

NEER ENGI

A METHODOLOGY FOR
TRANSFORMING JAVA
APPLICATIONS TOWARDS
REAL-TIME PERFORMANCE

Electrical and Computer Engineering
Technical Report ECE-TR-11

DATA SHEET

Title: A Methodology for Transforming Java Applications Towards
Real-Time Performance

Subtitle: Electrical and Computer Engineering
Series title and no.: Technical Report ECE-TR-11

Authors: Mads von Qualen and Martin Askov Andersen
Department of Engineering - Electrical and Computer Engineering,
Aarhus University

Internet version: The report is available in electronic format (pdf) at the
Department of Engineering website http://www.eng.au.dk.

Publisher: Aarhus University©
URL: http://www.eng.au.dk

Year of publication: 2013 Pages: 139
Editing completed: December 2012

Abstract: The development of real-time systems has traditionally been
based on low-level programming languages, such as C and C++, as
these provide a fine-grained control of the applications temporal
behavior. However, the usage of such programming languages suffers
from increased complexity and high error rates compared to high-level
languages such as Java. The Java programming language provides
many benefits to software development such as automatic memory
management and platform independence. However, Java is unable to
provide any real-time guarantees, as the high-level benefits come at
the cost of unpredictable temporal behavior.
This thesis investigates the temporal characteristics of the Java language
and analyses several possibilities for introducing real-time guarantees,
including official language extensions and commercial runtime environ-
ments. Based on this analysis a new methodology is proposed for Trans-
forming Java Applications towards Real-time Performance (TJARP). This
method motivates a clear definition of timing requirements, followed by
an analysis of the system through use of the formal modeling language
VDM-RT. Finally, the method provides a set of structured guidelines to
facilitate the choice of strategy for obtaining real-time performance
using Java. To further support this choice, an analysis is presented of
available solutions, supported by a simple case study and a series of
benchmarks.
Furthermore, this thesis applies the TJARP method to a complex industrial
case study provided by a leading supplier of mission critical systems. The
case study proves how the TJARP method is able to analyze an existing
and complex system, and successfully introduce hard real-time guaran-
tees in critical sub-components.

Keywords: Real-time, Java, VDM-RT, Methodology, TJARP

Supervisor: Peter Gorm Larsen

Please cite as: Qualen, M.v. and Andersen, M.A., 2013.
A Methodology for Transforming Java Applications Towards Real-Time
Performance. Department of Engineering, Aarhus University. Denmark.
139 pp. - Technical report ECE-TR-11.

Cover image: Mads von Qualen and Martin Askov Andersen

ISSN: 2245-2087

Reproduction permitted provided the source is explicitly acknowledged.

.

A METHODOLOGY

FOR TRANSFORMING

JAVA APPLICATIONS TOWARDS

REAL-TIME PERFORMANCE

Mads von Qualen and Martin Askov Andersen

Aarhus University, Department of Engineering

Abstract

The development of real-time systems has traditionally been based on low-level programming
languages, such as C and C++, as these provide a fine-grained control of the applications
temporal behavior. However, the usage of such programming languages suffers from increased
complexity and high error rates compared to high-level languages such as Java. The Java
programming language provides many benefits to software development such as automatic
memory management and platform independence. However, Java is unable to provide any real-
time guarantees, as the high-level benefits come at the cost of unpredictable temporal behavior.

This thesis investigates the temporal characteristics of the Java language and analyses several
possibilities for introducing real-time guarantees, including official language extensions and
commercial runtime environments. Based on this analysis a new methodology is proposed for
Transforming Java Applications towards Real-time Performance (TJARP). This method motivates a
clear definition of timing requirements, followed by an analysis of the system through use of the
formal modeling language VDM-RT. Finally, the method provides a set of structured guidelines to
facilitate the choice of strategy for obtaining real-time performance using Java. To further support
this choice, an analysis is presented of available solutions, supported by a simple case study and a
series of benchmarks.

Furthermore, this thesis applies the TJARP method to a complex industrial case study provided by a
leading supplier of mission critical systems. The case study proves how the TJARP method is able to
analyze an existing and complex system, and successfully introduce hard real-time guarantees in
critical sub-components.

Acknowledgements

Several people have assisted the work of this thesis for which we are grateful. We would especially
like to thank our academic supervisor Peter Gorm Larsen for his involvement and advice during
this thesis and Master’s degree. We would also like to thank Terma A/S, including Mikkel Elkjær
Hede, for providing an industrial case study and their dedication to this thesis. Special thanks go
to our industrial supervisor, Thomas Gjørup from Terma, for his contribution to the case study and
general support.

Additionally we would like to thank Atego, and especially Tom Grosman, for providing us with
access to, and support for, the Atego PERC products.

Finally, we would like to thank our families and friends for their patience and support.

iii

Table of Contents

Abstract i

Acknowledgements iii

Table of Contents v

List of Figures viii

List of Tables x

Chapter 1 Introduction 1
1.1 Background . 1
1.2 Motivation . 2
1.3 Thesis Goals, Approach and Scope . 3

1.3.1 Goals . 3
1.3.2 Approach . 3
1.3.3 Scope . 3

1.4 The Method . 4
1.5 Case Studies . 5

1.5.1 Car Controller . 5
1.5.2 T-Core . 5

1.6 Reading Guide . 7
1.6.1 Structure . 7

Chapter 2 Java and Real-Time 11
2.1 Introduction . 11
2.2 Scheduling . 12

2.2.1 Real-Time Systems . 12
2.2.2 Standard Java . 14

2.3 Synchronization . 15
2.3.1 Real-Time Systems . 16
2.3.2 Standard Java . 16

2.4 Memory Management . 17
2.4.1 Real-Time Systems . 18
2.4.2 Standard Java . 18

2.5 Discussion . 21

Chapter 3 Real-Time Extensions for Java 23
3.1 Introduction . 23

v

Table of Contents

3.2 The Real-Time Specification for Java . 23
3.2.1 Scheduling . 24
3.2.2 Synchronization . 25
3.2.3 Memory Management . 25

3.3 Safety Critical Java . 27
3.3.1 Scheduling . 27
3.3.2 Synchronization . 27
3.3.3 Memory Management . 28

3.4 Discussion . 28

Chapter 4 Real-Time Requirements 31
4.1 Introduction . 31
4.2 Sub-steps of the TJARP Method . 32
4.3 Requirements in Real-Time Systems . 32

4.3.1 Functional vs. Non-Functional . 32
4.3.2 Types of Timing Requirements . 33

4.4 The Car Controller Example . 34
4.4.1 The Functional Requirements . 34
4.4.2 The Non-Functional Requirements . 35

4.5 Discussion . 35

Chapter 5 Modeling Real-Time Systems 37
5.1 Introduction . 37
5.2 Sub-steps of the TJARP method . 38
5.3 Tool Support . 39
5.4 Modeling with VDM-RT . 40

5.4.1 Modeling System Structure . 40
5.4.2 Introducing Concurrency . 41
5.4.3 Analyzing Timing Constraints . 42
5.4.4 Design Space Exploration . 44

5.5 Discussion . 45

Chapter 6 Towards Real-Time Java 47
6.1 Introduction . 47
6.2 Sub-steps of the TJARP method . 48
6.3 Optimization of Standard Java . 49

6.3.1 Development . 49
6.3.2 Deployment . 50
6.3.3 Runtime Environment . 51

6.4 Analysis and Benchmark of Java Virtual Machines 53
6.4.1 Basis for Comparison of Java Virtual Machines 54
6.4.2 Benchmark Approach . 55
6.4.3 Oracle HotSpot . 57
6.4.4 Atego PERC Ultra . 59
6.4.5 Aicas JamaicaVM . 62

6.5 Utilizing the Real-Time Specification for Java 64
6.5.1 Scheduling . 65
6.5.2 Synchronization . 65
6.5.3 Memory Management . 66

vi

Table of Contents

6.6 Discussion . 67
6.6.1 Optimizing Standard Java . 67
6.6.2 Substituting JVM . 67
6.6.3 Applying the RTSJ . 69

Chapter 7 Case Study: Terma T-Core 71
7.1 Introduction . 71
7.2 Requirements Analysis . 73

7.2.1 Functional Requirements . 73
7.2.2 Non-Functional Requirements . 74

7.3 System Modeling . 75
7.3.1 Modeling System Structure . 75
7.3.2 Introducing Concurrency . 77
7.3.3 Analyzing Timing Constraints . 79
7.3.4 Design Space Exploration . 80

7.4 Java Strategy Selection and Implementation . 81
7.4.1 The Track Management Component . 81
7.4.2 The Engagement Manager Component 83

7.5 Discussion . 86

Chapter 8 Concluding Remarks and Future Work 89
8.1 Introduction . 89
8.2 Achieved Results . 89

8.2.1 Step 1: Requirements Analysis . 90
8.2.2 Step 2: System Modelling . 90
8.2.3 Step 3 and 4: Selecting and Implementing Java Strategy 91
8.2.4 Applying the TJARP Method on the T-Core Case Study 92

8.3 Future Work . 93
8.3.1 Letting the TJARP Method Further Exploit the VDM Model 93
8.3.2 Utilize VDM Modeling for Designing RTSJ Applications 93
8.3.3 Extending the TJARP Method with Support for Mission Critical Systems 93
8.3.4 Extending the TJARP Method with Support for Distributed Nodes 94
8.3.5 Further Exploiting the VDM Language and Tool Support 94
8.3.6 Improvements to the T-Core Case Study 94

8.4 Personal Learning Outcomes . 95
8.5 Final Remarks . 96

Appendices 107

A Terminology 109

B Case Study Details 111

C Overture Real-Time Log Viewer 123

D Java Virtual Machine Analysis 127

E Distributed Computing 137

vii

List of Figures

1.1 Overview of the TJARP method. 4
1.2 Entity Overview of the Car Controller example 6
1.3 Entity Overview of the T-Core Track Management System 6
1.4 Overview of the thesis structure . 9

2.1 Scheduling in standard Java . 15
2.2 Synchronization in standard Java . 17
2.3 Jitter experienced by the CruiseController thread 20

3.1 Relationship between standard Java threads and RTSJ threads 24
3.2 Legal and illegal references between memory areas in RTSJ 26

4.1 Step 1 of the TJARP method . 31

5.1 Step 2 of the TJARP method . 37
5.2 Structural class diagram of the Car Controller model 41
5.3 Example of a conjecture violation for the Car Controller example 44

6.1 Step 3 and 4 of the TJARP method . 47
6.2 Transitions between sub-steps in step 3 and 4 48
6.3 Car Controller Memory Profile . 52
6.4 Jitter distribution for the HotSpot test three . 59
6.5 Jitter distribution for Atego PERC Ultra test three 61
6.6 Jitter distribution for the JamaicaVM in test three with RTSJ memory and threads 64
6.7 Car Controller example redesigned for RTSJ 65
6.8 Scheduling in RTSJ . 65
6.9 Synchronization in RTSJ . 66
6.10 Comparison of the Oracle HotSpot, the Atego PERC Ultra and the Aicas Ja-

maicaVM . 68

7.1 The four steps of the TJARP method . 71
7.2 Components of the T-Core Case Study . 72
7.3 Simplified class diagram of the T-Core VDM-RT model 76
7.4 Sequence diagram of a track updated and engaged 78
7.5 Track Load Tests - PERC Ultra vs. HotSpot 82
7.6 Engagement Manager Class Diagram . 84
7.7 Ideal Timing for the Engagement Manager Component 86
7.8 Total Handling Duration for the Engagement Manager Component 86

8.1 Degrees of real-time performance in the T-Core case study components 92

viii

List of Figures

B.1 Class diagram of the Car Controller software 112
B.2 Structural class diagram of the Car Controller model 113
B.3 Sequence diagram for track creation in the model 114
B.4 Evaluation Duration for the TrackEvaluationHandler 120
B.5 Evaluation/Communication Delay Between the TrackEvaluationHandler

and the WeaponComHandler . 120
B.6 Weapon Communication Total Duration for the WeaponComHandler 121
B.7 Weapon Communication Period for the WeaponComHandler 121

C.1 Old RT Log Viewer . 124
C.2 New RT Log Viewer . 124
C.3 Class diagram of the new RTLV design . 126
C.4 New vs. old RTLV load times . 126

D.1 CPU profile of the SPECjvm2008 Compress benchmark 130
D.2 Memory profile of the SPECjvm2008 Compress benchmark 130
D.3 Jitter distribution for the HotSpot test two . 133
D.4 Jitter distribution for the HotSpot test three . 133
D.5 Jitter distribution for the PERC Ultra test two 133
D.6 Jitter distribution for the PERC Ultra test three 134
D.7 Jitter distribution for the JamaicaVM test two with RTSJ 134
D.8 Jitter distribution for the JamaicaVM test three with RTSJ 134
D.9 Jitter distribution for the JamaicaVM test three with RTSJ and real-time RT Linux

priorities . 135

ix

List of Tables

2.1 Jitter statistics for the CruiseController thread 21

6.1 Comparison of jitter on HotSpot, with default and optimized settings and the PERC
Ultra . 52

6.2 Overview of applied benchmark tests . 56
6.3 Oracle HotSpot Grades . 57
6.4 Test results for Oracle HotSpot based on samples 500-5000 58
6.5 Atego PERC Ultra Grades . 59
6.6 Test results for Atego PERC Ultra based on samples 500-5000 61
6.7 Aicas JamaicaVM Grades . 62
6.8 Test results for Aicas JamaicaVM based on samples 500-5000 63
6.9 Jitter statistics for the CruiseController thread 66

7.1 Engagement Manager Test Results, using the JamaicaVM 85

D.1 Configuration parameters for GC optimizing the HotSpot JVM 127
D.2 Configuration parameters for GC optimizing the PERC Ultra JVM 128
D.3 Scale for rating the attributes of the individual JVMs 129
D.4 Configuration parameters for the SPECjvm2008 tests 131
D.5 Configuration parameters for the Collision Detector benchmark 132

x

Chapter1
Introduction

This chapter describes the context of this thesis, and presents the background, motivation as well
as goal and purpose of the completed work. This chapter sets the stage for the remaining chapters.

1.1. Background

The Java language has become one of the most popular programming languages in use since
its introduction in the early nineties [TIOBE12]. The language has had an enormous impact on
the software industry and is currently deployed in millions of systems ranging from large enter-
prise applications to low-end embedded devices [Higuera-Toledano&12]. Research has shown
how Java is still increasing in popularity and use, both in the industry but also within academia
[Chen&05]. The success of the Java programming language is highly due to its platform inde-
pendence as emphasized by the Java mantra, “Write once, run everywhere”. Other compelling
advantages include an object-oriented programming model, extensive library support, type safety,
automatic memory management and build-in support for multithreading and distributed program-
ming. However a domain still dominated by more low-level languages such as C and C++, and
where Java is still trying to gain acceptance, is within the area of real-time systems.
The success or failure of real-time systems depend not only on their functional behavior, but
also on their ability to meet critical deadlines, e.g. a missed or premature deadline in a medical
pacemaker may have catastrophic consequence. A common denominator for real-time systems is
that they are subject to real-world timing constraints [IBM07], where “real-time” is not a measure
of being “real fast” but the guarantee of being “equally fast”. This concept can further be divided
into soft and hard real-time, where the first describes a system which might accept a result after a
missed deadline, but the usefulness degrades as the deadline is passed. For hard real-time systems
a missed deadline equals total system failure and is unacceptable. Real-time applications are often
central components in Mission Critical systems where human life and significant costs are at stake.
Such systems have a natural need for being reliable, and are often subject to strict certifications
requirements, thus reducing complexity, and thereby the number of potential errors is of extra
importance.
Real-time software practitioners have traditionally preferred low-level programming such as C or
C++ due to a higher degree of control and predictability of timing behavior. However, given the
complexity of such languages, they are more prone to errors and developers have proven to be less
productive than those using high-level programming languages such as Java. Java developers are
reported to be up to 200 percent more productive (in terms of lines of code per minute) and with

1

Chapter 1. Introduction

only half as many bugs (per lines of code) as C++ developers [Phipps99]. This makes using Java
for development of real-time systems (hard or soft) attractive, especially considering the many
benefits and widespread usage. However, Java suffers from non-deterministic temporal behavior,
severely limiting its usage within the real-time domain.

Java is essentially two things: a programming language and a runtime environment. The first
contribute to the non-deterministic temporal behavior through language facilities, such as dynamic
class loading and automatic memory management. The latter adds unpredictable behavior through
native code compilation, synchronization mechanisms, unpredictable scheduling policies etc.

For more than a decade the Java community has pushed towards specifications and optimization
techniques for improving temporal behavior of the Java language [JSR001, Mikhalenko06]. This
work has inspired official τJava Specification Requests, such as the Real-time Specification for
Java (RTSJ), and later the Safety Critical Java (SCJ). Both specifications are important contribu-
tions but a number of open problems have limited its widespread acceptance, leaving a fragmented
community motivated by specific commercial interests on one side, and broader diverse academic
approaches on the other [Plsek09].

1.2. Motivation

The primary motivation behind this thesis is the authors’ wide interest within the field of real-time
software engineering. Both authors’ have attended courses within the field, where especially the
courses Modeling of Mission Critical Systems and Architecture and Design of Embedded Real-
Time System have served as an inspiration. The project proposal was initiated by a request from
the Danish high-tech company Terma A/S. Terma is a leading supplier of mission critical software
systems used in extreme environments, where the ability to guarantee predictability and determin-
ism at certain points in time is crucial. Terma has for several years used their Flexible Software
Platform for Combat Management Systems (T-Core) as a foundation for various command and
control systems. Several measures have been taken in order to optimize the platform for real-time
performance. Terma wish to further investigate the possibilities for introducing temporal guar-
antees in certain sub-components of the T-Core framework. The company has, as many other
members of the industry, faced challenges when trying to choose the correct strategy for isolat-
ing, analyzing and optimizing critical Java components in order to achieve real-time performance.
Currently Terma implements critical components, with hard real-time requirements, in low-level
programming languages such as C and C++. Terma wish to utilize Java for implementing these
components in order to reduce the required workload, and take advantage of the high-level bene-
fits provided by the language. Therefore Terma have provided a real-life case study to apply the
work of this thesis.

It is clear from the many benefits of Java that bridging the gap between existing real-time tech-
niques and Java would be very attractive. The initial purpose of this thesis was to investigate if,
and how, an existing Java implementation could be optimized for real-time performance. From
review of literature, it quickly became clear that real-time guarantees with Java were achievable,
but the options were many and unclear. Many official proposals and commercial products try to
address the challenge of achieving real-time performance using Java. Furthermore, the task of
defining requirements with emphasis on timing constraints is difficult and often subject to various
interpretations. This led to a change in focus, towards defining a new methodology for facilitating
the process of transforming Java applications towards real-time performance.

2

Thesis Goals, Approach and Scope

1.3. Thesis Goals, Approach and Scope

This section presents the goals of this master’s thesis, the approach for achieving them and limits
the scope of the work.

1.3.1 Goals

The main goals of this thesis are:

1. To provide an overview of available real-time Java technologies through evaluation
and comparison, which will assist the choice of the optimum strategy towards achiev-
ing real-time performance.

2. To propose a methodology which will facilitate the process of introducing real-time
performance in existing Java applications.

In addition, the authors of this thesis have personal goals of improving their skills and knowledge
within the fields of real-time systems as well as in Java and the technologies for real-time Java.

1.3.2 Approach

In order to achieve the goals set out for this thesis, a three phased approach was used.

Phase 1 – Research: Initially a research phase was performed. Here relevant research was exam-
ined in order to uncover the challenges faced when developing traditional real-time systems.
Furthermore, the problems preventing standard Java from providing real-time guarantees
were studied. Finally, a survey of available real-time Java solutions on the market was con-
ducted. The knowledge gained through this phase provided a strong basis for the activities
in the following phase.

Phase 2 – Elaboration: Secondly an elaboration phase was carried out. Here the methodology
mentioned in the thesis goals was developed, and a supporting analysis was performed.
The methodology was based on real-time requirements and formal modeling of the Java
application in question. This helped ensure a clear understanding of what can be achieved
before choosing a real-time Java strategy.

Phase 3 – Evaluation: Finally an evaluation phase was performed in order to evaluate the method-
ology developed during phase 2. The evaluation was done by utilizing the methodology on
a real-life case study and then assess the obtained outcome.

1.3.3 Scope

As the subject of real-time Java is vast and the possibilities many, a few limitations have been set
up in order to bound the amount of work associated with this master’s thesis.

Distributed systems: This thesis will focus on how to achieve real-time performance on a single
computing node. However, distributed systems are considered in this thesis, nevertheless
the challenges faced when trying to provide real-time guarantees across a communication
link are out of the scope of this thesis.

3

Chapter 1. Introduction

New Java Applications: The methodology developed through this thesis will focus on how to
introduce real-time in existing Java-based applications. The development of new real-time
Java applications is therefore out of the scope of this thesis. However, although the method-
ology assumes an existing application, the experiences and results of this thesis will still be
highly relevant when developing new applications.

Embedded Systems: Many real-time Java approaches are targeted embedded systems. This the-
sis will however, focus on computer systems in general. That said, the methodology or parts
of it may well be applicable to embedded systems.

Modeling Techniques: The methodology developed through this thesis will make use of the for-
mal modeling language VDM. Based on the authors’ prior knowledge and interest in VDM,
this has been preferred as modeling technique in this thesis, even though alternatives exist.

1.4. The Method

This section provides an overview of the proposed methodology for Transforming Java Appli-
cations towards Real-time Performance (TJARP). The overall goal of the TJARP method is to
facilitate the process of introducing real-time behavior in existing Java-based applications. This is
done through four steps, each comprised of a set of sub-steps. An overview of the four steps and
how they are related can be seen in figure 1.1.

Step 1:

Requirements Analysis

Step 2:

System Modeling

Step 3:

Java Strategy Selection

Step 4:

Implementation

Figure 1.1: Overview of the TJARP method.

The dotted arrow between step 1 and step 3 indicates that under certain circumstances it is possible
to go directly from step 1 to step 3 and thus skipping step 2. The motivation for skipping the second
step is further described in section 4.5. The arrows between step 3 and step 4 show that these steps
are repeated iteratively until a satisfactory result is obtained. A description of each step is given
here along with their individual goals:

Requirements Analysis: This step is concerned with defining the desired real-time properties of
the system through requirements. The existing Java application and associated functional
requirements will be supplemented by a set of non-functional timing requirements in this
step.

System Modeling: This step deals with modeling the most essential parts of the system, which
requires real-time performance using VDM-RT. The model will help gain a better under-
standing of the system and the desired real-time properties. Furthermore, the model will
assist in identifying potential design flaws and bottlenecks which could potentially impact

4

Case Studies

the real-time performance. Finally the model is useful for doing early design space explo-
rations in order to choose the best possible architectural design.

Java Strategy Selection: This step will facilitate the choice of strategy for obtaining real-time
performance using Java, based on the requirements and the VDM-RT model. This step can
be revisited after step 4 if the desired result was not obtained through the strategy already
used. Hence, results from earlier tests can be used as input to this step as well.

Implementation: This is the final step of the method. It is concerned with implementing the
changes to the application using the real-time Java strategy chosen in step 3. Afterwards
the results are evaluated, and if they are satisfactory, compared to the requirements defined
in step 1, then the use of the method is completed. Otherwise, step 3 is revisited using the
newly obtained results and knowledge as input.

The details of all steps and their sub-steps will be described in chapters 4 to 6.

1.5. Case Studies

Two case studies are used in this thesis. One is a simple fictional case study called the Car Con-
troller example which is used throughout this thesis to emphasize important points and exemplify
use of the TJARP method. The second case study is more complex and based on the real-life
system T-Core provided by Terma. This case is used to demonstrate how the TJARP method can
be applied on a complex industrial case. The Car Controller example is introduced in section 1.5.1
while T-Core is introduced in section 1.5.2.

1.5.1 Car Controller

The Car Controller application is an imaginary real-time system imitating the behavior of a car.
The system must provide the user with automatic cruise control, which samples the current speed
and regulates the engine in order to achieve the desired cruise speed. Together with monitoring
brake and gas pedals the system contains a navigation display and a cruise-control switch. The
example abstracts away many details in order to focus purely on important real-time parts. An
overview of the Car Controller example is illustrated in figure 1.2.
The Car Computer is the processing unit of the system where a Java application is executing and
interfacing to several peripherals found in the car. Input is received from the gas pedal and the
brake pedal and it is the job of the Car Computer to adjust the speed of the engine and the pressure
of the brakes accordingly. The Car Computer also receives input from a cruise control switch
which is able to enable and disable the cruise controller and configure the desired cruise speed.
The Car Computer must then monitor the speed of the engine and change it accordingly. Finally
the Car Computer is responsible for updating the in-car display with navigation information.
In addition to the overview presented in figure 1.2 a class diagram describing the software elements
of the Car Computers Java application is provided in appendix B.

