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ABSTRACT

Wildfire is a multifaceted, global phenomenon with ecological, environmental,
climatic and socioeconomic impacts. Live fuel moisture content (LFMC) is a critical fuel
property for determining fire danger. Previous research has used meteorological data and
remote sensing to estimate LFMC with the goal of extending direct ground measurement.
A fundemental understanding of plant physiology and spectral response to LFMC
variation is needed to advance use of LFMC for fire risk management and remote
sensing applications. This study integrates field samples of three species, lab
measurements, remote sensing data and statistical analysis to construct a more complete
knowledge of the physical foundations of LFMC seasonality from three perspectives: 1)
relationships between soil moisture and LFMC; 2) spectroscopic analysis of seasonal
changes in LFMC and leaf dry mass; 3) relationships between LFMC and leaf net heat
content, and between leaf net heat content and remotely sensed indices. This study is the
first to demonstrate a relationship between in situ soil moisture and LFMC. It also
challenges the current asumption of changing water content and stable dry matter content
over time in remote sensing esimation of LFMC, showing the dominant contribution of
dry matter in LFMC variation in some conifer species. The results demonstrate the
combination of spectroscopic data and partial least squares regression can improve
modeling accuray for LFMC temporal variation, but the spectral response to changing

LFMC and dry mass is difficult to seperate from broader spectral trends due to temporal



change in chlorophyll, leaf structure, water and covaried biochemical components. Lastly
it introduces a new vegetation variable, leaf net heat content, and demostrates its
relationship with LFMC and potential for remote sensing estimation. This study will
improve present capabilities of remote sensing for monitoring vegetation water stress and
physiological properties. It will also advance understanding of seasonal changes in
LFMC to better estimate fire danger and potential impacts of fire on ecosystems and the

carbon cycle.
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CHAPTER 1

INTRODUCTION

Wildfire is a significant disturbance in the terrestrial biosphere. It results in
significant CO; emission which contributes to climate change, carbon sink-source
conversion and ecosystem function transition (Bowman et al. 2009; Cochrane 2003; Van
Der Werf et al. 2006). It is a devastating hazard which causes considerable fatalities and
economic loss and escalates the cost of fire suppression and damage mitigation (FAO
2001). The severity and impact of fires in the United States have increased over the past
two decades, with higher large-wildfire frequency and longer fire seasons in western US
forests (Westerling et al. 2006). These are correlated with higher spring and summer
temperatures and earlier snowmelt (Running 2006). Increased temperature in the future
will likely extend fire seasons throughout the western US, with more fires occurring
earlier and later than is currently typical, and will increase the total area burned in some
regions (McKenzie et al. 2004). If climatic change increases the amplitude and duration
of extreme fire weather, we can expect significant changes in the distribution and
abundance of dominant plant species in some ecosystems. This would thus affect habitat
for sensitive plant and animal species. Thus it is important to develop scientific methods
to estimate wildfire danger for fire management and risk mitigation.

Live fuel moisture content (LFMC) is defined as the ratio of water content to dry



matter content in live vegetation. LFMC is an important fuel property controlling both
fire ignition probability and fire spread rates (Rothermel 1972). The direct measurement
of LFMC is done by collecting fresh field samples, drying them until all moisture is
evaporated, and calculating the water content using the mass difference between fresh
and dry samples (Lawson and Hawkes 1989; Pollet and Brown 2007). Field sampled
LFMC represents conditions for a vegetation type at a single site and time, and it is
difficult to extrapolate field measurements to larger regions and longer time periods.

Seasonal LFMC change is fundamentally controlled by soil water availability and
plant physiological processes. Previous studies have used meteorological data, such as
precipitation and temperature, as water-stress indicators to estimate LFMC (e.g.,
Dennison et al. 2003; Dennison and Moritz 2009). The second chapter seeks to examine
the empirical relationship between soil moisture and LFMC by field sampling two
species in Northern Utah, Gambel oak (Quercus gambelii Nutt) and big sagebrush
(Artemisia tridentata Nutt). This is the first analysis comparing in Situ soil moisture
measurements and field-collected LFMC.

