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Over 90 percent of all microprocessors are now used for real-time and embedded

applications. The behavior of these applications is often constrained by the physical world.

It is therefore important to devise higher-level languages and middleware that meet conven-

tional functional requirements, as well as dependably and productively enforce real-time

constraints.

Real-Time Java is emerging as a safe, real-time environment. In this thesis we use it

as our experimentation platform; however, our findings are easily adapted to other similar

platforms.

This thesis provides the following contributions to the study of safe and efficient

real-time middleware. First, it identifies potential bottlenecks and problem with respect to

guaranteeing real-time performance in middleware.



Second, it presents a series of techniques and patterns that allow the design and

implementation of safe, predictable, and highly efficient real-time middleware.

Third, it provides a set of architectural and design patterns that application develop-

ers can use when designing real-time systems.

Finally, it provides a methodology for evaluating the merits and benefits of real-time

middleware. Empirical results are presented using that methodology for the techniques pre-

sented in this thesis. The methodology helps compare the performance and predictability

of general, real-time middleware platforms.
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Chapter 1

Introduction

1.1 Introduction

Current Challenges. The vast majority of all microprocessors are now used for em-

bedded systems, in which computer processors control physical, chemical, or biological

processes or devices in real-time. Examples of such systems include telecommunication

networks (e.g., wireless phone services), tele-medicine (e.g., remote surgery), manufac-

turing process automation (e.g., hot rolling mills), and defense applications (e.g., avionics

mission computing systems). These real-time embedded systems are increasingly being

connected via wireless and wireline networks.

Designing real-time embedded systems that implement their required capabilities,

are safe, dependable and predictable, and are parsimonious in their use of limited comput-

ing resources is hard; building them on time and within budget is even harder. Moreover,

due to global competition for marketshare and engineering talent, many companies are now

also faced with the problem of developing and delivering new products in short timeframes.

It is therefore essential that the production of real-time embedded systems take advantage

of languages, middleware, tools, and methods that enable higher software productivity,

without unduly degrading the quality of service (QoS).

Another issue currently faced by most of the IT industry is the high cost of software

maintenance, which, for long lived systems (for instance, Air Traffic Control Systems live

for 20-25 years or more), is the largest contributor to software cost. To provide the reader

with a feel of the order of magnitude, it is sufficient to consider that in most enterprises,

the cost of software production is around $20 per line of code [6], and maintenance can be
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accounted for more than the 65% of the total software cost (often 80% in very long lived

systems). The relationship between the cost of initial software development and software

maintenance should make apparent that a key way of saving money for the IT industry is

to invest in making system maintenance as inexpensive as possible.

Finally, most real-time embedded systems such as Flight Control Software, Nuclear

Plan Control Software, Air Traffic Control systems, etc., have very stringent safety require-

ments. Assuring an appropriate safety level can be quite expensive in term of effort and

cost; thus, being able to offload some of the developer responsibility to the middleware

platform makes it time and cost effective to develop safety critical systems. For instance,

the use of a safe language such as JavaTM [32], has a positive impact on the software safety

assurance, since some types of faults, e.g. those due to memory management, cannot hap-

pen.

From the above, it should be apparent that the current IT industry could take great

advantage of a safe and efficient middleware platform that allows the reduction of costs

associated with development, maintenance and safety assurance. While Java has partly

solved the problem for the business IT industry, these same problems still need to be tackled

in the real-time and embedded industry.

The State of the Art. Many real-time embedded systems are still developed in C, and

increasingly in C++. While writing in C and C++ is more productive than assembly code,

they are not the most productive or safe programming languages. A key source of errors

in C/C++ stems from their memory management mechanisms, which require programmers

to allocate and deallocate memory manually. Moreover, C++ is a feature rich, complex

language with a steep learning curve, which makes it hard to find and retain experienced

real-time embedded developers who are trained to use it well.

Real-time embedded software should ultimately be synthesized from high-level

specifications expressed with domain-specific modeling tools [44]. Until those tools ma-

ture, however, a considerable amount of real-time embedded software still needs to be

programmed by software developers. Ideally, these developers should use programming

languages and middleware that shield them from many accidental complexities, such as

type errors, memory management, real-time scheduling enforcement, and steep learning

curves.

The Road Ahead. As described above, industries operating in the real-time embedded

segment, are still mostly using development environments bases on C/C++. While the
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transition to C++ is somewhat recent for some of these industries, many of them are already

looking at safer, more productive and maintainable software infrastructure on which to

base their next generation systems. In this domain, Java has raised a lot of interest, mostly

because of its rapidly growing programmer base, its simplicity, its safety, and especially its

cheaper maintenance cost when compared to C/C++. To this end, published studies [39]

on productivity and reported defect rates, show the ratio of C++ bugs-per-KSLOC to Java

bugs-per-KSLOC as being in the range 2.5 to 3.5. C++ generates between 15% and 50%

more defects per KSLOC. C++ produces between 200% and 300% more bugs per hour.

Java is also between 30% and 200% more productive, in terms of lines of code per minute.

However, conventional Java implementations are unsuitable for developing real-

time embedded systems, mostly due to the following problems:

• The scheduling of Java threads is purposely underspecified to make it easy to develop

Java Virtual Machine (JVM)s for new platforms.

• Most of Java garbage collectors work in a stop the world and collect fashion, in which

the garbage collector has to stop all the running threads before attempting to reclaim

dead storage. Other types of garbage collectors take a less restrictive approach, but

most of the precise garbage collectors known in literature [31] are not sufficiently

predictable to meet the needs of real-time systems.

• Java provides coarse-grained control over memory allocation and access, i.e., it al-

lows applications to allocate objects on the heap, and provides no control over the

type of memory in which objects are allocated, e.g. DMA etc.

• Due to its interpreted origins, the performance of JVM middleware has historically

lagged that of equivalent C/C++ programs by an order of magnitude or more.

To address these problems, the Real-time Java Experts Group has defined the Real-Time

Specification for Java (RTSJ) [8], which provides the following capabilities:

• New memory management models that can be used in lieu of garbage collection.

• Access to raw physical memory.

• A higher resolution time granularity suitable for real-time systems.

• Stronger guarantees on thread semantics when compared to regular Java, i.e., the

most eligible runnable thread is always run.
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Thesis Scope The goal of this thesis is that of investigating techniques and patterns for

implementing safe and efficient middleware platforms, and empirically evaluating its pre-

dictability and performances. Since the most interesting emerging standard for safe, real-

time middleware is The Real-Time Specification for Java (RTSJ), we have constrained our

research space to this domain. Key findings will be reusable in any safe, real-time middle-

ware, since the forces that have to be solved would be similar, and the overall architecture

of the system might be very similar to the one used for building effective RTSJ middleware.

1.2 Related Work

Although the RTSJ was adopted fairly recently [8], there is already a number of research

projects investigating how to make this platform effective. At the current time there is

great interest around this platform, since it has great potential as a candidate for a safe

middleware platform. The most interesting projects working on this topic are the following:

• FLEX [36] provides a Java compiler written in Java, along with an advanced code

analysis framework. FLEX generates native code for StrongARM or MIPS proces-

sors, and can also generate C code. It uses advanced analysis techniques to auto-

matically detect the portions of a Java application that can take advantage of certain

real-time Java features, such as memory areas or real-time threads.

• The OVM [38] project is developing an open-source JVM framework for research on

the RTSJ and programming languages. The OVM virtual machine is written entirely

in Java and its architecture emphasizes customizability and pluggable components.

Its implementation strives to maintain a balance between performance and flexibil-

ity, allowing users to customize the implementation of operations such as message

dispatch, synchronization, and field accesses. OVM allows dynamic updates of the

implementation of instructions on a running VM.

• Work on real-time storage allocation and collection [22] is being conducted at Wash-

ington University, St. Louis. The main goal of this effort is to develop new algo-

rithms and architectures for memory allocation and garbage collection that provide

worst-case execution bounds suitable for real-time embedded systems.

• The Real-Time Java for Embedded Systems (RTJES) program [30] is working to

mature and demonstrate real-time Java technology. A key objective of the RTJES

program is to assess important real-time capabilities of real-time Java technology via
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a comprehensive benchmarking effort. This effort is examining the applicability of

real-time Java within the context of real-time embedded system requirements derived

from Boeing’s Bold Stroke avionics mission computing architecture [43].

1.3 Thesis Organization

The rest of this thesis is organized as follows:

• Chapter 2 presents an overview of the RTSJ, by concentrating on those features that

are more relevant to the scope of this work.

• Chapter 3 provides an explanation on the RTSJ programming model, and reports a

series of key pattern for the development of RTSJ-based applications.

• Chapter 4 systematically highlights the limitations of the RTSJ that make it difficult

for it to be a truly safe and efficient real-time platform, and provides solutions in

terms of new algorithms or data structures. This chapter also provide a catalog of

key idioms and patterns used to implement safe and efficient RTSJ middleware.

• Chapter 5 provides an overview of a series of proposed extensions to the RTSJ, and

justifies the rationale behind each proposed extension.

• Chapter 6 introduces the benchmarking suite RTJPerf and provides an in depth per-

formance evaluation of some of the most representative RTSJ platform.

• Chapter 7 provides some concluding remarks and outline a possible path for future

research and development.
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Chapter 2

Overview of Real-Time Java

2.1 Introduction

The RTSJ [8] extends the Java platform by providing additional APIs and refining the

semantics of certain constructs. The additions and semantical refinements provided by the

RTSJ are meant to enable the development of a vast class of real-time systems, ranging

from soft to hard-real-time systems.

As motivated in the RTSJ specification, the guiding principles that were taken into

consideration when designing it, were the following:

• Applicability to particular Java environments. The RTSJ should not be bound to

a particular development environment such as J2SE or J2ME etc. Instead it should

be equally applicable to all Java environments.

• Backward compatibility. Existing Java application should be able to run on RTSJ

compliant JVMs, as if they were running on a regular JVM, thus not noticing any

difference.

• Write Once, Run Anywhere. While the RTSJ recognizes the importance of Write

Once, Run Anywhere (WORA), what it sets are its foremost goal is the execution

predictability of RTSJ applications. Thus, it relies on the more relaxed Write Once

Carefylly, Run Anywhere Conditionally (WOCRAC).

• Current Practice vs. Advanced Features. The RTSJ while treasuring from com-

mon practices, should not preclude future implementation of advanced features.



7

• Predictable Execution. The first and foremost goal of the RTSJ is predictable exe-

cution. Predictability should always come first then any other general purpose com-

puting performance measures.

• No Syntactic Extensions. The RTSJ shall not include nor require any syntactic

extension to the Java language.

• Allow Variation in Implementation Decisions. The RTSJ recognizes that different

implementors might decide to implement different subsets of the specification as

well as use different techniques to build their real-time JVM. The only mandatory

compliance point, other than a minimum subset of features, is the semantics of the

RTSJ is maintained.

The reminder of this chapter will provide an overview of the RTSJ. In order to

understand the forces that drove certain of the RTSJ decision, it will be important to keep

in mind the design constraint that were outlined above.

2.2 Threads, Scheduling and Synchronization

The Java language provides built-in support for multi-threading and synchronization; how-

ever the shortcomings described below limit the usage of these features in the context of

real-time and embedded systems:

• Java threads can be preempted by the garbage collector for an unpredictable amount

of time.

• The scheduling of Java threads is under specified 1.The Java scheduler, while priority

-based, is not guaranteed to be priority preemptive, e.g., it is not guaranteed that the

highest priority runnable thread will be scheduled for execution.

• There is no support for specifying the execution characteristics of a thread, e.g., pe-

riodicity, release characteristics, cost etc.

• Java’s synchronization abstractions do not provide any provision to limit priority

inversion, such as priority ceiling, priority inheritance.

1This underspecification was introduced intentionally to make it possible to implement a Java VM effi-
ciently on as many platform as possible.
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To address these limitations, and to provide a set of usable abstractions to real-time

Java developers, the RTSJ extends the Java support for threading, synchronization, and

scheduling so to allow complete control over thread execution, scheduling, and synchro-

nization. In the remainder of this Chapter we provide an overview of the specific extension

provided by the RTSJ on threading, scheduling and synchronization.
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Figure 2.1: RTSJ Scheduling APIs.

2.2.1 Real-Time Java Scheduling

The RTSJ extends Java platform scheduling by introducing a real-time scheduling frame-

work. The main actors of this framework, as depicted in Figure 2.1, are Schedulable

entities and a Scheduler. The main idea at the foundation of this scheduling framework

is that a platform scheduler controls the execution of schedulable entities. For example,

a given scheduler might ensure through admission control that all threads can be feasibly

scheduled, i.e. there are enough resources to complete all Schedulable entities within

the specified timing constraints. Below we provide a more detailed description of the RTSJ

scheduling framework and its participants.

The Scheduler. The Scheduler class, as depicted in Figure 2.1, defines the abstract

protocol supported by concrete RTSJ’s scheduler implementations. This behaviour con-

sists of managing a Schedulable’s object’s execution, and perhaps to perform feasibil-

ity analysis. The Scheduler class can be subclassed, as shown in Figure 2.2 2, in order

to provide specific scheduling disciplines, such as, priority preemptive, Rate Monotonic

(RM), Earliest Deadline First (EDF), Least Laxity First (LLF), etc. To this end, the RTSJ

2In UML diagrams classes printed without any filling are user defined classes. Classes with filling are
those defined in the RTSJ.
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specifies only a concrete scheduler–a priority preemptive scheduler that supports a mini-

mum of 28 different priorities3. The properties of a Schedulable entity, used by the

platform scheduler in order to perform feasibility analysis and scheduling are described

next.
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Figure 2.2: Customizing the RTSJ Scheduler.

Schedulable Entities. The Schedulable class provides an abstraction for those ap-

plication entities that consume computational resources. In order to make it possible for

the scheduler to (1) analyze the feasibility of the system, and (2) compute a schedule that

will satisfy the application time-lines, Schedulable entities are associated with a set

of properties that describe resource and timing requirements. Specifically, as depicted in

Figure 2.2, with each Schedulable object it is possible to associate the following infor-

mation:
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Figure 2.3: RTSJ Release Parameters.

• ReleaseParameters are the means provided by the RTSJ scheduling API to

specify the release characteristics of a Schedulable entity. Specifically, as shown

3This 28 priorities are all above the 10 priority levels defined by the Java platform for java.lang.Thread.
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in Figure 2.3, the class ReleaseParameters is the base class of a hierarchy of

classes that provide a way of describing periodic, aperiodic, and sporadic computa-

tions. The properties shared by ReleaseParameters’ subclasses are (1) compu-

tation cost, and (2) deadline. Each subclass adds other properties that are specific to

the abstraction. For instance, the PeriodicParameters class provides a way of

specifying a period; on the other hand the AperiodicParameters class provides

a way of specifying a minimum inter-arrival time. To each ReleaseParameters

instance two different kind of handlers can be associated for coping with the situation

in which the associated Schedulable overruns or misses its deadline. These han-

dlers (see Section 2.5 for a description of AsyncEventHandler), if registered, are

notified by the RTSJ Scheduler when the Schedulable entity misses a dead-

line or executes for an amount of time greater than the one specified in its associated

ReleaseParameters.

• The SchedulingParameters class provide the base class for concrete schedul-

ing parameters. As shown in Figure 2.4, the RTSJ provides subclasses for describ-

ing scheduling information needed by priority based schedulers (PriorityPara-

meters, SchedulingParameters). Other subclasses could be added to repre-

sent scheduling information needed by other scheduling disciplines.
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Figure 2.4: RTSJ Scheduling Parameters.

• MemoryParameters provides information on the memory allocation characteris-

tics of a Schedulable entity. They provide a way of specifying the maximum

amount of memory that a Schedulable entity might allocate and the allocation

rate.

• ProcessingGroupParameters are associated to a set Schedulable entities

so to guarantee, to the group as a whole, that the scheduler will not be giving more
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time per period than indicated by a cost. The use of this class is useful when it is

necessary to bound the aggregated utilization of a pool of Schedulable entities.

2.2.2 Real-Time Java Threads

The RTSJ extends the existing Java threading model with two new types of real-time

threads: RealtimeThread and NoHeapRealtimeThread. As depicted in Figure 2.5
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Figure 2.5: RTSJ Real-time Thread class hierarchy.

these threads are characterized by (1) being Schedulable entities, thus their execution

is managed by the associated scheduler, and (2) having an associated MemoryArea in-

stance. While the RTSJ memory subsystem will be described in great detail in Section 2.4,

the RTSJ threading model is intimately related to the RTSJ memory model. It is impossible

to explain one of the two in complete isolation of the other. Thus we provide a minimal

discussion here. To understand the RTSJ threading model it is sufficient to know that the

RTSJ introduces the concept of memory area; in RTSJ the Java heap is just one of the mem-

ory areas. These memory areas have different properties in terms of memory management

and timing guarantees. The MemoryArea depicted in Figure 2.5 represents the current al-

location context of the RealtimeThread, i.e. the region of memory from which objects

are allocated. A Thread can change its allocation context dynamically, but the change is

subject to some rules that are detailed in Section 2.4. In the remainder of this thesis, when

referring to the MemoryArea which represents the allocation context of a thread, we will

say that the given thread is executing within the MemoryArea.

The RTSJ threading model imposes restriction on the kind of memory area a thread

can execute in, and as summarized in Table 2.1, the restrictions apply only to regular Java
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Threadwhich can only execute in the heap, and the NoHeapRealtimeThreadwhich,

on the other hand, is not allowed to execute in the heap. It is worth noting that the restriction

also apply to referentiality, i.e., if a thread is not allowed to execute in a given kind of

memory area, it is not allowed to hold references to objects allocated in that area. The

Table 2.1: Memory areas accessibility rules.
Thread Type Accessible Memory Areas

Thread Heap Only
RealtimeThread All

NoHeapRealtimeThread Heap Forbidden

reason why NoHeapRealtimeThread instances are not allowed to access the heap is to

ensure that for this class of threads is safe to preempt the heap garbage collector. Thus, No-

HeapRealtimeThreadwon’t suffer from the unpredictable preemption latencies that a

garbage collection might induce.

2.3 Synchronization

The RTSJ strengthens the semantics of Java synchronization for use in real-time systems

by providing a way of performing priority inversion control. As shown in Figure 2.6 a

MonitorControl class is defined as the superclass of all such execution eligibility con-

trol algorithms. PriorityInheritance is the default monitor control policy; the spec-

ification also defines a PriorityCeilingEmulation option. Another enhancement
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Figure 2.6: RTSJ Synchronization control classes.

provided by the RTSJ are read and write wait-free queues. These structures are useful

for making it possible for RealtimeThread instances to cooperate with regular JavaTM

Thread instances.
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2.4 The RTSJ Memory Subsystem

The RTSJ extends the Java memory model by providing memory areas other than the heap.

As shown in Figure 2.7, these memory areas are characterized by the anticipated lifetime

of the contained objects (immortal, scoped) as well as the time taken for allocation (linear,

variable). Objects allocated within the (singleton) Immortal Memory have the same lifetime
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Figure 2.7: Hierarchy of Classes in the RTSJ Memory Model

as the application: they are never collected. Each scoped memory area is equipped with a

reference count of the number of threads active in its area. The lifetime of objects allocated

in such an area is keyed to the reference count. Figure 2.7 includes the LTPhysical-

Memory and VTPhysicalMemory areas, which afford raw access to specific locations

in an address space. We mention the physical memory areas for completeness; it is their

scoped nature that is relevant to the work presented in this thesis.

Additionally, scoped memory areas provide bounds on the allocation time; currently,

variable (VTMemory) and linear-time (LTMemory) allocators are accommodated. For

linear allocation time, the RTSJ requires that the time needed to allocate the n > 0 bytes

to hold a class instance must be bounded by a polynomial function f(n) ≤ Cn for some

constant C > 0.4

For JVM and application developers alike, scoped memory is one of the more inter-

esting features added to JavaTM by the RTSJ. Object allocated within a scoped memory are

4This bound does not include the time taken by an object’s constructor or a class’s static initializers.
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not garbage collected; instead, a reference-counting mechanism detects when all objects in

a scope should be collected. Safety of scoped memory areas is ensured by reliance upon

(1) a set of rules imposed on a thread’s entrance of scoped memories, and (2) a set of rules

that govern the legality of reference between objects allocated in different memory areas.

The remainder of this section concerns memory areas and will provide an explanation of

its mechanics.

2.4.1 Understanding the Scoped Memory Model

To understand the mechanics of scoped memory areas, it is important to understand the

RTSJ rules that govern access to those areas. As described in Section 2.2 the RTSJ assumes

that JavaTM has its traditional threads, but adds two new real-time thread types: Real-

timeThread and NoHeapRealtimeThread, with access rules as follows:

1. A traditional thread can allocate memory only on the traditional heap.

2. Real-time threads may allocate memory from a memory area other than the heap by

making that area the current allocation context.

3. A new allocation context, or scope, is entered by calling the MemoryArea.enter()

method or by starting a real-time thread whose constructor was given a reference to

an instance of MemoryArea. Once a scope is entered, all subsequent uses of the

new keyword, within the program logic, will allocate the memory from the cur-

rent scope. When the scope is exited by returning from the enter() method, all

subsequent uses of the new operation will allocate memory from the memory area

associated with the enclosing scope.

4. A real-time thread is associated with a scope stack containing all the memory areas

that the thread has entered but not yet exited.

