4,316 research outputs found

    Regional equivalent water thickness modeling from remote sensing across a tree cover/lai gradient in mediterranean forests of northern Tunisia

    Get PDF
    The performance of vegetation indexes derived from moderate resolution imaging spectroradiometer (MODIS) sensors is explored for drought monitoring in the forests of Northern Tunisia; representing a transition zone between the Mediterranean Sea and the Sahara Desert. We investigated the suitability of biomass and moisture vegetation indexes for vegetation water content expressed by the equivalent water thickness (EWT) in a Mediterranean forest ecosystem with contrasted water budgets and desiccation rates. We proposed a revised EWT at canopy level (EWTCAN) based on weekly field measurements of fuel moisture in seven species during the 2010 dry period, considering the mixture of plant functional types for water use (trees, shrubs and herbaceous layers) and a varying vegetation cover. MODIS vegetation indexes computed and smoothed over the dry season were highly correlated with the EWTCAN. The performances of moisture indexes Normalized Difference Infrared Index (NDII6 and NDII7) and Global Moisture Vegetation Index (GVMI6 and GVMI7) were comparable, whereas for biomass vegetation indexes, Normalized Difference Vegetation Index (NDVI), Modified Soil Adjusted Vegetation Index (MSAVI) and Adjusted Normalized Difference Vegetation Index (ANDVI) performed better than Enhanced Vegetation Index (EVI) and Soil Adjusted Vegetation Index (SAVI). We also identified the effect of Leaf Area Index (LAI) on EWTCAN monitoring at the regional scale under the tree cover/LAI gradient of the region from relatively dense to open forest. Statistical analysis revealed a significant decreasing linear relationship; indicating that for LAI less than two, the greater the LAI, the less responsive are the vegetation indexes to changes in EWTCAN; whereas for higher LAI, its influence becomes less significant and was not considered in the inversion models based on vegetation indexes. The EWTCAN time-course from LAI-adapted inversion models based on significantly-related vegetation indexes to EWTCAN showed close profiles resulting from the inversion models using NDVI, ANDVI, MSAVI and NDII6 applied during the dry season. The developed EWTCAN model from MODIS vegetation indexes for the study region was finally tested for its ability to capture the topo-climatic effects on the seasonal and the spatial patterns of desiccation/rewetting for keystone periods of Mediterranean vegetation functioning. Implications for further use in scientific developments or management are discussed

    SMOS-based algorithm to predict potential fire propagation in Europe

    Get PDF
    Desarrollo de un algoritmo de predicción de riesgo de incendios utilizando los datos de humedad del satélite SMOS y de temperatura superficial del suel

    Desertification

    Get PDF
    IPCC SPECIAL REPORT ON CLIMATE CHANGE AND LAND (SRCCL) Chapter 3: Climate Change and Land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystem

    Doctor of Philosophy

    Get PDF
    dissertationWildfire is a multifaceted, global phenomenon with ecological, environmental, climatic and socioeconomic impacts. Live fuel moisture content (LFMC) is a critical fuel property for determining fire danger. Previous research has used meteorological data and remote sensing to estimate LFMC with the goal of extending direct ground measurement. A fundemental understanding of plant physiology and spectral response toLFMC variation is needed to advance use of LFMC for fire risk management and remote sensing applications. This study integrates field samples of three species, lab measurements, remote sensing dataand statistical analysis to construct a more complete knowledge of the physical foundations of LFMC seasonalityfrom three perspectives: 1)relationships between soil moisture and LFMC; 2) spectroscopic analysis of seasonal changes in LFMC and leaf dry mass; 3) relationships between LFMC and leaf net heat content, and between leaf net heat content and remotely sensed indices. This study is the first to demonstrate a relationship between in situ soil moisture and LFMC. It also challengesthe current asumption of changing water content and stable dry matter content over time in remote sensing esimation of LFMC, showing the dominant contribution of dry matter in LFMC variation in some conifer species. The resultsdemonstrate the combination of spectroscopic data and partial least squares regression can improve modeling accuray for LFMC temporal variation, but the spectral response to changing LFMC and dry mass is difficult to seperate from broader spectral trends due to temporal change in chlorophyll, leaf structure, water and covaried biochemical components. Lastly it introducesa new vegetation variable, leaf net heat content, and demostrates its relationship with LFMC and potential for remote sensing estimation.This study will improve present capabilities of remote sensing for monitoring vegetation water stress and physiological properties. It will also advance understanding of seasonal changes in LFMC to better estimate fire danger and potential impacts of fire on ecosystems and the carbon cycle

    Google earth engine as multi-sensor open-source tool for supporting the preservation of archaeological areas: The case study of flood and fire mapping in metaponto, italy

    Get PDF
    In recent years, the impact of Climate change, anthropogenic and natural hazards (such as earthquakes, landslides, floods, tsunamis, fires) has dramatically increased and adversely affected modern and past human buildings including outstanding cultural properties and UNESCO heritage sites. Research about protection/monitoring of cultural heritage is crucial to preserve our cultural properties and (with them also) our history and identity. This paper is focused on the use of the open-source Google Earth Engine tool herein used to analyze flood and fire events which affected the area of Metaponto (southern Italy), near the homonymous Greek-Roman archaeological site. The use of the Google Earth Engine has allowed the supervised and unsupervised classification of areas affected by flooding (2013–2020) and fire (2017) in the past years, obtaining remarkable results and useful information for setting up strategies to mitigate damage and support the preservation of areas and landscape rich in cultural and natural heritage

    Monitoring live fuel moisture using soil moisture and remote sensing proxies

    Get PDF
    Live fuel moisture (LFM) is an important fuel property controlling fuel ignition and fire propagation. LFM varies seasonally, and is controlled by precipitation, soil moisture, evapotranspiration, and plant physiology. LFM is typically sampled manually in the field, which leads to sparse measurements in space and time. Use of LFM proxies could reduce the need for field sampling while potentially improving spatial and temporal sampling density. This study compares soil moisture and remote sensing data to field-sampled LFM for Gambel oak (Quercus gambelii Nutt) and big sagebrush (Artemisia tridentata Nutt) in northern Utah. Bivariate linear regression models were constructed between LFM and four independent variables. Soil moisture was more strongly correlated with LFM than remote sensing measurements, and produced the lowest mean absolute error (MAE) in predicted LFM values at most of the sites. When sites were pooled, canopy water content (CWC) had stronger correlations with LFM than normalized difference vegetation index (NDVI) or normalized difference water index (NDWI). MAE values for all proxies were frequently above 20 % LFM at individual sites. Despite this relatively large error, remote sensing and soil moisture data may still be useful for improving understanding of spatial and temporal trends in LFM

    Space Application Institute annual report 1997. EUR 18077 EN

    Get PDF

    Fire models and methods to map fuel types: The role of remote sensing.

    Get PDF
    Understanding fire is essential to improving forest management strategies. More specifically, an accurate knowledge of the spatial distribution of fuels is critical when analyzing, modelling and predicting fire behaviour. First, we review the main concepts and terminology associated with forest fuels and a number of fuel type classifications. Second, we summarize the main techniques employed to map fuel types starting with the most traditional approaches, such as field work, aerial photo interpretation or ecological modelling. We pay special attention to more contemporary techniques, which involve the use of remote sensing systems. In general, remote sensing systems are low-priced, can be regularly updated and are less time-consuming than traditional methods, but they are still facing important limitations. Recent work has shown that the integration of different sources of information andmethods in a complementary way helps to overcome most of these limitations. Further research is encouraged to develop novel and enhanced remote sensing techniques
    corecore