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1 Introduction

In the last decade, swarm robotics gathered much attention in the research community. By drawing
inspiration from social insects and other self-organising systems, it focuses on large robot groups featuring
distributed control, adaptation, high robustness and flexibility. Various reasons lay behind this interest in
similar multi-robot systems. Above all, inspiration comes from the observation of social activities, which
are based on concepts like division of labour, cooperation and communication. If societies are organised
in such a way in order to be more efficient, then also robotic groups could benefit from similar paradigms.

Constructing tools from a collection of individuals is not a novel endeavor for man. A chain is
a collection of links, a rake a collection of tines, and a broom a collection of bristles. Sweeping
the sidewalk would certainly be difficult with a single or even a few bristles. Thus there must
exist tasks that are easier to accomplish using a collection of robots, rather than just one
(Kube and Zhang, 1993).

A multi-robot approach can have many advantages over a single-robot system. First, a monolithic robot
that could accomplish various tasks in varying environmental conditions is difficult to design. Moreover,
the single-robot approach suffers from the problem that even small failures of the robotic unit may prevent
the accomplishment of the whole task. On the contrary, a multi-robot approach can benefit from the
parallelism of operation to be more efficient, from the versatility of its multiple, possibly heterogeneous,
units and from the inherent redundancy given by the usage of multiple agents (Jones and Matarić, 2006).

Swarm robotics pushes the cooperative approach to its extreme. It represents a theoretical and
methodological approach to the design of “intelligent” multi-robot systems inspired by the efficiency and
robustness observed in social insects in performing collective tasks (Bonabeau et al., 1999). Collective
motion in fish, birds and mammals, as well as collective decisions, synchronisation and social differen-
tiation are examples of collective responses observed in natural swarms (for some recent reviews, see
Camazine et al., 2001, Franks et al., 2002, Couzin and Krause, 2003, Sumpter, 2006, Couzin, 2007). In
all these examples, the individual behaviour is relatively simple, but the global system behaviour presents
complex features that result from the multiple interactions of the system components. Similarly, in a
swarm robotics system, the complexity of the group behaviour should not reside in the individual con-
troller, but in the interactions among the individuals. Thus, the main challenge in designing a swarm
robotics system is represented by the need to identify suitable interaction rules among the individual
robots. In other words, the challenge is designing the individual control rules that can lead to the desired
global behaviour.

In the above perspective, self-organisation is the mechanism that can explain how complex collective
behaviours can be obtained in a swarm robotics system from simple individual rules. In this context, a
complex collective behaviour should be intended as some spatio-temporal organisation in a system that
is brought forth through the interactions among the system components. Not every collective behaviour
is self-organised, though (Camazine et al., 2001). The presence of a leader in the group, the presence
of blueprints or recipes to be followed by the individual system components clashes with the concept of
self-organisation, at least at the level of description in which leader or blueprints are involved. Another
condition in which a collective behaviour cannot be considered self-organising is when environmental cues
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or heterogeneities are exploited to support the group organisation. For instance, animals that aggregate in
a warm part of the environment following a temperature gradient do not self-organise. But animals that
aggregate to stay warm, and therefore create and support a temperature gradient in the environment, do
self-organise. In both cases, the observer may recognise the presence of some structure (the aggregate)
that correlates with the presence of an environmental heterogeneity (the temperature gradient). However,
the two examples are radically different from the organisational point of view. Similar natural examples
can be easily given also for the presence of leader or blueprints, to show that not every collective behaviour
is self-organising (Camazine et al., 2001). Both the leader or the blueprint can be recognised as the place
where the behavioural complexity of the group is centralised. In other words, the complexity of the group
behaviour does not result from the multiple interactions among the individual behaviours. Rather, the
group behaviour results from a fixed pattern of interactions among the system components that is
either decided beforehand (in the case of a blueprint) or is centrally and/or continuously re-planned (in
the case of a leader). In both cases, there is limited room for adaptiveness to unknown, unpredictable
situations resulting from a highly dynamical environment, both physical and social.

The unpredictable nature of the (social) environment makes it difficult to predict in advance, and
therefore design, the behavioural sequence and the pattern of interactions that would lead to a certain
group behaviour. Moreover, “the adaptiveness of an autonomous multi-robot system is reduced if the
circumstances an agent should take into account to make a decision concerning individual or collective
behavior are defined by a set of a priori assumptions” (Tuci et al., 2006b). This design problem can
be bypassed by relying on Evolutionary Robotics (ER) techniques as an automatic methodology to
synthesise the swarm behaviour (Trianni et al., 2008). In past researches conducted within the SWARM-
BOTS project, we experimented with different tasks and defined a methodology that proved viable for
the synthesis of self-organising systems. We focused on two particular kinds of self-organising systems:
(i) systems that are able to achieve and maintain a certain organisation, and (ii) systems close to a
bifurcation point, where robot-robot interactions and randomness lead to one or the other solution. In
both cases, the problem is solved without placing any assumption on the kind of interaction pattern
that would have been exploited to achieve a certain goal. Even more important, we have shown that
determining a priori a certain form of interaction may result in worse performance with respect to an
assumption-free setup.

In the rest of the chapter, we present the SWARM-BOTS project’s experience (Section 2), and we
discuss in detail some examples of problems studied exploiting the ER approach (Section 3). Then, in
Section 4 we speculate on the current limitations of the ER approach, and the future role of ER in the
development of more complex behaviours and cognitive abilities for robotic swarms.

2 Swarm robotics and the swarm-bots

Even though research in swarm robotics is rather in its infancy, it is quickly developing thanks to the con-
tribution of various pioneer studies (Kube and Zhang, 1993, Beckers et al., 1994, Holland and Melhuish,
1999, Martinoli et al., 1999, Krieger et al., 2000). A significant contribution to the field was given by the
SWARM-BOTS project, which aimed at the design and development of an innovative swarm robotics
platform, the swarm-bot(Mondada et al., 2004, Dorigo et al., 2004). A swarm-bot is defined as a self-
assembling, self-organising artifact formed by a number of independent robotic units, called s-bots. In
the swarm-bot form, the s-bots become a single robotic system that can move and reconfigure. Physical
connections between s-bots are essential for solving many collective tasks, such as the retrieval of a heavy
object. Also, during navigation on rough terrain, physical links can serve as support if the swarm-bot
has to pass over a hole wider than a single s-bot, or when it has to pass through a steep concave region.
However, for tasks such as searching for a goal location or tracing an optimal path to a goal, a swarm of
unconnected s-bots can be more efficient.