1.5.2 T-Core

T-Core is a framework developed by Terma, which is a distributed and component based Combat
Management System platform [Terma11]. T-Core is developed in Java and forms the basis for

5

Chapter 1. Introduction

Car Computer

Navigation Display

Gas Pedal Brake Pedal

Cruise Control Switch

Brakes Engine

Figure 1.2: Entity Overview of the Car Controller example

Radar

Track Management

Track

Weapon Control

Operator

Operator

Figure 1.3: Entity Overview of the T-Core Track Management System

naval and ground command and control systems provided by Terma. The configuration of T-Core
used for the case study in this thesis is illustrated in figure 1.3.
This case study focuses on the Track Management (TM) component of the T-Core framework. The
TM component creates a full picture of the surroundings based on track information received from
radars such as aircrafts or missiles. The information received from different sources is processed
and distributed to other parts of the system. Operators will for instance be able to monitor the
current situation and assist the TM component in making decisions about tracks. Finally, in this
case study, the T-Core configuration also contains a Weapon Control component which is able to
engage tracks based on information received from the TM component.
Some of Terma’s customers are interested in having hard real-time guarantees in certain compo-
nents of the T-Core framework. Therefore Terma wishes to investigate possibilities for combining
non real-time components with hard real-time components on the same node while still providing
timing guarantees. This is demonstrated in this case study by constraining the Weapon Control

6

Reading Guide

component with hard real-time requirements while the TM component is deployed on the same
node performing soft real-time tasks.

1.6. Reading Guide

Throughout this thesis a few special notations and conventions are used to improve the readability:

References All external references (books, articles, technical reports etc.) are placed in brackets,
labeled with the surname of the author followed by the year of publication, e.g. [Baker06].
If the referenced work has multiple authors the reference will use the surname of the first
listed author followed by an ampersand before the year of publication, e.g. [Bacon&03].

Emphasis Words, sentences or names with special relevance are emphasized by the use of an
italic typeface.

Special Terms Special technical terms not explained within the text are marked with tau and
explained in the terminology found in appendix A, e.g. τWorst-Case-Execution-Time.

Keywords Programming keywords (VDM, Java, etc.) within the text, as well as in diagrams and
illustrations, are written in teletext and boldface, where instructions and class
names are written in plain teletext.

Listings Model and code listings are marked in special styles, where VDM model is listed as
shown in listing 1.1 and Java code is listed as shown in listing 1.2.

�
1 public ActivatePedal : () ==> ()
2 ActivatePedal() == Car‘controller.HandleSpeedPedal();
� �

Listing 1.1: Example of a VDM code block

1 public void handleAsyncEvent() {
2 engine.setSpeed(Speed.Max); }

Listing 1.2: Example of a Java code block

If not specified otherwise, the term “standard Java” refers to the Oracle Java Platform, Standard
Edition executing within the Oracle HotSpot Runtime Environment 1.6. All test are carried out on
a set of Lenovo Thinkpad X300 PC’s with an Intel Core 2 Duo and two gigabytes of RAM. The
operating system is Fedora 17 with the Linux RT PREEMPT patch. Test results are summarized in
tables, often indicating jitter values as maximum, average or standard deviation which are based
on datasets with absolute values.

1.6.1 Structure

This thesis is organized into eight chapters and five appendices. Figure 1.4 (page 9) provides a
graphical overview of the thesis structure, where chapters are connected with arrows indicating
the suggested reading order. Dotted lines indicate a loose connection, such as a reference to an

7

Chapter 1. Introduction

appendix or a chapter which can be skipped if the reader possesses prior knowledge about the
presented subject.
Chapter 2 and 3 provides the theoretical foundation and introduces relevant terms, concepts and
technologies.

Chapter 2 This chapter describes the characteristics of real-time systems and why Java is un-
able to achieve real-time guarantees. This chapter can be skipped if the reader holds prior
knowledge within this area.

Chapter 3 This chapter presents two specifications extending the Java language, the RTSJ and
the SCJ. Both specifications are analyzed and related to the topics described in chapter 2.

The following chapters describe the four steps of the TJARP method including the motivation for
each step and concrete examples of the steps applied to the simple Car Controller case study.

Chapter 4 This chapter presents the first step of the TJARP method. Focus is on definition of
real-time requirements with emphasis on describing events with temporal constraints.

Chapter 5 This chapter presents the second step of the TJARPmethod, and introduces the formal
modeling language VDM-RT as an important tool for analyzing real-time requirements.

Chapter 6 This chapter presents the third and fourth step of the TJARP method, and provides the
reader with a detailed overview of some of the implementations available for real-time using
Java. Several techniques are presented and technical solutions are tested and compared.

In chapter 7 the TJARP method is evaluated by applying the steps explained in chapters 4-6 to
a complex industrial case study. Finally chapter 8 provides a conclusion of the work described
within this thesis, where the achieved results are analyzed and discussed as well as potential addi-
tions for future works are included.
Five appendices are referenced within this thesis.

Appendix A This appendix presents the terminology used within this thesis.

Appendix B This appendix contains detailed information of the Car Controller and Terma T-Core
case studies.

Appendix C This appendix contains a technical descriptions of the additions to the Overture RT
Log Viewer.

Appendix D This appendix contains additional details of the analysis and benchmarks applied in
chapter 6.

Appendix E This appendix describes some of the possibilities for introducing real-time perfor-
mance across distributed nodes.

Additionally all implementation specific files, such as VDM-RT and Java source code, is located
on the attached CD.

8

Structure

Thesis Chapter Overview

In
tr

o
d
u
ct

io
n

T
h
eo

ry
T

h
e

T
JA

R
P

 M
et

h
o
d

C
as

e
S

tu
d
y

C
o
n
cl

u
si

o
n

A
p
p
en

d
ic

es

Chapter 1

Introduction

Chapter 2

Java and Real-Time

Chapter 3

Real-Time Extensions

for Java

Chapter 8

Concluding Remarks

and Future Work

Chapter 7

Case Study :

Terma T-Core

Chapter 6

Towards Real-Time

Java

Chapter 5

Modeling Real-Time

Systems

Chapter 4

Real-Time

Requirements

Appendix B

Case Study Details

Appendix D

Java Virtual Machine

Analysis

Appendix A

Terminology

Appendix C

Overture Real-Time Log

Viewer

Appendix E

Distributed Computing

Figure 1.4: Overview of the thesis structure

9

Chapter2
Java and Real-Time

This chapter describes important topics which need to be considered in order to achieve real-time
performance in software systems. It is described how these topics are handled in traditional real-
time systems as well as in standard Java. The points made through this chapter will be emphasized
by use of the Car Controller example presented in section 1.5.1. The theory introduced in this
chapter also serves as background knowledge for the rest of this thesis. Therefore readers who
are already experienced within real-time systems and standard Java may want to skip this chapter
or parts of it.

2.1. Introduction

In order to achieve real-time performance in computer systems, a number of important topics need
to be considered. These topics include scheduling, synchronization and memory management.
Each of these has great influence on timeliness and predictability which are required properties of
real-time systems. For the same reason these topics has been subject to research for many years
and solutions to common problems within each of them exist. Some of these common problems
and their solutions will be touched upon in this chapter. The solutions however often require
low-level programming languages and special operating system features. Therefore in order to
increase productivity, portability, etc. the idea of achieving real-time performance using Java is
tempting. However, it is not possible to achieve real-time performance using standard Java and
this chapter seeks to investigate the challenges preventing this.

The three topics scheduling, synchronization and memory management are described in sections
of their own, from section 2.2 to section 2.4. Each section is divided into two sub-sections. The
first sub-section describes how the topic is traditionally approached in real-time systems, covering
the common challenges and solutions. The second sub-section describes challenges preventing
standard Java from achieving real-time performance, within the particular topic, which are out-
lined and exemplified using the Car Controller example (See section 1.5.1). Finally section 2.5
discusses the theory presented throughout this chapter.

11

Chapter 2. Java and Real-Time

2.2. Scheduling

In computing the process of determining which threads gets to execute at what times is called
scheduling. If several threads, sharing the same processing unit, are eligible for execution at the
same time, the scheduler must be able to choose which thread to execute first. Many algorithms
for making such choices exist, each addressing different properties which could be desirable for a
particular system. Examples of scheduling algorithms are:

First-in-first-out: This algorithm queues threads according to the time they got eligible for ex-
ecution. When a thread gets to run it can run until it completes, blocks or gives up the
processor itself. The benefit of this algorithm is simplicity. The drawback is performance if
threads choose to occupy the processor for long periods of time.

Round Robin: This scheduler focuses on fairness among threads. This is done by giving an
equal amount of execution time (time slice) to all threads in a fixed order. If a thread do not
finish within its time slice the scheduler τpreempts it from the processor in favor of the next
thread. An advantage of this approach is the fairness which avoids τ starvation of threads.
However, the lack of prioritization between threads will potentially cause less important
threads to delay more important threads.

Priority scheduling: In this approach each thread is assigned a priority. The scheduler executes
the highest priority thread which is also eligible for execution. A benefit is that the latency
of high priority threads is minimized i.e. the time from the thread gets eligible for execution
until it completes. A drawback is the possibility of high priority threads starving low priority
threads.

Below section 2.2.1 will describe how scheduling is approached in traditional real-time systems
and section 2.2.2 will describe the approach taken in standard Java.

2.2.1 Real-Time Systems

In real-time systems timeliness and predictability are properties of great importance which the
scheduler needs to facilitate. The scheduler must help guarantee that both periodic and aperiodic
threads are able to meet their deadlines under all specified circumstances. In order to achieve this,
the real-time schedulers are usually supported by various analysis techniques applied at design
time. Section 2.2.1.1 and 2.2.1.2 gives examples of two common real-time schedulers and their
corresponding analysis techniques. Section 2.2.1.3 briefly describes the challenges faced when
doing real-time scheduling in a multiprocessor environment.

2.2.1.1 Cyclic Scheduling

A simple technique for ensuring that all deadlines are met has resemblance to the round robin
scheduler and is called cyclic scheduling [Baker&88]. This scheduling algorithm depends on an
analysis of all threads at design time, in order to determine their execution times. These times
are then used to create a static schedule where all threads are given fixed periodic time slices,
which ensure their timeliness. Additional time slices can be allocated in the schedule in order
to serve aperiodic threads, which are triggered by external events instead of progression in time.
Advantages of this solution are its simplicity and predictability. Ideally the scheduler does not have
to make any decisions at runtime as everything is planned a priori. If the τWorst-Case-Execution-
Times of all threads are well-known then the resulting static schedule will be able to guarantee

12

Scheduling using Rate-Monotonic Analysis

that all deadlines are met. The main issue of this solution is to come up with a static schedule
satisfying all deadlines given a set of threads, their execution times, and deadlines. This is known
to be an τNP-hard problem and there is no guarantee that such a static schedule exists [Mok83].
Another drawback is the inflexibility of this approach e.g. whenever a new thread is added or an
existing thread changes execution time a new static schedule must be produced.

2.2.1.2 Scheduling using Rate-Monotonic Analysis

A highly influential principle for scheduling in real-time systems is the Rate-Monotonic Analysis
or just rate-monotonic scheduling [Liu&73]. This approach is also able to ensure that all deadlines
are met but do not rely on a static schedule in order to achieve this. Instead all threads are assigned
fixed priorities using a method called the rate-monotonic priority assignment. Intuitively priorities
would be assigned to threads according to their perceived importance. However, this method
assigns higher priorities to threads with higher periodic frequencies. Using this method a given
set of threads is τ schedulable if they satisfy equation 2.1.

n∑
i=1

Ci
Ti
≤ n(21/n − 1) (2.1)

Where n is the number of threads while Ci and Ti are the execution time and the period of thread
i respectively. The τprocessor utilization of the entire set of threads is given by the left side of
equation 2.1, while the right side is the least upper bound of processor utilization in order to guar-
antee schedulability. If the set of threads does not satisfy the equation then the threads may still
be schedulable but further analysis is required in order to ensure this [Lehoczky&89]. The Rate-
Monotonic Analysis is done at design time, at runtime the scheduling is done by a fixed-priority
preemptive scheduler. This scheduler ensures that the currently executing thread is always the
one with the highest priority of the threads eligible for execution. A thread is preempted if an-
other thread with higher priority gets eligible for execution. A main advantage of rate-monotonic
scheduling is that whether the set of threads are schedulable or not depends on the entire sets uti-
lization of the processor. This means that periodic threads can be executed independently while
deadlines are still guaranteed. Also if a new thread is added to the system only a recalculation of
the sets processor utilization is required to check whether it is still schedulable. The weakness of
this approach is that it suffers from some rather restrictive assumptions e.g. threads must be com-
pletely independent of each other and have constant execution times. Rate-monotonic scheduling
has however served as a starting point for more research which has been able to relax these as-
sumptions [Sha&86, Sha&90, Rajkumar89, Rajkumar91].

2.2.1.3 Scheduling in Multiprocessor Systems

The real-time scheduling techniques described so far assumes that a single processor is shared
among all threads. However, as multiprocessor systems have become the norm also within real-
time systems, the scheduling algorithms and analyses must also be able to support additional
processors. Further complexity is added to scheduling when working in a multiprocessor environ-
ment. This is because, in addition to deciding which threads gets to execute when, the scheduler
must also consider which processor to use for the execution.
Unfortunately the research within multiprocessor scheduling has yet to catch up with that of
uniprocessor scheduling [Baker06]. Therefore, no optimal and agreed upon solution currently
exists to real-time scheduling in multiprocessor environment. However, in general three different

13

Chapter 2. Java and Real-Time

approaches are used by multiprocessor schedulers for choosing where to execute a given thread
[Higuera-Toledano&12, Davis&11]:

Fully Partitioned Scheduling: This approach assigns each thread to a single processor where
it will always be executed. The main advantage of this solution is that after assigning
threads to processors, the well-known uniprocessor scheduling algorithms and analyses can
be applied per processor. A drawback is that a processors idle time cannot be utilized by
threads on other processors which may be busy.

Global Scheduling: This approach allows all threads to execute on all processors. An advantage
of this approach is that idle time on one processor can be utilized by all threads in the
system. The drawback is the added complexity and the overhead introduced when moving
threads between processors.

Clustered Scheduling: This approach is a hybrid of the two techniques just mentioned. Each
thread is assigned to a subset of all processors called a cluster. Within each cluster the
threads are scheduled using global scheduling. This can be an advantage if groups of pro-
cessors share the same local memory, thus the overhead of moving threads are minimized.

2.2.2 Standard Java

Standard Java has a single thread class which can be used for implementing multi-threaded appli-
cations. A standard Java thread can have one of 10 different priority levels. However the original
Java Language Specification (JLS) [Gosling&96] does not specify any algorithm for scheduling
these threads. The closest the specification gets to mentioning scheduling is the following vaguely
formulated paragraph taken from section 17.12 describing threads:

When there is competition for processing resources, threads with higher priority
are generally executed in preference to threads with lower priority. Such preference
is not, however, a guarantee that the highest priority thread will always be running,
and thread priorities cannot be used to reliably implement mutual exclusion.

More recent Java Language Specifications say even less on the subject of scheduling. The rea-
sons for this are probably the major design goals of making Java independent of hardware and
Operating Systems (OS). This implies that the scheduling mechanisms actually used in standard
Java are decided by the vendors of Java Virtual Machines (JVM). However it seems to be common
practice among JVM implementations to create a 1:1 mapping between Java threads and native
threads of the underlying OS [Oracle08]. The 10 different priority levels are typically mapped to
priorities of native threads and scheduling can then be done by the underlying OS. This is also
why standard Java does not make any particular considerations about scheduling when working in
a multiprocessor environment as this responsibility is left to the OS scheduler.

The Car Controller Example

In order to further investigate the scheduling mechanism in standard Java, the Car Controller
example has been used. A test scenario, where the brake pedal is activated around the same time
as the navigation software is updating the car display image, has been executed several times. The
results show that standard Java is indeed unpredictable in its scheduling of threads and does not
respect thread priorities. Sometimes the brakes are activated immediately, other times the brake
activation is delayed due to the navigation software. The result of a test run which yielded a
particular bad result has been illustrated in figure 2.1.

14

Synchronization

BrakePedalEventHandler (High Priority)

Navigation (Low Priority)

Executing

Preempted

Brake pedal event

Release

Finish0 5 10 15

Time (ms)

Figure 2.1: Scheduling in standard Java

The Navigation thread starts updating the display at time t=1. The brake pedal is activated at
time t=2 and makes the BrakePedalEventHandler thread eligible for execution. Although
the BrakePedalEventHandler thread has a higher priority than the Navigation thread,
the Navigation thread is allowed to preempt the BrakePedalEventHandler thread for 9
ms, before it is allowed to execute.
From a real-time system’s perspective it is problematic that thread priorities are not strictly adhered
to. Furthermore, as the scheduling may or may not be done by the OS, it would take a thorough
investigation of the JVM implementation, and the underlying OS, in order to reason about how
the threads of an application would be scheduled. Clearly more strict semantics and guidelines are
needed in order to obtain real-time scheduling and ensuring deadlines.

2.3. Synchronization

Synchronization is used to coordinate concurrent threads, sharing a common resource, in order to
avoid undesirable τ race conditions. If a memory area is shared then synchronization helps ensure
data integrity, or if a hardware component is shared then synchronization can provide exclusive
access to this component. Code blocks accessing shared resources, and hence requiring synchro-
nization, are called critical sections. In order to protect critical sections different locking primitives
are used e.g. τ semaphores [Dijkstra68], τmutexes [Dijkstra65], τmonitors [Hoare74] etc. They all
help ensure that critical sections are only entered by a limited number of threads. Usually only
one thread is allowed inside a critical section at a time. This is called mutual exclusion. If more
threads attempt to enter the critical section these will be blocked until the critical section is again
unlocked.
A common problem with thread synchronization is unbounded priority inversion, which is a sit-
uation where a high priority thread is blocked by a low priority thread for an unknown amount
of time [Sha&90]. This can occur if a resource is shared between a low priority thread and a
high priority thread. If the low priority thread already has acquired the resource and the high
priority thread then tries to do the same, the high priority thread will have to wait until the low
priority thread releases the resource. The waiting time endured by the high priority thread can be
prolonged by medium priority threads which will preempt the low priority thread while it is still
holding the lock for the shared resource.
Another problem when doing thread synchronization is deadlocks [Coffman&71]. These can
occur if two or more threads try to gain access to a critical section while already executing within
one. Then for instance, if two threads each try to access the critical section held by the other thread
they will wait forever and a deadlock has occurred.
Section 2.3.1 describes how the synchronization challenges are handled in traditional real-time

15

Chapter 2. Java and Real-Time

systems, while section 2.3.2 describes how thread synchronization is achieved in standard Java.

2.3.1 Real-Time Systems

The problem with unbounded priority inversion outlined above is particular dangerous in real-time
systems. The non-deterministic delay incurred on the high priority thread will make it impossible
to predict if its deadline will be met. Here the most common solutions to the problem used in
real-time systems are described:

Non-preemptive Critical Sections Protocol [Mok83]: This is a simple approach where a thread
cannot be preempted as soon as it is executing within a critical section. This ensures that the
thread will finish the critical section as fast as possible. Also deadlocks are prevented if this
protocol is applied in a uniprocessor environment. The drawback is that other higher pri-
ority threads may be delayed unnecessarily even though they do not share the same critical
section.

Priority Inheritance Protocol [Sha&90]: With this approach a low priority thread holding the
lock for a critical section can have its priority raised temporarily. This happens when a
higher priority thread tries to access the same critical section. Then the low priority thread
inherits the priority level of the higher priority thread until it finishes the critical section.
This solution is not perfect as the high priority thread will still have to wait for the low
priority thread to finish the critical section. However using this approach there is an upper
limit to the amount of time the high priority thread can be blocked by lower priority threads.

Priority Ceiling Protocol [Sha&90]: This approach assigns a priority ceiling to each critical
section which equals the priority of the highest priority thread accessing the particular sec-
tion. When a thread tries to enter a critical section it is checked whether the thread has a
higher priority than the priority ceilings of all critical sections currently executed. If this
is the case then the thread is allowed to execute the critical section. Otherwise the thread
is blocked and other threads executing critical sections inherit the priority of the blocked
thread. This solution is proved to minimize the upper bound on blocking time endured
by high priority threads caused by lower priority threads. Additionally this approach also
solves the deadlock problem.

2.3.2 Standard Java

In standard Java, synchronization is done by use of the synchronized keyword. Methods
within a class declared with the synchronized keyword are executed with mutual exclusion.
This functionality makes Java classes act like monitors i.e. each object instance has an associated
mutex which must be obtained before the synchronized methods can be executed. Another way
of using the synchronized keyword is as a statement. This is exemplified in listing 2.1.

1 synchronized(obj){
2 Body of statements...
3 }

Listing 2.1: The synchronized statement

16

Memory Management

Using the synchronized statement, ensures that the body of the statement is not executed until
the mutex associated with the object instance obj has been obtained. When the body is exited the
mutex is released again.
Standard Java does not explicitly handle the priority inversion problem. As described in sec-
tion 2.2.2, JVM implementations usually rely on the underlying OS for enforcing thread priorities
and scheduling. Therefore mechanisms for avoiding priority inversion and deadlocks rely both on
the mapping done by the JVM to the OS and the OS itself.

The Car Controller Example

The Car Controller example has been used to check if priority inversion is possible in standard
Java. The shared resource in the test case is the Engine which must be accessed by both the
CruiseController thread and the GasPedalEventHandler thread in order to change
speed. The priority of the CruiseController thread has been lowered in this particular test
in order to provoke the situation where priority inversion can arise, in all other tests the thread has
a high priority. Figure 2.2 shows the result of a test scenario where the low priority Cruise-
Controller thread gains access to the engine just before the high priority GasPedalEvent-
Handler thread is scheduled.

GasPedalEventHandler (High Priority)

CruiseController (Low Priority)

Navigation (Medium Priority)

Executing

Blocked

waiting for lock

Executing

holding lock

Release

Finish
0 5 10 15 20

Time (ms)

Gas pedal event

Preempted

holding lock

Figure 2.2: Synchronization in standard Java

The result is that the GasPedalEventHandler thread is blocked until the CruiseCon-
troller thread finishes the speed change and releases the lock on the engine. The GasPedal-
EventHandler thread is further delayed because the medium priority Navigation thread
preempts the CruiseController while it is holding the lock.
This shows that the unbounded priority inversion problem indeed exists in the standard Java im-
plementation. In order to obtain real-time performance this problem must be dealt with, possibly
using the techniques mentioned in section 2.3.1.

2.4. Memory Management

Memory access is essential for most computer applications in order to store instructions and data
e.g. state information. This must be supported by the environment in which the program executes
to ensure safe and correct behavior. Most programming languages provide the developer with ac-
cess to both static (allocated at compile-time) and dynamic memory (allocated at run-time). The
latter is by far the most complex and requires the developer, the environment, or both, to handle
used and available memory while executing the application. The term memory management cov-

17

Chapter 2. Java and Real-Time

ers several different aspects of dynamic memory within computer science, ranging from operating
system level to application level. This section will discuss some of the challenges that standard
Java applications, and the corresponding JVM, encounters when dealing with dynamic memory
management.
Section 2.4.1 will describe how memory management is handled in traditional real-time systems.
Section 2.4.2 describes how memory management is handled in standard Java, and why this is not
suitable for real-time systems.

2.4.1 Real-Time Systems

In most low-level programming languages such as C and C++, the task of managing dynamic
memory is explicit and left to the programmer. This includes manually allocating dynamic mem-
ory and deallocating when it is no longer needed. In complex system this can be a difficult task
and is often prone to errors, leading to unexpected program behavior or even crashes. Despite the
challenges, these languages are often the preferred solution in embedded and real-time systems
[Hertz&05]. They allow the developer to be ’close to the metal’, and provide a deterministic be-
havior where the developer is able to predict exactly the time it takes for the system to make the
requested memory available. However when using explicit memory management the developer
has to manually deal with the following challenges:

Dangling pointers: Also known as dangling references or wild pointers. This problem arises
when an object is deallocated while one or more objects still hold a reference/pointer to
it. If one of these objects tries to dereference the now deallocated object, it will result in
unpredictable behavior.

Memory leak: This occurs when an application continuously consumes memory through alloca-
tion, but does not deallocate unreferenced objects. Memory leaks may potentially decrease
the performance of the system or in worst case result in the system running out of available
memory.

Fragmentation: Memory fragmentation is due to dynamic memory being allocated in separate
memory segments (chunks) over time. The developer must consider situations where N
bytes of memory is needed but all available memory segments are of size less than N, even
if the total amount of available memory is greater than N. Fragmentation may result in the
system running out of available memory even though the total size of free memory segments
is sufficient. This can be solved by linking the fragmented memory segments, however this
will degrade the performance of operations made on the linked memory area.

Several methods and design principles have been proposed in the literature to help developers
through some of the above mentioned challenges [Crocker10], e.g. by never releasing unused
memory or adding object reference counting. These solutions however, introduce extra complexity
and new challenges, such as insufficient memory.

