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Abstract

We study the problem of the emergence of cooperation in dynamic signed
networks where agent strategies coevolve with relational signs and network
topology. Running simulations based on an agent-based model, we compare
results obtained in a regular lattice initialization with those obtained on a
comparable random network initialization. We show that the increased degree
heterogeneity at the outset enlarges the parametric conditions in which coop-
eration survives in the long run. Furthermore, we show how the presence of
sign-dependent emotional strategies catalyze the evolution of cooperation with
both network topology initializations.

Keywords: Evolution of cooperation, signed graphs, network dynamics,
negative ties, agent-based models, degree heterogeneity

1 Introduction and Related Literature

Cooperation among individuals is a key element for the survival and functioning of
human and many animal societies. While cooperation is socially optimal, it is difficult
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to explain its existence in a population of selfish individuals. The Prisoner’s Dilemma
(PD) is frequently used to study this puzzle as it describes the situation in which the
self interest of the individual is opposed to the emergence of cooperation. Two players
are given two alternative strategies: to cooperate or to defect. Defection guarantees a
higher payoff regardless of what the partner does and is thus the dominant strategy.
However, cooperation - if played mutually - provides higher payoffs than mutual
defection.

A natural framework in which to study the emergence of cooperative behaviour
is evolutionary game theory. This literature burgeoned following the seminar papers
of [10, 9] and [2], with a large number of contributions being dedicated to the puzzle
of cooperation (see [17] for a recent survey of this subject). One strand of this lit-
erature looks into the effects of the structure of interactions on the outcome of the
evolutionary process. In the context of the single shot PD, they find that coopera-
tion in an unstructured population of randomly interacting individuals is not viable.
Natural selection favors selfish defection, thus leading to groups composed entirely
agents playing this strategy ([22, 7]). Introducing a more stringent structure for the
social contacts and thus allowing only agents that are interconnected on a network
to interact ([11, 12]) seems to provide a solution. Indeed, structuring the interactions
increases both realism of models and the realism of conclusions allowing the survival
of cooperation in the population. When considering structured interactions, the im-
pact of network topology on the diffusion of cooperation needs can be addressed
([6, 18, 8, 13]) and the realism of model can be improved allowing the interaction
structure to co-evolve with agent strategies. In this case, chances for cooperation are
enhanced ([19, 24, 25]). More specifically, among the mechanisms that improve the
conditions of cooperation in dynamic networks are the possibility of parter selection,
exclusion of defecting agents, and exit from relationships ([20, 23, 24]).

A recent series of our ([15, 16]) and other authors’ papers ([21]), extended the
analysis of the emergence of cooperation to signed networks. We introduced the
possibility of network ties to turn positive or negative, or to be deleted and relinked
as a consequence of previous interactions. We showed that the presence of emotional
strategies - that use the emotional content implied by the relational signs in social
interactions when considering the strategy to play - is pivotal for the survival and
diffusion of cooperation. Indeed, in some cases, this strategy acts as a catalyst for
unconditional cooperation rather than gaining dominance itself. We characterized
the conditions in terms of the speed of evolution and selection pressure that allow the
emergence of cooperation. In line with the literature, we found that relatively low
rates of strategy adoptions and high rates of rewiring of stressed links are required
in order to sustain cooperation.
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In this paper, we further extend the study of the emergence of cooperation in
signed networks studying the impact of variance (or heterogeneity) in the number of
connections of agents at the outset. In particular, we compare the results obtained
on a regular lattice with those obtained on a comparable random network. We show
that the increased degree variance at the outset extends the parameters’ range under
which cooperation survives in the long run. In this sense, our results confirm and
extend those of [18], and show that networks with high heterogeneity in degrees
improve the conditions for the emergence of cooperation. Moreover, we show that
the benefits in terms of increased space for cooperation by introducing the emotional
strategy extend to both random networks and regular lattices.

In the remaining of this paper, we proceed as follows. First we discuss the char-
acteristics of the agent-based model, then we report our results, and conclude with
a brief discussion.