An s-bot is a small mobile autonomous robot with self-assembling capabilities, shown in Figure 1. It
weighs 700 g and its main body has a diameter of about 12 cm. Its design is innovative concerning both
sensors and actuators. The traction system is composed of both tracks and wheels—referred to as treels—
that provide the s-bot with a differential drive motion. The wheels are connected to the chassis, which
contains the batteries, some sensors and the corresponding electronics. The main body is a cylindrical
turret mounted on the chassis by means of a motorised joint, that allows the relative rotation of the two
parts. The gripper is mounted on the turret and can be used for connecting rigidly to other s-bots or
to some objects. The shape of the gripper closely matches the T-shaped ring placed around the s-bot ’s
turret, so that a firm connection can be established. The gripper does not only open and close, but it
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Figure 1: View of the s-bot from different sides. The main components are indicated (see text for more
details).

also has a degree of freedom for lifting the grasped objects. The corresponding motor is powerful enough
to lift another s-bot.

An s-bot is provided with many sensory systems, useful for the perception of the surrounding environ-
ment or for proprioception. Infrared proximity sensors are distributed around the rotating turret. Four
proximity sensors placed under the chassis—referred to as ground sensors—can be used for perceiving
holes or the terrain’s roughness (see Figure 1). Additionally, an s-bot is provided with eight light sensors
uniformly distributed around the turret, two temperature/humidity sensors, a 3-axis accelerometer and
incremental encoders on each degree of freedom.

Each robot is also equipped with sensors and devices to detect and communicate with other s-bots, such
as an omni-directional camera, coloured LEDs around the s-bots ’ turret, microphones and loudspeakers
(see Figure 1). Eight groups of three coloured LEDs each—red, green and blue—are mounted around
the turret. They can be used to emit a colour that can represent a particular internal state of the robot.
The colour emitted by a robot can be detected by other s-bots using the omni-directional camera, which
allows to grab panoramic views of the scene surrounding an s-bot. The loudspeaker can be used to emit
a sound signal, which can be perceived by the microphones and processed by the on-board CPU. In
addition to a large number of sensors for perceiving the environment, several sensors provide each s-bot
with information about physical contacts, efforts, and reactions at the interconnection joints with other
s-bots. These include torque sensors on most joints as well as a traction sensor, a sensor that detects the
direction and the intensity of the pulling force that the turret exerts on the chassis resulting from the
forces applied by other connected s-bots.
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3 Experiments

By exploiting the swarm-bot robotic platform, we performed a series of experiments, all characterised
by a coherent methodological approach. First of all, evolution was always performed in a simulated
environment, which was designed to model the relevant features of the s-bot. When required by the
experimental setup, the simulation exploited a full 3D physics simulation. This is the case for the
experiments presented in Section 3.1, in which pulling/pushing forces have a fundamental role in the
swarm-bot behaviour. Otherwise, minimal simulations have been employed. In any case, the evolved
controllers have been ported to reality to test the viability of the obtained controllers.

All evolutionary experiments share the same methodological approach as well. The algorithm is run
for a fixed number of generation, and works on a single population of genotypes. Each genotype encodes
the parameters of a single neural network controller. During evolution, a genotype is mapped into a
control structure that is cloned and downloaded in all the s-bots taking part in the experiment (i.e.,
we make use of a homogeneous group of s-bots). Each genotype is evaluated over multiple trials. The
fitness of a genotype is the average performance computed over the trials in which the corresponding
neural controller is tested. The homogeneous group resulting from a single genotype allows to simplify
the fitness assignment problem. In fact, a single controller is evaluated and selected for the group
performance. This group selection also facilitates the evolution of cooperative strategies, given that there
is no competition between different individuals in the group.

In the rest of this section, we present part of the experimental work performed within the SWARM-
BOTS project exploiting the ER approach. We present four different experiments: coordinated motion in
Section 3.1, synchronisation in Section 3.2, categorisation in Section 3.3 and self-assembly in Section 3.4.
In all sections, we first introduce the scenario in which these experiments have been performed, we discuss
the experimental setup and finally we draw some conclusions about the lesson learned from the study.

3.1 Coordinated motion and hole avoidance

The scenario For a swarm-bot to move coherently, s-bots need to negotiate a common direction of
motion and maintain the group coordination against external disturbances. The coordinated motion of
the assembled structure must take into account the variable number of assembled units, as well as a
varying topology. Moreover, the swarm-bot ’s navigation must be efficient with respect to obstacle and
other hazards such as holes and rough terrain, which may be perceived only by a limited subset of the
connected s-bots.

Coordinated motion has been widely studied in the literature (Balch and Arkin, 1998,
Fredslund and Matarić, 2002, Quinn et al., 2003, Spector et al., 2005). However, in the swarm-bot case,
it takes a different flavour, due to the physical connections among the s-bots, which open the way to
study novel interaction modalities that can be exploited for coordination. The experimental scenario can
be summarised as follows: at the beginning of a trial, the s-bots start with their chassis oriented in a
random direction. Their goal is to choose a common direction of motion on the basis of the only infor-
mation provided by their traction sensor, and then to move as far as possible from the starting position
(Baldassarre et al., 2007). In a different set of experiments, the experimental arena presents holes and
open borders, in which a swarm-bot risks remaining trapped. In this case, s-bots must coordinate with
the rest of the group to avoid falling (Trianni and Dorigo, 2006). Notice that this task is more difficult
than it might appear at first sight. First, the group is not driven by a centralised controller (i.e., the
control is distributed). Moreover, s-bots cannot use any type of landmark in the environment, such as
light sources, or exploit predefined hierarchies between them to coordinate (i.e., there are no “leader
robots” that decide and communicate to the other robots the direction of motion of the whole group).
Finally, the s-bots do not have a predefined trajectory to follow, nor they are aware of their relative
positions or about the structure of the swarm-bot in which they are assembled. As a consequence, the
common direction of motion of the group should result from a self-organising process based on local inter-
actions, which are shaped as traction forces. The problem of designing a controller capable of producing
such a self-organised coordination is tackled using feed-forward neural networks synthesised by artificial
evolution.

