation. The (2 + 1) dimensional Kadomtsev-Petviashvili
(KP) system [30,31] is given by

utx − uuxx − u2
x − uxxxx = uyy,

which can also be written as the system

ut − uux − uxxx − wy = 0,

wx − uy = 0. (1)

In nonlinear wave theory, the KP system is one of the most universal models which
arises as a reduction in the system with quadratic nonlinearity. This system has been
broadly studied in terms of its mathematical association in recent years. The KP equation
was originated by the two Soviet physicists, Boris Kadomtsev and Vladimir Petviashvili
in [32]. The KP equation has been studied by many authors for integer-order or fraction-
order derivatives by different methods in recent years. Exact traveling wave solutions
have been analyzed in [31]. In [30], KP equation is studied for symmetry reduction using a
loop algebra. In [33], KP solitary waves has been studied. Symmetries of the integer order
KP equation have been studied in [34]. In [35], the Cauchy problem for the fractional KP
equations has been discussed.
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The main goal of this work is to analyze the fractional order KP system with arbitrary
constant coefficients as

∂α
t u− A1u∂

β
x u− A2∂

γ
y w− A3uxxx = 0,

∂
β
xw− A4∂

γ
y u = 0. (2)

This is a system of NLPDEs of fractional order, which depicts the evolution of nonlin-
ear long waves with small amplitude. Here, u and w are dependent functions of x, y, t, and
A1, A2, A3, A4 are arbitrary constants. x and y are the longitudinal and transverse spatial
coordinates, respectively.

In this work, the KP system (2) is considered for symmetry reduction. The exact solu-
tions, in the form of power series, are obtained, and the conservation laws are investigated.

To find some new exact solutions to the system (2), we apply the Lie symmetry
method to reduce the system into lower dimensions. The system is also studied for
conservation laws by using the new conservation theorem [27]. The preliminary material is
given in Section 2. In Section 3, the symmetry of system (2) is obtained via the classical Lie
method. Through the corresponding generators, we reduce system (2) to lower-dimensional
NLFPDEs. Some exact solutions are obtained, corresponding to the reduced equation, by
using the power series method in Section 4. In Section 5 the obtained power series solutions
are analyzed for convergence. Some conservation laws are investigated in Section 6. In the
last section, the conclusion to the study is presented.

2. Preliminaries

In this section, we will discuss basic definitions and theories for Lie symmetry analysis.

Definition 1. Riemann-Liouville fractional derivative [36,37]
Let f : [a, b] ⊆ R −→ R, such that ∂n f

∂tn is continuous and integrable for all n ∈ N ∪ {0}
and n− 1 < α < n, then the Riemann-Liouville fractional derivative of order α > 0 is defined by

0Dα
t f (x, y, t) =

∂α f (x, y, t)
∂tα

=





1
Γ(n−α)

∂n

∂tn

∫ t

0
(t− s)n−α−1 f (x, y, s)ds, t > 0, n− 1 < α < n,

∂n f (x,y,t)
∂tn , α = n ∈ N,

(3)

where Γ(α) is the Euler’s gamma function.

Definition 2. Erdèlyi-Kober operator
The left-hand-side Erdèlyi-Kober fractional differential operator (Pϑ,α

$1,$2) is defined as

(Pϑ,α
$1,$2

g)(y1, y2) =
r−1

∏
k=0

(
ϑ + k− 1

$1
y1

d
dy1
− 1

$2
y2

d
dy2

)
(Mϑ+α,r−α

$1,$2
g)(y1, y2), yi > 0, $i > 0, α > 0,

i = 1, 2, (4)

r =
{

[α] + 1 if α /∈ N,
α if α ∈ N,

where

(Mϑ,α
$1,$2

g)(y1, y2) =





1
Γ(α)

∫ ∞

1
(ρ− 1)α−1ρ−(ϑ+α)g(y1ρ

1
$1 , y2ρ

1
$2 )dρ if α > 0,

g(y1, y2) if α = 0,
(5)

is the left-hand-side Erdèlyi-Kober fractional integral operator.
The right-hand-side Erdèlyi-Kober fractional differential operator (Dϑ,β

$1,$2) is defined as
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(Dϑ,β
$1,$2 g)(y1, y2) =

r

∏
k=1

(
ϑ + k +

1
$1

y1
d

dy1
+

1
$2

y2
d

dy2

)
(Iϑ+β,r−β

$ g)(y1, y2), yi > 0, $i > 0, β > 0,

i = 1, 2, (6)

r =
{

[β] + 1 if β /∈ N,
β if β ∈ N,

where

(Iϑ,β
$1,$2 g)(y1, y2) =





1
Γ(β)

∫ 1

0
(1− ρ)β−1ρϑg(y1ρ

1
$1 , y2ρ

1
$2 )dρ if β > 0,

g(y1, y2) if β = 0,
(7)

is the right-hand-side Erdèlyi-Kober fractional integral operator.

Symmetry Analysis

Consider the system of NLFPDEs as follows

∆h = Fh

(
x, y, t, v,

∂αv
∂tα

,
∂βv
∂xβ

,
∂γv
∂yγ

,
∂v
∂x

,
∂2v
∂x2 , · · ·

)
, h = 1, 2, · · · , (8)

where ∂αv
∂tα , ∂βv

∂xβ and ∂γv
∂xγ are the fractional derivatives of Riemann-Liouville (RL) type.

Suppose that the Lie group of transformations are given by

x∗ = x + εξ(x, y, t, v) + O(ε2),

t∗ = t + ετ(x, y, t, v) + O(ε2),

y∗ = t + εµ(x, y, t, v) + O(ε2),

vr∗ = vr + εη(r)(x, t, vr) + O(ε2),
∂αvr∗

∂tα
=

∂αvr

∂tα
+ εη(r)α,t + O(ε2),

∂βvr∗

∂xβ
=

∂βvr

∂xβ
+ εη(r)β,x + O(ε2),

∂γvr∗

∂yγ
=

∂γvr

∂yγ
+ εη(r)γ,y + O(ε2),

∂vr∗

∂x
=

∂vr

∂x
+ εη(r)x + O(ε2),

∂2vr∗

∂x2 =
∂2vr

∂x2 + εη(r)xx + O(ε2),

... (9)
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where ε being the group parameter and ξ, τ, µ, η(r) are the infinitesimals,

η(k),x = Dx(η
(k))− vk

xDx(ξ)− vk
t (τ)− vk

yDy(µ),

η(k)α,t = Dα
t (η

(k)) + ξDα
t (v

k
x)− Dα

t (ξvk
x) + τDα

t (v
k
t )− Dα

t (τvk
t ) + µDα

t (v
k
y)

−Dα
t (µvk

y),

η(k)β,x = Dβ
x (η

(k)) + ξDβ
x (vk

x)− Dβ
x (ξvk

x) + τDβ
x (vk

t )− Dβ
x (τvk

t ) + µDβ
x (vk

y)

−Dv
x(µvk

y),

η(k)γ,y = Dγ
y (η

(k)) + ξDγ
y (vk

x)− Dγ
y (ξvk

x) + τDγ
y (vk

t )− Dγ
y (τvk

t ) + µDγ
y (vk

y)

−Dγ
y (µvk

y), (10)

are extended infinitesimals. In (10), Dx and Dt are total derivative operators. The αth, βth

and γth extended infinitesimals related to the RL fractional derivative are given in [38].
The associated vector field is

X = ξ(x, y, t, v)
∂

∂x
+ µ(x, y, t, v)

∂

∂y
+ τ(x, y, t, v)

∂

∂t
+

p

∑
r=1

η(r)(x, y, t, v)
∂

∂vr . (11)

The corresponding extended symmetry generator is as follows

pr(α,β,γ)X = X + ∑
r

η(r)α,t∂∂α
t vr + ∑

r
η(r)β,x∂

∂
β
x vr + ∑

r
η(r)γ,y∂∂

γ
y vr + ∑

r
η(r)x∂vr

x

+∑
r

η(r)xx∂vr
xx + . . . , (12)

As the lower limit of RL fractional derivative [36,37,39] is fixed, we have

ξ(x, y, t, u, w)|x=0 = 0, τ(x, y, t, u, w)|t=0 = 0, µ(x, y, t, u, w)|y=0 = 0. (13)

3. Symmetry Analysis of (2 + 1)-Dimensional Fractional Kadomtsev-Petviashvili System

Let us assume that the system (2) is invariant under group of transformations (9), then
we have

∂α
t∗u
∗ − A1u∗∂β

x∗u
∗ − A2∂

γ
y∗w
∗ − A3u∗x∗x∗x∗ = 0,

∂
β
x∗w
∗ − A4∂

γ
y∗u
∗ = 0. (14)

Therefore, using (9) in (14) the invariance criteria for (2) are obtained as

ηα,t − A1η∂
β
x u− A1uηβ,x − A2φγ,y − A3ηxxx = 0,

φβ,x − A4ηγ,y = 0. (15)
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Using the value of extended infinitesimals and collecting the coefficients of various
powers of u and partial derivatives of u and w, we have

ξt = ξu = ξw = 0,

τx = τu = τv = 0,

ηw = φu = 0,

ηuu = φww = 0,

ηu − φw − αDtτ + γDyµ = 0,

3ξx − αDtτ = 0,

ηu − φw + βDxξ − 9γDyµ = 0,

η − uβDxξ + uαDtτ = 0,

∂α
t η − A1u∂α

t ηu − A1u(∂β
x η − u∂

β
x ηu)− A2(∂

γ
y φ− w∂

γ
y φw)− A3ηxxx = 0,

∂
β
x φ− w∂

β
xφw − A4∂

γ
y η + A4y∂

γ
y ηu = 0,

(
α

n

)
∂n

t ηu −
(

α

n + 1

)
Dn+1

t τ = 0,
(

β

n

)
∂n

xηu −
(

β

n + 1

)
Dn+1

x ξ = 0,
(

γ

n

)
∂n

y ηu −
(

γ

n + 1

)
Dn+1

y µ = 0,
(

β

n

)
∂n

xφw −
(

β

n + 1

)
Dn+1

x ξ = 0,
(

γ

n

)
∂n

y φw −
(

γ

n + 1

)
Dn+1

y ξ = 0, (16)

where n ∈ N.
Solving these equations simultaneously, we get the infinitesimals

ξ = C1x, τ =
3
α

C1t, µ =
3 + β

2γ
C1y,

η = (β− 3)C1u, φ =
3(β− 3)

2
C1w, (17)

where C1 is thw arbitrary constant.
Thus, the corresponding vector field is

V = x∂x +
3
α

t∂t +
3 + β

2γ
y∂y + (β− 3)u∂u +

3(β− 3)
2

w∂w. (18)

Corresponding to vector field V, the characterisitc equation is written as

dx
x

=
dt
3
α t

=
dy

3+β
2γ y

=
du

(β− 3)u
=

dw
3(β−3)

2 w
.

After solving these equations, we get the symmetry variables

z1 = xt
−α
3 , z2 = yt

−α(β+3)
6γ , (19)

and symmetry transformations

u = t
α(β−3)

3 f (z1, z2), w = t
α(β−3)

2 g(z1, z2), (20)

where f and g are arbitrary functions.
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Theorem 1. The symmetry reduction in the system (2) corresponding to the symmetry variables (19)
and symmetry transformations (20) is

(
P

α(β−6)
3 +1,α

3
α , 6γ

α(β+3)

f

)
(z1, z2)− A1z−β

1 f (z1, z2)
(

D−β,β
1,∞ f

)
(z1, z2)− A2z−γ

2

(
D−γ,γ

∞,1 g
)
(z1, z2)

−A3
∂3 f (z1, z2)

∂z3
1

= 0,

z−β
1

(
D−β,β

1,∞ g
)
(z1, z2)− A4z−γ

2

(
D−γ,γ

∞,1 f
)
(z1, z2) = 0, (21)

where (Pϑ,α
$1,$2) and (Dϑ,β

$1,$2) are the left- and right-hand-side Erdélyi-Kober fractional differential
operators, respectively.

Proof. Let us assume n − 1 < α < n, where n ∈ N; then, using the definition of RL
fractional differentiation, we have

∂αu
∂tα

=
∂n

∂tn

(
1

Γ(n− α)

∫ t

0
(t− s)n−α−1s

α(β−3)
3 f (xs−(

α
3 ), ys

−α(β+3)
6γ )ds

)
.

Let s = t
ρ ; then, we get

∂αu
∂tα

=
∂n

∂tn


 tn+ α(β−6)

3

Γ(n− α)

∫ ∞

1
(ρ− 1)n−α−1ρ−(n−α+

α(β−3)
3 ) f (z1ρ

α
3 , z2ρ

α(β+3)
6γ )dρ


.

By using the definition of the left-hand-side EK fractional integral operator (Mϑ,α
$ f )

(z1, z2), defined in [36,37,39], we have

∂αu
∂tα

=
∂n

∂tn

(
tn+ α(β−6)

3 (M1+ α(β−3)
3 ,n−α

3
α , 6γ

α(β+3)

f )(z1, z2)

)
, (22)

where
(
M1+ α(β−3)

3 ,n−α
3
α , 6γ

α(β+3)

f

)
(z1, z2) =

1
Γ(n− α)

∫ ∞

1
(ρ− 1)n−α−1ρ−(n−α+

α(β−3)
3 ) f (z1ρ

α
3 , z2ρ

α(β+3)
6γ )dρ.

For further simplification, let us assume that µ(z1, z2) is a continuously differential
function for z1, z2 given in (19); then

t
∂

∂t
µ(z1, z2) = −

α

3
z1

∂µ

∂z1
− α(β + 3)

6γ
z2

∂µ

∂z2
.

Thus, Equation (22) becomes

∂αu
∂tα

=
∂n

∂tn

(
tn+ α(β−6)

3 (M1+ α(β−3)
3 ,n−α

3
α , 6γ

α(β+3)

f )(z1, z2)

)

=
∂n−1

∂tn−1

(
tn+ α(β−6)

3 (M1+ α(β−3)
3 ,n−α

3
α , 6γ

α(β+3)

f )(z1, z2)

)

=
∂n−1

∂tn−1

(
tn+ α(β−6)

3 −1
(

n− α +
α(β− 3)

3
− α

3
z1

∂

∂z1
− α(β + 3)

6γ
z2

∂

∂z2

)(
M1+ α(β−3)

3 ,n−α
3
α , 6γ

α(β+3)

f

)
(z1, z2)

)
.

Continuing in this way, we get

∂γu
∂tγ

=

(
t

α(β−6)
3

n−1

∏
j=0

(
1 + j +

α(β− 6)
3

− α

3
z1

∂

∂z1
− α(β + 3)

6γ
z2

∂

∂z2

)(
M1+ α(β−3)

3 ,n−α
3
α , 6γ

α(β+3)

f

)
(z1, z2)

)
.(23)

By using the right-hand-side EK fractional differential operator (Pϑ,α
$ f )(z1, z2) [36,37,39]

into (23), we have
∂αu
∂tα

= t
α(β−6)

3

(
P1+ α(β−6)+1

3 ,α
3
α , 6γ

α(β+3)

f

)
(z1, z2). (24)

In similar manner, the RL fractional derivatives of order β, γ > 0 are obtained as

∂βu
∂xβ

= t−αz−β
1 (D−β,β

1,∞ f )(z1, z2),

∂βw
∂xβ

= t
α(β−9)

6 z−β
1 (D−β,β

1,∞ g)(z1, z2),

∂γu
∂yβ

= t
α(β−9)

6 z−β
2 (D−γ,γ

∞,1 f )(z1, z2),

∂γw
∂yγ

= t
α(β−6)

3 z−γ
2 (D−γ,γ

∞,1 g)(z1, z2), (25)

where (D−β,β
1,∞ ) and (D−γ,γ

∞,1 ) are the differential operators defined in [36,37,39].
By using (24) and (25), the symmetry reduction in KP system (2) is obtained as

(
P

α(β−6)
3 +1,α

3
α , 6γ

α(β+3)

f

)
(z1, z2)− A1z−β

1 f (z1, z2)
(

D−β,β
1,∞ f

)
(z1, z2)− A2z−γ

2

(
D−γ,γ

∞,1 g
)
(z1, z2)− A3

∂3 f (z1, z2)

∂z3
1

= 0,

z−β
1

(
D−β,β

1,∞ g
)
(z1, z2)− A4z−γ

2

(
D−γ,γ

∞,1 f
)
(z1, z2) = 0. (26)
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4. Power Series Solution

In this section, we will obtain the power series solutions of NLFPDEs (26) [18,28,40].
Let us consider two double power series

f (z1, z2) =
∞

∑
n,m=0

an,mzn
1 zm

2 , g(z1, z2) =
∞

∑
n,m=0

bn,mzn
1 zm

2 . (27)

Therefore, from (27), we have

∂ f
∂z1

=
∞

∑
n,m=0

(n + 1)an+1,mzn
1 zm

2 ,

∂2 f
∂z2

1
=

∞

∑
n,m=0

(n + 2)(n + 1)an+2,mzn
1 zm

2 ,

∂3 f
∂z3

1
=

∞

∑
n,m=0

(n + 3)(n + 2)(n + 1)an+3,mzn
1 zm

2 (28)

Inserting (27) and (28) into (26), we have

∞

∑
n,m=0

Γ
(

α(β−3)
3 + 1− nα

3 −
mα(β+3)

6γ

)

Γ
(

α(β−6)
3 + 1− nα

3 −
mα(β+3)

6γ

) an,mzn
1 , zm

2 − A1z−β
1

∞

∑
n,m=0

n

∑
k=0

m

∑
j=0

(
Γ(1 + k)

Γ(1 + k− β)
an−k,m−jak,j

)

−A2z−γ
2 ∑∞

n,m=0
Γ(1+m)

Γ(1+m−γ)
bn,mzn

1 zm
2 − A3 ∑∞

n,m=0

(
(n + 3)(n + 2)(n + 1)an+3,mzn

1 zm
2

)
= 0,

z−β
1 ∑∞

n,m=0
Γ(1+n)

Γ(1+n−β)
bn,mzn

1 zm
2 − A4z−γ

2 ∑∞
n,m=0

Γ(1+m)
Γ(1+m−γ)

an,mzn
1 zm

2 = 0. (29)

Comparing coefficients for n = m = 0, we have

a3,0 = 1
6A3

{
Γ( α(β−3)

3 +1)

Γ( α(β−6)
3 +1)

a0,0 − A1z−β
1

1
Γ(1−β)

a2
0,0 − A2z−γ

2
1

Γ(1−γ)
b0,0

}
,

b0,0 = A4zβ
1 z−γ

2
Γ(1−β)
Γ(1−γ)

a0,0. (30)

When n ≥ 0, m ≥ 0, but both are not simultaneously zero, we have

an+3,m =
1

A3(n + 3)(n + 2)(n + 1)





Γ
(

α(β−3)
3 + 1− nα

3 −
mα(β+3)

6γ

)

Γ
(

α(β−6)
3 + 1− nα

3 −
mα(β+3)

6γ

) an,m

−A1z−β
1

n

∑
k=0

m

∑
j=0

Γ(1 + k)
Γ(1 + k− β)

an−k,m−jak,j − A2z−γ
2

Γ(1 + m)

Γ(1 + m− γ)
bn,m

}
,

bn,m = A4zβ
1 z−γ

2
Γ(1 + n− β)Γ(1 + m)

Γ(1 + n)Γ(1 + m− γ)
an,m. (31)

In view of (31), we can obtain all coefficients an,m(n ≥ 3, m ≥ 0) and bn,m(n, m ≥ 0) of

the power series (27) for arbitrary chosen series
∞

∑
m=0

ai,m (i = 0, 1, 2).

Therefore, the system (2) has the exact power series solution, and the coefficient of the
series depends on (31). Hence, we can write the power series (27) as

f (z1, z2) = a0,0 + a1,0z1 + a2,0z2
1 +

1
6A3

(
Γ( α(β−3)

3 + 1)

Γ( α(β−6)
3 + 1)

a0,0 − A1z−β
1

1
Γ(1− β)

a2
0,0 − A2z−γ

2
1

Γ(1− γ)
b0,0

)
z3

1

+
∞

∑
n=1,m=0

1
A3(n + 3)(n + 2)(n + 1)

(Γ
(

α(β−3)
3 + 1− nα

3 −
mα(β+3)

6γ

)

Γ
(

α(β−6)
3 + 1− nα

3 −
mα(β+3)

6γ

) an,m

− A1z−β
1

n

∑
k=0

m

∑
j=0

Γ(1 + k)
Γ(1 + k− β)

an−k,m−jak,j − A2z−γ
2

Γ(1 + m)

Γ(1 + m− γ)
bn,m

)
zn

1 zm
2 ,

g(z1, z2) =
∞

∑
n,m=0

A4zβ
1 z−γ

2
Γ(1 + n− β)Γ(1 + m)

Γ(1 + n)Γ(1 + m− γ)
an,mzn

1 zm
2 . (32)

Therefore, the required exact solution of the reduced form (26) is

u(x, t) = t
α(β−3)

3 a0,0 + xt
α(β−4)

3 a1,0 + x2t
α(β−5)

3 a2,0 +
1

6A3

(
Γ( α(β−3)

3 + 1)

Γ( α(β−6)
3 + 1)

a0,0 − A1x−βt
αβ
3

1
Γ(1− β)

a2
0,0

−A2y−γt
α(β+3)

6
1

Γ(1− γ)
b0,0

)
x3t

α(β−6)
3 +

∞

∑
n=1,m=0

1
A3(n + 3)(n + 2)(n + 1)

×
(Γ
(

α(β−3)
3 + 1− nα

3 −
mα(β+3)

6γ

)

Γ
(

α(β−6)
3 + 1− nα

3 −
mα(β+3)

6γ

) an,m − A1x−βt
αβ
3

n

∑
k=0

m

∑
j=0

Γ(1 + k)
Γ(1 + k− β)

an−k,m−jak,j

−A2y−γt
α(β+3)

6
Γ(1 + m)

Γ(1 + m− γ)
bn,m

)
xnymt(

α(β−3)
3 − nα

3 −
mα(β+3)

6γ ), (33)

w(x, t) =
∞

∑
n,m=0

A4
Γ(1 + n− β)Γ(1 + m)

Γ(1 + n)Γ(1 + m− γ)
an,mxn+βym−γt(

α(β−3)
3 − nα

3 −
mα(β+3)

6γ ). (34)
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5. Analysis of the Convergence

In this section, we will analyze the convergence of the power series solution (33) and (34).

Theorem 2. The power series of the solutions (33) and (34) converges.

Proof. From (31), we have

|an+3,m| ≤ M

{
|an,m|+

n

∑
k=0

m

∑
j=0
|an−k,m−j| |ak,j|+ |bn,m|

}
, (35)

where M = max

(
1

A3

{
Γ
(

α(β−3)
3 + 1− nα

3 −
mα(β + 3)

6γ

)

Γ
(

α(β−6)
3 +1− nα

3 −
mα(β + 3)

6γ

)

}
,

n

∑
k=0

Γ(1 + k)
Γ(1 + k − β)

(
A1z−β

1
A3

,
A2z−γ

2
A3

))
.

and
|bn,m| ≤ N(|an,m|), (36)

where N = max
(

1, A4zβ
1 z−γ

2
Γ(1 + n− β)Γ(1 + m)

Γ(1 + n)Γ(1 + m− γ)

)
.

Let us consider two double power series

P = P(z1, z2) =
∞

∑
n,m=0

pn,mzn
1 zm

2 ,

R = R(z1, z2) =
∞

∑
n,m=0

rn,mzn
1 zm

2 , (37)

by

pn,m = |an,m|, ri,j = |bi,j|, n = 0, 1, 2, m = 0, i, j = 0, (38)

and

pn+3,m = M
(

pn,m + ∑n
k=0 ∑m

j=0 pn−k,m−j pk,j + rn,m

)
,

rn,m = N(pn,m), (39)

where n = 0, 1, 2, 3, · · · . Therefore, one can easily check that

|an,m| ≤ pn,m, |bn,m| ≤ rn,m, n = 0, 1, 2, · · · . (40)

Therefore, the series

P = P(z1, z2) =
∞

∑
n,m=0

pn,mzn
1 zm

2

and

R = R(z1, z2) =
∞

∑
n,m=0

rn,mzn
1 zm

2

are the majorant series of the series f (z1, z2) and g(z1, z2), respectively.

Let us consider one particular case,

Ai =
∞

∑
m=0

pi,mzi
1zm

2 , i = 0, 1, 2.
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F, H are analytics in the neighbourhood of (0, 0, A0, NA0). F(0, 0, A0, NA0) = 0,
G(0, 0, A0, NA0) = 0, and the Jacobian determinant is

∂(F, H)

∂(P, R)

∣∣∣∣
(0,0,A0,NA0)

= 1 6= 0.

Then, by the implicit function theorem [41], both power series are convergent. Hence,
an exact solution of KP system (2) exists.

6. Conservation Laws

In this section, conservation laws of (2) will be constructed by using the new conserva-
tion theorem and the nonlinear self adjointness [27,29].

The conservation laws for (2) are introduced as

Dt(Ct) + Dx(Cx) + Dy(Cy) = 0, (44)

where Ct(x, y, t, u, w), Cx(x, y, t, u, w) and Cy(x, y, t, u, w) are conserved vectors of (2).
The Euler–Lagrange operators given by

δ

δuj =
∂

∂uj + (Dα
t )
∗ ∂

∂(Dα
t uj)

+ (Dβ
x )
∗ ∂

∂(Dβ
x uj)

+ (Dγ
y )
∗ ∂

∂(Dγ
y uj)

+
∞

∑
k=1

(−1)kDi1 Di2 , . . . , Dik
∂

∂(uj)i1,i2,...,ik
, (45)

where Dik represents the total derivative operator. (Dα
t )
∗, (Dβ

x )
∗ and (Dγ

y )
∗ are also the

adjoint operators of the RL derivative operators [36,39] Dγ
t and Dβ

x , respectively, given
as follows

(Dα
t )
∗ = (−1)n In−α

p (Dn
t ) =

C
t Dα

p,
(

Dβ
x

)∗
= (−1)m Im−β

q (Dm
x ) =

C
x Dβ

q ,
(

Dγ
y
)∗

= (−1)k Ik−γ
r

(
Dr

y

)
=C

y Dγ
r , (46)

where In−α
p , Im−β

q and Ik−γ
r are the right- hand-side fractional integral operators of order

n− α, m− β and k− γ, respectively, defined as follows

In−α
p f (x, t) =

1
Γ(n− α)

∫ p

t

f (x, y, s)
(s− t)1+α−n ds, (47)

where n = [α] + 1

Im−β
q f (x, t) =

1
Γ(m− β)

∫ q

x

f (s, y, t)
(s− x)1+β−m ds, (48)

where m = [β] + 1

Ik−γ
r f (x, t) =

1
Γ(k− γ)

∫ r

y

f (x, s, t)
(s− y)1+γ−r ds, (49)

where k = [γ] + 1
The formal Lagrangian of the system (2) is given by

L = T(∂α
t u− A1u∂

β
xu− A2∂

γ
y w− A3uxxx) + Q(∂

β
x w− A4∂

γ
y u), (50)

where T and Q are new dependent variables.
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where m = [α] + 1, and W j, (j = 1, 2) are defined in (58) and u1, u2 are dependent variables.
Additionally, J1(h1, h2) is the integral

J1(h1, h2) =
1

Γ(m− α)

∫ t

0

∫ q

t

h1(x, y, s)h2(x, y, r)
(r− s)α + 1−m

drds,

for any two functions h1(x, y, t) and h2(x, y, t).
In a similar way, other fractional Noether’s operators Cx and Cy are defined.
By using (58) and vector field (18), the characteristic functions are

W1 = (β− 3)u− xux −
3 + β

2γ
yuy −

3
α

t, W2 =
3(β− 3)

2
w− xux −

3 + β

2γ
yuy −

3
α

t. (60)

Now, we will obtain the conserved vectors of the system (2) as follows.
Case 1. For 0 < α < 1, we have

Ct = I1−α
t (W1)ϕ + J1(W1, ϕt).

Case 2. For 1 < α < 2, we have

Ct = Dα−1
t (W1)ϕ− I2−α

t (W1)ϕ + J1(W1, ϕtt).

Case 3. Similarly, for 0 < β < 1, we have

Cx = −I1−β
x (W1)(A1uϕ) + I1−β

x (W2)(φ) + J2(W1, Dx(−A1uϕ)) + J2(W2, Dx(φ)).

Case 4. For 1 < β < 2, we have

Cx = −Dβ−1
x (W1)(A1uϕ)) + Dβ−1

x (W2)(φ) + I2−β
x (W1)Dx(A1uϕ)− I2−β

x (W2)Dx(φ)

−J2(W1, D2
x(−A1uϕ))−J2(W2, D2

x(φ)).

Case 5. For 0 < γ < 1, we have

Cy = −I1−β
y (W1)(A4φ)− I1−β

y (W2)(A2 ϕ) + J3(W1, Dx(−A4φ)) + J3(W2, Dx(−A2 ϕ)).

Case 6. For 1 < γ < 2, we have

Cy = −Dβ−1
x (W1)(A4φ))− Dβ−1

x (W2)(A2 ϕ) + I2−β
x (W1)Dx(A4φ) + I2−β

x (W2)Dx(A2 ϕ)

−J3(W1, D2
x(−A4φ))−J2(W2, D2

x(−A2 ϕ)).

7. Concluding Remarks

In this work, we have studied a (2 + 1)-dimensional fractional Kadomtsev-Petviashvili
system (2) by Lie symmetry analysis and power series expansion techniques, via. an RL
fractional derivative. First, we obtained the Lie point symmetries, and then the similarity
transformations were successfully presented. Using the similarity transformations, we
were able to reduce the system of NLFPDEs (2) of three dimensions into a system of
NLFPDEs of two dimensions. Further, the explicit exact solution for the reduced NLFPDEs
was obtained using the power series expansion method. The analysis of convergence for
the power series solution was also performed. Using the new conservation theorem [27],
the conservation laws of the system are successfully obtained. The obtained solutions
might be of substantial consequence in the corresponding physical phenomena of science
and applied mathematics.

Author Contributions: S.K. and B.K., methodology; S.-W.Y., funding acquisition; M.I., formal analy-
sis; M.S.O., writing—review and editing. All authors have read and agreed to the published version
of the manuscript.
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Next, we investigate the convergence of the series P = P(z1, z2) and R = R(z1, z2).

P =
∞

∑
m=0

{
p0,m + p1,mz1 + p2,mz2

1 + p3,mz3
1 +

∞

∑
n=1

pn+3,mzn+3
1

}
zm

2

=
∞

∑
m=0

p0,mzm
2 +

∞

∑
m=0

p1,mz1zm
2 +

∞

∑
m=0

p2,mz2
1zm

2 +
∞

∑
m=0

p3,mz3
1zm

2

+
∞

∑
n=1,m=0

M

(
pn,m +

n

∑
k=0

m

∑
j=0

pn−k,m−j pk,j + rn,m

)
zn+3

1 zm
2 (41)

= A0 + A1z1 + A2z2
1 + A3z3

1 + Mz3
1

[
(P− A0) + (P2 − A2

0) + N(P− A0)

]
, (42)

and

R =
∞

∑
n,m=0

rn,mzn
1 zm

2 =
∞

∑
n,m=0

Npn,mzn
1 zm

2

= N
[

A0 + A1z1 + A2z2
1 + A3z3

1 + Mz3
1

(
(P− A0) + (P2 − A2

0) + N(P− A0)

)]
.(43)

F(z1, z2, P, R) = P− A0 − A1z1 − A2z2
1 − A3z3

1 −Mz3
1

(
(P− A0) + (P2 − A2

0) + N(P− A0)

)
,

H(z1, z2, P, R) = R− N
[

A0 + A1z1 + A2z2
1 + A3z3

1 + Mz3
1

(
(P− A0) + (P2 − A2

0) + N(P− A0)

)]
.