Both water and dry matter change during the plant phenological cycle, resulting in
seasonal LFMC variation. Vegetation reflectance spectra change in response to variation
in plant physiological status, such as the foliar concentration of water, dry matter,
pigment, and leaf structure. Remote sensing data offer a potentially cost-effective way to
improve LFMC temporal and spatial monitoring. Previous studies have used various
empirical methods and physical-based radiative transfer modeling methods to estimate
LFMC. Common assumptions in early works were stable dry matter and varied water

content over time. However, physiological studies have shown that dry matter changes



over the growth season and dominates LFMC change in comparison to water content
(e.g., Kozlowski and Clausen 1965; Jolly et al. 2014). In the third chapter I conduct a
temporal monitoring of plant LFMC and spectroscopic data of two species, lodgepole
pine (Pinus contorta Douglas ex Loudon) and big sagebrush (Artemisia tridentata Nutt).
This study provides a more complete understanding of: 1) how water and dry matter
contribute to LFMC variation over time; 2) how spectroscopic data respond to water and
dry matter change over time.

As a ratio of water to dry matter, LFMC has been used as an indirect indicator of
fire danger. Heat content (energy produced by combustion of dry matter) is an additional
variable related to fire danger. Semi-empirical fire behavior models (e.g., Rothermel
1972) assume constant dry matter over time and across species. The findings in the third
chapter challenged this assumption. Decreasing water or increasing dry matter may result
in similar LFMC "dry-down" trends, but the potential fire danger and energy release
would be significantly different. The fourth chapter introduces a new variable, leaf net
heat content (LNHC), to capture both water and dry matter contribution to net energy
produced by combustion, serving as a complementary metric to LFMC. This chapter also
tests the possibility of using remote sensing to estimate LNHC as leaf and canopy scale.

In total, this dissertation investigated the physical foundation of LFMC from three
perspectives. It intended to explain the nature of LFMC variation and to inform new

insights for the remote sensing applications of LFMC.



CHAPTER 2

SOIL MOISTURE AND LIVE MOISTURE CONTENT

2.1 Introduction

Live fuel moisture content (LFMC) is an important fuel property for assessing fire
danger. LFMC is defined as the proportion of water content to dry matter content in live
vegetation. LFMC has been incorporated in fire danger rating systems, such as the
National Fire Danger Rating System (NFDRS) in the US (Deeming et al. 1978) and the
Canadian Forest Fire Danger Rating System (CFFDRS) (Stocks et al. 1989). LFMC can
also be used by fire behavior models to determine energy needed for ignition and fire
spread rate (Rothermel 1972). The direct measurement of LFMC is done by collecting
fresh field samples, drying them until all moisture is evaporated, and calculating the
water content using the mass difference between fresh and dry samples (Lawson and
Hawkes 1989; Pollet and Brown 2007). Field sampled LFMC represents conditions for a
vegetation species at a single site and time, and it is difficult to extrapolate field
measurements to larger regions and longer time periods.

Previous studies have used meteorological indices to estimate LFMC (Burgan et
al. 1998; Sebastian-Lopez et al. 2002; Viegas et al. 2001). Although weather data are
easily accessible, two problems still challenge meteorological indices: first,

meteorological indices assume a constant relationship between observed parameters and



LFMC; and second, meteorological data are still linked to point observations that may not
be representative of larger areas. LFMC is fundamentally controlled by the plant
physiological processes and soil water availability, so meteorological indices may not
reflect local variation in topography, soil type, precipitation, and vegetation type and
cover. Weather conditions like foehn winds can also complicate relationships between
meteorological data and LFMC.

Remote sensing data have been proposed for use in LFMC estimation to improve
spatial and temporal coverage. Most empirical studies have used band-ratio indices or
radiative transfer models (RTM) to correlate variables based on vegetation greenness or
moisture content with field-measured LFMC. Results of previous studies have varied
across study sites and species (Dennison et al. 2005; Roberts et al. 2006; Yebra et al.
2008). Another potential proxy for LFMC, soil moisture, has not previously been
compared to field-measured LFMC. My research investigates four potential proxies for
LFMC that could improve spatial and/or temporal coverage of LFMC estimation. Soil
moisture responds to precipitation and evapotranspiration, and soil moisture
measurements can be done continuously. Remote sensing provides extensive spatial
coverage with a temporal resolution similar to current LFMC sampling protocols
(Dennison et al. 2005). The objectives of this research are to: 1) examine relationships
between soil moisture and LFMC and determine whether soil moisture has potential as an
LFMC proxy, and 2) compare soil moisture to more established remote sensing indices as

proxies for LFMC estimation.