On the other hand, the rules that govern the scoped memory behavior are the fol-

lowing:

1. Each instance of the class ScopedMemory must maintain a reference count of the

number of threads active in that instance.

2. When the reference count for an instance of the class ScopedMemory is decre-

mented from one to zero, all objects within that area are considered unreachable and
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are candidates for reclamation. The finalizers for each object in the memory asso-

ciated with an instance of ScopedMemory are executed to completion before any

statement in any thread attempts to access the memory area again.

3. Each ScopedMemory has at most one parent, defined as follows. For a Scoped-

Memory that has been pushed on a scope stack, i.e., entered by at least one thread, its

parent is the first instance of ScopedMemory below it on the scope stack, if there

is one; otherwise, its parent is the primordial scope. For as scope not pushed on the

scope stack, its parent is null.

Figure 2.8 depicts three scoped memory areas, A, B, and C, and two real-time

thread T1, and T2. In Figure 2.8, T1 enters A, B, and then tries to enter C, while T2 enters

A, C, and then tries to enter B. In Figure 2.8, circles represents scoped memories while

arrows point from a child scope to its parent scope.

If T1, as shown in Figure 2.8, tries to enter C after T2 has entered it, than a compliant

RTSJ JVM will detect a violation of the single parent rule and throw an exception. This

violation, as visible in Figure 2.8 by the contents of the scope stack of T1 and T2, can

be detected by a JVM inspecting the scope stack and checking that no single-parent rule

violation happens.

Why is this single-parent rule necessary? The single parent rule guarantees that once

a thread has entered a set of scoped memory in a given order, any other thread will have

to enter them in the same order, up to the point at which the reference count for all these

memory drops to zero. At that point, a new nesting will be possible. This requirement

guarantees that a parent scope will have a lifetime that is at least that of any of its child

scopes, making it safe for objects in a descendant scope to reference objects in an ancestor

scope.

A

A

B

C

A

T 1

B

A

T 1

B
A

AA

T 2 C

A

T 2

A
C

C

A

T 1B

BC
A

B

A

T 2

CB
A

C
1 2 3

Figure 2.8: The scope stack and the single parent rule.

Figure 2.9 extends the example of Figure 2.8, showing a potential scope tree of an

RTSJ application; all nodes of that tree represent scoped memory areas. An object in node
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x of such a tree can reference an object in node y only if y is an ancestor of x. Thus, the

curved arrows in Figure 2.9 show some (not all) legal references, while the zig-zag arrows

represent some (not all) illegal references.

With the single-parent rule, the ancestor relationship described above guarantees

that legal accesses occur only from a scope to another at least as long-lived as the former.

In other words, no legal references are “dangling.”

To enforce the rules, a compliant JVM has to check every attempt to enter a memory

area by a thread, to ensure that the single parent rule is not violated, and it has also to check

the creation of reference between objects belonging to different memory areas. Since object

references occur frequently in JavaTM programs, it is important to implement the checks

efficiently and predictably.

A

EC

B F

H

G

D

Figure 2.9: Scope Tree and Scoped Memory Reference Checking Sample.

2.4.2 RTSJ Suggested Runtime Check Implementation

We next present the current state of algorithms for scope and reference checks, as suggested

by the RTSJ and its current implementations [21, 5]. we provide examples that explain why

this approach is not satisfactory for real-time applications.
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Algorithm 1: checkSingleParentRule
Input: MemoryArea ma, ScopeStack scopeStack
Output: boolean isSingleParentRuleOK
begin

isSingleParentRuleOK← true;
if ma instanceOf ScopedMemory then

parent = findFirstScope (scopeStack);
if ma.parent = nil or ma.parent = parent then

ma.parent← parent ;
scopeStack.push (ma );
ma.refCount←ma.refCount + 1;

else
isSingleParentRuleOK← false ;

end

Data Structures

The RTSJ assumes that (1) there is a scope stack associated (at least logically) with each

real-time thread, (2) each memory area keeps a reference to its parent, (3) scoped memories

keep track of their reference count, and (4) for any object, it is possible to obtain a reference

to the memory area that contains it. The algorithms used to enforce the single-parent rule

and the assignment rules are based on these data structures.

Single Parent Rule

The single parent rule is enforced at the point a real-time thread tries to enter a scope s. At

that time, if s has no parent, then entry is allowed. Otherwise, the thread entering s must

have entered every proper ancestor of s in the scope tree. Algorithm 1 and Algorithm 2

contain the pseudocode that performs this test.

Examination of these algorithms reveals a time complexity of O(n) where n repre-

sents the depth of the stack.

Memory Reference Checks

The rules that govern the validity of references across memory areas can be summarized as

follows:

1. A reference to an object allocated in a ScopedMemory can never be stored in an

object allocated in the Java heap or in the immortal memory.



18

Algorithm 2: findFirstScope
Input: ScopeStack scopeStack
Output: ScopedMemory firstScope
begin

firstScope← PrimordialScope ;
for i← scopeStack.size()−1 downto 0 do

if scopeStack [i] instanceOf ScopedMemory then
firstScope← scopeStack [i];
break ;

end

2. A reference to an object allocated in a ScopedMemory m can be stored in objects

allocated in a ScopedMemory p only if p is a descendant of m; note that the case

p = m is thus allowed.

The RTSJ specification does not mandate any particular algorithm for checking the legality

of a memory reference, but most implementation [35, 5], follow the advice given in the

RTSJ specification. In the algorithm suggested by the RTSJ, a thread’s scope stack has to

be scanned to ensure that the memory area from which we are creating a reference was

pushed later than the memory area of the reference’s target. This approach is described by

the Algorithm 3 and Algorithm 4. By inspection of the pseudocode, this check has time

complexity O(n) where n is the depth of the scope stack.

2.5 Asynchrony

The RTSJ defines mechanisms to bind the execution of program logic to the occurrence of

internal and/or external events such as interrupts and POSIX signals. In particular, the RTSJ

provides a way to associate an asynchronous event handler to some application-specific

or external events. As shown in Figure 2.10 there are two types of asynchronous event

handlers defined in RTSJ:

• The AsyncEventHandler class, which does not have a thread permanently bound

to it—nor is it guaranteed that there will be a separate thread for each Async-

EventHandler. The RTSJ simply requires that after an event is fired the execution

of all its associated AsyncEventHandlers will be dispatched.
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Algorithm 3: checkReferenceValidity
Input: MemoryArea from, MemoryArea to, ScopeStack scopeStack
Output: boolean validReference
begin

validReference←true;
if from 6=to then

if to instanceOf ScopedMemory then
if from instanceOf ScopedMemory then

toDepth = depth (to, scopeStack );
if toDepth = inf then

validReference←false;
else

fromDepth = depth (from, scopeStack );
deltaDepth = toDepth − fromDepth ;
if not (0 <deltaDepth < inf) then

validReference←false;

else
validReference←false;

end

• The BoundAsyncEventHandler class, which has a real-time thread associated

with it permanently. The associated real-time thread is used throughout its lifetime

to handle event firings.

Event handlers can also be specified a no-heap, which means that the thread used to han-

dle the event must be a NoHeapRealtimeThread. Finally it is worth noting that the

AsyncEventHandler class is a Schedulable, thus its execution is managed by the

platform scheduler.

The RTSJ also introduces the concept of Asynchronous Transfer of Control (ATC),

which allows a thread to asynchronously transfer the control from a locus of execution to

another.

2.6 Time and Timers

The (standard) JavaTM platform provides only limited support for measuring time and per-

forming time-driven operations. On the other hand, in real-time embedded systems, time

and time-driven operation have a central role. In these systems, timers are often used to
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Algorithm 4: depth
Input: MemoryArea ma, ScopeStack scopeStack
Output: int depth
begin

depth← inf;
index← scopeStack.size() - 1;
while index > 0 and scopeStack [index ] 6= ma do

index← index −1;

if scopeStack [index ] = ma then
depth← scopeStack.size()−index −1;

end
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Figure 2.10: RTSJ Asynchronous Event Class Hierarchy

perform certain actions at a given time in the future, as well as at periodic future inter-

vals. For example, timers can be used to sample data, play music, transmit video frames,

etc. The RTSJ introduces the Clock abstraction, as well as a set of classes that represent

absolute time, time intervals and frequency (see Figure 2.11. A clock advances from the

past, through the present, into the future. It has a concept of “now” that can be queried, a

getTime() operation, and it can have events queued on it which will be fired when their

appointed time is reached. The class Clock shown in Figure 2.11 might be subclassed for

representing different kind of clocks such as real-time clocks, user time clocks, simulation

time clocks. In order to provide a means of performing time driven operation the RTSJ

provides two types of timers (see Figure 2.12):

• OneShotTimer, which generates an event at the expiration of its associated time

interval and

• PeriodicTimer, which generates events periodically.
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Figure 2.11: RTSJ Timer Class Hierarchy

Timers can be can be armed for any Clock instance. At expiration OneShotTimers and

PeriodicTimers events are handled by registered AsyncEventHandlers.
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Figure 2.12: RTSJ Timer Class Hierarchy
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Chapter 3

Patterns for Real-Time Java

Programming

3.1 Introduction

In Chapter 2 we have provided an overview of the RTSJ’s features. In this chapter we’ll

provide a catalog of Real-Time Java idioms, patterns, along with a series of clarification

on the RTSJ programming model. Cataloging patterns is a very important activity since it

(1) promotes good engineering practices, (2) improves developers understanding of a given

technology, (3) establish a vocabulary that designer can use to synthetically communicate

design decision when building new systems, (4) provide ready to use solutions to recurring

problem in a given context.

Since real-time Java is a fairly new technology, there are currently no available

pattern catalogs. Times have matured, for people like the authors, who have been involved

in the development of Real-Time Java almost from its inception, to make available their

experience by means of patterns.

The remainder of this Chapter is organized as follows, in Section 3.2 we provide an

explanation of the RTSJ programming model, and provide rationales on how to organize

RTSJ applications; in Section 3.3 we introduce some new Design Patterns or revisit some

patterns from an RTSJ perspective.
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3.2 Understanding the RTSJ Programming Model

The RTSJ aims at specifying a viable platform for any real-time application environment,

these promises are not necessarily delivered by the programming mechanism it provides. In

fact, for a real-time application to take advantages of the JavaTM safety properties, it should

be designed and coded so to rely on the automatic memory management facilities provided

by scoped memories. This requires an effort both at design and coding level since, as shown

in Section 3.3, RTSJ programming is not the same as JavaTM programming, and anyone

who will try to program an RTSJ application a la JavaTM is deemed to fail in delivering the

needed real-time characteristics. For this reason, in our view, it is important to identify the

class of (hard) real-time applications 1 which properly fit in the RTSJ programming model,

and those that require to twist it. Providing the user community with such a catalog will

make it easier for both software analyst, designer and programmers to decide whether or

not the RTSJ is the right tool to use, and how to use it. This said, the class of application

can be classified with respect to the RTSJ as described below.

Class I: Stateless Applications. These applications don’t have any state. The output

produced by these applications depends entirely on their input. For instance a simple Web

Server belongs to this category. This application class is characterized by the fact that all

the memory allocated while computing a result can be discarded at the end of the com-

putation. Figure 3.1 shows how this class of applications can be implemented by relying

only on scoped memory. In fact since the application does not have any persistent state, all

allocations can happen in scoped memory.

Class II: Applications with a Finite and Immutable Set of States. This class of appli-

cations are well described by finite state automaton. To each state of the automaton corre-

sponds a configuration or operational modes of the application itself. These configurations

don’t change over time and are completely known at design time. Example of this class

of application are control software, such as flight control software, which switch from an

operational mode to another depending on the height, phase of flight etc. Figure 3.2 shows

how this class of applications can be implemented by relying on immortal memory to store

the persistent application state, and on scoped memory for performing computation.

1Here on with real-time application we intend any application which cannot experience unbounded or
unpredictable preemption latencies.
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Scoped Memory

Temporary
Data

Application
Logic

� �
1 import j a v a x . r e a l t i m e . ∗ ;
2 p u b l i c c l a s s MySta t e l e s sApp {
3 . . .
4 LTMemory memory area =
5 new LTMemory ( SIZE , SIZE ) ;
6 f o r ( ; ; ) {
7 / / Read the inputs
8 memory area . e n t e r ( new Runnable ( ) {
9 p u b l i c vo id run ( ) {

10 . . .
11 / / Compute the result using the inputs
12 . . .
13 }
14 } ) ; / / Here scoped memory is exited and
15 / / thus all object used during the
16 / / computation are discarded
17 / / Provide the results
18 } / / End for
19 . . .
20 }


� �

Figure 3.1: Stateless Application Class.

Class III: Applications with a Time Dependent State. This class of application con-

tains any application which does not follow in the previous categories. In this application

class, state changes often require memory allocations. The memory allocated is required

to hold the new state configuration. An example of this application class can be as simple

as a real-time application that maintains a list of targets that have entered a monitored area,

but not yet exited it. In this case the targets could represents flight that have to be tracked,

or missile that constitute a threat for our system. In this scenario, the application state is

represented by the set of target under our control, plus some other application specific data.

Since the set of targets changes with time, it should be clear that there is not easy way to

map allocate them on memory scopes while maintaining automatic memory reclamation.

3.2.1 Coping with RTSJ Programming Model Limitations

As shown in the previous Section, each of the application classes I and II are amenable to

a particular memory organization. On the other hand, real-time applications that belong to

the class III do not fit properly in the RTSJ programming model. The questions that we

should pose ourselves at this point are, (1) can we develop class III applications with the

RTSJ? (2) How can we evaluate if the additional complexity makes the RTSJ still preferable

to languages such as C/C++? The answer to question (1) is certainly yes. It is easy to see

that the RTSJ is Turing complete, thus any application can be written using it. At the same
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Scoped Memory

Temporary
Data
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1 import j a v a x . r e a l t i m e . ∗ ;
2 / / Class containing the application state.
3 / / Instances of this class are allocated in
4 / / Immortal Memory
5 p u b l i c c l a s s AppSta t e {
6 / / ...
7 }
8 p u b l i c c l a s s MyFin i t eS t a t e Ap p {
9

10 p r i v a t e AppSta t e c u r r e n t S t a t e ;
11
12 LTMemory memory area =
13 new LTMemory ( SIZE , SIZE ) ;
14 f o r ( ; ; ) {
15 / / Read the inputs
16 memory area . e n t e r ( new Runnable ( ) {
17 p u b l i c vo id run ( ) {
18 . . .
19 / / Compute the result using the
20 / / inputs using the proper state
21 . . .
22 / / Set new state if necessary
23 }
24 } ) ; / / Here scoped memory is exited and
25 / / thus all object used during the
26 / / computation are discarded
27 / / Provide the results
28 } / / End for
29 . . .
30 }


� �

Figure 3.2: Finite State Application Class.

time, it is true that assembly languages are Turing completes, yet, we seldom use them

to write applications. The key point here is that in order to develop class III applications,

we have to recur so some form of manual memory management, such as those shown in

Section 3.3. This defeats one of the main advantages of JavaTM—its automatic memory

management.

From a pragmatic perspective, we could state that it is worth developing a class III

application using the RTSJ only if the portion for which manual memory management is

needed is very small compared to the rest of the application. For instance, assuming that

the application can be subdivided in a series of application components which belong to

class I or II, and a few application components that belong to class III. Then designing

the overall application in RTSJ might still make sense in the case in which the number of

class I and II application components is greater than the number of class III application

components. Clearly this statement assumes that applications components have roughly

the same complexity, otherwise some sort of weigh should be used.
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3.2.2 Case Study: The Mars Rover 7

The problem of developing class III applications was faced, at Jet Propulsion Laboratories

of NASA in Pasadena, by the “Golden Gate Team”, who is applying the RTSJ to develop

control software for their 6-wheel experimental Mars rover (the “Rocky 7”) [7]. Their pro-

posal is based on using only one scoped memory area and thus performing object allocation

and deallocation “manually” by relying on memory pools.

A memory pool is a (limited) set of pre-allocated objects, each one containing a

mark to indicate whether the object is begin used or not. Creating a new object implies to

find the first unmarked object in the pool and to mark it; on the contrary, releasing an object

implies to remove the mark. This mechanism is depicted in the example of Figure 3.3.

public class MyClass {
...
void myMethod () {

...
MyObject obj = (MyObject)MemoryPool.getNewObject ();

// use the object
...

...
MemoryPool.returnToPool (obj);
...

}

}
...

Memory Pool

When an object is no longer used

it is "returned" to the pool,

(i.e. unmarked again)

Creating an object implies

to get an unmarked object

from the pool, marking it

Figure 3.3: A memory pool and its usage

This solution is very interesting and also quite effective since allows application

design with RTSJ without having to fight against the constraints of the memory model.

However it presents some problems.

First of all, this solution requires to patch the source code to make it “pool-aware”:

each “new” operation, relevant to objects managed with this mechanism, must be re-

placed by a method call to the memory pool, aiming at obtaining an unmarked object (the

getNewObject() method in Figure 3.3); moreover, another invocation to the memory

pool must be added when the object is no more needed (returnToPool() in Figure 3.3).
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Such patches are obviously possible when the source of the code that has to use memory

pools is available; but if we need a library that is provided only in “.class” form, the prob-

lem is once again infeasible.

The second problem is tied to JavaTM semantics. Even if the memory pool approach

makes possible the implementation of a large class of applications in RTSJ, the solution

is, in our opinion, an evident violation of JavaTM language semantics: one of the most

important characteristics of JavaTM—the safeness—completely disappears since we, as

programmers, are committed not only to perform explicit memory management but also to

take care that an object, once released to the pool, must be really no more used2. Without

the safeness characteristic, the advantages of using JavaTM , with respect to C and C++,

become minor and less evident.

3.3 Design Patterns

Now that we have understood what are the classes of application that nicely fit to the RTSJ

programming model and which are those that require a stretch, it is worth moving our

attention to the design patterns that can help us in writing robust RTSJ applications and

which prevent us to fall in some common pitfall. In the remainder of this section we will

provide an overview of some new RTSJ Design Patterns, as well as a re-interpretation of

existing pattern into a RTSJ perspective.

3.3.1 Singleton

The Singleton Pattern, made popular by the famous GoF book [23], exposes some interest-

ing issues in an RTSJ environment. A description of the pattern and the extension needed

to make it applicable in an RTSJ context are reported below.

Intent. Ensure a class only has one instance, and provide a global point of access to it.

Example. In some application there are some abstraction which have only one associated

instance. For example in a windowing system there would be a single window manager, or

in a real-time system it is very likely that there is a single scheduler managing the various

tasks execution. In all the cases in which there is an abstraction that has to have a single

2Please note that, while in C/C++ a dangling pointer could be discovered since its use often causes a
“segmentation fault”, identifying a block of Java TM code that improperly uses an unmarked object is very
hard, because the latter is always alive in memory and no exception is raised.
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instance it is a good design practice to (1) enforce, by design, that no more than one instance

of the given class can be created, and (2) provide a global access point to it.

Problem. A design mechanism is needed in order to enforce that a given class has at most

one instance, and this singleton instance is accessible via global access point.

Solution. Define a class method (e.g. static for Java and C++ programmers) that allows

to get the unique instance of the class. Declare the constructor of the class protected and

give the responsibility of creating the class to the class itself or a friend factory.

Structure. Figure 3.4 depicts a UML diagram which describes the implementation of the

Singleton Pattern.
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Figure 3.4: The Singleton Pattern.

Implementation. The typical Singleton Java implementation is shown in Figure 3.5.

What is the problem with this way of implementing the Singleton Pattern? The Single-
� �

1 p u b l i c c l a s s S i n g l e t o n {
2 p r o t e c t e d s t a t i c S i n g l e t o n t h e I n s t a n c e ;
3
4 p u b l i c s t a t i c synchron ized void i n s t a n c e ( ) {
5 i f ( t h e I n s t a n c e = = n u l l ) {
6 t h e I n s t a n c e = new S i n g l e t o n ( ) ;
7 }
8
9 re turn t h e I n s t a n c e ;

10 }
11
12 / / Other methods
13 }


� �

Figure 3.5: A typical Singleton implementation in Java

ton implementation shown in Figure 3.5, works perfectly fine in a Java environment, but
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respect to the RTSJ programming model has a fatal flaw. The problem is in the new exe-

cuted at the line 6 of the listing. The issue is that the Singleton instance allocated by that

instruction will be placed in the current memory area of the calling thread. This is a big

problem since static member of a class can only refer to objects allocated in the Heap or

Immortal memory, and whenever a thread running within a scoped memory will happen to

execute line 6 the runtime system will throw an invalid reference exception. Thus, it should

be clear that the pure Java Singleton implementation is not robust in an RTSJ environment.

A simple way of fixing the Singleton implementation and make it slightly more robust is
� �

1 p u b l i c c l a s s S i n g l e t o n {
2 p r o t e c t e d s t a t i c S i n g l e t o n t h e I n s t a n c e = new S i n g l e t o n ( ) ;
3
4 p u b l i c s t a t i c void i n s t a n c e ( ) {
5 re turn t h e I n s t a n c e ;
6 }
7
8 / / Other methods
9 }


� �

Figure 3.6: A possible RTSJ Singleton implementation.

to allocate the singleton object at class initialization time as shown in Figure 3.6. This

way the Singleton object will be allocated in the JVM method memory (this is the memory

region that contains all the constants and the class information). The problem, is that most

of the JVM use as method memory the Heap. This means that for all those JVM that use as

method area the heap, whenever a NoHeapRealtimeThreadwill try to use the Single-

ton instance, a runtime exception will thrown. Recall that NoHeapRealtimeThread

are not allowed to allocate nor reference objects allocated in the heap.