2.4.2 Standard Java

High-level programming languages such as Java try to relieve the programmer from these complex
tasks by providing automatic memory management. This includes keeping track of all allocated
memory and recognizing when segments are no longer needed (referenced) by the active program
and then deallocating it. This mechanism is referred to as Garbage Collection and has been the
subject of intensive research within computer science for more than fifty years [McCarthy60].

18

Detecting Garbage

Garbage collection is an essential feature of modern high-level object-oriented programming lan-
guages.
The benefits of garbage collection are indisputable, but for years it has been an ongoing discussion
in the software community whether explicit memory management or automatic memory manage-
ment can achieve the highest performance. Garbage collection introduces extra overhead both
in space and time [Hertz&04, Hertz&05]. However, using an algorithm tailored towards the
application needs and behavior, it is possible to achieve both the benefits of automatic memory
management and high performance. However, most garbage collection algorithms suffer from
lack of determinism. As dynamic memory in Java is handled by the Garbage Collector (GC) the
two terms are used interchangeably in the following.
Today many different types of garbage collection algorithms are available for Java applications
[Venners99] each with its own characteristics designed for different situations and types of appli-
cations. Below sections 2.4.2.1 and 2.4.2.2 will discuss some of the basic principles employed in
most garbage collection algorithms.

2.4.2.1 Detecting Garbage

A critical feature of all GCs is the process of determining which objects in memory can be con-
sidered garbage, and which objects should remain in memory. Objects that are reachable by the
active program is said to be live, and is often determined by examining a distinguished set of ob-
jects, known as root objects. The definition of root objects in JVMs is vendor specific, but typical
root objects are reachable through references located on the call stack, such as class variables
and global variables. By traversing references from root objects the GC is able to determine the
τ transitive closure of the reference-graph which includes all reachable objects. This type of strat-
egy is referred to as tracing collectors. Another strategy also employed in some garbage collectors
is reference counting, where access to objects in memory, is provided by an extra layer of abstrac-
tion [Dawson08, Levanoni&06]. This layer holds a counter for each object which is incremented
every time a reference is created and decremented every time a reference is destroyed or set to
another object and when the counter reaches zero the referenced objects may be deallocated. This
strategy does however introduce another challenge: how to deal with the case where two objects
reference each other, but are not reachable from any other object? Then their reference count will
remain at one, but they can legally be considered garbage – a situation known as cyclic references.
This is not a problem for the tracing collectors, but reference counting collectors must adapt an-
other approach such as the one used by the train algorithm [Venners99] in order to deal with
cyclic references.

2.4.2.2 Collecting Garbage

Observations of memory behavior in high-level programming languages such as Java has intro-
duced the weak generational hypothesis [Lieberman&83] which states that most allocated objects
are not alive for long, and there are few references from older to younger objects. This hypothesis
is exploited by generational collectors which tries to address the inefficiency of collecting the en-
tire heap in every run, by separating the heap into generations. Younger objects, which are more
likely to be collected early, is placed in one memory area (often named eden space, nursery or
young space) which is collected more often. When an object has survived a number of collections
it may be promoted to another memory area (often named tenured or old space) which due to the
hypothesis does not require collections as often. This strategy is used in several virtual machines,
such as the Oracle HotSpot JVM [Sun06]. A major benefit of separating the memory into differ-
ent areas is the ability to collect an entire area in one sweep, which also allows for fast allocation.

19

Chapter 2. Java and Real-Time

This is possible since memory is allocated in contiguous blocks, and new areas can be allocated
by a simple bump-the-pointer technique. Where the end of the previously allocated object in the
young space is saved, and used as a starting point for the next allocated object.
Garbage collection requires access to the heap while the application is active, therefore synchro-
nization of memory areas is needed. This is often done with a stop-the-world approach where exe-
cution of the application is completely suspended while collection is in progress. This is tolerable
in many applications without real-time deadlines, however in critical systems this is unacceptable.
When executing in a multiprocessor environment it is possible to split garbage collection into
subtasks running in parallel, a collection strategy referred to as a parallel collection [Sun06]. This
minimizes the suspension time endured by the application during each garbage collection but does
not eliminate it.
Timing is not the only consideration when choosing a garbage collection strategy. Many algo-
rithms introduce extra scheduling and memory overhead, therefore the choice of garbage collector
is always a tradeoff between several performance metrics such as throughput, block time, fre-
quency etc. [Sun06].

The Car Controller Example

To investigate the impact of garbage collection on the timeliness of threads in standard Java, the
Car Controller example has been used. The CruiseController thread has a high priority,
and its job is to monitor the speed of the car, with a period of 50 ms, and alter it if needed.
Concurrently the lower priority Navigation thread updates the car display with a period of
33 ms. This operation generates a significantly amount of garbage and triggers invocation of the
garbage collector.
To ensure that the jitter observed during the test is indeed caused by garbage collection, another
reference-test has been included. The only difference in this additional reference-test is that the
Navigation thread does not generate any garbage.
The results of both tests can be seen in figure 2.3 and table 2.1. The table indicates the jitter values
for the CruiseController thread which are the deviation from the expected period (50 ms).

0,00%

25,00%

50,00%

75,00%

100,00%

0 2000 4000 6000 8000 10000

J
it

te
r

Periods

Garbage Generated No Garbage Generated

128% 146%

Figure 2.3: Jitter experienced by the CruiseController thread

When no garbage is generated there is a maximum jitter of 5,54% from the 50 ms thread period.
This may suffice as soft real-time in some systems. But when the garbage generation is enabled

20

Discussion

Thread Period (ms): 50,00 Maximum Average Std. Deviation

Garbage Generated: Jitter (ms): 73,26 0,76 2,81
Jitter (%): 146,52% 1,52% 5,61%

No Garbage Generated: Jitter (ms): 2,77 0,47 0,45
Jitter (%): 5,54% 0,95% 0,91%

Table 2.1: Jitter statistics for the CruiseController thread

the predictability of the CruiseController thread deteriorates significantly and the maxi-
mum deviation gets as high 146,52%. The standard deviation when garbage is generated is also
significantly higher than without garbage generation, which illustrates the degree of unpredictabil-
ity caused by the garbage collector.

2.5. Discussion

The theory and test results presented throughout this chapter, makes it clear that standard Java is
unable to provide any real-time guarantees. However, standard Java does not try to achieve real-
time performance either, instead the JLS facilitates the Java mantra “Write once, run everywhere”.
This leaves the JLS ambiguous and unclear on several points which are important to real-time
performance e.g. scheduling of threads.
Even though standard Java seeks to be independent of the underlying OS, it cannot be guaranteed
that a Java application will exhibit the same behavior when executed on different OS’s. This is due
to differences in thread models of the underlying OS’s. Therefore, developers of multithreaded
applications are discouraged to let the correctness of their application depend on thread priorities,
in order to ensure portability [Bloch01, Sun03]. In other words the JLS provides thread priorities,
but it is not possible to depend on them.
One of the challenges preventing real-time behavior presented through this chapter is that of sup-
porting dynamic memory management, which is one of the dominating obstacles. In general
two approaches are used to accommodate the problem of combining real-time performance and
garbage collection. The first approach is to introduce memory areas which will not be garbage
collected and hence the threads using this area will not be suspended by the GC. This however
complicates the development of applications as these new memory areas must be taken into ac-
count. The second approach is to use a real-time garbage collection algorithm. These algorithms
exhibit a highly deterministic behavior and can be preempted by application threads. Such an al-
gorithm however adds to the complexity of the application and complicates the task of reasoning
about real-time guarantees of an application.

21

Chapter3
Real-Time Extensions for Java

This chapter introduces two official extensions proposed for improving the temporal behavior of
Java. These are related to the topics described in chapter 2. The theory presented serves a basis
for evaluation and discussion in chapters 6 to 8. Readers who are already familiar with these
efforts and specifications may want to skip this chapter or parts of it.

3.1. Introduction

In attempt to standardize the approach for achieving real-time performance using the Java pro-
gramming language, two specifications have been proposed. One is called the Real-Time Speci-
fication for Java (RTSJ), and another is called Safety Critical Java (SCJ) and is based upon the
RTSJ. Their individual goals and solutions to the challenges preventing standard Java from achiv-
ing real-time performance (see chapter 2), will be presented in the following sections 3.2 and 3.3.
Finally section 3.4 will discuss the advantages and disadvantages of the language extensions.

3.2. The Real-Time Specification for Java

Work on the RTSJ began in the late nineties, under the τJava Community Process (JCP) after an
initial τJava Specification Request (JSR) had been filed by IBM [Bollella&00]. The request was
accepted under the name JSR-001 and an expert group was put together consisting of people from
both industry and academia [JSR001]. Their job was to produce the specification and in 2002
the first edition, RTSJ 1.0, was accepted by the JCP. The latest version is 1.0.2 and version 1.1 is
currently under development.
The goal of the RTSJ is to extend the Java language to provide an Application Programming
Interface (API) which facilitates the creation of real-time applications in Java. The expert group
behind the RTSJ identified seven areas which needed to be enhanced, in order to achieve real-
time performance in Java. Three of the areas equal those presented in chapter 2: Scheduling,
Synchronization and Memory Management. The remaining four areas are: Asynchronous Event
Handling, Asynchronous Transfer of Control, Asynchronous Thread Termination and Physical
Memory Access. However, it is beyond the scope of this chapter to describe the RTSJ in its entirety.
Furthermore, the four additional areas are either sub-areas or they do not directly influence real-
time performance but are desirable features in many real-time systems. Therefore sections 3.2.1

23

Chapter 3. Real-Time Extensions for Java

to 3.2.3 describes how the RTSJ deals with the problems in the three areas presented in chapter 2.

3.2.1 Scheduling

The RTSJ defines two additional thread implementations besides the standard Java thread, which
are called RealTimeThread (RT) and NoHeapRealTimeThread (NHRT). As the name
suggests the NHRT cannot allocate memory on the heap. This ensures that threads of this type are
never preempted by garbage collection, thus they are not affected by the temporal non-determinism
introduced by garbage collection. The idea of the additional thread types is that it should be pos-
sible to have non-real-time, soft real-time and hard real-time tasks within the same Java Virtual
Machine (JVM). Hence, the standard Java thread should be used for non-real-time tasks, while the
RT should be used for soft real-time tasks and the NHRT for hard real-time tasks.
The RTSJ recognizes the need for a scheduling algorithm in order to achieve real-time perfor-
mance. Therefore it defines a base scheduler which must be available in all RTSJ compliant
JVM implementations. This scheduler is a fixed priority preemptive scheduler like the one used
for rate-monotonic scheduling (see section 2.2.1.2). The scheduler works on threads through
the Schedulable interface which is implemented by the aforementioned real-time threads.
At least 28 different priority levels must be available for the real-time threads, including the
10 levels defined in standard Java. In order to support aperiodic tasks the RTSJ defines an
AsyncEventHandler (AEH) which also implements the Schedulable interface. This
means that aperiodic tasks are handled by the same scheduler and through the same interface
as the real-time threads. The tasks implementing the Schedulable interface are, by the RTSJ
referred to as schedulable objects. The relationship between the schedulable objects and the stan-
dard Java Thread class can be seen in figure 3.1.

java.lang.Thread

<<Interface>>

java.lang.Runnable

<<Interface>>

Schedulable

RealTimeThread

NoHeapRealTimeThread

AsyncEventHandler

Figure 3.1: Relationship between standard Java threads and RTSJ threads

In addition to the base scheduler the RTSJ also provides the means for JVM vendors to im-
plement their own scheduling algorithms. This is done by defining standard interfaces like the

24

Synchronization

Schedulable interface already mentioned, but also standard parameters to these schedulable
objects. Parameters like ReleaseParameters and SchedulingParameters are able to
specify the priority, period, deadlines, etc. for a thread. These generic parameters can then be used
in the custom scheduling algorithms.
Until recently neither standard Java nor the RTSJ had addressed the issues of multiprocessor
scheduling. However, in version 1.1 the RTSJ recognizes the existence of multiprocessor sys-
tems [Higuera-Toledano&12]. As there is no standard approach to multiprocessor schedulability
analysis, the RTSJ 1.1 will not provide a base scheduler for multiprocessors, like the fixed priority
preemptive scheduler is provided for uniprocessors. However, the API of the RTSJ is extended in
order to support multiple processors by allowing developers to allocate threads to specific proces-
sors. Hence, facilitating the implementation of global or partitioned scheduling algorithms (see
section 2.2.1.3). The main motivation behind supporting multiple processors in the RTSJ is the po-
tential performance increase and the possibility of isolating real-time threads from non-real-time
threads on separate processors.

3.2.2 Synchronization

The RTSJ requires that the priority inheritance protocol (see section 2.3.1), is implemented by
default, in order to avoid the problem of unbounded priority inversion, when using the syn-
chronized Java keyword. The protocol must be applied to both real-time threads and regular
Java threads when doing synchronization. Optionally the RTSJ allows for implementation of
the priority ceiling protocol and other mechanisms that JVM vendors may find appropriate. In
addition to the default priority avoidance protocol the RTSJ also makes it possible to choose
which protocol to use for a particular monitor.
It is allowed for real-time threads to synchronize with non-real-time threads in the RTSJ. However,
a problem arises when a NHRT is synchronizing with a thread which can be preempted by garbage
collection. Although the regular Java thread or RT which the NHRT is synchronizing with, can
inherit the NHRT’s higher priority it cannot be allowed to preempt garbage collection, as this
could potentially cause the application to run out of memory. Therefore the NHRT can incur an
unpredictable delay from garbage collection when synchronizing with other thread types. In order
to solve this issue the RTSJ specifies a wait-free queue which allows communication between the
NHRT and the other thread types. Calls to the enqueue and dequeue primitives used by the NHRT
will always return immediately. However, this timing predictability comes at a price, as data can
be lost if the wait-free queue gets full. Therefore the size of the queue must be chosen carefully.

3.2.3 Memory Management

The RTSJ specifies two additional memory areas besides the traditional garbage collected heap
used in standard Java. These are called Immortal Memory and Scoped Memory. As mentioned
in section 3.2.1 the NHRT cannot make use of heap memory and therefore in order to allocate
memory it must use these two alternatives. Neither of the two memory areas can be used by
standard Java threads.

Immortal Memory: This is a single memory area which is shared among the threads and event
handlers defined by the RTSJ. Objects allocated from the immortal memory area are not
deallocated until the JVM terminates. This provides the developer with the opportunity of
manually allocating the objects needed ahead of time. However, managing these objects re-
quires extra care, because they are potential sources of memory leaks. In return the immortal
memory area never gets garbage collected. Therefore, object allocation or referencing op-

25

Chapter 3. Real-Time Extensions for Java

erations done in immortal memory will not suffer from the unpredictable latency caused by
the GC.

Scoped Memory: Several instances of this memory area can exist and these can be nested. Ob-
jects allocated in a scoped memory area are alive as long as the syntactic scope, where the
objects were created, is active. Once the application leaves the scope, the entire scoped
memory area is reclaimed. This makes scoped memory ideal for temporary short-lived ob-
jects. These areas are also free from garbage collection latency and hence provide higher
predictability for the real-time threads using it.

These additional memory areas introduced by the RTSJ are accompanied by a set of rules, con-
straining how objects in the different memory areas are allowed to reference each other. These are
needed in order to maintain the reference safety in Java, i.e. avoid dangling references. In gen-
eral, objects residing in longer-lived memory areas must not hold references to objects residing in
shorter-lived memory areas. The rules has been illustrated in figure 3.2.

Heap Memory Immortal Memory

Scoped Memory

Object A Object B

Scoped Memory

Object C Object D

Legal reference Illegal reference

Figure 3.2: Legal and illegal references between memory areas in RTSJ

It can be seen that Object A and Object B, residing in heap and immortal memory respectively,
are not allowed to reference objects residing in scoped memory areas. This is because Object C
and Object D can potentially be reclaimed at any time. Object C resides in an outer scope while
Object D resides in a nested inner scope. Therefore, Object D is able to reference Object C but
the opposite is not allowed. This is because the inner scope is by definition shorter-lived than the
outer scope it is nested within.

The RTSJ allows for the heap memory area to be garbage collected like in standard Java. However,
it does not specify any specific garbage collection strategy. The rationale behind this decision
is that no single optimal GC exists. The success of a garbage collection algorithm is highly
dependent on the type of application i.e. the memory consumption patterns of the application.
Therefore the RTSJ leaves it to the JVM vendors to choose the garbage collection strategies.

26

Safety Critical Java

3.3. Safety Critical Java

The SCJ specification is a subset of standard Java and the RTSJ, which, as the name suggests,
is targeted safety critical systems. The initial release of the SCJ specification is currently being
developed as JSR-302 under the JCP. However, a draft of the specification is currently public
available [Locke&11].
Safety critical systems are usually required, by certification authorities, to be certified before they
can be put into operation. For instance, safety critical software used in avionics must be certified
using the DO-178B certification standard [DO-178B]1. SCJ specifies a subset of standard Java
and the RTSJ, which eases the process of certification for safety critical systems written in Java.
The time and money spend on the certification process is highly dependent on the complexity
of the software in question. Therefore, the SCJ specification defines three levels of compliance
from 0 to 2, which allows for different levels of complexity in the application. Level 0 being least
complex and level 2 being most complex.
Sections 3.3.1 to 3.3.3 will describe how the SCJ specification differs from the RTSJ when dealing
with the problems presented in chapter 2, in the areas of scheduling, synchronization and memory
management.

3.3.1 Scheduling

The SCJ specification introduces the concept of a mission, which consist of three phases called
initialization, execution and cleanup. A mission has a fixed set of schedulable objects. Each
compliance level defines a different set of rules on how missions and schedulable objects can be
used.

Compliance level 0: Level 0 only allows a single mission, which is comprised of several in-
stances of the PeriodicEventHandler (PEH) class. This is a SCJ defined subclass of
the AEH defined by the RTSJ. The PEH’s are executed in turn by a single thread of control,
according to a predefined schedule. This scheduling technique and its characteristics was
introduced as cyclic scheduling in section 2.2.1.1.

Compliance level 1: Level 1 also supports only one mission but allows for concurrency as each
PEH executes within its own thread of control. Also aperiodic events are supported through
instances of the AperiodicEventHandler (APEH) class. Both PEH’s and APEH’s are
scheduled by the base scheduler defined by the RTSJ, which is a fixed-priority preemptive
scheduler. These conditions make it possible to guarantee deadlines using schedulability
analysis techniques like rate-monotonic analysis (see section 2.2.1.2).

Compliance level 2: Level 2 is the most complex level and allows for missions to be created and
executed concurrently. Within each mission it is allowed to use the NHRT’s as defined by
the RTSJ, in addition to the PEH’s and APEH’s.

3.3.2 Synchronization

A SCJ application of compliance level 0 has no need for synchronization, as all PEH’s are exe-
cuted by a single thread. It is however recommended to do synchronization in order to make the
application compatible with compliance levels 1 and 2.
Concurrency is supported at compliance levels 1 and 2 and hence the SCJ specification requires
that the unbounded priority inversion problem must be avoided. This must be done by use of

1The DO-178B will soon be replaced by a new revision called DO-178C

27

Chapter 3. Real-Time Extensions for Java

the priority ceiling protocol (see section 2.3.1). SCJ chooses to use the priority ceiling protocol
rather than the priority inheritance protocol, which is the default mechanism in the RTSJ. This is
because the priority ceiling protocol minimizes the maximum latency which can be incurred on
high priority threads by low priority threads due to priority inversion. Furthermore the priority
ceiling protocol prevents deadlocks when used on a uniprocessor system.
The SCJ specification only allows for use of the synchronized keyword when declaring meth-
ods. This means that it is prohibited to use the synchronized block statement (see section
2.3.2). The rationale behind this limitation is that it is easily observed if a method uses synchro-
nization just by inspecting its interface.

3.3.3 Memory Management

The non-determinism introduced through garbage collection is unacceptable in a safety critical
system. Therefore the SCJ specification disallows garbage collection and hence also the traditional
heap used in standard Java and the RTSJ.
Instead the SCJ specification defines two subclasses of the scoped memory area defined in the
RTSJ. These are called mission memory and private memory. Each schedulable object has a
private memory area which is empty when the object is scheduled, as the private memory area
is cleaned after each execution. A mission memory area is shared among all schedulable objects
participating in a mission and allocations are usually only done during the missions initialization
phase. Object residing in mission memory are only reclaimed during the cleanup phase of the
mission, hence it acts as immortal memory to the schedulable objects comprising the mission.
The immortal memory area defined by the RTSJ, which spans the life of the JVM is also available
in SCJ and can be shared among all schedulable objects in all missions.

3.4. Discussion

The benefits of the RTSJ are apparent, it provides solutions for many of the issues preventing
standard Java from achieving real-time performance (see chapter 2). However, the RTSJ has re-
ceived some amount of criticism, which is mainly targeted the complexity of its memory model
compared to standard Java [Bacon&03, Nilsen07]. Especially the scoped memory area and the
memory access rules imposed on it, has given rise to debate, because it has proven hard for de-
velopers to utilize in practice [Benowitz&03A]. This has resulted in several proposals for design
patterns and methodologies which seek to ease the use of the RTSJ for developers and make it less
prone to errors [Benowitz&03B, Pizlo&04, Dawson07, Plsek09].
It is hard to find evidence of industrial systems utilizing the RTSJ, despite being available for more
than 10 years. This is either due to lack of general acceptance in the industry or that the systems
using the RTSJ are confidential.
The SCJ specification defines a much more restricted environment than the RTSJ, in order to facil-
itate certification. This ensures that the software developer does not accidently refer Java libraries
which is not optimized for real-time, which is a potential problem with the RTSJ. Also SCJ allows
for easier static analysis which makes it possible to prove if the hard real-time deadlines will be
met. However, this restricted environment also limits the usage of the SCJ specification to deeply
embedded and less complex systems.
Usage of the SCJ specification has so far been limited to research systems due to, it being unfin-
ished. The work on the specification suffers from the involved parties having different interests.

28

Discussion

Supporters of the RTSJ want the SCJ to inherent more of its features, while manufactures of
products similar to the SCJ wants the specification to support their features.

29

Chapter4
Real-Time Requirements

This chapter describes the first step of the TJARP method and emphasizes the importance of con-
sidering not only functional, but also non-functional requirements for real-time systems. The
TJARP method encourages a detailed requirement analysis in step one, before moving to either
step two or directly to step three as illustrated by figure 4.1.

Step 1:

Requirements Analysis

Step 2:

System Modeling

Step 3:

Java Strategy Selection

Step 4:

Implementation

Figure 4.1: Step 1 of the TJARP method

4.1. Introduction

The importance of having consistent, feasible and unambiguous requirements when designing
complex software systems cannot be questioned. Software engineers and architects tend to focus
on functional requirements, i.e. what shall the system do and how should it behave in a variety of
circumstances [Douglass01]. However, it is also of great importance to consider non-functional
requirements when analyzing and designing real-time systems. These are also known as Quality
Attributes or Quality of Service parameters.

This chapter briefly discusses the role of requirements in real-time systems, with emphasis on
the different types of requirements relevant for defining timing constraints. Step 1 of the TJARP
method contains a series of sub-steps which are explained in section 4.2. Then section 4.3 relates
real-time requirements to functional and non-functional requirements and presents different types
of timing requirements. Section 4.4 exemplifies how step 1 of the TJARP method can be applied to
the Car Controller example. Finally the work presented in this chapter is discussed in section 4.5.

31

Chapter 4. Real-Time Requirements

4.2. Sub-steps of the TJARP Method

The goal of step 1 in the TJARP method is twofold. First this step serves the purpose of deter-
mining the exact degree of real-time behavior, desirable for the system in question. Secondly, this
step will result in a set of concrete timing constraints which will later be used to verify if the real-
time system exhibits the desired temporal behavior. In order to achieve these goals the following
sub-steps are recommended.

Sub-step 1.1 - Determine Degree of Real-Time Behavior: The first sub-step is to determine the
required degree of real-time for the system. The choice between hard, soft or mixed real-
time performance for a given system must be motivated by the original purpose of the sys-
tem (business case). This usually results in a tradeoff between time, money and temporal
guarantees. Hard real-time systems cannot make compromises on timing guarantees, there-
fore such implementations require extra care, which adds significantly to the amount of time
and money spend during development.

Sub-step 1.2 - Re-assess Functional Requirements: As the TJARP method is targeted existing
Java applications a set of functional requirements should be available before the TJARP
method is applied. However, if the available requirements are insufficient or for instance
a new sub-system has been added to the original, this sub-step serves to obtain a clear
definition of the desired functionality. Furthermore, if the described functionality requires
real-time performance this must be specified as either hard or soft for each requirement.

Sub-step 1.3 - Produce Non-Functional Requirements: During this step the functional require-
ments of the existing system is augmented with a set of timing constraints. Some non-
functional requirements may not be directly associated with a functional requirement, and
these must also indicate whether it is a hard or a soft real-time requirement.