2.2 Background

Seasonal LFMC variation is controlled by precipitation, soil moisture,
evapotranspiration, and plant physiological processes. Water is transported along a water
potential gradient in the soil-plant-atmosphere continuum. The soil water potential
generally declines with decreasing soil moisture, and corresponding plant water uptake
drops due to smaller hydraulic conductance between soil and root (Schulze et al. 2005).
Soil moisture available to vegetation is controlled by soil properties, precipitation and
evapotranspiration fluxes over time scales of weeks to years. In extreme conditions rapid
decrease in LFMC can happen in days, for example, during Santa Ana winds affecting
southern California. The relationship between drought and fuel moisture is presumably
that low precipitation and/or high evapotranspiration result in lower LFMC and increase
wildfire area burned (Bessie and Johnson 1995; Chuvieco et al. 2009; Keetch and Byram
1968; Littell et al. 2009).

LFMC trends in southern California chaparral have been predicted using seasonal
precipitation (Dennison et al. 2008) and monthly precipitation terms (Dennison and
Moritz 2009). Previous studies have designed soil water indices to estimate LFMC.
Dimitrakopoulos and Bemmerzouk (2003) demonstrated a strong relationship between
Keetch Byram Drought Index (KBDI) (Keetch and Byram 1968) and LFMC for
herbaceous understory vegetation in a Mediterranean pine forest. KBDI uses precipitation
and maximum temperature to estimate the net effect of daily precipitation and
evapotranspiration on soil water balance. Dennison et al. (2003) found a strong, nonlinear
relationship between a cumulative water balance index (CWBI) model and LFMC in

chaparral. CWBI cumulatively sums precipitation and reference evapotranspiration over



time. More complex than the standard KBDI, the Dennison et al. (2003) CWBI calculated
reference evapotranspiration from a modified Penman equation (Snyder and Pruitt 1992)
using solar irradiance, air temperature, vapor pressure and wind speed, but did not take
into account plant physiological processes. No previous study has directly compared in
situ soil moisture measures to field-sampled LFMC.

Remote sensing offers a potentially cost-effective way to improve LFMC
temporal and spatial monitoring. The reflectance spectrum of vegetation contains
absorption features that result from harmonics and overtones of various foliar chemical
components (Curran 1989). At the leaf level, the typical spectral features of green
vegetation include chlorophyll absorption in the visible (400-700 nm), leaf structure
expressed in the near infrared (NIR, 700-1300 nm) and water absorption dominating in
the shortwave infrared (SWIR, 1300-2500 nm) (Bowyer and Danson 2004; Ceccato et al.
2001). At the canopy level, reflectance is a function of solar and view geometry, leaf-
level reflectance, canopy structure, and vegetation cover. As LFMC declines, visible and
SWIR reflectance generally increase while NIR reflectance decreases (Figure 2.1).
Changes in NIR reflectance and water absorption with changing LFMC can be used to
predict LFMC from remote sensing data (Chuvieco et al. 2002; Dennison et al. 2005).
Changes in indices measuring chlorophyll absorption have also been correlated with
changes in LFMC (Roberts et al. 2006; Stow et al. 2006), since vegetation greenness
measures have shown good correlation with moisture content in ecosystems such as
grasslands and shrublands.

Remote sensing data have been proven useful for estimating LFMC using

empirical methods and radiative transfer models (RTM) (Chuvieco et al. 2009). Most
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Figure 2.1 An example of field reflectance spectra (400-2500nm) for sagebrush collected
over the summer of 2005. As the line colors change from blue to red, LFMC decreases.
MODIS bands (grey) with their central wavelength (in parentheses) are also shown.

empirical studies have used regression analyses to compare vegetation indices with field-
measured LFMC (e.g., Dennison et al. 2005; Roberts et al. 2006; Stow et al. 2006). RTM
simulates the reflection, absorption, and transmission of electromagnetic radiation at leaf
and canopy scales and has been mathematically inverted to estimate canopy water content
and LFMC (Riafio et al. 2005; Trombetti et al. 2008; Yebra and Chuvieco 2009; Zarco-
Tejada 2003). Many previous papers have focused on Mediterranean vegetation, such as
chaparral in southern California (Dennison et al. 2005; Roberts et al. 2006; Serrano et al.
2000; Ustin et al. 1998), and herbaceous vegetation and shrubland in Spain (Chuvieco et
al. 2003, 2004). Yebra et al. (2008) found that empirical and RTM methods had
comparable performance for LFMC estimation in Mediterranean vegetation, but RTM

was more robust for applications across different species and sites.



