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Abstract: The performance of vegetation indexes derived from moderate resolution imaging 

spectroradiometer (MODIS) sensors is explored for drought monitoring in the forests of 

Northern Tunisia; representing a transition zone between the Mediterranean Sea and the 

Sahara Desert. We investigated the suitability of biomass and moisture vegetation indexes 

for vegetation water content expressed by the equivalent water thickness (EWT) in a 

Mediterranean forest ecosystem with contrasted water budgets and desiccation rates. We 

proposed a revised EWT at canopy level (EWTCAN) based on weekly field measurements of 

fuel moisture in seven species during the 2010 dry period, considering the mixture of plant 

functional types for water use (trees, shrubs and herbaceous layers) and a varying vegetation 

cover. MODIS vegetation indexes computed and smoothed over the dry season were highly 

correlated with the EWTCAN. The performances of moisture indexes Normalized Difference 

Infrared Index (NDII6 and NDII7) and Global Moisture Vegetation Index (GVMI6 and 

GVMI7) were comparable, whereas for biomass vegetation indexes, Normalized Difference 
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Vegetation Index (NDVI), Modified Soil Adjusted Vegetation Index (MSAVI) and Adjusted 

Normalized Difference Vegetation Index (ANDVI) performed better than Enhanced 

Vegetation Index (EVI) and Soil Adjusted Vegetation Index (SAVI). We also identified the 

effect of Leaf Area Index (LAI) on EWTCAN monitoring at the regional scale under the tree 

cover/LAI gradient of the region from relatively dense to open forest. Statistical analysis 

revealed a significant decreasing linear relationship; indicating that for LAI less than two,  

the greater the LAI, the less responsive are the vegetation indexes to changes in EWTCAN; 

whereas for higher LAI, its influence becomes less significant and was not considered in the 

inversion models based on vegetation indexes. The EWTCAN time-course from LAI-adapted 

inversion models based on significantly-related vegetation indexes to EWTCAN showed close 

profiles resulting from the inversion models using NDVI, ANDVI, MSAVI and NDII6 

applied during the dry season. The developed EWTCAN model from MODIS vegetation 

indexes for the study region was finally tested for its ability to capture the topo-climatic 

effects on the seasonal and the spatial patterns of desiccation/rewetting for keystone periods 

of Mediterranean vegetation functioning. Implications for further use in scientific 

developments or management are discussed. 

Keywords: equivalent water thickness; biomass vegetation indexes; moisture vegetation 

indexes; moderate resolution imaging spectroradiometer (MODIS); leaf area index (LAI); 

Mediterranean forests 

 

1. Introduction 

Global to regional mapping and monitoring of drought is increasingly considered for food security 

assessment in agricultural lands [1] and for numerous ecosystem processes, such as carbon fluxes, 

plant productivity [2,3] or fire risk [4]. Various indexes for monitoring drought have been developed 

on the basis of meteorological datasets (see [5] for a review). Meanwhile, drought detection from 

remote sensing has been increasingly used since the 1990s in natural and cultivated ecosystems, 

particularly with the increasing temporal frequency of satellite images assessing land cover status  

(SPOT-VEGETATION, AVHRR and MODIS). Thus, temporal tracking of water content with spectral 

measures has been widely investigated, especially in water-limited regions (e.g., [6–9]). In ecosystems 

belonging to transition zones, as is the case for the North African forests representing transition zones 

between sub-humid Mediterranean forests and the semi-arid region at the northern edge of the Sahara, 

the accurate assessment of drought by the use of remote sensing and field observations is essential to 

determine the major constraints of such ecosystems. Vegetation indexes, as the result of empirical 

combinations of reflectance in various wavelengths, had contributed in detecting changes in biomass 

status as changes in chlorophyll activity (biomass vegetation indexes, BVI) and vegetation water 

content (moisture vegetation indexes, MVI). Various studies have investigated the combination of BVI 

and MVI, especially to assess drought conditions as interannual precipitation deficit/surplus [10] or, 

more specifically, its impact on vegetation water stress (e.g., [11,12]) or fire risk [4]. By combining the  

near-infrared (NIR) and shortwave infrared (SWIR) reflectances, variations induced by leaf internal 
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structure and leaf dry matter content can be disentangled to improve the accuracy in retrieving the 

vegetation water content [13]. In turn, simulated and remotely-sensed reflectances in the SWIR 

domain can capture leaf water content at the canopy level [11,14,15]. 

For biomass monitoring, various formulations of vegetation indexes were suggested, essentially to 

discriminate vegetation densities (combining reflectances in red and NIR bands), atmospheric effects 

(adding green and blue bands) and soil background adjustments. MVI computation is based on the 

combination of NIR and SWIR wavelengths (1200 to 2100 nm), where the leaf water content plays a 

decisive role on the leaf reflectance [14]. We have summarized in Table 1 [15–20,25–28] the most 

used vegetation indexes, including their formulation and authors. BVI include, among others, NDVI 

(Normalized Difference Vegetation Index) and EVI (Enhanced Vegetation Index) for reducing 

atmospheric influence on the signal by the use of the blue spectral band, which does not saturate at 

high biomass compared to NDVI [16]. The Soil Adjusted Vegetation Index (SAVI) was developed to 

consider the reflectance of the complex soil-vegetation interaction via an adjustment factor (L = 0.5), 

shown to reduce the soil signal to a non-significant noise for many vegetation density ranges [17].  