Finally, Figure 3.7 reports the right way of implementing the Singleton pattern in

RTSJ. Notice that in this case we explicitly allocate the Singleton instance in immortal

memory. The code reported in Figure 3.6 could be also adapted to explicitly allocate the

Singleton instance in immortal memory, however the author should be aware of the fact

that this introduce a additional latency the first time the instance method is created, on

the other hand, the solution provided in Figure 3.7 does not suffer of this problem. The

lesson that should be learned by the RTSJ’s Singleton implementation is that static field

should be in general treated with great care in RTSJ. The programming idiom that should

be used when coping with static field should be Statics are Immortal. This means that

static field should be explicitly allocated in the RTSJ Immortal memory.
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1 p u b l i c c l a s s S i n g l e t o n {
2 p r o t e c t e d s t a t i c S i n g l e t o n t h e I n s t a n c e ;
3
4 s t a t i c {
5 ImmortalMemory im = ImmortalMemory . i n s t a n c e ( ) ;
6 t h e I n s t a n c e = im . n e w I n s t a n c e ( S i n g l e t o n . c l a s s ) ;
7 }
8
9 p u b l i c s t a t i c void i n s t a n c e ( ) {

10 re turn t h e I n s t a n c e ;
11 }
12
13 / / Other methods
14 }


� �

Figure 3.7: A more appropriate RTSJ Singleton implementation.

3.3.2 Handle Exceptions Locally

Due to the RTSJ restrictions on memory management, and validity of references, design-

ing code that uses structured exception handling to cope with erroneous situation is rather

tricky, especially if the exception handling is done ala Java. The Eager Exceptions Han-

dling pattern provides a way of using structured exceptions in RTSJ applications so to avoid

the traps and pitfalls that the platform might induce.

Intent. Ensure that the use exceptions do not cause invalid memory references, avoid-

ing the coupling of scope structure to the handling of structured exceptions. Avoid the

unnecessary consumption of memory by exception handling code.

Example. In programming languages that supports structured exceptions, erroneous con-

ditions are handled by raising a proper exception. The thrown exception encapsulates the

kind of unexpected situation that has occurred. For instance, exceptions are used in the Java

library for handling indexes out of bounds, I/O errors, and so on. While using exceptions

in Java is rather straightforward, the RTSJ introduces several complications. For instance,

due to the referencing rules imposed by the RTSJ memory model, exceptions should be

handled either in the same memory area in which they were raised (allocated), or in a

memory area from which is legal referencing the given exception object. For instance, the

scenario depicted in Figure 3.8 seems at a first sight rather innocent, but actually it could

have several problems, depending on how the underlying RTSJ implementation copes with

exceptions. In the case in which the memArea 0 is the ImmortalMemory, one of the



31

try {

} catch (RuntimeException e) {
...
}

int a[] = new int[n]; 
a[m] = ...; // m >= n

memArea_0

memArea_1

memArea_K

...

Figure 3.8: Runtime Exceptions in the RTSJ.

problem that could arise, in those RTSJ implementation that propagate exceptions from

scope to scope, up to the scope within which the exception is handled, is that memory is

allocated in ImmortalMemory for objects that are actually not immortal. This could

lead to exhausting the ImmortalMemory. Another problem that might occur is that of

creating an invalid reference exception (or a segmentation fault) in the case in which the

RTSJ application does not take care of reallocating the same exception objects as it walks

trough the scope stack.

The listing shown in Figure 3.9 is the pseudo code that implements the situation

depicted in Figure 3.8. The pseudo language used in this thesis, in order to make it easier to

understand the scoping of memory areas, uses a new keyword, enter, in order to represent

that a given fragment of code is executed within the memory area passed an argument.

For instance, in Figure 3.9 the code show at line 8 is executed within the memory area

memArea K.

Problem. The RTSJ does not mandate a specific way of coping with runtime exceptions

that are thrown while executing within a memory area. Thus, exception handling in the

RTSJ might have different behaviour based on the RTSJ implementation. This limits the

portability of code that is not written carefully.

Solution. In order to write safe and portable RTSJ applications, exceptions should be

handled in the same scope in which they are raised. Upon notification of an exceptional

condition, the control has to be transfered to outer scopes, and the exception encountered

has to be somehow propagated. Depending on the application, this can be achieved by
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1 e n t e r ( memArea 0 ) {
2 t r y {
3 e n t e r ( memArea 1 ) {
4 .
5 .
6 .
7 e n t e r ( memArea K ) {
8 a [N ] = b ; / / throws an ArrayOutOfBoundsException
9 }

10 }
11 } catch ( Run t imeExcep t ion e ) {
12 / / Handle Exception
13 }
14 }
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Figure 3.9: Problems with exception handling.

either catching the exception locally and re-throwing a singleton exception, or by using

status objects or variables in the same fashion as the C/C++ errno variable to detect and

propagate exceptional behaviour.

Implementation. The implementation of the pattern is rather straightforward. The rule is

that all exceptions have to be caught and handled in the same scope in which they have been

thrown. For instance, applying this pattern to the listing shown is Figure 3.9, we obtain the

listing shown in Figure 3.10.

3.3.3 Memory-Area-Aware Factory

In the RTSJ memory model each occurrence of the new operator allocates memory from

the current memory area, thus, unless some information is provided on the target memory

area that should be used for allocating new instances of a given type, the current context

will be used. One way to control the placing of certain types is to use a variation of the

GoF Factory Pattern [23].

Intent. Provide an interface for creating families of objects without specifying their type

nor their placement, i.e., memory area.

Example. Suppose you are writing a system in which both the real-time core and its GUI

have the need of creating some concrete types through a factory. However, while the GUI

will be run by non real-time thread and will be using the Heap, the application’s real-time
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1 e n t e r ( memArea 0 ) {
2 t r y {
3 e n t e r ( memArea 1 ) {
4 t r y {
5 .
6 .
7 .
8 e n t e r ( memArea K ) {
9 t r y {

10 a [N ] = b ; / / throws an ArrayOutOfBoundsException
11 } catch ( Run t imeExcep t ion e ) {
12 / / Handle Exception
13 }
14 }
15 } catch ( Run t imeExcep t ion e ) {
16 / / Handle Exception
17 }
18 } catch ( Run t imeExcep t ion e ) {
19 / / Handle Exception
20 }
21 }
22 }
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Figure 3.10: Coping with runtime exceptions.

core will have to use no-heap real-time threads and thus rely only on immortal and scoped

memory.
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Figure 3.11: The Abstract Factory Pattern.

Problem. You want to create instance of concrete types by relying on the Factory pattern

(see Figure 3.11), but at the same time you want the factory to allocate memory in different

places based on the callee identity.
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Solution. Use the Abstract Factory Pattern in synergy with the Strategy Pattern. The

Strategy Pattern will be used to encapsulate the allocation strategy. Each time a request

arrives to the Abstract factory it uses its strategy to decide where to allocate the newly

created instance. The strategy can be programmed by the client.

Structure. The structure of the Memory-Area-Aware Factory Pattern is obtained by the

plain Abstract Factory structure (see Figure 3.11) and adding the memory area selection

strategy. The resulting structure is shown in Figure 3.12, while Figure 3.13 shows the

typical sequence of message exchanged when creating a product (the example is shown for

ConcreteFactoryOne.
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Figure 3.12: The Memory-Area Aware Abstract Factory Pattern.
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Implementation. The implementation of this pattern is the combination of the imple-

mentation of the Abstract Factory and the Strategy Pattern. Thus refer to [23] to see how

to implement this.

3.3.4 Scoped Container

Java application take great advantage of the wide set of containers provided by the lan-

guage. Since its inception Java provided abstraction such as Vector, Stack, Hashta-

ble etc. However the use of this containers can be quite dangerous in an RTSJ environ-

ment. The key problem, once again, arise because of the differences between the RTSJ and

the Java computational models.

Intent. Provide RTSJ safe containers.

Example. Assume you are developing a generic Java applications that has the need to

store some information in a Java java.util.Vector. You want to be able to share

this object between threads that are running in different memory scopes. This object has

a thread safe interface, thus there no concurrency problem that can arise due to multiple

threads trying to operate on it. However, each time a thread will call an operation on the

container, the code will execute in the memory context of the caller thread. This might not

be acceptable.

Problem. Most Java-based applications rely on containers. The main danger of using

plain Java containers in RTSJ applications is that the containers code is always executed in

the caller context. This means that if the container allocate some memory, for instance for

resizing, this memory will be allocated in the current memory area of the calling thread.

This might not be desirable.

Solution. Make the Java containers memomy area aware. Associate a memory area to

each container instance and ensure that the memory allocated by the container is always

taken by this memory area. This could be achieved, at least, by one of the two following

way:

1. Modify the implementation of the container so that each memory allocation happens

into the right memory area.
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2. Use some sort of tagging for indicating to the compiler or the runtime system that

each occurrence of the operator new within this class has to allocate memory from

the same memory area in which the container was allocated.

The main difference between the first and the second solution is the trade off between the

degree of human intervention on exiting code base and flexibility. Solution 1 requires the

programmer to manually modify the code that implements the container and ensure that all

allocation are performed in the right memory area. On the other hand, solution 2 simply

tags a class, in a way similar to that used to declare a class serializable3.

3.3.5 Scoped Leader Follower

The leader follower [42] is a is a well-known design pattern used to efficiently handle

concurrent events coming from various sources. Because of the RTSJ memory model this

pattern cannot be directly applied as described in [42], but it requires some non-trivial

modifications. In the reminder of this section we will outline a possible specialization of

this pattern for the RTSJ platform.

Intent. Efficiently multiplex and dispatch event from several sources.

Example. Suppose you have to implement a real-time network server that has to concur-

rently serve incoming requests from several different connections. Incoming requests will

have to be demultiplexed efficiently and the resource has to be minimized, for instance be-

cause of the software running on a small embedded system. This problem is quite recurring

in the design and implementation of Object Request Broker (ORB)s.

Problem. The problem to solve is to handle time-critical events, using RTSJ software,

taking in particular into account the efficiency correctness and safety of the prosed solution.

Solution. The Scoped Leader/Follower pattern uses (1) a pool of threads allocated in a

scoped memory area called the pool scope, and (2) a leader selector thread, running in that

memory area, which iteratively picks the leader thread from the pool and activates it. Each

thread of the pool is associated with another scoped memory area called the handler scope.

This memory area is used to run the event handler.

3In Java in order to make a class serializable it has to implement an empty interface called
Serializable
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+electLeader()

+start()

LeaderSelector

Figure 3.14: Class Diagram of the RTJ-Leader-Follower Pattern

To hide to programmers the details on memory management and scope entering/ex-

iting, the threads of the pool act as trampolines, thus preparing the execution environment

for user-defined objects that implement event capture and handling. For the same rea-

sons, user-created threads cannot dynamically join to the pool, as happens in the standard

Leader-Follower pattern, but all the threads of the pool, with the relevant scopes (and the

pool itself), are created and allocated during startup.

All the threads (those of the pool and the leader selector) are NoHeapRealtime-

Threads running with a preassigned priority. This is required since, before an event is

caught, its criticality is unknown, therefore, the handler is first activated with the highest

priority and then, once the event is caught and thus known, the priority is adjusted according

to the urgency of the event itself. Using this “conservative” approach ensures that capturing

and processing an event with a high priority is not delayed by any other activity.

The pattern includes an event selector object that provides the interface to the system

that generates or receives the event.

Structure. The structure of the Scoped Leader/Follower pattern is depicted in Figure 3.14.

The pattern is composed of the following classes:

• LeaderFollower. It is the responsible for starting the system, i.e. creating the

thread pool and all the objects to be placed in the pool (threads, memory areas, etc.).

It is also the main interface that a user has to control the system e.g. to change some

parameters like priorities, etc. It is an abstract class because any realization must
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Figure 3.15: Sequence Diagram of the RTJ-Leader-Follower Pattern (Initialization)

define the createEventSelector method, needed to set up the event selector

object.

• LeaderSelector. It is a NoHeapRealtimeThread responsible for selecting

the leader from the thread pool, activating it.

• EventSelector. It is the interface that event selector objects must implement to

be used in the RTJ-Leader-Follower.

• EventHandlerLauncher. Threads allocated in the pool are instances of this

class. Each EventHandlerLauncher holds a reference to a scoped memory

(the handler scope) and another to an instance of a concrete EventHandler class.

The task of the EventHandlerLauncher, each time it is activated, is to enter

the (concrete) EventHandler in the scope, to wait for EventHandler’s task

completion, and finally to return itself to the thread pool.

• EventHandler. It represents the abstract class for the implementation of event

handlers. Each concrete instance of this class (ConcreteEventHandler) is ac-

tivated by the corresponding EventHandlerLauncher and has the task of cap-

turing an incoming event, suitably processing it. It has also the responsibility for

triggering new leader election.

• PoolScope. It is the memory scope in which the thread pool and all its objects are

allocated. It is also the scope in which the LeaderSelector runs.

• HandlerScope. It is the memory scope that is associated to a EventHandler-

Launcher and in which runs the (concrete) EventHandler.
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Figure 3.16: Sequence Diagram of the RTJ-Leader-Follower Pattern (Operation)

Implementation . Figures 3.15 and 3.16 report the sequence diagrams of the RTJ-

Leader-Follower. As the Figures show, we consider two phases: initialization and oper-

ation.

In the former phase—initialization, see Figure 3.15—which is started when an ob-

ject of class LeaderFollower is instantiated, all the objects that participate to the op-

eration phase are created. Initialization phase, which is managed by classes Leader-

Follower and LeaderSelector, is needed to set up memory areas and to properly

allocate in them the objects of the pattern, in order to hide memory management details

to the programmer. As Figure 3.15, first the PoolScope is created; then, all other ob-

jects are allocated in that memory area, i.e. the ThreadPool, the EventSelector-

Impl), all the EventHandlerLaunchers, together with their HandlerScopes, and

ConcreteEventHandlers. Finally the threads are added to the pool.

The latter phase—operation, see Figure 3.16—begins when the method start()

of the LeaderFollower object is called. In this case, control is given to the Leader-

Selector object that (A) selects the leader thread (EventHandlerLauncher) from

the pool, (B) activates this thread by calling the execute() method, and (C) waits for

a signal, which will arrive from the ConcreteEventHandler object, triggering re-

iteration and selection of the next leader.

Each leader thread (the EventHandlerLauncher), after being selected, (1) en-

ters its ConcreteEventHandler object in the associated/relevant HandlerScope,

and (2) when the handler terminates, return itself to the pool.
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On the other hand, each ConcreteEventHandler, once activated by the Event-

HandlerLauncher, first (i) calls pollEvent() (that in turn invokes method get-

NextEvent() of the EventSelectorImpl object), then (ii), once it has acquired the

events, triggers new leader election, and finally (iii) handles the event and adjusts the thread

priority accordingly.
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Chapter 4

Optimizing the RTSJ

4.1 Introduction

In the earlier Chapters we have illustrated the RTSJ, its programming model, and a set of

design patterns that provide good programming practices, and good solutions to recurring

problems. This Chapter, will highlight the limitation of the current RTSJ, and will devise

solutions on how to overcome these limitations in order to get an efficient and predictable

real-time platform. More specifically, this Chapter will (1) dig into all the points of shadow

that are present in the RTSJ and limit its applicability to real-time systems, and (2) provide

either optimal algorithm, or effective design on how to implement certain features. The

content of this Chapter will be explained in the context of jRate an RTSJ-based ahead of

time compiler and runtime system based on the GNU Compiler for Java (GCJ).

The remainder of this Chapter is organized as follows, in Section 4.2 we introduce

jRate, its goals and its design principles; in Section 4.3 we provide and overview of the

jRate Threading, Scheduling and Dispatching framework, in Section 4.4 we provide and

overview of the jRate Generative Memory Area Framework, finally in Section 4.5 we will

show why algorithms and data structures currently used by RTSJ implementation are not

suitable, and will provide optimal algorithms for performing RTSJ’s memory related safety

checks.
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4.2 jRate

4.2.1 Overview

jRate 1 [17, 18, 19, 3, 16, 33, 13, 15] is an open-source RTSJ-based real-time Java im-

plementation that the author has developed in the course of his PhD while being at the

University of California, Irvine and Washington University, St. Louis. jRate extends the

open-source GCJ front-end and runtime system [24] to provide an ahead-of-time com-

piled platform for the development of RTSJ-compliant applications. The jRate architec-

(x86, PPC, ARMS)
Host

GCJ Runtime

Application
RT−Java

jRate

(x86, PPC, ARMS)
Host

RT−JVM

RT−Java Application

(b)(a)

Figure 4.1: The jRate Architecture

ture shown in Figure 4.1(a) differs from the JVM model shown in Figure 4.1(b) since there

is no JVM interpreting the Java bytecode. Instead, jRate ahead-of-time compiles RTSJ

applications into native code. The Java and RTSJ services, such as garbage collection,

real-time threads, and scheduling, are accessible via the GCJ and jRate runtime systems,

respectively.

4.2.2 jRate’s Design Principles

jRate uses Generative Programming (GP) [20] in order to make it possible to have a con-

figurable, customizable and yet efficient RTSJ implementation. GP is also used as a way

of exploring design alternatives, which differ from the RTSJ, in a well engineered manner.

The generative behaviour is achieved by using a series of techniques and tools such as C++

template meta programming [20], and Python [34] scripting. For instance, Figure 4.2 de-

picts the stage involved in applying GP in an RTSJ setting. As shown in Figure 4.2, the

generation of a specific instance of jRate is obtained by relying on:

• Specification. A specification is made by user input, and by platform specific infor-

mation that is detected automatically by configuration scripts, such as CPU number

1jRate can be freely downloaded at http://www.cs.wustl.edu/˜corsaro/jRate
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Figure 4.2: Applying Generative Programming to jRate.

and frequency, time and timer resolution, support for POXIX extension for real-time

etc. The user input specifies properties of the generated platform such as the schedul-

ing algorithm to be used, the peculiarities of the memory subsystem, and so on.

• RTSJ Specific Concepts and Features. These are a set of configurable components

that provide key abstraction needed for building a RTSJ based system. Example of

such concepts could be the scheduler, real-time threads, memory areas and so on.

• Configuration Knowledge. This the glue that makes the whole system stick to-

gether. Configuration knowledge encapsulates all the information needed in order to

compose and configure the key components that provide implementation for RTSJ

specific concepts and abstraction.

jRate implements RTSJ’s Specific Concepts and Features by means of a set of C++

Template classes. This set of C++ Template classes, called the jRate-Core, provide a con-

figurable kernel which can be reused in different settings and language binding by properly

instantiating the template classes. As depicted in Figure 4.3, RTSJ applications developed

using jRate rely on the GCJ runtime for basic Java services, and on the jRate runtime

for RTSJ services. In order to make it easier to reuse the jRate code base, most of the

extension that were needed by the GCJ runtime have been factored out and moved to the

jRate-Core. As shown in Figure 4.3, the RTSJ binding represents just one instance of use

of this C++ core, and by writing the proper binding, RTSJ-like abstraction could be pro-

vided to other languages such as C#, C++ etc. A big advantage of using C++ Template
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Figure 4.3: The jRate-Core and RTSJ binding

meta-programming, as a mean of implementing GP, is that we obtain a high degree of

configurability, while at the same time being able to generate tight and efficient code.

4.2.3 jRate’s Current Status

Currently jRate supports most of the RTSJ features such as memory areas, real-time threads,

periodic threads, asynchronous event handlers, timers, POSIX signals, etc., and also pro-

vides some extensions. It allows a fine control over the properties of the different types of

memory areas, such as size, allocators, locking etc. jRate provides several optimizations

such a constant time memory reference checking, and single parent rule test implemen-

tation [13] and lock free dispatching of events [19]. The remainder of this Chapter will

describe all the techniques used in jRate to implement efficient and predictable real-time

middleware.

4.3 Techniques for Efficient RTSJ Threading, Scheduling

and Dispatching Implementation

Real-Time systems usually heavily rely on threads their scheduling, and on the efficient dis-

patch of events. Thus, a real-time middleware cannot neglect the importance of providing

an efficient, predictable and yet customizable design and implementation of the threading,

scheduling and dispatching (TSD)2 subsystem. jRate takes advantage of C++ templates

2In this context with the term dispatching we intend the demultiplexing and handling of system or appli-
cation generated events.
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to provide an efficient, predictable and configurable threading and dispatching service. In

the remainder of this section we will provide an overview of the design of jRate TSD

subsystem. We will also show some example of how this generic framework is instanti-

ated to be applied in different context such as asynchronous event dispatching, and timers

implementation.

4.3.1 Threads and Scheduling

The RTSJ provides a rich set of abstractions for threads and their scheduling (an overview

of the services available was provided in Section 2.2). jRate’s Core provides the ba-

sic building blocks used to implement the RTSJ’s defined abstractions for threading and

scheduling. Figure 4.4 shows the class diagram for jRate’s threading and scheduling frame-

work. The classes depicted in Figure 4.4 provide the key abstraction for managing threads

execution, their scheduling, and their relationship with memory areas, i.e., the scope stack.