2.3 Methods

I conducted this research at ten sites in northern Utah, USA (Table 2.1). Two
species, Gambel oak (Quercus gambelii Nutt) and big sagebrush (Artemisia tridentata
Nutt) were studied at five sites each (Table 2.1). These sites were chosen because they
were operational LFMC field sampling sites for the US Bureau of Land Management
(BLM) or Forest Service (USFS). The sites were within a geographic region
approximately 8800 km? in size, and cover large gradients in elevation (1582 — 2073 m),
slope (2 — 33 degrees), vegetation cover and meteorological conditions.

Field sampled LFMC data were downloaded from the National Fuel Moisture
Database = (NFMD:  http://www.wfas.net/index.php/national-fuel-moisture-database-
moisture-drought-103, last accessed in May 2014). Standard protocols for LFMC
sampling established by Pollet and Brown (2007) were followed by BLM and USFS
personnel. Live foliage and pliable small stem material (up to 0.32 cm [1/8 in] diameter)
were clipped from Gambel oak and sagebrush shrubs. Several shrubs were sampled at
different height and aspects. Samples were stored in containers with tight-fitting lids and
kept cool and dry. The samples were weighed in the field to provide wet mass, and then
were dried in a mechanical convection oven for at least 24 hours at 100 °C and reweighed
to provide dry mass. LFMC was calculated by dividing the water mass (wet mass — dry
mass) by dry mass. LFMC was generally sampled biweekly during the summer and fall
without regard for leaf age, and species names, sampling dates; LFMC values were
submitted to the NFMD.

In the summer of 2009 and 2010, soil moisture stations were installed at LFMC

sampling locations in collaboration with BLM and USFS personnel. At each site, a 15 cm



Table 2.1 Description of ten study sites in northern Utah, USA including geographic locations, species, soil texture at 20cm depth,
slope (degrees), aspect (in degrees from north), elevation (meters), soil moisture measurement start date, number of LFMC
observations, and maximum and minimum of LFMC measurements (%).

Site Latitude = Longitude Species Soil Texture Slope Aspect Elevation Start Date N LDFAIS/E( C Ll;/ll\l/lll C
Little Cottonwood ~ 40.57 -111.77 Gambel oak Loamy sand 15 208 1718 5/18/09 26 191 79
Hobble Creek 40.15 -111.54 Gambel oak Sandy loam 33 202 1910 6/6/10 14 217 76
Maple Canyon 40.13 -111.53 Gambel oak Sandy loam 29 162 1870 6/6/10 16 201 79
Squaw Peak 40.30 -111.62 Gambel oak Clay 8 50 2073 6/8/10 12 152 81
Black Cedar 38.98 -112.24 Gambel oak Clay loam 6 285 1979 6/7/10 20 231 89
Vernon 40.06 -112.33 big sagebrush Gravelly loam 2 35 1712 4/28/09 59 237 57
Mud Springs 39.88 -112.22 big sagebrush Sandy loam 6 18 1790 5/5/09 38 221 67
Muskrat 40.64 -112.65  big sagebrush Veryl f;gl"e”y 16 259 1582 6/310 36 210 63
Sevier Reservoir 39.33 -112.06 big sagebrush Sandy loam 9 44 1662 6/7/10 22 197 71
Black Cedar 38.98 -112.24 big sagebrush Clay 6 285 1979 6/7/10 22 230 78

01
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(6 in) diameter hole was dug and four Decagon 5TE probes were inserted into the hole
wall. Rocky soils prevented deep probe placement at many of the sites, so probes were
placed at all sites as follows: two at a depth of 20 cm, and two at 40 cm. Volumetric soil
water content (m®> m™) and soil temperature (°C) were recorded by a Decagon Em50 data
logger every 60 min. Measurements over 24 hour periods were averaged to provide daily
soil moisture values. Since incomplete contact with the soil can result in low measured
soil moisture, the probe with the highest average moisture at 20 cm depth was used for
further analysis. Incomplete data were available for the Black Cedar Gambel oak site
after the data logger was accidentally disconnected from the probes, likely due to
disturbance by grazing cattle.