2 Model

We consider a population of size N , connected by an undirected and non-weighted
signed network. We restrict our interest to networks that are single components.
Each agent i ∈ {1, 2, ..., n} plays the single-shot Prisoner’s Dilemma (PD) with each
of his current neighbors, i.e. with a subset of the whole population F t

i ⊂ N . The
cardinality kt

i of F
t
i is the degree (or number of network contacts) of the agent i, at

time t. The network is signed and each tie is labelled either negative or positive.
We assume that the social network constrains the possible interactions so that

only currently connected agents can play the game together. The payoff structure of
the PD is reported in Table 1. When two agents cooperate with each other, each gets
a reward (R). When they both defect, they are both punished (P). When one agent
defects and the other cooperates, the first gets a temptation payoff (T), while his
partner obtains the sucker payoff (S). The PD is defined with payoffs T > R > P > S.
A typical additional assumption, that we adopt here, is T + S > R + P ([1]).

Table 1: The Prisoner’s Dilemma payoff matrix. The numerical payoffs used here
are the same of [1].

C D
C (R = 3, R = 3) (S = 0, T = 5)
D (T = 5, S = 0) (P = 1, P = 1)

Agents play cooperation or defection in the PD according to their type. We
consider three possible strategy types:
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• Unconditional Cooperation (UC) that always cooperates, without taking into
account the sign of the tie he shares with his interacting partner.

• Unconditional Defection (UD) that always defects.

• Conditional Action (COND) that cooperates with agents he shares a positive
tie with and defects with those he has a negative tie with1. We label this
strategy as emotional, because it is a trigger response to the valence of the
relation.

We let our agent based model to run in time steps. Steps are iterated until
an equilibrium is reached. The conditions for considering one configuration as an
equilibrium are stringent. It is required that: (1) a transitory period of 150 steps
has passed from the beginning of the simulation (2) in five randomly chosen periods
of time since (each time has a probability 0.1 to be selected) the configuration of
both relational sign, network topology and agent types needs to be precisely the
same. 2 Each time step (say t), a set of actions are performed by each agent, with
the updates being done in parallel. Agents interact with peers they were connected
with at the previous time step (t − 1) and eventual updates in signs or network
topology are observed by partners only in the following step t + 1. Following a
typical implementation of the literature, we assume that each agent plays the PD
with all agents in his first order social neighborhood (i.e. with each j ∈ F t−1

i ) and
the average payoff is used when updating the agent strategy. The interested reader
can find in [16] a discussion of the effects of using an alternative, sequential, updating
protocol.

The dynamics of our model allows for the co-evolution of network signs, agent
strategies, and network structure. At each time step, network signs and agents
behavior influence each other and the latter also affects the evolution of network
topology. More in detail, after each dyadic interaction, stressed network signs are
updated (with probabilities Pneg and Ppos) or deleted and substituted with a new
one with a certain probability (Prew). At the end of each time step, when all payoffs
are calculated, agents update their strategy to one that has been more successful in
their neighborhood, with a certain probability Padopt (see Algorithm 1).

Let’s discuss each of the elements described in Algorithm 1 more in detail.

1The opposite strategy, that of defecting with cooperators and cooperating with defectors is not
considered as deemed to be unrealistic.

2Robustness checks with alternative parametrizations have been performed and they do not
influence the results.
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for each agent i do
Compute its social neighborhood F t−1

i ∈ N ;
for each agent j ∈ F t−1

i do

Play the PD and compute payoffs;
Update the relational sign between i and j;
If tense, delete the link between i and j (with Probability Prew);

end

Compute average payoff of agent i;

end

for each agent i do
Observe the average payoffs of each agent j ∈ F t−1

i ;
Adopt the strategy of one agent with (strictly) higher payoff (with
probability Padopt);

end

Algorithm 1: Intra-step dynamics, repeated at each time step t. Details are
provided in the next paragraph.