It is worth noticing that threads are parametrized by the platform scheduler, and that the

scheduler is parametrized by the scheduling parameters. While this fixes the kind of sched-

uler to be used at compile time, it allows an efficient and strongly typed implementation of

the scheduling framework. It is worth comparing this approach with the one followed by

the RTSJ architects, since (1) the absence of templates in Java, along with (2) some design

choices, lead the expert group to design some interfaces that don’t take advantage of static

typing for enforcing correctness. For instance, in the case of RTSJ’s scheduling parameters,

a run-time check is responsible to ensure the right parameters are being used for the current

platform scheduler. On the other hand, in the jRate scheduling framework, the scheduler,

scheduling parameters and thread are all tied at compile time. The right scheduler, and

thread implementation is generated by means of static template meta-programming using

C++ templates. This allows for efficient implementation as well as run-time correctness im-

plied by compile time correctness. Below we provide a detailed description of the classes

depicted in Figure 4.4.

• Runnable. The Runnable interface is used to define a contract between Threads

and the logic they will run. As is in the case for Java threads, the logic to be executed

by a thread has to be embedded in the run method of a class that implements the

Runnable interface.

• Thread. This class implements the core thread functionalities. It is parametrized by a

Scheduler type, and has an associated ScopeStack instance and a Runnable.

The ScopeStack is used to keep track of all the memory areas that the thread has
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Figure 4.4: The jRate Threading and Scheduling Framework.
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entered but yet not exited. The execution of the Thread instance is managed by the

associated scheduler.

• ScopeStack. This class contains the memory areas that a Thread has entered and

yet not exited.

• PriorityScheduler. This class represents one kind of concrete scheduler. Specifi-

cally it is a priority preemptive scheduler that relies on the OS scheduler.

• PriorityParameters. This class defines the scheduling parameters that have to be

used to specify execution eligibility for a PriorityScheduler.

Threads are a core building block for many different kind of applications. Because of this

jRate extends the thread abstraction by providing both in the core, and also in the Java

binding, higher level abstractions such as executors and channels. In the remainder of this

Section we will provide an overview of the extended abstraction provided by jRate and

how this are used to implement the dispatching framework.

4.3.2 Dispatching

Event dispatching is one of the very fundamental activity that take place for performing

several tasks in real-time and non real-time systems. As an example think about the event

being dispatched to an application by the windowing system, or the event due to timer

expiration or any other user defined activity. Event demultiplexing and dispatching is par-

ticularly important in real-time systems since this has to be performed while (1) limiting,

or avoiding if possible, the introduction of priority inversion, and (2) being efficient and

parsimonious in the use of resources. To solve this problem once, and in a generative man-

ner, jRate provides the core abstraction in a dispatching framework. The class diagram

of the classes that implement this framework is shown in Figure 4.5. While at first sight

the framework seems to have a limited set of classes, the reader should concentrate on the

composability of the core abstractions. As shown in Figure 4.5, the core abstraction are ex-

ecutors and channels. The basic idea is very simple, channels contain items, this items are

sorted based on a policy that depends on the channel implementation. On the other hand ex-

ecutors simply executes tasks, where tasks are represented by Runnable instances. These

simple and orthogonal concepts can be composed to created rather complex logic. Before

providing some example of the instantiation of this generic dispatching framework to solve

specific problems, we provide a description of the classes depicted in Figure 4.5.
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Figure 4.5: The jRate Executors and Dispatching Framework.
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• IExecutor. The IExecutor interface provide defines the protocol between the ex-

ecutor abstraction and its client. This interface is implemented by concrete executors,

so to make it possible to program by type rather than by class, i.e., avoid tying client

code to a specific executor implementation rather than an abstract protocol.

• SingleThreadedExecutor. This class provides a concrete implementation of the

IExecutor that relies on a single thread of execution. This means that the executor

is able to execute at most one task at the time.

• PooledExecutor. This class provide an implementation of the IExecutor inter-

face, based on a pool of SingleThreadedExecutor. This class has associated

a queue of task to perform, as well as a queue of executor that are meant to execute

the requested tasks. Since both the task and the executor queues are template param-

eters, the user of this class can choose the most appropriate queuing policy based on

the application logic. By default, executors are managed by using a LIFO policy (this

improves cache performances), while tasks are managed by a FIFO policy.

• IChannel. This interface is implemented by concrete channels, so to make it possible

to program by type rather than by class, i.e., avoid tying client code to a specific

channel implementation rather than an abstract protocol.

• Channel. This class implements a channel abstraction. It is parametrized by the type

of item it stores, and by the container used to implement the channel itself.

Now that we have seen what are the core principles and abstraction behind the TSD frame-

work, we can see some concrete example of how it is used within jRate in order to imple-

ment RTSJ services. Figure 4.6 and Figure 4.7 show, respectively, the class and sequence

diagram that illustrates how the STD framework is used to implement the timer engine.

As depicted in Figure 4.6, the timer engine is constituted by:

1. a TimerManager which receives requests regarding timers scheduling, and takes

care of interfacing with OS provided timers to program appropriate intervals, and

2. a PooledExecutor which takes care of dispatching timeout notification to regis-

tered handlers, and

3. two different Channel instantiation which are used to keep timeout handlers and

executors.
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Channel

:std::heap

:TimeoutHandler

:MutexSynch

PooledExecutor

:PriorityScheduler

:Channel<...>

:Channel<...>

Channel

:std::stack

:IExecutor

:MutexSynch

TimerManager

Figure 4.6: jRate Timer Implementation.

Figure 4.7 shows the sequence of message that are exchanged when scheduling and dis-

patching a timer. Another example of use of the TSD framework within jRate is to sup-

port the implementation of RTSJ asynchronous event. Figure 4.8 shows how jRate’s core

classes (shown in the diagram in darker shade) are used as native peers for implementing

the BoundAsyncEventHandler and the PooledAsyncEventHandler. The latter

is a jRate non standard extension, but as it will be apparent from the performance results

shown in Section 6.4.3, the expert group should consider adding this as a standard RTSJ

feature.

4.4 Techniques for Efficient RTSJ Memory Implementa-

tion

The RTSJ memory subsystem is one of the most challenging feature to architect and im-

plement so to guarantee the right degree of performances, predictability and extensibility.

This Section will provide an overview of the jRate generative memory area framework.

4.4.1 jRate Generative Memory Areas Framework

As described in Section 4.2.3, jRate takes a generative approach to the development of

software. Specifically, it provides a framework that can be used to generate several different

memory models. The building block at the base of this framework are depicted in the UML
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diagram shown in Figure 4.9. In this diagram (see Figure 4.9) the two template classes,

IMemoryArea and MemoryArea represent the host classes [2] whose behaviour can be

fully customized using a set of policy classes [2] passed as template arguments.

Conceptually the classes depicted in Figure 4.9 provide key abstractions, such as

allocator, reference checker etc. The memory area framework is based on templates and

implicit class protocols, thus the relationship between different abstractions is not made

explicit by inheritance or association relationship. Below we provide a detailed description

of the classes that compose this framework.

• IMemoryArea. The class IMemoryArea provides the basic services for needed

by a RTSJ-like memory area. Thus it supports the concept of parent, portal etc. Its

template parameters make it possible to parametrize the algorithm used to perform

reference checking, and the type traits of memory being allocated e.g. java.lang-

.Object, char etc.

• MemoryArea. This class provides basic abstractions needed by a generic memory

area, and not necessarily tied to the RTSJ memory model. In the context of jRate its

BaseMemory is represented by the IMemoryArea class. This way, this class is en-

riched with a set of specific RTSJ services. The template parameters that can be used

to configure this class are (1) the Allocator, which provides a means for allocat-

ing raw memory, (2) the BufferProvider which provides the memory managed
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Figure 4.9: The jRate Generative Memory Area Framework.
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by the Allocator, (3) the Synchronizer which provides the synchronization

mechanism to be used by the MemoryArea, and (4) the TypeTraits, which de-

scribe the characteristics of the type being allocated.

• Allocators. As it can be seen from Figure 4.9, there is no common superclass for

the various allocators, instead an implicit protocol is used to provide this service.

The allocators provided with jRate are the StackAllocator, Segregated-

Allocator, MallocAllocator, and the MMapAllocator. The behaviour of

these classes is parametrized by means of a set of template parameters which allow

to specify things like the memory alignment, the header and so on. However, to

simplify the exposition, in Figure 4.9 it is shown as template parameter only the

BufferProvider.

• BufferProvider. The BufferProvider is a functor, e.g. a function object, that

takes care of creating, or retrieving, the bootstrap allocators. It’s template arguments

Allocator and BasicBufferProvider, represent respectively the allocator

that will be created, and the means that will be used in order to get the memory for

the allocator to manage. It is worth noticing that often, applications have only one

bootstrap allocator.

Based on the description given so far of the jRate generative memory area framework,

the reader might have found that there is a circular dependency in the classes depicted in

Figure 4.9. The circular dependency arise from the fact that allocators depend on buffer

provider and vice-versa. This recursive dependency is the real power of the generative

memory area framework. In fact it allows the composition of the different classes depicted

in Figure 4.9 so to create arbitrary complex memory systems. As in every recursive struc-

ture the circularity is broken by using base cases. As an example, let’s consider the con-

crete memory system depicted in Figure 4.10. In this scenario we have a bootstrap allocator

that gets its working chunk of memory using a MMapAllocator, and then manages this

memory by using a SegregatedAllocator. The SegregatedAllocator uses

the classic segregated list approach to memory management in order to allow efficient

allocation and release of memory chunks. Then we have a MemoryArea that relies on a

StackAllocatorwhose buffer provider is the SegregatedAllocator. The reader

might wonder at this point why all this machinery is needed. The great advantage of being

able to create layers of allocator is that of using different allocation strategies at different

level so to maximize the performance and predictability of the overall memory system. For
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Figure 4.10: An sample instantiation of the jRate Generative Memory Area Framework.

instance, one of the commonly used configuration in jRate uses a singleton bootstrap al-

locator based on a SegregatedAllocator, which provides the big chunk of memory

needed by the various memory areas. This allows for a very efficient and predictable cre-

ation of MemoryAreas. Figure 4.11 represent a typical application scenario, where the

BufferProvider provides access to a singleton bootstrap allocator, the MemoryArea

relies on the bootstrap allocator in order to obtain memory for its own allocator, and defines

its specific allocator for the given memory chunk.

4.5 Optimizing the RTSJ Run-Time Checks

In Chapter 2 we described the checks required by a compliant RTSJ implementation in

order to (1) detect the creation of illegal references, and thus the potential for dangling

pointers, and (2) enforcing the single parent rule. We showed that the complexity of those

runtime checks was O(n), with n being the depth of the scope stack. A possible opti-

mization of the Algorithm 3 is reported in Algorithm 5. This algorithm, based on the

observation that reference from scoped memory to heap or immortal memory are always
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Figure 4.11: jRate Generative Memory Area Framework at Work.

legal, and the opposite is always illegal, avoids scanning the scope stack, and simply fol-

lows a scope’s parent link to discover if the target reference is in an ancestor scope of the

source. However, the complexity in the worst case is always O(n), and thus linear. While

at first sight this might not seem a serious problem, it has a rather subtle implication. The

problem is that by having a linear time check for single parent rule enforcement and ref-

erence safety checking makes simple operations such as the enter of a memory area or

the assignment of a reference to an object field dependent on the structure of the scope

stack. Taking this argument to an extreme, the sample code reported in Listing 4.12 has

some surprising properties. For instance, the time taken by an operation as simple as a

field setting (for reference-type fields) shown at line 7 in Listing 4.12 takes an amount

of time that depends linearly on the length of the scope stack. This means that the time

taken to execute an instruction as simple as a field set is not constant, and it depends on

the structure of the scope stack which might depends on some application specific runtime

properties. Entering a memory area has a similar problem, in fact, the time taken to exe-

cute the instruction reported at line 5 in Listing 4.12 depends linearly on the length of the

scope stack. It is well known that for real-time applications, it is important to be able to

put bounds on the execution of operations within some piece of code, and for code within

a whole application. Real-time applications inevitably contain code fragments whose ex-

ecution time must be statically known. The scope stacks for an application—in particular,

their depth—are not necessarily decidable at compile-time. Thus, linear-time algorithms

for checking the single-parent rule and the memory references may incur unpredictable
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Algorithm 5: checkReferenceValidity2
Input: MemoryArea from, MemoryArea to
Output: boolean validReference
begin

validReference←true;
if from 6=to then

if to instanceOf ScopedMemory then
if from instanceOf ScopedMemory then

ancestor← from.getParent();
while to 6= ancestor and ancestor 6= nil do

ancestor← ancestor.getParent();

if to 6= ancestor then
validReference←false;

else
validReference←false;

end
� �

1
2 . . .
3 Runnable l o g i c = new Runnable { . . . } ;
4 LTMemory mem = new LTMemory ( minSize , maxSize ) ;
5 mem. e n t e r ( l o g i c ) ;
6 . . .
7 XType x = . . . ;
8 o b j . s e t F i e l d X ( x ) ; / / obj.x = x;
9 . . .


� �

Figure 4.12: Code fragments that illustrate the RTSJ reference issue.

overhead. As a result, the application must either overprovision, thus wasting resources, or

else underprovision, and perhaps miss a critical deadline.

Summarizing, the time spent checking a given memory reference using the above

algorithms will vary depending on the particular scope stack in place when the check is per-

formed. Even a simple store instruction will thus take varying amounts of time depending

on the scope stack. This prevents analysis of the code’s timing in any particular context,

but makes it necessary to analyze its timing in all the different contexts in which it could be

executed. In our experience in developing an Object Request Broker (ORB) for RTSJ, such

unpredictability makes it impossible to bound reasonably the time for servicing clients’

requests.
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Before we tackled this problem in [14], solution presents in literature [8, 5, 35]

where based on linear time algorithm, and thus not ideal for real-time applications. We

next show how to extend the data structures used by the RTSJ to perform all required

checks in constant time. Our approach is inspired and based upon type-inclusion tests for

single-inheritance, object-oriented languages [37].

We have implemented the algorithms described here in the jRate [19] memory sub-

system; for convenience, we describe our approach in the context of jRate.

4.5.1 Optimizing the Singe Parent Rule Check

jRate’s scope-stack implementation uses data structures that allow all scope stack oper-

ations to be performed in constant time. As shown in Figure 4.13, jRate augments the

scope-stack data structure suggested by RTSJ, linking those slots that represent scoped

memory areas. An index is also maintained to the topmost scoped memory, so that the next

scoped memory area pushed onto the stack can be linked with the others.

Top

Bottom

Scoped Memory

Non-Scoped Memory

Scoped 
Memory 
Top

Figure 4.13: The jRate Scope Stack structure.

This design allows a constant-time implementation of findF irstScope(), while at

the same time maintaining constant-time bounds for push() and pop().

Algorithm 6 provides the pseudocode for the constant-time implementation of find-

FirstScope(), while Algorithm 7 and Algorithm 8 provide the pseudocode for the push

and pop operations. On inspection it can be seen that all of these operation are performed

in constant time. As compared with the RTSJ-inspired implementations, no scanning of the

scope stack is required.
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Algorithm 6: findFirstScope
Input: ScopeStack ss
Output: ScopedMemory firstScope
begin

firstScope← primordialScope;
if ss.lastSMIndex 6= STACK END then

firstScope← ss [ss.lastSMIndex ].ma ;

end

Algorithm 7: Push
Input: MemoryArea ma, ScopeStack ss
begin

if ma instanceOf ScopedMemory then
if ma.getParent() = nil then

ma.setParent(findFirstScope(ss ));
else

if ma.getParent() 6= findFirstScope(ss ) then
throw ScopedCycleException;

ss.top← ss.top +1;
ss [ss.top ].ma←ma ;
ss [ss.top ].prevSM← ss.lastSMIndex ;
ss.lastSMIndex← ss.top ;

else
ss.top← ss.top +1;
ss [ss.top ].ma←ma ;

end

The actions required for processing memory areas require knowing what kind of

memory area is at-hand (immortal, scoped, etc). While such information could be deter-

mined by JavaTM ’s instanceof test, that test may require time linear in the depth of the

program’s class hierarchy. Instead, jRate] optimizes such tests by tagging memory area

objects to allow a constant-time test.

This enhancement of the scope stack structure makes it possible to know exactly

which entries of the scope stack are scoped memories and which are not. This knowledge

enables it to elide a test on the type of memory area, and avoids blindly searching for

scoped memories on the stack to decrement the reference count when destroying the scope

stack. As a final note, the size of a jRate real-time thread’s scope stack can be fixed at
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Algorithm 8: Pop
Input: ScopeStack ss
begin

if ss [ss.top ].ma instanceOf ScopedMemory then
ss.lastSMIndex← ScopedMemory[ss.top ].prevSM ;

ss.top← ss.top −1;

end

thread-creation time. This design makes jRate more space efficient by avoiding the use of

pointers to implement the linked list.

4.5.2 Optimizing the Memory Area Reference Check

To understand the main idea behind our technique for implementing the reference checks

in constant time, consider a generic scope stack tree, such as the one in Figure 4.14. In

this example, some of the memory areas are scoped and some are not. The scope stack

of any running real-time thread can be represented as a path from the root down to some

interior or leaf note. As stated in Section 2.4.2, references can always be made from

objects in a scoped memory to object in the heap or immortal memory; the opposite is

never allowed. Also, the ancestor relation among scope memory areas is defined by the

nesting of the areas themselves; intervening entry into the heap or immortal memory areas

do not affect the scopes. We call the tree implied by the scoped memory areas’ ancestor

relation the parenthood tree. For instance, collapsing all the nodes that represent either the

heap or immortal memory in the scope tree of Figure 4.14, we obtain the tree depicted in

Figure 4.15. In this tree, a direct edge from node B to node A, means that A is the parent

of B.

The advantage of this formulation is that subtype-testing algorithms [37] can be ap-

plied to the parenthood tree to determine legal references. In particular, if we think of each

node of the tree as representing a type, as well as a memory area, then we can rephrase the

memory reference checking into a sub-type testing, for single type inheritance. The proof

of this fact is straightforward, and it follows easily from the definition of subtype, memory

reference validity, and single parent rule. More specifically, given a parenthood tree T , we

have that:

∀x, y ∈ T : (y � x)→ (y ; x)



61

A

B

F

GE

D

C L

H

I

H

I

H

I

H

I

Figure 4.14: A sample Scope Tree structure (Grey nodes represent the Heap(H), and Im-
mortal (I) Memory).
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Figure 4.15: Transformed and Decorated Scope Tree structure.
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Where the symbol � has the usual meaning of subtype, while we use the symbol ; to

indicate that a memory area on the left side of the ; can contain objects that point to the

memory area on the right side of the ;. Relying on this observation, we can use a technique

based on displays, similar to that proposed by Cohen [37], to determine the validity of a

memory reference in constant time. The parenthood tree can change with time, since the

scopes’ parent-child relation changes as the application runs and scoped memory areas are

entered and exited. Thus, the associated type hierarchy is not fixed, but changes at well-

defined points—when the reference count of a scoped memory goes from zero to one or

from one to zero. At such points, the typing information associated with a scoped memory

has to be created and destroyed, respectively.

To facilitate a constant-time memory-reference check, we augment the information

associated with a scoped memory to include its depth in the parenthood tree and a display

that contains the type identification codes of its ancestors in the parenthood tree. The

address of a scoped area serves nicely as a unique type identifier, thanks to the single-

parent rule: once a scoped memory area is reclaimed, no memory area can store its address

in its display. This avoids the need to map a storage area to a unique number and improves

the efficiency of our algorithms.

For example, if we consider the scoped memory C in Figure 4.15, its depth will be

2 and its display will be (A, B, C). Notice that the depth is the same as the display length

minus one, so an implementation won’t necessarily need to store this information twice.

Here we treat them separately only to simplify exposition of our algorithms. Algorithm 9

contains the pseudocode that shows how, with these extensions, it is possible to perform

the memory reference check in constant time. In this algorithm it is assumed that both the

heap and the immortal memory have a depth of −1.

Finally, we note that the management of displays does not add considerable com-

plexity when entering or exiting a memory area. When a scoped memory is entered for

the first time, or after its reference count has dropped to zero, setting up the display sim-

ply requires copying the parent’s display and adding itself at the end. The only operation

required when the last thread leaves the scoped memory is to invalidate the display.

In summary we have described a constant-time algorithm that offers far greater pre-

dictability and asymptotic efficiency over the approach currently implemented for RTSJ.
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Algorithm 9: checkReferenceValidity
Input: MemoryArea from, MemoryArea to
Output: boolean validReference
begin

validReference←false;
if from.depth ≥ to.depth then

if to.depth = −1 then
validReference←true;

else
if from.display [to.depth ] = to then

validReference←true;

end

4.5.3 Selecting the Most Appropriate Algorithm

As we have seen in the previous sections, there are several algorithms that could be chosen

for implementing the RTSJ’s safety checks. Some new constant time algorithms have been

proposed at the time of the writing of this thesis [48]. The algorithm proposed in [48]

is based on the a known techniques that encodes types with integer intervals. The main

difference between the technique proposed in [48] and the one proposed in this thesis are

(1) the need for recomputing of intervals at runtime, and (2) the use of constant space for

type encoding. As it should be evident to the reader this solution trades space for time.

Table 4.1: Criteria for Reference Checking Algorithm Selection.

Real-Time Embedded Embedded and Real-Time
Deep Scope Stacks O(1) Display) O(N) Parent Traversal O(1) Display or Interval

Shallow Scope Stacks O(1) Display) O(N) Parent Traversal O(1) Display

Table 4.1 contains some suggestions on the algorithms to use for different combina-

tions of scope stack dept and system. For instance, for real-time systems on which memory

footprint is not an issue the algorithm to choose is the display based algorithm presented in

this thesis. On the other hand, for real-time systems that have memory constraints, and a

deep scope stack, one might chose either the display or the interval based algorithm.