The Terra Moderate Resolution Imaging Spectroradiometer (MODIS) surface
reflectance product MODO09A1 was used to calculate remote sensing measures.
MODO09A1 is an 8-day composite product of atmospherically corrected reflectance for
the first seven spectral bands of the MODIS instrument at 500 m spatial resolution (bands
shown in Figure 2.1). The original products were downloaded from the Oak Ridge
National Laboratory MODIS Global Subsets site (http://daac.ornl.gov/cgi-
bin/MODIS/GLBVIZ 1 Glb/modis_subset order global col5.pl, last accessed in May
2014). Cloud and bad band data were masked using a MODIS quality assurance layer.
The 500 m pixel containing each soil moisture/LFMC sampling site was extracted and
three remote-sensing based measures were calculated from MODIS bands: normalized
difference vegetation index (NDVI), normalized difference water index (NDWI) and
canopy water content (CWC). NDVI is a normalized ratio between NIR and red

reflectance (Rouse et al. 1973) that captures both chlorophyll absorption in the visible
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and leaf additive reflectance in the NIR spectral region:

Psse — Pess
Pgs6 T Pess

where the subscript indicates the band center wavelength in nm. Higher NDVI values
indicate higher chlorophyll absorption, leaf area and vegetation cover. NDWI is a
normalized ratio between a NIR band and a SWIR band that can be used for estimating
vegetation liquid water content (Gao 1996):

Pgse — P1240
Pgse T P1240

NDVI and NDWI have shown strong correlations with LFMC in previous studies
(Roberts et al. 2006; Stow et al. 2006). CWC was calculated by an inversion of a
radiative transfer model through an artificial neural network (ANN) (Trombetti et al.
2008) combined with NDVI and normalized difference indices using 1640 nm and 2130
nm as absorption bands. The Prospect-SailH radiative transfer model (Jacquemoud et al.
1995; Kuusk 1995) was used by Trombetti et al. (2008) to derive CWC. The CWC
(expressed in mm) was computed as the product of leaf area index and leaf water content,
which was defined as the theoretical thickness of a single layer of water per unit leaf area.
Modeled CWC is not equivalent to LFMC, since LFMC is dependent on the amount of
dry matter in relation to CWC. However, if dry matter remains relatively stable over
time, then CWC and LFMC should be strongly correlated.

For each site I conducted regression analyses between LFMC and each
independent variable, including soil moisture, CWC, NDVI and NDWI. Coefficient of
determination (R?) of the four bivariate linear regression models were calculated to

investigate performance of soil moisture and remote sensing proxies in explaining LFMC
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variation. I calculated the mean absolute error (MAE) for each regression model to
measure the average magnitude of LFMC estimation errors. To test the model
performance across sites and species, I applied regression models to pooled datasets
among and between species. LFMC variation is dependent on local characteristics of
individual sites. To eliminate cross-site diversity within the pooled data, an offset was
calculated for each proxy as its value subtracted by its mean value for that site, then these
offsets were pooled together from all sites. Bootstrap validation was employed to test the
robustness of each model for the pooled data. For each explanatory parameter, a random
number of observations were taken out with replacement from the samples, and a new
linear regression model was constructed. I then calculated the R?, calibration error (root
mean square error of residuals between predicted and observed LFMC of all
observations) and validation error (root mean square error of residuals between predicted
and observed LFMC of taken-out observations) of the new model. The bootstrap

validation was repeated 1000 times to examine the model robustness.

2.4 Results
Time series of LFMC demonstrated seasonal pattern of green-up in early spring
and drying down through late spring and summer. The amplitude and timing of seasonal
changes varied considerably between years. An example is provided by the Vernon big
sagebrush site (Figure 2.2). Big sagebrush LFMC measurements started at 200 % LFMC
at day 110 in 2010 and 154 % LFMC at day 103 in 2011. LFMC peaked and decreased
earlier in 2010 than 2011. Both years showed similar LFMC in late summer and a slight

increase of LFMC in the fall, but this happened about 15 days earlier in 2011. All proxies
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Figure 2.2 2010 and 2011 time series plots for the Vernon big sagebrush site. Some
remote sensing measures are missing following removal by quality assessment.
generally decreased at different rates. In 2011, soil moisture spiked due to precipitation
events in spring and then gradually declined over the season.