The adjoint equations are defined by

F∗j ≡
δL
δuj = 0, j = 1, 2. (51)

From (50) and (51), the adjoint equations are

δL
δu

= F∗1 = (Dα
t )
∗T − A1u(Dβ

x )
∗T − A4(Dγ

y ) ∗Q + A3D3
xT = 0,

δL
δw

= F∗2 = (Dβ
x )
∗Q− A2(Dγ

y )
∗T = 0. (52)

If, by substituting the values

T = ϕ(x, y, t, u, w), Q = ψ(x, y, t, u, w), (53)

Equation (52) satisfies, with at least one of T, Q variable being non-zero, the system (2)
is called the nonlinear self adjoint. Now, the derivative(s) of T = ϕ(x, y, t, u, w) with respect
to x, are

Tx = ϕx + ϕuux + ϕwwx,

Txx = ϕxx + 2ϕxuux + 2ϕxwwx + ϕuuu2
x + 2ϕuwuxwx + ϕwww2

x + ϕuuxx + ϕwwxx,

Txxx = ϕxxx + 6ϕxuwuxwx + 3ϕuuwu2
xwx + 3ϕuuuxwxx + 3ϕuwwuxw2

x + 3ϕxuuxx

+3ϕuw(uxwxx + wxuxx) + 3ϕwwwxwxx + 3ϕxxwwx + 3ϕxxuux + 3ϕxwwxx

+ϕuuxxx + ϕwwxxx + 3ϕxuuu2
x + 3ϕxwww2

x + ϕuuuu3
x + ϕwwww3

x. (54)

Thus, the nonlinear self adjointness conditions are

δL
δu

= λ1(∂
α
t u− A1u∂

β
x u− A2∂

γ
y w− A3uxxx) + λ2(∂

β
x w− A4∂

γ
y u)

δL
δw

= λ3(∂
α
t u− A1u∂

β
xu− A2∂

γ
y w− A3uxxx) + λ4(∂

β
x w− A4∂

γ
y u), (55)

where λi (i = 1, 2, 3, 4) are to be determined.
Therefore, we have

(Dα
t )
∗ϕ +−A1u(Dβ

x )
∗ϕ− A4(Dγ

y ) ∗ ψ + A3

(
ϕxxx + 6ϕxuwuxwx + 3ϕuuwu2

xwx + 3ϕuuuxwxx

+3ϕwwwxwxx + 3ϕuw(uxwxx + wxuxx) + 3ϕxxwwx + 3ϕxxuux + 3ϕxwwxx + ϕuuxxx + 3ϕxuuu2
x

+3ϕxwww2
x + ϕwwxxx + 3ϕxuuxx + 3ϕuwwuxw2

x + ϕuuuu3
x + ϕwwww3

x

)

= λ1(∂
α
t u− A1u∂

β
xu− A2∂

γ
y w− A3uxxx) + λ2(∂

β
x w− A4∂

γ
y u),

(Dβ
x )
∗ψ− A2(Dγ

y )
∗ϕ

= λ3(∂
α
t u− A1u∂

β
xu− A2∂

γ
y w− A3uxxx) + λ4(∂

β
x w− A4∂

γ
y u). (56)

Collecting the coefficients of various powers of u, w and their derivatives on both
sides of (56), and solving them simultaneously, we have λi = 0, i = 1, 2, 3, 4, and

ϕ = a(t, y)x2 + b(t, y)x + c(t, y), ψ = ψ(x, y, t, u, w), (57)

where a(t, y), b(t, y) and c(t, y) are functions of t, y.
Corresponding with symmetry generators, the characteristic functions W1 and W2,

are defined by

W1 = η − ξux − µuy − τut, W2 = φ− ξwx − µwy − τwt. (58)

The fractional Noether’s operator [29] is defined as

Ct =
2

∑
j=1

[
m−1

∑
k=0

(−1)kDα−1−k
t (W j)Dk

t

(
∂L

∂(Dα
t uj)

)
− (−1)mJ1

(
W j, Dm

t

(
∂L

∂(Dα
t uj)

))]
,(59)
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Abstract: In this paper, we find the solution of the fractional-order Kaup–Kupershmidt (KK) equa-
tion by implementing the natural decomposition method with the aid of two different fractional
derivatives, namely the Atangana–Baleanu derivative in Caputo manner (ABC) and Caputo–Fabrizio
(CF). When investigating capillary gravity waves and nonlinear dispersive waves, the KK equation
is extremely important. To demonstrate the accuracy and efficiency of the proposed technique, we
study the nonlinear fractional KK equation in three distinct cases. The results are given in the form
of a series, which converges quickly. The numerical simulations are presented through tables to
illustrate the validity of the suggested technique. Numerical simulations in terms of absolute error
are performed to ensure that the proposed methodologies are trustworthy and accurate. The resulting
solutions are graphically shown to ensure the applicability and validity of the algorithms under
consideration. The results that we obtain confirm that the proposed method is the best tool for
handling any nonlinear problems arising in science and technology.

Keywords: Caputo–Fabrizio and Atangana-Baleanu operators; time-fractional Kaup–Kupershmidt
equation; natural transform; Adomian decomposition method

1. Introduction

Fractional calculus has grown in popularity over the last three decades, owing to its
well-established applications in a wide range of scientific and engineering areas. Many
pioneers have demonstrated that fractional-order models can effectively describe com-
plicated phenomena when modified by integer-order models [1,2]. The integer-order
derivatives are local in nature, whereas the Caputo fractional derivatives are nonlocal.
That is, we can investigate changes in the neighbourhood of a point with the integer-order
derivative, but we can analyse changes in the entire interval with the Caputo fractional
derivative. Senior mathematicians worked together to establish the basic framework for
fractional-order derivatives and integrals, such as Caputo [3], Riemann [4], Liouville [5],
Podlubny [6], Miller and Ross [7] and others. Fractional-order calculus theory has been
linked to practical projects and it has been applied to signal processing [8], chaos theory [9],
human diseases [10,11], electrodynamics [12] and other areas.

Fractional differential equations are becoming more well known nowadays as a result
of their numerous applications in science and engineering, such as electrodynamics [13],
chaos theory [14], finance [15], fluid and continuum mechanics [16], signal processing [17],
biological population models [18] and some others, which are well described by fractional
differential equations. The elegance of symmetry analysis is most evident in the study of
partial differential equations—more precisely, those derived from finance mathematics.
The secret of nature is symmetry, but most observations in nature do not exhibit symmetry.
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The phenomenon of spontaneous symmetry breaking is an effective approach to conceal
symmetry. Symmetries are classified into two types: finite and infinitesimal. Discrete or
continuous symmetries can exist for finite symmetries. Symmetry and time reverse are
discrete natural symmetries, whereas space is a continuous transformation. Patterns have
captivated mathematicians for centuries. In the nineteenth century, systematic classifica-
tions of planar and spatial patterns emerged. Regrettably, solving nonlinear fractional
differential equations accurately has proven to be rather challenging [19]. Effective tools are
required to solve such problems. As a result, in this article, we will try to use an effective
analytic method to obtain a more accurate solution for nonlinear arbitrary-order differen-
tial equations. Fractional differential equations can pleasantly and even more precisely
analyse a variety of schemes in collaborative areas. In this connection, different techniques
have been developed, among which some are as follows: the reduced differential trans-
form method (RDTM) [20], the fractional Adomian decomposition method (FADM) [21],
the fractional variational iteration method (FVIM) [22], the Elzaki transform decomposition
method (ETDM) [23,24], the iterative Laplace transform method (ILTM) [25], the fractional
natural decomposition method (FNDM) [26], the fractional homotopy perturbation method
(FHPM) [27] and the Yang transform decomposition method (YTDM) [28]. The main goal
of the present paper is to implement the natural decomposition method with the help
of two different fractional derivatives to study the fractional-order Kaup–Kupershmidt
(KK) equation. Natural decomposition methods avoid round-off errors by not requiring
prescriptive assumptions, linearization, discretization or perturbation.

Kaup presented the famous dispersive classical Kaup–Kupershmidt equation [29] in
1980, and Kupershmidt modified it in 1994 [30]. The purpose of this paper is to look at
the time-fractional modified Kaup–Kupershmidt (KK) equation. The study of nonlinear
dispersive waves and the behaviour of capillary gravity waves is examined using the
fractional-order Kaup-Kupershmidt equation. The nonlinear fifth-order evolution equation
is of the form:

Dγ
κ ζ(ϕ, κ) + jζζϕϕϕ + kpζϕζϕϕ + lζ2ζϕ + ζϕϕϕϕϕ = 0, (1)

where j, k and l are constants, and 0 < γ ≤ 1 represents the order time-fractional derivative.
The above fifth-order nonlinear evolution equation can be transformed into the fifth-order
time-fractional Kaup–Kupershmidt equation by changing the values of j, k and l. Thus, by
taking j = −15, k = −15 and l = 45, the given equation reduces to

Dγ
κ ζ(ϕ, κ)− 15ζζϕϕϕ − 15pζϕζϕϕ + 45ζ2ζϕ + ζϕϕϕϕϕ = 0, (2)

Extensive research has been dedicated in recent years to the investigation of the classical
Kaup–Kupershmidt equation. At p = 5

2 , the classical KK equation is integrable [31]
and has bilinear representations [32]. For general nonlinear evolution equations, solitary
and soliton wave solutions can be obtained by independently applying four different
approaches. Ablowitz and Clarkson used the inverse scattering approach in the creation of
soliton solutions to investigate nonlinear equations having physical implications [33]. Tam
and Hu employed Hirota’s approach and used Mathematica to determine the equivalent
answer [34]. Musette and Verhoeven reported the fifth-order Kaup–Kupershmidt equation,
which was one of the integrable examples of the Henon–Heiles system.

The rest of the paper is organized as follows: in Section 2, some of the suitable defi-
nitions related to fractional derivatives and used in our present work are given. For the
fractional-order Kaup–Kupershmidt equation, the basic idea of the natural decomposi-
tion method with the aid of two different fractional derivatives is presented in Section 3.
The convergence phenomenon for the proposed method is presented in Section 4. Section 5
is concerned with the implementation of the suggested technique for the solution of var-
ious problems of the fractional-order Kaup–Kupershmidt equation. At the end, a brief
conclusion of the whole paper is given.
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2. Basic Preliminaries

In this part of the article, we present some basic definitions related to fractional calculus
that are further used in our work too.

Definition 1. For a function j ∈ Cv, v ≥ −1, the Riemann–Liouville integral for non-integer
order is given as [35]

Iγ j(ϑ) =
1

Γ(γ)

∫ ϑ

0
(ϑ− µ)γ−1 j(µ)dµ, γ > 0, ϑ > 0.

and I0 j(ϑ) =j(ϑ)
(3)

Definition 2. For a function j(ϑ), the fractional Caputo derivative is defined as [35]

CDγ
ϑ j(ϑ) = In−γDn j(ϑ) =

1
n− γ

∫ 0

ϑ
(ϑ− µ)n−γ−1 jn(µ)dµ (4)

for n− 1 < γ ≤ n, n ∈ N, ϑ > 0, j ∈ Cn
v , v ≥ −1.

Definition 3. For a function j(ϑ), the fractional Caputo–Fabrizio derivative is given as [35]

CFDγ
ϑ j(ϑ) =

F(γ)
1− γ

∫ ϑ

0
exp

(−γ(ϑ− µ)

1− γ

)
D(j(µ))dµ, (5)

where 0 < γ < 1 and the normalization function is represented by F(γ) with F(0) = F(1) = 1.

Definition 4. For a function j(ϑ), the fractional Atangana–Baleanu Caputo derivative is defined
as [35]

ABCDγ
ϑ j(ϑ) =

B(γ)
1− γ

∫ ϑ

0
Eγ

(−γ(ϑ− µ)

1− γ

)
D(j(µ))dµ, (6)

where 0 < γ < 1, B(γ) represents the normalization function with a similar property as F(γ) and
Eγ(z) = ∑∞

m=0
zm

Γ(mγ+1) represents the Mittag–Leffler function.

Definition 5. By applying the natural transform, the function ζ(κ) can be rewritten as

N (ζ(κ)) = V(v, υ) =
∫ ∞

−∞
e−vκζ(υκ)dκ, v, υ ∈ (−∞, ∞). (7)

Natural transformation of ζ(κ) for κ ∈ (0, ∞) is given as

N (ζ(κ)H(κ)) = N+ζ(κ) = V+(v, υ) =
∫ ∞

−∞
e−vκζ(υκ)dκ, v, υ ∈ (0, ∞). (8)

where H(κ) is the Heaviside function.

Definition 6. On applying the natural inverse transform, the function V(v, υ) can be written as

N−1[V(v, υ)] = ζ(κ), ∀κ ≥ 0 (9)

Lemma 1. If the linearity property having natural transformation for ζ1(κ) is ζ1(v, υ) and ζ2(κ)
is ζ2(v, υ), then

N [c1ζ1(κ) + c2ζ2(κ)] = c1N [ζ1(κ)] + c2N [ζ2(κ)] = c1V1(v, υ) + c2V2(v, υ), (10)

where c1 and c2 are constants.
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Lemma 2. If the inverse natural transforms of V1(v, υ) and V2(v, υ) are ζ1(κ) and ζ2(κ), respec-
tively, then

N−1[c1V1(v, υ) + c2V2(v, υ)] = c1N−1[V1(v, υ)] + c2N−1[V2(v, υ)] = c1ζ1(κ) + c2ζ2(κ), (11)

where c1 and c2 are constants.

Definition 7. The natural transformation of Dγ
κ ζ(κ) in the Caputo sense is defined as [35]

N [CDγ
κ ] =

(v

υ

)γ
(
N [ζ(κ)]−

(
1
v

)
ζ(0)

)
(12)

Definition 8. The natural transformation of Dγ
κ ζ(κ) in the Caputo–Fabrizio sense is defined

as [35]

N [CFDγ
κ ] =

1
1− γ + γ( υ

v )

(
N [ζ(κ)]−

(
1
v

)
ζ(0)

)
(13)

Definition 9. The natural transformation of Dγ
κ ζ(κ) in the Atangana–Baleanu Caputo sense is

defined as [35]

N [ABCDγ
κ ] =

B(γ)
1− γ + γ( υ

v )γ

(
N [ζ(κ)]−

(
1
v

)
ζ(0)

)
(14)

3. Methodology

In this section, we give the general implementation of the natural transform decomposi-
tion method with the aid of two different derivatives for solving the given equation [36,37].

Dγ
κ ζ(ϕ, κ) = L(ζ(ϕ, κ)) +N(ζ(ϕ, κ)) + h(ϕ, κ), (15)

with initial condition

ζ(ϕ, 0) = φ(ϕ), (16)

having L linear term, N nonlinear term and the source term h(ϕ, κ).

3.1. Case I (NTDMCF)

By applying the natural transform with the aid of the fractional Caputo–Fabrizio
derivative, Equation (1) can be rewritten as

1
p(γ, υ, v)

(
N [ζ(ϕ, κ)]− φ(ϕ)

v

)
= N

[
L(ζ(ϕ, κ)) +N(ζ(ϕ, κ)) + h(ϕ, κ)

]
, (17)

with

p(γ, υ, v) = 1− γ + γ(
υ

v
). (18)

On applying natural inverse transformation, Equation (3) can be presented as

ζ(ϕ, κ) = N−1
[

φ(ϕ)

v
+ p(γ, υ, v)N [h(ϕ, κ)]

]
+N−1

[
p(γ, υ, v)N

(
L(ζ(ϕ, κ)) +N(ζ(ϕ, κ))

)]
. (19)
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N(ζ(ϕ, κ)) can be decomposed into

N(ζ(ϕ, κ)) =
∞

∑
i=0

Ai, (20)

The series form solution for ζCF(ϕ, κ) is given as

ζCF(ϕ, κ) =
∞

∑
i=0

ζCF
i (ϕ, κ). (21)

Substituting Equations (6) and (7) into (5), we get

∞

∑
i=0

ζi(ϕ, κ) =N−1
(

φ(ϕ)

v
+ p(γ, υ, v)N [h(ϕ, κ)]

)

+N−1

(
p(γ, υ, v)N

[
∞

∑
i=0
L(ζi(ϕ, κ)) + Aκ

]) (22)

From (8), we have

ζCF
0 (ϕ, κ) =N−1

(
φ(ϕ)

v
+ p(γ, υ, v)N [h(ϕ, κ)]

)
,

ζCF
1 (ϕ, κ) =N−1(p(γ, υ, v)N [L(ζ0(ϕ, κ)) + A0]),

...

ζCF
l+1(ϕ, κ) =N−1(p(γ, υ, v)N [L(ζl(ϕ, κ)) + Al ]), l = 1, 2, 3, · · ·

(23)

Finally, we obtain the NTDMCF solution to (1) by putting (23) into (7),

ζCF(ϕ, κ) = ζCF
0 (ϕ, κ) + ζCF

1 (ϕ, κ) + ζCF
2 (ϕ, κ) + · · · (24)

3.2. Case II (NTDMABC)

By applying the natural transform with the aid of the fractional Atangana–Baleanu
Caputo derivative, Equation (1) can be rewritten as

1
q(γ, υ, v)

(
N [ζ(ϕ, κ)]− φ(ϕ)

v

)
= N

[
L(ζ(ϕ, κ)) +N(ζ(ϕ, κ)) + h(ϕ, κ)

]
, (25)

with

q(γ, υ, v) =
1− γ + γ( υ

v )γ

B(γ)
. (26)

On applying the natural inverse transform, Equation (25) can be presented as

ζ(ϕ, κ) = N−1
(

φ(ϕ)

v
+ q(γ, υ, v)N [h(ϕ, κ)]

)
+N−1

[
q(γ, υ, v)N

(
L(ζ(ϕ, κ)) +N(ζ(ϕ, κ))

)]
. (27)

N(ζ(ϕ, κ)) can be decomposed into

N(ζ(ϕ, κ)) =
∞

∑
i=0

Ai, (28)
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The series form solution for ζ ABC(ϕ, κ) is given as

ζABC(ϕ, κ) =
∞

∑
i=0

ζABC
i (ϕ, κ). (29)

Substituting Equations (28) and (29) into (27), we get

∞

∑
i=0

ζi(ϕ, κ) =N−1
(

φ(ϕ)

v
+ q(γ, υ, v)N [h(ϕ, κ)]

)

+N−1

(
q(γ, υ, v)N

[
∞

∑
i=0
L(ζi(ϕ, κ)) + Aκ

]) (30)

From (8), we have

ζABC
0 (ϕ, κ) =N−1

(
φ(ϕ)

v
+ q(γ, υ, v)N [h(ϕ, κ)]

)
,

ζABC
1 (ϕ, κ) =N−1(q(γ, υ, v)N [L(ζ0(ϕ, κ)) + A0]),

...

ζABC
l+1 (ϕ, κ) =N−1(q(γ, υ, v)N [L(ζl(ϕ, κ)) + Al ]), l = 1, 2, 3, · · ·

(31)

Finally, we obtain the NTDMABC solution to (1) by putting (31) into (29):

ζABC(ϕ, κ) = ζABC
0 (ϕ, κ) + ζABC

1 (ϕ, κ) + ζ ABC
2 (ϕ, κ) + · · · (32)

4. Convergence Analysis

The convergence and uniqueness analysis of the NTDMCF and NTDMABC is dis-
cussed here.

Theorem 1. The result of (1) is unique for NTDMCF when 0 < (=1 +=2)(1− γ + γκ) < 1.

Proof. Let H = (C[J], ||.||) with the norm ||φ(κ)|| = maxκ∈J |φ(κ)| as Banach space, with ∀
continuous function on J. Let I : H → H be a nonlinear mapping, where

ζC
l+1 = ζC

0 +N−1[p(γ, υ, v)N [L(ζl(µ, κ)) +N(ζl(µ, κ))]], l ≥ 0.

Suppose that |L(ζ)− L(ζ∗)| < =1|ζ − ζ∗| and |N(ζ)−N(ζ∗)| < =2|ζ − ζ∗|, where ζ :=
ζ(µ, κ) and ζ∗ := ζ∗(µ, κ) are two different function values and=1,=2 are Lipschitz constants.

||Iζ − Iζ∗|| ≤ maxt∈J |N−1
[

p(γ, υ, v)N [L(ζ)−L(ζ∗)]

+ p(γ, υ, v)N [N(ζ)−N(ζ∗)]|
]

≤ maxκ∈J

[
=1N−1[p(γ, υ, v)N [|ζ − ζ∗|]]

+=2N−1[p(γ, υ, v)N [|ζ − ζ∗|]]
]

≤ maxt∈J(=1 +=2)
[
N−1[p(γ, υ, v)N |ζ − ζ∗|]

]

≤ (=1 +=2)
[
N−1[p(γ, υ, v)N ||ζ − ζ∗||]

]

= (=1 +=2)(1− γ + γκ)||ζ − ζ∗||.

(33)

I is a contraction as 0 < (=1 +=2)(1− γ + γκ) < 1. From Banach fixed point theorem, the
result of (1) is unique.
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Theorem 2. The result of (1) is unique for NTDMABC when 0 < (=1 +=2)(1−γ+γ κν

Γ(ν+1) ) < 1.

Proof. Let H = (C[J], ||.||) with the norm ||φ(κ)|| = maxκ∈J |φ(κ)| be the Banach space,
with ∀ continuous function on J. Let I : H → H be a nonlinear mapping, where

ζC
l+1 = ζC

0 +N−1[p(γ, υ, v)N [L(ζl(ϕ, κ)) +N(ζl(ϕ, κ))]], l ≥ 0.

Suppose that |L(ζ)− L(ζ∗)| < =1|ζ − ζ∗| and |N(ζ)−N(ζ∗)| < =2|ζ − ζ∗|, where ζ :=
ζ(µ, κ) and ζ∗ := ζ∗(µ, κ) are two different function values and=1,=2 are Lipschitz constants.

||Iζ − Iζ∗|| ≤ maxt∈J |N−1
[
q(γ, υ, v)N [L(ζ)−L(ζ∗)]

+ q(γ, υ, v)N [N(ζ)−N(ζ∗)]|
]

≤ maxt∈J

[
=1N−1[q(γ, υ, v)N [|ζ − ζ∗|]]

+=2N−1[q(γ, υ, v)N [|ζ − ζ∗|]]
]

≤ maxt∈J(=1 +=2)
[
N−1[q(γ, υ, v)N |ζ − ζ∗|]

]

≤ (=1 +=2)
[
N−1[q(γ, υ, v)N ||ζ − ζ∗||]

]

= (=1 +=2)(1− γ + γ
κγ

Γγ + 1
)||ζ − ζ∗||.

(34)

I is a contraction as 0 < (=1 +=2)(1− γ + γ κγ

Γγ+1 ) < 1. From Banach fixed point theorem,
the result of (1) is unique.

Theorem 3. The NTDMCF result of (1) is convergent.

Proof. Let ζm = ∑m
r=0 ζr(ϕ, κ). To show that ζm is a Cauchy sequence in H, let

||ζm − ζn|| = maxκ∈J |
m

∑
r=n+1

ζr|, n = 1, 2, 3, · · ·

≤ maxκ∈J

∣∣∣∣∣N
−1

[
p(γ, υ, v)N

[
m

∑
r=n+1

(L(ζr−1) +N(ζr−1))

]]∣∣∣∣∣

= maxκ∈J

∣∣∣∣∣N
−1

[
p(γ, υ, v)N

[
m−1

∑
r=n+1

(L(ζr) +N(ζr))

]]∣∣∣∣∣

≤ maxκ∈J |N−1[p(γ, υ, v)N [(L(ζm−1)−L(ζn−1) +N(ζm−1)−N(ζn−1))]]|
≤ =1maxκ∈J |N−1[p(γ, υ, v)N [(L(ζm−1)−L(ζn−1))]]|
+=2maxκ∈J |N−1[p(γ, υ, v)N [(N(ζm−1)−N(ζn−1))]]|
= (=1 +=2)(1− γ + γκ)||ζm−1 − ζn−1||

(35)

Let m = n + 1, then

||ζn+1 − ζn|| ≤ =||ζn − ζn−1|| ≤ =2||ζn−1ζn−2|| ≤ · · · ≤ =n||ζ1 − ζ0||, (36)

where = = (=1 +=2)(1− γ + γκ). Similarly, we have

||ζm − ζn|| ≤ ||ζn+1 − ζn||+ ||ζn+2ζn+1||+ · · ·+ ||ζm − ζm−1||,
(=n +=n+1 + · · ·+=m−1)||ζ1 − ζ0||

≤ =n
(

1−=m−n

1−=

)
||ζ1||,

(37)
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As 0 < = < 1, we get 1−=m−n < 1. Therefore,

||ζm − ζn|| ≤
=n

1−=maxκ∈J ||ζ1||. (38)

Since ||ζ1|| < ∞, ||ζm − ζn|| → 0 when n→ ∞. As a result, ζm is a Cauchy sequence in H,
implying that the series ζm is convergent.

Theorem 4. The NTDMABC result of (1) is convergent.

Proof. Let ζm = ∑m
r=0 ζr(ϕ, κ). To show that ζm is a Cauchy sequence in H, let

||ζm − ζn|| = maxκ∈J |
m

∑
r=n+1

ζr|, n = 1, 2, 3, · · ·

≤ maxκ∈J

∣∣∣∣∣N
−1

[
q(γ, υ, v)N

[
m

∑
r=n+1

(L(ζr−1) +N(ζr−1))

]]∣∣∣∣∣

= maxκ∈J

∣∣∣∣∣N
−1

[
q(γ, υ, v)N

[
m−1

∑
r=n+1

(L(ζr) +N(ur))

]]∣∣∣∣∣

≤ maxκ∈J |N−1[q(γ, υ, v)N [(L(ζm−1)−L(ζn−1) +N(ζm−1)−N(ζn−1))]]|
≤ =1maxκ∈J |N−1[q(γ, υ, v)N [(L(ζm−1)−L(ζn−1))]]|
+=2maxκ∈J |N−1[q(γ, υ, v)N [(N(ζm−1)−N(ζn−1))]]|

= (=1 +=2)(1− γ + γ
κγ

Γ(γ + 1)
)||ζm−1 − ζn−1||

(39)

Let m = n + 1, then

||ζn+1 − ζn|| ≤ =||ζn − ζn−1|| ≤ =2||ζn−1ζn−2|| ≤ · · · ≤ =n||ζ1 − ζ0||, (40)

where = = (=1 +=2)(1− γ + γ κγ

Γ(γ+1) ). Similarly, we have

||ζm − ζn|| ≤ ||ζn+1 − ζn||+ ||ζn+2ζn+1||+ · · ·+ ||ζm − ζm−1||,
(=n +=n+1 + · · ·+=m−1)||ζ1 − ζ0||

≤ =n
(

1−=m−n

1−=

)
||ζ1||,

(41)

As 0 < = < 1, we get 1−=m−n < 1. Therefore,

||ζm − ζn|| ≤
=n

1−=maxt∈J ||ζ1||. (42)

Since ||ζ1|| < ∞, ||ζm − ζn|| → 0 when n→ ∞. As a result, ζm is a Cauchy sequence in H,
implying that the series ζm is convergent.

5. Numerical Examples

In this section, we find the analytical solution of the time-fractional Kaup–Kupershmidt
equation.

Example 1. Consider the time-fractional Kaup–Kupershmidt equation [38]

Dγ
κ ζ(ϕ, κ)− 15ζζϕϕϕ − 15pζϕζϕϕ + 45ζ2ζϕ + ζϕϕϕϕϕ = 0, 0 < γ ≤ 1, (43)

with initial condition

ζ(ϕ, 0) =
1
4

w2Υ2 sech2(
wϕΥ

2
) +

w2Υ2

12
, (44)

354



Symmetry 2022, 14, 986

Equation (43) can be expressed as follows with the use of the natural transform:

N [Dγ
κ ζ(ϕ, κ)] = N

{
15ζζϕϕϕ

}
+N

{
15pζϕζϕϕ

}
−N

{
45ζ2ζϕ

}
−N

{
ζϕϕϕϕϕ

}
, (45)

Characterize the non-linear operator as

1
vγ
N [ζ(ϕ, κ)]−v2−γζ(ϕ, 0) = N

[
15ζζϕϕϕ + 15pζϕζϕϕ − 45ζ2ζϕ − ζϕϕϕϕϕ

]
, (46)

We obtain the following when it comes to simplification:

N [ζ(ϕ, κ)] = v2

[
1
4

w2Υ2 sech2(
wϕΥ

2
) +

w2Υ2

12

]
+

γ(v− γ(v− γ))

v2 N
[

15ζζϕϕϕ + 15pζϕζϕϕ− 45ζ2ζϕ− ζϕϕϕϕϕ

]
, (47)

Equation (47) can be written as follows with inverse NT:

ζ(ϕ, κ) =

[
1
4

w2Υ2 sech2(
wϕΥ

2
) +

w2Υ2

12

]

+N−1

[
γ(v− γ(v− γ))

v2 N
{

15ζζϕϕϕ + 15pζϕζϕϕ − 45ζ2ζϕ − ζϕϕϕϕϕ

}]
,

(48)

5.1. Implementing NDMCF

The unknown function ζ(ϕ, κ) has a series form solution, which is stated as

ζ(ϕ, κ) =
∞

∑
l=0

ζl(ϕ, κ) (49)

The nonlinear terms are illustrated by using Adomian polynomials ζζϕϕϕ = ∑∞
l=0Al ,

ζϕζϕϕ = ∑∞
l=0 Bl and ζ2ζϕ = ∑∞

l=0 Cl Thus, Equation (48) can be expressed with the help of
the following terms

∞

∑
l=0

ζl+1(ϕ, κ) =
1
4

w2Υ2 sech2(
wϕΥ

2
) +

w2Υ2

12

+N−1

[
γ(v− γ(v− γ))

v2 N
{

15
∞

∑
l=0
Al + 15

∞

∑
l=0
Bl − 45

∞

∑
l=0
Cl −

∞

∑
l=0

ζlϕϕϕϕϕ

}]
,

(50)

When both sides of Equation (50) are compared, we obtain

ζ0(ϕ, κ) =
1
4

w2Υ2 sech2(
wϕΥ

2
) +

w2Υ2

12
,

ζ1(ϕ, κ) = −
(
− 1

512
w7Υ7(3843 + 480p− 4(209 + 60p)cosh(wϕΥ) + cosh(2wϕΥ))sech6

(
wϕΥ

2

)

tanh

(
wϕΥ

2

))
(γ(κ − 1) + 1),

(51)
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ζ2(ϕ, κ) =
w12Υ12

524288
(−3947228724− 733469760p− 20736000p2 + 6(777305099 + 148082560p + 4358400p2)

cosh(wϕΥ)− 48(18859301 + 3850520p + 124800p2)cosh(2wϕΥ) + 46313277cosh(3wϕΥ) + 10287360p

cosh(3wϕΥ) + 345600p2cosh(3wϕΥ)− 305756cosh(4wϕΥ)− 87360pcosh(4wϕΥ) + cosh(5wϕΥ))

sech12

(
wϕΥ

2

)(
(1− γ)2 + 2γ(1− γ)κ +

γ2κ2

2

)
,

(52)

Using the same procedure, we can easily find the remaining ζl components for (l ≥ 3).
Following this, we define series form solutions as

ζ(ϕ, κ) =
∞

∑
l=0

ζl(ϕ, κ) = ζ0(ϕ, κ) + ζ1(ϕ, κ) + ζ2(ϕ, κ) + · · · ,

ζ(ϕ, κ) =
1
4

w2Υ2 sech2(
wϕΥ

2
) +

w2Υ2

12
−
(
− 1

512
w7Υ7(3843 + 480p− 4(209 + 60p)cosh(wϕΥ) + cosh(2wϕΥ))

sech6

(
wϕΥ

2

)
tanh

(
wϕΥ

2

))
(γ(κ − 1) + 1) +

w12Υ12

524288
(−3947228724− 733469760p− 20736000p2+

6(777305099 + 148082560p + 4358400p2) cosh(wϕΥ)− 48(18859301 + 3850520p + 124800p2)cosh(2wϕΥ)

+ 46313277cosh(3wϕΥ) + 10287360p cosh(3wϕΥ) + 345600p2cosh(3wϕΥ)− 305756cosh(4wϕΥ)

− 87360pcosh(4wϕΥ) + cosh(5wϕΥ))sech12

(
wϕΥ

2

)(
(1− γ)2 + 2γ(1− γ)κ +

γ2κ2

2

)
+ · · · .