4.5.4 Empirical Validation

We next present the results of a performance comparison between the memory-reference

checking scheme proposed in this paper and the one proposed by the RTSJ. The scope of



64

this performance measurement is to empirically validate the effectiveness of the display

solution approach. For a description of the testbed on which the measurement were made,

please, refer to Section 6.2.

4.5.5 Test Description and Results

To compare the performance of our approach against that of other systems based on the

RTSJ, we implemented both algorithms in jRate. Other RTSJ systems to-date follow Al-

gorithm 3—scanning the scope stack to determine the validity of a reference check. But, if

the instanceof tests can be carried out in constant time3, then Algorithm 5 is more efficient

since there is no need to scan the scope stack. Instead, the scope hierarchy is consulted.

We therefore implemented and compared the better Algorithm 5 with our display-based

approach as described by Algorithm 9.

Both algorithms are implemented in C++, on the native side of jRate. To better

estimate the performance of the two algorithms, and to avoid the overhead and interference

of Cygnus Native Interface (CNI), we instrumented the native code directly to measure

times for both approaches.

In order to compare the efficiency of the different memory reference algorithms, we

extended the RTJPerf4 [17] benchmarking suite, with a test that creates a reference from

a scoped memory B to a scoped memory A; where A is the nth ancestor of B, i.e., an

ancestor that has a distance of n from B. The values of n considered were 0, 1, 2, 4, 8, 16,

32, and 64. The time for performing the reference check was computed as the average of

2000 samples.

Figure 4.16 shows the average, 99%, maximum, and standard deviation for the two

algorithms.

As can be seen from Figure 4.16, the display-based memory-reference check out-

performs the parent-traversal-based check in each of the test cases. Moreover, as claimed in

Section 4.5.2, the experiments confirm that the checks execute in constant time, regardless

of the depth of the scope stack. The display based algorithm, not only provides average

constant time checks, but its worst case performance indexes, i.e., 99% and max, are very

closely bound—practically identical—to the average.

Note that the results provided by this test also predict the timing behavior of these

algorithms for invalid memory references. For the display-based approach, the time taken

3jRate uses a custom encoding for those classes that require frequent instanceof tests. This allows
instanceof to be replaced by an integer comparison or a bitwise-and operation.

4RTJPerf is currently the only available RTSJ benchmarking suite
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Figure 4.16: Performances comparison between Display based vs. Parent traversal algo-
rithm.

to detect a valid or an invalid reference is the same, and does not depend on the structure of

the parenthood tree. On the other hand, if we consider the parent-traversal algorithm, the

time necessary for detecting an invalid reference (in the case of two scoped memories) re-

quires traversing the parents path to the root. Thus, results shown in Figure 4.16 determine

the time taken to check an invalid reference when the from scoped memory has a distance

of n from the root of the parenthood tree.
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Chapter 5

Extending the RTSJ

5.1 Introduction

In Chapter 4 we’ve shown the current limitation of the RTSJ and have provided solutions

to them that did not have an impact on the API, nor on the programming model. This

Chapter motivates a set of extensions to the RTSJ which are meant to make it either more

performant or easier to program. The performances of most of these extensions will be

evaluated empirically in Chapter 6 .

5.2 Constant Time Scoped Memory

The scoped memory is one of the most fundamental addition introduced by the RTSJ.

This addition has both an impact on the programming model and on the way to architect

applications. The key goal RTSJ’s architects had in mind when introducing this abstraction

was that of allowing the automatic reclamation of objects, without requiring the use of a

tracing garbage collector. The RTSJ defines only two allocation strategy for scoped—linear

time and variable time. The case for constant time allocation was not considered1.

Intent. Provide and efficient and predictable constant time allocation scoped memory, so

to make it easier to perform timing analysis.

Example. For real-time applications it is very important to be able to perform worst case

execution timer (WCET) analysis. Thus, each time there is a code fragment that takes a non

1To be more precise, it had been considered in earlier version of the specification and then dropped.
However, based on the findings of this thesis, we believe that a constant time scoped memory is really needed.
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constant amount of time, in order to determine its execution time, worst case bounds should

be considered for appropriate inputs. This clearly makes the analysis harder to perform and

less accurate. Because of this it is very important for a middleware that has to support

real-time applications to easy WCET analysis.

Problem. Linear or variable time allocation make it harder to perform WCET analysis,

and can also introduce unpredictability.

Solution. Provide CTMemory, a highly efficient and predictable constant time scoped

memory.

Structure. Figure 5.1 indicates the structure of the proposed solution. The CTMemory

extends the RTSJ ScopedMemory class and delegates its implementation to a native peer.

The native peer is just an instance of a jRate memory area framework template (properly

instantiated). Notice that the only thing that is special about the template instantiation is

that it is configured with a constant time allocator—the StackAllocator.
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Figure 5.1: jRate’s CTMemory.

5.3 Private Scoped Memory (Scratch-pad)

Scoped Memory give a way of controlling the allocation and deallocation of a group of

objects—those allocated within the memory area. The issue that has to be considered when

working with memory areas is that the RTSJ specification is underspecified respect to the

following point (1) when the object allocated within a scoped memory are finalized, and

(2) who finalizes those objects. A typical choice taken by implementors is that of having

the last thread leaving the scoped memory finalizing the objects contained within it. Other

implementation use a separate thread to cope with reclamation.
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The private scopes idiom, also called the scratch-pad, is useful in all those situation

in which an RTSJ real-time thread has to perform some operation which requires allocation

of many temporary objects, but does not have the need to share any objects with another

thread i.e. the temporary objects can be considered private.

Intent. Provide a way to ensure that a scoped memory is used at any point in time by a

single real-time thread.

Example. Consider a simple Web Server application. When a server thread serves a

HTTP request it might generates quite a bit of temporary data, and this data is usually not

relevant to other thread concurrently serving other requests (in this example we are ignoring

caching).

Problem. There is an application thread that cannot tolerate the unpredictability intro-

duced by the finalization of traditional scoped memory. At the same time this thread does

not need to share any data with any other thread.

Solution. Extend the scoped memory (for instance the CTMemory) so to enforce that

only one thread at the time can enter it. Take advantage of this by removing all the locking

needed for thread safety.

Structure. The resulting structure of the solution is the one reported in Figure 5.2. Here

a CTPrivateMemory extends the RTSJ ScopedMemory class and delegates its im-

plementation to a native peer. The native peer is just an instance of a jRate memory

area framework template (properly instantiated). Notice that the only thing that is special

about the template instantiation is that it is configured with a constant time allocator—the

StackAllocator, and it does not use any locking to make its operation thread safe.

5.4 Memory Tunnels

As we have seen so far, the RTSJ does not provide any specific mechanism to transfer

object graphs from one memory area to another. The only mechanism that could be used is

the Java serialization, but this has some limitation since (1) it requires that all the objects

to be serialized implement the Serializable interface, and (2) is not the most efficient

mean of getting an object graph from one memory region to another.
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Figure 5.2: jRate’s CTPrivateMemory

Intent. Provide an efficient mechanism for threads to transfer object graphs across mem-

ory areas.

Example. The RTSJ makes it quite complicated to implement producer consumer pa-

radigms since they conflict with the programming model imposed by scoped memories.

This issue has been faced by people who have tried to implement real-time Java ORB that

rely on the RTSJ. The issue that often arise is that an object, or an object graph, from one

memory area needs to get into another, but there is no neat way of accomplishing the goal.

Problem. Solve the problem introduced by the scoped memories which limits the possi-

bility of data sharing between threads, as well as the implementation of producer consumer

applications.

Solution. The idea is that of “breaking the barriers” of scoped memories. To this aim, a

structure that can be used to perform object passing among different threads, forcing a vio-

lation of the memory constraint of RTSJ but without provoking consequences, is proposed.

Like in some diodes the “tunnel effect” allows electrons to break a barrier of potential,

memory tunnels allow a message passing by-value among threads that live in different and

not compatible memory areas. From an abstract point of view, a memory tunnel is a tradi-

tional queue exposing two operations—put and get—that can be used to write an object, at

one side, and to read it from another side (Figure 5.3). The underlying mechanism, like any

other technique used to access data from different domains2, is based on performing a copy

of the object: when put is executed, the object is copied from the source memory onto

an internal temporary area that holds the queue in the tunnel; similarly, the effect of get

2think, for example, to accessing user space by kernel code, operation usually done by copying data from
user to kernel space [45].
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is doing a copy the object from the temporary area into the memory of the destination do-

main. Since the real operation is cloning the object to be passed and the latter could contain

references to other objects of the source (or a compatible) domain, the implementation of

memory tunnels provide two versions of put: a deep put—which performs a deep-copy

of the object—and a shallow put—which instead does not copy the referred objects. In

the latter case, when a get is performed, a suitable check verifies that references present

in the copied object are still valid in the new domain.

T1 T2
put

Scope A

get

Scope B

MemoryTunnel

object
Temporary

Area

Figure 5.3: A Memory Tunnel

Using this structure, data can be transferred without needing to share anything

among the threads involved; for this reason, memory tunnels can be employed without

any problem when traditional forms of data passing-by-reference fail due to RTSJ mem-

ory model constraints. However there is an implementation requirement that, if not met,

does not allow the use of memory tunnels: the internal temporary area must be allocated

in a memory space and using management mechanisms that are outside the RTSJ mem-

ory model, otherwise we easily fall again in the non-feasibility conditions caused by RTSJ

constraints. A memory tunnel is thus identified univocally by means of a literal name

(a JavaTM string), which is given to the TunnelProxy object to perform access to that

tunnel.

Structure. Figure 5.4 and Figure 5.5 show the structure of the solution in the context of

a dispatcher/worker problem. In this solution, there is a different memory tunnel for each

worker that is referred by two different TunnelProxy objects: one for dispatcher side

and the other one for worker side. The behaviour of the dispatcher is quite simple: once

received the message from the network, it gets the TunnelProxy (dispatcher side) object,

relevant to the worker, and puts the message in it. On the other hand, from the worker’s

point of view, the task of handling messages is split between two different objects: the

Worker and the Executor. The former implements a loop that continuously passes the

control to the latter, while the latter has the real responsibility of processing messages. The

presence of two different objects is due to the necessity of using scoped memory to avoid
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Worker javax.realtime.LTMemory

javax.realtime.VTMemory
or

Executor

java.lang.Runnable

javax.realtime.NoHeapRealtimeThread javax.realtime.NoHeapRealtimeThread

javax.realtime.RealtimeThread
or

MemoryTunnel

Dispatcher

enters

implements

TunnelProxy TunnelProxy

copies objects to copies objects from

Figure 5.4: Dispatcher/Worker pattern with Memory Tunnels

memory leaks and/or explicit memory management. In fact, the memory used by each

object message got from the tunnel, after the latter has been used, should be reclaimed: the

only way to do this, with RTSJ, is (1) entering a scoped memory, (2) getting the message,

(3) processing it, and (4) exiting the scope. To this aim, the processing task has to be

encapsulated in a Runnable object that is iteratively entered/exited in/from the scoped

memory. As Figure 5.5 shows, this iterative operation is performed by the Worker object,

while the Executor object encapsulates the real processing task. Since the message is got

by the Executor (which runs in a scope), the memory allocated is automatically released

when the task is finished (as the latter exits the scope).

Worker

creates
creates

ScopedMemory Executor

run()

get()

loop

Dispatcher

creates

put()

refer to the same
memory tunnel

internal
synchronization
mechanism

loop

These objects

TunnelProxy TunnelProxy

enter(Executor)

creates

Figure 5.5: Sequence Diagram of Dispatcher/Worker with Memory Tunnels

Implementation. The prototype of the class TunnelProxy is given in Figure 5.6. As

it can be noted, the class has two constructors: one to open an existing memory tunnel and
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another to create a new memory tunnel, given the maximum number of items and the size

of the temporary memory area to be allocated for the queue. Methods provided allow to

put an object by using a deep or shallow copy, and to retrieve a stored object, checking

also the validity of embedded references. The proxy provides also a close() method

to signal that the opening/creating thread is no longer interested in using the tunnel. As

Figure 5.6 shows, class TunnelProxy does not have a method to (explicitly) destroy a

memory tunnel; indeed, the lifetime of a memory tunnel is based on a reference counting

mechanism: a reference count that is incremented each time the tunnel is created or opened

(i.e. a TunnelProxy is created for that tunnel), and is decremented each time a close()

method is called; when the reference count is zero the tunnel is destroyed and memory

allocated is released.
�

1 p u b l i c c l a s s Tunne lP roxy {
2
3 /∗ C r e a t e s a memory t u n n e l .
4 ” s i z e ” g i v e s t h e d i m e n s i o n o f t h e t emporary area and ” i t e m s ” g i v e s
5 t h e maximum number o f o b j e c t s t h a t can be p u t i n t h e queue . ∗ /
6 p u b l i c Tunne lP roxy ( j a v a . l a n g . S t r i n g name , i n t i t e m S i z e , i n t i t e m s ) ;
7
8 /∗ Opens a memory t u n n e l ∗ /
9 p u b l i c Tunne lP roxy ( j a v a . l a n g . S t r i n g name ) ;

10
11 /∗ W r i t e s t h e o b j e c t i n t h e t u n n e l u s i n g a s h a l l o w copy ∗ /
12 p u b l i c synchron ized vo id s h a l l o w P u t ( j a v a . l a n g . O b j e c t o b j e c t )
13 throws j a v a . l a n g . I n t e r r u p t e d E x c e p t i o n ;
14
15 /∗ W r i t e s t h e o b j e c t i n t h e t u n n e l u s i n g a deep copy ∗ /
16 p u b l i c synchron ized vo id deepPu t ( j a v a . l a n g . O b j e c t o b j e c t )
17 throws j a v a . l a n g . I n t e r r u p t e d E x c e p t i o n ;
18
19 /∗ R e t r i e v e s t h e o b j e c t f rom t h e t u n n e l .
20 I t a l s o c h e c k s whe ther t h e r e f e r e n c e s c o n t a i n e d are v a l i d i n t h e new domain ∗ /
21 p u b l i c synchron ized j a v a . l a n g . O b j e c t g e t ( )
22 throws j a v a x . r e a l t i m e . I l l e g a l A c c e s s E x c e p t i o n ,
23 j a v a . l a n g . I n t e r r u p t e d E x c e p t i o n ;
24
25 p u b l i c synchron ized vo id c l o s e ( )
26 throws j a v a . l a n g . I n t e r r u p t e d E x c e p t i o n ;
27 }


� �

Figure 5.6: The TunnelProxy Class
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Chapter 6

Performance Evaluation

6.1 Introduction

In the previous Chapters were shown several techniques that can be used to improve per-

formances and predictability of Real-Time Java platforms. In this Chapter, we provide

empirical evidence that the techniques discussed previously are effective in improving per-

formances and predictability. This will be done by comparing jRate’s [10] performance

with those of two commercially available RTSJ implementations, JTime [47] and Jamaica

[1]. In the remainder of this Chapter we will introduce RTJPerf [17, 12], the benchmarking

suite used to evaluate these RTSJ implementations, and we will provide a detailed analysis

of the empirical evaluation results.

6.2 Overview of RTJPerf

Two quality dimensions should be considered when assessing the effectiveness of the RTSJ

as a technology for developing real-time embedded systems:

• Quality of the RTSJ API, i.e., how consistent, intuitive, and easy is it to write RTSJ

programs. If significant accidental complexity is introduced by the RTSJ, it may

provides little benefit compared to using C/C++. This quality dimension is clearly

independent from any particular RTSJ implementation.

• Quality of the RTSJ implementations, i.e., how well do RTSJ implementations per-

form on critical real-time embedded system metrics, such as event dispatch latency,

context switch latency, and memory allocator performance. If the overhead incurred
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by RTSJ implementations are beyond a certain threshold, it may not matter how easy

or intuitive it is to program real-time embedded software since it will not be usable

in practice.

This Chapter focuses on the latter quality dimension and systematically measures various

performance criteria that are critical to real-time embedded applications. To codify these

measurements, we use an open-source1 benchmarking suite called RTJPerf that the author

has developed during his PhD.

6.2.1 Capabilities of the RTJPerf Benchmarks

RTJPerf provide benchmarks for most of the RTSJ features that are critical to real-time

embedded systems. Below, we describe these benchmark tests and reference where we

present the results of the tests in subsequent sections.

Threads

In Chapter 2 we saw how the RTSJ extends the Java threading model with two new types of

real-time threads: RealtimeThread and NoHeapRealtimeThread. RTJPerf pro-

vides the following benchmarks that measure important performance parameters associated

with threading for real-time embedded systems.

Context Switch Test. High levels of thread context switching overhead can significantly

degrade application responsiveness and determinism. Minimizing this overhead is there-

fore an important goal of any runtime environment for real-time embedded systems. To

measure context switching overhead, RTJPerf provides two tests that contains two real-

time threads—configurable to be either either RealtimeThread or NoHeapReal-

timeThread—which cause a context switch in one of the following ways:

1. Yielding—In this case, there are two real-time threads characterized by the same ex-

ecution eligibility that yield to each other. Since there are just two real-time threads,

whenever one thread yields, the other thread will have the highest execution eligibil-

ity, so it will be chosen to run.

2. Synchronizing—In this case, there are two real-time threads—TH and TL—where

TH has higher execution eligibility than TL. TL, enters a monitor M and then waits

1RTJPerf is freely available at http://www.cs.wustl.edu/rtj.
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on a condition C that is set by TH just before it is about to try to enter M . After the

condition C is notified, TL exits the monitor, which allows TH to enter M . The test

measures the time from when TL exits M to when TH enters. This time minus the

time needed to enter/leave the monitor represents the context switch time.

The results for these tests are presented in Section 6.4.1.

Periodic Thread Test. Real-time embedded systems often have activities, such as data

sampling and control law evaluation, that must be performed periodically. The RTSJ pro-

vides programmatic support for these activities via the ability to schedule the execution of

real-time threads periodically. To program this RTSJ feature, an application specifies the

proper release parameters and uses the waitForNextPeriod() method to schedule

thread execution at the beginning of the next period (the period of the thread is specified at

thread creation time via PeriodicParameters). The accuracy with which successive

periodic computation are executed is important since excessive jitter is detrimental to most

real-time systems.

RTJPerf provides a test that measures the precision at which the periodic execution

of real-time thread logic is managed. This test measures the actual time that elapses from

one execution period to the next. These test results are reported in Section 6.4.1.

Thread Creation Latency Test. The time required to create and start a thread is a metric

important to some real-time embedded applications. particularly useful for dynamic real-

time embedded systems, such as some telecom call processing applications, that cannot

spawn all their threads statically in advance. To assess whether a real-time embedded

application can afford to spawn threads dynamically, it is important to know how much

time it takes. RTJPerf therefore provides two tests that measure this performance metric.

The difference between the tests is that in one case the instances of real-time threads are

created and started from a regular Java thread, whereas in the other case the instances are

created and started from another real-time thread. The results of this test are reported in

Section 6.4.1.

Memory

In Chapter 2 we saw how the RTSJ extends the Java memory model by providing memory

areas other than the heap. These memory areas are characterized by the lifetime the objects

created in the given memory area and/or by their allocation time. Scoped memory areas
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provide guarantees on allocation time. Each real-time thread is associated with a scope

stack that defines its allocation context and the history of the memory areas it has entered.

RTJPerf provides the following test that measures key performance properties of RTSJ

memory area implementations.

Allocation Time Test. Dynamic memory allocation is forbidden or strongly discour-

aged in many real-time embedded systems to minimize memory leaks, latency, and non-

predictability. The scoped memory specified by the RTSJ is designed to provide a relatively

fast and safe way to allocate memory that has nearly the flexibility of dynamic memory

allocation, but the efficiency and predictability of stack allocation. The measure of the al-

location time and its dependency on the size of the allocated memory is a good measure of

the efficiency of various types of scoped memory implementations.

To measure the allocation time and its dependency on the size of the memory allo-

cation request, RTJPerf provides a test that allocates fixed-sized objects repeatedly from

a scoped memory region whose type is specified by a command-line argument. To control

the size of the object allocated, the test allocates an array of bytes. It is possible to deter-

mine the allocation time associated with each type of scoped memory by running this test

with different allocation sizes.

Scoped Memory Lifetime Test Scoped memory is one of the key features introduced by

the RTSJ. It enables applications to circumvent the garbage collector, yet still use automatic

memory management, by (1) associating with each memory scope a reference count that

depends on the number of real-time threads within the memory area (i.e., that have entered

the scope but yet not exited it), and (2) ensuring that all the objects allocated in the scope

are finalized, and the space reclaimed, as soon as the reference count associated with the

memory area drops to zero. Since most RTSJ applications use scoped memory heavily it is

essential to characterization its performance precisely.

RTJPerf provide a test that measures (1) the time needed to create a memory scope,

(2) the time needed to enter it, and (3) the time needed to exit it. The time needed to create

a scoped memory area depends on the following factors:

• The allocation context of the thread that creates the memory scope. The Allocation

Time Test measures this aspect of memory scope creation time.
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• The native C/C++ implementation of scoped memory. The Scoped Memory Lifetime

Test measures the efficiency and predictability of the native C/C++ implementation

of scoped memory.2

The time needed to exit a memory scope is measured by the case in which its refer-

ence count drops to zero as a result of the thread exiting the scope. In this case, the memory

scope must finalize all the objects allocated within it and reclaim the used storage.