4.3. Requirements in Real-Time Systems

The success or failure of a hard real-time system depends not only on its functional behavior, but
also on its ability to meet critical deadlines, where a missed deadline has no value and can result
in a total system failure. Whereas a soft real-time system can survive a missed deadline, but the
usefulness of the result is degraded as the deadline is passed. These characteristics must clearly
be reflected in the requirements of a real-time system.
Section 4.3.1 relates the requirements of real-time systems to functional and non-functional re-
quirements and describes a few types of non-functional requirements, which are particular im-
portant to real-time systems. Section 4.3.2 presents timing requirements as a sub-category of
non-functional requirements, and describes examples of relevant types of timing requirements for
real-time systems.

4.3.1 Functional vs. Non-Functional

The requirements of a software system is usually separated into functional and non-functional
requirements [Lauesen02]. The general definition of the two is as follows.

Functional: Functional requirements specify the functions of the system, where a system func-
tion F is defined as: F(input,state)→ (output, new state)

32

Types of Timing Requirements

Non-functional: Non-functional requirements specify how well the system should respond, i.e.
in terms of how fast, how accurate etc.

This division can however lead to confusion when specifying timing requirements for real-time
systems. It could be argued that timing constraints for hard real-time systems are functional, due
to the definition of functional success of a hard real-time system being dependent on its temporal
properties. Where timing requirements for soft or non-real-time systems should be categorized as
non-functional (quality attributes). The ambiguity of these definitions has led to several different
techniques for capturing timing requirements [Glinz05, Gilb97]. However, in this thesis timing
requirements are defined as non-functional, hence a hard real-time systems ability to meet non-
functional timing requirements has direct influence on the success of the system.
The process of eliciting functional requirements for real-time systems is not significantly different
from that of other types of software systems. Therefore, this subject will not be covered here and
focus is instead kept on the non-functional requirements.

Non-Functional Requirements

In order to assist software engineers and architects in analyzing non-functional requirements for
complex software systems several methods, tools and workshops exist [Barbacci&08, Chung&09].
The following will describe categories of non-functional requirements which are particular rele-
vant for real-time systems.1

Performance: For real-time systems the task of specifying performance is concerned with pre-
dictability, whether it is worst-case or average-case performance [Stankovic88]. Execution
speed, latency, throughput etc. are examples of factors that must be considered when try-
ing to define predictability. An example of such a non-functional requirement would be to
specify that a given system must be able to guarantee an event response time of 1 ms, while
the system is processing up to 500 events per second.

Jitter: This is an unexpected deviation from the expected time, such as the deadline of a periodic
event. Jitter is an undesired property in real-time systems, and timing requirements should
be specified with an upper bound on tolerable jitter.

Reliability: This is not directly related to timing. Nevertheless, it is an important factor to con-
sider when specifying requirements for a real-time system. Reliability could for instance
describe the system’s ability to recover from a failure or the mean time between failures.
For Java implementations this is an important motivation behind several implementations
of JVMs and specifications.

4.3.2 Types of Timing Requirements

A subset of non-functional requirements, are timing requirements, which are particular important
to real-time systems. Several types of timing requirements target the relationship between system
events and the corresponding response. Such events may be triggered by input from the operating
environment (stimuli), the passage of time (periodic) or even the absence of specific event at
certain points in time [Wieringa03]. Such events may be described using one or more of the
following constraints:

1Several other requirements, depending on the type of system, could be relevant such as security, scalability,
portability etc.

33

Chapter 4. Real-Time Requirements

Deadline: This specifies the time by which a responding event must be triggered based on a
previous stimuli event. This can both be a fixed time or relative to the occurrence of the
triggering event, for example the maximum allowed time between pressing the brake pedal
in a car, until the brakes are activated.

Separation: This specifies the minimum allowed time between two events. Separation can be
specified as a required separation, where the occurrence of the first event must always be
followed by the second event, at or after the specified time. The initial and following event
may be of the same type [Fitzgerald&07]. An example of such a separation constraint is the
minimum time allowed between the increases in brake pressure of an elevator, to ensure a
smooth reduction in speed towards the destination floor.

Minimum/Maximum: This specifies either the lower- or upper-bound on a specific attribute.
They can be used in combination with other constraints or as independent criterions for
a specific event. For example, the indicator light of a car might need to specify both a
minimum and maximum toggle rate.

The above list is not intended to be exhaustive, but as an indication of what types of timing
constraints may be relevant. Also these timing constraints are some of the most common within
real-time system requirements.

4.4. The Car Controller Example

This section will apply the three sub-steps of step 1 from the TJARP method to the Car Controller
example (see section 1.5.1). The task of the first sub-step 1.1 is to determine the degree of real-
time behavior the Car Controller must meet. As the Car Controller is a highly simplified system
it is rather trivial to determine that the system contains both soft and hard real-time parts. Timing
requirements concerning the basic functionality of the car represented by its ability to accelerate
and brake must be considered hard real-time. Compromises cannot be made on e.g. the amount of
time from the brake pedal is pressed until the brakes are activated. Whereas the task of operating
the in-car navigation display, must be considered soft real-time. Hence the Car Controller system
requires mixed real-time behavior.
Once the choice between hard, soft or mixed real-time has been made, the functional requirements
must be re-assessed and the non-functional requirements must be determined. The process of
applying these sub-steps to the Car Controller example will be described in section 4.4.1 and 4.4.2
respectively.

4.4.1 The Functional Requirements

It is important to have a clear definition of the functional requirements before the non-functional
timing requirements can be defined. Therefore the goal of sub-step 1.2 is to ensure that the func-
tionality is well-defined before proceeding to sub-step 1.3. Each functional requirement should
indicate if the specified functionality requires hard, soft or non-real-time performance.
For the Car Controller example a set of functional requirements has been stated below. Notice
how each requirement is followed by a parenthesis, describing the desired degree of real-time
performance for the functionality the requirement describes.

R1: When the gas pedal is pressed the system must increase the engine RPM proportional to the
pedal pressure. (Hard real-time)

34

The Non-Functional Requirements

R2: When the cruise controller switch is activated, the current speed must be maintained by
continuously adjusting the engine RPM, unless the car is stationary. (Hard real-time)

R3: When the brake pedal is pressed the system must activate the brakes with a pressure propor-
tional to the pedal pressure. (Hard real-time)

R4: The system shall include a navigation display which indicates the current position of the car
on a 2D map. (Soft real-time)

The functionality specified in requirements R1-R3 are subject to hard real-time constraints, while
requirement R4 is considered a soft real-time requirement. These requirements will in the fol-
lowing section be augmented with non-functional requirements describing the desired temporal
behavior.

4.4.2 The Non-Functional Requirements

Sub-step 1.3 is concerned with specifying the non-functional timing requirements for the real-time
system in question. Below, a list of non-functional timing requirements for the Car Controller
example is given. These requirements have been given identifiers which relates directly to the
functional requirement which they constrain.

R2.1: The system must monitor the speed of the engine and with a period of 50 ms with a tolerable
jitter of +/- 6% (3 ms).

R3.1: The system shall activate the brakes within 1 ms after the brake pedal is pressed.

R3.2: The time between two consecutive changes in brake pressure send to the brakes by the
system must be separated by at least 0,1 ms.

R3.3: Requirements R3.1 and R3.2 must still hold while the system is processing up to 1000
events/second from the brake and gas pedals.

R4.1: The navigation screen must be updated with a period of 33 ms with a tolerable jitter of +/-
15% (∼ 5 ms).

Note how R3.1-R3.3 extends the functional requirements R3 with non-functional hard real-time
requirements. While R4.1 extends R4 with a non-functional soft real-time requirement, further
specified using an average value.

4.5. Discussion

The first step of the TJARP method described in this chapter, emphasizes the importance of under-
standing requirements for real-time systems. Focus is on non-functional requirements describing
temporal behavior, because the available literature made it clear that many different interpreta-
tions of real-time requirements exist. Where, even the general perception of time bounds has been
subject to extensive research [Walkup&94]. This chapter therefore described several categories of
timing specific events, and how they can be constrained by different types of requirements.
Several other techniques for capturing and describing real-time requirements exist, where espe-
cially timing requirements for hard real-time systems are often based on the use of formal spec-
ification languages. These may include use of linear-time temporal logic [Manna&92], compu-
tational tree logic [Clarke&86] or graphical interval logic [Ramakrishna&96]. The use of formal

35

Chapter 4. Real-Time Requirements

specification of requirements is beyond the scope of this thesis, as the purpose of this chapter is to
provide a common understanding of timing requirements and their nature.
Furthermore, this chapter does not focus on business requirements which are a significant factor
for industrial projects. Such requirements are assumed to be determined by other stakeholders
and several processes exist to help prioritize different categories of requirements such as the Cost-
Value Approach [Karlsson97].
The determined requirements must be specified in order to progress to either step 2, or step 3
in the TJARP method. When modeling the system in step 2, these requirements serve as a val-
idation base, and as a mean for identifying timing bottlenecks and other areas of concern. The
requirements also serve as the basis for choosing the optimal Java strategy in step 3. However
if the requirements and the business goal (time and money) of the system does not require hard
real-time or the system in general can be considered overly simple, the benefits of step 2 does not
match the extra workload, and a direct transition to step 3 is advised.

36

Chapter5
Modeling Real-Time Systems

This chapter describes the role of the formal modeling language VDM-RT in the second step of the
TJARP method as illustrated in figure 5.1. This chapter provides a series of guidelines for utilizing
the many benefits provided by VDM-RT, and relates these to the requirements determined in the
first step as described in chapter 4

Step 1:

Requirements Analysis

Step 2:

System Modeling

Step 3:

Java Strategy Selection

Step 4:

Implementation

Figure 5.1: Step 2 of the TJARP method

5.1. Introduction

To increase the level of confidence that a real-time system will be able to meet its timing con-
straints, these systems are traditionally tested intensively during and after development. However,
practical experience suggests that the development process and final product can benefit from re-
allocating some of the time spend later in the development process, e.g. during testing. Instead
some of the time should be spend on producing and evaluating an intermediate representation of
the system. An example of such an intermediate representation is a formal model specified using
the Vienna Development Method (VDM) language [Larsen&10a].
By doing initial tests on a VDM model, of the real system, it is possible to identify design flaws
and bottlenecks before work on the real system is initiated. An advantage of working with a model
instead of the actual system is that the model is an abstract representation simplifying many details.
This allows the model to only focus on important aspects, for instance the timing constraints of a
real-time system. The simplicity of the model allows it to be built using much less effort than the
actual system, which enables software architects to explore different strategies for implementation
and deployment early in the development process.

37

Chapter 5. Modeling Real-Time Systems

VDM supports modeling of temporal aspects through the VDM Real-Time dialect called VDM-
RT. Useful features are provided by VDM-RT which allows for extending the model with a notion
of time. For instance, it is possible to specify durations of operations, execution speed of proces-
sors, periods and jitter of threads, etc. Additionally, VDM-RT allows for modeling of distributed
architectures by supporting deployment of models across several CPUs.
This chapter will describe how to take advantage of VDM-RT when applying the TJARP method1.
The parts of the VDM-RT language which are of particular interest to the method and real-time
systems will be introduced. However, it is expected that the reader has basic knowledge about
VDM as this chapter will not introduce the language in its entirety2.
Section 5.2 outlines the sub-steps of step 2 in the TJARP method. Section 5.3 presents the available
tool support for VDM-RT, while section 5.4 exemplifies how step 2 of the TJARP method is
applied to the Car Controller example. Finally section 5.5 discusses the work presented in this
chapter.

5.2. Sub-steps of the TJARP method

Before creating a VDM model, it is important that the purpose of the model is clearly defined.
When applying the TJARP method, the purpose of the model will typically be to investigate the
temporal properties of critical components in the system in question, as well as explore alternative
architectures for achieving optimal timing. The choice of components, which the model should
focus on, must be motivated by the non-functional requirements developed through step 1.
When the critical parts of the system have been selected for modeling, the sub-steps listed below
will help build the model in an incremental fashion. For each sub-step, the models level of detail
will be increased. At the end of each sub-step, the ability to execute a VDM model is taken advan-
tage of, by executing the current increment of the model and evaluating it. The evaluation is done
with regards to relevant requirements, with emphasis on timing requirements. All requirements
referred to in the following are products of step 1 of the TJARP method.

Sub-step 2.1 - Define Structure: First the top level classes of the existing system are selected
and modeled. The choice of classes to model must be motivated by the purpose of the
model. The functionality of the classes is augmented with invariants and preconditions
according with the functional requirements. Finally, the model is executed sequentially and
unit-tested in order to verify its compliance with the functional requirements.

Sub-step 2.2 - Introduce Concurrency: The next step is to introduce concurrency in to the model
by identifying and modeling active classes along with their shared resources. These shared
resources must then be protected by synchronization primitives. The model is then exe-
cuted again to ensure the functionality of the model behaves as specified after concurrency
has been introduced.

Sub-step 2.3 - Introduce Timing: Here the model is extended by giving it a notion of time. The
timing requirements are used as basis for setting up timing constraints on the model. The
model is then executed in order to gain confidence that no timing requirements are violated.

Sub-step 2.4 - Explore Design Space: This sub-step serves the purpose of finding the best com-
pliance with the requirements from step 1. This is done by experimenting with different
combinations of timing properties and deployments to alternative hardware architectures.

1The approach taken in the sub-steps of step 2 are inspired by work done in: [Larsen&09]
2Recommended sources for information on VDM are: [Larsen&10a, Larsen&10b, Larsen&10c]

38

Tool Support

5.3. Tool Support

Several tools exist for developing and evaluating VDM models. One example is VDMTools, which
is a commercially available tool with various features [VDMTools]. A particular interesting fea-
ture, to the TJARP method, is the possibility of reverse engineering existing Java code in order to
generate the basis for a model. However, VDMTools does not provide support for the VDM-RT
dialect, required by the TJARP method for modeling real-time systems, and hence it is not ideal
for use with this method.
An alternative tool is called Overture which is an open source application build on top of the
Eclipse IDE [Larsen&10b]. Overture makes it possible to debug the VDM model using the Eclipse
debugging perspective, which among other things allows for use of breakpoints. This allows for
stopping the execution of the model and inspecting its current state, which is a valuable feature
during development. In addition, Overture supports unit-testing which enables the developer to
ensure continuously correctness of the unit tested parts of the model during development.
A feature of particular interest to the TJARP method, which can be used to evaluate models of
real-time systems with the Overture tool, is called the RT Log Viewer. This allows developers
to inspect and get an overview of the behavior of the model and identify any violated timing
constraints.

RT Log Viewer

The RT Log Viewer (RTLV) is able to provide a graphical representation of how a VDM-RT model
behaves during execution [Ribeiro&11]. An example of the RTLV in action can be seen in figure
5.3 on page 44. Using the RTLV, it is possible to inspect how threads are scheduled, how they
communicate and synchronize. This is a valuable tool when evaluating a VDM-RT model of a
real-time system.
During the work on this thesis it became clear that the current implementation of the RTLV was
insufficient for use with medium or larger sized models. The performance of the viewer got
painfully slow as the execution trace of a model grew. Therefore, the internals of the RTLV was
redeveloped during this thesis for improved performance and usability.
The old implementation relied on reading a text file containing all events from one execution trace.
The execution of the simple Car Controller model generates more than 1000 events per second.
This result in large text files, which combined with the old implementation, greatly limited the
performance of the RTLV. Another problem was the internals of the RTLV trying to read all events
and loop through them several times before illustrating the execution graphics to the user.
The performance problem was solved by saving all events as a binary stream of objects instead
of text. This file is faster to read, and additionally, the algorithm used for drawing the resulting
graphics was redesigned. The new algorithm only loops through the limited amount of events
which are shown to the user. However, if a user jumps to a later point in time, the RTLV is required
to determine the state of all visible objects at that specific time. The new design solved this by
updating event information from the last referenced point in time, and up to the current point in
time. The new design then only parses the minimum number of events required for drawing the
visible section of the execution trace.
The new RTLV implementation design is based on a clear separation of logic, where the responsi-
bility for reading and handling events is separated from the logic responsible for updating the
user interface. This allows for easy maintenance and extensions in future releases. This re-
implementation is further described in appendix C.
The result is a RTLV with the same interface and functionality but with a significant increase in
performance, which extends RTLV’s utilization on to larger models. This is highly relevant for

39

Chapter 5. Modeling Real-Time Systems

the TJARP method in order for applying it to complex industrial systems.

5.4. Modeling with VDM-RT

VDM-RT supports a structured approach for analyzing real-time systems, but before proceeding
to the actual development of the model it is important to define a clear purpose of the model. The
definition should keep an emphasis on the requirements of the system, and especially the non-
functional (timing) requirements are of interest. The purpose of a model of the Car Controller
example would be to analyze and obtain an understanding of the temporal attributes of the system
and help identify potential timing bottlenecks in the current design, and allow for exploration of
an distributed architecture.
This section describes how VDM-RT is used in the four sub-steps within the second step of the
TJARP method. Section 5.4.1 describes how a model can be structured based on the existing sys-
tem as motivated by sub-step 2.1. Section 5.4.2 introduces the concurrency concepts of VDM-RT
and how they can be used to increase the level of confidence within the model. Section 5.4.3 de-
scribes how temporal constraints can be described directly within the model and validated through
the available tools as the model is executed. Finally section 5.4.4 describes how the architectural
properties of VDM-RT can be utilized to do an early design space exploration with respect to
the purpose of the model. The Car Controller example is used throughout these sections to stress
important points and provide concrete examples.

5.4.1 Modeling System Structure

VDM-RT allows for an object-oriented design, with classes, associations and concurrency support.
The recommended approach is to start by selecting relevant classes from the existing system, and
create similar classes within the model. The choice of classes to include depends on their relation
to the purpose of the model. If classes only allow for trivial functionality they should be modeled
as VDM types [Larsen11]. The model should contain a top-level class to present the entirety of
the system, as well as an environment class to define deployment and the available architecture.
The model at this stage should only consider the overall structure i.e. only the relevant classes and
their associations. Algorithms and additional functionality unrelated to the purpose of the model
can be ignored by raising the level of abstraction, for example through the use VDM keywords
skip and is not yet specified.
Once the model structure is in place, additional functional constraints can be introduced. The
VDM language and tool support allows for internal consistency check by use of invariants, type
check, pre-conditions and post-conditions. This enables the developer to document important
properties and constraints directly within the model and make it subject to runtime checks.

The Car Controller Example

Sub-step 2.1 is used for gaining an overall impression of the system architecture. For the Car
Controller example the classes have been mapped to the VDM-RT model as shown in figure 5.2.
Additional classes has been added such as the CarEnvironment class responsible for deploy-
ment of architectural properties, and the World class responsible for initiating the environment
and loading specific scenarios. The level of detail in the model has been adapted according to the
purpose of this model. Hence the complex behavior of classes such as the brakes or the engine is
ignored as the level of abstraction is raised.

40

Introducing Concurrency

World

CarEnvironment

Pedal

BrakePedalGasPedal

Navigation

CruiseController

Driver

Engine

Display

Brakes

GPS

Figure 5.2: Structural class diagram of the Car Controller model

At this stage the model has no notion of time or concurrency. However the constraints of the func-
tional requirements are introduced through the use of pre-conditions and invariants. In listing 5.1
an invariant located within the CruiseController class is illustrated. The invariant limits
the operational behavior of the model to ensure that the automated cruise control is not activated
while the car is stationary, as according to functional requirement R2 (see section 4.4).�

1 private cruiseActive : bool := false;
2 private desiredSpeed : nat := 0;
3 inv (not cruiseActive) or (desiredSpeed > 0);
� �

Listing 5.1: Invariant check on attributes within the CruiseController class

5.4.2 Introducing Concurrency

The initial structural model can be extended by introducing concurrency primitives to increase
the level of detail and temporal confidence within the model. VDM-RT allows for modeling of
active objects together with synchronization of shared objects. The basic concurrency primitives
in VDM-RT are based on two types of threads:

Periodic: The concept of a periodic thread can be modeled by use of the periodic keyword,
which ensures periodic invocation of the enclosed operation or statement. The keyword
accepts four values: period, jitter, delay and offset. These describe the periodic interval
between invocations, the allowed time variance, the minimum inter arrival distance between
two invocations and the finally the timed delay of the first invocation.

Procedural: A procedural thread is defined by use of the thread keyword with an enclosed
operation or statement, which is executed once the thread is started. The thread is executed
sequentially and runs until completion.

Additionally, operations may be specified as asynchronous with the async keyword, which cre-
ates and activates a new procedural thread for execution of the specified operations once it is
invoked.

41

Chapter 5. Modeling Real-Time Systems

Objects shared between multiple threads require synchronization mechanisms to ensure proper
operation, which in VDM-RT is supported by permission predicates. Permission predicates are
used to state rules for accepting the execution of operations invoked concurrently [Larsen&10a],
and are defined by the per keyword. Permission predicates may refer to specific instance vari-
ables or history counters, where the latter allows the modeler to do more advanced synchronization
modeling.

The Car Controller Example

Sub-step 2.2 motivates the introduction of concurrency. Four classes are identified in the Car
Controller example as active classes, the CruiseController, the Navigation, the Gas-
Pedal and the BrakePedal classes. Operations within the pedal-classes are marked with the
async keyword, as they are invoked through the communication bus by the Driver class. The
CruiseController and the Navigation classes are implemented as periodic threads to
model their periodic behavior. Listing 5.2 shows the periodic implementation of the Monitor-
CruiseSpeed operation monitoring and adjusting the current speed of the car. Notice how the
period (50E6 ns) is assigned with a relatively low jitter value (100 ns).�

1 public MonitorCruiseSpeed : () ==> ()
2 MonitorCruiseSpeed() ==
3 (
4 dcl newRpm : nat := CalculateNewMotorRpm();
5 if cruiseActive then engine.SetRPM(newRpm);
6);
7

8 thread
9 periodic(50E6,100,0,0)

10 (MonitorCruiseSpeed)
� �
Listing 5.2: Periodic scheduling of the MonitorCruiseSpeed operation

From the class diagram illustrated in figure 5.2, it is clear that the Engine class is a shared
resource, thus requiring synchronization. This is achieved through a permission predicate, as
shown in listing 5.3, with the history counters act and fin, representing the number of active
and finished invocations of the operations. Notice this could alternatively be specified by using
the mutex keyword.�

11 sync
12 per GetRPM => #act(SetRPM) - #fin(SetRPM) = 0;
13 per SetRPM => #act(GetRPM) - #fin(GetRPM) = 0;
� �

Listing 5.3: Permission predicates limiting the access to the GetRPM and SetRPM operations

5.4.3 Analyzing Timing Constraints

An important addition to the VDM-RT dialect for use within the real-time domain is the notion
of time, which serves as a valuable property for introducing temporal constraints in the model.
VDM-RT models the passing of time by use of time-ticks which correspond to one nanosecond on

42

Analyzing Timing Constraints

the real-life wall clock. The concept of time can be added to the model by use of two language
constructs:

Duration: The duration keyword specifies a fixed value, used to increment the internal clock
of the model, when executing the enclosed statement.

Cycles: The cycles keyword specifies a relative amount of clock-cycles used to calculate the
increment of the internal clock when executing the enclosed statement. By using this state-
ment the modeler can specify the execution time of a statement relative to the speed of the
current CPU.

The Overture tool allows for specifying validation conjectures which are timing assertions vali-
dated as the models is executed [Fitzgerald&07]. The support for conjectures is still under devel-
opment but has already proven a valuable tool for validating timing requirements. The currently
supported validation conjectures are deadlineMet and separate. The first describes the
maximum delay between the occurrence of a response event after a corresponding stimuli event.
The latter describes the required separation in time between two events.

The Car Controller Example

Sub-step 2.3 introduces the notion of time into the model. Non-functional requirements can be
mapped directly to validation conjectures specifying the occurrence of specific events, e.g. their
deadline or their separation. An example of how requirement R2.1 (see section 4.4) of the Car
Controller example is mapped directly to a validation conjecture is illustrated in listing 5.4. The
conjecture validates the periodic invocations of the MonitorCruiseSpeed operation to be
separated by no more than 53 ms (the duration of the periodic thread is set to 50 ms).�

1 /* timing invariants
2 deadlineMet(#act(CruiseController‘MonitorCruiseSpeed),
3 #act(CruiseController‘MonitorCruiseSpeed), 53 ms);
4 */
� �

Listing 5.4: Conjectures for validating a timing-requirement for the Car Controller

The Car Controller example is further extended by using the duration keyword for modeling
the duration of time for specific statements. In the Car Controller example, the operations within
the Display class has been specified with durations of 22 ms in order to model the computa-
tional heavy task of updating the in-car display. Due to the periodic nature of the Navigation
and CruiseControl threads, and the computational duration of the Display class opera-
tions, the conjecture shown in listing 5.4 is violated. This can be ascribed to the Navigation
thread being scheduled, and updating the display, causing the CruiseController periods to
be delayed with a total of 55 ms (33 ms thread period + 22 ms operation duration), which exceeds
the maximum separation of 53 ms. Figure 5.3 shows how a validation conjecture is illustrated
in the Overture RTLV, where the point in time of the violation is indicated by a red circle. The
source and destination time of the conjecture is indicated, where the CruiseController was
scheduled after 70.291.668 nanoseconds and then again at 125.294.752 nanoseconds giving a span
of 55 ms.
Additional variation can be modeled for periodic threads by adjusting the jitter values, e.g. a
jitter value of 5 ms for the CruiseControl thread also violates the aforementioned conjecture.