Obtained results As mentioned above, in order to move coordinately s-bots can rely only on the
traction sensor information, which provides a coarse indication of the average direction of motion of
the group. By physically integrating the pulling/pushing forces that the connected s-bots produce, the
traction sensor provides a compact information that can be exploited for coordination. The problem is
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Figure 2: (a) Four real s-bots forming a linear swarm-bot during coordinated motion. (b) A physical
swarm-bot while performing hole avoidance. Notice how physical connections among the s-bots can serve
as support when a robot is suspended out of the arena, still allowing the whole system to work.

therefore designing a controller that would let the group self-organise by interacting through physical
forces. The results obtained evolving coordinated motion are extremely interesting (Baldassarre et al.,
2007). The evolved neural network encodes simple control rules that allow the robots to consistently
achieve a common direction of motion in a very short time, and compensate possible misalignments
during motion. In general terms, the evolved strategy is based on two feedback loops. Positive feedback
makes robots match the average direction of motion of the group, as it is perceived through the traction
sensor. Negative feedback makes robots persist in their own direction of motion, but when the traction and
motion directions are opposite. Thus the positive feedback allows for a fast convergence towards a common
direction of motion, that is stabilised by the negative feedback loop that avoids deadlock conditions.
All this is synthesised in a simple neural network evolved in simulation and tested on real robots (see
Figure 2a). The performance of the evolved controllers in terms of robustness, adaptation to varying
environmental conditions and scalability to different number of robots and different topologies is striking,
demonstrating how evolution synthesised a very efficient self-organising behaviour for coordinated motion
(Baldassarre et al., 2007).

Exploiting a similar setup, we also studied how a swarm-bot can navigate in an arena presenting holes
or open borders in which the robots risk of remaining trapped (Trianni and Dorigo, 2006). In this case, we
investigated how the swarm-bot can maintain coordination despite the presence of hazardous situations
that are perceived only by a subset of the robots involved. To this purpose, some form of communication
may be necessary to the group for a quick reaction. We tested three different communication modalities:
(i) direct interactions (DI) through pulling/pushing forces, (ii) direct communication (DC), hand-crafted
as a single tone signal emitted as a reflex to the perception of the hazard, and (iii) direct communication
in which signalling was controlled by the evolved neural network (evolved communication, EC). In all
cases, the motion of the s-bots was controlled by a simple perceptron network similar to the one used
for coordinated motion. Additionally, s-bots could use their sensors for perceiving the presence of holes
in the ground. In the DC and EC setups, s-bots could also communicate with each other through sound
signalling (Trianni and Dorigo, 2006).

The obtained results show that it is possible to evolve efficient navigation strategies with each com-
munication paradigm we devised. In the DI setup, when only direct interactions are present, the
pulling/pushing forces are sufficient to trigger collective hole avoidance. However, in some cases the
swarm-bot is not able to avoid falling because the signal encoded in the traction force produced by the
s-bots that perceive the hazard may not be strong enough to trigger the reaction of the whole group.
A different situation can be observed in the DC and EC setup, in which direct communication allows a
faster reaction of the whole group, as the emitted signal immediately reaches all the s-bots. Therefore, the
use of direct communication among the s-bots is particularly beneficial in the case of hole avoidance. It
is worth noting that direct communication acts here as a reinforcement of the direct interactions among
the s-bots. In fact, s-bots react faster to the detection of the hole when they receive a sound signal,
without waiting to perceive a traction strong enough to trigger the hole avoidance behaviour. However,
traction is still necessary for avoiding the hole and coordinating the motion of the swarm-bot as a whole.
We performed a statistical analysis to compare the three different setups we studied, and the results

5



obtained showed that the completely evolved setup outperforms the setup in which direct communication
is hand-crafted. This result is in our eyes particularly significant, because it shows how artificial evolution
can synthesise solutions that would be very hard to design with conventional approaches. In fact, the
most effective solutions discovered by evolution exploit some interesting mechanisms for the inhibition of
communication that would have been difficult to devise without any a priori knowledge of the system’s
dynamics (Trianni and Dorigo, 2006).

The lesson learned The experiments performed with coordinated motion and hole-avoidance revealed
how direct interactions through pulling/pushing forces can be exploited to obtain robust coordination
strategies in a swarm-bot. The connections among s-bots in fact represent an important mean of transfer-
ring information through physical forces. However, exploiting such information is not an easy endeavour
if a precise model of the traction sensor is not available. In particular with respect to the synthesis
of self-organising behaviours, the top-down approach runs into troubles due to the complex dynamical
interactions among the system components that can hardly be predicted or modelled. The evolutionary
approach, instead, does not need any precise model of the system. It is sufficient to test potential solutions
and to compare their performance on the basis of a user-defined metric. With respect to hand-crafted
solutions, the evolutionary approach can achieve a better performance as it can better exploit all system
features, without being constrained by a priori assumptions. This is clear in the hole avoidance exper-
iments, that show how the hand-crafted reflex signalling, which seemed perfectly reasonable at a first
sight, is outperformed by the evolved signalling strategy, which could exploit self-inhibitory mechanisms
that are counter-intuitive for a “naive” designer.