(53)

5.2. Implementing NDMABC

The unknown function ζ(ϕ, κ) has a series form solution, which is stated as

ζ(ϕ, κ) =
∞

∑
l=0

ζl(ϕ, κ) (54)

The nonlinear terms are illustrated by using Adomian polynomials ζζϕϕϕ = ∑∞
l=0Al ,

ζϕζϕϕ = ∑∞
l=0 Bl and ζ2ζϕ = ∑∞

l=0 Cl . Thus, Equation (48) can be expressed with the help
of the following terms:

∞

∑
l=0

ζl+1(ϕ, κ) =
1
2
+

1
2

tanh

(
ϕ

2

)

+N−1

[
υγ(vγ + γ(υγ −vγ))

v2γ
N
{

15
∞

∑
l=0
Al + 15

∞

∑
l=0
Bl − 45

∞

∑
l=0
Cl −

∞

∑
l=0

ζlϕϕϕϕϕ

}]
,

(55)

When both sides of Equation (55) are compared, we obtain

ζ0(ϕ, κ) =
1
4

w2Υ2 sech2(
wϕΥ

2
) +

w2Υ2

12
,

ζ1(ϕ, κ) = −
(
− 1

512
w7Υ7(3843 + 480p− 4(209 + 60p) cosh(wϕΥ) + cosh(2wϕΥ))sech6

(
wϕΥ

2

)

tanh

(
wϕΥ

2

))(
1− γ +

γκγ

Γ(γ + 1)

)
,

(56)
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ζ2(ϕ, κ) =
w12Υ12

524288
(−3947228724− 733469760p− 20736000p2 + 6(777305099 + 148082560p + 4358400p2)

cosh(wϕΥ)− 48(18859301 + 3850520p + 124800p2) cosh(2wϕΥ) + 46313277cosh(3wϕΥ) + 10287360p

cosh(3wϕΥ) + 345600p2 cosh(3wϕΥ)− 305756 cosh(4wϕΥ)− 87360p cosh(4wϕΥ) + cosh(5wϕΥ))

sech12

(
wϕΥ

2

)[
γ2κ2γ

Γ(2γ + 1)
+ 2γ(1− γ)

κγ

Γ(γ + 1)
+ (1− γ)2

]
,

(57)

Using the same procedure, we can easily find the remaining ζl components for (l ≥ 3).
Following this, we define series form solutions as

ζ(ϕ, κ) =
∞

∑
l=0

ζl(ϕ, κ) = ζ0(ϕ, κ) + ζ1(ϕ, κ) + ζ2(ϕ, κ) + · · · ,

ζ(ϕ, κ) =
1
4

w2Υ2 sech2(
wϕΥ

2
) +

w2Υ2

12
−
(
− 1

512
w7Υ7(3843 + 480p− 4(209 + 60p)cosh(wϕΥ) + cosh(2wϕΥ))

sech6

(
wϕΥ

2

)
tanh

(
wϕΥ

2

))(
1− γ +

γκγ

Γ(γ + 1)

)
+

w12Υ12

524288
(−3947228724− 733469760p− 20736000p2+

6(777305099 + 148082560p + 4358400p2) cosh(wϕΥ)− 48(18859301 + 3850520p + 124800p2)cosh(2wϕΥ)

+ 46313277cosh(3wϕΥ) + 10287360p cosh(3wϕΥ) + 345600p2cosh(3wϕΥ)− 305756cosh(4wϕΥ)

− 87360pcosh(4wϕΥ) + cosh(5wϕΥ))sech12

(
wϕΥ

2

)[
γ2κ2γ

Γ(2γ + 1)
+ 2γ(1− γ)

κγ

Γ(γ + 1)
+ (1− γ)2

]
+ · · · .

(58)

We obtain the exact solution if we set γ = 1

ζ(ϕ, κ) =
1
4

w2Υ2 sech2

(
Υ
2

(
−w5(−8Υ2`+ 16`2 + Υ4)

16
+ wϕ

)
w2Υ2

12

)
, (59)

Example 2. Consider the nonlinear time-fractional Kaup–Kupershmidt equation [38]

Dγ
κ ζ(ϕ, κ)− 15ζζϕϕϕ − 15pζϕζϕϕ + 45ζ2ζϕ + ζϕϕϕϕϕ = 0, 0 < γ ≤ 1, (60)

with initial condition
ζ(ϕ, 0) =

4
3

c− 4
p

c sech2(
√

cϕ) (61)

Equation (60) can be expressed as follows with the use of the natural transform:

N [Dγ
κ ζ(ϕ, κ)] = N

{
15ζζϕϕϕ

}
+N

{
15pζϕζϕϕ

}
−N

{
45ζ2ζϕ

}
−N

{
ζϕϕϕϕϕ

}
, (62)

Characterize the nonlinear operator as

1
vγ
N [ζ(ϕ, κ)]−v2−γζ(ϕ, 0) = N

[
15ζζϕϕϕ + 15pζϕζϕϕ − 45ζ2ζϕ − ζϕϕϕϕϕ

]
, (63)

We obtain the following when it comes to simplification:

N [ζ(ϕ, κ)] = v2

[
4
3

c− 4
p

c sech2(
√

cϕ)

]
+

γ(v− γ(v− γ))

v2 N
[

15ζζϕϕϕ + 15pζϕζϕϕ − 45ζ2ζϕ − ζϕϕϕϕϕ

]
, (64)
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Equation (64) can be written as follows with inverse NT:

ζ(ϕ, κ) =

[
4
3

c− 4
p

c sech2(
√

cϕ)

]

+N−1

[
γ(v− γ(v− γ))

v2 N
{

15ζζϕϕϕ + 15pζϕζϕϕ − 45ζ2ζϕ − ζϕϕϕϕϕ

}]
,

(65)

5.3. Applying NDMCF

The unknown function ζ(ϕ, κ) has a series form solution, which is stated as

ζ(ϕ, κ) =
∞

∑
l=0

ζl(ϕ, κ) (66)

The nonlinear terms are illustrated by using Adomian polynomials ζζϕϕϕ = ∑∞
l=0Al ,

ζϕζϕϕ = ∑∞
l=0 Bl and ζ2ζϕ = ∑∞

l=0 Cl . Thus, Equation (65) can be expressed with the help
of the following terms:

∞

∑
l=0

ζl+1(ϕ, κ) =
4
3

c− 4
p

c sech2(
√

cϕ)

+N−1

[
γ(v− γ(v− γ))

v2 N
{

15
∞

∑
l=0
Al + 15

∞

∑
l=0
Bl − 45

∞

∑
l=0
Cl −

∞

∑
l=0

ζlϕϕϕϕϕ

}]
,

(67)

When both sides of Equation (67) are compared, we obtain

ζ0(ϕ, κ) =
4
3

c− 4
p

csech2(
√

cϕ),

ζ1(ϕ, κ) = −16c
7
2

p3 (360− 420p + 63p2 + 4p(−15 + 16p) cosh(2
√

cx) + p2 cosh(4
√

cx)) sech6(
√

cx)

tanh(
√

cx)(γ(κ − 1) + 1)

ζ2(ϕ, κ) =
16c6 sech12(

√
cϕ)

p5 (−3110400 + 14515200p− 26369280p2 + 15270480p3 − 306084p4 − 6

(−432000 + 2217600p− 4451160p2 + 2656400p3 + 9181p4) cosh(2
√

cϕ) + 48p(14400− 60780p + 41590p2+

4789p3) cosh(4
√

cϕ) + 79920p2 cosh(6
√

cϕ)− 59040p3 cosh(6
√

cϕ)− 20883p4 cosh(6
√

cϕ)−

240p3 cosh(8
√

cϕ) + 244p4 cosh(8
√

cϕ) + p4 cosh(10
√

cϕ))
(
(1− γ)2 + 2γ(1− γ)κ +

γ2κ2

2

)
,

Using the same procedure, we can easily find the remaining ζl components for (l ≥ 3).
Following this, we define series form solutions as
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ζ(ϕ, κ) =
∞

∑
l=0

ζl(ϕ, κ) = ζ0(ϕ, κ) + ζ1(ϕ, κ) + ζ2(ϕ, κ) + · · · ,

ζ(ϕ, κ) =
4
3

c− 4
p

c sech2(
√

cϕ)− 16c
7
2

p3 (360− 420p + 63p2 + 4p(−15 + 16p) cosh(2
√

cx) + p2 cosh(4
√

cx))

sech6(
√

cx) tanh(
√

cx)(γ(κ − 1) + 1)
16c6 sech12(

√
cϕ)

p5 (−3110400 + 14515200p− 26369280p2+

15270480p3 − 306084p4 − 6(−432000 + 2217600p− 4451160p2 + 2656400p3 + 9181p4) cosh(2
√

cϕ)

+ 48p(14400− 60780p + 41590p2 + 4789p3) cosh(4
√

cϕ) + 79920p2 cosh(6
√

cϕ)− 59040p3

cosh(6
√

cϕ)− 20883p4 cosh(6
√

cϕ)− 240p3 cosh(8
√

cϕ) + 244p4 cosh(8
√

cϕ)

+ p4 cosh(10
√

cϕ))
(
(1− γ)2 + 2γ(1− γ)κ +

γ2κ2

2

)
+ · · · ,

(68)

5.4. Applying NDMABC

The unknown function ζ(ϕ, κ) has a series form solution, which is stated as

ζ(ϕ, κ) =
∞

∑
l=0

ζl(ϕ, κ) (69)

The nonlinear terms are illustrated by using Adomian polynomials ζζϕϕϕ = ∑∞
l=0Al ,

ζϕζϕϕ = ∑∞
l=0 Bl and ζ2ζϕ = ∑∞

l=0 Cl . Thus, Equation (65) can be expressed with the help
of the following terms:

∞

∑
l=0

ζl(ϕ, κ) =
4
3

c− 4
p

c sech2(
√

cϕ)

+N−1

[
υγ(vγ + γ(υγ −vγ))

v2γ
N
{

15
∞

∑
l=0
Al + 15

∞

∑
l=0
Bl − 45

∞

∑
l=0
Cl −

∞

∑
l=0

ζlϕϕϕϕϕ

}]
,

(70)

When both sides of Equation (70) are compared, we obtain

ζ0(ϕ, κ) =
4
3

c− 4
p

c sech2(
√

cϕ),

ζ1(ϕ, κ) = −16c
7
2

p3 (360− 420p + 63p2 + 4p(−15 + 16p) cosh(2
√

cx) + p2 cosh(4
√

cx)) sech6(
√

cx)

tanh(
√

cx)
(

1− γ +
γκγ

Γ(γ + 1)

)
,

ζ2(ϕ, κ) =
16c6 sech12(

√
cϕ)

p5 (−3110400 + 14515200p− 26369280p2+

15270480p3 − 306084p4 − 6(−432000 + 2217600p− 4451160p2 + 2656400p3 + 9181p4) cosh(2
√

cϕ)

+ 48p(14400− 60780p + 41590p2 + 4789p3) cosh(4
√

cϕ) + 79920p2 cosh(6
√

cϕ)− 59040p3

cosh(6
√

cϕ)− 20883p4 cosh(6
√

cϕ)− 240p3 cosh(8
√

cϕ) + 244p4 cosh(8
√

cϕ)

+ p4 cosh(10
√

cϕ))

[
γ2κ2γ

Γ(2γ + 1)
+ 2γ(1− γ)

κγ

Γ(γ + 1)
+ (1− γ)2

]
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Using the same procedure, we can easily find the remaining ζl components for (l ≥ 3).
Following this, we define series form solutions as

ζ(ϕ, κ) =
∞

∑
l=0

ζl(ϕ, κ) = ζ0(ϕ, κ) + ζ1(ϕ, κ) + ζ2(ϕ, κ) + · · · ,

ζ(ϕ, κ) =
4
3

c− 4
p

c sech2(
√

cϕ)− 16c
7
2

p3 (360− 420p + 63p2 + 4p(−15 + 16p) cosh(2
√

cx) + p2 cosh(4
√

cx))

sech6(
√

cx) tanh(
√

cx)
(

1− γ +
γκγ

Γ(γ + 1)

)
16c6 sech12(

√
cϕ)

p5 (−3110400 + 14515200p− 26369280p2+

15270480p3 − 306084p4 − 6(−432000 + 2217600p− 4451160p2 + 2656400p3 + 9181p4) cosh(2
√

cϕ)

+ 48p(14400− 60780p + 41590p2 + 4789p3) cosh(4
√

cϕ) + 79920p2 cosh(6
√

cϕ)− 59040p3

cosh(6
√

cϕ)− 20883p4 cosh(6
√

cϕ)− 240p3 cosh(8
√

cϕ) + 244p4 cosh(8
√

cϕ)

+ p4 cosh(10
√

cϕ))

[
γ2κ2γ

Γ(2γ + 1)
+ 2γ(1− γ)

κγ

Γ(γ + 1)
+ (1− γ)2

]
+ · · · ,

(71)

We achieve the exact solution if we set γ = 1

ζ(ϕ, κ) =
4
3

c− 4
p

c sech2(
√

c + (ϕ + 8(3c2 − 5pc)κ)). (72)

Example 3. Consider the nonlinear time-fractional Kaup–Kupershmidt equation [38]

Dγ
κ ζ(ϕ, κ) = 5ζζϕϕϕ +

25
2

ζϕζϕϕ + 5ζ2ζϕ + ζϕϕϕϕϕ, 0 < γ ≤ 1, (73)

with initial condition

ζ(ϕ, 0) = −2k2 +
24k2

1 + ekϕ
− 24k2

(1 + ekϕ)2
(74)

Equation (73) can be expressed as follows with the use of the natural transform:

N [Dγ
κ ζ(ϕ, κ)] = N

{
5ζζϕϕϕ

}
+N

{
25
2

ζϕζϕϕ

}
+N

{
5ζ2ζϕ

}
+N

{
ζϕϕϕϕϕ

}
, (75)

Characterize the nonlinear operator as

1
vγ
N [ζ(ϕ, κ)]−v2−γζ(ϕ, 0) = N

[
5ζζϕϕϕ +

25
2

ζϕζϕϕ + 5ζ2ζϕ + ζϕϕϕϕϕ

]
, (76)

We obtain the following when it comes to simplification:

N [ζ(ϕ, κ)] = v2

[
− 2k2 +

24k2

1 + ekϕ
− 24k2

(1 + ekϕ)2

]
+

γ(v− γ(v− γ))

v2 N
[

5ζζϕϕϕ +
25
2

ζϕζϕϕ + 5ζ2ζϕ + ζϕϕϕϕϕ

]
, (77)

Equation (77) can be written as follows with inverse NT

ζ(ϕ, κ) =

[
− 2k2 +

24k2

1 + ekϕ
− 24k2

(1 + ekϕ)2

]

+N−1

[
γ(v− γ(v− γ))

v2 N
{

5ζζϕϕϕ +
25
2

ζϕζϕϕ + 5ζ2ζϕ + ζϕϕϕϕϕ

}]
,

(78)
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5.5. Applying NDMCF

The unknown function ζ(ϕ, κ) has a series form solution, which is stated as

ζ(ϕ, κ) =
∞

∑
l=0

ζl(ϕ, κ) (79)

The nonlinear terms are illustrated by using Adomian polynomials ζζϕϕϕ = ∑∞
l=0Al ,

ζϕζϕϕ = ∑∞
l=0 Bl and ζ2ζϕ = ∑∞

l=0 Cl . Thus, Equation (78) can be expressed with the help
of the following terms:

∞

∑
l=0

ζl+1(ϕ, κ) = −2k2 +
24k2

1 + ekϕ
− 24k2

(1 + ekϕ)2

+N−1

[
γ(v− γ(v− γ))

v2 N
{

5
∞

∑
l=0
Al +

25
2

∞

∑
l=0
Bl + 5

∞

∑
l=0
Cl +

∞

∑
l=0

ζlϕϕϕϕϕ

}]
,

(80)

When both sides of Equation (80) are compared, we obtain

ζ0(ϕ, κ) = −2k2 +
24k2

1 + ekϕ
− 24k2

(1 + ekϕ)2
,

ζ1(ϕ, κ) = −
(

264ekϕ(−1 + ekϕ)k7

(1 + ekϕ)3

)
(γ(κ − 1) + 1)

ζ2(ϕ, κ) = 2904ekϕ(
264ekϕ(1− 4ekϕ + e2kϕ)k12

(1 + ekϕ)4
)

(
(1− γ)2 + 2γ(1− γ)κ +

γ2κ2

2

)
,

Using the same procedure, we can easily find the remaining ζl components for (l ≥ 3).
Following this, we define series form solutions as

ζ(ϕ, κ) =
∞

∑
l=0

ζl(ϕ, κ) = ζ0(ϕ, κ) + ζ1(ϕ, κ) + ζ2(ϕ, κ) + · · · ,

ζ(ϕ, κ) = −2k2 +
24k2

1 + ekϕ
− 24k2

(1 + ekϕ)2
−
(

264ekϕ(−1 + ekϕ)k7

(1 + ekϕ)3

)
(γ(κ − 1) + 1)+

2904ekϕ(
264ekϕ(1− 4ekϕ + e2kϕ)k12

(1 + ekϕ)4
)

(
(1− γ)2 + 2γ(1− γ)κ +

γ2κ2

2

)
+ · · · ,

(81)

5.6. Applying NDMABC

The unknown function ζ(ϕ, κ) has a series form solution, which is stated as

ζ(ϕ, κ) =
∞

∑
l=0

ζl(ϕ, κ) (82)

The nonlinear terms are illustrated by using Adomian polynomials ζζϕϕϕ = ∑∞
l=0Al ,

ζϕζϕϕ = ∑∞
l=0 Bl and ζ2ζϕ = ∑∞

l=0 Cl . Thus, Equation (78) can be expressed with the help
of the following terms:

∞

∑
l=0

ζl(ϕ, κ) = −2k2 +
24k2

1 + ekϕ
− 24k2

(1 + ekϕ)2

+N−1

[
υγ(vγ + γ(υγ −vγ))

v2γ
N
{

5
∞

∑
l=0
Al +

25
2

∞

∑
l=0
Bl + 5

∞

∑
l=0
Cl +

∞

∑
l=0

ζlϕϕϕϕϕ

}]
,

(83)

When both sides of Equation (83) are compared, we obtain
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ζ0(ϕ, κ) = −2k2 +
24k2

1 + ekϕ
− 24k2

(1 + ekϕ)2
,

ζ1(ϕ, κ) = −
(

264ekϕ(−1 + ekϕ)k7

(1 + ekϕ)3

)(
1− γ +

γκγ

Γ(γ + 1)

)
,

ζ2(ϕ, κ) = 2904ekϕ(
264ekϕ(1− 4ekϕ + e2kϕ)k12

(1 + ekϕ)4
)

[
γ2κ2γ

Γ(2γ + 1)
+ 2γ(1− γ)

κγ

Γ(γ + 1)
+ (1− γ)2

]

Using the same procedure, we can easily find the remaining ζl components for (l ≥ 3).
Following this, we define series form solutions as

ζ(ϕ, κ) =
∞

∑
l=0

ζl(ϕ, κ) = ζ0(ϕ, κ) + ζ1(ϕ, κ) + ζ2(ϕ, κ) + · · · ,

ζ(ϕ, κ) = −2k2 +
24k2

1 + ekϕ
− 24k2

(1 + ekϕ)2
−
(

264ekϕ(−1 + ekϕ)k7

(1 + ekϕ)3

)(
1− γ +

γκγ

Γ(γ + 1)

)
+

2904ekϕ(
264ekϕ(1− 4ekϕ + e2kϕ)k12

(1 + ekϕ)4
)

[
γ2κ2γ

Γ(2γ + 1)
+ 2γ(1− γ)

κγ

Γ(γ + 1)
+ (1− γ)2

]
+ · · · ,

(84)

We achieve the exact solution if we set γ = 1

ζ(ϕ, κ) = −2k2 +
24k2

1 + ekϕ+11k5t
− 24k2

(1 + ekϕ+11k5t)2
. (85)

6. Results and Discussion

We find the solution of fractional-order Kaup-Kupershmidt (KK) equation by imple-
menting Natural decomposition method with the aid of two different fractional derivatives.
Figure 1 exhibits the nature of the exact and proposed method solution while Figure 2
shows nature of the absolute error of example 1 at γ = 1. Figure 3 exhibits the nature of
the exact and proposed method solution whereas Figures 4 and 5 shows the nature of the
proposed method solution at different fractional orders. Figure 6 exhibits the nature of
the exact and proposed method solution whereas Figures 7 and 8 shows the nature of the
proposed method solution at different fractional orders.

Figure 1. Nature of the exact and proposed method solution of example 1 at γ = 1.
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Figure 2. Nature of the absolute error of example 1.

Figure 3. Nature of the exact and proposed method solution of example 2 at at γ = 1.

Figure 4. Nature of the proposed method solution of example 2 at γ = 0.8, 0.6.
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Figure 5. Nature of the proposed method solution at various orders of γ for example 2.

Figure 6. Nature of the exact and proposed method solution of example 3 at γ = 1.

Figure 7. Nature of the proposed method solution of example 3 at γ = 0.8, 0.6.

Figure 8. Nature of the proposed method solution at various orders of γ for example 3.

7. Conclusions

In this paper, we find the solution of the time-fractional Kaup–Kupershmidt equation
by means of the natural decomposition method with the aid of two different fractional
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derivatives. To demonstrate the validity of the proposed method, we study the time-
fractional KK equation in three different cases. The results that we obtain by implementing
the proposed methods show that our results are in good agreement with the exact solution.
The results shown in Tables 1–7 are suitable when compared with other techniques such as
the two-dimensional Legendre multiwavelet method, optimal homotopy analysis transform
method (OHAM) and q-homotopy analysis transform method (q-HATM). Finally, we can
conclude that the suggested method is sufficiently consistent and can be used to examine a
wide range of fractional-order nonlinear mathematical models that enable us to understand
the behaviour of highly nonlinear complicated phenomena in related fields of science
and engineering.

Table 1. Comparison at different fractional order of γ on the basis of error for example 1.

κ ϕ γ = 0.4 γ = 0.6 γ = 0.8 γ = 1(NTDMCF) γ = 1(NTDMABC)

0.2 7.7794000000 × 10−8 5.9046000000 × 10−8 3.1881000000 × 10−8 1.5379000000 × 10−8 1.5379000000 × 10−8

0.4 1.5668400000 × 10−7 1.1893800000 × 10−7 6.4232000000 × 10−8 3.0990000000 × 10−8 3.0990000000 × 10−8

0.1 0.6 2.3529200000 × 10−7 1.7864200000 × 10−7 9.6509000000 × 10−8 4.6575000000 × 10−8 4.6575000000 × 10−8

0.8 3.1347800000 × 10−7 2.3807000000 × 10−7 1.2867500000 × 10−7 6.2123000000 × 10−8 6.2123000000 × 10−8

1 3.9110400000 × 10−7 2.9712500000 × 10−7 1.6069300000 × 10−7 7.7622000000 × 10−8 7.7622000000 × 10−8

0.2 1.5316700000 × 10−7 1.1624400000 × 10−7 6.2757000000 × 10−8 3.0269000000 × 10−8 3.0269000000 × 10−8

0.4 3.1100100000 × 10−7 2.3605500000 × 10−7 1.2746600000 × 10−7 6.1491000000 × 10−8 6.1491000000 × 10−8

0.2 0.6 4.6827700000 × 10−7 3.5549900000 × 10−7 1.9202900000 × 10−7 9.2664000000 × 10−8 9.2664000000 × 10−8

0.8 6.2471400000 × 10−7 4.7438600000 × 10−7 2.5637000000 × 10−7 1.2376100000 × 10−7 1.2376100000 × 10−7

1 7.8003300000 × 10−7 5.9253400000 × 10−7 3.2041800000 × 10−7 1.5476200000 × 10−7 1.5476200000 × 10−7

0.2 2.2606900000 × 10−7 1.7156700000 × 10−7 9.2620000000 × 10−8 4.4671000000 × 10−8 4.4671000000 × 10−8

0.4 4.6285600000 × 10−7 3.5130300000 × 10−7 1.8968900000 × 10−7 9.1506000000 × 10−8 9.1506000000 × 10−8

0.3 0.6 6.9881100000 × 10−7 5.3049100000 × 10−7 2.8654200000 × 10−7 1.3826500000 × 10−7 1.3826500000 × 10−7

0.8 9.3351200000 × 10−7 7.0884900000 × 10−7 3.8306300000 × 10−7 1.8491500000 × 10−7 1.8491500000 × 10−7

1 1.1665440000 × 10−6 8.8610300000 × 10−7 4.7914600000 × 10−7 2.3141700000 × 10−7 2.3141700000 × 10−7

0.2 2.9650200000 × 10−7 2.2501400000 × 10−7 1.2147100000 × 10−7 5.8586000000 × 10−8 5.8586000000 × 10−8

0.4 6.1224700000 × 10−7 4.6468100000 × 10−7 2.5090400000 × 10−7 1.2103200000 × 10−7 1.2103200000 × 10−7

0.4 0.6 9.2689100000 × 10−7 7.0362200000 × 10−7 3.8004700000 × 10−7 1.8338100000 × 10−7 1.8338100000 × 10−7

0.8 1.2398730000 × 10−6 9.4146100000 × 10−7 5.0875300000 × 10−7 2.4558200000 × 10−7 2.4558200000 × 10−7

1 1.5506360000 × 10−6 1.1778340000 × 10−6 6.3687500000 × 10−7 3.0758800000 × 10−7 3.0758800000 × 10−7

0.2 3.6446500000 × 10−7 2.7658900000 × 10−7 1.4931100000 × 10−7 7.2012000000 × 10−8 7.2012000000 × 10−8

0.4 7.5917400000 × 10−7 5.7618900000 × 10−7 3.1110700000 × 10−7 1.5007100000 × 10−7 1.5007100000 × 10−7

0.5 0.6 1.1525180000 × 10−6 8.7488900000 × 10−7 4.7254400000 × 10−7 2.2800900000 × 10−7 2.2800900000 × 10−7

0.8 1.5437950000 × 10−6 1.1722200000 × 10−6 6.3343900000 × 10−7 3.0576500000 × 10−7 3.0576500000 × 10−7

1 1.9323090000 × 10−6 1.4677220000 × 10−6 7.9360600000 × 10−7 3.8327700000 × 10−7 3.8327700000 × 10−7

Table 2. Comparison of absolute error among Legendre Multiwavelet [39], OHAM [39],
q− HATM [38], NDMCF and NDMABC for example 1 at w = 1, ` = 0, Υ = 0.1, γ = 1 and κ = 0.1.

ϕ |Legendre Multiwelet| |OH AM| |q− H AT M| |NTDMCF | |NTDMABC|
0.1 3.5268 × 10−10 3.4968 × 10−10 3.1482 × 10−10 7.5000000000 × 10−13 7.5000000000 × 10−13

0.2 7.0308 × 10−10 7.2934 × 10−6 6.3101 × 10−10 1.5400000000 × 10−12 1.5400000000 × 10−12

0.3 1.0532 × 10−9 2.6793 × 10−5 9.4682 × 10−10 2.3200000000 × 10−12 2.3200000000 × 10−12

0.4 1.4028 × 10−9 5.8103 × 10−5 1.2620 × 10−9 3.1000000000 × 10−12 3.1000000000 × 10−12

0.5 1.7520 × 10−9 1.0061 × 10−4 1.5765 × 10−9 3.8800000000 × 10−12 3.8800000000 × 10−12
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Table 3. Comparison of absolute error among Legendre Multiwavelet [39], OHAM [39],
q− HATM [38], NDMCF and NDMABC for example 1 at w = 1, ` = 0, Υ = 0.1, γ = 0.75 and
κ = 0.1.

ϕ |Legendre Multiwelet| |OH AM| |q− H AT M| |NTDMCF | |NTDMABC|
0.1 6.7734 × 10−10 6.7141 × 10−10 6.0478 × 10−10 1.4700000000 × 10−12 1.4700000000 × 10−12

0.2 1.3533 × 10−9 7.2899 × 10−6 1.2165 × 10−10 3.0200000000 × 10−12 3.0200000000 × 10−12

0.3 2.0287 × 10−9 2.6785 × 10−5 1.8276 × 10−10 4.5900000000 × 10−12 4.5900000000 × 10−12

0.4 2.7033 × 10−9 5.8094 × 10−5 2.4376 × 10−9 6.1500000000 × 10−12 6.1500000000 × 10−12

0.5 3.3768 × 10−9 1.0060 × 10−4 3.0461 × 10−9 7.7100000000 × 10−12 7.7100000000 × 10−12

Table 4. Comparison of absolute error among Legendre Multiwavelet [39], OHAM [39], q −
HATM [38], NDMCF and NDMABC for example 1 at w = 1, ` = 0, Υ = 0.1, γ = 0.5 and κ = 0.1.

ϕ |Legendre Multiwelet| |OH AM| |q− H AT M| |NTDMCF | |NTDMABC|
0.1 1.2348 × 10−9 1.2175 × 10−9 1.0979 × 10−9 2.1300000000 × 10−12 2.1300000000 × 10−12

0.2 2.4789 × 10−9 7.2836 × 10−6 2.2262 × 10−9 1.5400000000 × 10−12 4.4700000000 × 10−12

0.3 3.7221 × 10−9 2.6773 × 10−5 3.3531 × 10−9 6.8100000000 × 10−12 6.8100000000 × 10−12

0.4 4.9638 × 10−9 5.8078 × 10−5 4.4781 × 10−9 9.1600000000 × 10−12 9.1600000000 × 10−12

0.5 6.2035 × 10−9 1.0058 × 10−4 5.6004 × 10−9 1.1500000000 × 10−11 1.1500000000 × 10−11

Table 5. Comparison at different fractional order of γ on the basis of error for example 2.