43

Chapter 5. Modeling Real-Time Systems

Figure 5.3: Example of a conjecture violation for the Car Controller example

Adjusting the jitter value is another important tool for modeling the temporal non-determinism
faced by many Java developers, and shows how a deviation in the periodic threads can prove
important with respect to the purpose of the model.

5.4.4 Design Space Exploration

By using the distributed architectural features of VDM-RT it is possible to do an early design
space exploration and evaluate the effect of different architectures on both functional and non-
functional requirements. The VDM-RT dialect introduces static object deployment by additional
CPU and BUS classes.

CPU: The CPU class represents a single physical processing unit where VDM objects can be
deployed for execution. The CPU can be configured with different scheduling policies and
with a fixed clock frequency.

BUS: The BUS class can be configured with different transmission policies and represents a com-
munication channel between different CPU.

The CPU and BUS classes are to be created and configured within a central class with the same
syntactical description as ordinary classes but with the use of the system keyword. If a dis-
tributed architecture is within the scope of the model, the timing policies of both CPU and BUS
should be carefully considered, especially when used together with the cycles keyword.

The Car Controller Example

Sub-step 2.4 of the method encourages an investigation of the current architecture, with respect
to the purpose of the model. By applying the architectural features of VDM-RT to the Car Con-
troller model, the initial system is assigned to one single CPU instance. This causes the conjecture
violation as described in section 5.4.3 since several active classes are deployed at the same CPU.
VDM-RT allows for easy expansion of the system with an extra processing unit. The naviCPU
is added and used for deployment of the Navigation and Display objects as illustrated in
listing 5.5.

44

Discussion

�
1 static public naviCpu : CPU := new CPU(<FP>,1E9);
2 static public carCpu : CPU := new CPU(<FP>, 1E9);
3

4 operations
5 public CarEnvironment: () ==> CarEnvironment
6 CarEnvironment () ==
7 (
8 naviCpu.deploy(navigation);
9 naviCpu.deploy(display);

10 carCpu.deploy(cruiseControl);
� �
Listing 5.5: Deployment of classes within the CarEnvironment constructor

The additional CPU instance ensures that the periodic processing of the CruiseController
is not disturbed by scheduling of the Navigation.

5.5. Discussion

This chapter introduced the VDM-RT modeling language and its use in the second step of the
TJARP method. It has been illustrated how VDM-RT can be used to provide detailed insight into
the timing behavior of the system. This chapter, and this thesis in general, adopts the VDM-RT
modeling language based on personal experiences of the authors and the support provided by
the tool-development group located at Aarhus University. The ability of VDM-RT to simplify
complex systems and promote understanding, reasoning and analysis, makes it a valuable tool
before proceeding to step 3 of the TJARP method.
Modeling alternatives do exists, such as the SA/SD-RT [Wegener&98] for behavioral modeling,
the Java PathFinder [Lindstrom&05] for analyzing runtime execution paths and the SARTS tool-
chain for SCJ supported modeling [Bøgholm&08]. Many of these approaches cover specific areas
of temporal analysis. However, by using the VDM-RT modeling language the authors has shown
how the process of analyzing, understanding and checking temporal attributes of a system can be
supported.
Some authors argue that a system is only able to provide hard real-time guarantees if all execution
paths can be mathematically proven to adhere to the strict timing requirements [Thiele&00]. Such
approaches are beyond the scope of this thesis but this is widely covered within the literature.
The TJARP can be supported by extending this second step of the method with existing validation
methods such as the work presented by Lu et al [Lu&11].
The general approach when designing systems with real-time constraints has traditionally been to
do a thorough static analysis. These often require intensive knowledge of the runtime behavior
of the system such a task deadlines, hardware response times etc. While both static and dynamic
analysis often focuses on extracting certain attributes of a given system, formal models add the
benefits of raising the abstraction level thus focusing on the important parts of the system with
influence on the timing requirements.

45

Chapter6
Towards Real-Time Java

This chapter serves as a base for choosing the best Java strategy and corresponding Java Virtual
Machine (JVM), relative to the real-time constraints of the system as illustrated in figure 6.1. This
relates directly to the third and fourth step of the TJARP method which encourages an iterative
progress between the two, based on the requirements captured in step two. The Car Controller
example is used throughout the chapter to give specific examples of optimization techniques.

Step 1:

Requirements Analysis

Step 2:

System Modeling

Step 3:

Java Strategy Selection

Step 4:

Implementation

Figure 6.1: Step 3 and 4 of the TJARP method

6.1. Introduction

Several different strategies for achieving real-time performance using Java exist. Some are lan-
guage specifications such as the RTSJ and the SCJ specification introduced in chapter 3, others
are commercial products utilizing standard Java and proprietary real-time garbage collection algo-
rithms. The choice of strategy or combination of strategies for achieving real-time performance in
Java applications can be confusing and difficult. Therefore, this chapter will provide an overview,
evaluation and comparison of some of the currently available solutions. This will serve as a ba-
sis for decisions made through steps 3 and 4 of the TJARP method, which are concerned with
selecting and implementing the optimal real-time Java strategy.
This chapter starts by introducing the sub-steps of step 3 and 4 in the TJARP method in section
6.2. Then section 6.3 will describe possibilities for optimizing standard Java, towards real-time
performance. In section 6.4 different Java Virtual Machines (JVM) will be evaluated on a set of
qualitative and quantitative attributes. Afterwards, section 6.5 will exemplify usage of the RTSJ on

47

Chapter 6. Towards Real-Time Java

the Car Controller example. Finally, section 6.6 will summarize and discuss the different real-time
Java strategies described throughout this chapter.

6.2. Sub-steps of the TJARP method

Step 3: Java Strategy Selection Step 4: Implementation

Sub-step 3.1:

Optimize Standard Java

Sub-step 3.2:

Choose Real-Time JVM

Sub-step 3.3:

Apply the RTSJ

Sub-step 4.1:

Implement Strategy

Sub-step 4.2:

Evaluate Results

Soft RT Parts

Hard RT Parts

OK?
YesNo

Figure 6.2: Transitions between sub-steps in step 3 and 4

Through step 1 and 2, of the TJARP method, a clear understanding of the required degree of
real-time performance, along with specific timing requirements for the system has been obtained.
This knowledge is utilized in step 3 in order to choose an appropriate strategy for achieving real-
time performance. Step 4 of the method is concerned with implementing the chosen strategy and
evaluating the obtained results. The sub-steps are described in the following and an overview of
the transitions between them is illustrated in figure 6.2. Soft real-time parts of the system should
start at sub-step 3.1 while hard real-time parts can go directly to sub-step 3.3.

Sub-step 3.1 - Optimize Standard Java: The first sub-step is concerned with achieving soft real-
time performance by optimizing the existing standard Java application. This can for instance
be done by running the application through a τprofiler. This can potentially reveal areas of
code which are inefficient as well as measuring the CPU usage, memory allocation patterns
etc. of the application. The information obtained through profiling can then be used to apply
techniques for code optimization and tweaking parameters of the current JVM.

Sub-step 3.2 - Choose Real-Time Java Virtual Machine: The second sub-step deals with opti-
mization of the execution environment. This includes moving the application to a real-time
optimized JVM, or enable real-time operation if it is supported by the current JVM.

Sub-step 3.3 - Apply the Real-Time Specification for Java: The final step recommends re-im-
plementing the application or sub-parts of the application for compliance with the RTSJ. If
the application or parts of it needs hard real-time performance, the previous two sub-steps
can be skipped.

After any of the three sub-steps of step 3 has been performed the method transitions to step 4, in
order to do the actual implementation and evaluate the results. The sub-steps of step 4 are further
detailed in the following.

48

Optimization of Standard Java

Sub-step 4.1 – Implement Strategy: In this sub-step the strategy decided upon in any of the
three sub-steps of step 3 are implemented.

Sub-step 4.2 – Evaluate Results: Here the results obtained from implementing the changes de-
cided upon in step 3 are evaluated. The system must be tested in order to gain confidence
that the system will meet the timing requirements elicited in step 1. If the results are inade-
quate the method transitions back to the next sub-step of step 3.

Special considerations for mission critical systems for instance by use of the SCJ specification,
are left out of the method intentionally. This is due to the immaturity of such Java-based solutions,
e.g. the SCJ is unfinished and lacks supporting JVMs.

6.3. Optimization of Standard Java

The task of providing real-time guarantees using standard Java involves many challenges as de-
scribed in chapter 2. However, even though standard Java is unable to provide any real-time
guarantees, several options for optimization and fine-tuning are available. This is often a natural
step before taking further actions towards achieving real-time guarantees, such as adopting lan-
guage extensions as discussed in chapter 3. The following sections will describe some of these
techniques, such as general programming guidelines in section 6.3.1, deployment techniques in
section 6.3.2 and optimizations of the runtime environment in section 6.3.3. The techniques are
described from a general perspective as these optimization techniques are often very application-
specific, e.g. parameters for the garbage collector may vary depending on the memory allocation
pattern of the specific application.

6.3.1 Development

Java syntax specific techniques for optimization of time and performance, have for several years
included approaches such as using the final keyword to allow more compiler inlining, replac-
ing virtual inheritance invocations with instanceof if-branches or avoiding foreach state-
ments [Tene&05]. Several articles, mainly from the early days of Java, discouraged developers
from using temporary objects, and promoted the creation of object pools to assist the garbage
collector. Many of these approaches have since been proven to have no effect, or to be causing
extra overhead and complexity [IBM04]. This is mainly due to general misunderstandings or the
increasing ability of the JVM to do runtime optimization, and this is why the usage of so called
“performance hacks” is discouraged and syntax optimization should be left to the compiler and
the runtime environment.
It is however, of extra importance to have a general understanding of how specific Java language
constructs affect performance and temporal behavior when developing real-time applications. Pro-
gramming guidelines for avoiding timing complexity is still recommended such as avoiding nested
loops when possible and writing “simple straightforward code” to aid the compiler [Oracle08].
The term computational transparency [Aicas12] is used to describe to what degree the computa-
tional effort, of a code sequence, is obvious to the developer. To heighten the degree of computa-
tional transparency the developer is encouraged to avoid, or at least understand the consequence
of using specific Java constructs such as the following:

Implicit memory allocations: Statements such as string concatenations and array initializations
will result in implicit memory allocations. For instance, adding two strings using the +

49

Chapter 6. Towards Real-Time Java

operator, will results in an implicit allocation of the java.lang.StringBuilder and
an invocation of its append function to combine the two strings.

Final local variables: Use of the final keyword when assigning local variables is often used
to provide access to the variable from an anonymous inner class. This access from the inner
class will result in hidden set- and get-fields to be generated with an implicit invocation
requiring memory access.

Class initializations: Java classes are explicitly initialized when using the new keyword, but are
also implicitly initialized when they are first referenced e.g. by referencing any static field
or static methods.

The above is not meant as an exhaustive list, but as an indication of how important it is for a real-
time Java developer to understand the temporal and spatial attributes of the language semantics.

6.3.2 Deployment

The deployment process of Java applications is highly dependent on the JVM, but also the Just-
In-Time (JIT) compiler, which generates native code based on Java intermediate files. The JIT
compiler is a key feature for obtaining platform independence and runtime optimization. It is able
to compile specific code segments once they are invoked. By analyzing the underlying hardware,
the JIT compiler can optimize the native code for that specific platform. The nature of the JIT
compiler introduces undesirable temporal non-determinism when compiling. However, several
JVMs allow for application specific configuration of the JIT compilers and the corresponding
classloaders used by the JIT compiler to locate classes at runtime. These configuration parameters
are often based on some of the following strategies:

Lazy Loading: When using lazy loading, which is often the default class loading scheme used by
non-real-time JVMs, the classes are loaded during runtime when they are first referenced.
Any reference from the newly loaded class is only loaded once they are referenced and so
forth. This ensures a fast startup time, but introduces unpredictable delays during execution.

Early Loading: Many JVMs support a configuration called early loading (or eager loading).
When invoked, the JVM will do a recursive class loading of all classes referenced by the
current class being loaded. Some implementations do this during startup, meaning a com-
plete static class loading scheme, while others do it runtime upon the first invocation of the
current class.

Adaptive Loading: The adaptive loading is a combination of lazy and early loading, and cur-
rently used in the Oracle HotSpot JVM. The idea is to use a Hot Spot Detection algorithm
to detect code sections which are most likely to be executed. This is done by an interpreter
which monitors the applications code behavior while trying to identify performance critical
parts of the code.

The above schemes are important to consider when optimizing for real-time performance. Lazy
and adaptive loading are unfit for real-time applications as they will potentially incur unpredictable
delays. Early loading is an improvement of the characteristics of the traditional JIT challenges.
Several vendors provide Ahead-Of-Time (AOT) compilation to prevent byte code compilation
from occurring at critical sections of program execution. AOT compilation does not benefit from
the performance optimization techniques employed in many JVMs, as the target architecture must
be determined a priori. The AOT compiler can afford to spend more time optimizing critical

50

Runtime Environment

sections of the code, compared to traditional JIT compilation. However, as the JVM Specifica-
tion requires support for dynamic class loading, all compliant JVMs must include support for
τ reflection and dynamic byte code generation. This is for example illustrated when using the
Class.forname() function as shown in listing 6.1.

1 public static void main(String[] args)
2 {
3 Class classA = Class.forName(args[0]);
4 ...
5 }

Listing 6.1: Example of reflection

From listing 6.1 it is seen how the instance named classA is runtime-dependent on the value of
args[0], and loaded through reflection using the Class.forName function. Such dynamic
loading cannot be compiled AOT, and will require the JIT compiler to process the specific in-
stance when invoked. Such situations must be considered by the developer when optimizing Java
for real-time performance. Also a complete recursive AOT compilation may result in oversized
footprint including many unused classes and libraries. A combination of AOT and early loading
is supported by many vendors of real-time optimized JVMs, e.g. Atego provides this for their
PERC Ultra JVM through their ROMizer [Atego12] and Aicas for their JamaicaVM through their
JamaicaBuilder [Aicas12].

6.3.3 Runtime Environment

Options for optimization of the runtime environment are often specific to each JVM. This require
a thorough understanding of their configuration, as most available JVMs allow for a highly config-
urable runtime environment including several parameters affecting the temporal behavior. Many
JVMs implement “smart tuning” where the runtime environment is able to analyze and optimize
the application at runtime. As mentioned in section 2.4, memory management has a significant im-
pact on the temporal non-determinism in standard Java systems, which makes tuning the garbage
collector algorithm an important factor. There is no “right way” of configuring the garbage col-
lector as the best choice depends on the memory usage patterns of the specific application. The
memory usage can be analyzed using various τprofilers, which enables the memory usage of an
application to be detailed. Profilers can also help detail CPU usage, thread scheduling, inefficient
code segments, etc.
Figure 6.3 shows an example of how the runtime memory allocation behavior of the Car Con-
troller example can be analyzed using a profiler. By investigating the memory profile, the garbage
collector can be fine-tuned, where in this case the application is executed on the HotSpot JVM
which uses a generational garbage collector (see section 2.4). Notice how the survivor space in
figure 6.3 takes up a very small piece of the total allocated heap, because the application has a
constant allocation rate with many short lived objects allocated and later reclaimed in the eden
space. By optimizing the garbage collector profile (details included in appendix D) the maximum
jitter can be reduced as shown in table 6.1.
Some vendors provide “real-time optimized” JVMs targeted standard Java applications without
real-time language extensions as those mentioned in chapter 3. The Atego PERC Ultra is such
a JVM and is further described in section 6.4. In order to compare the impact of optimizing
the garbage collector, the Car Controller example has been used. The jitter of the Cruise-
Controller thread (similar to the test described in section 2.4.2.2) has been measured when

51

Chapter 6. Towards Real-Time Java

0,00

20,00

40,00

60,00

80,00

100,00

120,00

140,00

160,00

180,00

200,00

00:00 01:00 02:00 03:00 04:00 05:00

A
ll

o
ca

te
d

 M
em

o
ry

 (
M

B
)

Heap Space Survivor Space

Figure 6.3: Car Controller Memory Profile

executing on the HotSpot with, and without, an optimized garbage collector. For comparison, the
same test has been performed on the PERC Ultra JVM. The test results are shown in table 6.1

Thread Period (ms): 50 Maximum Average Std. Deviation

HotSpot Default Settings: Jitter (ms): 73,26 0,76 2,81
Jitter (%): 146,52% 1,52% 5,61%

HotSpot GC Tuned: Jitter (ms): 62,11 0,52 1,54
Jitter (%): 124,23% 1,05% 3,09%

PERC Ultra GC Tuned: Jitter (ms): 6,98 0,78 0,48
Jitter (%): 13,95% 1,56% 0,97%

Table 6.1: Comparison of jitter on HotSpot, with default and optimized settings and the PERC
Ultra

Table 6.1 shows how the average and standard deviation jitter of the HotSpot JVM can be reduced
by optimizing the garbage collector strategy, and how the PERC Ultra performs with the same
application. The HotSpot optimization includes configuration of the generational ratios, forcing
the garbage collector to do more frequent collections in the eden space and as a result the average
jitter was reduced. It is important to notice that the used example has a constant memory alloca-
tion rate, which allows for a static configuration, where many real-life applications have a more
dynamic memory allocation rate requiring a more general or adaptive configuration.

The runtime environment includes other important aspects, such as the underlying operating sys-
tem and the available hardware resources. Some JVMs map threads directly to native threads
as mentioned in section 2.2, which emphasizes the importance of choosing the correct operating
system just as available memory, processing power etc. must be considered as well.

52

Analysis and Benchmark of Java Virtual Machines

6.4. Analysis and Benchmark of Java Virtual Machines

The JVM is an essential component in any Java system, and for real-time systems the JVM must
optimize application execution for temporal determinism. This section compares some of the most
relevant JVMs targeting real-time performance, available on the market today1.
Many real-time JVMs are discussed throughout the literature, however several are based on re-
search projects or are no longer available. The following is a list of some of the most interesting
and their current status:

Timesys RTSJ Reference Implementation: Timesys was the official RTSJ maintenance lead for
specification 1.0.2 and responsible for the Reference Implementation (RI) [RTSJRI]. The
JVM is no longer available and the RI download website has been closed.

Aicas JamaicaVM: The commercial JamaicaVM from Aicas provides RTSJ compliance along
with deterministic garbage collection, AOT compilation, static linking and compatibility
with the Java Standard Edition (JSE) 1.6 libraries [JamaicaVM]. The JamaicaVM runs on
various platforms and provides a free evaluation edition.

IBM WebSphere Real-Time: The IBM WebSphere Real-Time is a commercial real-time opti-
mized JVM from IBM, targeted enterprise applications [WebSphereRT]. The JVM is RTSJ
compliant and provides a real-time garbage collector, AOT compilation and support for the
JSE 1.7 libraries. WebSphere is certified to only a few IBM hardware profiles, and only sup-
ports two operating systems when using RTSJ applications (Red Hat Enterprise and SUSE
Linux Enterprise Real-Time).

Java RTS: Oracle’s Java Real-Time System (Java RTS) is a commercial JVM with RTSJ com-
pliance [JavaRTS]. The JVM is no longer available, and is rumoured to be merged together
with the Oracle JRockit JVM in near future.

Atego PERC: The commercial PERC product suite from Atego consists of four different virtual
machines each targeting real-time Java systems of varying degrees of predictability [PERC].
The PERC Ultra is not RTSJ compliant but includes a deterministic garbage collector, AOT
compiling and support for a wide variety of platforms and operating systems. The PERC
Pico and PERC Raven JVMs are targeted platforms with hard real-time requirements and
include some of the principles found in the SCJ specification and the RTSJ.

OVM: The OVM is a JVM based on a research project from Purdue University [OVM]. The
OVM provides a real-time garbage collector and support for a large subset of the Java lan-
guage, but still lacks functionality in key areas [Pizlo&09].

FijiVM: The FijiVM is a JVM from Fiji Systems and Purdue University which runs on an oper-
ating system targeted embedded systems [FijiVM]. The FijiVM provides real-time garbage
collection, AOT compilation and SCJ support.

aJile: The aJile runtime environments from aJile Systems are a series of hardware coded real-time
Java platforms [aJile].

Of the above JVMs several are discontinued or no longer maintained. Others are only targeted
embedded systems which leave only a few relevant for the purpose of this thesis: the JamaicaVM,
the IBM WebSphere and the Atego PERC Ultra. Unfortunately, it has not been possible to obtain

1As of December 2012

53

Chapter 6. Towards Real-Time Java

a license for the IBM WebSphere during the work on this thesis. This leaves the JamaicaVM and
the PERC Ultra, which will be used for comparing real-time performance. The Oracle HotSpot
JVM is included for comparison with a non-real-time JVM.
The JVMs are analyzed in the following sections, where section 6.4.1 describes the parameters
used for comparison. These parameters are comprised of a set of qualitative and quantitative
attributes. The latter is determined through use of benchmark tests which are introduced in sec-
tion 6.4.2. Section 6.4.3 describes and evaluates the Oracle HotSpot, section 6.4.4 describes and
evaluates the Atego PERC Ultra and finally section 6.4.5 describes and evaluates the Aicas Ja-
maicaVM.

6.4.1 Basis for Comparison of Java Virtual Machines

In order to choose the correct JVM for a specific application’s requirements, it is important to
consider a number of attributes, relevant to real-time systems. This thesis divides these attributes
in to two categories: quantitative and qualitative. The first category consists of three quantitative
parameters which are determined through a series of benchmark tests:

Determinism: Determinism is an indication of how well the JVM is able to provide predictable
temporal results. This is based on jitter measurements which is be separated into maximum,
i.e. what is the latest occurrence of an event compared to the expected value, and in average,
i.e. what is the general distribution of values. Lastly the standard deviation jitter gives an
indication of dispersion from the average value, i.e. the nature of outliers.

Performance: The JVM performance describes how well the JVM optimizes the execution path,
including its utilization of the available hardware resources and the efficiency of the JIT
compiler. Performance is measured in operations per minute (ops/m), where the overall-
(average) and peak-throughput are both important.

Initialization: The initialization parameter describes how the JVMs performs when starting,
loading and executing the application. As mentioned in section 6.3.2 several parameters
affect the initialization phase, such as JIT compilation and class loading. To provide a fair
comparison, all JVMs are configured to use JIT compiling thus disregarding eager loading
and AOT compilation.

While the above attributes are indeed important, the second category of qualitative attributes
should also be considered before choosing a specific JVM implementation. This category con-
sists of five parameters which are difficult to measure but can be obtained through analysis:

Maturity: The term maturity is an indication of how well proven the JVM is in terms of time
on market, development support, the nature of the developers (enterprise, research project
etc.) and the available community. A high degree of maturity includes a wide support
for development tools such as Software Development Kit (SDK), JVM-specific compiler,
runtime profilers etc.

Specification Support: The support for language specifications is an important aspect differ-
encing several JVM products. This covers specifications ranging from the Java Language
Specification to the RTSJ and the SCJ.

Scheduling: The scheduling parameter is an indication of the JVMs ability to handle real-time
scheduling and thread preemption. This covers how well the JVM respects priorities,
whether the scheduling is left to the Operating System (OS) or it is handled by the JVM
internally.

54

Benchmark Approach

Synchronization: The synchronization parameter describes the measures taken by the JVM in
order to avoid synchronization challenges including unbounded priority inversion. This in-
cludes mechanisms such as the priority inheritance protocol and the priority ceiling protocol
(see section 2.3.1).

Memory Management: The implementation of memory management, and especially the nature
of the garbage collector, has a high influence on the real-time performance of the JVM. To
gain a high degree of temporal determinism the JVM memory management should include a
real-time garbage collector that can be preempted by application thread, and allow memory
access unaffected by garbage collection delays.

The above eight attributes are used as a basis for comparing the Hotspot, the PERC Ultra and
the JamaicaVM in the following sections. All are given grades of 1-3, where 3 is the best and
1 the worst. The qualitative attributes are graded based on an individual analysis with focus on
real-time performance, i.e. a JVM providing a separate scheduler with real-time priorities will
achieve a high score in scheduling. The analysis is based on available literature and the authors’
experience obtained from working with each of the JVMs. The assigned grades are a result of the
assessments done by the authors, and appendix D provides further details about the scale used for
assigning grades.
The quantitative attributes are determined through a series benchmark tests, and are given scores
based on their relative values, i.e. the JVM achieving the highest performance is given the score 3
and the one achieving the lowest is given the score 1.
The following sections 6.4.2 to 6.4.5 provide details about the JVM analysis. The results of the
analysis are summarized, compared and discussed in section 6.6.

