190 research outputs found

    Towards a Reconfiguration Service for Distributed Real-Time Java

    Get PDF
    REACTION 2012. 1st International workshop on Real-time and distributed computing in emerging applications. December 4th, 2012, San Juan, Puerto Rico.Ancient monolithic distributed systems were attached to well-known development practices and offline analysis. Current scenarios are more dynamic, and open, plenty of applications and services which appear and disappear dynamically at runtime. Likewise, these scenarios require taking into account actions that were traditionally addressed offline, this time in an online scenario. This paper contributes a reconfiguration service in the context of distributed real-time Java application as a means to include real-time reconfiguration into next generation real-time Java systems. The paper addresses the integration taking into account changes required in the API and the cost of some reconfiguration strategies.This research was partially supported by the European Commission (ARTIST2 NoE, ST-2004-004527; iLAND ARTEMIS-JU Call 1) and by the Spanish national project REM4VSS (TIN-2011-28339)

    A Methodology for Transforming Java Applications Towards Real-Time Performance

    Get PDF
    The development of real-time systems has traditionally been based on low-level programming languages, such as C and C++, as these provide a fine-grained control of the applications temporal behavior. However, the usage of such programming languages suffers from increased complexity and high error rates compared to high-level languages such as Java. The Java programming language provides many benefits to software development such as automatic memory management and platform independence. However, Java is unable to provide any real-time guarantees, as the high-level benefits come at the cost of unpredictable temporal behavior.This thesis investigates the temporal characteristics of the Java language and analyses several possibilities for introducing real-time guarantees, including official language extensions and commercial runtime environments. Based on this analysis a new methodology is proposed for Transforming Java Applications towards Real-time Performance (TJARP). This method motivates a clear definition of timing requirements, followed by an analysis of the system through use of the formal modeling languageVDM-RT. Finally, the method provides a set of structured guidelines to facilitate the choice of strategy for obtaining real-time performance using Java. To further support this choice, an analysis is presented of available solutions, supported by a simple case study and a series of benchmarks.Furthermore, this thesis applies the TJARP method to a complex industrialcase study provided by a leading supplier of mission critical systems. Thecase study proves how the TJARP method is able to analyze an existing and complex system, and successfully introduce hard real-time guaranteesin critical sub-components

    A Component Framework for Java-based Real-time Embedded Systems

    Get PDF
    Rank (CORE): A.International audienceThe Real-Time Specification for Java (RTSJ) is becoming a popular choice in the world of real-time and embedded programming. However, RTSJ introduces many non-intuitive rules and restrictions which prevent its wide adoption. Moreover, current state-of-the-art frameworks usually fail to alleviate the development process into higher layers of the software development life-cycle. In this paper we extend our philosophy that RTSJ concepts need to be considered at early stages of software development, postulated in our prior work, in a framework that provides continuum between the design and implementation process. A component model designed specially for RTSJ serves here as a cornerstone. As the first contribution of this work, we propose a development process where RTSJ concepts are manipulated independently from functional aspects. Second, we mitigate complexities of RTSJ-development by automatically generating execution infrastructure where real-time concerns are transparently managed. We thus allow developers to create systems for variously constrained real-time and embedded environments. Performed benchmarks show that the overhead of the framework is minimal in comparison to manually written object-oriented approach, while providing more extensive functionality. Finally, the framework is designed with the stress on dynamic adaptability of target systems, a property we envisage as a fundamental in an upcoming era of massively developed real-time systems

    A library for developing real-time and embedded applications in C

    Get PDF
    Next generation applications will demand more cost-effective programming abstractions to reduce increasing maintenance and development costs. In this context, the article explores the integration of an efficient programming language and high-level real-time programming abstractions. The resulting abstraction is called Embedded Cyber Physical C (ECP-C) and it is useful for designing real-time applications directly on C. The abstraction has its roots on the real-time Java: one of the most modern programming languages, which benefited from mature programming patterns previously developed for other languages. It also targets embedded processors running on limited hardware. ECP-C takes the programming abstractions described in real-time Java and reflects them into a C application system, providing extensions for multi-threading, resource sharing, memory management, external event, signaling, and memory access. It also reports on the performance results obtained in a set of infrastructures used to check ECP-C, providing clues on the overhead introduced by these mechanisms on limited infrastructures. (C) 2015 Elsevier B.V. All rights reserved.This work has been partially funded by Distributed Java Infrastructure for Real-Time Big-Data (CAS14/00118) and by eMadrid: Investigación y Desarrollo de tecnologías educativas en la Comunidad de Madrid (S2013/ICE-2715). This research was supported by the national project REM4VSS (TIN-2011-28339) and by European Union’s 7th Framework Programme Under Grant Agreement FP7-IC6-318763

    A Hierarchical Scheduling Model for Dynamic Soft-Realtime System

    Get PDF
    We present a new hierarchical approximation and scheduling approach for applications and tasks with multiple modes on a single processor. Our model allows for a temporal and spatial distribution of the feasibility problem for a variable set of tasks with non-deterministic and fluctuating costs at runtime. In case of overloads an optimal degradation strategy selects one of several application modes or even temporarily deactivates applications. Hence, transient and permanent bottlenecks can be overcome with an optimal system quality, which is dynamically decided. This paper gives the first comprehensive and complete overview of all aspects of our research, including a novel CBS concept to confine entire applications, an evaluation of our system by using a video-on-demand application, an outline for adding further resource dimension, and aspects of our protoype implementation based on RTSJ

    An evaluation of safety-critical Java on a Java processor

    Get PDF

    Techniques and Patterns for Safe and Efficient Real-Time Middleware

    Get PDF
    Over 90 percent of all microprocessors are now used for real-time and embedded applications. The behavior of these applications is often constrained by the physical world. It is therefore important to devise higher-level languages and middleware that meet conventional functional requirements, as well as dependably and productively enforce real-time constraints. Real-Time Java is emerging as a safe, real-time environment. In this thesis we use it as our experimentation platform; however, our findings are easily adapted to other similar platforms. This thesis provides the following contributions to the study of safe and efficient real-time middleware. First, it identifies potential bottlenecks and problem with respect to guaranteeing real-time performance in middleware. Second, it presents a series of techniques and patterns that allow the design and implementation of safe, predictable, and highly efficient real-time middleware. Third, it provides a set of architectural and design patterns that application developers can use when designing real-time systems. Finally, it provides a methodology for evaluating the merits and benefits of real-time middleware. Empirical results are presented using that methodology for the techniques presented in this thesis. The methodology helps compare the performance and predictability of general, real-time middleware platforms

    Exhaustive testing of safety critical Java

    Get PDF
    With traditional testing, the test case has no control over non-deterministic scheduling decisions, and thus errors dependent on scheduling are only found by pure chance. Java Path Finder (JPF) is a specialized Java virtual machine that can systematically explore execution paths for all possible schedulings, and thus catch these errors. Unfortunately, execution-based model checkers, including JPF, cannot be easily adapted to support real-time programs. We propose a scheduling algorithm for JPF which allows testing of Safety Critical Java (SCJ) applications with periodic event handlers at SCJ levels 0 and 1 (without aperiodic event handlers). The algorithm requires that deadlines are not missed and that there is an execution time model that can give best- and worst-case execution time estimates for a given program path and specific program inputs. Our implementation, named R SJ, allows to search for scheduling dependent memory access errors, certain invalid argument errors, priority ceiling emulation protocol violations, and failed assertions in application code in SCJ programs for levels 0 and 1. It uses the execution time model of the Java Optimized Processor (JOP). We test our tool wit
    corecore