3.2 Synchronisation

The scenario An important feature of a swarm robotics system is the coordination of the activities
through time. Normally, robots can be involved in different tasks, and higher efficiency may be achieved
through the synchronisation of the activities within the swarm. Synchrony is a pervasive phenomenon:
examples of synchronous behaviours can be found in the inanimate world as well as among living organ-
isms (Strogatz, 2003). The synchronisation behaviours observed in Nature can be a powerful source of
inspiration for the design of swarm robotic systems, where emphasis is given to the emergence of coher-
ent group behaviours from simple individual rules. Much work takes inspiration from the self-organised
behaviour of fireflies or similar chorusing behaviours (Holland and Melhuish, 1997, Wischmann et al.,
2006, Christensen et al., 2009). Here, we present a study of self-organising synchronisation in a group of
robots based on minimal behavioural and communication strategies (Trianni and Nolfi, 2009). We follow
the basic idea that if an individual displays a periodic behaviour, it can synchronise with other (nearly)
identical individuals by temporarily modifying its behaviour in order to reduce the phase difference with
the rest of the group. In this work, the period and the phase of the individual behaviour are defined by
the sensory-motor coordination of the robot, that is, by the dynamical interactions with the environment
that result from the robot embodiment. The studied task requires that each robot in the group displays
a simple periodic behaviour, which should be entrained with the periodic behaviour of the other robots
present in the arena. The individual periodic behaviour consists in oscillations along the y direction of a
rectangular arena (see Figure 3). Oscillations are possible through the exploitation of a symmetric gra-
dient in shades of grey painted on the ground. On the other hand, synchronisation of robots movements
can be achieved by exploiting a binary, global communication: each robot can produce a continuous tone
with fixed frequency and intensity. When a tone is emitted, it is perceived by every robot in the arena,
including the signalling one. The tone is perceived in a binary way, that is, either there is someone
signalling in the arena, or there is no one. This is a very minimal communication system for a swarm
of robots, which carries no information about the number of signallers, nor about their position in the
environment. No assumption is made on the way the robots should move on the arena, and on the way
they should communicate. All the behavioural rules are designed by the evolution of feed-forward neural
controllers.

Obtained results We performed 20 evolutionary replications, each resulting in the evolution of effi-
cient synchronisation behaviours. The individual ability to perform oscillatory movements is based on the
perception of the gradient painted on the arena floor, which gives information about the direction parallel
to the y axis and about the point where to perform a U-turn and move back towards the x axis. The main
role of the evolved communication strategy is to provide a coupling between the oscillating s-bots, in order
to achieve synchronisation: we observed that s-bots change their behaviour in response to a perceived
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communication signal coming from other robots. Recall that the communication signal, being binary and
global, does not carry information about either the sender or about its oscillation phase. The reaction to a
perceived signal is therefore adapted by evolution to allow the robots reduce the phase difference between
their oscillations, eventually achieving synchronous movements. In summary, the evolved synchronisation
behaviours are the results of the dynamical relationship between the robot and the environment, mod-
ulated through the communicative interactions among robots. No further complexity is required at the
level of the neural controller: simple and reactive behavioural and communication strategies are sufficient
to implement effective synchronisation mechanisms. To better understand the dynamical relationship
between individual sensory-motor coordination and communication, we introduced a dynamical system
model of the robots interacting with the environment and among each other (Trianni and Nolfi, 2009).
This model offers us the possibility to deeply understand the evolved behaviours, both at the individual
and collective level, by uncovering the mechanisms that artificial evolution synthesised to maximise the
user-defined utility function. We assumed an idealised, noise-free and collision-free environment, and we
modelled the s-bot individual behaviour as it is produced by the evolved neural network. By coupling the
individual behaviours through the communication channel, we could study the effects of perturbations
through sound signals over the robot oscillations. We analysed the different evolutionary runs performed,
and we discovered two alternative mechanisms for synchronisation. With the modulation mechanism, s-
bots synchronise by tuning their oscillatory frequency in response to the perceived communication signal
coming from other robots, in order to match the other robots oscillations. This is basically performed by
anticipating or delaying the U-turn. With the reset mechanism, s-bots “reset” their oscillation phase by
moving to a particular position over the painted gradient, waiting for the other robots to reach a simi-
lar position. Qualitatively, similar mechanisms are also observed in biological oscillators. For instance,
different species of fireflies present different synchronisation mechanisms, based on delayed or advanced
phase responses.

Besides studying the synchronisation mechanisms, we performed a scalability analysis to test all
evolved behaviours with varying group sizes. While scalability is ensured for small groups, we found that
physical interactions may prevent the system from scaling to very large number of robots due to the higher
probability of performing collision avoidance maneuvers. Still, the evolved synchronisation mechanism
scales well if there are no physical interactions. We found that many controllers present perfect scalability,
with only a slight decrease in performance due to the longer time required by larger groups to perfectly
synchronise. Some controllers, however, present a communicative interference that prevent large groups
from synchronising: the signals emitted by different s-bots overlap in time and are perceived as a fixed
signalling pattern. If the perceived signal does not vary in time, it does not bring information to be
exploited for synchronisation. This problem is mainly due to the global and binary communication form,
in which the signal emitted by an s-bot is perceived by any other s-bot anywhere in the arena. Moreover,
from the perception point of view, there is no difference between a single s-bot and a thousand signalling
at the same time. In order to understand the conditions under which this communicative interference take
place, we again exploited the mathematical model. We found that scalability can be predicted just by
looking at the features of the individual behaviour: the synchronisation behaviour scales to any number
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Figure 3: Snapshot of a simulation showing three robots in the experimental arena. The dashed lines
indicate the reference frame used in the experiments.
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of robots provided that an s-bot that perceives a communication signal never emits a signal itself. This is
a very interesting result, as it directly relates the collective behaviour to the individual one, and indicates
which are the building blocks for obtaining scalability in the system under study (Trianni and Nolfi,
2009).