Qi [18] proposed a modified SAVI, named Modified Soil Adjusted Vegetation Index (MSAVI), where 

the L factor is adjusted automatically to vegetation density (through an iterative function) to decrease 

the soil background effects on the vegetation signal. The Adjusted Normalized Difference Vegetation 

Index (ANDVI) combines both the adjustment of soil and atmospheric effects by the blue and green  

bands [19]. MVI indexes use multiple wavelengths in the middle infrared interval (B5 for the 

Normalized Difference Water Index (NDWI), B6 and B7 for the Normalized Difference Infrared 

Indexes (NDII6 and NDII7)) and for the Global Moisture Vegetation Indexes (GVMI6 and GVMI7), 

designed for reducing atmospheric effects [11,20,21]. Vegetation water status may be related to 

various indicators, such as “equivalent water thickness” EWT [13,22,23], allowing the leaf amount of 

water computation or the fuel moisture content (FMC), the mass of water contained within vegetation 

in relation to the dry mass [4]. Estimating EWT or FMC from remote sensing may be empirical 

(statistic-based) or physical, as indicated in [4]. Empirical methods compare field measurements of 

vegetation water content to MVI and BVI computed from multi-temporal satellite images, whereas 

physical models, known as radiative transfer models (RTM), use rather simulated reflectances or hyper 

spectral data. Optical remote sensing was also combined in other studies with passive microwave 

observations known to better succeed in canopy water content, integrating the contribution of trunk 

and branch water content (e.g., [24]). 

Table 1. Biomass and moisture remote sensing vegetation indexes (bands correspond to 

the spectral interval of MODIS of Table 2). SAVI, Soil Adjusted Vegetation Index; 

ANDVI, Adjusted Normalized Difference Vegetation Index; NDII, Normalized Difference 

Infrared Index; GVMI, Normalized Difference Infrared Index; MSAVI, Modified Soil 

Adjusted Vegetation Index. 

Biomass Vegetation Indexes References 

NDVI = (B2 − B1)/(B2 + B1) [25,26] 

EVI = 2.5 × (B2 − B1)/(B2 + 6 × B1 − 7.5 × B3 + 1) [16] 

SAVI = (B2 − B1)(1 + L)/(B2 + B1 + L), L = 0.5 [17] 

MSAVI = 0.5 × (2 × B2 + 1) − SQRT((2 × B2 + 1)^2 − 8 × (B2 − B1)) [18] 

ANDVI = (B2 − B1 + (1 + L) × (B4 − B3))/(B2 + B1 + (1 + L) × (B4 + B3)) [19] 



Remote Sens. 2015, 7 1940 
 

Table 1. Cont. 

Moisture Vegetation Indexes References 

NDWI = (B2 − B5)/(B2 + B5) [15] 

NDII6 = (B2 − B6)/(B2 + B6) [27,28] 

NDII7 = (B2 − B7)/(B2 + B7) [27,28] 

GVMI6 = [(B2 + 0.1) − (B6 + 0.02)]/[(B2 + 0.1) + (B6 + 0.02)] [20] 

GVMI7 = [(B2 + 0.1) − (B7 + 0.02)]/[(B2 + 0.1) + (B7 + 0.02)] [20] 

Table 2. MODIS products and corresponding spectral bands. 

Sensor Platform Temp. Resolution Spat Resolution Product 

MOD15A2 TERRA 16 days 1000 m LAI 

MYD15A2 AQUA 16 days 1000 m LAI 

MCD15A2 Combined TERRA/AQUA 16 days 1000 m LAI 

MOD09A1 TERRA 8 days 500 m 

B1: 620–670 nm 

B2: 841–876 nm 

B3: 459–479 nm 

B4: 545–565 nm 

B5: 1230–1250 nm 

B6: 1628–1652 nm 

B7: 2105–2155 nm 

The performance of these indexes (BVI and MVI or combined ones) has been largely investigated 

to link vegetation water content to remotely-sensed data in various climates and ecosystems.  

In Mediterranean-type ecosystems, vegetation water content was shown to be linearly related to a 

combination of BVI and MVI using either high or coarse spatial resolution images [29–31]. In  

semi-arid ecosystems, Fensholt and Sandholt [14] found a strong relationship between the MVI and 

soil moisture (Sahelian zone in Africa); Ceccato et al. [32] and, more recently, Sow et al. [33] reported 

consistent relationships between field measurements of EWT and various BVI and MVI, allowing for 

a regional assessment of the seasonal dynamic of ecosystem dryness. Similar results were reported  

by [34] in the semi-arid region of Arizona. 

However, the performance of VI as drought indicators was shown to be site-specific due to  

spatial differences in leaf and canopy characteristics, soil background, sensor characteristics and 

observation conditions [4]. Methods were then proposed to overcome this fact by modifying the linear 

regression between VI and EWT variables, accounting for the seasonal and interannual vegetation 

variability [4,30,35], as well as the species mixture and their related biophysical properties [36]. 

Considering that leaf area index (LAI) is an integrated proxy for canopy density and ecosystem water 

content capacity according to the ecohydrological equilibrium theory [37], canopy variables 

represented by LAI are also important parameters affecting the retrieval of water vegetation status 

from remote sensing vegetation indexes. Based on the Prospect simulation model [38] combined with 

canopy models, Ceccato et al. [20] showed that GVMI is suitable for retrieving vegetation water content 

when the LAI is equal to or greater than two due to the effect of soil background. Similar conclusions 

were reported in [33], who showed that the correlations between measured water vegetation content 

(EWT or FMC) and VI decreased moderately with decreasing aridity represented by increasing tree 

cover in the Sahel. Over areas with low LAI, there is a general consensus that red/NIR vegetation 
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indexes saturate and, in turn, are less efficient than in foliar-water indexes for canopy water content 

estimation [21,39,40]. 

From these identified contrasted performances of VI for monitoring vegetation moisture across 

ecosystems with varying LAI, main objectives of our study are: (1) making the assessment of the 

performance of BVI and MVI in a Mediterranean natural ecosystem at the transition zone with  

semi-arid climate conditions in Northern Africa, characterized by a heavy rainfall gradient, where 

vegetation is characterized by a low LAI and a tree density gradient associated with a significant shrub 

or grassland understory layer; (2) comparing EWT computed from seasonal field measurements 

collected in the dry season of the year 2010 across the climate gradient with VI computed from the 

MODIS sensor and testing the hypothesis that EWT is differentially correlated with VI, according to 

LAI; and (3) investigating the ability of the inversed model to reproduce comprehensive regional scale 

EWT and seasonal drought across the region. 