κ ϕ γ = 0.4 γ = 0.6 γ = 0.8 γ = 1(NTDMCF) γ = 1(NTDMABC)

0.2 5.2120000000 × 10−7 3.6017600000 × 10−7 2.0943200000 × 10−7 6.4513000000 × 10−8 6.4513000000 × 10−8

0.4 1.0384330000 × 10−6 7.1776700000 × 10−7 4.1757400000 × 10−7 1.2893800000 × 10−7 1.2893800000 × 10−7

0.1 0.6 1.5474640000 × 10−6 1.0698980000 × 10−6 6.2282300000 × 10−7 1.9293900000 × 10−7 1.9293900000 × 10−7

0.8 2.0443500000 × 10−6 1.4139470000 × 10−6 8.2379300000 × 10−7 2.5631800000 × 10−7 2.5631800000 × 10−7

1 2.5253100000 × 10−6 1.7473930000 × 10−6 1.0191440000 × 10−6 3.1886900000 × 10−7 3.1886900000 × 10−7

0.2 5.8984400000 × 10−7 4.2773700000 × 10−7 2.7455400000 × 10−7 1.2876600000 × 10−7 1.2876600000 × 10−7

0.4 1.1759660000 × 10−6 8.5314400000 × 10−7 5.4809200000 × 10−7 2.5761600000 × 10−7 2.5761600000 × 10−7

0.2 0.6 1.7533840000 × 10−6 1.2726080000 × 10−6 8.1829600000 × 10−7 3.8562800000 × 10−7 3.8562800000 × 10−7

0.8 2.3179040000 × 10−6 1.6832640000 × 10−6 1.0835570000 × 10−6 5.1239700000 × 10−7 5.1239700000 × 10−7

1 2.8655420000 × 10−6 2.0823970000 × 10−6 1.3423590000 × 10−6 6.3748800000 × 10−7 6.3748800000 × 10−7

0.2 6.5642700000 × 10−7 4.9400400000 × 10−7 3.3914500000 × 10−7 1.9276800000 × 10−7 1.9276800000 × 10−7

0.4 1.3096920000 × 10−6 9.8624000000 × 10−7 6.7785000000 × 10−7 3.8605500000 × 10−7 3.8605500000 × 10−7

0.3 0.6 1.9537820000 × 10−6 1.4720680000 × 10−6 1.0127840000 × 10−6 5.7806700000 × 10−7 5.7806700000 × 10−7

0.8 2.5842940000 × 10−6 1.9484160000 × 10−6 1.3421460000 × 10−6 7.6821500000 × 10−7 7.6821500000 × 10−7

1 3.1969960000 × 10−6 2.4123230000 × 10−6 1.6641870000 × 10−6 9.5586800000 × 10−7 9.5586800000 × 10−7

0.2 7.2188300000 × 10−7 5.5944200000 × 10−7 4.0328700000 × 10−7 2.5652100000 × 10−7 2.5652100000 × 10−7

0.4 1.4414910000 × 10−6 1.1180020000 × 10−6 8.0703200000 × 10−7 5.1423300000 × 10−7 5.1423300000 × 10−7

0.4 0.6 2.1514870000 × 10−6 1.6697170000 × 10−6 1.2065920000 × 10−6 7.7025600000 × 10−7 7.7025600000 × 10−7

0.8 2.8472250000 × 10−6 2.2112730000 × 10−6 1.5999330000 × 10−6 1.0237930000 × 10−6 1.0237930000 × 10−6

1 3.5242520000 × 10−6 2.7394880000 × 10−6 1.9850950000 × 10−6 1.2740070000 × 10−6 1.2740070000 × 10−6

0.2 7.8654200000 × 10−7 6.2423400000 × 10−7 4.6702100000 × 10−7 3.2001400000 × 10−7 3.2001400000 × 10−7

0.4 1.5720280000 × 10−6 1.2488040000 × 10−6 9.3572800000 × 10−7 6.4215100000 × 10−7 6.4215100000 × 10−7

0.5 0.6 2.3474550000 × 10−6 1.8660800000 × 10−6 1.3998180000 × 10−6 9.6219500000 × 10−7 9.6219500000 × 10−7

0.8 3.1079660000 × 10−6 2.4725350000 × 10−6 1.8570540000 × 10−6 1.2791210000 × 10−6 1.2791210000 × 10−6

1 3.8489010000 × 10−6 3.0647790000 × 10−6 2.3052760000 × 10−6 1.5918960000 × 10−6 1.5918960000 × 10−6
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Table 6. Comparison at different fractional order of γ on the basis of error for example 3.

κ ϕ γ = 0.4 γ = 0.6 γ = 0.8 γ = 1(NTDMCF) γ = 1(NTDMABC)

0.2 6.4600000000 × 10−10 4.8300000000 × 10−10 2.7900000000 × 10−10 6.7000000000 × 10−11 6.7000000000 × 10−11

0.4 6.4300000000 × 10−10 4.8100000000 × 10−10 2.7700000000 × 10−10 6.6000000000 × 10−11 6.6000000000 × 10−11

0.1 0.6 6.4400000000 × 10−10 4.8200000000 × 10−10 2.8000000000 × 10−10 6.9000000000 × 10−11 6.9000000000 × 10−11

0.8 6.4500000000 × 10−10 4.8400000000 × 10−10 2.8200000000 × 10−10 7.1000000000 × 10−11 7.1000000000 × 10−11

1 6.4100000000 × 10−10 4.8000000000 × 10−10 2.7900000000 × 10−10 6.9000000000 × 10−11 6.9000000000 × 10−11

0.2 6.7100000000 × 10−10 5.4000000000 × 10−10 3.5400000000 × 10−10 1.4300000000 × 10−10 1.4300000000 × 10−10

0.4 6.6700000000 × 10−10 5.3700000000 × 10−10 3.5100000000 × 10−10 1.4000000000 × 10−10 1.4000000000 × 10−10

0.2 0.6 6.5800000000 × 10−10 5.2800000000 × 10−10 3.4300000000 × 10−10 1.3300000000 × 10−10 1.3300000000 × 10−10

0.8 6.6300000000 × 10−10 5.3300000000 × 10−10 3.4900000000 × 10−10 1.4000000000 × 10−10 1.4000000000 × 10−10

1 6.5700000000 × 10−10 5.2800000000 × 10−10 3.4400000000 × 10−10 1.3500000000 × 10−10 1.3500000000 × 10−10

0.2 6.8100000000 × 10−10 5.7600000000 × 10−10 4.1200000000 × 10−10 2.1000000000 × 10−10 2.1000000000 × 10−10

0.4 6.8400000000 × 10−10 5.8000000000 × 10−10 4.1700000000 × 10−10 2.1500000000 × 10−10 2.1500000000 × 10−10

0.3 0.6 6.7400000000 × 10−10 5.7100000000 × 10−10 4.0700000000 × 10−10 2.0700000000 × 10−10 2.0700000000 × 10−10

0.8 6.7700000000 × 10−10 5.7400000000 × 10−10 4.1100000000 × 10−10 2.1100000000 × 10−10 2.1100000000 × 10−10

1 6.6500000000 × 10−10 5.6200000000 × 10−10 4.0000000000 × 10−10 2.0000000000 × 10−10 2.0000000000 × 10−10

0.2 6.9600000000 × 10−10 6.1600000000 × 10−10 4.7400000000 × 10−10 2.8700000000 × 10−10 2.8700000000 × 10−10

0.4 6.8900000000 × 10−10 6.0900000000 × 10−10 4.6800000000 × 10−10 2.8100000000 × 10−10 2.8100000000 × 10−10

0.4 0.6 6.8600000000 × 10−10 6.0600000000 × 10−10 4.6500000000 × 10−10 2.7900000000 × 10−10 2.7900000000 × 10−10

0.8 6.8900000000 × 10−10 6.0900000000 × 10−10 4.6900000000 × 10−10 2.8300000000 × 10−10 2.8300000000 × 10−10

1 6.7700000000 × 10−10 5.9700000000 × 10−10 4.5700000000 × 10−10 2.7200000000 × 10−10 2.7200000000 × 10−10

0.2 6.9800000000 × 10−10 6.3800000000 × 10−10 5.2000000000 × 10−10 3.5100000000 × 10−10 3.5100000000 × 10−10

0.4 7.0100000000 × 10−10 6.4200000000 × 10−10 5.2400000000 × 10−10 3.5600000000 × 10−10 3.5600000000 × 10−10

0.5 0.6 6.9700000000 × 10−10 6.3800000000 × 10−10 5.2100000000 × 10−10 3.5300000000 × 10−10 3.5300000000 × 10−10

0.8 6.9300000000 × 10−10 6.3400000000 × 10−10 5.1700000000 × 10−10 3.4900000000 × 10−10 3.4900000000 × 10−10

1 6.9000000000 × 10−10 6.3100000000 × 10−10 5.1500000000 × 10−10 3.4700000000 × 10−10 3.4700000000 × 10−10

Table 7. Comparison of absolute error among q− HATM [38], NDMCF and NDMABC for example
3 at k = 0.25.

κ ϕ |q− H AT M| |NTDMCF | |NTDMABC|
1 7.0832 × 10−13 2.0000000000 × 10−13 2.0000000000 × 10−13

2 4.4031 × 10−13 1.0000000000 × 10−13 1.0000000000 × 10−13

0.25 3 1.1304 × 10−13 1.0000000000 × 10−13 1.0000000000 × 10−13

4 1.6642 × 10−13 1.0000000000 × 10−13 1.0000000000 × 10−13

5 3.3639 × 10−13 1.0000000000 × 10−13 1.0000000000 × 10−13
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Abstract: The aim of our study is to establish, for convex functions on an interval, a midpoint version
of the fractional HHF type inequality. The corresponding fractional integral has a symmetric weight
function composed with an increasing function as integral kernel. We also consider a midpoint
identity and establish some related inequalities based on this identity. Some special cases can be
considered from our main results. These results confirm the generality of our attempt.

Keywords: symmetry; weighted fractional operators; convex functions; HHF type inequality

1. Introduction

Let J ⊂ R be an interval and let u : J → R be a continuous function. Then, the
function u is called convex if it satisfies

u(κ c1 + (1− κ)c2) ≤ κ u(c1) + (1− κ)u(c2), ∀ c1, c2 ∈ J and κ ∈ [0, 1]. (1)

The function u is called concave whenever −u is convex.
For convex functions u : J → R, there is an important integral inequality in the

literature, namely the Hermite–Hadamard or, briefly, the HH integral inequality, which is
given by [1]:

u

(
c1 + c2

2

)
≤ 1

c2 − c1

∫ c2

c1

u(x)dx ≤ u(c1) + u(c2)

2
, (2)

where c1 < c2 belong to J . In the literature, one can observe that the HH integral in-
equality (2) has been applied to different classes of convexity such as GA–convexity [2],
quasi-convexity [3,4], s–convexity [5], (α, m)–convexity [6], exponentially convexity [7,8],
MT–convexity [9], and the readers can consult [10,11] to find other types.

As we know, fractional calculus is a generalized form of integer order calculus. Various
forms of fractional derivatives including RL, Hadamard, Caputo, Caputo–Hadamard, Riesz,
ψ–RL, Prabhakar, and weighted versions [12–16] have been developed to date. Most
of these versions are described in the RL sense based on the corresponding fractional
integral. Many integer-order integral inequalities such as Ostrowski [17], Simpson [18],
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Hardy [19], Olsen [20], Gagliardo–Nirenberg [21], Opial [22,23] and Rozanova [24] have
been generalized and reformulated from the fractional point of view.

In addition, in 2013, the HH integral inequality (2) was generalized and reformulated
by Sarikaya et al. [25] in terms of RL fractional integrals. Their result is given by:

u

(
c1 + c2

2

)
≤ Γ(ν + 1)

2(c2 − c1)ν

[
RLIν

c1+
u(c2) +

RLIν
c2−u(c1)

]
≤ u(c1) + u(c2)

2
, (3)

where u : J → R is assumed to be a positive convex function, continuous on the closed
interval [c1, c2], and for Lebesgue, almost all x ∈ [c1, c2] when u(x) ∈ L1[c1, c2] with c1 < c2,
where RLIν

c1+
and RLIν

c2− are the left- and right-sided RL fractional integrals of order ν > 0,
defined by [12]:

RLIν
c1+

u(x) =
1

Γ(ν)

∫ x

c1

(x− κ)ν−1u(κ)dκ, x > c1;

RLIν
c2−u(x) =

1
Γ(ν)

∫ c2

x
(κ − x)ν−1u(κ)dκ, x < c2,

(4)

respectively.
The inequality (3) is also known as the endpoint HH inequality due to using the ends

c1, c2 of the interval.
On the other hand, the endpoint HH inequality (3) has been applied for various

classes of convexity such as λψ–convexity [26], F–convexity [27], (α, m)–convexity [28],
MT–convexity [29]. The reader can find other types of convexity in the literature, which in
particular, is true for [30]. In the mean time, applying the end-point HH inequality to other
models of fractional calculus has received a huge amount of attention. For example, this
is true for RL fractional models [31], conformable fractional models [32,33], generalized
fractional models [34], ψ RL fractional models [35,36], tempered fractional models [37],
and AB- and Prabhakar fractional models [38].

After extending the important field of the integral inequalities in (2) and (3), a new
version of the endpoint HH inequality (3) was found by Sarikaya and Yildirim [39], namely
the midpoint HH inequality due to using the midpoint c1+c2

2 of the interval, which is
given by

u

(
c1 + c2

2

)
≤ 2ν−1Γ(ν + 1)

(c2 − c1)ν

[
RLIν(

c1+c2
2

)
+
u(c2) +

RLIν(
c1+c2

2

)
−
u(c1)

]
≤ u(c1) + u(c2)

2
, (5)

where the function u : [c1, c2]→ R is convex and continuous.

Definition 1 ([40]). Let g : [c1, c2] → [0, ∞) be a function. Then, we say g is symmetric with
respect to (c1 + c2)/2 if

g(c1 + c2 − x) = g(x), ∀ x ∈ [c1, c2] (6)

Based on above definition, in [41], Fejér found a new extension of the HH type inequal-
ity (2), namely the HHF type inequality, and the result is as follows:

u

(
c1 + c2

2

) ∫ c2

c1

g(x)dx ≤
∫ c2

c1

u(x)g(x)dx ≤ u(c1) + u(c2)

2

∫ c2

c1

g(x)dx, (7)

372



Symmetry 2021, 13, 550

where g is the integrable function, and Işcan [42] found the endpoint version of (7) in the
sense of RL fractional integrals, which is also the extension of (3). The result is as follows:

u

(
c1 + c2

2

)[
RLIν

c1+
g(c2) +

RLIν
c2−g(c1)

]
≤
[

RLIν
c1+

(ug)(c2) +
RLIν

c2−(ug)(c1)
]

≤ u(c1) + u(c2)

2

[
RLIν

c1+
g(c2) +

RLIν
c2−g(c1)

]
, (8)

where u is convex and continuous and the function g belongs to L1[c1, c2] and is symmetric
(see Definition 1).

It is worth mentioning that the midpoint version of (8) has not been found yet, even
though many related inequalities of midpoint type were obtained in [43].

Recently, Mohammed et al. [44] found a new endpoint HHF-inequality in terms of
weighted fractional integrals with positive weighted symmetric function in a kernel, and
their result is as follows:

u

(
c1 + c2

2

)[(
$−1(c1)+

Iν:$(w ◦ $)
)(

$−1(c2)
)
+
(
Iν:$

$−1(c2)−(w ◦ $)
)(

$−1(c1)
)]

≤ w(c2)
(

$−1(c1)+
Iν:$

w◦$(u ◦ $)
)(

$−1(c2)
)
+ w(c1)

(
w◦$Iν:$

$−1(c2)−(u ◦ $)
)(

$−1(c1)
)

≤ u(c1) + u(c2)

2

[(
$−1(c1)+

Iν:$(w ◦ $)
)(

$−1(c2)
)

+
(
Iν:$

$−1(c2)−(w ◦ $)
)(

$−1(c1)
)]

. (9)

Here, u is a convex and continuous function, $(x) a monotone increasing function
from the interval (c1, c2] onto itself with a continuous derivative $′(x) on the open interval
(c1, c2), and w : [c1, c2]→ (0, ∞) is an integrable function, which is symmetric with respect
to (c1 + c2)/2, where c1 < c2.

Definition 2. Let (c1, c2) ⊆ R and $(x) be an increasing positive and monotone function on the
interval (c1, c2] with a continuous derivative $′(x) on the open interval (c1, c2). Then, the left-sided
and right-sided the weighted fractional integrals of a function u according to another function $(x)
on [c1, c2] are defined by [15]:

(
c1+
Iν:$

w u
)
(x) =

[w(x)]−1

Γ(ν)

∫ x

c1

$′(κ)($(x)− $(κ))ν−1u(κ)w(κ)dκ,

(
wIν:$

c2−u
)
(x) =

[w(x)]−1

Γ(ν)

∫ c2

x
$′(κ)($(κ)− $(x))ν−1u(κ)w(κ)dκ, ν > 0,

(10)

for [w(x)]−1 := 1
w(x) such that w(x) 6= 0.

Remark 1. From Definition 2, we can obtain the following special cases.

• If $(x) = x and w(x) = 1, then the weighted fractional integrals (10) reduce to the classical
RL fractional integrals (4).

• If w(x) = 1, we obtain the fractional integrals of the function u with respect to the function
$(x), which is defined by [13,14]:

(
c1+
Iν:$u

)
(x) =

1
Γ(ν)

∫ x

c1

$′(κ)($(x)− $(κ))ν−1u(κ)dκ,

(
Iν:$

c2−u
)
(x) =

1
Γ(ν)

∫ c2

x
$′(κ)($(κ)− $(x))ν−1u(κ)dκ, ν > 0.

(11)
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In this article, we will investigate the midpoint version of (9) and some related HHF in-
equalities by using the weighted fractional integrals (10) with positive weighted symmetric
functions in the kernel.

The rest of our article is structured in the following way: In Section 2, we will prove
the necessary and auxiliary lemmas, including the midpoint version of (9). In Section 3,
we will prove our main results, including new midpoint fractional HHF integral inequalities
with some related results. We will present some concluding remarks in Section 4.

2. Auxiliary Results

In this section, we prove analogues of the fractional HH inequalities (2)–(3) and HHF in-
equalities (7)–(8) for weighted fractional integral operators with positive weighted symmet-
ric function kernels. Here, the main results are as follows: Theorem 1 (it is a generalisation
of HH inequalities (2)–(3) and HHF inequality (7), and a reformulation of HHF inequality (8))
and Lemma 2 (it is a consequence of Theorem 1).

At first, we need the following lemma.

Lemma 1. Assume that w : [c1, c2] → (0, ∞) is an integrable function and symmetric with
respect to (c1 + c2)/2, c1 < c2. Then,

(i) for each κ ∈ [0, 1], we have

w
(

κ

2
c1 +

2− κ

2
c2

)
= w

(
2− κ

2
c1 +

κ

2
c2

)
. (12)

(ii) For ν > 0, we have

(

$−1
(

c1+c2
2

)
+
Iν:$(w ◦ $)

)(
$−1(c2)

)
=

(
Iν:$

$−1
(

c1+c2
2

)
−
(w ◦ $)

)(
$−1(c1)

)

=
1
2

[(

$−1
(

c1+c2
2

)
+
Iν:$(w ◦ $)

)(
$−1(c2)

)
+

(
Iν:$

$−1
(

c1+c2
2

)
−
(w ◦ $)

)(
$−1(c1)

)]
. (13)

Proof.

(i) Let x = κ
2 c1 +

2−κ
2 c2. It is clear that x ∈ [c1, c2] for each κ ∈ [0, 1] and that c1 + c2 − x =

2−κ
2 c1 +

κ
2 c2. Then, by making use of the assumptions and Definition 1, we can obtain (12).

(ii) The symmetry property of w leads to

(w ◦ $)(κ) = w($(κ)) = w(c1 + c2 − $(κ)), ∀ κ ∈
[
$−1(c1), $−1(c2)

]
.

From above and setting $(x) := c1 + c2 − $(κ), it follows that
(

$−1
(

c1+c2
2

)
+
Iν:$(w ◦ $)

)(
$−1(c2)

)

=
1

Γ(ν)

∫ $−1(c2)

$−1
(

c1+c2
2

)(c2 − $(x))ν−1(w ◦ $)(x)$′(x)dx

=
1

Γ(ν)

∫ $−1
(

c1+c2
2

)

$−1(c1)
($(κ)− c1)

ν−1w(c1 + c2 − $(κ))$′(κ)dκ

=
1

Γ(ν)

∫ $−1
(

c1+c2
2

)

$−1(c1)
($(κ)− c1)

ν−1(w ◦ $)(κ)$′(κ)dκ

=

(
Iν:$

$−1
(

c1+c2
2

)
−
(w ◦ $)

)(
$−1(c1)

)
,
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which completes the desired equality (13).

Remark 2. Throughout the present article, we denote [w(x)]−1 = 1
w(x) and $−1(x) the inverse of

the function $(x).

Theorem 1. Let 0 ≤ c1 < c2, let u : [c1, c2]→ R be an L1 convex function and w : [c1, c2]→ R
be an integrable, positive and weighted symmetric function with respect to c1+c2

2 . If, in addition,
$ is an increasing and positive function from [c1, c2) onto itself such that its derivative $′(x) is
continuous on (c1, c2), then for ν > 0, the following inequalities are valid:

u

(
c1 + c2

2

)[(

$−1
(

c1+c2
2

)
+
Iν:$(w ◦ $)

)(
$−1(c2)

)

+

(
Iν:$

$−1
(

c1+c2
2

)
−
(w ◦ $)

)(
$−1(c1)

)]
≤ w(c2)

(

$−1
(

c1+c2
2

)
+
Iν:$

w◦$(u ◦ $)

)(
$−1(c2)

)

+ w(c1)

(

w◦$Iν:$

$−1
(

c1+c2
2

)
−
(u ◦ $)

)(
$−1(c1)

)

≤ u(c1) + u(c2)

2

[(

$−1
(

c1+c2
2

)
+
Iν:$(w ◦ $)

)(
$−1(c2)

)

+

(
Iν:$

$−1
(

c1+c2
2

)
−
(w ◦ $)

)(
$−1(c1)

)]
. (14)

Proof. The convexity of u on [c1, c2] gives

u

(
x + y

2

)
≤ u(x) + u(y)

2
for all x, y ∈ [c1, c2].

So, for x = κ
2 c1 +

2−κ
2 c2 and y = 2−κ

2 c1 +
κ
2 c2, κ ∈ [0, 1], it follows that

2u
(

c1 + c2

2

)
≤ u

(
κ

2
c1 +

2− κ

2
c2

)
+ u

(
2− κ

2
c1 +

κ

2
c2

)
. (15)

Multiplying both sides of (15) by κν−1w
(

κ
2 c1 +

2−κ
2 c2

)
and integrating the resulting

inequality with respect to κ over [0, 1],, we obtain

2u
(

c1 + c2

2

) ∫ 1

0
κν−1w

(
κ

2
c1 +

2− κ

2
c2

)
dκ

≤
∫ 1

0
κν−1u

(
κ

2
c1 +

2− κ

2
c2

)
w
(

κ

2
c1 +

2− κ

2
c2

)
dκ

+
∫ 1

0
κν−1u

(
2− κ

2
c1 +

κ

2
c2

)
w
(

κ

2
c1 +

2− κ

2
c2

)
dκ. (16)
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From the left-hand side of the inequality in (16), we use (13) to obtain

2ν−1Γ(ν)
(c2 − c1)ν

[(

$−1
(

c1+c2
2

)
+
Iν:$(w ◦ $)

)(
$−1(c2)

)
+

(
Iν:$

$−1
(

c1+c2
2

)
−
(w ◦ $)

)(
$−1(c1)

)]

=
2νΓ(ν)

(c2 − c1)ν

(

$−1
(

c1+c2
2

)
+
Iν:$(w ◦ $)

)(
$−1(c2)

)

=
2ν

(c2 − c1)ν

∫ $−1(c2)

$−1
(

c1+c2
2

)(c2 − $(x))ν−1(w ◦ $)(x)$′(x)dx

=
∫ $−1(c2)

$−1
(

c1+c2
2

)
(

2(c2 − $(x))
c2 − c1

)ν−1

(w ◦ $)(x)$′(x)
2dx

c2 − c1

=
∫ 1

0
κν−1w

(
κ

2
c1 +

2− κ

2
c2

)
dκ,

[
denoting κ :=

2(c2 − $(x))
c2 − c1

]
.

It follows that

2u
(

c1 + c2

2

) ∫ 1

0
κν−1w

(
κ

2
c1 +

2− κ

2
c2

)
dκ =

2νΓ(ν)
(c2 − c1)ν

u

(
c1 + c2

2

)

×
[(

$−1
(

c1+c2
2

)
+
Iν:$(w ◦ $)

)(
$−1(c2)

)
+

(
Iν:$

$−1
(

c1+c2
2

)
−
(w ◦ $)

)(
$−1(c1)

)]
. (17)

By evaluating the weighted fractional operators, we see that

w(c2)

(

$−1
(

c1+c2
2

)
+
Iν:$

w◦$(u ◦ $)

)(
$−1(c2)

)
+ w(c1)

(

w◦$Iν:$

$−1
(

c1+c2
2

)
−
(u ◦ $)

)(
$−1(c1)

)

= w(c2)
(w ◦ $)−1($−1(c2)

)

Γ(ν)

∫ $−1(c2)

$−1
(

c1+c2
2

)(c2 − $(x))ν−1(u ◦ $)(x)(w ◦ $)(x)$′(x)dx

+ w(c1)
(w ◦ $)−1($−1(c1)

)

Γ(ν)

∫ $−1
(

c1+c2
2

)

$−1(c1)
($(x)− c1)

ν−1(u ◦ $)(x)(w ◦ $)(x)$′(x)dx

=
(c2 − c1)

ν

2νΓ(ν)

∫ $−1(c2)

$−1
(

c1+c2
2

)
(

2(c2 − $(x))
c2 − c1

)ν−1

(u ◦ $)(x)(w ◦ $)(x)$′(x)
2dx

c2 − c1

+
(c2 − c1)

ν

2νΓ(ν)

∫ $−1
(

c1+c2
2

)

$−1(c1)

(
2($(x)− c1)

c2 − c1

)ν−1

(u ◦ $)(x)(w ◦ $)(x)$′(x)
2dx

c2 − c1
,

where we used
[
(w ◦ $)($−1(y))

]−1
=

1
(w ◦ $)($−1(y))

=
1

w(y)
for y = c1, c2. (18)
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Setting t1 = 2(c2−$(x))
c2−c1

and t2 = 2($(x)−c1)
c2−c1

, one can deduce that

w(c2)

(

$−1
(

c1+c2
2

)
+
Iν:$

w◦$(u ◦ $)

)(
$−1(c2)

)
+ w(c1)

(

w◦$Iν:$

$−1
(

c1+c2
2

)
−
(u ◦ $)

)(
$−1(c1)

)

=
(c2 − c1)

ν

2νΓ(ν)

[∫ 1

0
t1

ν−1u

(
t1

2
c1 +

2− t1

2
c2

)
w
(

t1

2
c1 +

2− t1

2
c2

)
dt1

+
∫ 1

0
t2

ν−1u

(
2− t2

2
c1 +

t2

2
c2

)
w
(

2− t2

2
c1 +

t2

2
c2

)
dt2

=
(c2 − c1)

ν

2νΓ(ν)

[∫ 1

0
κν−1u

(
κ

2
c1 +

2− κ

2
c2

)
w
(

κ

2
c1 +

2− κ

2
c2

)
dκ

+
∫ 1

0
κν−1u

(
2− κ

2
c1 +

κ

2
c2

)
w
(

κ

2
c1 +

2− κ

2
c2

)

︸ ︷︷ ︸
by using (12)

dκ

]
.

It follows that

∫ 1

0
κν−1u

(
κ

2
c1 +

2− κ

2
c2

)
w
(

κ

2
c1 +

2− κ

2
c2

)
dκ

+
∫ 1

0
κν−1u

(
2− κ

2
c1 +

κ

2
c2

)
w
(

κ

2
c1 +

2− κ

2
c2

)
dκ

=
2νΓ(ν)

(c2 − c1)ν

[
w(c2)

(

$−1
(

c1+c2
2

)
+
Iν:$

w◦$(u ◦ $)

)(
$−1(c2)

)

+ w(c1)

(

w◦$Iν:$

$−1
(

c1+c2
2

)
−
(u ◦ $)

)(
$−1(c1)

)]
. (19)

By making use of (17) and (19) in (16), we get

u

(
c1 + c2

2

)[(

$−1
(

c1+c2
2

)
+
Iν:$(w ◦ $)

)(
$−1(c2)

)

+

(
Iν:$

$−1
(

c1+c2
2

)
−
(w ◦ $)

)(
$−1(c1)

)]
≤ w(c2)

(

$−1
(

c1+c2
2

)
+
Iν:$

w◦$(u ◦ $)

)(
$−1(c2)

)

+ w(c1)

(

w◦$Iν:$

$−1
(

c1+c2
2

)
−
(u ◦ $)

)(
$−1(c1)

)
. (20)

Thus, the proof of the first inequality of (14) is completed.
On the other hand, we can prove the second inequality of (14) by making use of the

convexity of u to get

u

(
κ

2
c1 +

2− κ

2
c2

)
+ u

(
2− κ

2
c1 +

κ

2
c2

)
≤ u(c1) + u(c2). (21)
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Multiplying both sides of (21) by κν−1w
(

κ
2 c1 +

2−κ
2 c2

)
and integrating with respect to

κ over [0, 1] to get

∫ 1

0
κν−1u

(
κ

2
c1 +

2− κ

2
c2

)
w
(

κ

2
c1 +

2− κ

2
c2

)
dκ

+
∫ 1

0
κν−1u

(
2− κ

2
c1 +

κ

2
c2

)
w
(

κ

2
c1 +

2− κ

2
c2

)
dκ

≤ (u(c1) + u(c2))
∫ 1

0
κν−1w

(
κ

2
c1 +

2− κ

2
c2

)
dκ. (22)

Then, by using (12) and (19) in (22), we get

w(c2)

(

$−1
(

c1+c2
2

)
+
Iν:$

w◦$(u ◦ $)

)(
$−1(c2)

)

+ w(c1)

(

w◦$Iν:$

$−1
(

c1+c2
2

)
−
(u ◦ $)

)(
$−1(c1)

)

≤ u(c1) + u(c2)

2

[(

$−1
(

c1+c2
2

)
+
Iν:$(w ◦ $)

)(
$−1(c2)

)

+

(
Iν:$

$−1
(

c1+c2
2

)
−
(w ◦ $)

)(
$−1(c1)

)]
.

This ends our proof.