Strength of correlations between LFMC and the four independent variables varied
across sites (Table 2.2). Soil moisture showed positive relationships with LFMC and the
highest R? value (0.66) when averaged across all ten sites. The R? values for soil moisture

were generally higher than those for remote sensing variables, with the exception of big
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Table 2.2 R? and mean absolute error (MAE) of bivariate linear regression results
between LFMC and soil moisture or remote sensing variables.

CwcC NDVI NDWI Soil Moisture
R? MAE R? MAE R? MAE R? MAE

Site

Little Cottonwood 0.38** 17.66 0.13 2198 022" 21.65 0.63™ 14.15

Hobble Creek 0.36* 20.12 04" 1835 024 24.13 0.86™ 9.76
Maple Canyon 0.2 2177 001 2436 038 1809 0.86™ 10.72
Squaw Peak 0.7%%% 863 0.58" 9.61 0.69™ 9.77 0.89™ 5.14
Black Cedar 001 2659 018 2561 006 281 053 1845
Vernon 0.34*%** 3349 039" 31.81 0.38"™ 3398 0.65™ 2451
Mud Springs

0.6***% 2239 (.62 2236 046" 27.59 046" 28.79

Muskrat 0.39%%% 2535 075" 1544 022 31.61 041" 2287

Sevier Reservolr g gsxrx  20.06 0.46™ 197 024" 2695 063" 19.52

Black Cedar 002 3409 001 3405 002 3405 NA NA

Average of Gambeloak 3, 1969 026 1998 032 2035 075 11.64

Average of big

0.36 27.07 0.44 24.67 0.26 30.84 0.54 2392
sagebrush

Average of all sites 034 2288 035 2233 029 2559 066 17.1

Pooled Gambel oak ) jawsx 1974 001 2229 0.2 2097 0657 1331

Pooled big sagebrush ) sjuas 3750 026" 3268 024" 3408 048 20.04

Pooled all sites 027 2805 0.15™ 3145 0.8 3153 049" 23.97

N/A: No analysis due to bovine disturbance of soil moisture data logger
Significance level: ©* P<0.001, “P<0.01, " P<0.05
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sagebrush sites at Mud Springs and Muskrat. Values of R? for soil moisture were also
more stable across sites. The weakest relationship for soil moisture was for big sagebrush
at the Muskrat site, with an R? value of 0.41. The strongest relationship for soil moisture
was Gambel oak at the Squaw Peak site, where the R? of the relationship with LFMC was
0.89. Mean of MAE across all sites was lowest for soil moisture, with a mean MAE of
17.1 % LFMC. The smallest MAE was 5.14 % at the Squaw Peak Gambel oak site, while
the largest MAE was 28.79 % for big sagebrush at Mud Springs. For species averages,
Gambel oak showed higher R? and smaller MAE than big sagebrush.

Among the remote sensing measures each regression model showed wide
variation within sites of same species and between species (Figures 2.3 and 2.4). The
highest R? values of each variable were found at Squaw Peak with CWC (0.7), Muskrat
with NDVI (0.75), and Squaw Peak with NDWI (0.69). All remote sensing measures had
smaller averaged R? values than soil moisture, and multiple measures had weak
correlations with LFMC (R?< 0.2) at Maple Canyon and Black Cedar. NDVI had stronger
correlations than CWC and NDWTI at six sites, and NDVT had a slightly higher averaged
R? of 0.35. Comparing the two species, CWC and NDVI showed stronger correlations
with big sagebrush, but NDWI had a higher averaged R? with Gambel oak. MAE results
also varied across sites and proxies within a range between 8.6 % and 34 % LFMC. Mean
MAE values were 22.3 % for NDVI, 22.9 % for CWC, and 25.6 % for NDWI. Soil
moisture had smaller MAE values than the remote sensing proxies at all five Gambel oak
sites and two big sagebrush sites, except Mud Springs and Muskrat. Gambel oak had
smaller averaged MAE values for remote sensing variables than big sagebrush. Some soil