2. Material and Methods 

2.1. Study Area 

The study area covers the Kroumirie forest territory (2500 km2), belonging to the narrow 

Mediterranean forest band in North Africa and located at the extreme north of Tunisia (7°52 ′E–37°29 ′N 

to 9°33 ′E–36°22 ′N) between the Mediterranean Sea and the Sahara Desert (Figure 1). The region is 

mountainous with elevations ranging from 0 m on the northern coast to 1235 m. Regional climate is 

Mediterranean, where precipitation is mainly distributed in autumn, winter and spring, while summers 

are dry, with a strong north/south gradient. The northern bound of the region is influenced by its 

proximity to the Mediterranean Sea with wet (800 mm annually) and mild temperatures, the upper 

mountains are very wet (1250 mm annual rainfall) with low winter temperatures and mild summers, 

and the southern floodplain is dry (360 mm annually) with warm temperatures. Vegetation is mostly an 

evergreen Quercus suber forest, with deciduous Quercus canariensis on the upper coldest sites and 

evergreen needle leaf Pinus pinaster on the coast. Understory or burnt areas in the region are  

covered by a maquis shrubland composed of Cistus monspeliensis, Erica arborea, Arbutus unedo, 

Phillyrea latifolia, Pistacia lentiscus and Calicotome villosa, among others. 

2.2. Field Measurements for Fuel Moisture Content (FMC) 

We conducted a campaign of field measurements for FMC in 2010 during the dry summer period 

from 1 June to 28 September, according to the “reseau hydrique” method for fire risk and 

Mediterranean forest conservation in southern France [41]. 

Seven permanent plots were selected across the regional climate gradient (Table 3). For each plot, 

we selected four biological indicators of vegetation dryness: the surface leaf litter, the shallow-rooted 

evergreen shrubs (Cistus monspeliensis, Myrtus communis), the deep-rooted shrubs (Erica arborea, 

Phillyrea arborea, Pistacia lentiscus) and the deep-rooted evergreen cork oak tree (Quercus suber). 

We selected three individuals per plot and three apical twigs per individual (15/20 g fresh weight). 

Fresh vegetation samples were collected every week, around 12:00 P.M. at the hottest point during the 

day, and were inserted in a stainless metal box, hermetically sealed with a sticky and elastic band. The 
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boxes were then carried to the laboratory located in Tabarka (Institut Sylvo Pastoral). Unsealed, but  

non-open boxes (box and vegetation humid BVH) were weighted with a precision balance. Once 

weighted, open boxes were inserted in an oven at 60 °C for 24 h and  weighted again (box and vegetation 

dry BVD). Vegetation was extracted from the box, and the empty dry box was weighted on its own 

(BD). Fuel moisture content (% dry weight) was estimated according to Equation (1) (Figure 2). 

BVBVH
FM

D

BV
C

D BD





 (1) 

  
(a) (b) 

Figure 1. (a) General localization of study area. (b) Kroumirie ecoregiona and 

experimental plot localization. 

Table 3. Study plot location, elevation and vegetation characteristics. Species are composed 

of the: (1) tree layer (Qs, Quercus suber, Leaf mass area (LMA) = 0.143 kgC·m−2);  

(2) shrub layer (Ea, Erica arborea, LMA = 0.114 kgC∙m−2; Cm, Cistus monspeliensis, 

LMA = 0.149 kgC∙m−2; Au, Arbutus unedo, LMA = 0.146 kgC∙m−2; Phl,  

Phillyrea latifolia, LMA = 0.183 kgC∙m−2; Pl, Pistacia lentiscus, LMA = 0.182 kgC∙m−2; 

Mc, Myrtus communis, LMA = 0.183 kgC∙m−2); (3) Herbaceous layer litter (L, LMA= 

average (LMAi), where “i” are the species actually present in the plot). LAImin/LAImax 

derived from corrected LAI-MODIS values corresponding to the field campaign in 2010. 

Plots Longitude Latitude Elevation (m) % Cover LAImin/LAImax Species 

Ain Draham 8°41 ′14.6′′ 36°45 ′04.1′′ 643 80 2.77/2.90 Qs, Ea, Cm, Au, L 

Ain Snoussi 8°54 ′50.1′′ 36°49 ′41.3′′ 452 70 2.04/2.27 Qs, Ea, Mc, Au, L 

Beni Mtir 8°44 ′59.1′′ 36°45 ′02.1′′ 322 50 0.87/1.10 Qs, Ea, Cm, Phl, L 

Fernana 8°40 ′38.0′′ 36°41 ′29.6′′ 382 60 1.94/2.67 Qs, Ea, Cm, Phl, L 

Hammam 

Bourguiba 
8°36 ′34.0′′ 36°46 ′31.5′′ 311 50 1.84/2.21 Qs, Ea, Cm, Pl, L 

Khroufa 8°56 ′09.7′′ 36°57 ′13.1′′ 175 60 1.10/1.45 Qs, Ea, Cm, Phl, L 

Tabarka 8°42 ′10.0′′ 36°56 ′48.1′′ 195 70 2.10/2.70 Qs, Ea, Cm, Mc, Au, L 
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(a) (b) 

 
(c) (d) 

Figure 2. Weekly estimates of fuel moisture content (FMC) for (a) Quercus suber,  

(b) Cistus monspeliensis, (c) Litter, (d) Erica arborea and between June 1 and September 

28, 2010, for study plots Ain Draham (black), Ain Snoussi (red), Beni Mtir (green), 

Fernana (blue), Hammam Bourguiba (cyan), Khroufa (magenta) and Tabarka (yellow).  

2.3. Equivalent Water Thickness Calculation 

A formulation of the equivalent water thickness (EWT) was suggested by [28] (Equation (2)) at the 

leaf level, to quantify the equivalent depth of water (in mm) contained in the plants, as relevant 

information for remote sensing studies using NIR and SWIR bands [4]. At the canopy level, EWT is 

commonly computed by multiplying FMC by the amount of leaves per unit of ground area (LAI) and 

is defined as a hypothetical thickness of a single layer of water multiplied by the number of layers 

determined by the LAI [20]. 

310 ρW

FM DM
EWT

LA


  (2) 

EWT: equivalent water thickness of leaves (mm); FM: fresh matter (kg); DM: dry matter (kg);  

LA: leaf area (m2);ρw: density of pure water (1000 kg∙m−3). 