To determine the time needed to enter, exit, and create a memory scope – and to

determine how efficient the implementation is – this test creates a memory scope, enters it,

fills it with objects, and then exits the scope. The test can be run by configuring the type

of scoped memory to be used and by having the object allocated selectively override the

default finalize method. Measuring this latter point is important since some Java im-

plementation are smarter than others in handling the case where an object does not override

the finalizer.

Asynchrony

The RTSJ defines mechanisms to bind the execution of program logic to the occurrence

of internal and/or external events. In particular, the RTSJ provides a way to associate

an AsyncEventHandler to some application-specific or external events. Since event

handling mechanisms are commonly used to develop real-time embedded systems [28], a

robust and scalable implementation is essential. RTJPerf provide the following tests that

measure the performance and scalability of RTSJ event dispatching mechanisms:

Asynchronous Event Handler Dispatch Delay Test. Several performance parameters

are associated with asynchronous event handlers. One of the most important is the dispatch

latency, which is the time from when an event is fired to when its handler is invoked. Events

are often associated with alarms or other critical actions that must be handled within a short

time and with high predictability. This RTJPerf test measures the dispatch latency for the

different types of asynchronous event handlers prescribed by the RTSJ. The results of this

test are reported in Section 6.4.3.

2The memory used by the scoped memory to allocate an object is not retrieved by the current allocation
context, but is allocated in a platform-specific way, e.g., using malloc() or mmap().
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Asynchronous Event Handler Priority Inversion Test. If the right data structure is not

used to maintain the list of event handlers associated with an event, an unbounded pri-

ority inversion can occur during the dispatching of the event. This test therefore mea-

sures the degree of priority inversion that occurs when multiple handlers with different

SchedulingParameters are registered for the same event. This test registers N han-

dlers with an event in order of increasing importance. The time between the firing and the

handling of the event is then measured for the highest priority event handler.

By comparing the results for this test with the result of the test described above,

we can determine the degree of priority inversion present in the underlying RTSJ event

dispatching implementation. Section 6.4.3, provides an analysis of the implementation of

the current Reference Implementation (RI) and presents an implementation that overcomes

some shortcomings of the RI.

Timers

Real-time embedded systems often use timers to perform certain actions at a given time

in the future, as well as at periodic future intervals. For example, timers can be used to

sample data, play music, transmit video frames, etc. Since real-time embedded systems

often require predictable and precise timers, RTJPerf provides the following tests that

measure the precision of the timers supported by an RTSJ implementation:

One Shot Timer Test. Different RTSJ timer implementations can trade off complexity

and accuracy. RTJPerf therefore provides a test that fires a timer after a given time T has

elapsed and measures the actual time elapsed. By running this test for different value of T ,

it is possible to determine the resolution at which timers can be used predictably.

Periodic Timer Test. Since periodic timers are often used for audio/video (A/V) play-

back, it is essential that little jitter is introduced by the RTSJ timer mechanism since humans

are sensitive to jitter in A/V streams and tend to be annoyed by it. A quality RTSJ imple-

mentation should therefore provide precise, low-jitter periodic timers. RTJPerf provides a

test that fires a timer with a period T and measures the actual elapsed time. By running this

test for different values of T , it is possible to determine the resolution at which timers can

be used predictably.
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6.2.2 Statistics

Since RTJPerf tests produce traces in ASCII format, samples can be examined with any

of the statistical tools available. However, since definitions used for some statistical prop-

erties, e.g. percentile, are sometimes different for different statistical tools, with RTJPerf

is shipped PyStat [11], a set of Python scripts that perform basic statistical analysis on

univariate data sets. The statistics computed by PyStat are based on those described in

[29]. Throughout this Section box plots will be used extensively to show in a compact way

performances results. Figure 6.1 shows the elements that make up a box plot. As it can

be easily seen it provides information on the average, dispersion and outliers. It is worth

pointing out that for each outlier value, a box plot, shows a small circle; it thus it provide

visual feedback on the outlier frequency. The results shown in this thesis were produced

IQR = (Q3 - Q1)
Inter quartile Range

Q3 = 3rd Quartile

Q1 = 1st quartile

1.5*IQR + Q3

Q1 - 1.5*IQR

Median

Outliers

Figure 6.1: Box Plot.

using PyStat, while the graphics were produce using R [46] and XMGrace [27].

6.2.3 Timing Measurements in RTJPerf

An issue that arises when conducting benchmarks is which timing mechanism to use. To

ensure fair measurements—irrespective of the time measurement mechanism provided by

an RTSJ implementation—we implement our own native timers in RTJPerf. In particular,

on all Pentium based systems, we use the read-time stamp counter RDTSC3 instruction [9]

3The RDTSC is a 64 bit counter that can be read with the single x86 assembly instruction RDTSC.
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to obtain timing resolutions that are a function of the CPU clock period and thus indepen-

dent of system load.

This technique can also be used in multiprocessor systems if the OS initializes the

RDTSC of different processors to the same value. The Linux SMP kernel performs this

operation at boot time, so the initial value of the RDTSC is the same for all the processors.

Once the counters are initialized to the same value, they stay in sync since their count

increases at the same pace.

RTJPerf timer’s implementation relies on the Java Native Interface (JNI) to invoke

the platform-dependent mechanism that implements high resolution time. Although differ-

ent Java platforms have different JNI performance, carefully implementing the JNI method

can ensure sufficient accuracy of time measurements. The technique we use is shown in

Figure 6.2, where two time measurements written in Java are performed at T1 and T2, i.e.,

the RTJPerf timer is started at T1 and stopped at T2. The actual time measurement will

T1

D1

Ta Tb

T2

D2

Time

Figure 6.2: Time Measurement in RTSJ.

happen respectively at Ta = T1 + D1, and Tb = T2 + D2, where D1 and D2 represent

the overhead of invoking the native implementation and executing the native call. If the

high resolution time implementation is done in such a way that D1 = D2, and the time

taken to return the time measurement to the Java code is negligible, we can then assume

that Tb− Ta = T2− T1. Moreover, we can assume that the timing measurement are largely

independent of the underlying JNI implementation.

6.3 Overview of the Hardware and Software Testbed

The hardware platform used for our experimentation was an Intel Pentium IV 3 GHz with

512 MB RAM. The operating system used for our experimentation was Linux, but two

different distributions with different kind of kernel were used. One of the two operating

environment was based on a RedHat 9.0 distribution which was running the TimeSys Lin-

ux/RT 4.1.147 Kernel, the other operating environment was based on a Mandrake 10.0

distribution which was running a Kernel 2.6.3-4.
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Table 6.1: RTSJ Platform v.s. Operating System Coverage

TimeSys Linux/RT 4.1 Linux 2.6
Jamaica Yes Yes

jRate Yes Yes
JTime Yes No

AICAS Jamaica. The Jamaica Virtual Machine (JamaicaVM) is an implementation of

the Java Virtual Machine Specification. It is a runtime system for the execution of applica-

tions written for the Java 2 Environment. It has been designed for realtime and embedded

systems and offers a good support for this target domain. While originally Jamaica was

not RTSJ compliant, it has been recently extended to support the RTSJ API. In order to

improve the runtime efficiency, Jamaica is shipped with an ahead of time compiler which

performs several optimizations. Jamaica other than running on any Linux platform, it is

also supported on a series of real-time operating systems such as VxWorks, QNX, EU-

ROS, ThreadX, ect.

TimeSys JTime. TimeSys JTime is a fully compliant implementation of Java [4, 26] that

implements all the mandatory features specified in the RTSJ. JTime is based on a Java 2

Micro Edition (J2ME) JVM. It provides both supports for interpreted execution mode i.e.,

and it also ships with a bytecode optimizer and an ahead of time compiler. JTime runs on

TimeSys Linux platforms.

jRate. jRate is an open-source RTSJ-based extension of GCJ front-end and runtime sys-

tems that the author has entirely developed as part of his PhD. By relying on GCJ, jRate

provides an ahead-of-time compiled platform for the development of RTSJ-compliant ap-

plications. Currently jRate is only supported on x86 based Linux platforms.

It is worth noticing that all the RTSJ platform under exam provide ahead of time

compilation capabilities. This should not surprise the reader. As we said in at the beginning

of this thesis, the main reason for using Java in real-time systems is to gain safety, and not

necessarily portability. It should also be noticed that just in time compilation is not suitable

for real-time systems since it adds unpredictable latencies.
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6.3.1 Compiler and Runtime Options

The following options were used when compiling and running the tests for different real-

time Java platforms:

Jamaica. When compiling the RTJPerf benchmark for Jamaica, the almost all the pa-

rameters were left to the distribution default values. The only parameter that were adjusted

were the number of threads and the size of immortal and heap memory. The generated code

was optimized for speed.

TimeSys JTime. When compiling the RTJPerf benchmark for JTime, the following op-

tions were used in the code optimizer -Xjnmlev6 -Xinllev5.

jRate. The Java code for the test was compiled with GCJ with the -O5 flag linked with

the GCJ and jRate runtime libraries. The jRate configuration used was the default one.

In order to minimize the noise in the measurement, all the tests were ran on the

target machine as super user, so to allow the use of real-time scheduling class, at run level

3, e.g. no windowing system, and with the network disabled.

6.3.2 Testbed Interference Estimation

The testbed described above does not include any hard real-time operating systems; this

operating systems give complete control over the maximum interference that the operat-

ing system might introduce to a running application. In order to understand the level of

noises introduced by a non hard-real-time OS, such as Linux, it is important to measure the

Operating System interference. In this thesis we define the interference as the CPU time

taken by the operating system for executing work which is not on behalf of the currently

running application. In the remainder of this section we will propose a non-intrusive way

of measuring the OS interference, and show the result that we have found for the target OS.

Estimating the Operating System Interference

The technique used in order to estimate the operating system interference is similar to that

used by hourglass described in [40]. The basic idea is that of having a simple application

that performs a very simple algorithm such as the one described in Figure 6.3.
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� �
1 n = 0 ;
2 whi le ( ( now = r d t s c ( ) ) < endTime ) {
3 d e l t a = now − l a s t T i m e ;
4
5 i f ( d e l t a > THRESHOLD ) {
6 d a t a s a m p l e [ n ] = d e l t a ;
7 ++n ;
8 } e l s e {
9 / / Code to balances the previous branch.

10 }
11 l a s t = now ;
12 }


� �

Figure 6.3: The interference estimation kernel.
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Figure 6.5: Upper Interference Density.

In Figure 6.3 the rdtsc() call reads the read time stamp counter that is present on

all Intel Pentium processors, and which keeps the count of the clock ticks since the machine

was booted. This register can be read with a single assembly instruction, and it allows to

perform timing measurements that have the same resolution as the machine hardware clock

(e.g. several GHz).

The algorithm described in Figure 6.3 allows the measurement of the operating

system interference since it logs all the execution time that exceed a given threshold (see

line 5). This threshold can be tuned to be roughly the execution time of the while loop,

thus allowing the fine grain measurement of operating system interferences. Notice that in

the algorithm reported in Figure 6.3 the branches are balanced; this is rather important to

make sure that the code has two code path that are as similar as possible.

Operating System Interference

Below we describe the results found by executing the interference meter application, de-

veloped by using the algorithm described in Figure 6.3, on Linux. The interference meter

application is single threaded application (e.g. has only the main thread), and it executes

at the maximum priority allowed by the SCHED FIFO scheduling class. The executing

environment, is the same used for the execution of benchmarking tests, i.e., no windowing

system, no network, nor many other unneeded daemons such as sshd etc.
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Figure 6.6: Subset of Interference Sample Data.

To measure the OS interference, after having performed some threshold tuning, we

let the interference meter application run for 90 seconds. The dataset collected contained

more than three millions data point. The result we found were similar for the different

Linux version in our testbed, thus below we only report the results for Linux 2.6. Fig-

ure 6.4 and Figure 6.5 report the estimated probability density distribution, respectively,

for interference values smaller than 20µsec and greater or equal to 20µsec. As it can be

deduced from this estimated density function, the interference is spread over a very wide

range, the maximum measured value was around 800µsec! However the most commonly

introduced interference is centered around two data values (see Figure 6.4), one is around

tens of nanoseconds and the other that is around tens of microseconds. In order to get

a better understanding of the interference introduced by the operating system, Figure 6.6

and Figure 6.7, report a subset of the observed data. In particular, Figure 6.7 shows only

the data points that are smaller then 1µsec. As it can be seen from these figures, the OS

exposes several modes, each of which introduce a different interference value.

Using System Interference Estimates

Having an estimate of the operating system interferences can help in better understanding

the measures obtained when benchmarking a software platform such as an RTSJ JVM. The

knowledge of the interference density distribution can help in filtering some outliers, and

in classifying some unfiltered outliers as due to operating system interference. This clearly
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Figure 6.7: Subset of Interference Sample Data < 20 µsec.

depends on the time scale of the feature that is being measured, and on the knowledge of

the implementation of the infrastructure under test, and of the test itself.

In the reminder for this Chapter, while looking at the RTJPerf results, please keep in

mind the results shown in this section for better understanding the value of some outliers.

6.4 RTJPerf Benchmarking Results

This section presents the results obtained when running the tests discussed in Section 6.2.1

in the testbed described above. We analyze the results and explain why the various Java

implementations performed differently.4

For each test a complete statistical characterization will be provided. Specifically,

for each test we will provide (1) basic statistics such as mean, Standard Deviation (STD),

mode, median, Coefficient of Variation (COV), and skewness, (2) representative quantiles,

and (3) relevant intervals, such as sample interval, confidence intervals, outliers and non

outliers intervals, and extreme and non extremes intervals. If some of this concept are

not familiar, it would be helpful to briefly review them from any book of statistics [29]

or consulting MathWorld [49]. However, the statistical indexes used in this thesis are

computed based on the definition given in [29].

4Explaining certain behaviors requires inspection of the source code of a particular JVM feature, which
is not always feasible for Java implementations that are not open-source.
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Table 6.2: jRate Yield Latency

jRate Yield Latency – Linux/RT

Basic Statistics
Mean 0.795 µs
STD 0.001 µs
Mode 0.795 µs

Median 0.795 µs
COV 0.001
Skew 37.225

Quantile
0.10 0.795 µs
0.25 0.795 µs
0.75 0.795 µs
0.90 0.795 µs
0.99 0.795 µs
0.999 0.799 µs

Intervals
IQR 0.0 µs
NTR 0.0 µs

Interval [0.787, 0.829] µs
90% Conf. Int. [0.795, 0.795] µs
99% Conf. Int. [0.795, 0.795] µs

99.9% Conf. Int. [0.795, 0.795] µs
Top Outlier [0.795, 0.829] µs
Non Outlier [0.795, 0.795] µs

Top Extremes [0.795, 0.829] µs
Non Extremes [0.795, 0.795] µs

jRate Yield Latency – Linux 2.6

Basic Statistics
Mean 0.634 µs
STD 0.135 µs

Mode 0.631 µs
Median 0.631 µs

COV 0.213
Skew 49.909

Quantile
0.10 0.631 µs
0.25 0.631 µs
0.75 0.631 µs
0.90 0.631 µs
0.99 0.631 µs

0.999 0.634 µs

Intervals
IQR 0.0 µs
NTR 0.0 µs

Interval [0.617, 7.416] µs
90% Conf. Int. [0.631, 0.636] µs
99% Conf. Int. [0.629, 0.638] µs

99.9% Conf. Int. [0.628, 0.64] µs
Top Outlier [0.631, 7.416] µs
Non Outlier [0.631, 0.631] µs

Top Extremes [0.631, 7.416] µs
Non Extremes [0.631, 0.631] µs

As a final note, the statistical processing of the data samples was performed by using

R [46], Octave [25], and PyStat [11]. Graphics were generated using R [46] and XMGrace

[27].

6.4.1 Thread Benchmark Results

Below, we present and analyze the results from the yield and synchronized context switch

test, periodic thread test, and thread creation latency test, which were described in Sec-

tion 6.2.1. Before reporting the results found by executing this experiments, it is worth

noticing that for real-time systems having small and predicable the thread context switch

is a very important. In fact the jitter introduced by the context switch has an impact in

many other activities such as event handling. Moreover, the reader should realize that a

context switch happens in Linux every 10 milliseconds, this is due to the fact that every 10

milliseconds the system timer ticks, and it needs to be handled.

Yield Context Switch Test. This test measures the time incurred for a thread context

switch. The results we obtained are presented and analyzed below.

Test Settings. For each Java platform in our test suite, we collected 5,000 samples

of the the context switch time, which we forced by explicitly yielding the CPU. Real-time

threads were used for all the tested RTSJ implementations.
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Table 6.3: JTime Yield Latency

JTime Yield Latency – Linux/RT

Basic Statistics
Mean 1.263 µs
STD 0.081 µs

Mode 1.261 µs
Median 1.262 µs

COV 0.065
Skew 67.508

Quantile
0.10 1.245 µs
0.25 1.253 µs
0.75 1.27 µs
0.90 1.278 µs
0.99 1.296 µs

0.999 1.323 µs

Intervals
IQR 0.017 µs
NTR 0.033 µs

Interval [1.173, 6.934] µs
90% Conf. Int. [1.262, 1.265] µs
99% Conf. Int. [1.26, 1.266] µs

99.9% Conf. Int. [1.26, 1.267] µs
Top Outlier [1.296, 6.934] µs
Non Outlier [1.227, 1.296] µs

Top Extremes [1.323, 6.934] µs
Non Extremes [1.202, 1.321] µs

Table 6.4: Jamaica Yield Latency

Jamaica Yield Latency – Linux/RT

Basic Statistics
Mean 2.55 µs
STD 1.759 µs
Mode 2.504 µs

Median 2.506 µs
COV 0.69
Skew 49.585

Quantile
0.10 2.495 µs
0.25 2.501 µs
0.75 2.516 µs
0.90 2.534 µs
0.99 2.586 µs
0.999 2.611 µs

Intervals
IQR 0.015 µs
NTR 0.039 µs

Interval [2.436, 90.198] µs
90% Conf. Int. [2.518, 2.581] µs
99% Conf. Int. [2.492, 2.607] µs

99.9% Conf. Int. [2.473, 2.626] µs
Top Outlier [2.539, 90.198] µs
Non Outlier [2.479, 2.538] µs

Top Extremes [2.561, 90.198] µs
Non Extremes [2.456, 2.561] µs

Jamaica Yield Latency – Linux 2.6

Basic Statistics
Mean 2.294 µs
STD 1.256 µs

Mode 2.243 µs
Median 2.25 µs

COV 0.548
Skew 34.141

Quantile
0.10 2.223 µs
0.25 2.236 µs
0.75 2.27 µs
0.90 2.289 µs
0.99 2.331 µs

0.999 9.043 µs

Intervals
IQR 0.034 µs
NTR 0.066 µs

Interval [2.195, 46.122] µs
90% Conf. Int. [2.271, 2.317] µs
99% Conf. Int. [2.253, 2.335] µs

99.9% Conf. Int. [2.239, 2.349] µs
Top Outlier [2.321, 46.122] µs
Non Outlier [2.185, 2.321] µs

Top Extremes [2.376, 46.122] µs
Non Extremes [2.134, 2.372] µs
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Figure 6.8: Yield Time.

Test Results. Table 6.2, 6.3, and 6.4 reports the relevant statistical information for

the platform under test, while Figure 6.8 shows a box plot of the yield time.

Results Analysis. Below, we analyze the results of the tests that measure the av-

erage context switch time, its dispersion, and its worst-case behavior for the different test

settings:

• Average Measures—Table 6.2, 6.3 and 6.4 shows that jRate has the lowest expected

context switch time, and its value is half of that measured for JTime. On the other

hand, JTime has an average context switch time that is half of that measured for

Jamaica. As it can be inspected by reading the confidence intervals for the mean

in the Tables 6.2, 6.3 and 6.4, our estimate of the mean context switch time is very

accurate. The higher context switch time experimented for Jamaica (4 times higher

than jRate) is due to the fact that this RTSJ implementation uses user-level threads,

while both jRate and JTime rely directly on kernel level threads. The context switch

time changes slightly between Linux 2.6 and Linux/RT. Both jRate and Jamaica have

a slightly better mean context switch on Linux 2.6.
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Table 6.5: jRate Synch Yield Latency

jRate Synch Yield Latency – Linux/RT

Basic Statistics
Mean 3.178 µs
STD 0.004 µs
Mode 3.175 µs

Median 3.178 µs
COV 0.001
Skew 0.84

Quantile
0.10 3.175 µs
0.25 3.175 µs
0.75 3.182 µs
0.90 3.182 µs
0.99 3.188 µs
0.999 3.203 µs

Intervals
IQR 0.007 µs
NTR 0.007 µs

Interval [3.161, 3.206] µs
90% Conf. Int. [3.178, 3.179] µs
99% Conf. Int. [3.178, 3.179] µs

99.9% Conf. Int. [3.178, 3.179] µs
Top Outlier [3.193, 3.206] µs
Non Outlier [3.164, 3.192] µs

Top Extremes [3.203, 3.206] µs
Non Extremes [3.154, 3.203] µs

jRate Synch Yield Latency – Linux 2.6

Basic Statistics
Mean 2.007 µs
STD 0.307 µs

Mode 2.001 µs
Median 1.999 µs

COV 0.153
Skew 22.243

Quantile
0.10 1.979 µs
0.25 1.992 µs
0.75 2.001 µs
0.90 2.001 µs
0.99 2.001 µs

0.999 8.874 µs

Intervals
IQR 0.009 µs
NTR 0.022 µs

Interval [1.935, 9.083] µs
90% Conf. Int. [2.002, 2.013] µs
99% Conf. Int. [1.997, 2.018] µs

99.9% Conf. Int. [1.994, 2.021] µs
Top Outlier [2.025, 9.083] µs
Non Outlier [1.978, 2.015] µs

Top Extremes [2.029, 9.083] µs
Non Extremes [1.965, 2.028] µs

• Dispersion Measures—Based on the data reported in Table 6.2, 6.3, and 6.4, and on

the box plot depicted in Figure 6.8 it can be easily seen that jRate is the most pre-

dictable between the tested platforms. It is worth noticing that jRate, on both Lin-

ux/RT and Linux 2.6, has a practically zero Inter-Quartile Range (IQR) and Nineth-

Tenth Quantile Range (NTR). Something else worth noticing is that the quantiles

from the 0.10 to the 0.99 are the same for jRate. This is index of great predictability.