6.4.2 Benchmark Approach

The main purpose of benchmarking the available virtual machines is to determine the runtime
attributes, but also to gain an impression of the required workload associated with optimizing and
porting an existing application to the JVM. The benchmarks must mimic a realistic application
behavior equal to that of a typical real-time system, such as scheduling periodic events together
with non-real-time “background” processing (noise).
Two existing open-source benchmark applications were chosen for determining the metrics used
to compare the quantitative attributes:

Collision Detector: The Collision Detector (CD) benchmark from Purdue University is designed
for evaluating real-time capabilities on different JVMs, targeting both hard and soft real-
time performance [CD]. CD simulates an air traffic control system, with a periodic hard
real-time thread (detector) monitoring flight positions, and calculating potential collisions.
Flight positions are extracted from radar information provided by a simulator thread (sim-
ulator) which generates radar frames based on, user defined, air traffic configurations. The
benchmark monitors the time between the release of the periodic detector thread, as well as
the time it takes to calculate potential collisions. The calculations are based on a full 3D
collision detector algorithm, comparing the current position of all flights as well as their
direction extracted from two consecutive frames. The CD benchmark provides support
for running with RTSJ threads and memory as well as standard Java threads and memory
(through a wrapper).

SPECjvm2008: The SPECjvm2008 (SPEC) benchmark suite from the Standard Performance
Evaluation Corporation is designed for measuring performance of JVMs, using a range of

55

Chapter 6. Towards Real-Time Java

different test categories each focusing on core Java functionality [SPEC]. SPEC was chosen
due to its ability to precisely measure the performance of each JVM in terms of operations
per minute (ops/m). The SPEC benchmark is used in isolation for a performance test, and
together with CD to simulate background noise. The SPEC test compress were chosen
as the benchmark test from the SPEC suite. The compress test executes a series of file
compression iterations, and gives a realistic workload for evaluating the individual JVMs
performance. The SPEC test memory and CPU-load profile are shown in appendix D.

Based on the SPEC benchmark and a modified version of the CD benchmark, three tests were
composed, configured and applied to each of the JVMs investigated. Table 6.2 shows how the CD
and SPEC benchmarks are used in the tests as well as which metrics are extracted.

Test One Test Two Test Three

Benchmark
CD - X X

SPEC (Compress) X - X

Metric
Determinism - X X
Performance X - X

Initilization - X X

Table 6.2: Overview of applied benchmark tests

Test one: Test one uses the SPEC benchmark, which targets performance by running five consec-
utive iterations of the compress algorithm to determine the peak and average performance,
measured in operations per minute (ops/m).

Test two: Test two consist of the CD benchmark targeting determinism, where the detector thread
is configured to be scheduled every 50 ms. The actual timestamp of each period is collected
and the jitter is calculated.

Test three: Test three is similar to test two, except the SPEC benchmark is loaded and executed
by the CD benchmark to simulate background noise. The purpose of test three is to see how
well the JVM handles a thread with a heavy CPU and memory load, while servicing a real-
time thread with higher priority i.e. the real-time scheduling mechanism of the JVM. In test
two and three, the processing time (total runtime for the detector thread) is subtracted from
the total test time to indicate the initialization overhead. The CD benchmark is configured
to use RTSJ threads and memory model when possible for test two and three.

For presentation of benchmark results the jitter for test three is plotted in a graph, to determine the
layout of the overall profile. Furthermore the maximum, average and standard deviation jitter are
collected and summarized in the corresponding table for both test two and three. However, these
values ignore the initial 500 samples in order to reduce the impact of the initialization overhead
introduced by factors such as JIT compilation and dynamic class loading.
Given the different settings and attributes of the individual JVM, finding a common (and fair)
comparison configuration is a difficult task. However, a common denominator for each of the
JVMs have been determined and their complete configuration together with a detailed description
of each test are included in appendix D.

56

Oracle HotSpot

6.4.3 Oracle HotSpot

The HotSpot JVM is maintained by Oracle, which is the company behind the Java language spec-
ification. HotSpot is the default JVM included when acquiring the Java Runtime Environment
(JRE) from Oracle. The HotSpot JVM focuses on achieving maximum performance and is not
designed for real-time applications. This allows the HotSpot to utilize an “ergonomic” [Oracle12]
runtime behavior which means it is able to optimize the performance of the executing applica-
tion. This is done by dynamically selecting compiler, heap configuration and garbage collector
for optimal performance at run-time. This dynamical adaption introduces a significant amount of
temporal non-determinism and hence this approach cannot be used by JVMs providing real-time
guarantees. The HotSpot JVM suffers from many of the challenges associated with achieving
real-time performance in standard Java systems (see chapter 2).
The HotSpot JVM has been analyzed and graded within the five categories and the results are
summarized in table 6.3.

Oracle HotSpot Grade (1-3)

Maturity: 3
Language Specification Support: 1

Scheduling: 1
Synchronization: 1

Memory Management: 1

Table 6.3: Oracle HotSpot Grades

The basis for each grading is:

Maturity: Since its release in 1999, the HotSpot JVM has been deployed in millions of systems,
including desktop computers and servers [Sun01]. As the HotSpot JVM is provided by the
company behind the Java programming language, the JVM always has support for the lat-
est libraries (currently JSE 1.7). Also multitudes of Integrated Development Environments
(IDE) are available to developers. The HotSpot is regarded highly mature and has become
the de facto standard among JVM implementations. Therefore Oracle HotSpot has been
given a maximum grade of 3 in the maturity category.

Language Specification Support: The HotSpot JVM only supports standard Java and is there-
fore given a grade of 1.

Scheduling: The HotSpot JVM maps Java threads directly to native threads of the underlying
operating system and therefore has no control over how these are scheduled. Application
behavior can therefore differ depending on which underlying operating system is used. Fur-
thermore, it is possible that different Java thread priorities are mapped to the same native
priority of the underlying OS. Therefore the HotSpot JVM is given a grade of 1 in schedul-
ing.

Synchronization: There is no mechanisms provided for avoiding unbounded priority inversion
in the HotSpot JVM. Therefore a grade of 1 is given in this category.

Memory Management: The HotSpot memory model is separated into three generations, a young,
an old and a permanent generation. This is why all supported garbage collectors are cat-
egorized as generational collectors. The HotSpot JVM supports several different garbage

57

Chapter 6. Towards Real-Time Java

collector principles, many of which are covered in section 2.4. These include a serial collec-
tor with a traditional stop-the-world approach, a parallel collector using multiple CPUs and
a concurrent mark-sweep collector splitting the steps of marking and collecting garbage into
multiple incremental steps for faster response time. Recently (as of JSE 1.7) the HotSpot has
been extended with a Garbage-First (G1) collector which uses a more intelligent memory
analysis approach, where the different generations are further separated into regions. The
G1 collector uses a parallel mark-sweep approach to collect and copy entire regions, thus
allowing for more compacting. The HotSpot automatically selects a collector algorithm if
not explicit instructed otherwise, based on simple criterias such as available memory and
CPU cores. The garbage collected heap is the only available memory area in the HotSpot
JVM and the provided algorithms are allowed to preempt application threads at any time.
Therefore the HotSpot is given a grade of 1 in this category.

The conclusion of this analysis is, not surprisingly, that the HotSpot is not suitable for real-time
systems, however this is not its purpose either. The HotSpot is built for performance and has been
included in this analysis to represent a standard Java JVM.

Benchmark Results

The three benchmark test were carried out on the HotSpot JRE 1.6 with the configuration described
in appendix D. The tradeoffs between temporal determinism and performance can be observed in
table 6.4 where the results for all three test are listed. For test one the HotSpot JVM achieves
a relative high average and peak performance, which is slightly lower for test three where the
CD benchmark is combined with the SPEC benchmark. The ability of the HotSpot JVM to still
achieve a relative high performance metric in test three is also reflected in the jitter results, with
a high increase in average jitter compared to test two where the CD benchmarks runs in isolation.
The high maximum jitter for test two is believed to be caused by a major garbage collection of all
garbage generations.

Test One Test Two Test Three

Average Performance 30,08 ops/m - 27,47 ops/m
Peak Performance 30,15 ops/m - 27,47 ops/m

Maximum Jitter - 149,82 ms 299,64% 51,54 ms 103,08%
Average Jitter - 0,26 ms 0,52% 0,62 ms 1,24%

Standard Deviation - 2,24 ms 4,49% 2,88 ms 5,76%
Initilization Time - 9,9 s 72,70 s

Table 6.4: Test results for Oracle HotSpot based on samples 500-5000

The jitter profile of the detector thread, in test three, is illustrated in figure 6.4. The jitter profile
for test two are omitted here but are included in appendix D. Figure 6.4 shows one outlier with
a jitter value of 103% and periodic interrupts of the detector thread, assumed to be caused by
the stop-the-world garbage collector. The frequent garbage collector pauses matches the memory
profile of the SPEC benchmark (running together with CD in test three).
The benchmark results support the qualitative analysis of the HotSpot JVM. The HotSpot JVM
achieves well for performance with a relative high ops/m count and a low initialization overhead.
However, the JVM is shows temporal non-determinism with periodic values deviating more than
100% from the expected.

58

Atego PERC Ultra

0,00%

25,00%

50,00%

75,00%

100,00%

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

J
it

te
r

(%
)

Periods

103

Figure 6.4: Jitter distribution for the HotSpot test three

6.4.4 Atego PERC Ultra

The PERC Ultra is one of several real-time JVMs, in the PERC family, developed by Atego. It is
targeted soft real-time and embedded applications and supports the JSE libraries. The real-time
performance of the PERC Ultra is achieved through predictable scheduling and synchronization
of threads, accompanied by a proprietary real-time garbage collection algorithm.
The PERC Ultra has been analyzed and graded within the five categories and the results are sum-
marized in table 6.5.

Atego PERC Ultra Grade (1-3)

Maturity: 2
Language Specification Support: 1

Scheduling: 3
Synchronization: 2

Memory Management: 2

Table 6.5: Atego PERC Ultra Grades

The basis for each grading is:

Maturity: PERC Ultra has been on the market since 1997 [Nilsen09], and has been deployed in a
large range of different real-time and critical systems. One of the most notable deployments,
is in a US Navy weapon system called Aegis [Atego06]. PERC Ultra provides support for
most JSE 1.6 libraries, either through own proprietary implementations or freely available
open source implementations. The Eclipse IDE and its build-in debugger are supported for
local or remote debugging of applications. Several tools are provided for monitoring and
profiling applications, which can help tune the JVM for real-time performance. As a real-
time JVM, the PERC Ultra is considered mature and is given a grade of 2 in this category.

Language Specification Support: Atego has chosen not to support the RTSJ in PERC Ultra and
hence only supports standard Java. The reason for this, given by Atego, is that the PERC
Ultra is built on technology which predates the RTSJ and that the use of the RTSJ API is

59

Chapter 6. Towards Real-Time Java

difficult and prone to errors. Atego argues that soft real-time can be achieved with standard
Java, by use of their JVM, the libraries provided with it and the included real-time garbage
collector. If hard real-time is needed then Atego refers to another JVM product of theirs,
called the PERC Pico [Nilsen09]. Therefore the PERC Ultra is given a grade of 1 in this
category.

Scheduling: The scheduling mechanism of the PERC Ultra is a fixed priority preemptive sched-
uler with round robin scheduling for threads of equal priority (see section 2.2). The JVM
maps Java threads directly to native threads of the underlying OS. However, the scheduler
inside the PERC Ultra ensures that only one Java thread per processor appears to be eligible
for execution to the scheduler, of the underlying operating system, at any time. The sched-
uler has a range of adjustable options for setting the duration of a timeslice, mapping of
priorities between Java and the OS, etc. It is also possible to extend the range of available
thread priorities to 32, instead of the 10 priorities defined by standard Java. Therefore the
PERC Ultra has been given a grade of 3 in the scheduling category.

Synchronization: The PERC Ultra implements the priority inheritance protocol in order to avoid
the challenges of unbounded priority inversion (see section 2.3). The priority ceiling proto-
col is not supported and hence a grade of 2 is given in this category.

Memory Management: The garbage collector of the PERC Ultra combines copying collection
with mark-sweep collection (see section 2.4). The heap is divided in to many equally sized
regions. A full garbage collection cycle consists of a mark-sweep collection followed by a
copying collection. The mark-sweep collection leaves the heap fragmented. Therefore, the
copying collection is applied afterwards in order to defragment the heap, by in turn using the
small memory regions as from and to regions. The garbage collection algorithm performs
the collection in small increments, which ensures that the application is able to preempt the
garbage collector, and the garbage collection can be resumed from where it was left. The
garbage collector is implemented as a periodic thread which must compete for the CPU
alongside the application threads. Therefore the garbage collector thread is configurable
with a priority, timeslice, period and the amount of heap space which must be in use before
the thread is considered eligible for execution. The PERC Ultra is given a grade of 2 in this
category.

The conclusion of this analysis is that the PERC Ultra provides features for achieving soft real-
time performance. However, the JVM lacks features for providing hard real-time guarantees,
hence it has been given a medium grade in the categories synchronization and memory manage-
ment.

Benchmark Results

The three tests were carried out on the PERC Ultra JVM 6.1 SMP, with the configuration de-
scribed in appendix D. The parameters were based on the knowledge obtained through a two day
workshop which introduced the PERC Ultra, together with the general understanding of real-time
theory (see chapter 2). The PERC Ultra is targeted real-time performance and allows for multiple
configuration parameters, but with the limited resources in terms of scope and time, a baseline
configuration was chosen to resemble the parameters available in the HotSpot and JamaicaVM.
Table 6.6 shows how the PERC Ultra JVM achieves significant lower ops/m for the SPEC bench-
mark compared to the HotSpot, in both test one and three. The maximum jitter is increased
severely in test three where the CD and SPEC benchmark are executed together, compared to

60

Atego PERC Ultra

test two with the CD executing in isolation. It can be seen how the PERC Ultra does not handle
scheduling as expected, even though the detector thread (in CD) has a priority higher than the
SPEC benchmark threads. The noise added in test three increase both the maximum and average
jitter values.

Test One Test Two Test Three

Average Performance 7,07 ops/m - 4,89 ops/m
Peak Performance 7,12 ops/m - 4,89 ops/m

Maximum Jitter - 45,87 ms 91,75% 148,48 ms 296,97%
Average Jitter - 0,15 ms 0,31% 0,50 ms 1,01%

Standard Deviation - 0,72 ms 1,44% 3,66 ms 7,32%
Initilization Time - 23,10 s 79,15 s

Table 6.6: Test results for Atego PERC Ultra based on samples 500-5000

The jitter profiles of the detector thread, from test three, is illustrated in figure 6.5. The jitter pro-
files for test two is omitted here but are included in appendix D. Figure 6.5 shows several outliers
with the maximum of 5099,98% located at the first period, and is ascribable to JIT compilation
– notice that the test were completed without eager linking or eager JIT compilation. However,
when comparing figure 6.5 with the profile from test two in appendix D it can be seen that the
added noise from the SPEC benchmark introduces severe jitter. This is expected to be caused by
the garbage collector not being able to catch up with the out-of-memory situations caused by the
high allocation rate of the SPEC benchmark, thus forcing it to pause the detector thread.

0,00%

25,00%

50,00%

75,00%

100,00%

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

J
it

te
r

(%
)

Periods

5099

296

2300

Figure 6.5: Jitter distribution for Atego PERC Ultra test three

The results from the three tests show, as expected, that the PERC Ultra JVM achieves less in both
peak and average performance compared to the HotSpot. However, the jitter values, and especially
the increase in jitter from test two to test three, does not match the expected behavior. The PERC
Ultra was expected to achieve a more predictable runtime behavior for the detector thread, even
when other threads (with lower priority) has a high memory consumption. It is important to notice
that Atego provides an optimization tool with the PERC Product Suite, capable of optimizing
applications for speed and performance. It is expected that such a tool might provide an increase

61

Chapter 6. Towards Real-Time Java

in performance, while a more thorough investigation and optimization of the garbage collector
parameters might decrease the jitter values.

6.4.5 Aicas JamaicaVM

The JamaicaVM is a JVM developed by Aicas targeted embedded, soft and hard real-time appli-
cations. This JVM achieves real-time performance by complying with the RTSJ and by use of a
proprietary garbage collection algorithm. The JamaicaVM has been analyzed and graded within
the five categories and the results are summarized in table 6.7.

Aicas JamaicaVM Grade (1-3)

Maturity: 2
Language Specification Support: 2

Scheduling: 3
Synchronization: 3

Memory Management: 3

Table 6.7: Aicas JamaicaVM Grades

The basis for each grading is:

Maturity: The JamaicaVM has been available since 2001 and is deployed in numerous real-time
systems mostly within avionics. An example is an unmanned aircraft called Barracuda
[Aicas06]. JamaicaVM provides support for JSE 1.6 libraries which is mainly comprised of
freely available open source implementations. A plugin for the Eclipse IDE is provided for
generating build scripts and it is possible to debug local or remote applications through the
IDE. The JamaicaVM can be configured to record profiling information about applications
which can be used to tweak the JVM. It is also possible to record and inspect individual
thread behavior through the ThreadMonitor tool. The JamaicaVM is considered a mature
real-time JVM and is given a grade of 2 in this category.

Language Specification Support: The JamaicaVM supports the RTSJ 1.0.2. However, by de-
fault some of the strict rules imposed by the RTSJ are relaxed in order to ease development.
The reason for this, given by Aicas, is that by using their real-time garbage collector there is
no need for the stringent memory access rules imposed by the RTSJ. It is however possible
to configure the JamaicaVM, to enable full RTSJ compliance. The JamaicaVM is given a
grade of 2 for the support of the RTSJ.

Scheduling: The scheduler used in the JamaicaVM is a fixed priority preemptive scheduler as
prescribed by the RTSJ. The scheduler supports round robin scheduling of threads with
equal priorities. Threads are mapped directly to native threads and the JamaicaVM sched-
uler assists the underlying operating system in scheduling by choosing which Java threads
appear eligible for execution. The JamaicaVM is given a grade of 3 for its real-time schedul-
ing abilities.

Synchronization: The JamaicaVM supports both the priority inheritance protocol and the pri-
ority ceiling protocol in order to cope with the unbounded priority inversion problem (see
section 2.3). Therefore the JamaicaVM receives a grade of 3 in this category.

62

Aicas JamaicaVM

Memory Management: The garbage collection algorithm used by the JamaicaVM is an incre-
mental mark-sweep algorithm (see section 2.4). The heap is made up of small blocks of 32
bytes each. If an object does not fit inside one block then its memory usage can be spanned
across several blocks. The memory blocks used by a single object do not need to be placed
continuously, as the end of each block contains a pointer to the next block. This also helps
avoid fragmentation of the heap, which is usually a problem with mark-sweep collectors.
The JamaicaVM garbage collector works on these 32 byte memory blocks one at a time,
and has no notion of Java objects. The worst case preemption time of the garbage collector
is then the time it takes to mark and sweep a single memory block. The garbage collection
algorithm is not executed within its own thread but inside application threads. The idea
is that threads in need of memory must “pay” by doing an amount of garbage collection
before it can allocate the memory it needs. In addition to the garbage collected heap the
JamaicaVM also supports the scoped and immortal memory areas defines by the RTSJ. The
JamaicaVM is given a grade of 3 in this category.

The conclusion of this analysis is that the JamaicaVM provides good features for achieving both
soft and hard real-time performance. The additional support for the RTSJ ensures that the Ja-
maicaVM is able to provide hard real-time guarantees.

Benchmark Results

The three benchmark tests were carried out on the Aicas JamaicaVM 6.1 with CD configured to
use only RTSJ memory and threads. Table 6.8 shows the results of all three tests. The JamaicaVM
achieves a very low rating in both peak and average performance, compared to both the PERC
Ultra and the HotSpot. It is important to note that while both the PERC Ultra and the HotSpot are
able to utilize both processing cores available in the test PC, the JamaicaVM (Personal Edition) can
only use one2. This will explain some of the reduction in ops/m, but cannot account for the factor
30 that separates the PERC Ultra and the JamaicaVM. The lack of performance is also visible in
test three where the (noise generating) SPEC benchmark is never scheduled for operations, as the
CD benchmark (high priority) claims the CPU for the entire test.
The benchmark results support the qualitative analysis, stating that the JamaicaVM running RTSJ
is able to achieve a high degree of timing predictability. This is illustrated by the low average jitter
as well as the low standard deviation for both test two and three.

Test One Test Two Test Three

Average Performance 0,19 ops/m - 0,00 ops/m
Peak Performance 0,19 ops/m - 0,00 ops/m

Maximum Jitter - 1,49 ms 2,98% 3,97 ms 7,94%
Average Jitter - 0,01 ms 0,03% 0,01 ms 0,03%

Standard Deviation - 0,04 ms 0,09% 0,20 ms 0,39%
Initilization Time - 21,90 s 85,05 s

Table 6.8: Test results for Aicas JamaicaVM based on samples 500-5000

The jitter profile of test three on JamaicaVM is illustrated in figure 6.6. Small periodic deviations
in can be observed, these may be ascribed to the lack of real-time scheduling between the operating
system and the JVM, which is further described in appendix D. The JamaicaVM does however

2The available Personal Edition does not support parallel processing

63

Chapter 6. Towards Real-Time Java

allow for utilizing the special priorities of the underlying real-time scheduler in the operating
system environment. For reference the test three were carried out using these real-time priorities,
which resulted in even lower jitter values with an average of 0,01% as described in appendix D.

0,00%

25,00%

50,00%

75,00%

100,00%

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

J
it

te
r

(%
)

Periods

Figure 6.6: Jitter distribution for the JamaicaVM in test three with RTSJ memory and threads

The results for the JamaicaVM show, as expected, that the JVM performs worse in terms of
throughput, but in return provides a highly predictable temporal behavior illustrated through the
low jitter values. Aicas provides an optimization tool together with the JamaicaVM, called Ja-
maicaBuilder, and it is expected that such a tool combined with a multi-processor edition will
achieve a higher throughput in terms of ops/m.

6.5. Utilizing the Real-Time Specification for Java

Sub-step 3.3 of the TJARP method prescribes time critical parts of the application in question,
to be rewritten for compliance with the RTSJ (see chapter 3. In order to evaluate the process of
redesigning and rewriting an application for compliance with the specification, this section will
take the Car Controller example through this process.
As the RTSJ is merely a specification, the JamaicaVM by Aicas (see section 6.4.5), which is RTSJ
1.0.2 compliant, has been used to test the application. Firstly the Car Controller example has been
slightly redesigned in order to make use of the threads and memory areas defined by the RTSJ.
The original design can be seen in appendix B (figure B.1, page 112) and the result of the RTSJ
redesign can be seen here in figure 6.7.
The task of the Navigation thread is to update the in-car display. This is considered a soft real-
time task (see chapter 4), hence it is implemented as a RealTimeThread (RT) which uses the
heap memory area, as its operation requires a large amount of memory. The responsibility of the
CruiseController thread is to monitor the speed of the car and alter it if needed. This is con-
sidered a hard real-time task and therefore it is implemented as a NoHeapRealTimeThread
(NHRT), which is working within its own scoped memory area. This should protect the Cruise-
Controller thread from delays caused by the garbage collector. The scoped memory area of
the CruiseController thread is nested within another scoped memory area where the periph-
erals Brakes and Engine reside. These are used by the BrakePedalEventHandler and
GasPedalEventHandler respectively. The two event handlers are implemented as instances

64

Scheduling

Brakes

BrakePedalEventHandler GasPedalEventHandler CruiseController Navigation

Engine Display

AsyncEventHandler NoHeapRealTimeThread RealTimeThread

Heap memory

Scoped Memory 4

Scoped Memory 1

Scoped Memory 3Scoped Memory 2

AsyncEvent

Figure 6.7: Car Controller example redesigned for RTSJ

of the AsyncEventHandler (AEH) class. Each executes within their own scoped memory
areas, hence they should also be free from garbage collection delays. The two events Brake-
PedalEvent and GasPedalEvent has been left out in figure 6.7 for the sake of simplicity,
but they are implemented using the, RTSJ defined, AsyncEvent class which is used to trigger
the AEH.
In section 6.5.1, 6.5.2 and 6.5.3 the RTSJ implementation of the Car Controller example will be
tested within the three areas of scheduling, synchronization and memory management. These tests
are similar to those used in chapter 2 for evaluating standard Java within the same three areas.

6.5.1 Scheduling

The result of the scheduling test (described in section 2.2.2) which examines the schedulers ability
to respect thread priorities can be seen in figure 6.8. It is seen how the fixed priority preemptive

BrakePedalEventHandler (High Priority)

Navigation (Low Priority)

Executing

Preempted

Brake pedal event

Release

Finish0 5 10 15

Time (ms)

Figure 6.8: Scheduling in RTSJ

scheduler required by the RTSJ is working. It ensures that the low priority Navigation thread
is immediately (within 0,1 ms) preempted, when an event from the brake pedal arrives and makes
the BrakePedalEventHandler eligible for execution. For comparison, when the same test
was run on standard Java (see section 2.2.2) a response time of 9 ms was measured, from the time
of the event happening to the time when the handler was scheduled.