Remark 3. From Theorem 1, we can obtain some special cases as follows:

(i) If $(x) = x, then inequality (14) becomes

u

(
c1 + c2

2

)[
RL(

c1+c2
2

)
+
Iνw(c2) +

RLIν(
c1+c2

2

)
−

w(c1)

]

≤ w(c2)

(
RL(

c1+c2
2

)
+
Iν

wu

)
(c2) + w(c1)

(
RL

wIν(
c1+c2

2

)
−
u

)
(c1)

≤ u(c1) + u(c2)

2

[
RL(

c1+c2
2

)
+
Iνw(c2) +

RLIν(
c1+c2

2

)
−

w(c1)

]
, (23)

where RL
c1+
Iν

w and RL
wIν

c2− are the left- and right-weighted RL fractional integrals, respectively,
given by

(
RL

c1+
Iν

wu
)
(x) =

w−1(x)
Γ(ν)

∫ x

c1

(x− κ)ν−1u(κ)w(κ)dκ,

(
RL

wIν
c2−u

)
(x) =

w−1(x)
Γ(ν)

∫ c2

x
(κ − x)ν−1u(κ)w(κ)dκ, ν > 0.

(ii) If $(x) = x and ν = 1, then inequality (14) becomes the inequality in (7).

(iii) If $(x) = x and w(x) = 1, then inequality (14) becomes the inequality in (5).

(iv) If $(x) = x, w(x) = 1 and ν = 1, then inequality (14) becomes the inequality in (2).

Lemma 2. Let 0 ≤ c1 < c2, let u : [c1, c2]→ R be a continuous with a derivative u′ ∈ L1[c1, c2]
such that u(x) = u(c1) +

∫ x
c1
u′(κ)dκ and let w : [c1, c2] → R be an integrable, positive and

weighted symmetric function with respect to c1+c2
2 . If $ is a continuous increasing mapping from
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the interval [c1, c2) onto itself with a derivative $′(x) which is continuous on (c1, c2), then for
ν > 0, the following equality is valid:

u

(
c1 + c2

2

)[(

$−1
(

c1+c2
2

)
+
Iν:$(w ◦ $)

)(
$−1(c2)

)

+

(
Iν:$

$−1
(

c1+c2
2

)
−
(w ◦ $)

)(
$−1(c1)

)]

−
[

w(c2)

(

$−1
(

c1+c2
2

)
+
Iν:$

w◦$(u ◦ $)

)(
$−1(c2)

)

+ w(c1)

(

w◦$Iν:$

$−1
(

c1+c2
2

)
−
(u ◦ $)

)(
$−1(c1)

)]

=
1

Γ(ν)

∫ $−1
(

c1+c2
2

)

$−1(c1)

[∫ κ

$−1(c1)
$′(x)($(x)− c1)

ν−1(w ◦ $)(x)dx

]
(u′ ◦ $)(κ)$′(κ)dκ

− 1
Γ(ν)

∫ $−1(c2)

$−1
(

c1+c2
2

)

[∫ $−1(c2)

κ
$′(x)(c2 − $(x))ν−1(w ◦ $)(x)dx

]
(u′ ◦ $)(κ)$′(κ)dκ. (24)

Proof. Let us set

1
Γ(ν)

∫ $−1
(

c1+c2
2

)

$−1(c1)

[∫ κ

$−1(c1)
$′(x)($(x)− c1)

ν−1(w ◦ $)(x)dx

]
(u′ ◦ $)(κ)$′(κ)dκ

− 1
Γ(ν)

∫ $−1(c2)

$−1
(

c1+c2
2

)

[∫ $−1(c2)

κ
$′(x)(c2 − $(x))ν−1(w ◦ $)(x)dx

]
(u′ ◦ $)(κ)$′(κ)dκ

=
1

Γ(ν)

∫ $−1
(

c1+c2
2

)

$−1(c1)

[∫ κ

$−1(c1)
$′(x)($(x)− c1)

ν−1(w ◦ $)(x)dx

]
(u′ ◦ $)(κ)$′(κ)dκ

+
−1

Γ(ν)

∫ $−1(c2)

$−1
(

c1+c2
2

)

[∫ $−1(c2)

κ
$′(x)(c2 − $(x))ν−1(w ◦ $)(x)dx

]
(u′ ◦ $)(κ)$′(κ)dκ

:= Ξ1 + Ξ2.

By integrating by parts, using Lemma 1, and (10) and (11), we obtain

Ξ1 =
1

Γ(ν)

(∫ κ

$−1(c1)
$′(x)($(x)− c1)

ν−1(w ◦ $)(x)dx
)
(u ◦ $)(κ)dκ

∣∣∣∣∣

$−1
(

c1+c2
2

)

κ=$−1(c1)

− 1
Γ(ν)

∫ $−1
(

c1+c2
2

)

$−1(c1)
$′(κ)($(κ)− c1)

ν−1(w ◦ $)(κ)(u ◦ $)(κ)dκ

=

(
1

Γ(ν)

∫ $−1
(

c1+c2
2

)

$−1(c1)
$′(x)($(x)− c1)

ν−1(w ◦ $)(x)dx

)
u

(
c1 + c2

2

)

− w(c1)
(w ◦ $)−1($−1(c1)

)

Γ(ν)︸ ︷︷ ︸
by using (18)

∫ $−1
(

c1+c2
2

)

$−1(c1)
$′(κ)($(κ)− c1)

ν−1(w ◦ $)(κ)(u ◦ $)(κ)dκ
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= u

(
c1 + c2

2

)(
Iν:$

$−1
(

c1+c2
2

)
−
(w ◦ $)

)(
$−1(c1)

)

− w(c1)

(

w◦$Iν:$

$−1
(

c1+c2
2

)
−
(u ◦ $)

)(
$−1(c1)

)

=
1
2
u

(
c1 + c2

2

)[(

$−1
(

c1+c2
2

)
+
Iν:$(w ◦ $)

)(
$−1(c2)

)

+

(
Iν:$

$−1
(

c1+c2
2

)
−
(w ◦ $)

)(
$−1(c1)

)]
− w(c1)

(

w◦$Iν:$

$−1
(

c1+c2
2

)
−
(u ◦ $)

)(
$−1(c1)

)
.

Analogously, we get

Ξ2 =
−1

Γ(ν)

(∫ $−1(c2)

κ
$′(x)(c2 − $(x))ν−1(w ◦ $)(x)dx

)
(u ◦ $)(κ)dκ

∣∣∣∣∣

$−1(c2)

t=$−1
(

c1+c2
2

)

− 1
Γ(ν)

∫ $−1(c2)

$−1
(

c1+c2
2

) $′(κ)(c2 − $(κ))ν−1(w ◦ $)(κ)(u ◦ $)(κ)dκ

=

(
1

Γ(ν)

∫ $−1(c2)

$−1
(

c1+c2
2

) $′(x)(c2 − $(x))ν−1(w ◦ $)(x)dx

)
u

(
c1 + c2

2

)

− w(c2)
(w ◦ $)−1($−1(c2)

)

Γ(ν)︸ ︷︷ ︸
by using (18)

∫ $−1(c2)

$−1
(

c1+c2
2

) $′(κ)(c2 − $(κ))ν−1(w ◦ $)(κ)(u ◦ $)(κ)dκ

= u

(
c1 + c2

2

)(

$−1
(

c1+c2
2

)
+
Iν:$(w ◦ $)

)(
$−1(c2)

)

− w(c2)

(

$−1
(

c1+c2
2

)
+
Iν:$

w◦$(u ◦ $)

)(
$−1(c2)

)

=
1
2
u

(
c1 + c2

2

)[(

$−1
(

c1+c2
2

)
+
Iν:$(w ◦ $)

)(
$−1(c2)

)

+
(
Iν:$

$−1(c2)−(w ◦ $)
)(

$−1(c1)
)]
− w(c2)

(

$−1
(

c1+c2
2

)
+
Iν:$

w◦$(u ◦ $)

)(
$−1(c2)

)
.

Thus, we deduce:

Ξ1 + Ξ2 = u

(
c1 + c2

2

)[(

$−1
(

c1+c2
2

)
+
Iν:$(w ◦ $)

)(
$−1(c2)

)

+

(
Iν:$

$−1
(

c1+c2
2

)
−
(w ◦ $)

)(
$−1(c1)

)]
−
[

w(c2)

(

$−1
(

c1+c2
2

)
+
Iν:$

w◦$(u ◦ $)

)(
$−1(c2)

)

+ w(c1)

(

w◦$Iν:$

$−1
(

c1+c2
2

)
−
(u ◦ $)

)(
$−1(c1)

)]
,

which completes the proof of Lemma 2.

Remark 4. From Lemma 2, we can obtain some special cases as follows:
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(i) If $(x) = x, then equality (24) becomes

u

(
c1 + c2

2

)[
RL(

c1+c2
2

)
+
Iνw(c2) +

RLIν(
c1+c2

2

)
−

w(c1)

]

−
[
w(c2)

(
RL(

c1+c2
2

)
+
Iν

wu

)
(c2) + w(c1)

(
RL

wIν(
c1+c2

2

)
−
u

)
(c1)

]

=
1

Γ(ν)

∫ c1+c2
2

c1

[∫ κ

c1

(x− c1)
ν−1w(x)dx

]
u′(κ)dκ

− 1
Γ(ν)

∫ c2

c1+c2
2

[∫ c2

κ
(c2 − x)ν−1w(x)dx

]
u′(κ)dκ, (25)

where RL(
c1+c2

2

)
+
Iν

w and RL
wIν(

c1+c2
2

)
−

are as defined in Remark 3.

(ii) If $(x) = x and w(x) = 1, then equality (24) becomes

2ν−1Γ(ν + 1)
(c2 − c1)ν

[
RL(

c1+c2
2

)
+
Iνu(c2) +

RLIν(
c1+c2

2

)
−
u(c1)

]
− u

(
c1 + c2

2

)
=

c2 − c1

4

×
[∫ 1

0
κνu′

(
κ

2
c1 +

2− κ

2
c2

)
dκ −

∫ 1

0
κνu′

(
2− κ

2
c1 +

κ

2
c2

)
dκ

]
,

which is already obtained in ([39] [Lemma 3]).

(iii) If $(x) = x, w(x) = 1 and ν = 1, then equality (24) becomes

1
c2 − c1

∫ c2

c1

u(x)dx− u

(
c1 + c2

2

)
=

c2 − c1

4

[∫ 1

0
κu′
(

κ

2
c1 +

2− κ

2
c2

)
dκ

−
∫ 1

0
κu′
(

2− κ

2
c1 +

κ

2
c2

)
dκ

]
, (26)

which is already obtained in ([39] [Corollary 1]).

3. Main Results

By the help of Lemma 2, we can deduce the following HHF inequalities.

Theorem 2. Let 0 ≤ c1 < c2, let u : [c1, c2] ⊆ [0, ∞) → R be a (continuously) differentiable
function on the interval [c1, c2] such that u(x) = u(c1) +

∫ x
c1
u′(κ)dκ, and let w : [c1, c2]→ R be

an integrable, positive and weighted symmetric function with respect to c1+c2
2 . If, in addition, |u′|

is convex on [c1, c2], and $ is an increasing and positive function from [c1, c2) onto itself such that
its derivative $′(x) is continuous on (c1, c2), then for ν > 0 the following inequalities are valid:

|Ξ1 + Ξ2| =
∣∣∣∣∣

1
Γ(ν)

∫ $−1
(

c1+c2
2

)

$−1(c1)

[∫ κ

$−1(c1)
$′(x)($(x)− c1)

ν−1(w ◦ $)(x)dx

]

× (u′ ◦ $)(κ)$′(κ)dκ

− 1
Γ(ν)

∫ $−1(c2)

$−1
(

c1+c2
2

)

[∫ $−1(c2)

κ
$′(x)(c2 − $(x))ν−1(w ◦ $)(x)dx

]
(u′ ◦ $)(κ)$′(κ)dκ

∣∣∣∣∣
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≤ (c2 − c1)
ν+1

2ν+2Γ(ν + 3)

{
‖w‖[

c1, c1+c2
2

]
, ∞

[
(ν + 3)|u′(c1)|+ (ν + 1)|u′(c2)|

]

+ ‖w‖[ c1+c2
2 , c2

]
, ∞

[
(ν + 1)|u′(c1)|+ (ν + 3)|u′(c2)|

]}

≤
(c2 − c1)

ν+1‖w‖[
c1, c2

]
, ∞

2ν+1Γ(ν + 2)
[
|u′(c1)|+ |u′(c2)|

]
. (27)

Proof. By making use of Lemma 2 and properties of the modulus, we obtain

|Ξ1 + Ξ2|

=

∣∣∣∣∣
1

Γ(ν)

∫ $−1
(

c1+c2
2

)

$−1(c1)

[∫ κ

$−1(c1)
$′(x)($(x)− c1)

ν−1(w ◦ $)(x)dx

]
(u′ ◦ $)(κ)$′(κ)dκ

− 1
Γ(ν)

∫ $−1(c2)

$−1
(

c1+c2
2

)

[∫ $−1(c2)

κ
$′(x)(c2 − $(x))ν−1(w ◦ $)(x)dx

]
(u′ ◦ $)(κ)$′(κ)dκ

∣∣∣∣∣

≤ 1
Γ(ν)

∫ $−1
(

c1+c2
2

)

$−1(c1)

∣∣∣∣∣
∫ κ

$−1(c1)
$′(x)($(x)− c1)

ν−1(w ◦ $)(x)dx

∣∣∣∣∣|(u
′ ◦ $)(κ)|$′(κ)dκ

+
1

Γ(ν)

∫ $−1(c2)

$−1
(

c1+c2
2

)

∣∣∣∣∣
∫ $−1(c2)

κ
$′(x)(c2 − $(x))ν−1(w ◦ $)(x)dx

∣∣∣∣∣

× |(u′ ◦ $)(κ)|$′(κ)dκ. (28)

Since |u′| is convex on [c1, c2], we get for κ ∈
[
$−1(c1), $−1(c2)

]
:

∣∣(u′ ◦ $)(κ)
∣∣ =

∣∣∣∣u′
(

c2 − $(κ)

c2 − c1
c1 +

$(κ)− c1

c2 − c1
c2

)∣∣∣∣

≤ c2 − $(κ)

c2 − c1
|u′(c1)|+

$(κ)− c1

c2 − c1
|u′(c2)|. (29)

Hence, we obtain

|Ξ1 + Ξ2| ≤
‖w‖[

c1, c1+c2
2

]
, ∞

(c2 − c1)Γ(ν)

∫ $−1
(

c1+c2
2

)

$−1(c1)

∣∣∣∣∣
∫ κ

$−1(c1)
$′(x)($(x)− c1)

ν−1dx

∣∣∣∣∣

×
[
(c2 − $(κ))|u′(c1)|+ ($(κ)− c1)|u′(c2)|

]
$′(κ)dκ

+
‖w‖[ c1+c2

2 , c2

]
, ∞

(c2 − c1)Γ(ν)

∫ $−1(c2)

$−1
(

c1+c2
2

)

∣∣∣∣∣
∫ $−1(c2)

κ
$′(x)(c2 − $(x))ν−1dx

∣∣∣∣∣

×
[
(c2 − $(κ))|u′(c1)|+ ($(κ)− c1)|u′(c2)|

]
$′(κ)dκ

=
(c2 − c1)

ν+1

2ν+2Γ(ν + 3)

{
‖w‖[

c1, c1+c2
2

]
, ∞

[
(ν + 3)|u′(c1)|+ (ν + 1)|u′(c2)|

]

+ ‖w‖[ c1+c2
2 , c2

]
, ∞

[
(ν + 1)|u′(c1)|+ (ν + 3)|u′(c2)|

]}

≤
(c2 − c1)

ν+1‖w‖[
c1, c2

]
, ∞

2ν+1Γ(ν + 2)
[
|u′(c1)|+ |u′(c2)|

]
, (30)
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where

∫ κ

$−1(c1)
$′(x)($(x)− c1)

ν−1dx =
($(κ)− c1)

ν

ν
;

∫ $−1(c2)

κ
$′(x)(c2 − $(x))ν−1dx =

(c2 − $(κ))ν

ν
;

∫ $−1
(

c1+c2
2

)

$−1(c1)
($(κ)− c1)

ν+1$′(κ)dκ =
∫ $−1(c2)

$−1
(

c1+c2
2

)(c2− $(κ))ν+1$′(κ)dκ =
(c2 − c1)

ν+2

2ν+2(ν + 2)
;

∫ $−1
(

c1+c2
2

)

$−1(c1)
($(κ)− c1)

ν(c2 − $(κ))$′(κ)dκ

=
∫ $−1(c2)

$−1
(

c1+c2
2

)(c2 − $(κ))ν($(κ)− c1)$
′(κ)dκ =

(c2 − c1)
ν+2(ν + 3)

2ν+2(ν + 1)(ν + 2)
.

This completes our proof.

Remark 5. From Theorem 2, we can obtain some special cases as follows:

(i) If $(x) = x, then inequality (27) becomes

∣∣∣∣∣u
(

c1 + c2

2

)[
RL(

c1+c2
2

)
+
Iνw(c2) +

RLIν(
c1+c2

2

)
−

w(c1)

]

−
[
w(c2)

(
RL(

c1+c2
2

)
+
Iν

wu

)
(c2) + w(c1)

(
RL

wIν(
c1+c2

2

)
−
u

)
(c1)

]∣∣∣∣∣

≤ (c2 − c1)
ν+1

2ν+2Γ(ν + 3)

{
‖w‖[

c1, c1+c2
2

]
, ∞

[
(ν + 3)|u′(c1)|+ (ν + 1)|u′(c2)|

]

+ ‖w‖[ c1+c2
2 , c2

]
, ∞

[
(ν + 1)|u′(c1)|+ (ν + 3)|u′(c2)|

]}

≤
(c2 − c1)

ν+1‖w‖[c1, c2], ∞

2ν+1Γ(ν + 2)
[
|u′(c1)|+ |u′(c2)|

]
. (31)

(ii) If $(x) = x and w(x) = 1, then inequality (27) becomes

∣∣∣∣∣
2ν−1Γ(ν + 1)
(c2 − c1)ν

[
RL(

c1+c2
2

)
+
Iνu(c2) +

RLIν(
c1+c2

2

)
−
u(c1)

]
− u

(
c1 + c2

2

)∣∣∣∣∣

≤ (c2 − c1)
ν+1

2ν+2Γ(ν + 3)

{[
(ν + 3)|u′(c1)|+ (ν + 1)|u′(c2)|

]

+
[
(ν + 1)|u′(c1)|+ (ν + 3)|u′(c2)|

]}
≤ (c2 − c1)

ν+1

2ν+1Γ(ν + 2)
[
|u′(c1)|+ |u′(c2)|

]
, (32)

which is already obtained in ([39] [Theorem 5]).

(iii) If $(x) = x, w(x) = 1 and ν = 1, then inequality (27) becomes
∣∣∣∣∣

1
c2 − c1

∫ c2

c1

u(x)dx− u

(
c1 + c2

2

)∣∣∣∣∣ ≤
c2 − c1

8
[
|u′(c1)|+ |u′(c2)|

]
, (33)

which is already obtained in ([45] [Theorem 2.2]).
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Theorem 3. Let 0 ≤ c1 < c2, let u : [c1, c2] ⊆ [0, ∞) → R be a (continuously) differentiable
function on the interval [c1, c2] such that u(x) = u(c1) +

∫ x
c1
u′(κ)dκ, and let w : [c1, c2] → R

be an integrable, positive and weighted symmetric function with respect to c1+c2
2 . If, in addition,

|u′|q is convex on [c1, c2] with q ≥ 1, and $ is an increasing and positive function from [c1, c2)
onto itself such that its derivative $′(x) is continuous on (c1, c2), then for ν > 0, the following
inequalities are valid:

|Ξ1 + Ξ2| ≤
(c2 − c1)

ν+1

2ν+1+ 1
q (ν + 2)

1
q Γ(ν + 2)

×
{
‖w‖[

c1, c1+c2
2

]
, ∞

[
(ν + 3)|u′(c1)|q + (ν + 1)|u′(c2)|q

] 1
q

+ ‖w‖[ c1+c2
2 , c2

]
, ∞

[
(ν + 1)|u′(c1)|q + (ν + 3)|u′(c2)|q

] 1
q

}

≤
(c2 − c1)

ν+1‖w‖[
c1, c2

]
, ∞

2ν+1+ 1
q (ν + 2)

1
q Γ(ν + 2)

{[
(ν + 3)|u′(c1)|q + (ν + 1)|u′(c2)|q

] 1
q

+
[
(ν + 1)|u′(c1)|q + (ν + 3)|u′(c2)|q

] 1
q
}

. (34)

Proof. Since |u′|q is convex on [c1, c2], we get for κ ∈
[
$−1(c1), $−1(c2)

]
:

∣∣(u′ ◦ $)(κ)
∣∣q =

∣∣∣∣u′
(

c2 − $(κ)

c2 − c1
c1 +

$(κ)− c1

c2 − c1
c2

)∣∣∣∣
q

≤ c2 − $(κ)

c2 − c1
|u′(c1)|q +

$(κ)− c1

c2 − c1
|u′(c2)|q. (35)

By making use of Lemma 2, power mean inequality and convexity of |u′|q, we get

|Ξ1 + Ξ2|

≤ 1
Γ(ν)

∫ $−1
(

c1+c2
2

)

$−1(c1)

∣∣∣∣∣
∫ κ

$−1(c1)
$′(x)($(x)− c1)

ν−1(w ◦ $)(x)dx

∣∣∣∣∣|(u
′ ◦ $)(κ)|$′(κ)dκ

+
1

Γ(ν)

∫ $−1(c2)

$−1
(

c1+c2
2

)

∣∣∣∣∣
∫ $−1(c2)

κ
$′(x)(c2 − $(x))ν−1(w ◦ $)(x)dx

∣∣∣∣∣|(u
′ ◦ $)(κ)|$′(κ)dκ

≤ 1
Γ(ν)

(∫ $−1
(

c1+c2
2

)

$−1(c1)

∣∣∣∣∣
∫ κ

$−1(c1)
$′(x)($(x)− c1)

ν−1(w ◦ $)(x)dx

∣∣∣∣∣$
′(κ)dκ

)1− 1
q

×
(∫ $−1

(
c1+c2

2

)

$−1(c1)

∣∣∣∣∣
∫ κ

$−1(c1)
$′(x)($(x)− c1)

ν−1(w ◦ $)(x)dx

∣∣∣∣∣|(u
′ ◦ $)(κ)|q$′(κ)dκ

) 1
q

+
1

Γ(ν)

(∫ $−1(c2)

$−1
(

c1+c2
2

)

∣∣∣∣∣
∫ $−1(c2)

κ
$′(x)(c2 − $(x))ν−1(w ◦ $)(x)dx

∣∣∣∣∣$
′(κ)dκ

)1− 1
q

×
(∫ $−1(c2)

$−1
(

c1+c2
2

)

∣∣∣∣∣
∫ $−1(c2)

κ
$′(x)(c2 − $(x))ν−1(w ◦ $)(x)dx

∣∣∣∣∣|(u
′ ◦ $)(κ)|q$′(κ)dκ

) 1
q
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≤
‖w‖[

c1, c1+c2
2

]
, ∞

Γ(ν)

×
(∫ $−1

(
c1+c2

2

)

$−1(c1)

∣∣∣∣∣
∫ κ

$−1(c1)
$′(x)($(x)− c1)

ν−1dx

∣∣∣∣∣$
′(κ)dκ

)1− 1
q

×
(∫ $−1

(
c1+c2

2

)

$−1(c1)

∣∣∣∣∣
∫ κ

$−1(c1)
$′(x)($(x)− c1)

ν−1dx

∣∣∣∣∣|(u
′ ◦ $)(κ)|q$′(κ)dκ

) 1
q

+
‖w‖[ c1+c2

2 ,c2

]
, ∞

Γ(ν)

×
(∫ $−1(c2)

$−1
(

c1+c2
2

)

∣∣∣∣∣
∫ $−1(c2)

κ
$′(x)(c2 − $(x))ν−1dx

∣∣∣∣∣$
′(κ)dκ

)1− 1
q

×
(∫ $−1(c2)

$−1
(

c1+c2
2

)

∣∣∣∣∣
∫ $−1(c2)

κ
$′(x)(c2 − $(x))ν−1dx

∣∣∣∣∣|(u
′ ◦ $)(κ)|q$′(κ)dκ

) 1
q

≤
‖w‖[

c1, c1+c2
2

]
, ∞

Γ(ν)
(∫ $−1

(
c1+c2

2

)

$−1(c1)

∣∣∣∣∣
∫ κ

$−1(c1)
$′(x)($(x)− c1)

ν−1dx

∣∣∣∣∣$
′(κ)dκ

)1− 1
q

×
[ ∫ $−1

(
c1+c2

2

)

$−1(c1)

∣∣∣∣∣
∫ κ

$−1(c1)
$′(x)($(x)− c1)

ν−1dx

∣∣∣∣∣

×
(

c2 − $(κ)

c2 − c1
|u′(c1)|q +

$(κ)− c1

c2 − c1
|u′(c2)|q

)
$′(κ)dκ

] 1
q

+
‖w‖[ c1+c2

2 ,c2

]
, ∞

Γ(ν)

(∫ $−1(c2)

$−1
(

c1+c2
2

)

∣∣∣∣∣
∫ $−1(c2)

κ
$′(x)(c2 − $(x))ν−1dx

∣∣∣∣∣$
′(κ)dκ

)1− 1
q

×
[ ∫ $−1(c2)

$−1
(

c1+c2
2

)

∣∣∣∣∣
∫ $−1(c2)

κ
$′(x)(c2 − $(x))ν−1dx

∣∣∣∣∣

×
(

c2 − $(κ)

c2 − c1
|u′(c1)|q +

$(κ)− c1

c2 − c1
|u′(c2)|q

)
$′(κ)dκ

] 1
q

=
(c2 − c1)

ν+1

2ν+1+ 1
q (ν + 2)

1
q Γ(ν + 2)

×
{
‖w‖[

c1, c1+c2
2

]
, ∞

[
(ν + 3)|u′(c1)|q + (ν + 1)|u′(c2)|q

] 1
q

+‖w‖[ c1+c2
2 , c2

]
, ∞

[
(ν + 1)|u′(c1)|q + (ν + 3)|u′(c2)|q

] 1
q

}
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≤
(c2 − c1)

ν+1‖w‖[
c1, c2

]
, ∞

2ν+1+ 1
q (ν + 2)

1
q Γ(ν + 2)

{[
(ν + 3)|u′(c1)|q + (ν + 1)|u′(c2)|q

] 1
q

+
[
(ν + 1)|u′(c1)|q + (ν + 3)|u′(c2)|q

] 1
q
}

, (36)

where it is easily seen that

∫ $−1
(

c1+c2
2

)

$−1(c1)

∣∣∣∣∣
∫ κ

$−1(c1)
$′(x)($(x)− c1)

ν−1dx

∣∣∣∣∣$
′(κ)dκ

=
∫ $−1(c2)

$−1
(

c1+c2
2

)

∣∣∣∣∣
∫ $−1(c2)

κ
$′(x)(c2 − $(x))ν−1dx

∣∣∣∣∣$
′(κ)dκ =

(c2 − c1)
ν+1

2ν+1ν(ν + 1)
.

Hence, the proof is completed.

Remark 6. From Theorem 3, we can obtain some special cases as follows:

(i) If $(x) = x, then inequality (34) becomes

∣∣∣∣∣u
(

c1 + c2

2

)[
RL(

c1+c2
2

)
+
Iνw(c2) +

RLIν(
c1+c2

2

)
−

w(c1)

]

−
[
w(c2)

(
RL(

c1+c2
2

)
+
Iν

wu

)
(c2) + w(c1)

(
RL

wIν(
c1+c2

2

)
−
u

)
(c1)

]∣∣∣∣∣

≤ (c2 − c1)
ν+1

2ν+1+ 1
q (ν + 2)

1
q Γ(ν + 2)

×
{
‖w‖[

c1, c1+c2
2

]
, ∞

[
(ν + 3)|u′(c1)|q + (ν + 1)|u′(c2)|q

] 1
q

+ ‖w‖[ c1+c2
2 , c2

]
, ∞

[
(ν + 1)|u′(c1)|q + (ν + 3)|u′(c2)|q

] 1
q

}

≤
(c2 − c1)

ν+1‖w‖[c1, c2], ∞

2ν+1+ 1
q (ν + 2)

1
q Γ(ν + 2)

{[
(ν + 3)|u′(c1)|q + (ν + 1)|u′(c2)|q

] 1
q

+
[
(ν + 1)|u′(c1)|q + (ν + 3)|u′(c2)|q

] 1
q
}

. (37)

(ii) If $(x) = x and w(x) = 1, then inequality (34) becomes

∣∣∣∣∣
2ν−1Γ(ν + 1)
(c2 − c1)ν

[
RL(

c1+c2
2

)
+
Iνu(c2) +

RLIν(
c1+c2

2

)
−
u(c1)

]
− u

(
c1 + c2

2

)∣∣∣∣∣

≤ (c2 − c1)
ν+1

2ν+1+ 1
q (ν + 2)

1
q Γ(ν + 2)

{[
(ν + 3)|u′(c1)|q + (ν + 1)|u′(c2)|q

] 1
q

+
[
(ν + 1)|u′(c1)|q + (ν + 3)|u′(c2)|q

] 1
q
}

, (38)

which is already obtained in ([39] [Theorem 5]).
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(iii) If $(x) = x, w(x) = 1 and ν = 1, then inequality (34) becomes

∣∣∣∣∣
1

c2 − c1

∫ c2

c1

u(x)dx− u

(
c1 + c2

2

)∣∣∣∣∣

≤ c2 − c1

8 q
√

3

{[
|u′(c1)|q + 2|u′(c2)|q

] 1
q +

[
2|u′(c1)|q + |u′(c2)|q

] 1
q
}

. (39)

Theorem 4. Let 0 ≤ c1 < c2, let u : [c1, c2] ⊆ [0, ∞) → R be a (continuously) differentiable
function on the interval [c1, c2] such that u(x) = u(c1) +

∫ x
c1
u′(κ)dκ, and let w : [c1, c2] → R

be an integrable, positive and weighted symmetric function with respect to c1+c2
2 . If, in addition,

|u′|q is convex on [c1, c2] with 1
p + 1

q = 1 and q > 1, and $ is an increasing and positive function
from [c1, c2) onto itself such that its derivative $′(x) is continuous on (c1, c2), then for ν > 0 the
following inequalities are valid:

|Ξ1 + Ξ2| ≤
(c2 − c1)

ν+1

2ν+1+ 2
q (pν + 1)

1
p Γ(ν + 1)

{
‖w‖[

c1, c1+c2
2

]
, ∞

×
[
3|u′(c1)|q + |u′(c2)|q

] 1
q + ‖w‖[ c1+c2

2 , c2

]
, ∞

[
|u′(c1)|q + 3|u′(c2)|q

] 1
q
}

≤
(c2 − c1)

ν+1‖w‖[
c1, c2

]
, ∞

2ν+1+ 2
q (pν + 1)

1
p Γ(ν + 1)

×
{[

3|u′(c1)|q + |u′(c2)|q
] 1

q +
[
|u′(c1)|q + 3|u′(c2)|q

] 1
q
}

. (40)

Proof. Since |u′|q is convex on [c1, c2], we get for κ ∈
[
$−1(c1), $−1(c2)

]
:

∣∣(u′ ◦ $)(κ)
∣∣q =

∣∣∣∣u′
(

c2 − $(κ)

c2 − c1
c1 +

$(κ)− c1

c2 − c1
c2

)∣∣∣∣
q

≤ c2 − $(κ)

c2 − c1
|u′(c1)|q +

$(κ)− c1

c2 − c1
|u′(c2)|q.