The lesson learned The synchronisation experiments show how temporal coordination can be achieved
exploiting simple self-organising rules. To this purpose, it is not necessary to provide robots with com-
plex behaviours and time-dependent structures. Instead, we show that a minimal complexity of the
behavioural and communicative repertoire is sufficient to observe the onset of synchronisation. Robots
can be described as embodied oscillators, their behaviour being characterised by a period and a phase. In
this perspective, the movements of an s-bot correspond to advancements of its oscillation phase. Robots
can modulate their oscillations simply by moving in the environment and by modifying their dynamical
relationship with it. Such modulations are brought forth in response to the perceived communication
signals, which also depend on the dynamical relationship between the s-bot and the environment.

In this perspective, the dynamical system analysis proved very useful: we introduced a dynamical
system model of the robots interacting with the environment and among each other. This model offered
us the possibility to deeply understand the evolved behaviours, both at the individual and collective level,
by uncovering the mechanisms that artificial evolution synthesised to maximise the user-defined utility
function. Moreover, the developed model can be used to predict the ability of the evolved behaviour to
efficiently scale with the group size. We believe that such predictions are of fundamental importance to
quickly select or discard obtained solutions without performing a time-demanding scalability analysis, as
well as to engineer swarm robotic systems that present the desired properties. For instance, the knowledge
acquired through the performed analysis could be exploited to improve the experimental setup. We have
found that the communicative interferences that prevent the group from synchronising are caused by a
communication channel that is neither additive nor local. The locality of communication is for sure an
important issue to take into account when studying a realistic experimental setup. Additivity, that is, the
capability of perceiving the influence of multiple signals at the same time, is also crucial for self-organising
behaviours. We tested the latter issue, and we discovered that it is sufficient to provide the robots with
the average signalling activity of the group to systematically evolve scalable behaviours.

3.3 Categorisation, integration over time and collective decisions

The scenario A general problem common to biology and robotics concerns the understanding of the
mechanisms necessary to decide whether to pursue a particular activity or to give up and perform al-
ternative behaviours. This problem is common to many activities that natural or artificial agents are
required to carry out. Autonomous agents may be asked to change their behaviour in response to the
information gained through repeated interactions with their environment. For example, after various
unsuccessful attempts to retrieve a heavy prey, an ant may decide to give up and change its behaviour by
either cutting the prey or recruiting some nest-mates for collective transport (Detrain and Deneubourg,
1997). This example suggests that autonomous agents require adaptive mechanisms to decide whether it
is better to pursue solitary actions or to initiate cooperative strategies.

We confronted with the decision-making problem by designing the experimental scenario depicted in
Figure 4. Robots are positioned within a boundless arena containing a light source. Their goal is to reach
a target area around the light sources. The colour of the arena floor is white except for a circular band,
centred around the lamp, within which the floor is in shades of grey. The robots can freely move within
the band, but they are not allowed to cross the black edge. The latter can be imagined as an obstacle or
a trough, that prevents the robot from further approaching the light. The goal of the experiments is to
show that the robots can learn to discriminate between two types of environments. In the first type—
referred to as Env. A—the band presents a discontinuity (see Figure 4a). This discontinuity, referred to
as the way in zone, is a sector of the band in which the floor is white. In the second type—referred to as
Env. B—the band completely surrounds the light (see Figure 4b). The way in zone represents the path
along which the robots are allowed to safely reach the light in Env. A. Successful robots should prove
capable of performing phototaxis and of moving over the circular band in search for the way in zone,
without crossing the black edge. When placed in Env. A, the robots should always reach the target area.
On the contrary, in Env. B the robot should initiate an alternative action, such as signalling or moving
away in order to search for other light sources.

Initial experimentation was performed using a single robot controlled by an evolved Continuous Time
Recurrent Neural Network (CTRNN, see Beer, 1995). The results revealed that decision-making can be
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performed by exploiting a temporal cue: the Env. B can be “recognised” by the persistence of a particular
perceptual state for the amount of time necessary to discover that there is no way in zone. The flow
of time, in turns, can be recognised through the integration of the perceptual information available to
the robot. This means that the movements of the robot should bring forth the persistence of a certain
perceptual condition, and the discrimination can be made only if the latter is maintained long enough.

We repeated the experiments using two robots having the same sensory-motor capabilities
(Ampatzis et al., 2008). Additionally, robots are provided with a communication system similar to the
one used in the synchronisation experiments: they can emit a single frequency tone that is perceived
everywhere in the arena in a binary way. The experiments have been performed by varying the initial
position of the two robots, and by rewarding them to perform antiphototaxis when placed in Env. B.
However, no explicit reward was given for communication among the robots. In this way, we aimed at
observing whether cooperative, communicative behaviour could emerge or not.

Obtained results Twenty evolutionary simulation runs, each using a different random initialisation,
were run for 12000 generations. Thirteen evolutionary runs produced successful groups of robots: both
robots approach the band and subsequently (i) reach the target area through the way in zone in Env. A;
(ii) leave the band performing antiphototaxis in Env. B. The discrimination between the two environments
is possible exploiting the integration over time ability of the leaky integrators that form the robot’s neural
controller. While moving over the circular band, the s-bot accumulates evidence about the absence of
the way in zone. If the latter is found, the integration over time is stopped and the robot continues in
performing phototaxis. If, instead, the way in zone is not present, after approximately one loop, the robot
leaves the band. This evolved behaviour closely resembles the one obtained with a single robot. However,
a closer look reveals that among the thirteen successful groups, nine make use of sound signalling. In
particular, signalling strongly characterises the behavioural strategies of the groups when they are located
in Env. B. In Env. A signalling is, for all these groups, negligible. Note that the emission of sound is
not demanded in order to navigate towards the target and discriminate Env. A from Env. B. Indeed, the
task and the fitness function do not require the robots to display signalling behaviour. Mechanisms for
phototaxis, antiphototaxis, and memory are sufficient for a robot to accomplish the task.

In order to reveal the adaptive significance of sound signalling, further tests have been performed.
We looked at the behaviour of the robots that emit sound during a successful trial in each type of
environment. We recorded the behaviour of the robots both in a normal condition and in a condition
in which the robots cannot hear each other’s sound. In the normal condition we notice that, as soon as
one of the robots starts signalling, both robots initiate an antiphototactic movement. On the contrary,
when communication signals are blocked, we notice that each robot initiates antiphototaxis only at the
time when it starts emitting its own sound. Sound signalling has therefore the function of stimulating
antiphototaxis also for those robots that have not yet gathered enough evidence about the absence of the
way in zone.

