1,910 research outputs found

    Evolving Morphological Robustness for Collective Robotics

    Get PDF
    This study evaluates a Neuro-Evolution (NE) method for controller evolution in simulated robot teams, where the goal is to evaluate the morphological robustness of evolved controllers. Artificial Neural Network (ANN) controllers are evolved for a specific sensory configuration (morphology) and then evaluated on a set of different morphologies. The morphological robustness of evolved controllers is evaluated according to team task performance given a collective construction task of increasing complexity. The overall objective was to ascertain an appropriate method for evolving ANN controllers that are readily transferable to robot teams with varied morphologies. Such controller transfer is necessary if task specifications change and different sensory configurations are required, or if robots are damaged and some sensors become disabled. In both cases it is ideal if teams continue to exhibit consistent behavior and a similar task performance. Results indicate that an indirect (developmental) encoding NE method consistently evolves controllers that fully function when transferred to teams with varied morphologies. That is, where comparable or higher task performances were yielded compared to controllers evolved specifically for the varied morphology

    Applications of Biological Cell Models in Robotics

    Full text link
    In this paper I present some of the most representative biological models applied to robotics. In particular, this work represents a survey of some models inspired, or making use of concepts, by gene regulatory networks (GRNs): these networks describe the complex interactions that affect gene expression and, consequently, cell behaviour

    Evolvability signatures of generative encodings: beyond standard performance benchmarks

    Full text link
    Evolutionary robotics is a promising approach to autonomously synthesize machines with abilities that resemble those of animals, but the field suffers from a lack of strong foundations. In particular, evolutionary systems are currently assessed solely by the fitness score their evolved artifacts can achieve for a specific task, whereas such fitness-based comparisons provide limited insights about how the same system would evaluate on different tasks, and its adaptive capabilities to respond to changes in fitness (e.g., from damages to the machine, or in new situations). To counter these limitations, we introduce the concept of "evolvability signatures", which picture the post-mutation statistical distribution of both behavior diversity (how different are the robot behaviors after a mutation?) and fitness values (how different is the fitness after a mutation?). We tested the relevance of this concept by evolving controllers for hexapod robot locomotion using five different genotype-to-phenotype mappings (direct encoding, generative encoding of open-loop and closed-loop central pattern generators, generative encoding of neural networks, and single-unit pattern generators (SUPG)). We observed a predictive relationship between the evolvability signature of each encoding and the number of generations required by hexapods to adapt from incurred damages. Our study also reveals that, across the five investigated encodings, the SUPG scheme achieved the best evolvability signature, and was always foremost in recovering an effective gait following robot damages. Overall, our evolvability signatures neatly complement existing task-performance benchmarks, and pave the way for stronger foundations for research in evolutionary robotics.Comment: 24 pages with 12 figures in the main text, and 4 supplementary figures. Accepted at Information Sciences journal (in press). Supplemental videos are available online at, see http://goo.gl/uyY1R

    Evolutionary robotics: model or design?

    Get PDF
    In this paper, I review recent work in evolutionary robotics (ER), and discuss the perspectives and future directions of the field. First, I propose to draw a crisp distinction between studies that exploit ER as a design methodology on the one hand, and studies that instead use ER as a modeling tool to better understand phenomena observed in biology. Such a distinction is not always that obvious in the literature, however. It is my conviction that ER would profit from an explicit commitment to one or the other approach. Indeed, I believe that the constraints imposed by the specific approach would guide the experimental design and the analysis of the results obtained, therefore reducing arbitrary choices and promoting the adoption of principled methods that are common practice in the target domain, be it within engineering or the life sciences. Additionally, this would improve dissemination and the impact of ER studies on other disciplines, leading to the establishment of ER as a valid tool either for design or modeling purposes

    In silico transitions to multicellularity

    Full text link
    The emergence of multicellularity and developmental programs are among the major problems of evolutionary biology. Traditionally, research in this area has been based on the combination of data analysis and experimental work on one hand and theoretical approximations on the other. A third possibility is provided by computer simulation models, which allow to both simulate reality and explore alternative possibilities. These in silico models offer a powerful window to the possible and the actual by means of modeling how virtual cells and groups of cells can evolve complex interactions beyond a set of isolated entities. Here we present several examples of such models, each one illustrating the potential for artificial modeling of the transition to multicellularity.Comment: 21 pages, 10 figures. Book chapter of Evolutionary transitions to multicellular life (Springer

    Evolving generalist controllers to handle a wide range of morphological variations

    Full text link
    Neuro-evolutionary methods have proven effective in addressing a wide range of tasks. However, the study of the robustness and generalisability of evolved artificial neural networks (ANNs) has remained limited. This has immense implications in the fields like robotics where such controllers are used in control tasks. Unexpected morphological or environmental changes during operation can risk failure if the ANN controllers are unable to handle these changes. This paper proposes an algorithm that aims to enhance the robustness and generalisability of the controllers. This is achieved by introducing morphological variations during the evolutionary process. As a results, it is possible to discover generalist controllers that can handle a wide range of morphological variations sufficiently without the need of the information regarding their morphologies or adaptation of their parameters. We perform an extensive experimental analysis on simulation that demonstrates the trade-off between specialist and generalist controllers. The results show that generalists are able to control a range of morphological variations with a cost of underperforming on a specific morphology relative to a specialist. This research contributes to the field by addressing the limited understanding of robustness and generalisability in neuro-evolutionary methods and proposes a method by which to improve these properties

    Embodied Evolution in Collective Robotics: A Review

    Get PDF
    This paper provides an overview of evolutionary robotics techniques applied to on-line distributed evolution for robot collectives -- namely, embodied evolution. It provides a definition of embodied evolution as well as a thorough description of the underlying concepts and mechanisms. The paper also presents a comprehensive summary of research published in the field since its inception (1999-2017), providing various perspectives to identify the major trends. In particular, we identify a shift from considering embodied evolution as a parallel search method within small robot collectives (fewer than 10 robots) to embodied evolution as an on-line distributed learning method for designing collective behaviours in swarm-like collectives. The paper concludes with a discussion of applications and open questions, providing a milestone for past and an inspiration for future research.Comment: 23 pages, 1 figure, 1 tabl

    Evolutionary swarm robotics: a theoretical and methodological itinerary from individual neuro-controllers to collective behaviours

    Get PDF
    In the last decade, swarm robotics gathered much attention in the research community. By drawing inspiration from social insects and other self-organizing systems, it focuses on large robot groups featuring distributed control, adaptation, high robustness, and flexibility. Various reasons lay behind this interest in similar multi-robot systems. Above all, inspiration comes from the observation of social activities, which are based on concepts like division of labor, cooperation, and communication. If societies are organized in such a way in order to be more efficient, then robotic groups also could benefit from similar paradigms
    • …
    corecore