Update of the relational sign between i and j. After each dyadic PD game,
agents might update their relational sign with each other. Given the nature of the
PD, there are three possible situations:

• Both players cooperate. In this case an existing positive connection remains
positive, while a negative one turns positive.

• Both players defect. Similarly, an existing positive relation is turned negative
and a negative one remains so.

• One agent cooperates and the other defects. In this case, the emotional content
of the relationship is subject to stress. We assume that if the link is posi-
tive, then the cooperator is frustrated to have a positive relation to a defector.
Therefore, we assume that the valence of the tie can turn negative with prob-
ability Pneg. If the link is negative, the defector might be interested in turning
it into a positive tie. We assume that it happens with probability Ppos. There
are two possible justifications for such behaviour. The first is that the defector
feels remorse or moral guilt (as suggested by [4]). The second is instead purely
selfish. The defecting partner is content to remain friends with the cooperator.
This type of relationship provides him with a strictly higher payoff, in case he
is paired with a COND player, whose action is sensitive to the sign of their
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relationship. It is logical to assume, however, that the frustration from the
cooperator is larger, therefore we impose Pneg >> Ppos.

3

Delete the link between i and j and create a new tie. An agent, frustrated
by the current behavior of the partner, may decide to delete the social connection
completely with probability Prew. In this sense, our network topology co-evolves with
agents’ strategies endogenously (similarly to [19]). Prew, called rewiring probability,
is assumed to be equal for the whole population and it non-strategic. When rewiring
takes place, once the old link is erased, a new one is created with another agent. In
line with the sociological literature ([5]), we assume that there is a tendency towards
transitive closure.4 New connections are created to friends of friends (excluding the
possibility of connections to friends of enemies, to enemies of friends, or to enemies of
enemies). In order to introduce some social noise, with a probability Prand, rewiring
takes place to a randomly selected agent in the population. 5 The network structure
evolves dynamically through rewiring. This implies that, while the initial topology
is either a regular lattice or a random network, it does not necessarily remain of this
type - and in general, it does not.

Adopt a better strategy. Agents observe their average payoffs as well as the
ones of the agents in their social neighborhood, and are thus able to measure the
relative local efficiency of their strategy. If a subset of agents in F t−1

i has a payoff at
time t higher than his own, then agent i will adopt the strategy played in t by one of
them, selected uniformly at random. Evolutionary update happens, for each agent,
with probability Padopt which is assumed to be equal for all agents.

Simulations Calibration. Concerning the initial structure of the social net-
work, we provide results for two cases. In a first set of simulations we assume that
agents are laid on a regular lattice in which every agent has precisely 16 connections
(the degree distribution is therefore degenerate as shown in the Left Panel of Figure
1). Then we introduce heterogeneity in degree distribution and we study networks
initialized as Erdős-Rényi ([3]) random graph (an example of the resulting degree
distribution is provided in the Right Panel of Figure 1). In order to make the results
comparable we impose that each pair of nodes is connected with an independent
probability Plink = 0.16 so that the degree distribution is centered around 16 with a

3For the runs reported here, we fixed Pneg = 0.2 and Ppos = 0.1. These values are assumed
equal for all agents. We run a sensitivity analysis of this parameter in [15]

4The assumption of existence of transitive closure makes the model more realistic and increase
cooperation. As shown in [15] however, our results are qualitatively robust when we relax this
assumption and consider totally random rewiring.

5This parameter is assumed to be small but positive. Its value is fixed to Prand = 0.01 in our
simulations.
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Figure 1: Degree distributions in typical networks used for initialize our simulations.
In both the regular lattice case (Left Panel) and the random network case (Right
Panel) the average number of connections per agent is 16. N = 200.

standard deviation of about 4. Moreover, agents are assigned with one of the three
strategies randomly in equal proportions. In the absence of conditional players, the
proportion of UDs and of UCs are 1/2. When CONDs are added, then the starting
proportion of each type of agent is 1/3. Finally, the relational signs are randomly
distributed and initialized so that each link has a 50