moisture values diverged from the general trends, for example, in the big sagebrush sites
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Figure 2.3 Plots of MODIS-derived CWC, NDVI, NDWI and soil moisture against
LFMC for Gambel oak sites. (a-d) Little Cottonwood Canyon, (e-h) Hobble Creek, (i-1)
Maple Canyon, (m-p) Squaw Peak, (g-t) Black Cedar. The red lines indicate best fit
linear equations.
Vernon (Figure 2.4d) and Muskrat (Figure 2.41). According to the historical weather and
soil moisture data, many abnormally high soil moisture values were observed following
precipitation events. Soil moisture was higher in the short-term, while LFMC changed
more slowly with a peak that lagged peak soil moisture (Figure 2.2).

In the regression models for pooled datasets, soil moisture showed the strongest

correlation with a R? of 0.65 for Gambel oak, 0.48 for big sagebrush and 0.49 for all sites

(Figure 2.5). Across all sites and across individual species, CWC had a higher pooled R?
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Figure 2.4 Plots of MODIS-derived CWC, NDVI, NDWI and soil moisture against

LFMC for big sagebrush sites. (a-d) Vernon, (e-h) Mud Spring, (i-1) Muskrat, (m-p)
Sevier Reservoir, (q-s) Black Cedar. The red lines indicate best fit linear equations.

than NDVI and NDWI. For remote sensing measures big sagebrush had higher pooled R?

values. Soil moisture had smaller MAE than other proxies, and Gambel oak sites had

smaller MAE than big sagebrush sites (Table 2.2). Boxplots shown in Figure 2.6
demonstrate the range of R? values, calibration errors, and validation errors from

bootstrap validation. Soil moisture showed a median R? of 0.5 across all sites, followed

by CWC, NDWI and NDVI. Soil moisture also had the smallest calibration error and

validation error. The stronger correlations with soil moisture were maintained for both
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Figure 2.5 Plots of soil moisture and MODIS-derived CWC, NDVI, and NDWTI after
offset adjustment and pooling for all 10 sites. Black circles correspond to Gambel oak,
and open circles correspond to big sagebrush.

species. The three remote sensing proxies had higher R? for big sagebrush than Gambel
oak. CWC showed consistently better performance than the two indices. NDVI had

stronger correlations than NDWI only for big sagebrush. The calibration errors and

validation errors for big sagebrush were generally larger than those for Gambel oak.

2.5 Discussion
The regression models and bootstrap validation demonstrated that soil moisture

was most strongly correlated with LFMC in both species and across sites. The median R?
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Figure 2.6 Boxplots of bootstrap validation for R? (left column), calibration error (middle
column), and validation error (right column) for Gambel oak (top row), big sagebrush
(middle row) and all sites (bottom row). The bottom and top ends of the whiskers
represent the minimum and maximum. The bottom and top of the box represent the first
and third quartiles. The band near the middle of the box represents the median.

of validation showed that about 50 % LFMC variation was explained by soil moisture in
the pooled data. The unexplained variation might be partially related to soil depth, soil
available water capacity, and plant physiological processes. The soil available water
capacity, the water content between field capacity and wilting point, is determined by soil
texture. Some Gambel oak sites had fine soil texture, like clay loam at Black Cedar and
clay at Squaw Peak. However, big sagebrush sites had coarse soil texture including sandy

loam and gravelly loam (Table 2.1). Fine soil with narrow pore spacing can hold more

water than coarse soils with wide pore spacing. Given the same meteorological
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conditions, soil at Gambel oak sites might provide more available water to support plants

than soil at big sagebrush sites. I did not have soil depth data for my sites. The minimum

root depth of big sagebrush is 40 cm, and Gambel oak is 90 cm with site-dependent
variation (USDA Plants Database: http://plants.usda.gov/java/, last accessed in May
2014). Both species have a deep taproot coupled with laterally diffused roots near the
surface, allowing plants to absorb water from both surface precipitation and the water
table several meters beneath. In addition, soil moisture may increase rapidly due to
precipitation recharge, while LFMC exhibits a lagged response. The spatial variability of
soil moisture can be influenced by small scale factors such as soil type, topography and
vegetation species, and large scale factors such as variabi