By using Lemma 2, Hölder’s inequality, convexity of |u′|q and properties of modulus,
we have

|Ξ1 + Ξ2| ≤
1

Γ(ν)

∫ $−1
(

c1+c2
2

)

$−1(c1)

∣∣∣∣∣
∫ κ

$−1(c1)
$′(x)($(x)− c1)

ν−1(w ◦ $)(x)dx

∣∣∣∣∣

× |(u′ ◦ $)(κ)|$′(κ)dκ

+
1

Γ(ν)

∫ $−1(c2)

$−1
(

c1+c2
2

)

∣∣∣∣∣
∫ $−1(c2)

κ
$′(x)(c2 − $(x))ν−1(w ◦ $)(x)dx

∣∣∣∣∣|(u
′ ◦ $)(κ)|$′(κ)dκ

≤ 1
Γ(ν)

(∫ $−1
(

c1+c2
2

)

$−1(c1)

∣∣∣∣∣
∫ κ

$−1(c1)
$′(x)($(x)− c1)

ν−1(w ◦ $)(x)dx

∣∣∣∣∣

p

$′(κ)dκ

) 1
p
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×
(∫ $−1

(
c1+c2

2

)

$−1(c1)
|(u′ ◦ $)(κ)|q$′(κ)dκ

) 1
q

+
1

Γ(ν)

(∫ $−1(c2)

$−1
(

c1+c2
2

)

∣∣∣∣∣
∫ $−1(c2)

κ
$′(x)(c2 − $(x))ν−1(w ◦ $)(x)dx

∣∣∣∣∣

p

$′(κ)dκ

) 1
p

×
(∫ $−1(c2)

$−1
(

c1+c2
2

) |(u′ ◦ $)(κ)|q$′(κ)dκ

) 1
q

≤
‖w‖[

c1, c1+c2
2

]
, ∞

Γ(ν)

×
(∫ $−1

(
c1+c2

2

)

$−1(c1)

∣∣∣∣∣
∫ κ

$−1(c1)
$′(x)($(x)− c1)

ν−1dx

∣∣∣∣∣

p

$′(κ)dκ

) 1
p

×
(∫ $−1

(
c1+c2

2

)

$−1(c1)
|(u′ ◦ $)(κ)|q$′(κ)dκ

) 1
q

+
‖w‖[ c1+c2

2 ,c2

]
, ∞

Γ(ν)

×
(∫ $−1(c2)

$−1
(

c1+c2
2

)

∣∣∣∣∣
∫ $−1(c2)

κ
$′(x)(c2 − $(x))ν−1dx

∣∣∣∣∣

p

$′(κ)dκ

) 1
p

×
(∫ $−1(c2)

$−1
(

c1+c2
2

) |(u′ ◦ $)(κ)|q$′(κ)dκ

) 1
q

≤
‖w‖[

c1, c1+c2
2

]
, ∞

Γ(ν)

×
(∫ $−1

(
c1+c2

2

)

$−1(c1)

∣∣∣∣∣
∫ κ

$−1(c1)
$′(x)($(x)− c1)

ν−1dx

∣∣∣∣∣

p

$′(κ)dκ

) 1
p

×
[ ∫ $−1

(
c1+c2

2

)

$−1(c1)

(
c2 − $(κ)

c2 − c1
|u′(c1)|q +

$(κ)− c1

c2 − c1
|u′(c2)|q

)
$′(κ)dκ

] 1
q

+
‖w‖[ c1+c2

2 ,c2

]
, ∞

Γ(ν)

×
(∫ $−1(c2)

$−1
(

c1+c2
2

)

∣∣∣∣∣
∫ $−1(c2)

κ
$′(x)(c2 − $(x))ν−1dx

∣∣∣∣∣

p

$′(κ)dκ

) 1
p

×
[ ∫ $−1(c2)

$−1
(

c1+c2
2

)
(

c2 − $(κ)

c2 − c1
|u′(c1)|q +

$(κ)− c1

c2 − c1
|u′(c2)|q

)
$′(κ)dκ

] 1
q
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=
(c2 − c1)

ν+1

2ν+1+ 2
q (pν + 1)

1
p Γ(ν + 1)

{
‖w‖[

c1, c1+c2
2

]
, ∞

[
3|u′(c1)|q + |u′(c2)|q

] 1
q

+‖w‖[ c1+c2
2 , c2

]
, ∞

[
|u′(c1)|q + 3|u′(c2)|q

] 1
q

≤
(c2 − c1)

ν+1‖w‖[
c1, c2

]
, ∞

2ν+1+ 2
q (pν + 1)

1
p Γ(ν + 1)

×
{[

3|u′(c1)|q + |u′(c2)|q
] 1

q +
[
|u′(c1)|q + 3|u′(c2)|q

] 1
q
}

,

where we used the identity

∫ $−1
(

c1+c2
2

)

$−1(c1)

∣∣∣∣∣
∫ κ

$−1(c1)
$′(x)($(x)− c1)

ν−1dx

∣∣∣∣∣

p

$′(κ)dκ

=
∫ $−1(c2)

$−1
(

c1+c2
2

)

∣∣∣∣∣
∫ $−1(c2)

κ
$′(x)(c2 − $(x))ν−1dx

∣∣∣∣∣

p

$′(κ)dκ =
(c2 − c1)

pν+1

2pν+1(pν + 1)νp .

This ends our proof.

Remark 7. From Theorem 4, we can obtain some special cases as follows:

(i) If $(x) = x, then inequality (40) becomes

∣∣∣∣∣u
(

c1 + c2

2

)[
RL(

c1+c2
2

)
+
Iνw(c2) +

RLIν(
c1+c2

2

)
−

w(c1)

]

−
[
w(c2)

(
RL(

c1+c2
2

)
+
Iν

wu

)
(c2) + w(c1)

(
RL

wIν(
c1+c2

2

)
−
u

)
(c1)

]∣∣∣∣∣

≤ (c2 − c1)
ν+1

2ν+1+ 2
q (pν + 1)

1
p Γ(ν + 1)

{
‖w‖[

c1, c1+c2
2

]
, ∞

[
3|u′(c1)|q + |u′(c2)|q

] 1
q

+ ‖w‖[ c1+c2
2 , c2

]
, ∞

[
|u′(c1)|q + 3|u′(c2)|q

] 1
q
}
≤

(c2 − c1)
ν+1‖w‖[c1, c2], ∞

2ν+1+ 2
q (pν + 1)

1
p Γ(ν + 1)

×
{[

3|u′(c1)|q + |u′(c2)|q
] 1

q +
[
|u′(c1)|q + 3|u′(c2)|q

] 1
q
}

.

(ii) If $(x) = x and w(x) = 1, then inequality (40) becomes

∣∣∣∣∣
2ν−1Γ(ν + 1)
(c2 − c1)ν

[
RL(

c1+c2
2

)
+
Iνu(c2) +

RLIν(
c1+c2

2

)
−
u(c1)

]
− u

(
c1 + c2

2

)∣∣∣∣∣

≤
(c2 − c1)

ν+1‖w‖[c1, c2], ∞

2ν+1+ 2
q (pν + 1)

1
p Γ(ν + 1)

×
{[

3|u′(c1)|q + |u′(c2)|q
] 1

q +
[
|u′(c1)|q + 3|u′(c2)|q

] 1
q
}

,

which is already obtained in ([39] [Theorem 6]).
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(iii) If $(x) = x, w(x) = 1 and ν = 1, then inequality (40) becomes

∣∣∣∣∣
1

c2 − c1

∫ c2

c1

u(x)dx− u

(
c1 + c2

2

)∣∣∣∣∣ ≤
c2 − c1

16

(
4

p + 1

) 1
p

×
{[

3|u′(c1)|q + |u′(c2)|q
] 1

q +
[
|u′(c1)|q + 3|u′(c2)|q

] 1
q
}

,

which is already obtained in ([45] [Theorem 2.3]).

4. Concluding Remarks

In the present article, we have investigated a midpoint fractional HHF integral inequal-
ity by using the weighted fractional integrals with positive weighted symmetric function
kernels, which is also the midpoint version of (9). Moreover, we have investigated some
related results.

The existing versions of HHF integral inequalities (7) and (8) have been successfully
applied to other classes of convex functions, see [46–48]. Therefore, our present results can
be applied to those classes of convex functions as well.

Furthermore, one can observe that our results in this article are very generic and can
be extended to give further potentially useful and interesting HHF integral inequalities of
end-midpoint version, like the following one

u

(
c1 + c2

2

)
≤ 2ν−1Γ(ν + 1)

(c2 − c1)ν

[
RLIν

c1+
u

(
c1 + c2

2

)
+ RLIν

c2−u
(

c1 + c2

2

)]

≤ u(c1) + u(c2)

2
,

which was already established by Mohammed and Brevik in [49].
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Abstract: We put into practice relatively new analytical techniques, the Shehu decomposition method
and the Shehu iterative transform method, for solving the nonlinear fractional coupled Korteweg-de
Vries (KdV) equation. The KdV equation has been developed to represent a broad spectrum of
physics behaviors of the evolution and association of nonlinear waves. Approximate-analytical
solutions are presented in the form of a series with simple and straightforward components, and
some aspects show an appropriate dependence on the values of the fractional-order derivatives that
are, in a certain sense, symmetric. The fractional derivative is proposed in the Caputo sense. The
uniqueness and convergence analysis is carried out. To comprehend the analytical procedure of
both methods, three test examples are provided for the analytical results of the time-fractional KdV
equation. Additionally, the efficiency of the mentioned procedures and the reduction in calculations
provide broader applicability. It is also illustrated that the findings of the current methodology are
in close harmony with the exact solutions. It is worth mentioning that the proposed methods are
powerful and are some of the best procedures to tackle nonlinear fractional PDEs.

Keywords: Shehu transform; Caputo fractional derivative; Shehu decomposition method; new
iterative transform method; fractional KdV equation

1. Introduction

The formulation of exact and explicit PDE solutions is essential for a good perspective
on the mechanisms of diverse physical processes. Hirota and Satsuma proposed a coupled
KdV framework to address the effects of two long waves with independent dispersion
correlations. It was developed as an evolution equation regulating the propagation of a
one-dimensional, small-amplitude, long-surface gravity wave in a shallow water chan-
nel. The non-linear coupled system of partial differential equations (PDEs) has several
applications in physical systems such as fluid mechanics, aquifers, chaos, thermodynam-
ics, plasma physics and many more. By examining a spectral 4× 4 equation with three
possibilities, Wu et al. [1] established a unique hierarchy of nonlinear equations of evolu-
tion. Therefore, the action of the KdV solitons acknowledges the impact of the former’s
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existence. It is demonstrated that it determines the velocity [2,3] of the KdV subsystem.
The fractional-order paired KdV equations are written as follows:

∂δΦ
∂t̄δ

= −σ
∂3Φ
∂x3 − 6σΦ

∂Φ
∂x

+ 6Ψ
∂Ψ
∂x

,

∂δΨ
∂t̄δ

= −σ
∂3Ψ
∂x3 − 3ζΦ

∂Ψ
∂x

, t̄ > 0, 0 < δ ≤ 1, (1)

where σ and ζ are constants and δ is the fractional order derivative of Φ(x, t̄) and Ψ(x, t̄), re-
spectively. The functions Φ(x, t̄) and Ψ(x, t̄) are regarded as essential functions of space and
time, vanishing for t̄ and x, respectively. The latter technique reduces to the conventional
paired KdV equations since σ = ζ = 1 is utilized.

An exemplary equation in this scheme is the modified coupled KdV system (MCKdV).
This equation is governed by the non-linear PDEs listed in [4]:

∂δΦ
∂t̄δ

=
1
2

∂3Φ
∂t̄3 − 3Φ2 ∂Φ

∂x
+

3
2

Υ
∂2Ψ
∂x2 + 3

∂Ψ
∂x

∂Υ
∂x

+
3
2

Ψ
∂2Υ
∂x2 + 3ΨΥ

∂Φ
∂x

+ 3ΦΥ
∂Ψ
∂x

+ 3ΦΨ
∂Υ
∂x

,

∂δΨ
∂t̄δ

= −∂3Ψ
∂x3 − 3

∂Φ
∂x

∂Ψ
∂x
− 3Ψ

∂2Φ
∂x2 − 3Ψ2 ∂Υ

∂x
+ 6ΦΨ

∂Φ
∂x

+ 3Φ2 ∂Ψ
∂x

,

∂δΥ
∂t̄δ

= −∂3Υ
∂x3 − 3

∂Φ
∂x

∂Υ
∂x
− 3Υ

∂2Φ
∂x2 − 3Υ2 ∂Ψ

∂x
+ 6ΦΥ

∂Φ
∂x

+ 3Φ2 ∂Υ
∂x

, t̄ > 0, 0 < δ ≤ 1. (2)

The modified KdV equation in its usual form is simplified by the MCKdV Equation (2),
with Ψ = Υ = 0. KdV equations are a source of non evolution equations that have a variety
of applications in technology and physical sciences. The KdV equations, for example,
produce ion acoustic solutions in plasma physics [5,6]. Geophysical fluid dynamics in
shallow waters and deep oceans are characterized by long waves [7,8].

Numerous researchers have proposed several schemes to solve the time-fractional KdV
equation using different methods, such as the Adomian decomposition method (ADM) [9],
differential transform method (DTM) [10], homotopy analysis method (HAM) [11], Natural
decomposition method (NDM) [12], variational iteration method [13], Elzaki projected
differential transform method (EPDTM) [14], modified tanh technique (MTT) [15], new
iterative method (NIM) [16], Lie symmetry analysis (LSA) [17], spectral volume method
(SVM) [18,19] and so on. Analogously, similar results for (2) have been proposed by
Fan [20], Cavlak and Inc [21], Inc et al. [22], Lin et al. [23], Karczewska and Szczeciński [24]
and Ghoreishi et al. [25].

In recent years, the modeling of dynamical processes has progressed by incorporating
notions acquired from fractional-order differential equations (FDEs). Fractional calculus
resulted in the emergence of the generalization of derivatives and integrals. However, frac-
tional calculus has a long history. Recently, it has become popular in applied sciences such
as viscoelastoplastic materials, random walks, optical fibers, solid state physics, plasma
physics, chaos, bifurcation, condensed matter, electromagnetic flux, image processing,
virology, and biological models; memory operators called fractional derivatives are used to
describe damping impacts or deterioration. Several formulations and notions of fractional
derivatives were introduced by Coimbra, Davison and Essex, Riesz, Riemann–Liouville,
Hadamard, Weyl, Jumarie, Grünwald–Letnikov, and Liouville–Caputo [26–29], and the
characteristics of these derivatives are investigated in [30–33]. Because of their prominent
features and direct physical interpretation, the implementation of the Caputo fractional
derivative is gaining popularity in physics, whereas the Liouville–Caputo has a singularity
in its kernel.

Maitama and Zhao [34] recently identified the Shehu transformation as an important
integral transformation. The Shehu transform (ST) is a modification of the Laplace trans-
formation. Alternately, by inserting ω = 1 in ST, then we recapture the Laplace transform.
Complex non-linear PDEs can be converted to simpler equations via this procedure.
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Despite the tremendous boost that was provided by Gorge Adomian in 1980 is known
as the Adomian decomposition method (ADM). It has been successfully applied to a
variety of physical models of PDEs, such as Burger’s equation, a nonlinear second-order
PDE with numerous applications in applied sciences. The ADM correlated with several
integral transforms, such as Laplace, modified Laplace, Mohand, Aboodh, Elzaki and many
more. Recently, modified Laplace ADM [35] for solving nonlinear Volterra integral and
integro-differential equations based on the Newton–Raphson formula, Discrete ADM [36]
used for solving time-fractional Navier–Stokes equation, Laplace ADM [37] for finding
the numerical solution of a fractional order epidemic model of a vector-born disease and
hence forth.

Daftardar-Gejji and Jafari [38] proposed a new recursive approach for solving func-
tional equations with asymptotic solutions. The novel recursive process is framed on
the basis of decaying the nonlinear terms is known as the iterative Laplace transform
method [39]. This process is fast and precise, and it avoids the use of an unconditioned
matrix, complicated integrals, and infinite series forms. This method does not necessitate
any explicit settings for the problem. Several studies have considered NITM to solve
PDEs, such as the KdV Equation [16], Fornberg–Whitham equation [40], and Klein–Gordon
equations [41].

Despite the significant body of work on fractional PDEs models, estimating the
approximate-analytical solutions of the corresponding governing PDE is not a trivial task.
In this context, we aim to develop two efficient algorithms for estimating the approximate-
analytical solutions of KdV and MCKdV equations that model the dynamics of the process
under investigation. The ADM and NITM are modified with the ST, and the new method
is known to be the Shehu decomposition method and Shehu iterative transform method.
The novel methods are applied to examining the fractional-order of the system of KDV
equations. The outcome of some test examples was examined in order to demonstrate
the practicality of the proposed strategy. Innovative techniques are used to derive the
outcomes of the fractional-order and integral-order models. The convergence and unique-
ness analysis for SDM is also presented. Using synthetic trajectories derived from the
KdV and MCKdV models, we demonstrate the validity and feasibility of the suggested
algorithmic approaches to deriving the approximate-analytical solutions in a simulation
study. The proposed method can be used to solve other fractional orders of linear and
non-linear PDEs.

2. Preliminaries

Several definitions and axiom outcomes from the literature are prerequisites in
our analysis.

Definition 1 ([34]). Shehu transform (ST) for a function Φ(t̄) having exponential order over the
set of functions is stated as

S =
{

Φ(t̄)|∃K, k1, k2 > 0,
∣∣Φ(t̄)

∣∣ < K exp(|t̄|/k ), i f t̄ ∈ (−1) × [0, ∞),  = 1, 2;
(
K, k1, k2 > 0

)}
, (3)

where Φ(t̄) is represented by S
[
Φ(t̄)

]
= S(ξ, ω), is described as

S
[
Φ(t̄)

]
=

∞∫

0

Φ(t̄) exp
(
− ξ

ω
t̄
)

dt̄ = S(ξ, ω), t̄ ≤ 0, ω ∈ [κ1, κ2]. (4)

A useful result of the ST is stated as:

S
[
t̄δ
]
=

∞∫

0

exp
(
− ξ

ω
t̄
)

t̄δdt̄ = Γ(δ + 1)
(ω

ξ

)δ+1
. (5)
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Definition 2 ([34]). The inverse ST of a mapping Φ(t̄) is stated as

S−1
[(ω

ξ

)mδ+1]
=

t̄mδ

Γ(mδ + 1)
, <(δ) > 0, and m > 0. (6)

Lemma 1. (Linearity property of ST) Let ST of Φ1(t̄) and Φ2(t̄) are P(ξ, ω) and Q(ξ, ω),
respectively, [34],

S
[
γ1Φ1(t̄) + γ2Φ2(t̄)

]
= S

[
γ1Φ1(t̄)

]
+ S

[
γ2Φ2(t̄)

]

= γ1P(ξ, ω) + γ2Q(ξ, ω), (7)

where γ1 and γ2 are arbitrary constants.

Lemma 2 ([34]). ST of Caputo fractional derivative of order δ is stated as

S
[
Dδ

t̄ Φ(t̄)
]
=
( ξ

ω

)δ
S
[
Φ(x, t̄)

]
−

m−1

∑
κ=0

( ξ

ω

)δ−κ−1
Φ(κ)(x, 0), m− 1 ≤ δ ≤ m, m ∈ N. (8)

3. Configuration of the SDM

Assume the nonlinear fractional PDE:

Dδ
t̄ Φ(x, t̄) + LΦ(x, t̄) +NΦ(x, t̄) = F (x, t̄), t̄ > 0, 0 < δ ≤ 1 (9)

subject to the condition

Φ(x, 0) = G(x), (10)

whereDδ
t̄ = ∂δΦ(x,t̄)

∂t̄δ denotes the fractional-order Caputo derivative operator with 0 < δ ≤ 1
while L and N are linear and nonlinear terms and F (x, t̄) indicates the source term.

Employing the Shehu transform to (9), and we acquire

S
[
Dδ

t̄ Φ(x, t̄) + LΦ(x, t̄) +NΦ(x, t̄)
]
= S

[
F (x, t̄)

]
.

Taking differentiation property of Shehu transform, we find

ξδ

ωδ
U (ξ, ω) =

m−1

∑
κ=0

( ξ

ω

)δ−κ−1
Φ(κ)(0) + S

[
LΦ(x, t̄) +NΦ(x, t̄)

]
+ S

[
F (x, t̄)

]
. (11)

Th inverse Shehu transform of (11) gives

Φ(x, t̄) = S−1
[ m−1

∑
κ=0

( ξ

ω

)δ−κ−1
Φ(κ)(0) +

ωδ

ξδ
S
[
F (x, t̄)

]]
− S−1

[
ωδ

ξδ
S
[
LΦ(x, t̄) +NΦ(x, t̄)

]]
. (12)

The Shehu decomposition method solution Φ(x, t̄) is represented by the following
infinite series

Φ(x, t̄) =
∞

∑
m=0

Φm(x, t̄). (13)

Thus, the nonlinear term N (x, t̄) can be evaluated by the Adomian decomposition
method prescribed as

NΦ(x, t̄) =
∞

∑
m=0

Ãm(Φ0, Φ1, ...), m = 0, 1, ... , (14)
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where

Ãm(Φ0, Φ1, ...) =
1

m!

[
dm

dλmN
( ∞

∑
=0

λΦ

)]

λ=0
, m > 0.

Substituting (13) and (14) into (12), we have

∞

∑
m=0

Φm(x, t̄) = G(x) + G̃(x)− S−1
[

ωδ

ξδ
S
[
LΦ(x, t̄) +

∞

∑
m=0

Ãm
]]

. (15)

Finally, the iterative procedure for (15) is obtained as follows:

Φ0(x, t̄) = G(x) + G̃(x), m = 0,

Φm+1(x, t̄) = −S−1
[

ωδ

ξδ
S
[
L
(
Φm(x, t̄)

)
+

∞

∑
m=0

Ãm
]]

, m ≥ 1. (16)

4. Basic Formulation of the SITM

Let us suppose the following general fractional PDE:

Dδ
t̄ Φ(x, t̄) + LΦ(x, t̄) +NΦ(x, t̄) = F (x, t̄), t̄ > 0, m− 1 < δ ≤ m, m ∈ N (17)

subject to the condition

Φ(κ)(x, 0) = Gκ(x), κ = 0, 1, 2, ..., m− 1, (18)

where L and N are linear and nonlinear terms and F (x, t̄) indicates the source term.
Utilizing the Shehu transform to (17), we obtain

S
[
Dδ

t̄ Φ(x, t̄) + LΦ(x, t̄) +NΦ(x, t̄)
]
= S

[
F (x, t̄)

]
.

Taking differentiation property of Shehu transform, we find

ξδ

ωδ
U (ξ, ω) =

m−1

∑
κ=0

( ξ

ω

)δ−κ−1
Φ(κ)(0) + S

[
LΦ(x, t̄) +NΦ(x, t̄)

]
+ S

[
F (x, t̄)

]
. (19)

Th inverse Shehu transform of (19) gives

Φ(x, t̄) = S−1
[ m−1

∑
κ=0

( ξ

ω

)δ−κ−1
Φ(κ)(0) +

ωδ

ξδ
S
[
F (x, t̄)

]]
− S−1

[
ωδ

ξδ
S
[
LΦ(x, t̄) +NΦ(x, t̄)

]]
. (20)

From the recursive relation, we obtain

Φ(x, t̄) =
∞

∑
m=0

Φm(x, t̄). (21)

Furthermore, the operator L is linear, therefore

L
( ∞

∑
m=0

Φm(x, t̄)
)
=

∞

∑
m=0
L
[
Φm(x, t̄)

]
, (22)

and we decomposed the nonlinear operator N as in [38]

N
( ∞

∑
m=0

Φm(x, t̄)
)

= N
(
Φ0(x, t̄)

)
+

∞

∑
m=0

[
N
( ∞

∑
κ=0

Φκ(x, t̄)
)
−N

( m−1

∑
κ=0

Φκ(x, t̄)
)]

= N (Φ0) +
∞

∑
κ=1

Dm, (23)
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where Dm = N
(

m
∑

κ=0
Φκ

)
−N

(
m−1
∑

κ=0
Φκ

)
.

By putting (21), (22) and (23) into (24), we obtain

∞

∑
m=0

Φm(x, t̄) = S−1
[ m−1

∑
κ=0

( ξ

ω

)δ−κ−1
Φ(κ)(0) +

ωδ

ξδ
S
[
F (x, t̄)

]]

−S−1
{

ωδ

ξδ
S
[
L
( m

∑
κ=0

Φκ(x, t̄)
)
+N (Φ0) +

m

∑
κ=1

Dm

]}
. (24)

Thus, we establish the subsequent iteration

Φ0(x, t̄) = S−1
[ m−1

∑
κ=0

( ξ

ω

)δ−κ−1
Φ(κ)(0) +

ωδ

ξδ
S
[
F (x, t̄)

]]
,

Φ1(x, t̄) = −S−1
{

ωδ

ξδ
S
[
L
(
Φ0(x, t̄)

)
+N

(
Φ0(x, t̄)

)]}
,

...

Φm+1(x, t̄) = −S−1
{

ωδ

ξδ
S
[
L
(
Φm(x, t̄)

)
+ Dm

)]}
, m ≥ 1. (25)

Finally, (17) and (18) yield the m-term solution in series form, described as

Φ(x, t̄) ≈ Φ0(x, t̄) + Φ1(x, t̄) + Φ2(x, t̄) + ... + Φm(x, t̄), m ∈ N. (26)

5. Existence and Uniqueness Results for Shehu Decomposition Method

In what follows, we will demonstrate that the sufficient conditions assure the existence
of a unique solution. Our desired existence of solutions in the case of SDM follows by [42].

Theorem 1. (Uniqueness theorem): Equation (16) has a unique solution whenever 0 < ε < 1,

where ε =
(
(

Ľ1+Ľ2+Ľ3

)
)t̄(δ−1)

δ! .

Proof. Assume that M =
(
C[I], ‖.‖

)
represents all continuous mappings on the Banach

space, defined on I = [0,T] having the norm ‖.‖. For this we introduce a mapping W :
M 7→ M, we have

Φn+1(x, t̄) = Φ(x, t̄) + S−1
[(ω

ξ

)δ
S
[
L
[
Φn(x, t̄)

]
+R

[
Φn(x, t̄)

]
+N

[
Φn(x, t̄)

]]]
, n ≥ 0, (27)

where L
[
Φ(x, t̄)

]
≡ ∂3Φ(x,t̄)

∂x2 and R
[
Φ(x, t̄)

]
≡ ∂Φ(x,t̄)

∂x . Now assume that L
[
Φ(x, t̄)

]
and

M
[
Φ(x, t̄)

]
are also Lipschitzian with

∣∣RΦ−RΦ̌
∣∣ < Ľ1

∣∣Φ− Φ̌
∣∣ and

∣∣LΦ−LΦ̌
∣∣ < Ľ2

∣∣Φ−
Φ̌
∣∣, where Ľ1 and Ľ2 are Lipschitz constant, respectively, and Φ, Φ̌ are various values of

the mapping.

∥∥∥WΦ−WΦ̌
∥∥∥ = max

t̄∈I

∣∣∣∣∣∣∣∣∣

S−1
[(ω

ξ

)δ
S
[
L
[
Φ(x, t̄)

]
+R

[
Φ(x, t̄)

]
+N

[
Φ(x, t̄)

]]]

− S−1
[(ω

ξ

)δ
S
[
L
[
Φ̌(x, t̄)

]
+R

[
Φ̌(x, t̄)

]
+N

[
Φ̌(x, t̄)

]]]

∣∣∣∣∣∣∣∣∣
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≤ max
t̄∈I

∣∣∣∣∣∣∣∣∣∣∣∣∣

S−1
[(ω

ξ

)δ
S
[
L
[
Φ(x, t̄)

]
−L

[
Φ̌(x, t̄)

]]]

+ S−1
[(ω

ξ

)δ
S
[
R
[
Φ(x, t̄)

]
−R

[
Φ̌(x, t̄)

]]]

+ S−1
[(ω

ξ

)δ
S
[
N
[
Φ(x, t̄)

]
−N

[
Φ̌(x, t̄)

]]]

∣∣∣∣∣∣∣∣∣∣∣∣∣

≤ max
t̄∈I




Ľ1S−1
[(ω

ξ

)δ
S
∣∣∣Φ(x, t̄)− Φ̌(x, t̄)

∣∣∣
]

+ Ľ2S−1
[(ω

ξ

)δ
S
∣∣∣Φ(x, t̄)− Φ̌(x, t̄)

∣∣∣
]

+ Ľ3S−1
[(ω

ξ

)δ
S
∣∣∣Φ(x, t̄)− Φ̌(x, t̄)

∣∣∣
]




≤ max
t̄∈I

(
Ľ1 + Ľ2 + Ľ3

)
S−1

[(ω

ξ

)δ
S
∣∣∣Φ(x, t̄)− Φ̌(x, t̄)

∣∣∣
]

≤
(

Ľ1 + Ľ2 + Ľ3
)
S−1

[(ω

ξ

)δ
S
∥∥∥Φ(x, t̄)− Φ̌(x, t̄)

∥∥∥
]

=
(
(

Ľ1 + Ľ2 + Ľ3
)
)t̄(δ−1)

(δ)!

∥∥∥Φ(x, t̄)− Φ̌(x, t̄)
∥∥∥.

Under the assumption 0 < ε < 1, the mapping is contraction. Thus, by Banach
contraction fixed point theorem, there exists a unique solution to (9). Hence, this completes
the proof.

Theorem 2. (Convergence Analysis) The general form solution of (9) will be convergent.