3 Results

Our aim with this study is to characterize the parameter configurations that favor
the evolution of cooperation in dynamic signed networks. We focus on the effect
of conditional (or emotional) strategy in two different network initializations: in a
regular lattice and in an Erdős-Rényi random graph. The two main dynamic forces
that operate in our model are the evolutionary pressure (Padopt) and the network
update dynamics (Prew). Our strategy is to analyze their impact, changing their
relative strength progressively. For each possible combination of the two probabilities
(each studied for values between 0 and 1 with a granularity of 0.05) we show results
concerning the average proportion (calculated in 50 simulations) of the agents and
network ties surviving at the steady state. 6

6Standard deviations are not reported here and are available upon request. The variability of
the results is quite small except in the area of the phase transition between the configurations in
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Figure 2: Effect of the competing dynamics of strategy adoption (vertical axis) and
of rewiring of stressed links (horizontal axis) on the final proportion of negative ties
in the network (Left Panels), of UDs (Central Panels) and of UCs (Right Panels).
Top Panels show results for populations initialized as equally divided between UCs
and UDs (where there are no CONDs). Lower Panels show results for populations
initialized as equally divided among the three different agent types. The social
networks are initialized as regular lattices where each agent has 16 connections. Each
datapoint is the average of 50 simulations. For each simulations N = 200 and network
signs are randomly initialized with equal probability.

Figures 2 and 3 report results for two alternative cases each. In Figure 2, the
social network is initialized so that every agent has initially the same amount of
connections, which defines a regular lattice. In Figure 3), results are shown for a
setup where degree variance is introduced and the network is initialized as an Erdős-
Rényi random network. In the Top Panels of the Figures, the population is initialized
as equally divided between unconditional cooperators and unconditional defectors.
This simulation is compared with the case (Lower Panels), in which the population
is initialized as divided equally among UCs, UDs and CONDs.

One can observe several similarities in the results from the two kinds of starting
configurations. As noted in our previous contributions ([15, 16]), and coherently
to what observed by [19], the relative speed (i.e. the probability) of the network

which cooperation survives and those where it disappears completely. Only statistically significant
phenomena are studied and discussed in the following.
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Figure 3: Effect of the competing dynamics of strategy adoption (vertical axis) and
of rewiring of stressed links (horizontal axis) on the final proportion of negative ties
in the network (Left Panels), of UDs (Central Panels) and of UCs (Right Panels).
Top Panels show results for populations initialized as equally divided between UCs
and UDs (where there are no CONDs). Lower Panels show results for populations
initialized as equally divided among the three different types of agents. The social
network are initialized as Erdős-Rényi random network with PLink = 0.16. Each
datapoint is the average of 50 simulations. Network signs are randomly initialized
with equal probability. N = 200.

topology update and of strategy adoption have two opposite effects on the viability
of cooperative strategies. Increasing the speed of adoption of better strategies favors
defection, as this is the strategy that maximizes payoffs in dyadic terms. At the
opposite, a relatively high degree of network updating leads to higher proportions of
cooperation, as it helps the formation of clusters of cooperators.

From Figures 2 and 3, we can observe that defectors suddenly lose dominance
when a certain ratio between the two dynamic forces is reached. In the case of the
regular lattice initialization without emotional strategies, the cooperation survives
if the approximate relation Prew > 2Padopt holds. The chances of cooperation are
increased for ER networs compared to a regular lattice initialization for any combi-
nation of Prew and Padopt. In this case, the condition for cooperation to survive is
Prew > 5/3Padopt(∼ 1.6Padopt).

Let’s speculate about the reason for this improvement. In the absence of CONDs,
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the only force preventing UCs from being eliminated from the network is the rewiring
of stressed ties. As we discussed, this process tends to create clusters of cooperators
that can then survive. When all agents have the same connectivity, they all require
similar amounts of time to rewire their connections to UDs, which can then spread
locally and dominate the final population. When the network is initialized as random,
some of the agents have less connections than the average, and they become isolated
from the defector faster; substituting negative stressed connections with positive ones
via transitive closure. The new connections are more likely to be with CONDs (when
present) or UCs (which cooperate at least when given the opportunity and thus tend
to develop positive ties) than with defectors, given the positive relations involved.
These agents constitute therefore the nucleus of cooperative clusters around which
more connected cooperative peers can survive.