6.5.2 Synchronization

This test examines the priority inversion avoidance mechanism of the RTSJ. In section 2.3.2
it was illustrated how standard Java suffers from the problem of unbounded priority inversion.
Figure 6.9 shows the same test performed using the RTSJ implementation. The priority of the

65

Chapter 6. Towards Real-Time Java

CruiseController has been lowered in this particular test in order to provoke the situation
where priority inversion can arise, in all other tests the thread has a high priority. It is seen

GasPedalEventHandler (High Priority)

CruiseController (Low Priority)

Navigation (Medium Priority)

Executing

Blocked

waiting for lock

Executing

holding lock

Release

Finish

0 5 10 15 20

Time (ms)

Gas pedal event

Preempted

holding lock

Preempted

Priority inherited

Figure 6.9: Synchronization in RTSJ

how the priority inheritance protocol required by the RTSJ solves the unbounded priority inver-
sion problem. First the CruiseController thread gets scheduled and acquires the monitor
lock on the shared resource (Engine). The scheduler then preempts the CruiseController
thread before it can finish its job and release the lock, because the Navigation thread gets
eligible for execution. Then an event from the gas pedal arrives, making the GasPedalEvent-
Handler eligible for execution. However, the event handler cannot execute without acquiring
the monitor lock on the Engine. Therefore, because of the priority inheritance protocol, the
CruiseController thread inherits the high priority from the GasPedalEventHandler.
This ensures that the CruiseController thread is able to run and hence releases the lock as
fast as possible. As soon as the lock is released, the CruiseController loses the inherited
priority and the GasPedalEventHandler starts executing. For comparison, when the test was
executed on standard Java the GasPedalEventHandler could be delayed for the full 10 ms it
takes for the Navigation thread to finish its operation.

6.5.3 Memory Management

The final test examines the delays incurred on the CruiseController thread when the Na-
vigation thread is producing large amounts of garbage. Table 6.9 shows the results of a 10
minute test. For the sake of comparison, the results of the same test run on standard Java have been
included. It is seen how the CruiseController thread is not affected by garbage collection as

Thread Period (ms): 50,00 Maximum Average Std. Deviation

RTSJ: Jitter (ms): 0,10 0,01 0,01
Jitter (%): 0,21% 0,02% 0,02%

Standard Java: Jitter (ms): 73,26 0,76 2,81
Jitter (%): 146,52% 1,52% 5,61%

Table 6.9: Jitter statistics for the CruiseController thread

it is implemented as a NHRT which cannot use the heap memory area. This significantly improves

66

Discussion

the threads predictability compared to the standard Java test, where the CruiseController
thread experienced a delays of up to 73 ms.

6.6. Discussion

This chapter has introduced step 3 and 4 of the TJARP method, which are concerned with selecting
and implementing the optimal strategy for achieving real-time performance. This chapter also
presented important background knowledge, which should assist decision making when applying
these steps. Among the presented results were an analysis of relevant JVMs, which provides an
overview of currently available solutions.
Three different approaches towards achieving real-time performance has been described from
section 6.3 to section 6.5. The results of each of these sections will be summarized and the
approaches they describe will be discussed in the below sections 6.6.1 to 6.6.3.

6.6.1 Optimizing Standard Java

The first approach towards achieving real-time performance using Java, was presented in sec-
tion 6.3 as sub-step 3.1 of the method. This approach is concerned with profiling the standard
Java application and optimizing the code and the JVM accordingly. The result of using this ap-
proach on the Car Controller example revealed an improvement in performance and temporal
predictability, however still no real-time guarantees could be given. This approach would be the
first obvious step towards improving the predictability of an application, before system modeling.
Hence, if predictable timing performance without real-time guarantees is sufficient according to
the requirements, then step 2 of the TJARP would introduce a significant overhead and should be
skipped.
An advantage of utilizing standard Java is that developers have access to a wide selection of
different libraries and resources. When combining this with the superior performance of the Oracle
HotSpot JVM or similar (see section 6.4), the developers benefit from the full power of the Java
language. However as mentioned, this combination is unable to provide any real-time guarantees,
as this is not the purpose of neither the language nor the JVM.
Therefore, this approach is only ideal for some types of applications with no hard real-time re-
quirements. The authors believe that this approach should be used whenever the requirements
allow for it.

6.6.2 Substituting JVM

For many systems the approach of optimizing standard Java is insufficient, because some degree
of real-time guarantees is needed. Therefore, a second approach towards achieving real-time
performance using Java, was presented in section 6.4 as sub-step 3.2 of the method.
This approach still uses the standard Java language, library API and memory model. However,
real-time performance is achieved by rewriting the standard Java libraries with focus on temporal
predictability and the JVM is equipped with a vendor specific real-time garbage collector. This
approach is popular among commercial real-time JVM vendors, e.g. Aicas and Atego who support
this approach through their products: JamaicaVM and PERC Ultra respectively.
The task of sub-step 3.2 is to choose a real-time JVM to substitute with the current JVM. In
order to facilitate the choice of JVM, an analysis of quantitative and qualitative attributes were

67

Chapter 6. Towards Real-Time Java

performed for each of them. The results of the analysis has been summarized and is illustrated in
figure 6.10.

0

1

2

3

Determinism

Performance

Initialization

Maturity

Language

Specification Support

Scheduling

Synchronization

Memory Management

Oracle HotSpot

Atego PERC Ultra

Aicas JamaicaVM

Figure 6.10: Comparison of the Oracle HotSpot, the Atego PERC Ultra and the Aicas JamaicaVM

The quantitative analysis was done by benchmarking the JVMs, and this is the basis for the param-
eters: Determinism, Performance and Initialization. From the benchmarking results the relation
between these three parameters is seen. When the determinism of one of the JVMs increases, it
has a negative effect on the performance and start up time of the JVM.
The qualitative analysis was done by analyzing features and characteristics of each JVM and
grading them accordingly. From figure 6.10 it is seen how the JamaicaVM achieves the highest
grades in Memory Management, Synchronization and Language Specification Support categories.
The Maturity and the Scheduling are however estimated to be the same for the PERC Ultra and
the JamaicaVM as they both support similar features for real-time within these areas.
To summarize, the HotSpot and the JamaicaVM represents two extremities, with performance at
one end and real-time behavior at the other end. The PERC Ultra is an intermediate solution
providing soft real-time guarantees, but at the price of reduced performance.
During the benchmarking of the JVMs it was hard to find a common configuration for all JVMs in
order to do a fair comparison. As each JVM supports many individual parameters and has vendor
specific features, the choice was to use the default settings and only adjust the parameters that
the three JVMs have in common, e.g. total memory size etc. Therefore, it may be possible to
achieve better benchmark results with all of the three JVMs by using vendor specific parameters
and tools. For instance, Atego provides a tool called PERC Accelerator [Atego12], which can
augment class files with native code or optimized byte code only compatible with the PERC Ultra.
Similarly, Aicas provides a tool called Jamaica Builder [Aicas12], which is able to statically link
all classes and compile them ahead-of-time. These tools can help improve startup and execution
times significantly.

68

Applying the RTSJ

The qualitative analysis is based on a set of attributes and a grading scale set up by the authors.
Some of the attributes were hard to measure e.g. maturity, therefore the grades was given based
on judgment done by the authors. Other attributes were hard to compare e.g. the memory model
and garbage collection strategy are very different, even between the two real-time JVMs (the
JamaicaVM and the PERC Ultra). Therefore, in order to use the results of the analysis, it is
important not only to inspect the grades given, but also the provided reasoning behind each grade.
An advantage of this approach, where the current JVM is substituted with a real-time JVM, is that
existing Java code can be used directly, without rewriting it to make use of new thread types or
memory models. However, a disadvantage is the real-time garbage collector algorithms, which
need to be tailored towards the memory usage pattern of the specific application. This is done by
analyzing and profiling the application and parameterizing the real-time garbage collector accord-
ingly. Furthermore the complexity of the real-time garbage collectors makes it hard to analyze
worst-case-execution-times and prove that deadlines will be met [Nilsen07]. The authors believe
that this approach should be used when the requirements only prescribes soft real-time behavior
and limited performance.

6.6.3 Applying the RTSJ

When soft real-time guarantees are insufficient, a third approach towards achieving real-time per-
formance using Java can be used. This approach was presented in section 6.5 as sub-step 3.3 of
the method.
Sub-step 3.3 relies on redesign and reimplementation of the application entirely or partly using
the RTSJ. The real-time behavior obtained from doing this on the Car Controller example was
highly predictable, and matched the theory of traditional real-time systems presented in chapter
2, as well as the theory of the RTSJ presented in chapter 3. The scheduling and synchronization
mechanisms behaved predictably, and it was possible to create threads which were unaffected by
garbage collection. However, the efforts spent, by the authors, to accomplish these results, using
the RTSJ, was substantially larger than the effort associated with implementing sub-steps 3.1 and
3.2. This was due to the need for redesigning and rewriting the existing application entirely or
partly. It is estimated that the required workload when using the RTSJ is larger than when working
with standard Java or similar to that of implementing the same functionality using C or C++. The
cause of the increased workload is mainly due to the introduction of additional memory areas by
the RTSJ, and the memory access rules imposed on these.
The authors believe that this approach should be used when the requirements describe need for
hard real-time performance and good reasons exist for not using traditional low-level program-
ming languages.

69

Chapter7
Case Study: Terma T-Core

This chapter applies the TJARP method to a complex industrial case study, the Terma T-Core
framework, where each of the four steps of the method are followed as illustrated in figure 7.1.
The case study defines the temporal requirements as described in chapter 4, then provide a model
of the system as described in chapter 5. Finally the technical solutions discussed in chapter 6 are
applied to the case study

Step 1:

Requirements Analysis

Step 2:

System Modeling

Step 3:

Java Strategy Selection

Step 4:

Implementation

Figure 7.1: The four steps of the TJARP method

7.1. Introduction

This chapter evaluates the TJARP by applying it to the T-Core platform provided by Terma, both
introduced in chapter 1. The T-Core platform consists of several distributed Java-based compo-
nents, where the Track Management (TM) component is an essential part of the threat evaluation
feature [Terma10]. The TM component is currently deployed in various mission critical sys-
tems, such as the BMD-Flex International Air and Missile Defense Command and Control system
[Terma11] developed in cooperation with Lockheed Martin, and the C-RAID Situational Aware-
ness and C2 Control System used for naval and coast guard monitoring [Terma12].
The TM component is able to provide a full situational picture of a specific geographical area
based on inputs from available sensors and various data links. Detected physical objects are rep-

71

Chapter 7. Case Study: Terma T-Core

resented as radar tracks and are processed in order to correlate and fuse uniquely identify objects,
detected by different sensors. Tracks added to the system, or tracks updated with new information,
are published to subscribing entities, e.g. workstations in a tactical command center serviced by
human operators.

Critical parts of the T-Core framework, including the TM component, are optimized for real-
time performance by tweaking the runtime environment provided by the Oracle HotSpot JVM.
However, the system suffers from the many temporal challenges applicable to Java systems as
discussed in chapter 2. Terma wishes to reduce the workload associated with ensuring timing
predictability of the TM component and investigate the possibilities for extending the system with
sub-components constrained by hard real-time requirements. Currently the T-Core framework,
and the TM component, does not negotiate track engagements by providing continuous track
information to weapon systems. This is mainly due to strict timing requirements of the weapon
interfaces. An example deployment of a system based on T-Core, with the TM component, an
attached operator and a proof-of-concept weapon control system is illustrated in figure 7.2.

Server

Track

Management

(TM)

Infrastructure

Workstation

Operator

Infrastructure

Weapon Control

Engagement

Manager

(EM)

InfrastructureSensor

Weapon

Track Update ►Detect Track ►

Figure 7.2: Components of the T-Core Case Study

The Engagement Manager (EM) illustrated in figure 7.2 is a fictional, but highly relevant, ex-
ample of a hard real-time component attached to the non-real-time T-Core Infrastructure compo-
nent. This allows the EM component to communicate with the network of distributed components
within the T-Core system, including the TM component located on a central server. The EM com-
ponent is marked with dotted lines to illustrate the additions to the existing system. The Operator
component is included to show the concept of an extra non-real-time component. In order for
the components to operate and utilize the features provided by the T-Core framework, additional
components are included in the system such as the Infrastructure component.

The purpose of this case study is to apply the TJARP method to the T-Core framework, in order
to introduce soft real-time performance to the TM component. Additionally the hard real-time
proof-of-concept EM component is to be added, and should operate in cooperation with existing
non-real-time components. The resulting system will include a mix of hard real-time (the EM
component), soft real-time (the TM component) and non-real-time (Infrastructure and Operator).
The first step of the method is described in section 7.2, the second in section 7.3 and the iterative
steps 3 and 4 including the sub-steps are described in section 7.4. Finally the results of the case
study is discussed in section 7.5.

72

Requirements Analysis

7.2. Requirements Analysis

The first step of the TJARP method is to get a clear understanding of the requirements that the
system is subject to (see chapter 4). The requirements for a system based on the T-Core framework
vary depending on the type of system and customer. Furthermore, these requirements are usually
company classified. Therefore, the requirements for this case study are fictional but still realistic.
When following step 1, the first sub-step 1.1 is to determine the degree of real-time performance
needed for the system. The T-Core framework is a large and complex platform, which would
make the task of providing hard real-time guarantees across the entire system an immense task.
Therefore, the TM component should at best be able to meet soft real-time requirements. The
EM component however needs hard real-time performance to ensure consistent temporal behavior
when evaluating threats and communicating with weapon systems. Hence, the T-Core platform
needs mixed real-time performance. The functional requirements of the case study is described in
section 7.2.1 and the non-functional requirements in section 7.2.1.

7.2.1 Functional Requirements

Sub-step 1.2 is concerned with clarifying the functional requirements for both the TM and the EM
components. These have been elicited and listed below. The requirements have been simplified in
order to keep focus on the real-time aspects of the system.

Track Manager

R1 The TM component shall be able to receive tracks from multiple sources.

R2 The TM component shall be able to correlate and fuse identical tracks received from multiple
sources. (Soft real-time)

R3 The TM component shall be able to provide other components in the framework with track
updates through the T-Core Infrastructure component.

R4 The TM component shall provide functionality for other components in the framework to
subscribe and unsubscribe to track updates.

Engagement Manager:

R5 The EM component shall be able to subscribe to and receive track updates from the TM
component through the Infrastructure component provided by T-Core.

R6 The EM component shall be able to evaluate track updates and determine if the track is a
threat. (Hard real-time)

R7 The EM component shall be able to interface with up to ten weapons simultaneously. (Hard
real-time)

R8 When the EM component identifies a track as a threat it must instruct a weapon, not currently
in use, to engage the threat. (Hard real-time)

R9 The EM component shall be able to handle the situation when all weapons are currently in use
by buffering and executing the threat engagement as soon as a weapon becomes available.
(Hard real-time)

73

Chapter 7. Case Study: Terma T-Core

R10 The EM component must communicate with the weapon through a predefined protocol con-
sisting of 10 consecutive messages sent at a fixed interval. (Hard real-time)

R11 The EM component shall not terminate communication with a weapon while negotiating a
track engagement. (Hard real-time)

7.2.2 Non-Functional Requirements

The task of the final sub-step 1.3 is to define a set of non-functional requirements describing the
real-time properties of the system. If the non-functional requirement is directly related to a func-
tional requirement is has been given a similar identifier. The non-functional requirements for the
TM and the EM components are listed here:

Track Manager

R3.1 The time from a track is received by the TM component and delivered to an operator situated
on the same node must not exceed ms, given a maximum of 5 operators.

R3.2 Requirement R3.1 must still hold while the TM component is handling 200 track updates
per second.

Engagement Manager:

R6.1 The time from a track update is received until the threat evaluation is finished must not
exceed ms.

R8.1 The time from a track has been identified as a threat and until the weapon communication
is initiated must not exceed ms, if a weapon is available.

R10.1 The 10 consecutive message comprising the weapon communication protocol must be sent
with a period of ms.

R10.2 For requirement R10.1 the minimum tolerable time between to messages is ms.

R10.3 For requirement R10.1 the maximum tolerable time between to messages is ms.

R11 In accordance with requirements R6.1, R8.1 and R10.2 the time from a track update is re-
ceived until the weapon communication finishes must not exceed ms. (Hard real-time)

R12 Timing requirements R6.1, R8.1, R10.1, R10.2, R10.3 and R11 must still hold if the EM is
deployed on the same node as the TM, while the TM is component is handling 200 track
updates per second. (Hard real-time)

The real-time requirements leave out details about communication timing through the distributed
infrastructure of the T-Core framework. This is done deliberately as it is beyond the scope of this
thesis to consider real-time performance across distributed nodes (see section 1.3).
The timing requirements for the TM component are categorized as soft real-time. This is because
the requirements are concerned with delivering information to human operators, where a track
update delayed for a period of milliseconds would go unnoticed.
In contrast, the timing requirements for the EM component are considered hard real-time as the
failure of communicating with a weapon and hence eliminating a threat could be catastrophic.

74

System Modeling

Requirements R3.2 and R12 are concerned with providing real-time guarantees on a single node,
even though the system is under a considerable load. The ability to mix both real-time and non-
real-time components on the same node while still maintaining real-time guarantees has been
pointed out as a key feature by Terma. Hence, the system must be operational and comply with
the requirements, while both the TM and EM deployed at the same processing node.

7.3. System Modeling

The T-Core platform is highly complex and consists of several thousand Java classes, where each
component is dependent on several others, e.g. the TM component rely on Infrastructure compo-
nent for communication. The task of gaining an overview of this large codebase, and especially
understanding its temporal characteristics, can be overwhelming. This second step of the TJARP
method prescribes an analysis of the application with focus on the timing requirements, supported
by the formal modeling language VDM-RT.
The four sub-steps within this step, allows for gaining an understanding of the important parts and
aspects of the system by raising the level of abstraction, and thus ignoring implementation details
which do not affect the purpose of the model. Therefore, before proceeding to development of the
model, a clear definition of the purpose must be defined. For the T-Core model the purpose states:
To provide an understanding of the temporal attributes of the Track Management component,
and investigate possible design options for extending the system with an additional hard real-
time component. The model shall help identify possible design pitfalls with respect to the timing
requirements.
This section applies the four sub-steps, of step 2, to the T-Core TM component and the EM compo-
nent. Sub-step 2.1 models the overall system structure and is described in section 7.3.1. Sub-step
2.2 introduces concurrency to the model and is described in section 7.3.2. Sub-step 2.3 expands the
model further by adding timing constraints as described in section 7.3.3. Finally the architectural
design is explored in sub-step 2.4, described in section 7.3.4.

7.3.1 Modeling System Structure

To gain an understanding of the functional behavior of the TM component within the existing T-
Core system, the overall structure is mapped directly to VDM-RT classes. However, as the purpose
describes, the model must keep focus on temporal attributes, hence several implementation details
can be ignored as the level of abstraction is raised.
The existing TM implementation acts as a central processing component, with several publish-
subscribe mechanisms, i.e. the distribution of track information to subscribing listeners. The
technical implementation of these mechanisms are not the focus of the model, however the func-
tional behavior (the distribution of updates) is to be included to correctly asses the overhead of
simultaneous processing in multiple listeners.
The TM component implements complex track-correlation and track-fusion algorithms which for
the model are merged into one simplified evaluation algorithm, in order to emulate processing for
each track-update.
The EM component must be able to isolate the weapon communication in a central class, in order
for modeling a hard real-time sub-component. The EM component shall make use of existing
T-Core functionality for subscribing to track updates, through the Infrastructure component. The
component must also support multiple weapon interfaces simultaneously.
The structure of the model is illustrated in the simplified class diagram in figure 7.3. Notice that

75

Chapter 7. Case Study: Terma T-Core

active classes are marked in the diagram even though these are not identified until sub-step 2.2.
The nodes (Sensor, Weapon, Workstation etc.) are included to provide a distribution overview,
where the classes within the Server-node are all directly mapped from the existing T-Core Java
classes. The top-level classes World and TCoreEnvironment are added to the model to
control the configuration and execution of different scenarios.
Scenarios of the model are triggered by the TrackSensor reading a file with a predefined set
of events which are processed and sent to the TrackManager through the TrackReceiver
class. The TrackManager does a simplified track correlation and publishes the update to all
subscribing instances of the TrackListener class. The sub-classes define operations to be
invoked upon track updates. The Operatormodels a graphical presentation of track information
emulating an operator workstation. The TrackEvalutationHandler (TEH) evaluates the
track and if deemed hostile and positioned inside a pre-defined geographical area, commences the
engagement.

WeaponSystem

TrackSensor TrackReceiver

TrackManager

Infrastructure TrackProvider

Track TrackListener

EngagementHandler

Scheduler

World

TCoreEnvironment

Schedulable

TrackEvalutation

Handler

WeaponComHandler

GeoArea

GeoCircleGeoSquare

*

*

*

*

*

*

*

Operator

Workstation

Weapon Control

Server

Sensor

Weapon

Figure 7.3: Simplified class diagram of the T-Core VDM-RT model

At this stage the model is implemented to provide the basic functional behavior, and provides a
foundation for assessing possible design solutions. Especially the added functionality of the EM
component is to be detailed further by imposing functional constraints directly within the model.
This is possible by use of VDM invariants and pre-conditions. Listing 7.1 shows an example of
such a pre-condition in the EngagementHandler class. The pre-condition maps directly to
requirement R11 (see section 7.2) and provides a run-time check to ensure weapons systems are
not removed from the system while they active.

76

Introducing Concurrency

�
1 public RemoveWeaponSystem : WeaponSystem ==> ()
2 RemoveWeaponSystem(w) == weapons := {w} <-: weapons
3 pre w in set dom weapons and not weapons(w).IsActive()
� �

Listing 7.1: Precondition within the EngagementHandler to ensure that no active weapons
are removed

The VDMUnit unit-test framework is utilized to increase confidence within the functionality of the
individual classes. These unit-tests together with the pre-conditions, invariants and runtime type-
checks provide a high level of confidence in the functionality. From the model, at this stage, it
became clear that the ability to handle multiple engagements concurrently would require extra care
in order to meet the hard real-time requirements of the weapon communication. This is described
by requirement R7 (see section 7.2) which states that simultaneous communication with multiple
weapons must be supported while still complying with the timing constraints for the weapon
communication.

7.3.2 Introducing Concurrency

Sub-step 2.2 motivates the introduction of concurrency, by identifying and creating active classes
within the model. This increases confidence in the temporal behavior of the model as it moves
closer to its defined purpose. Figure 7.3 shows how several classes are marked as active, which
is achieved by explicit thread definitions or by the usage of the async keyword. The ability
of the TM component to publish track updates has increased in complexity by the introduction
of concurrency, with use of the Infrastructure class to concurrently notify subscribing in-
stances of TrackProvider. These notifications creates new procedural threads for processing
operations implemented within each subscribing TrackListener instance. By introducing
concurrency it became clear that the process of receiving a track update in the TEH, and com-
mence communication with the weapon, required extra attention as tracks may be published faster
than they are communicated to the weapon. The weapon communication was subject to hard
real-time requirements, and thus isolated within a single periodic thread implementation in
the WeaponComHandler (WCH) class.

Synchronizing Engagement

The requirements R7 and R9 (see section 7.2) states that multiple engagements must be supported.
The initial design suggested that the TEH should start the periodic WCH thread once a threat has
been deemed hostile and detected within the protected geographical area. However, the model
identified the engagement procedure as a bottleneck in this design. If all available weapons are
in use when a track is to be engaged, the procedural behavior of the TEH thread would require
some form of buffering mechanism to make sure that a track is not missed, and that the weapon is
notified as soon as the previous operation is completed.
Therefore, an additional active procedural thread, the EngagementHandler was introduced
with the responsibility of buffering tracks to engage and synchronize with available weapons in
order to start the required instances of WCH. Figure 7.4 illustrates the scenario of receiving a
hostile track and commencing the engagement communication with the weapon.
When a track is to be engaged, the EngagementHandlermust check for available weapons and
pass the weapon to the corresponding WCH before activating the communication. The process of
checking for available weapons requires extra care, and is implemented by use of VDM-RT history

77

Chapter 7. Case Study: Terma T-Core

Periodic

GeoAreaTrackEvaluationHandler

TrackableUpdated(t)

IsInside3D(t)

true

Track

GetIdentity()

HOSTILE

EngagementHandler

AddTrackToEngage(t)

WeaponComHandler

WaitForAvailableWeapon()

Start()

Resume

WeaponSystem

NegotiateEngagement()

Start

Figure 7.4: Sequence diagram of a track updated and engaged

counters as illustrated in listing 7.2. The instance variable availableWeaponCount is marked
as static and decremented every time an instance of WCH is activated and incremented once it is
finished. The permission predicate makes sure that the operation WaitForAvailableWeapon
blocks until at least one weapon is available.�

1 public WaitForAvailableWeapon : () ==> ()
2 WaitForAvailableWeapon() == skip;
3

4 sync
5 mutex(SetAsUnavailable,SetAsAvailable);
6 per WaitForAvailableWeapon => availableWeaponCount > 0;
� �

Listing 7.2: Permission predicate for weapon availability

Scheduling Communication

In order for the WCH to guarantee the periodic timing requirements (see requirement R10.1 –
R10.3 in section 7.2) it must support a fixed number of periodic iterations from it is started, and
terminate upon completion. However, such behavior is not supported (by default) by the periodic
or procedural threads in VDM-RT. The procedural thread does not support periodic invocations or
pausing for specific time intervals, and the periodic thread does not allow for continuously starting
and stopping.
The solution was to model a timer-based scheduling mechanism with the Scheduler class (see
figure 7.3). The class implements a periodic thread, which increments an instance variable once

78

Analyzing Timing Constraints

every millisecond. At each increment, the thread checks to see if any Schedulable instances
are eligible for execution at that specific time, and if so unblocks the associated procedural thread.
This scheduling mechanism is supported by an advanced use of permission predicates within the
Schedulable class.
Classes inheriting from the Schedulable class, specifies a period within their constructor for
which they are to be blocked when invoking the derived operation WaitForNextPeriod. The
operation will add the caller to the Scheduler and wait for the remaining time interval since
the last release. For example, an instance of the Schedulable class, with a period of 5 ms,
which invokes the WaitForNextPeriod operation within this period, will be scheduled at time
intervals 5, 10, 15 etc. The periodic check within Scheduler class is illustrated in listing 7.3
and is described in further details in appendix B.�

1 private CheckSchedulables : () ==> ()
2 CheckSchedulables() ==
3 (
4 if(timeUnit in set dom schedulables
5 and schedulables(timeUnit) <> {}) then
6 (
7 for all s in set schedulables(timeUnit) do s.Release();
8 schedulables := {startTime,...,timeUnit} <-: schedulables;
9);

10);
� �
Listing 7.3: Periodic check for waiting Schedulable instances

The implementation of the WCH through the Scheduler and Schedulable classes allow
for detailed modeling of the periodic behavior of the RTSJ defined RealTimeThread (see sec-
tion 3.2).
By the introduction of concurrency, the level of detail within the model is increased with respect
to the purpose of the model. The model for identifying potential deadlocks or overlap of periodic
threads through run-time errors printed directly within the Overture debugger.