Equation (2) is valid when the ecosystem is homogeneous in terms of vegetation functioning, the 

desiccation rate of plants and the seasonality of LAI through similar phenology. Our ecosystem is 

composed of evergreen trees with tree cover ranging from 25% to 100%, with an understory of 

evergreen shrubs and a ground layer covered by annual herbaceous species drying and dying off at the 

end of spring. We are confronted here with the peculiar aspect that: (1) the surface litter, the shrub 
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layer and the tree layer have contrasted water budget functioning; and (2) the distribution of cover 

within each vegetation type varies spatially across the region. We reformulated Equation (2) into 

Equation (3) to account for EWT at canopy level EWTCAN in our mixed ecosystem composed of N 

species, admitting each a leaf mass area LMAi. 

1 1

ρ

i
CAN

i

i

W

DFM
EWT

N LA

M 
 







  (3) 

For each species “i”, Equations (4) and (5) give the FMCi (%gH2O∙gC−1) and the LMAi (kgC∙m−2). 
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i
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i
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  (5) 

When inserting Equations (4) and (5) in Equation (3), we finally get Equation (6) giving EWTCAN (m). 

  
1 1

ρ
CAN i i

W

EWT FMC LMA
N

   (6) 

As we have a unique LAI value for the whole MODIS pixel, which mixes tree/shrub LAI and 

herbaceous LAI, we decomposed LAI-MODIS based on previous observations that LAI-MODIS 

follows a seasonal pattern not matching the actual LAI variations measured on site for evergreen 

Mediterranean trees [42]. We then stated that minimum LAI-MODIS is close to tree/shrub LAI when 

the herbaceous layer is dry, so that the seasonal variation between remotely-sensed LAI and LAImin 

characterizes the herbaceous LAI variations. We derived Equation (7) from Equation (6) by 

partitioning the herbaceous and the tree components of the pixel according to tree cover COV. 

Tree/shrub leaf area was estimated as [COV × LAImin] all along the year, and the litter LAI variations 

were estimated as the [(1 − COV) × (LAI − LAImin)].  
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(7) 

EWTCAN: equivalent water thickness of the canopy in each plot (gH2O∙cm−2); LAI: leaf area index 

(m2∙m−2); LAImin: minimal leaf area index during the dry season (m2∙m−2); FMCi: FMC of each species 

(%gH2O∙gC−1); FMCLITTER: FMC of litter (%gH2O∙gC−1); LMAi: leaf mass area (inverse of SLA: 

specific leaf area) of each species (kgC∙m−2); LMALITTER: leaf mass area of litter estimated by the 

average of LMAi of species present in the plot (kgC∙m−2); COV: % vegetation cover of each plot 

(estimated visually from Google Earth images); N: total number of species in each plot; ρw: density of 

pure water (= 1000 kg∙m−3). 

2.4. MODIS Images Processing 

We used MODIS time series of preprocessed LAI (freely available at [43]) from 1-km resolution of 

16-day composite products, MOD15A2 (TERRA sensor), MYD15A2 (AQUA sensor), MCD15A2 

(combined TERRA/AQUA), and the bidirectional reflectance (MOD09A1) 500-m resolution of 8-day 
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composite product (Table 2). We compared the three MODIS LAI products to measured plots of LAI 

over the study region of Kroumirie in 2006 (refer to [44] for a detailed explanation of LAI 

measurements). The least RMSE was obtained with TERRA (RMSE = 2.36), compared to AQUA 

(RMSE = 3.24) and to TERRA/AQUA (RMSE = 3.49). However, the RMSE value remained high even 

for the TERRA product, especially for highly-covered plots (NDVI > 0.6). Thus, we suggested a 

calibration method for the TERRA-MODIS LAI product based on both ground measurements and SPOT 

images that were used as ground truth LAI maps (refer to [44] for the calibration process details). 

From visualization and profile examination, we noticed important noise due to both cloud 

contamination (in the wet season) and sensor defaults that had to be removed from all reflectance 

bands of the MOD09A1 and the derived indexes; we also noticed a systematic noise (strips) in B5 

(ρ1230–1250 nm). Therefore, it had been necessary to process time series data to suppress unusually high 

or low VI values. We used the Timesat software smoothing tool [45,46] to overcome MODIS product 

imperfections and contaminated images. This tool comprises two main processing stages. First, a 

preliminary processing is made to remove spikes and outliers due to clouds or imperfections of the 

sensor; then a filtering method is used. Two types of filtering methods are proposed in Timesat 

software: (1) Local model functions (the asymmetric Gaussians function or the double logistic 

function) that are being fit to data (VI at a given time “t”) in intervals around maxima and minima in 

the time-series; (2) adaptive Savitzky–Golay method where each VI(t) value is replaced by a linear 

combination of nearby values for (2n + 1) points, with “n” being the number of time steps preceding or 

following the time “t” [47]. The filter is adaptive since the window size “n” can be adjusted during the 

processing if there is a large variation in an interval around a given VI value; in this case, the filtering 

is redone with a smaller “n” size window. This latter filter has been used with success in minimizing 

noise in NDVI [48,49]. Our time series data of various VI had been processed within the Timesat 

software tool; we also find a better performance of the adaptive Savitzky–Golay method over the local 

model functions. Thus, the smoothing significantly corrected the abrupt changes in VI, except for 

NDWI computed from B2 and B5 bands; this latter band represents a systematic strip noise over the 

smoothed images, and thus, NDWI was further excluded from the analysis. 

Weekly reflectances MODIS images corresponding to a 2010 field campaign were processed as 

follows: we localized field plots on the referenced MODIS images and chose a relatively homogeneous 

area surrounding the plot (using Google Earth) to make comparisons between remotely-sensed data 

and EWTCAN based on field measurements. Then, within each region of interest (ROI), biomass and 

moisture indexes (BVI and MVI) were calculated in terms of basic statistics of the existing pixels 

(min, max, average, standard deviation). 