In summary, degree heterogeneity provides time for clusters to form, even when
the ratio between Prew and Padopt is less favorable. The positive effect of the increased
heterogeneity for cooperation is stronger in more dynamic networks (higher Prew)
since agents with few connections extricate more efficiently their leverage effect on
the formation of cooperative clusters. Introducing a variability in the degrees of
the agents, thus increases the range of parameters in which cooperation survives and
diffuses in the population. This result confirms the one obtained by [18]. We consider,
however, a dynamic environment in which agent strategies co-evolve with relational
signs and network topology. Moreover, from the purely topological point of view, we
show that cooperation can be increased through heterogeneity also without recurring
alterations of the randomness of the network (such as preferential attachment or
network growth).

In both types of network initializations, when the conditions for cooperation to
survive are met and CONDs are absent, the results for different parameter combina-
tions are rather similar. They indicate that about 25% of the signs in the network
are negative and the population turns out to be equally split between UCs and UDs.
Regardless of the starting network, we observe that when cooperation survives, it
does not diffuses. In both cases, the proportion of cooperators remains similar (or
just below) its initial setup value. We can understand this result observing that
the sole driving force allowing the survival of cooperation (in the absence of emo-
tional strategies) is the rewiring of stressed links. In this sense, Prew has a purely
positive effect on cooperation and Padopt has a purely negative one. When the first
dominates, cooperation survives, when the second dominates cooperation disappears;
hence there is the sharp phase transition between the two states.

As noted in our previous work ([15]), the introduction of the COND strategy
relaxes the parametric conditions for cooperation to survive. In the context of
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this paper, we note that this happens both for the regular lattice initialization,
where the approximate condition for the survival of cooperation becomes Prew >
20/13Padopt(∼ 1.53Padopt), and for the random network where it becomes Prew >
4/3Padopt(∼ 1.3Padopt). The relative effect of introducing CONDs in the population
is thus similar in terms of the proportion of parameters in which cooperation becomes
viable and thus the two initializations can be discussed together.

Understanding this result requires a closer look at the final proportions of agents
and relational signs in the area that allows the survival of cooperation. Here, the
final proportion of UC agents ranges from 25% to 75% of the population, with this
probability decreasing monotonically as the adoption and rewiring probability in-
creases. Confronting the results regarding UCs with those regarding UDs, one can
notice that the decrease in the proportion of UCs benefits UDs little (their propor-
tion passes from a minimum of about 5% to a maximum of 17%, but much more the
conditional players (see Figure 4). In the same area, also the proportion of negative
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Figure 4: Effect of the competing dynamics of strategy adoption (vertical axis) and
of rewiring of stressed links (horizontal axis) on the final proportion conditional
(COND) agents. Left Panel: results for the regular lattice initialization. Right
Panel: results for the random network initialization

ties progressively increases from about 4% to about 25%, but never exceeds this
value. We can thus conclude that, when cooperation is viable, clusters are formed in
which CONDs and UCs are intertwined by positive links and therefore are function-
ally indistinguishable. Moreover, while in presence of conditional agents cooperative
behaviour spread in the population, the dominant type of cooperation (conditional or
unconditional) depends on the relative strength of our two main dynamic variables.