These results show that the majority of the successful strategies employ signalling behaviour and
communication among the members of the groups. However, communication was not explicitly rewarded:
communicating and non-communicating groups could in principle obtain equal fitness. This means that

Env. A Env. B

Target

area

Way-in

zone

(a) (b)

Figure 4: Depiction of the task. (a) Env. A is characterised by the way in zone. The target area, centred
on the light, is indicated by the dashed circle. (b) In Env. B there is no way in zone and the target area
cannot be reached. The continuous lines are an example of a good navigation strategy for one robot.
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(a) (b) (c) (d) (e)

Figure 5: Snapshots from a successful trial. (a) Initial configuration (b) Starting phase (c) Role allocation
phase (d) Gripping phase (e) Success (grip)

communication may have other functions that influence its adaptive significance. By looking at the
behaviour of all successful groups, we discovered that whenever signalling is functionally relevant, it is
employed by the robots in Env. B as a self-produced perceptual cue. This cue induces the emitter as
well as the other robot of the group to change its behaviour from light-seeking to light-avoidance. This
evidence constrains our investigation on the adaptive significance of sound signalling to two functions: on
the one hand, sound is the means by which a robot emitter switches from phototaxis to antiphototaxis.
We refer to this as the “solitary” function. On the other hand, sound is the means by which the robot
emitter influences the behaviour of the other robot. We refer to this as the “social” function. From the
data we gathered, it appears that signalling is beneficial mainly because of its “social” function.

The selective advantage of signalling groups is given by the beneficial effects of communication with
respect to a robust disambiguation of Env. A from Env. B. The task in fact requires to find an optimal
trade-off between speed and accuracy of the decision. The beneficial effect of communication corresponds
to robust individual decision-making and faster group reaction, since signaller and hearer react at the
same time. In fact, a robust individual decision requires longer time spent over the circular band to
accumulate evidence of the absence of the way in zone, due to the environmental noise that influences the
sensors and to the uncertainty of the action outcomes. In total, in those groups in which antiphototaxis
is triggered by the perception of sound, a robot which by itself is not ready to make a decision concerning
the nature of the environment can rely on the decision taken by the other robot of the group. In average,
communication allows the group to accomplish the task earlier, and more reliably. In this way, signalling
groups are better adapted to the “danger” of discrimination mistakes in Env. A than are non-signalling
groups, and thus “early” signalling seems to be an issue that has been taken care of by evolution. In
fact, once signalling groups evolve, their signalling behaviour is refined by categorising the world later
than in the case of non-signalling groups. This happens in order to ensure that the chances of a potential
disadvantage resulting from social behaviour are minimised. In other words, the use of communication in
a system can also affect aspects of the behaviour not directly related to communication (i.e., the process
of integration of inputs over time).

The lesson learned The experiments presented in this section show how individual decision-making
and group behaviour can be co-evolved to obtain a robust and efficient system. The need to perform
a decision on the basis of information accumulated over time creates a natural trade-off between speed
and accuracy. Each s-bot has to solve a dilemma: to continue searching for the way in zone, or to leave
for good? The solution of this dilemma, under normal evolutionary pressures, would tune the individual
behaviour to limit the time spent searching to the minimum. However, the introduction of other robots
contemporaneously solving the same task, and the possibility of communication, changes the evolutionary
dynamics. By exploiting the information gathered by other robots, it is possible to improve the accuracy
of the group decision without reducing the decision speed. This is a relevant fact, which justifies the usage
of a collective robotics setup even for those conditions in which it is not explicitly required. Additionally,
the exploitation of communicative strategies allows to spread acquired information to the group, and to
share information retrieval duties among group members: in fact, as soon as communication is in place,
the individual behaviour can be refined to exploit the redundancy of the system to the maximum.

3.4 Self-assembly and autonomous role allocation

The scenario Self-assembly is an ubiquitous process in Nature. According to
Whitesides and Grzybowski (2002), it is defined as “the autonomous organisation of components
into patterns or structures without human intervention”. At the nano- or microscopic scale, the
interaction among components is essentially stochastic and depends on their shape, structure or chemical
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nature. Nature also provides many examples of self-assembly at the macroscopic scale, the most striking
being animals forming collective structures by connecting to one another. Individuals of various ant, bee
and wasp species self-assemble and manage to build complex structures such as bivouacs and ladders
(Anderson et al., 2002, Hölldobler and Wilson, 1978).

As mentioned in Section 1, the robotics community has been largely inspired from cooperative be-
haviour in animal societies when designing controllers for groups of robots that have to accomplish a
given task. In particular, self-assembly provides a novel way of cooperation in groups of robots. However,
it is important to notice that some characteristics of the hardware may impose important constraints on
the control of the modules of a self-assembling system. As argued by Tuci et al. (2006a), some hardware
platforms consist of morphologically heterogeneous modules, that can only play a predefined role in the
assembly process. In others, the hardware design does not allow, for example, the assembly of more
than two modules, or requires extremely precise alignment during the connection phase, that is, it re-
quires a great accuracy. The swarm-bot platform, thanks to its sensors and actuators and its connection
apparatus, does not severely constrain the design of control mechanisms for self-assembly. The lack of
hardware constraints and the homogeneity of the robots requires that self-assembly must be achieved
through a differentiation of roles, resulting in the definition of a s-bot-gripper (i.e., the robot that makes
the action of gripping) and a s-bot-grippee (i.e., the robot that is gripped). In work carried out within the
SWARM-BOTS project by using other control design techniques than ER, the s-bot-gripper/s-bot-grippee
differentiation was either predefined (see Groß et al., 2006), or it was based on stochastic events and a
complex communication protocol (see O’Grady et al., 2005). Thanks to the use of ER we designed con-
trol strategies for real assembling robots that are not constrained by either morphological or behavioural
heterogeneities introduced by the hardware and control method, respectively (see Ampatzis et al., 2009,
for details). Instead of a priori defining the mechanisms leading to role allocation and self-assembly, ER
allowed us to let behavioural heterogeneity emerge from the interaction among the system’s homoge-
neous components. Moreover, coordination and cooperation in self-assembly between physical robots is
achieved without requiring explicit signalling of internal states, as assumed, for example, in (Groß et al.,
2006).