2.5. Statistical Analysis 

Relationships between EWTCAN and VI were evaluated by linear regressions with the “Lm” 

function in “R cran” software, from which we derived the intercept, slope, their corresponding  

p-values and R2 coefficients. Regressions were performed for EWTCAN data assembled at the regional 

level (All Plots) and for each of the 7 study sites (Plot). We then evaluated the linear regression 

between plot-level regression slopes and LAI of these plots with the same statistical tool, to derive the 

intercept, slope, their p-values and R2 for each remotely-sensed variable. 
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Statistical models at the All Plot and Plot level were then inversed to estimate EWTCAN at the plot 

level and at the landscape level using 8-day MODIS image time series VI. Root mean squared errors 

(RMSE) between field-derived and model-derived EWTCAN were determined for each model (All Plot 

and Plot with LAI-based relationships).  

3. Results and Discussion 

3.1. Spatial and Temporal Relationship between EWTCAN and Remotely Sensed vegetation indexes (VI) 

The relationships between estimated EWTCAN from ground measurements and VI derived from 

MODIS spectral bands are shown in Figure 3, with their corresponding regression analysis statistics 

(Table 4). In general, all indexes performed satisfactorily well, except for EVI and SAVI, which 

provided the lowest correlations. All tested MVI show strong relationships (R2 > 0.60), whereas NDVI, 

MSAVI and ANDVI show the strongest relation amongst the BVI (Table 4a). As a regional pattern 

(analysis of All Plots, Table 4a), we observe that, across the LAI gradient of the selected study plots 

with LAI varying between 1.10 and 2.90 (range of maximum values in Table 3), EWTCAN vary 

between 0 and 0.05 g∙cm−2, and all VI significantly follow a positive linear relationship with EWTCAN 

(R2 varying from 0.43 for SAVI to 0.73 for NDII7, MSAVI and ANDVI), a result consistent with 

previously reported analysis for natural and cultivated vegetation [11,23,50]. 

 

Figure 3. Regional (All Plots) relationship between equivalent water thickness at the 

canopy level (EWTCAN; g∙cm−2) and MODIS-VI indexes with the resulting fitted linear 

model (red line). Colored dots represent each of the seven study plots. 

Based on these observations, we then tested if the plot-level seasonal course of EWTCAN follows the 

same linear relationship as the generic spatial regional relationship (Table 4b, regressions by plot), so 

that this latter one can be used to estimate the seasonal variation of EWTCAN. We found most values of 

R2 to be much lower at the plot level, with the lowest value observed for the “Ain Draham” plot 
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characterized by the highest LAI (Table 3). We noticed from Figure 3 that “Beni Mtir” is away from 

the general trend of the relationship for SAVI, which includes all of the sites. Actually, the SAVI 

general correlation (Table 4a) is the lowest, with R2 = 0.43 quantifying this anomaly. This could be 

explained by the low LAI of “Beni Mtir” (Table 3) and the fact that the SAVI is a precisely sensitive 

index to soil effect. We also noticed that “Hammam Bourguiba” and “Khroufa” sites present somehow 

parallel scatterplots with the various indexes (Figure 3), but they admit different R2 values (Table 4b), 

meaning that the dispersion of points around the trend line is different for these two sites while having 

the same slope. Globally, as we found most values of R2 to be much lower at the plot level, our 

hypothesis that the regional regression can be applied to estimate the temporal course of EWTCAN across 

the season is then rejected. 

Table 4. (a) Regression of linear relation (EWTCAN, VI) by plot; (b) regression of linear 

relation (EWTCAN, VI) for all plots; (c) regression between LAI and Slope (A) for all plots. 

p_inter and p_slope are p-values of intercept and slope. 

All Plots NDVI EVI SAVI MSAVI ANDVI NDII6 NDII7 GVMI6 GVMI7 

(a) Regression Summary Table for (EWTCAN, VI) Relationship 

Intercept (B) 0.56 0.39 0.04 −0.17 0.48 0.11 0.38 0.23 0.45 
Slope (A) 4.91 3.80 7.40 6.93 4.84 4.31 6.43 3.31 4.82 

R2 0.68 0.58 0.43 0.73 0.73 0.71 0.73 0.63 0.71 
p_inter <0.01 <0.01 0.03 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
p_slope <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

(b) R2 for Plot Level (EWTCAN, VI) Relationship 

Ain Draham 0.05 0.17 0.14 0.11 0.09 0.25 0.00 0.08 0.00 
Ain Snoussi 0.35 0.43 0.60 0.62 0.60 0.84 0.31 0.51 0.30 
Beni Mtir 0.42 0.48 0.51 0.51 0.66 0.34 0.21 0.12 0.15 
Fernana 0.62 0.21 0.52 0.58 0.54 0.27 0.62 0.28 0.62 

Hammam Bourguiba 0.60 0.29 0.47 0.48 0.54 0.67 0.71 0.58 0.68 

Khroufa 0.65 0.47 0.82 0.84 0.66 0.34 0.40 0.17 0.34 
Tabarka 0.38 0.21 0.50 0.49 0.40 0.61 0.40 0.37 0.06 

(c) Regression Summary Table for the (LAI, Slope (A)) Relationship 

Intercept (β) 20.88 22.80 19.19 29.68 19.98 12.47 18.81 7.44 13.00 
Slope (α) −7.06 −8.56 −7.41 −10.39 −6.92 −3.95 −6.98 −2.14 −4.78 

R2 0.65 0.87 0.88 0.76 0.71 0.67 0.53 0.42 0.46 
p_inter <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.02 0.02 0.03 
p_slope 0.03 <0.01 <0.01 0.01 0.02 0.02 0.06 0.11 0.09 

We then hypothesized that the slopes of the regression between EWTCAN and VI were correlated to 

LAI. Table 4c represents the slopes, intercepts, p-values and R2 of the (LAI, Slope(A)) relationship for 

each study plot, with Slope (A) being the slope of the (EWTCAN, VI) linear relation given in Table 4a. 

Figure 4 represents the relationship between LAI study plots and the slope of the plot-level  

(EWTCAN, VI) relationship. First, we found that for LAI ≤ 2, the decreasing relation is significative at 

the 0.05 threshold (black dots in Figure 4) and becomes not significative for LAI greater than two. 