Proof. Suppose Ŝn be the nth partial sum, that is Ŝn = ∑n
m=0 Φm(x, t̄). Firstly, we show

that {Ŝn} is a Cauchy sequence in Banach space in M. Taking into consideration a new
representation of Adomian polynomials we obtain

R̄(Ŝn) = Ȟn +
n−1

∑
p=0

Ȟp,

N̄(Ŝn) = Ȟn +
n−1

∑
c=0

Ȟc. (28)

Now
∥∥Ŝn − Ŝq

∥∥ = max
t̄∈I

∣∣Ŝn − Ŝq
∣∣

= max
t̄∈I

∣∣
n

∑
m=q+1

Φ̌(x, t̄)
∣∣, ( m = 1, 2, 3, ...) (29)

≤ max
t̄∈I

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

S−1
[(ω

ξ

)δ
S
[ n

∑
m=q+1

L
[
Φn−1(x, t̄)

]]]

+ S−1
[(ω

ξ

)δ
S
[ n

∑
m=q+1

R
[
Φn−1(x, t̄)

]]]

+ S−1
[(ω

ξ

)δ
S
[ n

∑
m=q+1

Ȟn−1(x, t̄)
]]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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= max
t̄∈I

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

S−1
[(ω

ξ

)δ
S
[ n−1

∑
m=q
L
[
Φn(x, t̄)

]]]

+ S−1
[(ω

ξ

)δ
S
[ n−1

∑
m=q
R
[
Φn(x, t̄)

]]]

+ S−1
[(ω

ξ

)δ
S
[ n−1

∑
m=q

Ȟn(x, t̄)
]]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≤ max
t̄∈I

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

S−1
[(ω

ξ

)δ
S
[ n−1

∑
m=q
L(Ŝn−1)−L(Ŝq−1)

]]

+ S−1
[(ω

ξ

)δ
S
[ n−1

∑
m=q
R(Ŝn−1)−R(Ŝq−1)

]]

+ S−1
[(ω

ξ

)δ
S
[ n−1

∑
m=q
N (Ŝn−1)−N (Ŝq−1)

]]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≤ max
t̄∈I

∣∣∣∣∣∣∣∣∣∣∣∣∣

S−1
[(ω

ξ

)δ
S
[
L(Ŝn−1)−L(Ŝq−1)

]]

+ S−1
[(ω

ξ

)δ
S
[
R(Ŝn−1)−R(Ŝq−1)

]]

+ S−1
[(ω

ξ

)δ
S
[
N (Ŝn−1)−N (Ŝq−1)

]]

∣∣∣∣∣∣∣∣∣∣∣∣∣

≤ Ľ1 max
t̄∈I

S−1
∣∣∣∣
[(ω

ξ

)δ
S
[
(Ŝn−1)− (Ŝq−1)

]]∣∣∣∣

+ Ľ2 max
t̄∈I

∣∣∣∣S−1
[(ω

ξ

)δ
S
[
(Ŝn−1)− (Ŝq−1)

]]∣∣∣∣

+ Ľ3 max
t̄∈I

∣∣∣∣S−1
[(ω

ξ

)δ
S
[
(Ŝn−1)− (Ŝq−1)

]]∣∣∣∣

=
(Ľ1 + Ľ2 + Ľ3)t̄(δ−1)

δ!

∥∥Ŝn−1 − Ŝq−1
∥∥.

Consider n = q + 1; then
∥∥Ŝq+1 − Ŝq

∥∥ ≤ ε
∥∥Ŝq − Ŝq−1

∥∥ ≤ ε2∥∥Ŝq−1 − Ŝq−2
∥∥ ≤ ... ≤ εq∥∥Ŝ1 − Ŝ0

∥∥,

where (Ľ1+Ľ2+Ľ3)t̄(δ−1)

δ! . Analogously, from the triangular inequality we have

∥∥Ŝn − Ŝq
∥∥ ≤

∥∥Ŝq+1 − Ŝq
∥∥+

∥∥Ŝq+2 − Ŝq+1
∥∥+ ... +

∥∥Ŝn − Ŝn−1
∥∥

≤
[
εq + εq+1 + ... + εn−1

]∥∥Ŝ1 − Ŝ0
∥∥

≤ εq
(1− εn−q

ε

)
‖Φ1‖,

since 0 < ε < 1, we have (1− εn−q) < 1, then

∥∥Ŝn − Ŝq
∥∥ ≤ εq

1− ε
max
t̄∈I
‖Φ1‖.

However, |Φ1| < ∞ (since Φ(x, t̄) is bounded). Thus, as q 7→ ∞, then
∥∥Ŝn − Ŝq

∥∥ 7→ 0.

Hence, {Ŝ1} is a Cauchy sequence in K. As a result, the series
∞
∑

n=0
Φn is convergent and this

completes the proof.
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Theorem 3 ([42]). (Error estimate) The maximum absolute truncation error of the series solu-
tion (9)–(16) is computed as

max
t̄∈I

∣∣∣Φ(x, t̄)−
q

∑
n=1

Φn(x, t̄)
∣∣∣ ≤ εq

1− ε
max
t̄∈I
‖Φ1‖. (30)

6. Evaluation of the Fractional KdV Model

This section represents some test examples by employing two novel methods, SDM
and SITM via the Caputo derivative operator. Furthermore, the convergence and stability
of the method are elaborated on.

Problem 1 ([16]). Assume the time-fractional coupled nonlinear KdV Equation (1) with σ = ζ = 1,
subject to the condition

Φ(x, 0) = `2 sec h2
(

β

2
+

`x
2

)
, Ψ(x, 0) =

√
σ

2
`2 sec h2

(
β

2
+

`x
2

)
. (31)

Case I. First, we surmise the Shehu decomposition method for Problem 1.
Employing the Shehu transformation to (1), we find

ξδ

ωδ
U (ξ, ω)−

m−1

∑
κ=0

( ξ

ω

)δ−κ−1
Φ(κ)(0) = S

[
− σ

∂3Φ
∂x3 − 6σΦ

∂Φ
∂x

+ 6Ψ
∂Ψ
∂x

]
,

ξδ

ωδ
V(ξ, ω)−

m−1

∑
κ=0

( ξ

ω

)δ−κ−1
Ψ(κ)(0) = S

[
− σ

∂3Ψ
∂x3 − 3σΦ

∂Ψ
∂x

]
. (32)

In view of (31) and simple computations yield

U (ξ, ω) =
ω

ξ
Φ(0)(x, 0) +

ωδ

ξδ
S
[
− σ

∂3Φ
∂x3 − 6σΦ

∂Φ
∂x

+ 6Ψ
∂Ψ
∂x

]
,

V(ξ, ω) =
ω

ξ
Ψ(0)(x, 0) +

ωδ

ξδ
S
[
− σ

∂3Ψ
∂x3 − 3σΦ

∂Ψ
∂x

]
.

Applying the inverse Shehu transform, we have

Φ(x, t̄) = S−1
[ω

ξ
Φ(x, 0)

]
+ S−1

[
ωδ

ξδ
S
[
− σ

∂3Φ
∂x3 − 6σΦ

∂Φ
∂x

+ 6Ψ
∂Ψ
∂x

]]
,

Ψ(x, t̄) = S−1
[ω

ξ
Ψ(x, 0)

]
+ S−1

[
ωδ

ξδ
S
[
− σ

∂3Ψ
∂x3 − 3σΦ

∂Ψ
∂x

]]
. (33)

By virtue of the Shehu decomposition method, we have

Φ0(x, t̄) = S−1
[ω

ξ
Φ(x, 0)

]
= S−1

[
ξ

ω
`2 sec h2

(
β

2
+

`x
2

)]

= `2 sec h2
(

β

2
+

`x
2

)
,

Ψ0(x, t̄) = S−1
[ω

ξ
Ψ(x, 0)

]

=

√
σ

2
`2 sec h2

(
β

2
+

`x
2

)
.
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∞

∑
m=0

Φm+1(x, t̄) = S−1

[
ωδ

ξδ
S
[
− σ

∞

∑
m=0

(Φxxx)m − 6σ
∞

∑
m=0
Am + 6

∞

∑
m=0
Bm

]]
,

∞

∑
m=0

Ψm+1(x, t̄) = S−1

[
ωδ

ξδ
S
[
− σ

∞

∑
m=0

(Ψxxx)m − 3σ
∞

∑
m=0
Cm

]]
, m = 0, 1, 2, ... .

The first few Adomian polynomials are presented as follows:

A0(ΦΦx) = Φ0Φ0x,

A1(ΦΦx) = Φ0Φ1x + Φ1Φ0x,

A2(ΦΦx) = Φ1Φ2x + Φ1Φ1x + Φ2Φ0x,

B0(ΨΨx) = Ψ0Ψ0x,

B1(ΨΨx) = Ψ0Ψ1x + Ψ1Ψ0x,

B2(ΨΨx) = Ψ1Ψ2x + Ψ1Ψ1x + Ψ2Ψ0x,

C0(ΦΨx) = Φ0Ψ0x,

C1(ΦΨx) = Φ0Ψ1x + Φ1Ψ0x,

C2(ΦΨx) = Φ1Ψ2x + Φ1Ψ1x + Φ2Ψ0x.

For m = 0, 1, 2, 3, ...

Φ1(x, t̄) = S−1

[
ωδ

ξδ
S
[
− σ(Φxxx)0 − 6σA0 + 6B0

]]

= S−1

[
ωδ+2

ξδ+2 `
5σ tan h

( β

2
+

`x
2

)
sec h2

( β

2
+

`x
2

)]

= `5σ tan h
( β

2
+

`x
2

)
sec h2

( β

2
+

`x
2

) t̄δ

Γ(δ + 1)
,

Ψ1(x, t̄) = S−1

[
ωδ

ξδ
S
[
− σ(Ψxxx)0 − 3σC0

]]

=
`5σ3/2
√

2
tan h

( β

2
+

`x
2

)
sec h2

( β

2
+

`x
2

) t̄δ

Γ(δ + 1)
.

Φ2(x, t̄) = S−1

[
ωδ

ξδ
S
[
− σ(Φxxx)1 − 6σA1 + 6B1

]]

= S−1

[
ω2δ+2

ξ2δ+2
`8σ2

2

[
2 cosh2

(σ

2
+

`x
2

)
− 3
]

sec h4
(σ

2
+

`x
2

)]

=
`8σ2

2

[
2 cosh2

(σ

2
+

`x
2

)
− 3
]

sec h4
(σ

2
+

`x
2

) t̄2δ

Γ(2δ + 1)
,

Ψ2(x, t̄) = S−1

[
ωδ

ξδ
S
[
− σ(Ψxxx)1 − 3σC1

]]

=
`5σ5/2

2
√

2

[
2 cosh2

(σ

2
+

`x
2

)
− 3
]

sec h4
(σ

2
+

`x
2

) t̄2δ

Γ(2δ + 1)
,
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Φ3(x, t̄) = S−1

[
ωδ

ξδ
S
[
− σ(Φxxx)2 − 6σA2 + 6B2

]]

=
σ3`4 sin h

(
σ
2 + `x

2
)

2Γ2(δ + 1)Γ(3δ + 1) cosh7 ( β
2 + `x

2
)
[

2Γ2(δ + 1) cos h4
(σ

2
+

`x
2

)
− 18Γ2(δ + 1) cos h2

(σ

2
+

`x
2

)

+6Γ(2δ + 1) cos h2
(σ

2
+

`x
2

)
+ 18Γ2(δ + 1)− 9Γ(2δ + 1)

]
,

Ψ3(x, t̄) = S−1

[
ωδ

ξδ
S
[
− σ(Ψxxx)2 − 3σC2

]]

=
σ7/2`11 sin h

(
σ
2 + `x

2
)

2
√

2Γ2(δ + 1)Γ(3δ + 1) cosh7 ( β
2 + `x

2
)
[

2Γ2(δ + 1) cos h4
(σ

2
+

`x
2

)
− 18Γ2(δ + 1) cos h2

(σ

2
+

`x
2

)

+6Γ(2δ + 1) cos h2
(σ

2
+

`x
2

)
+ 18Γ2(δ + 1)− 9Γ(2δ + 1)

]
,

....

The Shehu decomposition method solution for Problem 1 is presented as:

Φ(x, t̄) = Φ0(x, t̄) + Φ1(x, t̄) + Φ2(x, t̄) + Φ3(x, t̄) + ...,

= `2 sec h2
(

β

2
+

`x
2

)
+ `5σ tan h

( β

2
+

`x
2

)
sec h2

( β

2
+

`x
2

) t̄δ

Γ(δ + 1)

+
`8σ2

2

[
2 cosh2

(σ

2
+

`x
2

)
− 3
]

sec h4
(σ

2
+

`x
2

) t̄2δ

Γ(2δ + 1)

+
σ3`4 sin h

(
σ
2 + `x

2
)

2Γ2(δ + 1)Γ(3δ + 1) cosh7 ( β
2 + `x

2
)
[

2Γ2(δ + 1) cos h4
(σ

2
+

`x
2

)
− 18Γ2(δ + 1) cos h2

(σ

2
+

`x
2

)

+6Γ(2δ + 1) cos h2
(σ

2
+

`x
2

)
+ 18Γ2(δ + 1)− 9Γ(2δ + 1)

]
+ ... .

Analogously, we have

Ψ(x, t̄) =

√
σ

2
`2 sec h2

(
β

2
+

`x
2

)
+

`5σ3/2
√

2
tan h

( β

2
+

`x
2

)
sec h2

( β

2
+

`x
2

) t̄δ

Γ(δ + 1)

+
`5σ5/2

2
√

2

[
2 cosh2

(σ

2
+

`x
2

)
− 3
]

sec h4
(σ

2
+

`x
2

) t̄2δ

Γ(2δ + 1)

+
σ7/2`11 sin h

(
σ
2 + `x

2
)

2
√

2Γ2(δ + 1)Γ(3δ + 1) cosh7 ( β
2 + `x

2
)
[

2Γ2(δ + 1) cos h4
(σ

2
+

`x
2

)
− 18Γ2(δ + 1) cos h2

(σ

2
+

`x
2

)

+6Γ(2δ + 1) cos h2
(σ

2
+

`x
2

)
+ 18Γ2(δ + 1)− 9Γ(2δ + 1)

]
+ ... .

By setting δ = 1, we then obtain the exact solution of coupled KdV Equation (1)

Φ(x, t̄) = `2 sec h2
(

β

2
+

`x
2
− σ`3 t̄

2

)
,

Ψ(x, t̄) =

√
σ

2
`2 sec h2

(
β

2
+

`x
2
− σ`3 t̄

2

)
.

Case II. Now, we surmise the Shehu iterative transform method on Problem 1.
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Applying the proposed analytical approach to (33), yields

Φ0(x, t̄) = S−1
[ω

ξ
Φ(x, 0)

]
= S−1

[
ξ

ω
`2 sec h2

(
β

2
+

`x
2

)]

= `2 sec h2
(

β

2
+

`x
2

)
,

Ψ0(x, t̄) = S−1
[ω

ξ
Ψ(x, 0)

]

=

√
σ

2
`2 sec h2

(
β

2
+

`x
2

)
.

Φ1(x, t̄) = S−1

[
ωδ

ξδ
S
[
− σ

∂3Φ0

∂x3 − 6σΦ0
∂Φ0

∂x
+ 6Ψ0

∂Ψ0

∂x

]]

= S−1

[
ωδ+2

ξδ+2 `
5σ tan h

( β

2
+

`x
2

)
sec h2

( β

2
+

`x
2

)]

= `5σ tan h
( β

2
+

`x
2

)
sec h2

( β

2
+

`x
2

) t̄δ

Γ(δ + 1)
,

Ψ1(x, t̄) = S−1

[
ωδ

ξδ
S
[
− σ

∂3Ψ0

∂x3 − 3σΦ0
∂Ψ0

∂x

]]

=
`5σ3/2
√

2
tan h

( β

2
+

`x
2

)
sec h2

( β

2
+

`x
2

) t̄δ

Γ(δ + 1)
.

Φ2(x, t̄) = S−1

[
ωδ

ξδ
S
[
− σ

∂3Φ1

∂x3 − 6σΦ1
∂Φ1

∂x
+ 6Ψ1

∂Ψ1

∂x

]]

= S−1

[
ω2δ+2

ξ2δ+2
`8σ2

2

[
2 cosh2

(σ

2
+

`x
2

)
− 3
]

sec h4
(σ

2
+

`x
2

)]

=
`8σ2

2

[
2 cosh2

(σ

2
+

`x
2

)
− 3
]

sec h4
(σ

2
+

`x
2

) t̄2δ

Γ(2δ + 1)
,

Ψ2(x, t̄) = S−1

[
ωδ

ξδ
S
[
− σ

∂3Ψ1

∂x3 − 3σΦ1
∂Ψ1

∂x

]]

=
`5σ5/2

2
√

2

[
2 cosh2

(σ

2
+

`x
2

)
− 3
]

sec h4
(σ

2
+

`x
2

) t̄2δ

Γ(2δ + 1)
,

Φ3(x, t̄) = S−1

[
ωδ

ξδ
S
[
− σ

∂3Φ2

∂x3 − 6σΦ2
∂Φ2

∂x
+ 6Ψ2

∂Ψ2

∂x

]]

=
σ3`4 sin h

(
σ
2 + `x

2
)

2Γ2(δ + 1)Γ(3δ + 1) cosh7 ( β
2 + `x

2
)
[

2Γ2(δ + 1) cos h4
(σ

2
+

`x
2

)
− 18Γ2(δ + 1) cos h2

(σ

2
+

`x
2

)

+6Γ(2δ + 1) cos h2
(σ

2
+

`x
2

)
+ 18Γ2(δ + 1)− 9Γ(2δ + 1)

]
,

Ψ3(x, t̄) = S−1

[
ωδ

ξδ
S
[
− σ

∂3Ψ2

∂x3 − 3σΦ2
∂Ψ2

∂x

]]

=
σ7/2`11 sin h

(
σ
2 + `x

2
)

2
√

2Γ2(δ + 1)Γ(3δ + 1) cosh7 ( β
2 + `x

2
)
[

2Γ2(δ + 1) cos h4
(σ

2
+

`x
2

)
− 18Γ2(δ + 1) cos h2

(σ

2
+

`x
2

)

+6Γ(2δ + 1) cos h2
(σ

2
+

`x
2

)
+ 18Γ2(δ + 1)− 9Γ(2δ + 1)

]
,

...
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Φn(x, t̄) = S−1

[
ωδ

ξδ
S
[
− σ

∂3Φm−1

∂x3 − 6σΦm−1
∂Φm−1

∂x
+ 6Ψm−1

∂Ψm−1

∂x

]]
,

Ψm(x, t̄) = S−1

[
ωδ

ξδ
S
[
− σ

∂3Ψm−1

∂x3 − 3σΦm−1
∂Ψm−1

∂x

]]
.

The series of solutions for Problem 1 is presented as:

Φ(x, t̄) = Φ0(x, t̄) + Φ1(x, t̄) + Φ2(x, t̄) + Φ3(x, t̄) + ...Φm(x, t̄),

Ψ(x, t̄) = Ψ0(x, t̄) + Ψ1(x, t̄) + Ψ2(x, t̄) + Ψ3(x, t̄) + ...Ψm(x, t̄).

Consequently, we have

Φ(x, t̄) = `2 sec h2
(

β

2
+

`x
2

)
+ `5σ tan h

( β

2
+

`x
2

)
sec h2

( β

2
+

`x
2

) t̄δ

Γ(δ + 1)

+
`8σ2

2

[
2 cosh2

(σ

2
+

`x
2

)
− 3
]

sec h4
(σ

2
+

`x
2

) t̄2δ

Γ(2δ + 1)

+
σ3`4 sin h

(
σ
2 + `x

2
)

2Γ2(δ + 1)Γ(3δ + 1) cosh7 ( β
2 + `x

2
)
[

2Γ2(δ + 1) cos h4
(σ

2
+

`x
2

)
− 18Γ2(δ + 1) cos h2

(σ

2
+

`x
2

)

+6Γ(2δ + 1) cos h2
(σ

2
+

`x
2

)
+ 18Γ2(δ + 1)− 9Γ(2δ + 1)

]
+ ... ,

Ψ(x, t̄) =

√
σ

2
`2 sec h2

(
β

2
+

`x
2

)
+

`5σ3/2
√

2
tan h

( β

2
+

`x
2

)
sec h2

( β

2
+

`x
2

) t̄δ

Γ(δ + 1)

+
`5σ5/2

2
√

2

[
2 cosh2

(σ

2
+

`x
2

)
− 3
]

sec h4
(σ

2
+

`x
2

) t̄2δ

Γ(2δ + 1)

+
σ7/2`11 sin h

(
σ
2 + `x

2
)

2
√

2Γ2(δ + 1)Γ(3δ + 1) cosh7 ( β
2 + `x

2
)
[

2Γ2(δ + 1) cos h4
(σ

2
+

`x
2

)
− 18Γ2(δ + 1) cos h2

(σ

2
+

`x
2

)

+6Γ(2δ + 1) cos h2
(σ

2
+

`x
2

)
+ 18Γ2(δ + 1)− 9Γ(2δ + 1)

]
+ ... .

By setting δ = 1, we then obtain the exact solution of coupled KdV Equation (1)

Φ(x, t̄) = `2 sec h2
(

β

2
+

`x
2
− σ`3 t̄

2

)
,

Ψ(x, t̄) =

√
σ

2
`2 sec h2

(
β

2
+

`x
2
− σ`3 t̄

2

)
.

In Figures 1 and 2, the exact and approximate results of Φ(x, t̄) and Ψ(x, t̄) are demon-
strated at ` = 1, σ = 0.5 and β = 2. In Figures 3 and 4, the surface and 2D graph
for Φ(x, t̄) and Ψ(x, t̄) for various fractional order are presented which shows that the
SDM/SITM approximated results derived are in a strong agreement with the exact and
the numerical ones. This comparison represents a strong correlation between the SDM
and exact findings. Therefore, the SDM/SITM are reliable novel approaches which require
less computation time and is quite straightforward and more flexible than the homotopy
perturbation method and homotopy analysis method.
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Figure 1. The exact and approximate (SDM/SITM) solution graph at Φ(x, t̄) of Problem 1 for ` = 1,
σ = 0.5 and β = 2.

Figure 2. The exact and approximate (SDM/SITM) solution graph at Ψ(x, t̄) of Problem 1 for ` = 1, σ = 0.5 and β = 2.

Figure 3. Numerical evaluation of graph of Ψ(x, t̄) for Problem 1 for various fractional order δ = 0.4, 0.6, 0.8, 1, ` = 1,
σ = 0.5 and β = 2.
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Figure 4. Numerical evaluation of graph Φ(x, t̄) for Problem 1 for various fractional order δ = 0.4, 0.6, 0.8, 1, ` = 1, σ = 0.5
and β = 2.

Problem 2 ([16]). Assume the time-fractional coupled nonlinear KdV equation is presented as:

∂δΦ
∂t̄δ

= −∂Ψ
∂x
− 1

2
∂Φ2

∂x
∂δΨ
∂t̄δ

= −∂Φ
∂x
− ∂3Φ

∂x3 −
∂ΦΨ

∂x
, t̄ > 0, 0 < δ ≤ 1 (34)

subject to the condition

Φ(x, 0) = σ

[
tan h

(
`

2
+

σx
2

)
+ 1
]

, Ψ(x, 0) =
σ2

2
sec h2

(
`

2
+

σx
2

)
− 1. (35)

Case I. First, we surmise the Shehu decomposition method for Problem 2.
Employing the Shehu transformation to (34), we find

ξδ

ωδ
U (ξ, ω)−

m−1

∑
κ=0

( ξ

ω

)δ−κ−1
Φ(κ)(0) = S

[
− ∂Ψ

∂x
− 1

2
∂Φ2

∂x

]
,

ξδ

ωδ
V(ξ, ω)−

m−1

∑
κ=0

( ξ

ω

)δ−κ−1
Ψ(κ)(0) = S

[
− ∂Φ

∂x
− ∂3Φ

∂x3 −
∂ΦΨ

∂x

]
. (36)

In view of (35) and simple computations yield

U (ξ, ω) =
ω

ξ
Φ(0)(x, 0) +

ωδ

ξδ
S
[
− ∂Ψ

∂x
− 1

2
∂Φ2

∂x

]
,

V(ξ, ω) =
ω

ξ
Ψ(0)(x, 0) +

ωδ

ξδ
S
[
− ∂Φ

∂x
− ∂3Φ

∂x3 −
∂ΦΨ

∂x

]
. (37)

Applying the inverse Shehu transform, we have

Φ(x, t̄) = S−1
[ω

ξ
Φ(x, 0)

]
+ S−1

[
ωδ

ξδ
S
[
− ∂Ψ

∂x
− 1

2
∂Φ2

∂x

]]
,

Ψ(x, t̄) = S−1
[ω

ξ
Ψ(x, 0)

]
+ S−1

[
ωδ

ξδ
S
[
− ∂Φ

∂x
− ∂3Φ

∂x3 −
∂ΦΨ

∂x

]]
. (38)
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By virtue of the Shehu decomposition method, we have

Φ0(x, t̄) = S−1
[ω

ξ
Φ(x, 0)

]
= S−1

[
ω

ξ
σ

(
tan h

(
`

2
+

σx
2

)
+ 1

)]

= σ

(
tan h

(
`

2
+

σx
2

)
+ 1

)
,

Ψ0(x, t̄) = S−1
[ω

ξ
Ψ(x, 0)

]

=
σ2

2
sec h2

(
`

2
+

σx
2

)
− 1.

It follows that

∞

∑
m=0

Φm+1(x, t̄) = S−1

[
ωδ

ξδ
S
[
− σ

∞

∑
m=0

(Ψx)m −
1
2

∞

∑
m=0
Dm

]]
,

∞

∑
m=0

Ψm+1(x, t̄) = S−1

[
ωδ

ξδ
S
[
−

∞

∑
m=0

(Φx)m −
∞

∑
m=0

(Ψxxx)m −
∞

∑
m=0

(
(ΦΨ)x

)
m

]]
, m = 0, 1, 2, ... .

The first few Adomian polynomials are presented as follows:

D0(Φ2) = Φ2
0,

D1(Φ2) = 2Φ0Φ1,

D2(Φ2) = 2Φ0Φ2 + Φ2
1.

For m = 0, 1, 2, ...

Φ1(x, t̄) = S−1

[
ωδ

ξδ
S
[
− σ(Ψx)0 −

1
2
D0

]]

= −σ2

2
S−1

[
ωδ+2

ξδ+2 sec h2
( `

2
+

σx
2

)]

= −σ2

2
sec h2

( `
2
+

σx
2

) t̄δ

Γ(δ + 1)
,

Ψ1(x, t̄) = S−1

[
ωδ

ξδ
S
[
− (Φx)0 − (Ψxxx)0 −

(
(ΦΨ)x

)
0

]]

=
σ3

2
sin h

( `
2
+

σx
2

)
sec h3

( `
2
+

σx
2

) t̄δ

Γ(δ + 1)
.

Φ2(x, t̄) = S−1

[
ωδ

ξδ
S
[
− σ(Ψx)1 −

1
2
D1

]]

= S−1

[
− σ5

4
ω2δ+2

ξ2δ+2 sec h2
( `

2
+

σx
2

)
+

3σ5

4
ω2δ+2

ξ2δ+2 sin h2
( `

2
+

σx
2

)
sec h4

( `
2
+

σx
2

)]

+
σ7

4
S−1

[
Γ(2δ + 1)
Γ2(δ + 1)

ω3δ+2

ξ3δ+2 sin h
( `

2
+

σx
2

)
sec h5

( `
2
+

σx
2

)]

=

[
− σ5

4
sec h2

( `
2
+

σx
2

)
+

3σ5

4
sin h2

( `
2
+

σx
2

)
sec h4

( `
2
+

σx
2

)] t̄2δ

Γ(2δ + 1)

+
σ7

4
sin h

( `
2
+

σx
2

)
sec h5

( `
2
+

σx
2

) Γ(2δ + 1)t̄3δ

Γ2(δ + 1)Γ(3δ + 1)
,
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Ψ2(x, t̄) = S−1

[
ωδ

ξδ

[
− (Φx)1 − (Ψxxx)1 −

(
(ΦΨ)x

)
1

]]

=
σ6

4

[
2 cosh2

( `
2
+

σx
2

)
− 3
]

sec h4
( `

2
+

σx
2

) t̄2δ

Γ(2δ + 1)
,

....

The Shehu decomposition method solution for Problem 2 is presented as:

Φ(x, t̄) = Φ0(x, t̄) + Φ1(x, t̄) + Φ2(x, t̄) + ...,

= σ

(
tan h

(
`

2
+

σx
2

)
+ 1
)
− σ2

2
sec h2

( `
2
+

σx
2

) t̄δ

Γ(δ + 1)

+

[
− σ5

4
sec h2

( `
2
+

σx
2

)
+

3σ5

4
sin h2

( `
2
+

σx
2

)
sec h4

( `
2
+

σx
2

)] t̄2δ

Γ(2δ + 1)

+
σ7

4
sin h

( `
2
+

σx
2

)
sec h5

( `
2
+

σx
2

) Γ(2δ + 1)t̄3δ

Γ2(δ + 1)Γ(3δ + 1)
+ ... .

Analogously, we have

Ψ(x, t̄) = −1 +
σ2

2
sec h2

(
`

2
+

σx
2

)
+

σ3

2
sin h

( `
2
+

σx
2

)
sec h3

( `
2
+

σx
2

) t̄δ

Γ(δ + 1)

+
σ6

4

[
2 cosh2

( `
2
+

σx
2

)
− 3
]

sec h4
( `

2
+

σx
2

) t̄2δ

Γ(2δ + 1)
+ ... .

By setting δ = 1, we obtain the exact solution of the coupled KdV Equation (34)

Φ(x, t̄) = σ

(
tanh

(
`

2
+

σx
2
− σ2 t̄

2

)
+ 1
)

,

Ψ(x, t̄) =
σ2

2
sec h2

(
`

2
+

σx
2
− σ2 t̄

2

)
− 1.

Case II. Now, we surmise the Shehu iterative transform method on Problem 2.
Applying the proposed analytical approach to (38) yields

Φ0(x, t̄) = S−1
[ω

ξ
Φ(x, 0)

]
= S−1

[
ω

ξ
σ

(
tan h

(
`

2
+

σx
2

)
+ 1

)]

= σ

(
tan h

(
`

2
+

σx
2

)
+ 1

)
,

Ψ0(x, t̄) = S−1
[ω

ξ
Ψ(x, 0)

]

=
σ2

2
sec h2

(
`

2
+

σx
2

)
− 1

Φ1(x, t̄) = S−1

[
ωδ

ξδ
S
[
− ∂Ψ0

∂x
− 1

2
∂Φ2

0
∂x

]]

= −σ2

2
S−1

[
ωδ+2

ξδ+2 sec h2
( `

2
+

σx
2

)]

= −σ2

2
sec h2

( `
2
+

σx
2

) t̄δ

Γ(δ + 1)
,
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Ψ1(x, t̄) = S−1

[
ωδ

ξδ
S
[
− ∂Φ0

∂x
− ∂3Φ0

∂x3 −
∂Φ0Ψ0

∂x

]]

=
σ3

2
sin h

( `
2
+

σx
2

)
sec h3

( `
2
+

σx
2

) t̄δ

Γ(δ + 1)
,

Φ2(x, t̄) = S−1

[
ωδ

ξδ
S
[
− ∂Ψ1

∂x
− 1

2
∂Φ2

1
∂x

]]

= S−1

[
− σ5

4
ω2δ+2

ξ2δ+2 sec h2
( `

2
+

σx
2

)
+

3σ5

4
ω2δ+2

ξ2δ+2 sin h2
( `

2
+

σx
2

)
sec h4

( `
2
+

σx
2

)]

+
σ7

4
S−1

[
Γ(2δ + 1)
Γ2(δ + 1)

ω3δ+2

ξ3δ+2 sin h
( `

2
+

σx
2

)
sec h5

( `
2
+

σx
2

)]

=

[
− σ5

4
sec h2

( `
2
+

σx
2

)
+

3σ5

4
sin h2

( `
2
+

σx
2

)
sec h4

( `
2
+

σx
2

)] t̄2δ

Γ(2δ + 1)

+
σ7

4
sin h

( `
2
+

σx
2

)
sec h5

( `
2
+

σx
2

) Γ(2δ + 1)t̄3δ

Γ2(δ + 1)Γ(3δ + 1)
,

Ψ2(x, t̄) = S−1

[
ωδ

ξδ

[
− ∂Φ1

∂x
− ∂3Φ1

∂x3 −
∂Φ1Ψ1

∂x

]]

=
σ6

4

[
2 cosh2

( `
2
+

σx
2

)
− 3
]

sec h4
( `

2
+

σx
2

) t̄2δ

Γ(2δ + 1)
,

...