Self-assembly is studied in a scenario in which two s-bots are positioned in a boundless arena at a
distance randomly generated in the interval [25 cm, 30 cm], and with predefined initial orientations. The
robots are required to get closer to each other and to physically assemble through the gripper. The agents
perceive each other through their omni-directional camera mounted on the turret, which returns rough
information about robot distance and orientation. We also make use of the an optical barrier mounted
on the gripper, which informs a robot about the presence of an object between the gripper claws. The
agent controller is composed of a continuous time recurrent neural network (CTRNN), whose control
parameters are evolved through a rank-based evolutionary algorithm.

Obtained results The results of this work prove that dynamical neural networks shaped by evolution-
ary computation techniques directly controlling the robots’ actuators can provide physical robots all the
required mechanisms to autonomously perform self-assembly. Owing to the ER approach, the assembly
is initiated and regulated by perceptual cues that are brought forth by the homogeneous robots through
their dynamical interactions. Moreover, in spite of the system being homogeneous, role allocation—i.e.,
who is the s-bot-gripper and who is the s-bot-grippee—is successfully accomplished by the robots through
an autonomous negotiation phase between the two s-bots, as confirmed by our behavioural analyses (see
Figure 5). We observed that the role allocation unfolds in time during the entire duration of a trial.
Whenever the two robots have different initial perceptions, the role that each s-bot assumes can be
predicted knowing the combination of the initial relative orientations of the robots. In other words, the
combination of relative orientations leads to a pattern of interactions among the robots with a predictable
outcome, from the observer point of view. However, a robot has no such information. Perceiving the
other robot at a specific distance and orientation does not inform a robot about the role it will assumes
at the end of the trial. In summary, whenever the initial orientations are asymmetrical, robots engage
in a role negotiation phase, and the dynamical system composed of the two interacting robots almost
always converge to the same final condition, which depends only on the initial conditions.

In those cases in which the robots start with an identical perception, symmetry does not hinder the
robots from autonomously allocating different roles to successfully accomplish their goal. The robots
engage in a dynamical interaction which eventually leads to a role assignment. However, in this case it
is not possible to predict the outcome of the role allocation process: both robots have 50% probability of
assuming the s-bot-gripper or the s-bot-grippee role. Post-evaluation tests have shown that the random
noise inherent in the system is the causal factor that drives the system through sequences of actions that
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turn out to be successful. In other words, the dynamical system composed by the two interacting robots
starts from an unstable equilibrium point, from which it can converge either to one or to the other stable
conditions, that is, one of the two alternative role allocations. It is important to notice that the symmetry
breaking is performed by exploiting randomness present in the system, which is amplified by the neural
controllers as a result of the evolutionary optimisation.

Finally, tests with real robots revealed that the evolved mechanisms proved to be robust with respect
to changes in the colour of the light displayed by the LEDs. Furthermore, the self-assembling robotic
system designed by using ER techniques exhibits recovery capabilities that could not be observed during
the artificial evolution and that were not coded or foreseen by the experimenter (Ampatzis et al., 2009).
Such a feature in our case comes for free, while in the case of (Groß et al., 2006) a recovery mechanism
had to be designed as a specific behavioural module to be activated every time the robots failed to achieve
assembly.

The lesson learned The main contribution of this work lies in the design of control strategies for
real assembling robots that are not constrained by either morphological or behavioural heterogeneities
introduced by the hardware and control method, respectively. Contrary to the modular or hand-coded
controllers described by Groß et al. (2006) and O’Grady et al. (2005), the evolutionary robotics approach
did not require the experimenter to make any a priori assumption concerning the roles of the robots dur-
ing self-assembly (i.e., either s-bot-gripper or s-bot-grippee) or about their status (e.g., either capable of
moving or required not to move). We showed with physical robots that coordination and cooperation in
self-assembly do not require explicit signalling of internal states, as assumed, for example, by Groß et al.
(2006). In other words, we present a setup that requires minimal cognitive and communicative capacities
on behalf of the robots. The absence of a priori assumptions allows evolution to exploit the dynamical in-
teraction among the robots to produce an autonomous role allocation mechanism. This can be considered
an example of a self-organising system close to a bifurcation point, in which the random fluctuations of
the system are amplified to let the system overcome the impasse given by symmetric starting conditions
and converge towards a desired solution.

4 Discussion

The experiments presented in Section 3 are representative of a coherent theoretical and methodological
approach to the synthesis of self-organising behaviours for a swarm robotics system. What are the limits
of this approach? The main problem to deal with is the evolvability of the system related to the scaling
in complexity of the collective behaviour. By practising with evolutionary swarm robotics, it appears
rather easy to evolve self-organising behaviours in which the system achieves and maintains a certain
spatio-temporal pattern. For instance, coordinated motion of the swarm-bot or synchronisation are not
particularly difficult to evolve (e.g, they require few generations, and successfull controllers are almost
always obtained), once a suitable experimental setup has been defined (see Section 3.1 and Section 3.2).
On the one hand, this is justified by the simplicity of the neural controller and the rather limited number of
free parameters that need to be optimised by the evolutionary machinery. On the other hand, the quality
of the interactions among the robots contains in itself part of the solution to the self-organisation problem.
In the whole, simple controllers and well-defined interactions represent a perfect starting point for the
evolution of self-organising behaviour. As a matter of fact, in similar conditions successful behaviours
are systematically obtained in all evolutionary runs.