This suggests that for sparse vegetation (LAI ≤ 2), EWTCAN is driven by the LAI effect. For all BVI, 

we observed a significant decreasing linear relationship at the 0.05 threshold, indicating that the 
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greater the LAI, the less responsive are VI to changes in EWTCAN. However, for MVI, the (LAI,  

Slope (A)) relationship is only significant for NDII6. This was also reported in [20], who mentioned 

that the GVMI6 (from simulated reflectances) is suitable for retrieving vegetation water content when 

the LAI is equal to or greater than two, which is not the case in all of the observed sites in the study 

region. In light of our experimental results, we can conclude that BVI are correlated with EWTCAN, 

and these relations are also driven by the LAI pattern for sparse vegetation (LAI ≤ 2) that ensures the 

ecosystem’s water carrying capacity (or maximum EWTCAN); only NDII6 represents this pattern 

amongst the tested MVI. 

 

 

Figure 4. Relationship between LAI plot (X-axis) level and Slope(A) of (EWTCAN, VI)  

(Y-axis). (Red line, significant relationship p-value < 0.05; grey line, no significant 

relationship). Black dots represent significant plot-level relationships, and empty dots 

represent non-significant relationships at the 0.05 threshold for p-values. 

Our peculiar pattern of LAI-dependent (EWTCAN, VI) relationship points out the heterogeneous 

plant functioning in Mediterranean-type ecosystems. We measured contrasted species’ desiccation 

rates, including litter, in accordance with previous studies on Mediterranean vegetation [51–53]. These 

contrasted species-specific fuel moistures could partly explain the non-linearities of the (EWTCAN, VI) 

relationship as a response of LAI-dependent differential functional diversity. We might also wonder if 

the seasonal variations of LMA (see [54] for a review), as an increase in the canopy as a function of 

leaf aging [55] or the LMA decrease in the litter layer as a function of decomposition [56], could have 

substantially affected EWTCAN, so we calculated with a constant LMA, as already pointed out  

in [4,20], but which is hardly ever considered in regional-scale EWTCAN assessment from remote 

sensing. Indeed, an increase in LMA for aged leaves would enhance EWTCAN at the end of the dry 

season and, in turn, increase the (EWTCAN, VI) slope for high LAI sites. On the contrary, in lower LAI 

sites more dominated by grasslands, a decrease in litter LMA along the season could reduce EWTCAN 

and, in turn, decrease the (EWTCAN, VI) slope. These adjustments could rebalance the site-specific 

(EWTCAN, VI) relationships to the generic one to be used both spatially and temporally. Our approach 

relying on a plot-level (LAI, Slope(A)) relationship could then readjust EWTCAN, so we estimated with 
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fixed LMA, and in turn, this would prevent time-consuming LMA measurements for each measured 

FMC. This hypothesis should be further evaluated with field campaigns. 

3.2. Model Inversion for Regional EWTCAN 

Based on the highest correlations (R2 > 0.60), model retrieving of EWTCAN using VI is proposed. 

We called the MOD1 and MOD2 models, respectively, non-integrating and integrating LAI effects in 

the regression between EWTCAN and VI. Equation (8) makes use of the simple linear relation (with 

R1
2) between VI and EWTCAN, where “A” and “B” are, respectively, the slope and intercept (Table 4a).  

Equation (9) uses the slope varying with vegetation density expressed by a linear relation (with R2
2) 

with a decreasing slope when LAI increases (intercept and slope “α” and “β” from Table 4c and 

intercept “B” from Table 4a). As stated earlier (Section 3.1), the LAI pattern influences the retrieval of 

EWTCAN just in the range of LAI ≤ 2 (empty dots in Figure 4 for LAI > 2). Thus, MOD2 is appropriate 

for sparse vegetation, whereas MOD1 is proposed for LAI > 2. 

1
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VI: vegetation index (BVI or MVI); A, B: slope and intercept from Table 4a; α, β: slope and 

intercept from Table 4c. 

Table 5 summarizes inversion models for EWTCAN estimation from BVI and MVI indexes and the 

conditions of use of these models to obtain positive values of EWTCAN (last column). The comparison 

of the two models’ performance was carried out by the total RMSE computation showing the 

dispersion of both models in front of EWTCAN_FIELD and relative to the 1:1 line (Figure 5). Inversion 

models based on VI/LAI (MOD2, Equation (9)) having the strongest R1
2 and R2

2 at the same time 

produce slightly lower RMSE (underlined R1
2, R2

2 and RMSE in Table 5) compared to MOD1. This 

could be explained by the fact that most of the plots admit LAI ≤ 2, and consequently, their EWTCAN is 

more appropriately simulated by MOD2 rather than MOD1. 

The effect of LAI integration in the inversion model is highlighted in Figure 6 (comparison of 

inversion MOD1 and MOD2 for VI with both R1
2 and R2

2 > 0.60), showing that for a given value of 

VI, corresponding EWTCAN is decreasing as vegetation LAI is decreasing (for LAI ≤ 2). Consequently, 

at this range of LAI, EWTCAN is overestimated if it is determined from the VI-based inversion model 

(MOD1). Our results suggest that for a canopy characterized by reduced tree cover, LAI highly affects 

the EWTCAN value and had to be considered for a more realistic estimation in the Mediterranean 

natural vegetation areas to avoid overestimated EWTCAN. 
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Table 5. Inversion models for EWTCAN (g∙cm−2) retrieval from biomass vegetation indexes (BVI), moisture vegetation indexes (MVI) and 

LAI. R2 > 0.60 and the corresponding RMSE are underlined. Conditions imposed on VI are to avoid negative EWT values. 