While the context switch time measured for JTime and Jamaica is more dispersed

than the jRate’s one, the results show quite predictable context switches time.

• Worst-case Measures—The interval, outliers and extremes ranges reported in Ta-

ble 6.2, 6.3, and 6.4, show that all the implementation have a very good 0.999 quan-

tile, but on the other hand, the sample interval, e.g. min and max, measured for

JTime and Jamaica are quite wide, especially if compared with jRate. This means

that overall jRate has better worst case behaviour.

Synchronized Context Switch Test. This test measures the context switch time incurred

when a higher priority thread TH enters a monitor owned by a lower priority thread TL.

The results we obtained are presented and analyzed below.

Test Settings. The settings used for this test are the same as the previous one.
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Table 6.6: JTime Synch Yield Latency

JTime Synch Yield Latency – Linux/RT

Basic Statistics
Mean 3.595 µs
STD 0.026 µs

Mode 3.601 µs
Median 3.596 µs

COV 0.007
Skew 22.437

Quantile
0.10 3.571 µs
0.25 3.58 µs
0.75 3.608 µs
0.90 3.618 µs
0.99 3.639 µs

0.999 3.655 µs

Intervals
IQR 0.028 µs
NTR 0.047 µs

Interval [3.543, 4.839] µs
90% Conf. Int. [3.594, 3.595] µs
99% Conf. Int. [3.594, 3.596] µs

99.9% Conf. Int. [3.594, 3.596] µs
Top Outlier [3.651, 4.839] µs
Non Outlier [3.538, 3.65] µs

Top Extremes [4.839, 4.839] µs
Non Extremes [3.496, 3.692] µs

Table 6.7: Jamaica Synch Yield Latency

Jamaica Synch Yield Latency – Linux/RT

Basic Statistics
Mean 18.24 µs
STD 0.251 µs

Mode 18.226 µs
Median 18.235 µs

COV 0.014
Skew 13.059

Quantile
0.10 18.166 µs
0.25 18.199 µs
0.75 18.269 µs
0.90 18.297 µs
0.99 18.353 µs
0.999 23.803 µs

Intervals
IQR 0.07 µs
NTR 0.131 µs

Interval [11.197, 24.19] µs
90% Conf. Int. [18.235, 18.245] µs
99% Conf. Int. [18.232, 18.248] µs

99.9% Conf. Int. [18.229, 18.251] µs
Top Outlier [18.374, 24.19] µs
Non Outlier [18.094, 18.374] µs

Top Extremes [23.053, 24.19] µs
Non Extremes [17.989, 18.479] µs

Jamaica Synch Yield Latency – Linux 2.6

Basic Statistics
Mean 10.387 µs
STD 0.813 µs

Mode 10.26 µs
Median 10.268 µs

COV 0.078
Skew 9.58

Quantile
0.10 10.182 µs
0.25 10.221 µs
0.75 10.351 µs
0.90 10.462 µs
0.99 17.081 µs

0.999 19.453 µs

Intervals
IQR 0.13 µs
NTR 0.28 µs

Interval [9.996, 27.157] µs
90% Conf. Int. [10.372, 10.401] µs
99% Conf. Int. [10.36, 10.413] µs

99.9% Conf. Int. [10.351, 10.422] µs
Top Outlier [10.547, 27.157] µs
Non Outlier [10.026, 10.546] µs

Top Extremes [11.162, 27.157] µs
Non Extremes [9.831, 10.741] µs
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Figure 6.9: Synch Yield Time.
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Test Results. Table 6.5, 6.6, and 6.7 shows the statistics for the aggregate context

switch time5 for the different RTSJ implementations we tested.

Results Analysis. Below we analyze the results of the test that measure the syn-

chronized context switch time:

• Average Measures—Table 6.5, 6.6, and 6.7 show how jRate and JTime have a sim-

ilar average synchronized context switch time–this is far smaller than Jamaica. As in

the case of the yield context switch this might be due to the fact that Jamaica uses user

level threads. It is also interesting to observe that, in this test, jRate and Jamaica per-

form better on Linux 2.6. It is indeed quite surprising to see that Jamaica, on Linux

2.6, has an average synchronized context switch that is half of the one measured on

Linux/RT.

• Dispersion Measures—From the data reported in Table 6.5, 6.6, and 6.7, is can be

seen that all the implementation are rather predictable, with jRate and JTime show-

ing tighter values than Jamaica. It is worth noticing that values are more dispersed

on Linux 2.6 than in Linux/RT.

• Worst-case Measures—In this test jRate and JTime have much better worst case

behaviour than Jamaica, with JTime being slightly better than jRate, at least for

what concert the sample interval. It is interesting to notice that the sample interval is

much wider on Linux 2.6 than on Linux/RT. Finally, observing Figure 6.9, it can be

seen how the wide interval experienced by jRate is due to an outlier which is very

likely coming from some interference from the operating system.

Thread Creation Latency Test. This test measures the time needed to create a thread.

Thread creation in RTSJ platform involves many operation and checks concerning mem-

ory areas and scope stack. Thus the thread creation time is affected by the memory area

implementation. The results we obtained for this test are presented and analyzed below.

Test Settings. For each RTSJ platform in our test suite, we collected 5000 samples

of the thread creation time and thread start time.
5Aggregate context switch time is defined as the time taken to perform the context switch from TH to TL,

plus the time taken for the TL to exit the monitor, plus the time taken by TH to enter the monitor.
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Figure 6.10: JTime Real-Time Thread Creation Time.

Test Results. For this particular test, we seem to have stressed a bug in JTime. The

creation time grows linearly with the sample as depicted in Figure 6.10. We had discovered

a similar problem in the TimeSys reference implementation in [17]. Table 6.8, and 6.9

report the statistics for the thread creation time.

Results Analysis. Below, we analyze the results of the tests that measure the

average-case, the dispersion, and the worst-case for thread creation time and thread start

time.

• Average Measures—As noted above, this test exposes a bug in JTime, thus, it is not

possible to provide any meaningful statistics on the average creation time, since, as

appears from Figure 6.10, the creation time grows with the sample number. On the

other hand, the results reported in Table 6.8, and 6.9 show that jRate has a much

better average creation time than Jamaica. On the tested platforms jRate is more

than 20 times faster than Jamaica. This big difference is likely to reside in the way in

which jRate implements both the scope stack management and the runtime checks.
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Table 6.8: jRate Real-Time Thread Creation Latency

jRate RT-Thread Creation Latency – Linux/RT

Basic Statistics
Mean 8.022 µs
STD 0.348 µs

Mode 7.79 µs
Median 7.955 µs

COV 0.043
Skew 8.569

Quantile
0.10 7.74 µs
0.25 7.834 µs
0.75 8.118 µs
0.90 8.456 µs
0.99 8.834 µs
0.999 14.354 µs

Intervals
IQR 0.284 µs
NTR 0.716 µs

Interval [7.476, 15.453] µs
90% Conf. Int. [8.016, 8.028] µs
99% Conf. Int. [8.01, 8.033] µs

99.9% Conf. Int. [8.007, 8.037] µs
Top Outlier [8.545, 15.453] µs
Non Outlier [7.408, 8.544] µs

Top Extremes [8.99, 15.453] µs
Non Extremes [6.982, 8.97] µs

jRate RT-Thread Creation Latency – Linux 2.6

Basic Statistics
Mean 5.89 µs
STD 0.609 µs

Mode 5.806 µs
Median 5.831 µs

COV 0.103
Skew 13.15

Quantile
0.10 5.783 µs
0.25 5.805 µs
0.75 5.869 µs
0.90 5.92 µs
0.99 6.129 µs

0.999 13.495 µs

Intervals
IQR 0.064 µs
NTR 0.137 µs

Interval [5.689, 19.479] µs
90% Conf. Int. [5.879, 5.901] µs
99% Conf. Int. [5.87, 5.91] µs

99.9% Conf. Int. [5.863, 5.917] µs
Top Outlier [5.965, 19.479] µs
Non Outlier [5.709, 5.965] µs

Top Extremes [6.061, 19.479] µs
Non Extremes [5.613, 6.061] µs

The confidence intervals shown in Table 6.8, and 6.9 are very narrow, thus our esti-

mate of the average creation time is very accurate. Finally it is worth noticing, that

in this tests, jRate performs better on Linux 2.6, while Jamaica performs better on

Linux/RT.

• Dispersion Measures—As it can be seen from Table 6.8, and 6.9, both implemen-

tation are quite predictable, with jRate showing somewhat a denser distribution of

values. Even if Jamaica has an higher standard deviation, the coefficient of variation

is very similar for the two platform.

• Worst-case Measures—Quantiles and intervals, show that for this test the worst

case behaviour is rather distant from the average, for both jRate and Jamaica. This

is true for both Linux/RT and Linux 2.6. These results suggest to preallocate thread

whenever possible, since the creation time, can have rather bad extremes values.

These values are infrequent, but yet, when designing hard real-time systems wort-

case measures are those that matter.

Thread Startup Latency Test. This test measures the time needed to start a thread which

has already been created. The results we obtained are presented and analyzed below.
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Table 6.9: Jamaica Real-Time Thread Creation Latency

Jamaica RT-Thread Creation Latency – Linux/RT

Basic Statistics
Mean 207.181 µs
STD 6.36 µs

Mode 206.393 µs
Median 206.592 µs

COV 0.031
Skew 23.692

Quantile
0.10 206.19 µs
0.25 206.358 µs
0.75 206.904 µs
0.90 207.347 µs
0.99 216.802 µs
0.999 322.518 µs

Intervals
IQR 0.546 µs
NTR 1.157 µs

Interval [205.625, 468.982] µs
90% Conf. Int. [207.066, 207.297] µs
99% Conf. Int. [206.972, 207.391] µs

99.9% Conf. Int. [206.903, 207.459] µs
Top Outlier [207.729, 468.982] µs
Non Outlier [205.539, 207.723] µs

Top Extremes [208.553, 468.982] µs
Non Extremes [204.72, 208.542] µs

Jamaica RT-Thread Creation Latency – Linux 2.6

Basic Statistics
Mean 219.652 µs
STD 12.942 µs

Mode 217.328 µs
Median 217.784 µs

COV 0.059
Skew 40.61

Quantile
0.10 217.058 µs
0.25 217.337 µs
0.75 218.616 µs
0.90 225.063 µs
0.99 228.932 µs

0.999 273.63 µs

Intervals
IQR 1.279 µs
NTR 8.005 µs

Interval [216.015, 875.258] µs
90% Conf. Int. [219.418, 219.887] µs
99% Conf. Int. [219.226, 220.079] µs

99.9% Conf. Int. [219.086, 220.219] µs
Top Outlier [220.544, 875.258] µs
Non Outlier [215.418, 220.535] µs

Top Extremes [223.566, 875.258] µs
Non Extremes [213.5, 222.453] µs

Table 6.10: jRate Real-Time Thread Startup Latency

jRate RT-Thread Startup Latency – Linux/RT

Basic Statistics
Mean 66.348 µs
STD 3.921 µs
Mode 65.872 µs

Median 65.991 µs
COV 0.059
Skew 23.247

Quantile
0.10 64.836 µs
0.25 65.338 µs
0.75 66.704 µs
0.90 67.447 µs
0.99 74.08 µs

0.999 154.7 µs

Intervals
IQR 1.366 µs
NTR 2.611 µs

Interval [63.793, 186.169] µs
90% Conf. Int. [66.277, 66.419] µs
99% Conf. Int. [66.219, 66.477] µs

99.9% Conf. Int. [66.176, 66.519] µs
Top Outlier [68.757, 186.169] µs
Non Outlier [63.289, 68.753] µs

Top Extremes [70.848, 186.169] µs
Non Extremes [61.24, 70.802] µs

jRate RT-Thread Startup Latency – Linux 2.6

Basic Statistics
Mean 5.638 µs
STD 1.016 µs
Mode 5.449 µs

Median 5.456 µs
COV 0.18
Skew 6.175

Quantile
0.10 5.388 µs
0.25 5.414 µs
0.75 5.511 µs
0.90 5.58 µs
0.99 11.158 µs
0.999 14.355 µs

Intervals
IQR 0.097 µs
NTR 0.192 µs

Interval [5.282, 18.19] µs
90% Conf. Int. [5.619, 5.656] µs
99% Conf. Int. [5.604, 5.671] µs

99.9% Conf. Int. [5.593, 5.682] µs
Top Outlier [5.657, 18.19] µs
Non Outlier [5.269, 5.656] µs

Top Extremes [5.811, 18.19] µs
Non Extremes [5.123, 5.802] µs
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Table 6.11: JTime Real-Time Thread Startup Latency

JTime RT-Thread Startup Latency – Linux/RT

Basic Statistics
Mean 1227.816 µs
STD 22.199 µs

Mode 1229.34 µs
Median 1230.48 µs

COV 0.018
Skew 1.344

Quantile
0.10 1197.9 µs
0.25 1212.8 µs
0.75 1241.5 µs
0.90 1247.64 µs
0.99 1320.74 µs

0.999 1381.89 µs

Intervals
IQR 28.7 µs
NTR 49.74 µs

Interval [1183.04, 1381.89] µs
90% Conf. Int. [1226.911, 1228.72] µs
99% Conf. Int. [1226.175, 1229.457] µs

99.9% Conf. Int. [1225.636, 1229.996] µs
Top Outlier [1309.51, 1381.89] µs
Non Outlier [1169.75, 1284.55] µs

Top Extremes [1329.61, 1381.89] µs
Non Extremes [1126.7, 1327.6] µs

Test Settings. For each RTSJ platform in our test suite, we collected 5000 samples

of the thread creation time and thread start time.

Test Results. Table 6.10, 6.11, and 6.12, report the statistics for the thread start

time.

Results Analysis. Below, we analyze the results of the tests that measure the

average-case, the dispersion, and the worst-case for thread start time.

• Average Measures—The results reported in Table 6.10, 6.11, and 6.12, show how

jRate’s and Jamaica’s average thread start time are roughly 20 and 10 times, respec-

tively, smaller than the one measured for JTime. Moreover, it is very interesting to

observe how jRate performs much better on Linux 2.6 than on Linux/RT. The dif-

ference in the average thread start time is a factor of 10! The other thing that should

be observed is that jRate has to do a system call in order to create a thread, since it

relies on kernel thread, and has also to correctly setup the scope stack, and perform

the appropriate safety checks. On the other hand, since Jamaica relies on user level

threads, it should not need to make a system call and, on theory, this should save it

some time, compared to jRate.

• Dispersion Measures—From the data reported in Table 6.10, 6.11, and 6.12, we can

see that while JTime has a much higher average start time, it does not necessarily
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Table 6.12: Jamaica Real-Time Thread Startup Latency

Jamaica RT-Thread Startup Latency – Linux/RT

Basic Statistics
Mean 116.889 µs
STD 3.501 µs

Mode 116.367 µs
Median 116.47 µs

COV 0.03
Skew 27.997

Quantile
0.10 116.087 µs
0.25 116.232 µs
0.75 117.231 µs
0.90 117.631 µs
0.99 122.23 µs

0.999 172.651 µs

Intervals
IQR 0.999 µs
NTR 1.544 µs

Interval [114.758, 237.915] µs
90% Conf. Int. [116.825, 116.952] µs
99% Conf. Int. [116.773, 117.004] µs

99.9% Conf. Int. [116.735, 117.042] µs
Top Outlier [118.793, 237.915] µs
Non Outlier [114.733, 118.73] µs

Top Extremes [121.183, 237.915] µs
Non Extremes [113.235, 120.228] µs

Jamaica RT-Thread Startup Latency – Linux 2.6

Basic Statistics
Mean 98.404 µs
STD 3.662 µs
Mode 98.749 µs

Median 98.758 µs
COV 0.037
Skew 0.227

Quantile
0.10 91.982 µs
0.25 98.236 µs
0.75 99.071 µs
0.90 99.635 µs
0.99 106.476 µs

0.999 116.733 µs

Intervals
IQR 0.835 µs
NTR 7.653 µs

Interval [83.053, 143.165] µs
90% Conf. Int. [98.338, 98.471] µs
99% Conf. Int. [98.284, 98.525] µs

99.9% Conf. Int. [98.244, 98.564] µs
Top Outlier [100.353, 143.165] µs
Non Outlier [96.983, 100.324] µs

Top Extremes [101.673, 143.165] µs
Non Extremes [95.731, 101.576] µs

behave less predictably. It has in fact a rather small coefficient of variance, and its

standard deviation is relatively small. Both jRate and Jamaica show a much more

predictable behaviour on Linux 2.6. This difference in behaviour is interesting, and

might stems from the fact that jRate and Jamaica have been designed and imple-

mented to run on plain Linux and does not takes advantages of proprietary TimeSys

Linux/RT features. However, once again, it should be noticed that Linux 2.6, while

not being tagged as a real-time operating systems, it shows a relatively good be-

haviour.

• Worst-case Measures—It is worth noticing how jRate and Jamaica have better

worst case parameters on Linux 2.6. However, the data reported in Table 6.10, 6.11,

and 6.12, shows that the worst case startup time can be quite higher than the average

behaviour. This can be noticed, observing how the quantiles grow.

Periodic Thread Test. This test measures the accuracy with which the waitForNext-

Period() method in the RealtimeThread class schedules the thread’s execution pe-

riodically. The results we obtained are presented and analyzed below.

Test Settings. This test runs a RealtimeThread that does nothing but resched-

ule its execution for the next period. The actual time between each activation was mea-

sured and 1000 of these measurements were made for the periods 1ms, 5ms, 10ms, 50ms,
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Figure 6.11: Measured Period Statistics.

100ms, and 500ms. The test was performed only on Linux/RT for jRate and JTime.

Test Results Figure 6.11 shows average and dispersion values that we measured for this

test.6

Results Analysis Below we analyze the results of the test that measures the accuracy

with which periodic a thread’s logic is activated:

• Average Measures—Figure 6.11 shows that both jRate and the JTime have an av-

erage period that is quite close to the target period. Whereas JTime is always at

least several hundreds of microseconds early, however, jRate is at most several tens

of microseconds late. To understand the reason for this behavior, we inspected the

JTime implementation of periodic threads, (i.e., at the implementation of wait-

ForNextPeriod()) and found that a JNI method call is used to wait for the next

period. Without the source for the JTime’s JVM, it is hard to tell exactly how the

native method is implemented. On the TimeSyS Linux/RT kernel, jRate relies on

the nanosleep() system call to implement periodic thread behavior. To produce

more accurate periods, a calibration test can be run at configuration time to obtain a

6Whenever the plot for jRate and the JTime overlap, the values for jRate are shown above the graph and
the value for the JTime are shown below the graph.
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slack time that should be considered as an approximation of the overhead of calling

the waitForNextPeriod() and then getting the control back.

• Dispersion Measures—Figure 6.11 shows the dispersion of the measured period

for both jRate and the JTime has the same trend. While jRate generally has less

dispersed values than the JTime, both implementation are quite predictable.

• Worst-case Measures—As shown in Figure 6.11 both jRate and the JTime have

worst-case behavior that is close to the average-case values and the 99% bound. In

general, jRate’s worst-case values are closer to the average, but the JTime values are

not much further away.

6.4.2 Memory Benchmark Results

Below we present and analyze the results of the RTJPerf memory benchmarks that we ran.

Allocation Time Test. This test measures the allocation time for different types of scoped

memory. The results we obtained are presented and analyzed below.

Test Settings This tests measure the average allocation time incurred by the RTSJ LT-

Memory and VTMemory, and by jRate non standard scoped memories CTMemory and

CTPrivateMemory which were described in Chapter 5. The RTJPerf allocation time

test was performed for allocation sizes ranging from 1 Byte to 8 KBytes. Each test samples

1,000 values of the allocation time for the given allocation size.

Test Results The data obtained by running the allocation time tests were processed to

obtain relevant statistics of the allocation time. We represent the measurements using box

plots since they provide a nice and compact way of expressing both average and dispersion

indexes since they indicate the following information:

• How predictable is the behavior of a scope memory implementation

• How much variation in allocation time can occur and

• How the worst-case behavior compares to the average-case and to the first and third

quartile.
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Figure 6.12: jRate Allocation Time.
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Figure 6.13: jRate Allocation Time.
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Figure 6.14: JTime Allocation Time.

Figure 6.12, 6.13, 6.14, 6.15 show the resulting allocation time for the different test

runs. Results are illustrated by means of box plot.