The situation though is slightly different when evolution must produce self-organising systems close to
a bifurcation point, in which multiple solutions are possible as a result of the interactions, feedback loops
and randomness of the system. This is the case of the categorisation experiment, in which robots had
to take a collective decision (Section 3.3), and of the self-assembly experiment, in which complementary
roles need to emerge from the robot-robot interactions and the amplification of random fluctuations of
the system (Section 3.4). In similar conditions, evolvability is limited by the need to contemporaneously
evolve different behavioural traits, and by the presence of multiple stable conditions which create local
optima in which evolution may remain trapped. In the experiments we performed, a very large number
of generation was necessary to find a suitable solution. Also, the success rate was never close to 100%,
and some evolutionary runs resulted in partial solutions of the problem. A similar problem is experienced
with the evolution of communication, which requires the evolution of both the signal and the response
to the signal, which individually may be counter-adaptive or neutral with respect to the devised fitness
function (see Section 3.3).
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The experiments presented in Section 3.3 are interesting also from a different point of view, that is,
the influence that the individual behaviour has on the evolution of the group behaviour. Here, we can
distinguish between two different organisational levels: (i) the individual level, in which sensory-motor
coordination and integration over time support the decision-making, and (ii) the collective level, in which
information spreading through communication leads to increased group efficiency. We believe that future
directions in evolutionary swarm robotics should focus on systems characterised by multiple levels of
organisation. More complex self-organising behaviours can be obtained through a layered evolution, that
proceeds through individual sensory-motor coordination, individual categorisation abilities, communica-
tion and exploitation of the social environment, aiming at some collective intelligence. As experienced
in our experiments, each different level of organisation is supported by the lower levels, and in turns
influences their dynamics. In a swarm robotics scenario, the influences of higher organisational level on
the lower ones could be exploited to simplify the individual behaviour in favour of more robust, collective
solutions. Brought to the limit, each robot in the swarm could behave as a neuron-like device that can
move in the environment and interact, physically or through communication, with neighbouring robots,
while the swarm brings forth complex processes as a whole. In this respect, we believe that the cogni-
tive abilities of swarms should be studied and compared with those observed in the vertebrate brain, in
the attempt to find the common mechanisms that underly cognition. In this respect, robotics models of
swarm behaviour may represent extremely powerful tools for the study of swarm cognition (Trianni et al.,
2011).

Another possible direction in the study of evolutionary swarm robotics concerns the exploitation of
heterogeneous swarms, in which different types of robots are organised in swarms, which cooperate for
a collective goal. We investigated swarms of heterogeneous robots within the project Swarmanoid,1 in
which three types of robots have been studied: eye-bots, foot-bots and hand-bots. Eye-bots are robots
specialised in sensing and analysing the environment from a high position to provide an overview that
foot-bots or hand-bots cannot have. Eye-bots fly or are attached to the ceiling. Hand-bots are specialised
in moving and acting in a space zone between the one covered by the foot-bots (the ground) and the one
covered by the eye-bots (the ceiling). Hand-bots can climb vertical surfaces. Foot-bots are specialised in
moving on rough terrain and transporting either objects or other robots. They are based on the s-bot
platform, and extend it with novel functionalities. The combination of these three types of autonomous
agents form an heterogeneous swarm robotic system that is capable of operating in a 3D space.

Generally speaking, dealing with heterogeneity in a collective robotics setup often leads to speciali-
sation and team work: the task is decomposed on the basis of the different robots available, and roles
are assigned correspondingly. With heterogeneous swarms, the redundancy of the system opens the way
to various scenarios. On one extreme, the classical scenario accounts for different swarms that specialise
to particular sub-tasks, and that are loosely coupled. For instance, a swarm of eye-bots is responsi-
ble of locating areas of particular interest, for instance areas that contain objects to be retrieved. The
eye-bots direct the action of a swarm of foot-bots that collectively retrieve such objects. On the other
extreme, robots can form a swarm of homogeneous entities, where each entity is a small heterogeneous,
tightly cooperating team. For instance, two or three foot-bots can self-assemble to transport a single
hand-bot, therefore creating a small team, which can coordinate its activities within a swarm of similar
foot-bot/hand-bot teams. Between these two extreme scenarios, there can be an infinite blend of possibil-
ities for cooperating heterogeneous swarms. In this respect, ER can give a strong contribution to define
the individual behaviours, and shape the self-organisation of the heterogeneous swarm. In particular, ER
can be exploited to define the behaviour of the heterogeneous robots by evolving one controller for each
robot type. An alternative, interesting scenario consists in synthesising homogeneous controllers for het-
erogeneous robots, in which the controller adapts to the dynamics of the robot on which it is downloaded
without a priori knowledge of its type. We performed preliminary studies by evolving controllers for a
heterogeneous group of three simulated robots (Tuci et al., 2008). The agents are required to cooperate
in order to approach a light source avoiding collisions. The robots are morphologically different: two of
them are equipped with infrared sensors, one with light sensors. Thus, the two morphologically identical
robots should take care of obstacle avoidance, while the other one should take care of phototaxis. Since
all the agents can emit and perceive sound, the group’s coordination of actions is based on acoustic com-
munication. The results of this study are a “proof-of-concept”: they show that dynamic artificial neural
networks can be successfully synthesised by artificial evolution to design the neural mechanisms required
to underpin the behavioural strategies and adaptive communication capabilities demanded by this task.
Thus, ER represents a promising method that should be considered in future research works dealing

1A project funded by the Future and Emerging Technologies program of the European Community, under grant IST-

022888. See http://www.swarmanoid.org
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with the design of homogeneous controllers for groups of heterogeneous cooperating and communicating
robots.

In conclusion, based on the results obtained in past research and on the perspective of future achieve-
ments, we believe that the bidirectional influence arrow connecting ER and swarm robotics can be enforced
in both directions. ER can offer to swarm robotics a bias-free method to automatically obtain robust
and sophisticated control structures that exploits aspects of the experimental setup not always a priori
evident to the experimenter. Equally, swarm robotics can broaden the horizons of ER beyond the current
limits. In our opinion, the swarm cognition approach, as well as studies with heterogeneous swarms, are
two of the most promising directions.
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