MODEL1 (EQ.8) (for LAI > 2) R1
2 RMSE MODEL2 (EQ.9) (for LAI ≤ 2) R1

2/R2
2 RMSE Conditions 

𝐸𝑊𝑇𝐶𝐴𝑁_𝑀𝑂𝐷1 = 0.20(𝑁𝐷𝑉𝐼) − 0.11 0.68 8 𝐸𝑊𝑇𝐶𝐴𝑁_𝑀𝑂𝐷2 =
(𝑁𝐷𝑉𝐼) − 0.56

−7.06(𝐿𝐴𝐼) + 20.88
 0.68/0.65 7 NDVI > 0.56 

𝐸𝑊𝑇𝐶𝐴𝑁_𝑀𝑂𝐷1 = 0.26(𝐸𝑉𝐼) − 0.10 0.58 10 𝐸𝑊𝑇𝐶𝐴𝑁_𝑀𝑂𝐷2 =
(𝐸𝑉𝐼) − 0.39

−8.56(𝐿𝐴𝐼) + 22.80
 0.58/0.87 6 EVI > 0.39 

𝐸𝑊𝑇𝐶𝐴𝑁_𝑀𝑂𝐷1 = 0.14(𝑆𝐴𝑉𝐼) − 0.01 0.43 18 𝐸𝑊𝑇𝐶𝐴𝑁_𝑀𝑂𝐷2 =
(𝑆𝐴𝑉𝐼) − 0.04

−7.41(𝐿𝐴𝐼) + 19.19
 0.43/0.88 22 SAVI > 0.07 

𝐸𝑊𝑇𝐶𝐴𝑁_𝑀𝑂𝐷1 = 0.14(𝑀𝑆𝐴𝑉𝐼) + 0.02 0.73 7 𝐸𝑊𝑇𝐶𝐴𝑁_𝑀𝑂𝐷2 =
(𝑀𝑆𝐴𝑉𝐼) + 0.17

−10.39(𝐿𝐴𝐼) + 29.68
 0.73/0.76 5 MSAVI > −0.19 

𝐸𝑊𝑇𝐶𝐴𝑁_𝑀𝑂𝐷1 = 0.21(𝐴𝑁𝐷𝑉𝐼) − 0.10 0.73 7 𝐸𝑊𝑇𝐶𝐴𝑁_𝑀𝑂𝐷2 =
(𝐴𝑁𝐷𝑉𝐼) − 0.48

−6.92(𝐿𝐴𝐼) + 19.98
 0.73/0.71 6 ANDVI > 0.47 

𝐸𝑊𝑇𝐶𝐴𝑁_𝑀𝑂𝐷1 = 0.23(𝑁𝐷𝐼𝐼6) − 0.03 0.71 9 𝐸𝑊𝑇𝐶𝐴𝑁_𝑀𝑂𝐷2 =
(𝑁𝐷𝐼𝐼6) − 0.11

−3.95(𝐿𝐴𝐼) + 12.47
 0.71/0.67 8 NDII6 > 0.13 

𝐸𝑊𝑇𝐶𝐴𝑁_𝑀𝑂𝐷1 = 0.16(𝑁𝐷𝐼𝐼7) − 0.06 0.73 8 𝐸𝑊𝑇𝐶𝐴𝑁_𝑀𝑂𝐷2 =
(𝑁𝐷𝐼𝐼7) − 0.38

−6.98(𝐿𝐴𝐼) + 18.81
 0.73/0.53 12 NDII7 > 0.38 

𝐸𝑊𝑇𝐶𝐴𝑁_𝑀𝑂𝐷1 = 0.30(𝐺𝑉𝑀𝐼6) − 0.07 0.63 10 𝐸𝑊𝑇𝐶𝐴𝑁_𝑀𝑂𝐷2 =
(𝐺𝑉𝑀𝐼6) − 0.23

−2.14(𝐿𝐴𝐼) + 7.44
 0.63/0.42 10 GVMI6 > 0.22 

𝐸𝑊𝑇𝐶𝐴𝑁_𝑀𝑂𝐷1 = 0.21(𝐺𝑉𝑀𝐼7) − 0.09 0.71 8 𝐸𝑊𝑇𝐶𝐴𝑁_𝑀𝑂𝐷2 =
(𝐺𝑉𝑀𝐼7) − 0.45

−4.78(𝐿𝐴𝐼) + 13.00
 0.71/0.46 13 GVMI7 > 0.45 

 

Figure 5. Cont. 
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Figure 5. Relationship between EWTCAN_FILED from field measurements and modeled EWTCAN from the different VI from MOD1 (black dots) 

and MOD2 [red dots]). 1:1 line is shown [black line] (EWTCAN are in g∙cm−2). 

 

Figure 6. Sparse vegetation effect (LAI ≤ 2) on EWTCAN inversion models (MOD1, MOD2, R2 > 0.60) from MODIS-VI (NDVI, MSAVI, 

ANDVI and NDII6) (note that MSAVI could admit negative values). 
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3.3. Regional Analysis of EWTCAN 

From the previously-established models between remotely-sensed VI and estimated EWTCAN from 

ground measurements, we built a multi-temporal set of weekly EWTCAN for the year 2010 based on 

inversion models using indexes for which both R1
2 and R2

2 are high, these indexes are NDVI, MSAVI, 

ANDVI and NDII6. We explored the effect of LAI integration (MOD2 compared to MOD1) at the 

regional scale, where EWTCAN were averaged according to two LAI classes (LAI ≤ 1 and LAI between 

one and two). Figure 7 shows the varying profiles of EWTCAN along the dry season of the year 2010. For 

sparse vegetation (LAI ≤ 1), EWTCAN is almost null because of the high desiccation of the herbaceous 

layer (Figure 7a) (cf. litter FMC in Figure 2); for LAI between one and two, all inversion models present 

coherent results with agreement of overestimated values of EWTCAN simulated by MOD1, which does 

not consider the LAI effect. The EWTCAN time-course from LAI-adapted inversion models (based on 

significantly related VI to EWTCAN ) is illustrated in Figure 7b (for both LAI between one and two and 

LAI > 2), showing close profiles resulting from the inversion models based on the various VI (NDVI, 

ANDVI, MSAVI and NDII6) applied during the dry season (June to September 2010). In summary, the 

inversion models for retrieving EWTCAN from VI have to consider the LAI effect when applied at the 

regional scale for LAI ≤ 2. On the other hand, for LAI > 2, inversion models based on only VI are  

rather recommended. 

