79,866 research outputs found

    Network regularity and the influence of asycnhronism on the evolution of cooperation

    Get PDF
    In a population of interacting agents, the update dynamics defines the temporal relation between the moments at which agents update the strategies they use when they interact with other agents. The update dynamics is said to be synchronous if this process occurs simultaneously for all the agents and asynchronous if this is not the case. On the other hand, the network of contacts defines who may interact with whom. In this paper, we investigate the features of the network of contacts that play an important role in the influence of the update dynamics on the evolution of cooperative behaviors in a population of agents. First we show that asynchronous dynamics is detrimental to cooperation only when 1) the network of contacts is highly regular and 2) there is no noise in the strategy update process. We then show that, among the different features of the network of contacts, network regularity plays indeed a major role in the influence of the update dynamics, in combination with the temporal scale at which clusters of cooperator agents grow

    Degree Variance and Emotional Strategies Catalyze Cooperation in Dynamic Signed Networks

    Get PDF
    We study the problem of the emergence of cooperation in dynamic signed networks where agent strategies coevolve with relational signs and network topology. Running simulations based on an agent-based model, we compare results obtained in a regular lattice initialization with those obtained on a comparable random network initialization. We show that the increased degree heterogeneity at the outset enlarges the parametric conditions in which cooperation survives in the long run. Furthermore, we show how the presence of sign-dependent emotional strategies catalyze the evolution of cooperation with both network topology initializations.Comment: 16 Pages, Proceeding of the European Conference on Modelling and Simumatio

    Cooperation in the snowdrift game on directed small-world networks under self-questioning and noisy conditions

    Full text link
    Cooperation in the evolutionary snowdrift game with a self-questioning updating mechanism is studied on annealed and quenched small-world networks with directed couplings. Around the payoff parameter value r=0.5r=0.5, we find a size-invariant symmetrical cooperation effect. While generally suppressing cooperation for r>0.5r>0.5 payoffs, rewired networks facilitated cooperative behavior for r<0.5r<0.5. Fair amounts of noise were found to break the observed symmetry and further weaken cooperation at relatively large values of rr. However, in the absence of noise, the self-questioning mechanism recovers symmetrical behavior and elevates altruism even under large-reward conditions. Our results suggest that an updating mechanism of this type is necessary to stabilize cooperation in a spatially structured environment which is otherwise detrimental to cooperative behavior, especially at high cost-to-benefit ratios. Additionally, we employ component and local stability analyses to better understand the nature of the manifested dynamics.Comment: 7 pages, 6 figures, 1 tabl

    Evolution of ethnocentrism on undirected and directed Barabási-Albert networks

    Get PDF
    Using Monte Carlo simulations, we study the evolution of contigent cooperation and ethnocentrism in the one-move game. Interactions and reproduction among computational agents are simulated on undirected and directed Barabási-\ud Albert (BA) networks. We first replicate the Hammond-Axelrod model of in-group favoritism on a square lattice and then generalize this model on undirected and directed BA networks for both asexual and sexual reproduction cases. Our simulations demonstrate that irrespective of the mode of reproduction, ethnocentric strategy becomes common even though cooperation is individually costly and mechanisms such as reciprocity or conformity are absent. Moreover, our results indicate that the spread of favoritism toward similar others highly depends on the network topology and the associated heterogeneity of the studied population

    Emotional Strategies as Catalysts for Cooperation in Signed Networks

    Get PDF
    The evolution of unconditional cooperation is one of the fundamental problems in science. A new solution is proposed to solve this puzzle. We treat this issue with an evolutionary model in which agents play the Prisoner's Dilemma on signed networks. The topology is allowed to co-evolve with relational signs as well as with agent strategies. We introduce a strategy that is conditional on the emotional content embedded in network signs. We show that this strategy acts as a catalyst and creates favorable conditions for the spread of unconditional cooperation. In line with the literature, we found evidence that the evolution of cooperation most likely occurs in networks with relatively high chances of rewiring and with low likelihood of strategy adoption. While a low likelihood of rewiring enhances cooperation, a very high likelihood seems to limit its diffusion. Furthermore, unlike in non-signed networks, cooperation becomes more prevalent in denser topologies.Comment: 24 pages, Accepted for publication in Advances in Complex System

    How groups can foster consensus: The case of local cultures

    Full text link
    A local culture denotes a commonly shared behaviour within a cluster of firms. Similar to social norms or conventions, it is an emergent feature resulting from the firms' interaction in an economic network. To model these dynamics, we consider a distributed agent population, representing e.g. firms or individuals. Further, we build on a continuous opinion dynamics model with bounded confidence (ϵ\epsilon), which assumes that two agents only interact if differences in their behaviour are less than ϵ\epsilon. Interaction results in more similarity of behaviour, i.e. convergence towards a common mean. This framework is extended by two major concepts: (i) The agent's in-group consisting of acquainted interaction partners is explicitly taken into account. This leads to an effective agent behaviour reflecting that agents try to continue to interact with past partners and thus to keep sufficiently close to them. (ii) The in-group network structure changes over time, as agents can form new links to other agents with sufficiently close effective behaviour or delete links to agents no longer close in behaviour. Thus, our model provides a feedback mechanism between the agents' behaviour and their in-group structure. Studying its consequences by means of agent-based computer simulations, we find that for narrow-minded agents (low ϵ\epsilon) the additional feedback helps to find consensus more often, whereas for open-minded agents (high ϵ\epsilon) this does not hold. This counterintuitive result is explained by simulations of the network evolution

    Automata-based adaptive behavior for economic modeling using game theory

    Full text link
    In this paper, we deal with some specific domains of applications to game theory. This is one of the major class of models in the new approaches of modelling in the economic domain. For that, we use genetic automata which allow to buid adaptive strategies for the players. We explain how the automata-based formalism proposed - matrix representation of automata with multiplicities - allows to define a semi-distance between the strategy behaviors. With that tools, we are able to generate an automatic processus to compute emergent systems of entities whose behaviors are represented by these genetic automata
    corecore