Results Analysis We now analyze the results of the tests that measured the average- and

worst-case allocation times, along with the dispersion for the different test settings:

• Average Measures—As shown in From Figures 6.12, 6.13, 6.14, 6.15, it can be eas-

ily seen that, regardless of the RTSJ implementation, LTMemory and VTMemory

provide linear time allocation with respect to the allocated memory size. From the

result found, it is apparent LTMemory and VTMemory provide very similar (practi-

cally identical) performances.

As it can be easily seen from Figure 6.12, jRate’s CTMemory and CTPrivate-

Memory have an allocation time that is independent of the allocated chunk, which

helps analyze the timing of RTSJ code, even without knowing the amount of memory

that will be needed. By comparing the results show in Figures 6.12, 6.14, 6.15, it can

be seen that jRate’s CTMemory allocator can be between 5 and 100 times faster than

JTime and Jamaica’s LTMemory.

• Dispersion Measures—The with of the box plot depicted in Figures 6.12, 6.13,

6.14, 6.15, provide a measure of the dispersion for the different allocation time cases.

The results clearly show how jRate’s CTMemory and CTPrivateMemory are the
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Figure 6.15: Jamaica Allocation Time.
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less dispersed data samples. The predictability shown by these memory areas are

due to their allocator with simply have to perform pointer arithmetic. Moreover,

CTPrivateMemory, does not have to lock any mutex thus providing both better

response time and tighter data values. It is also interesting to observe how JTime

allocation time looses predictability in allocation time for memory chunks of size of

1 and 2 Kbytes. This behavior is rather strange, and might stem from the allocator

implementation. It is worth pointing out that nor jRate nor Jamaica expose similar

strangeness.

Finally it is worth noticing that the result found for the different RTSJ implementation

are similar on both Linux/RT and Linux 2.6.

• Worst-case Measures—Figures 6.12, 6.13, 6.14, 6.15, show the bounds on the allo-

cation time. From these results we can see that for LTMemory VTMemory, JTime

and Jamaica have a similar worst case allocation time; for the same kind of memory

jRate is slightly better. On the other hand, jRate’s CTMemory and CTPrivate-

Memory have a much smaller sample interval, thus resulting in the overall most

predictable memory area implementation.

Scoped Memory Lifetime Test

Test Settings To measure scoped memory creation, enter, and exit time, we ran the

RTJPerf scoped memory timing test for memory sizes ranging from 256 to 256K bytes.

The test was designed to ensure that the allocated objects overrode the finalizer, which en-

abled a worst-case measurement of the exit time. For each test, 1000 values were sampled

for each of the measured variables.

Test Results Figure 6.16 to Figure 6.29 are reported results represented using box plots.

Results Analysis Below we analyze the results of the test that measure the creation, enter,

exit, and execution time for a scoped memory area.

• Average Measures—From Figure 6.16 to Figure 6.29 we can see how the jRate

scoped memories implementation have a constant creation time. On the other hand,

JTime and Jamaica have a creation time that grows linearly with the size of the mem-

ory being created. jRate has better creation time performances thanks to its memory
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Figure 6.16: jRate CTMemory Timings.
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Figure 6.17: jRate CTPrivateMemory Timings.
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Figure 6.18: jRate LTMemory Timings.
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Figure 6.19: jRate VTMemory Timings.
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Figure 6.20: Jamaica LTMemory Timings.
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Figure 6.21: Jamaica VTMemory Timings.
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Figure 6.22: JTime LTMemory Timings Allocation Time.
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Figure 6.23: JTime VTMemory Timings Allocation Time.
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Figure 6.24: jRate CTMemory Timings, Linux 2.6.
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Figure 6.25: jRate CTPrivateMemory Timings, Linux 2.6.



116

25
6

51
2

1K
2K

4K
8K

16
K

32
K

64
K

12
8K

25
6K

5 10 15 20 25

jRate LTMemory Creation Time −− Linux 2.6

Creation Time (usec)

S
iz

e 
(b

yt
es

)

25
6

51
2

1K
2K

4K
8K

16
K

32
K

64
K

12
8K

25
6K

0.5 1.0 1.5 2.0

jRate LTMemory Enter Time −− Linux 2.6

Enter Time (usec)

S
iz

e 
(b

yt
es

)

25
6

51
2

1K
2K

4K
8K

16
K

32
K

64
K

12
8K

25
6K

2 5 10 20 50 100

jRate LTMemory Exit Time −− Linux 2.6

Exit Time (usec)

S
iz

e 
(b

yt
es

)

25
6

51
2

1K
2K

4K
8K

16
K

32
K

64
K

12
8K

25
6K

20 50 100 200 500 1000

jRate LTMemory Exec Time −− Linux 2.6

Exec Time (usec)

S
iz

e 
(b

yt
es

)

Figure 6.26: jRate LTMemory Timings, Linux 2.6.
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Figure 6.27: jRate VTMemory Timings, Linux 2.6.
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Figure 6.28: Jamaica LTMemory Timings, Linux 2.6.
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Figure 6.29: Jamaica VTMemory Timings, Linux 2.6 Allocation Time.



120

area framework, and the use of O(1) segregated allocator as buffer provider for mem-

ory areas. Moreover, as it can be seen from the box plots reported in Figure 6.16-

6.29, jRate’s creation time is much smaller than the one provided by Jamaica and

JTime, and the performance gain grows linearly with the size of the memory being

allocated.

If we consider now the enter time, we can see that it is practically independent of

the memory size for both jRate and Jamaica, while JTime shows some minor depen-

dency on the memory size.

Finally, if we consider now the exit and execution time, we can see that this is con-

stant for jRate for memory areas smaller or equal to 4 Kbytes, while it is constant for

Jamaica and JTime for memory areas smaller or equal to 1 Kbyte. The reason for this

is that jRate rounds the size of a memory are to that of an OS page, which on Linux

is 4 Kbytes. Apparently JTime and Jamaica round the size of a memory area so to

be multiple of 1 Kbyte. Finally it should be noticed that the execution time closely

resembles the exit time, since in the test, the exit time dominates the computation.

It is worth noticing that based on the results shown in Figure 6.16, 6.17, 6.18 and

6.197, CTMemory and CTPrivateMemory provide a clear gain in performance

over LTMemory and VTMemory. Thus, we believe that this kind of memory should

be added to the RTSJ specification.

• Dispersion Measures— Figure 6.16- 6.29 show how all the RTSJ implementations

have very low dispersion values for small memory sizes. These dispersion values

grow with the size of the scoped memory for both implementations. JTime’s pre-

dictability seems to be the most susceptible to memory size.

• Worst-case Measures—The results for all the measured variables show that the

worst-case measures are very close to the average-case for jRate and mostly for

Jamaica. In contrast, the JTime’s worst-case values can be quite large compared

to its average-case values. The largest difference between average- and worst-case

measures appeared in the creation time and in the execution time.

We cannot give a precise answer to the reason of this behavior since the code of

the JTime was not available for inspection. A reasonable guess, however, is that the

JTime allocators rely directly on the system provided malloc() for each of the

allocated objects. This explanation justifies both the relatively small creation time,

7The same applies for Linux 2.6, see , Figure 6.24, 6.25, 6.26 and 6.27
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and also the degradation of the predictability when the allocator creates many objects

to fill the scoped memory.

6.4.3 Asynchrony Benchmark Results

Below we present and analyze the results of the asynchronous event handler dispatch de-

lay and asynchronous event handler priority inversion tests, which were described in Sec-

tion 6.2.1.

Asynchronous Event Handler Dispatch Delay Test. This test measures the dispatch

latency of the two types of asynchronous event handlers defined in the RTSJ. The results

we obtained are presented and analyzed below8.

Test Settings. To measure the dispatch latency provided by different types of

asynchronous event handlers defined by the RTSJ, we ran the test described in Section 6.2.1

with a fire count of 5,000 for both Jamaica and jRate. To ensure that each event firing

causes a complete execution cycle, we ran the test in “lockstep mode,” where one thread

fires an event and only after the thread that handles the event is done is the event fired

again. To avoid the interference of the Garbage Collector (GC) while performing the test,

the real-time thread that fires and handles the event uses scoped memory as its current

memory area.

Test Results. Figures 6.30, and 6.31, and Tables 6.13, 6.14, 6.15, 6.16, shows the

results for the dispatch latency for successive event firings.

Results Analysis. Below we analyze the results of the tests that measure the

average-case and worst-case dispatch latency, as well as its dispersion, for the different

test settings:

• Average Measures—From Tables 6.13, 6.14, 6.15, 6.16 it is possible to see that

while both jRate and Jamaica have good predictability, the average dispatch latency

measured for jRate is 10 times smaller than that measured for Jamaica. This is likely

to be due to the fact that Jamaica uses user level threads. Finally it should also be

noticed that for both RTSJ implementations there is only a small difference in term of

8This test could not be executed with JTime since it would systematically dump a core.
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Figure 6.30: jRate Dispatch Delay.
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Table 6.13: jRate Async. Event Handler Dispatch Latency, Linux/RT

jRate Bound Async. Handler Dispatch Latency – Linux/RT

Basic Statistics
Mean 14.638 µs
STD 0.068 µs

Mode 14.647 µs
Median 14.635 µs

COV 0.005
Skew 2.35

Quantile
0.10 14.567 µs
0.25 14.598 µs
0.75 14.669 µs
0.90 14.701 µs
0.99 14.998 µs

0.999 15.089 µs

Intervals
IQR 0.071 µs
NTR 0.134 µs

Interval [14.499, 15.089] µs
90% Conf. Int. [14.635, 14.641] µs
99% Conf. Int. [14.633, 14.643] µs

99.9% Conf. Int. [14.631, 14.645] µs
Top Outlier [14.781, 15.089] µs
Non Outlier [14.491, 14.776] µs

Top Extremes [14.934, 15.089] µs
Non Extremes [14.385, 14.882] µs

jRate Async. Handler Dispatch Latency – Linux/RT

Basic Statistics
Mean 16.238 µs
STD 0.054 µs

Mode 16.217 µs
Median 16.232 µs

COV 0.003
Skew 5.949

Quantile
0.10 16.202 µs
0.25 16.216 µs
0.75 16.254 µs
0.90 16.27 µs
0.99 16.641 µs
0.999 16.785 µs

Intervals
IQR 0.038 µs
NTR 0.068 µs

Interval [16.123, 16.785] µs
90% Conf. Int. [16.236, 16.241] µs
99% Conf. Int. [16.234, 16.242] µs

99.9% Conf. Int. [16.233, 16.244] µs
Top Outlier [16.313, 16.785] µs
Non Outlier [16.159, 16.311] µs

Top Extremes [16.369, 16.785] µs
Non Extremes [16.102, 16.368] µs

Table 6.14: jRate Async. Event Handler Dispatch Latency, Linux 2.6.

jRate Bound Async. Handler Dispatch Latency – Linux 2.6

Basic Statistics
Mean 5.118 µs
STD 0.057 µs
Mode 5.098 µs

Median 5.109 µs
COV 0.011
Skew 6.519

Quantile
0.10 5.075 µs
0.25 5.094 µs
0.75 5.128 µs
0.90 5.163 µs
0.99 5.35 µs

0.999 6.035 µs

Intervals
IQR 0.034 µs
NTR 0.088 µs

Interval [5.021, 6.035] µs
90% Conf. Int. [5.115, 5.12] µs
99% Conf. Int. [5.114, 5.122] µs

99.9% Conf. Int. [5.112, 5.123] µs
Top Outlier [5.18, 6.035] µs
Non Outlier [5.043, 5.179] µs

Top Extremes [5.231, 6.035] µs
Non Extremes [4.992, 5.23] µs

jRate Async. Handler Dispatch Latency – Linux 2.6

Basic Statistics
Mean 6.518 µs
STD 0.059 µs

Mode 6.477 µs
Median 6.502 µs

COV 0.009
Skew 2.917

Quantile
0.10 6.466 µs
0.25 6.479 µs
0.75 6.539 µs
0.90 6.587 µs
0.99 6.699 µs

0.999 7.065 µs

Intervals
IQR 0.06 µs
NTR 0.121 µs

Interval [6.443, 7.065] µs
90% Conf. Int. [6.515, 6.52] µs
99% Conf. Int. [6.513, 6.522] µs

99.9% Conf. Int. [6.512, 6.523] µs
Top Outlier [6.629, 7.065] µs
Non Outlier [6.389, 6.629] µs

Top Extremes [6.742, 7.065] µs
Non Extremes [6.299, 6.719] µs
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Table 6.15: Jamaica Async. Event Handler Dispatch Latency, Linux/RT

Jamaica Bound Async. Handler Dispatch Latency – Linux/RT

Basic Statistics
Mean 58.248 µs
STD 0.421 µs
Mode 58.048 µs

Median 58.137 µs
COV 0.007
Skew 5.312

Quantile
0.10 57.919 µs
0.25 58.014 µs
0.75 58.373 µs
0.90 58.72 µs
0.99 59.562 µs

0.999 64.631 µs

Intervals
IQR 0.359 µs
NTR 0.801 µs

Interval [57.738, 64.631] µs
90% Conf. Int. [58.231, 58.266] µs
99% Conf. Int. [58.217, 58.279] µs

99.9% Conf. Int. [58.207, 58.29] µs
Top Outlier [58.925, 64.631] µs
Non Outlier [57.475, 58.911] µs

Top Extremes [59.562, 64.631] µs
Non Extremes [56.937, 59.45] µs

Jamaica Async. Handler Dispatch Latency – Linux/RT

Basic Statistics
Mean 68.01 µs
STD 0.447 µs

Mode 67.874 µs
Median 67.938 µs

COV 0.007
Skew 10.81

Quantile
0.10 67.728 µs
0.25 67.821 µs
0.75 68.082 µs
0.90 68.282 µs
0.99 69.247 µs

0.999 77.332 µs

Intervals
IQR 0.261 µs
NTR 0.554 µs

Interval [67.454, 77.332] µs
90% Conf. Int. [67.992, 68.028] µs
99% Conf. Int. [67.977, 68.043] µs

99.9% Conf. Int. [67.967, 68.054] µs
Top Outlier [68.478, 77.332] µs
Non Outlier [67.429, 68.474] µs

Top Extremes [68.891, 77.332] µs
Non Extremes [67.038, 68.865] µs

Table 6.16: Jamaica Async. Event Handler Dispatch Latency, Linux 2.6

Jamaica Bound Async. Handler Dispatch Latency – Linux 2.6

Basic Statistics
Mean 43.118 µs
STD 4.245 µs
Mode 42.835 µs

Median 42.861 µs
COV 0.098
Skew 20.922

Quantile
0.10 42.724 µs
0.25 42.789 µs
0.75 42.929 µs
0.90 43.005 µs
0.99 44.204 µs

0.999 140.615 µs

Intervals
IQR 0.14 µs
NTR 0.281 µs

Interval [42.427, 140.615] µs
90% Conf. Int. [42.946, 43.29] µs
99% Conf. Int. [42.806, 43.43] µs

99.9% Conf. Int. [42.703, 43.533] µs
Top Outlier [43.141, 140.615] µs
Non Outlier [42.579, 43.139] µs

Top Extremes [43.351, 140.615] µs
Non Extremes [42.369, 43.349] µs

Jamaica Async. Handler Dispatch Latency – Linux 2.6

Basic Statistics
Mean 54.685 µs
STD 4.287 µs

Mode 54.391 µs
Median 54.44 µs

COV 0.078
Skew 22.074

Quantile
0.10 54.268 µs
0.25 54.352 µs
0.75 54.565 µs
0.90 54.692 µs
0.99 55.501 µs
0.999 156.315 µs

Intervals
IQR 0.213 µs
NTR 0.424 µs

Interval [54.045, 156.315] µs
90% Conf. Int. [54.512, 54.859] µs
99% Conf. Int. [54.37, 55.001] µs

99.9% Conf. Int. [54.266, 55.104] µs
Top Outlier [54.885, 156.315] µs
Non Outlier [54.032, 54.885] µs

Top Extremes [55.214, 156.315] µs
Non Extremes [53.713, 55.204] µs



125

performances between the AsyncEventHandler and the BoundAsyncEvent-

Handler. For jRate the small difference is due to the fact that AsyncEvent-

Handler are implemented using a thread pool, and it is likely that Jamaica does the

same thing. Finally it is worth noticing how performances on Linux 2.6 are 3 times

better for jRate, while they keep unvaried for Jamaica.

• Dispersion Measures—From Tables 6.13, 6.14, 6.15, 6.16 it is easy to see that both

jRate and Jamaica have tight dispatch delays, with jRate showing an impressing

predictability. This is mostly due to the way in which dispatching is implemented in

jRate. To avoid this locking overhead, jRate uses a data structure that associates the

event handler list with a given event and allows the contents of the data structure to

be read without acquiring/releasing a lock. Only modifications to the data structure

must be serialized. As a result, jRate’s AsyncEventHandler dispatch latency is

relatively predictable, even though the handler has no thread bound to it permanently.

The jRate thread pool implementation uses LIFO queues for its executor, i.e., the last

executor that has completed executing is the first one reused. This technique is often

applied in thread pool implementations to leverage cache affinity benefits [41].

It is worth observing the the dispersion of data values are the same on Linux/RT and

Linux 2.6 for jRate, while Jamaica shows more dispersed data points on Linux 2.6.

As a final remark, it is worth noticing that the dispatch delay predictability is limited

by the context switch predictability, thus it is worth comparing the results found here

with the results shown in Section 6.4.1.

• Worst-case Measures—From the results shown in Tables 6.13, 6.14, 6.15, 6.16, it

is possible to see how jRate has a very good worst case behaviour on both Linux/RT

and Linux 2.6, thus showing a very appropriate behaviour for real-time systems. On

the other hand, Jamaica suffers of a very bad worst case behaviour. The maximum

dispatch delay is as much as three times bigger than the minimum. Again, this prob-

lem might stem from the fact that Jamaica uses user level threads.

Asynchronous Event Handler Priority Inversion Test. This test measures how the dis-

patch latency of an asynchronous event handler H is influenced by the presence of N others

event handlers, characterized by a lower execution eligibility than H . In the ideal case, H’s

dispatch latency should be independent of N , and any delay introduced by the presence of

other handlers represents some degree of priority inversion. The results we obtained are

presented and analyzed below.
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Test Settings. This test uses the same settings as the asynchronous event han-

dler dispatch delay test. However, since the performances of AsyncEventHandler and

BoundAsyncEventHandler are similar for the tested platforms, in this test, only the

BoundAsyncEventHandler performance is measured. The current test uses the fol-

lowing two types of asynchronous event handlers:

• The first is identical to the one used in the previous test, i.e., it gets a time stamp after

the handler is called and measures the dispatch latency. This logic is associated with

H .

• The second does nothing and is used for the lower priority handlers.

Test Results. Figure 6.32, and Figure 6.33, show the results found for this test.

Results Analysis. Below, we analyze the results of the tests that measure average-

case and worst-case dispatch latency, as well as its dispersion, for jRate and the Jamaica.

• Average Measures—Figure 6.32, and Figure 6.33 illustrate that the average dispatch

latency experienced by H is essentially constant for both jRate and Jamaica, regard-

less of the number of low-priority handlers.

• Dispersion Measures—As the results found for the previous test, Figure 6.32, and

Figure 6.33 show that Jamaica has more dispersed dispatch delay than jRate, es-

pecially on Linux 2.6. It is worth noticing how the outliers shown in Figure 6.32

and Figure 6.33 are contributed by the unpredictability of the context switch (see

Section 6.4.1) and the locking used to implements the thread pools.

• Worst-Case Measures—As the results found for the previous test, from Figure 6.32,

and Figure 6.33 it is possible to see how jRate has a very good worst case behaviour

on both Linux/RT and Linux 2.6, thus showing a very appropriate behaviour for

real-time systems. On the other hand, Jamaica suffers of a not so good worst case

behaviour. The maximum dispatch delay is as much as three times bigger than the

minimum (on Linux 2.6). Again, this problem might stem from the fact that Jamaica

uses user level threads.
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Figure 6.32: jRate Dispatch Delay.
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Figure 6.33: Jamaica Dispatch Delay Latency.
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Chapter 7

Concluding Remarks

This thesis has focused on providing a set of guidelines for designing and optimizing safe

and efficient real-time middleware. Specifically, in the context of the RTSJ this thesis has

provided a road map for both RTSJ users and implementors on how to effectively architect

RTSJ application and middleware. This thesis has systematically identified RTSJ’s lacks,

and the presence of features that could undermine its usage in real-time systems. It has

then proposed solutions, which have been validated by means of empirical evaluation. The

key contribution of this thesis can be summarized as follows.

• In this thesis we have provided a classification of RTSJ application along with a

catalog of patterns that should help in developing more robust and efficient RTSJ

applications.

• We have also shown how generative programming techniques can be used to design

effective real-time middleware.

• We have provided a set of optimization techniques and optimal algorithms that can be

used to improve the predictability and performance of RTSJ and similar middleware.

• This thesis has proposed a series of extension to the RTSJ. These extensions, have

been validated empirically, when appropriate, and their effectiveness has been dis-

cussed.

• This thesis has provided a throughout empirical evaluation of three RTSJ implemen-

tations.



130

• Last but not the least, the work on which this thesis is based, has produced two

successful open source projects: jRate and RTJPerf. The first one is an ahead of

time compiled RTSJ platform, while the second is an RTSJ benchmarking suite.
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