 

 
(a) 

Figure 7. Cont. 
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(b) 

Figure 7. Time course profiles of EWTCAN as estimated from inversion models, MOD1 

(EWT1) and MOD2 (EWT2), using the best performing VI over 2010 in the study region. 

(a) Comparison of MOD1 and MOD2 for herbaceous (LAI ≤ 1) and sparse vegetation 

(LAI between one and two); (b) comparison of MOD1 and MOD2 for sparse (LAI 

between one and two) and dense vegetation (LAI > 2). 

We finally used EWTCAN from MSAVI (presenting the highest R1
2 and R2

2 and the least RMSE at 

the plot level) to extrapolate the weekly regional mapping of EWTCAN by applying MOD1 for LAI > 2 

and MOD2 for LAI ≤ 2, as stated earlier. We presented the temporal difference in regional EWTCAN 

for spring, midsummer, end of summer and early fall, four keystone periods for Mediterranean 

vegetation functioning, representing, respectively, the start and the middle of the dry period, the early 

end of the dry period, when post-summer storms sporadically happen, and the end of the dry period, 

when large scale rainfall events refill soil water content up to field capacity. We observed contrasted 

regional patterns according to the season (Figure 8a–d) and to the topo-climate patterns represented by 

the digital elevation model (ASTER-GDEM) (Figure 8e). 

In spring (Figure 8a), drier conditions appear in the valley bottom, while higher altitudes keep 

getting wetter. Regression analysis conducted between the spring deficit maps confirms the  

altitude-dependent effect on the desiccation process with a regression coefficient between spring 

deficit and altitude maps of 0.70. This contrasted pattern might be related to the differential 

evapotranspiration (ET0) rates across topographical features [57,58], so that, in the valley bottom, with 

higher temperatures, ET0 might be higher than rainfall amounts overall, leading to increasing drought, 

while lower ET0 at higher altitudes do not compensate for water inputs from rainfall. For this period, 

the regional pattern of drought is then driven by differential ET0 according to topographical effects, 

rather than the spatial pattern of rainfall. 
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Figure 8. Time course of regional maps of EWTCAN change (g·cm −2) in spring ((a); 

between DOY 137 and 169), mid-summer ((b); between DOY 209 and 217), late summer  

((c); between DOY 241 and 257) and early fall ((d); between DOY 281 and 297). Reddish 

colors indicate drier conditions along the period, and greenish colors indicate wetter 

conditions along the period. (e) Map of the altitude of the Kroumirie region (processed from 

ASTER-GDEM). 
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In the middle of summer (Figure 8b), the entire region, whatever its topographical situation, is 

submitted to increasing drought in the absence of any rainfall event. At this time, when drought 

intensity is at its maximum and soil water content is low, the desiccation pattern is homogenized, as 

pointed out for Pinus halepensis forest under the Mediterranean climate [59,60]. 

At the end of summer (end of August) (Figure 8c), sporadic rainfalls start to happen, mostly 

dominated by a west/north incoming wet air mass from the Mediterranean Sea warmed up by the 

summer season high temperatures. The altitude-dependent effect on rewetting is also present, with a 

regression coefficient between end of summer deficit and altitude maps of 0.67. The Atlas Mountains 

act as a barrier to cloud movements, leading to rainfall pouring only on the northern part of the region, 

while the most southern hills remain dry [61]. We indeed observe a rewetting of the northern part of 

the region (green) from remote sensing for this period, while the most southern part of the region keeps 

drying off. During this period of the year, low intensity rainfalls (<10 mm), more sporadic than  

large-scale heavy events, can lead to short-term pulses with a significant impact on ecosystem water 

budgets [62]. We observed here a contrasted pattern with a significant boundary between the  

rainfall-affected and non-affected parts of the region. 

Finally, early fall changes in EWTCAN (Figure 8d) illustrate a homogeneous rewetting over the 

whole region, except high altitudes potentially already filled up to field capacity at that time and not 

submitted to rewetting. 

This seasonal pattern of desiccation/rewetting with a high spatial resolution brings useful 

information for drought monitoring and forest management trough impact assessments on local-scale 

forest functioning [63–65], tree mortality [59,66] or fire risk [67]. More particularly, this information 

brings fine-scale information on the spatial pattern of drought, hardly precisely assessed from rough 

interpolations of meteorological variables [68], particularly when rain gauges are sparse, as in Tunisia [69] 

and more generally in Africa [70], and still uncertain from global-scale remote sensing [71–73]. 

4. Conclusions 

This study investigated the suitability of biomass and moisture vegetation indexes for vegetation 

water content expressed by the equivalent water thickness for Mediterranean vegetation across a tree 

cover LAI gradient with contrasted water budgets and desiccation rates. We proposed peculiar 

adjustments for low LAI and tree cover ecosystems. First, the comparison of remote sensing (MODIS) 

to vegetation water content required a formulation of EWT at the canopy level that had to consider the 

mixture of plant functional types for water use (trees, shrubs and herbaceous layers) and a varying 

vegetation cover. The performance of moisture indexes (computed from NIR and SWIR) was 

comparable (R2 from 0.65 to 0.76), whereas for biomass vegetation indexes, MSAVI and ANDVI 

performed better than NDVI, EVI and SAVI (R2 from 0.43 to 0.73). We particularly demonstrated and 

quantified the effect of LAI on retrieving EWTCAN mentioned in [16,24,27] for regional-scale drought 

assessment under a tree cover/LAI gradient from dense to open forest. LAI adaptive inversion models 

for retrieving EWTCAN are then proposed for Mediterranean forests drought monitoring by the VI/LAI 

inversion model for moderately-covered areas and the VI inversion model for denser forests. The 

regional scale investigation of EWTCAN in 2010 derived from the MSAVI/LAI inversion model (for 

which we found the best linear fits) revealed the temporal changes in regional patterns of ecosystem 
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desiccation and rewetting along the summer season, including late summer rainfall pulses with 

scattered patterns. This integrated approach offered a fine-scale drought assessment for forest 

management when rainfall gauges are sparse and fine-scale topo-climates are hardly quantified. 
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