For environments with relatively low frequency of network and evolutionary up-
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dates, the COND strategy acts as a shield for UCs. When in contact with both pure
cooperators and pure defectors, agents playing this strategy tend to enjoy higher
payoffs than those who always defect (COND gets payoffs from cooperation when
interacting with the UC type, while avoiding the sucker position when interacting
with UDs), and therefore tends to replace them due to the evolutive pressure. As
the proportion of UDs decreases and segregation increases, pure cooperation becomes
the optimal strategy, as it avoids ”errors” due to the mis-interpretation of network
signs. Thus, UCs tend to diffuse at the expense of CONDs, and the final proportion
of unconditional cooperators tends to be high. At the opposite, when the two dy-
namic updates happen relatively fast, this dynamics reverse in favor of COND. When
adoption of strategies with higher payoffs is faster, the cooperation is in general more
difficult to sustain and pure defection diffuses more. Under these conditions, emo-
tional agents, being able to discern among cooperators (with whom they tend to form
positive ties) and defectors (with whom they tend to form negative ties) suffer less
sucker payoffs from pure defection than pure cooperators; which therefore tend to
disappear faster. In this more dynamic setup, the number of cooperators reduces too
fast to regain dominance later, and conditional cooperation turns out as dominant.

4 Conclusions

The problem of evolution of cooperation has been widely studied in social sciences.
Unlike most of the previous literature that considered only positive relations, we
introduced negative ties as a force that is able to influence agents behavior. We
presented results from an agent based model, where we studied the evolution of
cooperation in dynamic signed networks in which agent strategies co-evolved with
relational signs and network topology. Agents played the Prisoner’s Dilemma with
their current neighbors and the result of dyadic interactions drove the evolution of
relational signs and network relations. The average performance of a strategy across
all interactions of one individual was defined as the fitness value that determined the
evolutionary process.

In this paper, we performed an extensive simulation analysis of our model focus-
ing on the effects on the survival of cooperative strategies as (1) network topology
was varied, considering a regular lattice and a random network initialization; and
as (2) a sign dependent strategy that considers the network signs when deciding
whether to cooperate or to defect was introduced. We provided results for all pos-
sible combinations of the two main dynamic forces of this model by progressively
changing both the probability of adopting more fitting strategies and the probability
of rewiring tense connections.
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In all cases, and in line with the literature, we showed that higher strategy evo-
lution rates reduced the combinations of parameters in which cooperation survived
(favoring the dyadic dominant strategy: to defect), while increasing the rewiring
probability helped isolating cooperators from defectors thus favoring the survival of
cooperation.

Random networks provided more place for the emergence of cooperative behavior
for a larger set of parameters than regular lattices. This result is similar to the one of
[18], however our outcome follows from a different mechanism. In [18], cooperation
diffusion followed from the the presence of very connected hubs. In our setup, there
were no such hubs (degrees have a bell shaped distribution around a characteristic
degree and connections are purely random). The process allowing the diffusion of
cooperation is the presence of individuals which are less connected than the average.
By segregating early on in the simulations from defectors, these created the nuclei
around which cooperative clusters could emerge.

Extending the analysis of [15] to regular lattices, we studied the effects of the
introduction of a conditional strategy that considers the relational signs to the part-
ner to decide whether to cooperate or defect. The conditional strategy enlarged the
parametric space in which cooperation evolved. Despite the advantage of being able
to use more information, however, and regardless of the network topology adopted,
the conditional strategy gained dominance itself only in a few, rapidly changing en-
vironment (where both adoption and rewiring happened relatively frequently). In
these situations, the better performance of the COND strategy against pure defec-
tors made the spread in the population possible. When the network and strategies
were more stable, the conditional strategy acted instead as catalyst for the diffusion
of unconditionally cooperative behavior.

The work presented in this paper is a first step in understanding the role of
network topology in the diffusion of cooperation in dynamic signed networks. While
a preliminary analysis has been introduced in [14], further studies are required to
address the issue of the evolution of cooperation in non-random signed networks
systematically. In particular, more realistic network initializations, such as scale-free
and small-world networks, could be analyzed.
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The authors wish to thank the ”Lendület” program of the Hungarian Academy of
Sciences and the Centre for Social Sciences for their financial and organizational
support and three anonymous referees for their useful comments.

13



Authors Biographies

SIMONE RIGHI is currently a Research Fellow at ”Lendület” Research Center for
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