Φm(x, t̄) = S−1

[
ωδ

ξδ
S
[
− ∂Ψm−1

∂x
− 1

2
∂Φ2

m−1
∂x

]]
,

Ψm(x, t̄) = S−1

[
ωδ

ξδ

[
− ∂Φm−1

∂x
− ∂3Φm−1

∂x3 − ∂Φm−1Ψm−1

∂x

]]
.

The series of solution for Problem 2 is presented as:

Φ(x, t̄) = Φ0(x, t̄) + Φ1(x, t̄) + Φ2(x, t̄) + ...Φm(x, t̄),

Ψ(x, t̄) = Ψ0(x, t̄) + Ψ1(x, t̄) + Ψ2(x, t̄) + ...Ψm(x, t̄).

Consequently, we have

Φ(x, t̄) = σ

(
tan h

(
`

2
+

σx
2

)
+ 1
)
− σ2

2
sec h2

( `
2
+

σx
2

) t̄δ

Γ(δ + 1)

+

[
− σ5

4
sec h2

( `
2
+

σx
2

)
+

3σ5

4
sin h2

( `
2
+

σx
2

)
sec h4

( `
2
+

σx
2

)] t̄2δ

Γ(2δ + 1)

+
σ7

4
sin h

( `
2
+

σx
2

)
sec h5

( `
2
+

σx
2

) Γ(2δ + 1)t̄3δ

Γ2(δ + 1)Γ(3δ + 1)
+ ... ,

Ψ(x, t̄) = −1 +
σ2

2
sec h2

(
`

2
+

σx
2

)
+

σ3

2
sin h

( `
2
+

σx
2

)
sec h3

( `
2
+

σx
2

) t̄δ

Γ(δ + 1)

+
σ6

4

[
2 cosh2

( `
2
+

σx
2

)
− 3
]

sec h4
( `

2
+

σx
2

) t̄2δ

Γ(2δ + 1)
+ ... .
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By setting δ = 1, we then obtain the exact solution of coupled KdV Equation (34)

Φ(x, t̄) = σ

(
tanh

(
`

2
+

σx
2
− σ2 t̄

2

)
+ 1
)

,

Ψ(x, t̄) =
σ2

2
sec h2

(
`

2
+

σx
2
− σ2 t̄

2

)
− 1.

In Figures 5 and 6, the exact and approximate results of Φ(x, t̄) and Ψ(x, t̄) are demon-
strated at ` = 1, σ = 0.5 and β = 2. In Figures 7 and 8, the surface and 2D graph for Φ(x, t̄)
and Ψ(x, t̄) for various fractional order are presented which shows that the SDM/SITM
approximated results derived are in a strong agreement with the exact and the numerical
ones. This comparison represents a strong correlation between the SDM and exact findings.
Therefore, the SDM/SITM are reliable novel approaches which require less computation
time and are quite straightforward and more flexible than the homotopy perturbation
method and the homotopy analysis method.

Figure 5. The exact and approximate (SDM/SITM) solution graph at Φ(x, t̄) of Problem 2 for ` = 1,
σ = 0.5 and β = 2.

Figure 6. The exact and approximate (SDM/SITM) solution graph at Ψ(x, t̄) of Problem 2 for ` = 1, σ = 0.5 and β = 2.
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Figure 7. Numerical evaluation of graph of Ψ(x, t̄) for Problem 2 for various fractional order δ = 0.4, 0.6, 0.8, 1, ` = 1,
σ = 0.5 and β = 2.

Figure 8. Numerical evaluation of graph of Ψ(x, t̄) for Problem 2 for various fractional order δ = 0.4, 0.6, 0.8, 1, ` = 1,
σ = 0.5 and β = 2.

Problem 3 ([16]). Assume the time-fractional coupled nonlinear MCKdV equations is presented
as (2) subject to the condition

Φ(x, 0) =
2 + tanh x

2
, Ψ(x, 0) =

2− tanh x
4

, Υ(x, 0) = 2− tanh x. (39)

Case I. First, we surmise the Shehu decomposition method for Problem 3.
Employing the Shehu transformation to (2), we find
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ξδ

ωδ
U (ξ, ω)−

m−1

∑
κ=0

( ξ

ω

)δ−κ−1
Φ(κ)(0) = S

[
1
2

∂3Φ
∂t̄3 − 3Φ2 ∂Φ

∂x
+

3
2

Υ
∂2Ψ
∂x2 + 3

∂Ψ
∂x

∂Υ
∂x

+
3
2

Ψ
∂2Υ
∂x2

+3ΨΥ
∂Φ
∂x

+ 3ΦΥ
∂Ψ
∂x

+ 3ΦΨ
∂Υ
∂x

]
,

ξδ

ωδ
V(ξ, ω)−

m−1

∑
κ=0

( ξ

ω

)δ−κ−1
Ψ(κ)(0) = S

[
− ∂3Ψ

∂x3 − 3
∂Φ
∂x

∂Ψ
∂x
− 3Ψ

∂2Φ
∂x2 − 3Ψ2 ∂Υ

∂x
+ 6ΦΨ

∂Φ
∂x

+ 3Φ2 ∂Ψ
∂x

]
,

ξδ

ωδ
W(ξ, ω)−

m−1

∑
κ=0

( ξ

ω

)δ−κ−1
Υ(κ)(0) = S

[
− ∂3Υ

∂x3 − 3
∂Φ
∂x

∂Υ
∂x
− 3Υ

∂2Φ
∂x2 − 3Υ2 ∂Ψ

∂x
+ 6ΦΥ

∂Φ
∂x

+ 3Φ2 ∂Υ
∂x

]
. (40)

In view of (39) and simple computations yield

U (ξ, ω) =
ω

ξ
Φ(0)(x, 0) +

ωδ

ξδ
S
[

1
2

∂3Φ
∂t̄3 − 3Φ2 ∂Φ

∂x
+

3
2

Υ
∂2Ψ
∂x2 + 3

∂Ψ
∂x

∂Υ
∂x

+
3
2

Ψ
∂2Υ
∂x2

+3ΨΥ
∂Φ
∂x

+ 3ΦΥ
∂Ψ
∂x

+ 3ΦΨ
∂Υ
∂x

]
,

V(ξ, ω) =
ω

ξ
Ψ(0)(x, 0) +

ωδ

ξδ
S
[
− ∂3Ψ

∂x3 − 3
∂Φ
∂x

∂Ψ
∂x
− 3Ψ

∂2Φ
∂x2 − 3Ψ2 ∂Υ

∂x
+ 6ΦΨ

∂Φ
∂x

+ 3Φ2 ∂Ψ
∂x

]
,

W(ξ, ω) =
ω

ξ
Υ(0)(x, 0) +

ωδ

ξδ
S
[
− ∂3Υ

∂x3 − 3
∂Φ
∂x

∂Υ
∂x
− 3Υ

∂2Φ
∂x2 − 3Υ2 ∂Ψ

∂x
+ 6ΦΥ

∂Φ
∂x

+ 3Φ2 ∂Υ
∂x

]
. (41)

Applying the inverse Shehu transform, we have

Φ(x, t̄) = S−1
[ω

ξ
Φ(x, 0)

]
+ S−1

[
ωδ

ξδ
S
[

1
2

∂3Φ
∂t̄3 − 3Φ2 ∂Φ

∂x
+

3
2

Υ
∂2Ψ
∂x2 + 3

∂Ψ
∂x

∂Υ
∂x

+
3
2

Ψ
∂2Υ
∂x2

+3ΨΥ
∂Φ
∂x

+ 3ΦΥ
∂Ψ
∂x

+ 3ΦΨ
∂Υ
∂x

]]
,

Ψ(x, t̄) = S−1
[ω

ξ
Ψ(x, 0)

]
+ S−1

[
ωδ

ξδ
S
[
− ∂3Ψ

∂x3 − 3
∂Φ
∂x

∂Ψ
∂x
− 3Ψ

∂2Φ
∂x2 − 3Ψ2 ∂Υ

∂x
+ 6ΦΨ

∂Φ
∂x

+ 3Φ2 ∂Ψ
∂x

]]
,

Υ(x, t̄) = S−1
[ω

ξ
Υ(x, 0)

]
+ S−1

[
ωδ

ξδ
S
[
− ∂3Υ

∂x3 − 3
∂Φ
∂x

∂Υ
∂x
− 3Υ

∂2Φ
∂x2 − 3Υ2 ∂Ψ

∂x
+ 6ΦΥ

∂Φ
∂x

+ 3Φ2 ∂Υ
∂x

]]
. (42)

By virtue of the Shehu decomposition method, we have

Φ0(x, t̄) = S−1
[ω

ξ
Φ(x, 0)

]
=

1
2
S−1

[
ω

ξ

(
2 + tanh x

)]

=
1
2
(
2 + tanh x

)
,

Ψ0(x, t̄) = S−1
[ω

ξ
Ψ(x, 0)

]
=

1
4
(
2− tanh x

)
,

Υ0(x, t̄) = S−1
[ω

ξ
Υ(x, 0)

]
=
(
2− tanh x

)
.

It follows that
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∞

∑
m=0

Φm+1(x, t̄) = S−1

[
ωδ

ξδ
S
[

1
2

∞

∑
m=0

(Φxxx)m − 3
∞

∑
m=0
Em +

3
2

∞

∑
m=0
Fm + 3

∞

∑
m=0
Gm +

3
2

∞

∑
m=0
Hm

+3
∞

∑
m=0

Im + 3
∞

∑
m=0
Jm + 3

∞

∑
m=0
Km

]]
,

∞

∑
m=0

Ψm+1(x, t̄) = S−1

[
ωδ

ξδ
S
[
−

∞

∑
m=0

(Ψxxx)m − 3
∞

∑
m=0
Mm − 3

∞

∑
m=0
Nm − 3

∞

∑
m=0
Om + 6

∞

∑
m=0
Pm + 3

∞

∑
m=0
Qm

]]
,

∞

∑
m=0

Υm+1(x, t̄) = S−1

[
ωδ

ξδ
S
[
−

∞

∑
m=0

(Υxxx)m − 3
∞

∑
m=0
Rm − 3

∞

∑
m=0

Sm − 3
∞

∑
m=0
Tm + 6

∞

∑
m=0
Xm + 3

∞

∑
m=0
Ym

]]
, m = 0, 1, 2, ... .

The first few Adomian polynomials are presented as follows:

E(Φ2Φx) =





Φ2
0Φ0x, f or  = 0

(2Φ0Φ1)Φ0x + Φ2
0Φ1x, f or  = 1

(2Φ0Φ2 + Φ2
1)Φ0x + (2Φ0Φ1)Φ1x + Φ2

0Φ2x, f or  = 2

F(ΥΨxx) =





Υ0Ψ0xx, f or  = 0
Υ1Ψ0xx + Υ0Ψ1xx, f or  = 1
Υ2Ψ0xx + Υ1Ψ1xx + Υ0Ψ2xx, f or  = 2

G(ΨxΥx) =





Ψ0xΥ0x, f or  = 0
Ψ0xΥ1x + Ψ1xΥ0x f or  = 1
Ψ2xΥ0x + Ψ1xΥ1x + Ψ0xΥ2x f or  = 2

H(ΨxΥxx) =





Ψ0xΥ0xx, f or  = 0
Ψ0xΥ1xx + Ψ1xΥ0xx, f or  = 1
Ψ2xΥ0xx + Ψ1xΥ1xx + Ψ0xΥ2xx, f or  = 2

I(ΨzΦx) =





(ΨΥ)0Φ0x, f or  = 0
(ΨΥ)0Φ1x + (ΨΥ)1Φ0x, f or  = 1
(ΨΥ)0Φ2x + (ΨΥ)1Φ1x + (ΨΥ)2Φ0x, f or  = 2

J(ΦzΨx) =





(ΦΥ)0Ψ0x, f or  = 0
(ΦΥ)0Ψ1x + (ΦΥ)1Ψ0x, f or  = 1
(ΦΥ)0Ψ2x + (ΦΥ)1Ψ1x + (ΦΥ)2Ψ0x, f or  = 2

K(ΦΨΥx) =





(ΦΨ)0Υ0x, f or  = 0
(ΦΨ)0Υ1x + (ΦΨ)1Υ0x, f or  = 1
(ΦΨ)0Υ2x + (ΦΨ)1Υ1x + (ΦΨ)2Υ0x, f or  = 2

M(ΦxΨx) =





Φ0xΨ0x, f or  = 0
Φ0xΨ1x + ΦxΨ0x, f or  = 1
Φ2xΨ0x + Φ1xΨ1x + Φ0xΨ1x, f or  = 2

N(ΨΦxx) =





Ψ0Φ0xx, f or  = 0
Ψ0Φ1xx + Ψ1Φ0xx, f or  = 1
Ψ2Φ0xx + Ψ1Φ1xx + Ψ0Φ2xx, f or  = 2

O(Ψ2Υx) =





Ψ2
0Υ0x, f or  = 0

(2Ψ0Ψ1)Υ0x + Ψ2
0Υ1x, f or  = 1

(2Ψ0Ψ2 + Ψ2
1)Υ0x + (2Ψ0Ψ1)Υ1x + Ψ2

0Υ2x, f or  = 2
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P(ΦΨΦx) =





(ΦΨ)0Φ0x, f or  = 0
(ΦΨ)0Φ1x + (ΦΨ)0Φ1x, f or  = 1
(ΦΨ)0Φ2x + (ΦΨ)1Φ1x + (ΦΨ)2Φ0x, f or  = 2

Q(Φ2Ψx) =





Φ2
0Ψ0x, f or  = 0

(2Φ0Φ1)Ψ0x + Φ2
0Ψ1x, f or  = 1

(2Φ0Φ2 + Φ2
1)Ψ0x + (2Φ0Φ1)Ψ1x + Φ2

0Ψ2x, f or  = 2

R0(ΦxΨx) =





Φ0xΨ0x, f or  = 0
Φ0xΨ1x + Φ1xΨ0x, f or  = 1
Φ2xΨ0x + Φ1xΨ1x + Φ0xΨ2x, f or  = 2

S(ΥΦxx) =





Υ0Φ0xx, f or  = 0
Υ0Φ1xx + Υ1Φ0xx, f or  = 1
Υ2Φ0xx + Υ1Φ1xx + Υ0Φ2xx, f or  = 2

T(Υ2Ψx) =





Υ2
0Ψ0x, f or  = 0

(2Υ0Υ1)Ψ0x + Υ2
0Ψ1x, f or  = 1

(2Υ0Υ2 + Υ2
1)Ψ0x + (2Υ0Υ1)Ψ1x + Υ2

0Ψ2x, f or  = 2

X(ΦΥ1Φx) =





(ΦΥ)0Φ0x, f or  = 0
(ΦΥ)0Φ1x + (ΦΥ)1Φ0x, f or  = 1
(ΦΥ)2Φ0x + (ΦΥ)1Φ1x + (ΦΥ)2Φ0x, f or  = 2

Y(Φ2Υx) =





Φ2
0Υ0x, f or  = 0

(2Φ0Φ1)Υ0x + Φ2
0Υ1x, f or  = 1

(2Φ0Φ2 + Φ2
1)Υ0x + (2Φ0Φ1)Υ1x + Φ2

0Υ2x, f or  = 2.

For m = 0, 1, 2, 3, ...

Φ1(x, t̄) = S−1

[
ωδ

ξδ
S
[

1
2
(Φxxx)0 − 3E0 +

3
2
F0 + 3G0 +

3
2
H0 + 3I0 + 3J0 + 3K0

]]

=
11
2

sec h2(x)S−1

[
ωδ+2

ξδ+2

]
=

11
2

sec h2(x)
t̄δ

Γ(δ + 1)
,

Ψ1(x, t̄) = S−1

[
ωδ

ξδ
S
[
(Ψxxx)0 − 3M0 − 3N0 − 3O0 + 6P0 + 3Q0

]]

= −11
8

sec h2(x)
t̄δ

Γ(δ + 1)
,

Υ1(x, t̄) = S−1

[
ωδ

ξδ
S
[
(Υxxx)0 − 3R0 − 3Ŝ0 − 3T0 + 6X0 + 3Y0

]]

= −11
2

sec h2(x)
t̄δ

Γ(δ + 1)
.
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Φ2(x, t̄) = S−1

[
ωδ

ξδ
S
[

1
2
(Φxxx)1 − 3E1 +

3
2
F1 + 3G1 +

3
2
H1 + 3I1 + 3J1 + 3K1

]]

=
−121

8
tan h(x) sec h2(x)

t̄2δ

Γ(2δ + 1)
,

Ψ2(x, t̄) = S−1

[
ωδ

ξδ
S
[
(Ψxxx)1 − 3M1 − 3N1 − 3O1 + 6P1 + 3Q1

]]

=
121
8

tan h(x) sec h2(x)
t̄2δ

Γ(2δ + 1)
,

Υ2(x, t̄) = S−1

[
ωδ

ξδ
S
[
(Υxxx)1 − 3R1 − 3Ŝ1 − 3T1 + 6X1 + 3Y1

]]

=
242
8

tan h(x) sec h2(x)
t̄2δ

Γ(2δ + 1)
,

Φ3(x, t̄) = S−1

[
ωδ

ξδ
S
[

1
2
(Φxxx)2 − 3E2 +

3
2
F2 + 3G2 +

3
2
H2 + 3I2 + 3J2 + 3K2

]]

=
1331
48

sec h4(x)
[

cosh(2x)− 2
] t̄3δ

Γ(3δ + 1)
,

Ψ3(x, t̄) = S−1

[
ωδ

ξδ
S
[
(Ψxxx)2 − 3M2 − 3N2 − 3O2 + 6P2 + 3Q2

]]

=
2662
96

sec h4(x)
[

cosh(2x)− 2
] t̄3δ

Γ(3δ + 1)
,

Υ3(x, t̄) = S−1

[
ωδ

ξδ
S
[
(Υxxx)2 − 3R2 − 3Ŝ2 − 3T2 + 6X2 + 3Y2

]]

=
−2662

48
sec h4(x)

[
cosh(2x)− 2

] t̄3δ

Γ(3δ + 1)
,

....

The Shehu decomposition method solution for Problem 3 is presented as:

Φ(x, t̄) = Φ0(x, t̄) + Φ1(x, t̄) + Φ2(x, t̄) + Φ3(x, t̄)... ,

=
1
2
(
2 + tanh x

)
+

11
2

sec h2(x)
t̄δ

Γ(δ + 1)
− 121

8
tan h(x) sec h2(x)

t̄2δ

Γ(2δ + 1)

+
1331
48

sec h4(x)
[

cosh(2x)− 2
] t̄3δ

Γ(3δ + 1)
+ ... .

Analogously, we have

Ψ(x, t̄) =
1
4
(
2− tanh x

)
− 11

8
sec h2(x)

t̄δ

Γ(δ + 1)
+

121
8

tan h(x) sec h2(x)
t̄2δ

Γ(2δ + 1)

−1331
48

sec h4(x)
[

cosh(2x)− 2
] t̄3δ

Γ(3δ + 1)
+ ... ,

Υ(x, t̄) =
(
2− tanh x

)
− 11

2
sec h2(x)

t̄δ

Γ(δ + 1)
+

121
4

tan h(x) sec h2(x)
t̄2δ

Γ(2δ + 1)

−2662
48

sec h4(x)
[

cosh(2x)− 2
] t̄3δ

Γ(3δ + 1)
+ ... .
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By Setting δ = 1, we then obtain the exact solution of coupled KdV Equation (2)

Φ(x, t̄) =
1
2

(
2 + tanh

(
x− 11t̄

2
))

, Ψ(x, t̄) =
1
4

(
2− tanh

(
x− 11t̄

2
))

,

Υ(x, t̄) =
(

2− tanh
(
x− 11t̄

2
))

.

Case II. Now, we surmise the new iterative transform method for Problem 3.
Applying the proposed analytical approach to (42) yields

Φ0(x, t̄) =
1
2
(
2 + tanh x

)
,

Ψ0(x, t̄) =
1
4
(
2− tanh x

)
,

Υ0(x, t̄) =
(
2− tanh x

)
,

Φ1(x, t̄) = S−1

[
ωδ

ξδ
S
[

1
2

∂3Φ0

∂t̄3 − 3Φ2
0

∂Φ0

∂x
+

3
2

Υ0
∂2Ψ0

∂x2 + 3
∂Ψ0

∂x
∂Υ0

∂x
+

3
2

Ψ0
∂2Υ0

∂x2

+3Ψ0Υ0
∂Φ0

∂x
+ 3Φ0Υ0

∂Ψ0

∂x
+ 3Φ0Ψ0

∂Υ0

∂x

]]

=
11
2

sec h2(x)S−1

[
ωδ+2

ξδ+2

]
=

11
2

sec h2(x)
t̄δ

Γ(δ + 1)
,

Ψ1(x, t̄) = S−1

[
ωδ

ξδ
S
[
− ∂3Ψ0

∂x3 − 3
∂Φ0

∂x
∂Ψ0

∂x
− 3Ψ0

∂2Φ0

∂x2 − 3Ψ2
0

∂Υ0

∂x
+ 6Φ0Ψ0

∂Φ0

∂x
+ 3Φ2

0
∂Ψ0

∂x

]]

= −11
8

sec h2(x)
t̄δ

Γ(δ + 1)
,

Υ1(x, t̄) = S−1

[
ωδ

ξδ
S
[
− ∂3Υ0

∂x3 − 3
∂Φ0

∂x
∂Υ0

∂x
− 3Υ0

∂2Φ0

∂x2 − 3Υ2
0

∂Ψ0

∂x
+ 6Φ0Υ0

∂Φ0

∂x
+ 3Φ2

0
∂Υ0

∂x

]]

= −11
2

sec h2(x)
t̄δ

Γ(δ + 1)
,

Φ2(x, t̄) = S−1

[
ωδ

ξδ
S
[

1
2

∂3Φ1

∂t̄3 − 3Φ2
1

∂Φ1

∂x
+

3
2

Υ1
∂2Ψ1

∂x2 + 3
∂Ψ1

∂x
∂Υ1

∂x
+

3
2

Ψ1
∂2Υ1

∂x2

+3Ψ1Υ1
∂Φ1

∂x
+ 3Φ1Υ1

∂Ψ1

∂x
+ 3Φ1Ψ1

∂Υ1

∂x

]]

=
−121

8
tan h(x) sec h2(x)

t̄2δ

Γ(2δ + 1)
,

Ψ2(x, t̄) = S−1

[
ωδ

ξδ
S
[
− ∂3Ψ1

∂x3 − 3
∂Φ1

∂x
∂Ψ1

∂x
− 3Ψ1

∂2Φ1

∂x2 − 3Ψ2
1

∂Υ1

∂x
+ 6Φ1Ψ1

∂Φ1

∂x
+ 3Φ2

1
∂Ψ1

∂x

]]

=
121

8
tan h(x) sec h2(x)

t̄2δ

Γ(2δ + 1)
,

Υ2(x, t̄) = S−1

[
ωδ

ξδ
S
[
− ∂3Υ1

∂x3 − 3
∂Φ1

∂x
∂Υ1

∂x
− 3Υ1

∂2Φ1

∂x2 − 3Υ2
1

∂Ψ1

∂x
+ 6Φ1Υ1

∂Φ1

∂x
+ 3Φ2

1
∂Υ1

∂x

]]

=
242

8
tan h(x) sec h2(x)

t̄2δ

Γ(2δ + 1)
,
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Φ3(x, t̄) = S−1

[
ωδ

ξδ
S
[

1
2

∂3Φ2

∂t̄3 − 3Φ2
2

∂Φ2

∂x
+

3
2

Υ2
∂2Ψ2

∂x2 + 3
∂Ψ2

∂x
∂Υ2

∂x
+

3
2

Ψ2
∂2Υ2

∂x2

+3Ψ2Υ2
∂Φ2

∂x
+ 3Φ2Υ2

∂Ψ2

∂x
+ 3Φ2Ψ2

∂Υ2

∂x

]]

=
1331
48

sec h4(x)
[

cosh(2x)− 2
] t̄3δ

Γ(3δ + 1)
,

Ψ3(x, t̄) = S−1

[
ωδ

ξδ
S
[
− ∂3Ψ2

∂x3 − 3
∂Φ2

∂x
∂Ψ2

∂x
− 3Ψ2

∂2Φ2

∂x2 − 3Ψ2
2

∂Υ2

∂x
+ 6Φ2Ψ2

∂Φ2

∂x
+ 3Φ2

2
∂Ψ2

∂x

]]

=
2662
96

sec h4(x)
[

cosh(2x)− 2
] t̄3δ

Γ(3δ + 1)
,

Υ3(x, t̄) = S−1

[
ωδ

ξδ
S
[
− ∂3Υ2

∂x3 − 3
∂Φ2

∂x
∂Υ2

∂x
− 3Υ2

∂2Φ2

∂x2 − 3Υ2
2

∂Ψ2

∂x
+ 6Φ2Υ2

∂Φ2

∂x
+ 3Φ2

2
∂Υ2

∂x

]]

=
−2662

48
sec h4(x)

[
cosh(2x)− 2

] t̄3δ

Γ(3δ + 1)
,

...

Φm(x, t̄) = S−1

[
ωδ

ξδ
S
[

1
2

∂3Φm−1

∂t̄3 − 3Φ2
m−1

∂Φm−1

∂x
+

3
2

Υm−1
∂2Ψm−1

∂x2 + 3
∂Ψm−1

∂x
∂Υm−1

∂x
+

3
2

Ψm−1
∂2Υm−1

∂x2

+3Ψm−1Υm−1
∂Φm−1

∂x
+ 3Φm−1Υm−1

∂Ψm−1

∂x
+ 3Φm−1Ψm−1

∂Υm−1

∂x

]]
,

Ψm(x, t̄) = S−1

[
ωδ

ξδ
S
[
− ∂3Ψm−1

∂x3 − 3
∂Φm−1

∂x
∂Ψm−1

∂x
− 3Ψm−1

∂2Φm−1

∂x2 − 3Ψ2
m−1

∂Υm−1

∂x

+6Φm−1Ψm−1
∂Φm−1

∂x
+ 3Φ2

m−1
∂Ψm−1

∂x

]]
,

Υm(x, t̄) = S−1

[
ωδ

ξδ
S
[
− ∂3Υm−1

∂x3 − 3
∂Φm−1

∂x
∂Υm−1

∂x
− 3Υm−1

∂2Φm−1

∂x2 − 3Υ2
m−1

∂Ψm−1

∂x

+6Φm−1Υm−1
∂Φm−1

∂x
+ 3Φ2

m−1
∂Υm−1

∂x

]]
.

The series solution for Problem 3 is presented as:

Φ(x, t̄) = Φ0(x, t̄) + Φ1(x, t̄) + Φ2(x, t̄) + Φ3(x, t̄) + ...Φm(x, t̄),

=
1
2
(
2 + tanh x

)
+

11
2

sec h2(x)
t̄δ

Γ(δ + 1)
− 121

8
tan h(x) sec h2(x)

t̄2δ

Γ(2δ + 1)

+
1331
48

sec h4(x)
[

cosh(2x)− 2
] t̄3δ

Γ(3δ + 1)
+ ... .
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Analogously, we have

Ψ(x, t̄) =
1
4
(
2− tanh x

)
− 11

8
sec h2(x)

t̄δ

Γ(δ + 1)
+

121
8

tan h(x) sec h2(x)
t̄2δ

Γ(2δ + 1)

−1331
48

sec h4(x)
[

cosh(2x)− 2
] t̄3δ

Γ(3δ + 1)
+ ... ,

Υ(x, t̄) =
(
2− tanh x

)
− 11

2
sec h2(x)

t̄δ

Γ(δ + 1)
+

121
4

tan h(x) sec h2(x)
t̄2δ

Γ(2δ + 1)

−2662
48

sec h4(x)
[

cosh(2x)− 2
] t̄3δ

Γ(3δ + 1)
+ ... .

By setting δ = 1, we then obtain the exact solution of MCKdV Equation (2)

Φ(x, t̄) =
1
2

(
2 + tanh

(
x− 11t̄

2
))

, Ψ(x, t̄) =
1
4

(
2− tanh

(
x− 11t̄

2
))

,

Υ(x, t̄) =
(

2− tanh
(
x− 11t̄

2
))

.

In Figures 9–11 the exact and approximate results of Φ(x, t̄), Ψ(x, t̄) and Υ(x, t̄) are
demonstrated at ` = 1, σ = 0.5 and β = 2, respectively. In Figures 12–14, the surface and
2D graph for Φ(x, t̄), Ψ(x, t̄) and Υ(x, t̄) for various fractional orders are presented which
show that the SDM/SITM approximated results derived are in a strong agreement with the
exact and the numerical ones. This comparison represents a strong correlation between the
SDM and exact findings. Therefore, the SDM/SITM are reliable novel approaches which
require less computation time and is quite straightforward and more flexible than the
homotopy perturbation method or homotopy analysis method, because the ST permits one
of several scenarios to reduce the deficiency mainly occurs because of unsatisfied initial
conditions that appear in other semi-analytical methods such as the SDM/SITM.

Figure 9. The exact and analytical solution graph at Φ(x, t̄) of Problem 3 for ` = 1, σ = 0.5 and β = 2.
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Figure 10. The exact and analytical solution graph at Ψ(x, t̄) of Problem 3 for ` = 1, σ = 0.5 and β = 2.

Figure 11. The exact and analytical solution graph at Υ(x, t̄) of Problem 3 for ` = 1, σ = 0.5 and β = 2.

Figure 12. Numerical evaluation of graph at Ψ(x, t̄) Problem 3 for various fractional order δ = 0.4, 0.6, 0.8, 1, ` = 1, σ = 0.5
and β = 2.
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Figure 13. Numerical evaluation of graph at Φ(x, t̄) Problem 3 for various fractional order δ = 0.4, 0.6, 0.8, 1, ` = 1, σ = 0.5
and β = 2.

Figure 14. Numerical evaluation of graph at Υ(x, t̄) Problem 3 for various fractional order δ = 0.4, 0.6, 0.8, 1, ` = 1, σ = 0.5
and β = 2.

7. Conclusions

Understanding complex nonlinear PDEs remains a difficult challenge when their
generative model is unknown. This challenge becomes more complex when it comes to
evaluating time fractional nonlinear PDEs, surmising the model that governs their evolu-
tion. To cope with this difficulty, numerous numerical methods have been employed for
dealing with nonlinear physical phenomena. Toward addressing this goal, in this paper,
we have considered a time-fractional KdV equation and have developed effective, rigor-
ous and robust algorithmic strategies (Shehu decompsition method and Shehu iterative
transform method) to estimate approximate-analytical solutions and so identify the main
numerical solutions appearing in the literature. In this approach, we do not need the
Lagrange multiplier, correction functional, stationary conditions, or to calculate heavy
integrals because the results established are noise free, which overcomes the shortcomings
of existing methods. It is remarkable that the projected approaches are well-organized
analytical methods for finding approximate-analytical solutions to complex nonlinear
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PDEs. Finally, we conclude that this scheme will be taken into account in order to cope
with other complex non-linear fractional order systems of equations.
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