7.3.3 Analyzing Timing Constraints

Sub-step 2.3 encourages the use of specific VDM-RT semantics to help identify timing pitfalls
with respect to the purpose of the model. The Operator class is extended with the notion of
time by using the duration keyword. This is used to model the computational heavy operation
of updating the information on an operator workstation.
The EM component requires extra focus, where the hard real-time requirements are candidates for
runtime checks with validation conjectures. The requirements R10.2 and R10.3 describe maxi-
mum and minimum separation between communication messages to the weapon system. In list-
ing 7.4 the deadlineMet and separate conjectures are used to constrain the model with
regards to these requirements. The conjectures prove a valuable tool, as the model at this in this
sub-step does in fact violate all three conjectures.

79

Chapter 7. Case Study: Terma T-Core

�
1 /* timing invariants
2 deadlineMet(#act(WeaponComHandler‘Run),
3 #fin(WeaponComHandler‘Run), 50 ms);
4 deadlineMet(#act(EngagementHandler‘AddTrackToEngage),
5 #act(WeaponComHandler‘NegotiateEngagement), 1 ms);
6 separate(#act(WeaponComHandler‘NegotiateEngagement),
7 #act(WeaponComHandler‘NegotiateEngagement), 4 ms);
8 */
� �

Listing 7.4: Validation conjecture for the WeaponComHandler

By using the RT Log Viewer (RTLV) of the Overture tool is it possible to identify the exact cause
of the violation (see section 5.3). The RTLV allows for a detailed view of each CPU to show
how processing and scheduling of threads are progressing through time. For the EM component
the conjecture violation was identified to be caused by the scheduling of the Operator instance
before the TrackEvaluationHandler thus delaying the engagement of tracks with the du-
ration of the Operator operations.
The jitter values specified for the periodic Scheduler thread was also identified as a cause of
conjecture violation. By specifying a jitter value of 0.5 ms, the theoretically maximum devia-
tion is 5 ms (the WCH is scheduled 10 times), thus potentially violating all three conjectures as
this affects the total execution time of the WeaponComHandler‘Run operation. The periodic
definition of the Scheduler is illustrated in listing 7.5.�

1 thread periodic(1E6,5E5,0,0)
2 (IncrementTime)
� �

Listing 7.5: Periodic invocation of the Scheduler with jitter

The conjectures helped identify critical sections of the model as potential causes of temporal non-
determinism, and proved how the model serves as a valuable input before proceeding to the actual
implementation. It also illustrates how the temporal unpredictability within Java systems can be
modeled.

7.3.4 Design Space Exploration

Through the previous three sub-steps, the EM component was shown to be under strict timing
constraints and even unable to guarantee the timing requirements of the weapon communication.
The final sub-step 2.4 prescribes a design space exploration. By utilizing the distributed modeling
features of VDM-RT the entire EM component can be deployed on a separate CPU and thus be
unaffected by scheduling of the Operator class. The declaration of the CPU for both the TM
and EM components is illustrated in listing 7.6. The declaration of the BUS instance show how
multiple CPUs are connected through the same bus.

80

Java Strategy Selection and Implementation

�
1 static public CPUServer: CPU := new CPU (<FP>, 1E9);
2 static public CPUWeaponControl : CPU := new CPU(<FP>,1E9);
3

4 static public trackBus : BUS := new BUS(<CSMACD>, 72E3,
5 {CPUServer, CPUWeapon, CPUSensor, CPUWeaponControl})
� �

Listing 7.6: Declaration of CPU and BUS for deployment

This distribution will cause the TrackProvider to invoke the update operations of the Track-
Listener instances through the communication bus. Causing the processing of a track-update
within Operator and the WCH to be done in parallel at two different CPUs. The deployment is
illustrated in listing 7.7.�

1

2 CPUServer.deploy(manager,"TrackManager");
3 CPUServer.deploy(infrastructure, "Infrastructure");
4 CPUServer.deploy(operator, "Operator");
5

6 CPUWeaponControl.deploy(evaluationHandler, "EvalutationHandler");
7 CPUWeaponControl.deploy(scheduler,"Scheduler");
� �

Listing 7.7: Deployment of classes within the CarEnvironment constructor

This new architecture ensured that the EM component were able to meet the timing requirements
elicited in step 1.

7.4. Java Strategy Selection and Implementation

Step 3 and 4 of the TJARP method is concerned with selecting and implementing the appropriate
Java real-time strategy for meeting the real-time requirements. As described earlier, the T-Core
case study requires mixed real-time performance as the TM component is subject to soft real-time
requirements, while the EM component is subject to hard real-time requirements. Therefore the
development of the two components will be split in two, according to step 3 of the TJARP method
(see chapter 6). Hence, the TM component will start at sub-step 3.1, while the EM component
will start at sub-step 3.3 due to its hard real-time requirements. The process of applying step 3
and 4 to the TM component will be described in section 7.4.1, while section 7.4.2 describes how
the steps were applied to the EM component.

7.4.1 The Track Management Component

Sub-step 3.1 of the TJARP method recommends optimizing the existing application and JVM
in order to improve real-time performance. This sub-step will not be part of this case study, as
this approach is already applied by Terma before deploying a new configuration of the T-Core
platform.
In order to investigate the possibilities for achieving further real-time performance, the TM com-
ponent was subject to sub-step 3.2 of the TJARP method. This sub-step is concerned with substi-

81

Chapter 7. Case Study: Terma T-Core

tuting the JVM. The Atego PERC Ultra was chosen, to replace the Oracle HotSpot currently used,
based on the analysis and comparison of JVMs presented in chapter 6. An advantage of using the
PERC Ultra is its support for JSE 1.6, which in theory should allow the T-Core framework, in-
cluding the TM component, to run on the PERC Ultra without modifications. In practice however,
substituting the JVM was not that simple. Based on the choice of strategy in step 3, the case study
moves to step 4 of the TJARP method.

7.4.1.1 Substituting the JVM

Sub-step 4.1 includes the task of porting relevant T-Core components to the PERC Ultra. Here
a number of challenges were faced. For instance, the framework failed to execute because of
an error during the initial class loading phase. The PERC Ultra applies a different class loading
strategy compared to the Oracle HotSpot. This caused errors as some classes could not be found,
and some libraries were incompatible with the PERC Ultra. However, the class libraries causing
the problems were not used by the particular T-Core configuration used for this case study, hence
they could easily be removed.
Eventually the port succeeded, and the T-Core components were executing on the PERC Ultra.
The next task was to fine tune the parameters of the PERC Ultra such as adjusting the memory
parameters and garbage collection settings.

7.4.1.2 Evaluating the Results

Sub-step 4.2 was concerned with evaluating the results of porting the T-Core components to the
PERC Ultra with regards to the timing requirements outlined in section 7.2. In order to test
requirements R3.1 and R3.2, a series of tests were set up where the system was stressed by forcing
it to handle different amounts of simultaneous tracks. The amount of track updates per second was
varied from 30 and up to 200. For each test a series of additional hostile track updates was sent into
the TM at 4 updates per second. It was then measured how much time passed between a hostile
track being updated with a new position, until this information was received by an operator. In
between these two events the updated track information would pass through the TM component.
The results of the tests can be seen from the chart in figure 7.5. The same tests performed on the
HotSpot JVM have been included for comparison.

██

██

██

██

██

██

██

25 50 75 100 125 150 175 200

R
es

p
o

n
se

 T
im

e
(m

s)

Track Updates / Second

PERC Ultra HotSpot

Figure 7.5: Track Load Tests - PERC Ultra vs. HotSpot

82

The Engagement Manager Component

The horizontal axis shows the amount of track updates per second the system is handling, while
the vertical axis indicates the average time for sending a hostile track update through the system.
This average time is based on measurements of 2000 hostile track updates sent through the system.
It is seen how the response time is relatively constant for both JVMs when receiving between 30
and 100 track updates per second. As expected from the benchmark results presented in chapter
6, the PERC Ultra performs slower than the HotSpot. This is not a problem for this case study as
it is the predictability of the response time which is important. However, as the amount of track
updates per second rises above 100, the response time starts increasing for the PERC Ultra, while
the HotSpot is still maintaining a constant response time. It is seen how the PERC Ultra violates
the maximum response time of ms while receiving 200 track updates per second, as stated by
requirements R3.1 and R3.2.
The performance of the PERC Ultra is therefore insufficient for the TM component executing
on the particular configuration of the T-Core platform used for this case study. The same tests
could also have been performed on the JamaicaVM, however the benchmarks result, presented in
chapter 6, shows that the JamaicaVM has worse performance than the PERC Ultra. Therefore, the
effort of porting the T-Core platform to the JamaicaVM was skipped.
Because of the limited performance of the PERC Ultra, the HotSpot was re-introduced for this par-
ticular deployment of the TM component. However, other systems based on the T-Core platform
and with less strict requirements on performance, could be able to utilize the PERC Ultra. The
authors believe that the performance requirements could have been met by further optimization of
the PERC Ultra, e.g. by utilizing the ROMizer or PERC Accelerator provided by Atego.

7.4.2 The Engagement Manager Component

The EM component is subject to hard real-time constraints and therefore, the first two sub-steps
of step 3 can be skipped. The following sub-step 3.3 prescribes that the hard real-time part must
be rewritten for compliance with the RTSJ in order to achieve hard real-time performance. As the
EM component is a newly added component in the system, there is no code to rewrite, hence the
design and development of the component, begins here. The experience gained from modeling
the EM component in step 2 serves as a good starting point for the design.

7.4.2.1 Applying the RTSJ

During sub-step 3.3, the EM component was designed to make use of the additional thread types
and memory areas provided by the RTSJ. The result can be seen from the class diagram in figure
7.6.
When a track is updated with new information, e.g. position, the asynchronous event Track-
UpdateEvent triggers the TrackEvaluationHandler. If the track is hostile and inside
the protected geographical area then it is queued for the EngagementHandler to handle it.
The EngagementHandler then locates a weapon and spawns a new WeaponComHandler
thread, which performs the communication with the weapon.

7.4.2.2 Implementing the Engagement Manager Component

The next sub-step to apply was 4.1, where the RTSJ implementation was developed. The strict
rules on memory areas, as described in section 3.2.3, proved to be a challenge when working
with the RTSJ. For instance, the task of passing data between the EngagementHandler and
the WeaponComHandler, which resides in different memory areas, were not as simple as just
passing an object reference. Instead each piece of data within the object had to be explicitly copied

83

Chapter 7. Case Study: Terma T-Core

TrackEvaluation

Handler
WeaponComHandlerEngagementHandler

AsyncEventHandler NoHeapRealTimeThreadRealTimeThreadAsyncEvent

WaitFreeRead

Queue<Track>

Heap Memory Scoped Memory

TrackUpdateEvent

Figure 7.6: Engagement Manager Class Diagram

from one memory area to the other.
Listing 7.8 provides a code example illustrating how the TrackEvaluationHandler was
implemented.

1 private class TrackEvaluationHandler extends AsyncEventHandler{
2 public TrackEvaluationHandler(){
3 super(new PriorityParameters(15),
4 null, null, null, null, false);
5 }
6

7 public void handleAsyncEvent(){
8 Track track = (Track)trackEvaluationQueue.read();
9 trackEvaluationStart[currentIteration] = System.nanoTime();

10 if(track != null &&
11 track.getIdentity().getValue() == TrackIdentity.HOSTILE &&
12 aCircle.isInside3D(track.getPosition())){
13 trackEvaluationEnd[currentIteration] = System.nanoTime();
14 currentIteration++;
15 engageTrack(track.getPosition());
16 }
17 }
18 }

Listing 7.8: Java code from the RTSJ implementation of TrackEvaluationHandler

Listing 7.8 shows how the TrackEvaluationHandler is given a higher priority than the 10
available in standard Java (line 3). The handleAsyncEvent is executed whenever a Track-
UpdateEvent is triggered (line 7). The function retrieves the track which should be evaluated
and checks if it is inside the protected geographical area, by utilizing functionality provided by
the T-Core framework (line 10-12). If the hostile track is inside the geographical area it is queued
for handling by the EngagementHandler by using the engageTrack() method (line 15).
Further implementation details of the EM component is provided in appendix B.

84

Evaluating the Results

7.4.2.3 Evaluating the Results

During sub-step 4.2 it was evaluated whether the EM component was able to meet the timing
requirements set up in section 7.2. The JamaicaVM was chosen for testing the component, based
on the real-time performance displayed through the analysis done in chapter 6. The test was
performed while the TM component was deployed on the same node as the EM component, in
accordance with requirement R12. The TM component was executing using the HotSpot JVM,
while the EM component was executing using the JamaicaVM. The test would reveal if the RTSJ-
based EM component would be able to meet its timing guarantees, even though the TM component
was handling 200 track updates per second, on the same node. This should work in theory as the
JamaicaVM is able to utilize an extended priority range reserved for real-time processing in the
underlying operating system. These priorities are not available to the HotSpot JVM, hence the
scheduler of the operating system should choose the EM component for execution in favor of the
TM component.
The detailed timing results of the EM component executing on the JamaicaVM can be seen in
table 7.1, for comparison the timing requirements from section 7.2 has been included in the table.
The results are based on measurements of 2000 hostile tracks sent through the system, each sep-
arated by 0,25 seconds. To illustrate the different timing intervals during a track evaluation and
engagement figure 7.7 is provided as an example scenario.

Average Max Std. Dev. Required

Total Handling Duration (ms): ≤
Evaluation Duration (ms): ≤

Weapon Communication Total Duration (ms):
Weapon Communication Period (ms):

Evaluation/Communication Delay (ms): ≤

Table 7.1: Engagement Manager Test Results, using the JamaicaVM

Total Handling Duration indicates the time spend from the TrackUpdateEvent is triggered
until the WeaponComHandler has finished communicating with the weapon. The Evaluation
Duration shows the amount of time the TrackEvaluationHandler spends doing the math-
ematical calculations, which checks if the hostile track is inside the protected geographical area.
Weapon Communication Total Duration indicates the time used by the WeaponComHandler
for sending the 10 consecutive messages, separated by ms each (See requirement R10). The
Weapon Communication Period shows the actual period used for sending the 10 consecutive mes-
sages. Finally, Evaluation/Communication Delay indicates the time it takes from a hostile track
has been detected inside the protected area until the WeaponComHandler, which is spawned
by the EngagementHandler, starts communicating with the weapon.
Figure 7.8 illustrates the Total Handling Duration for each of the 2000 tracks used for the test.
Similar graphs for the remaining timing measurements can be found in appendix B.
It is seen how the total handling time for a track is mostly between and ms. However,
outliers exist where the handling time reaches and ms. When the graph in figure 7.8 is
compared to the graph showing the Evaluation/Communication Delay (figure B.5, page 120), it is
clear that the spikes are caused in this particular time span. This is most likely due to overhead
introduced when spawning a new thread. This problem could be avoided by having a pool of
WeaponComHandler threads, which are ready to do communication instead of spawning a new
thread every time communication is needed.

85

Chapter 7. Case Study: Terma T-Core

WeaponComHandler

TrackEvaluationHandler

EngagementHandler

Communi-

cating

Evaluating

Track

Time (ms)

Track Update

Event

Initiating

Engagement
Iteration No.

1

1 9 10

Figure 7.7: Ideal Timing for the Engagement Manager Component

██

██

██

██

██

██

██

██

██

0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
o

ta
l

T
ra

ck
 H

a
n

d
li

n
g

 T
im

e
(m

s)

Track No.

Figure 7.8: Total Handling Duration for the Engagement Manager Component

All of the results satisfy the requirements for the EM component stated in section 7.2, except
requirement R8.1. This requirement is concerned with the interval Evaluation/Communication
Delay in table 7.1, which must not exceed ms. Hence this initial test was only partially success-
ful.

7.5. Discussion

This chapter described how the TJARP method was applied to a complex industrial case study:
The Terma T-Core framework. The case included real-time optimization of the existing TM com-
ponent, and the addition of the new EM component with hard real-time requirements.
The first step of the method resulted in a clear definition of requirements and in particular the
important timing requirements. These would later serve as guiding principles when making de-
cisions in the followings steps. The timing requirements were also used to measure the success
of the systems real-time behavior during evaluation. Furthermore, the characterization of timing
requirements presented through chapter 4, served as a starting point for eliciting concrete timing
requirements together with Terma. Hence, it was clarified for both parties, what was expected

86

Discussion

from introducing real-time performance in the T-Core framework.
The second step of the method included modeling the system and resulted in the authors gaining an
overview and understanding of the large code base, which comprises the T-Core framework. Also
potential bottlenecks for the EM component were identified and mitigated through design space
exploration leading to the initial system architecture. The model confirmed that the hard real-time
EM component needed to be isolated from the rest of the system in order to meet its deadlines.
Also the model helped introduce an additional handler thread into the component, which helped
minimize delays when several weapons were controlled simultaneously.
The third step of the method resulted in a choice of real-time java strategy, for both the TM
component and the EM component of the Terma T-Core framework. The choices were supported
by the timing requirements elicited in step 1. The strategy was for the TM component to be ported
to the PERC Ultra in order to introduce soft real-time performance. The strategy for the EM
component was to implement it using the RTSJ, in order to achieve hard real-time performance.
During the fourth step, the TM component was successfully ported to the PERC Ultra JVM, and
the EM component was implemented using RTSJ. By doing this, it was revealed that the perfor-
mance of the PERC Ultra was unable to execute the TM component under the large workload
as specified by the requirements. The EM component implemented using the RTSJ provided the
desired real-time guarantees, except a single requirement (R8.1) which was violated by ms.
However, the authors believe that the proposed solution of using a dedicated thread pool, would
allow the system to meet all timing requirements, including R8.1. The case study also showed that
the hard real-time performance of the EM component was not compromised by executing non-real
applications on the same node.
It might have been possible to achieve better performance with the PERC Ultra by using additional
efforts e.g. by utilizing the optimization tools provided by Atego. The authors’ qualifications for
working with the PERC Ultra, were based on a two-day introduction workshop to the PERC Ultra
JVM, held by Atego. Also, the obtained results must be seen in light of the limited timeframe
available for the thesis work.
The EM component implemented using the RTSJ is somewhat limited in functionality as it does
not interface with real hardware. This was chosen as the focus was on guaranteeing the timeliness
of periodic invocations. Also the restrictions on accessing different memory areas imposed by the
RTSJ, complicated the use of functionality and classes from the T-Core framework. In general,
the most time consuming and challenging part of the case study was the design and configuration
of the memory areas in the RTSJ implementation. The development process could however have
benefitted from modeling the memory areas within step 2, thus utilizing VDM-RT for evaluating
the usage of scoped memory, immortal memory and heap memory.

87

Chapter8
Concluding Remarks and Future Work

This chapter briefly discusses the work presented in this thesis and concludes upon the achieved
results. The thesis goals described in chapter 1 are related to the results, and especially the
proposed TJARP method described in chapters 4 to 6. The results from the case study described
in chapter 7 are used to evaluate the method.

8.1. Introduction

This thesis has investigated the area of real-time Java, where the Java community for several
years has tried to bridge the gap between existing real-time techniques and the Java program-
ming language. The widespread usage of the language with its high-level programming model
and large amount of available libraries, together with the many benefits of automatic memory
management and platform independence, have motivated this effort even further. However, as de-
scribed throughout this thesis, the Java language suffers from non-deterministic temporal behavior
and many challenges are faced when transforming a Java application towards real-time behavior.
From the work supporting this thesis it is clear that real-time performance using Java is in fact
possible, however as the degree of determinism increases so does the amount of compromises that
have to be made.
Section 8.2 describes and discusses the achieved results. Future work is described in section 8.3,
and finally the personal learning outcomes are described in section 8.4 together with final remarks
in section 8.5.

8.2. Achieved Results

This thesis has analyzed available options for using Java in real-time systems, where an industrial
case study was provided by Terma. The case study included a complex Java system with the
need for obtaining real-time guarantees. The case study and the authors wide interest in Java and
real-time systems motivated the goals of this thesis which, as presented in chapter 1, were:

1. To provide an overview of available real-time Java technologies through evaluation
and comparison, which will assist the choice of the optimum strategy towards achiev-
ing real-time performance.

89

Chapter 8. Concluding Remarks and Future Work

2. To propose a methodology which will facilitate the process of introducing real-time
performance in existing Java applications.

In order to meet the thesis goals it was essential to study the available literature and relevant
technologies, where especially the temporal challenges faced by standard Java applications were
important to understand. These were investigated and described in chapter 2, where the Car Con-
troller example was used to illustrate concrete examples e.g. automatic memory management was
proven to have a negative effect on the temporal behavior.
Two official extensions to the Java language are proposed through the Java Community Process
(JCP) to improve the temporal behavior of Java, the Real-Time Specification for Java (RTSJ) and
the Safety Critical Java (SCJ) specification. These extensions are results of several years’ effort
towards obtaining real-time performance with Java. The extensions are described in detail in
chapter 3, thus contributing to the first goal of this thesis.
The theory presented in chapter 2, the official extensions described in chapter 3 and the differ-
ent strategies described in chapter 6 show the difficulty of selecting the optimum solutions for
real-time Java. The available technologies all provide various kinds of advantages and disadvan-
tages, where the best solution is highly dependent on the type of application and the applicable
requirements. As a result the TJARP method is proposed with a structured set of guidelines for
transforming Java applications towards real-time performance. The method is the primary product
of this thesis as described by the second thesis goal. The method promotes a clear definition of
real-time requirements followed by an analysis of the system by use of the modeling language,
VDM-RT. Finally the method describes different implementation strategies, each with a specific
purpose, goal and individual degree of real-time performance.
The following section highlights the achieved results for each step of the TJARP method. The first
and second step of the method are discussed in section 8.2.1 and 8.2.2 respectively. The iterative
process of step three and four is discussed in section 8.2.3. Finally the method was applied to an
industrial case study, where the results are discussed in section 8.2.4.

8.2.1 Step 1: Requirements Analysis

Chapter 4 presented Requirements Analysis as the first step of the TJARP method. The chapter
briefly discussed the role of requirements in real-time systems, where the process of extending
functional requirements, with the non-functional real-time requirements was explained. The Car
Controller example was used to illustrate key points e.g. how the minimum and maximum interval
between two brake-events are equally important.
Different types of real-time requirements were introduced in the chapter, such as the separation
of events, allowed deadlines, jitter etc. Furthermore, the importance of categorizing requirements
into hard or soft was emphasized. The step is a crucial part of the TJARP method as the re-
quirements serves as input for the model in step 2, the base for choosing a strategy in step 3 and
as a basis for evaluation in step 4. The understanding and definition of real-time requirements
contributes to both thesis goals.

8.2.2 Step 2: System Modelling

Chapter 5 presented System Modeling as the second step of the TJARP method, and motivated the
development of a VDM-RT model with focus on real-time requirements and temporal attributes.
This step utilizes the ability of the VDM-RT language to model both the functional and structural
parts of the system, but also to constrain the model for temporal analysis. The Car Controller
example was modeled using VDM-RT which identified temporal bottlenecks that later required

90

Step 3 and 4: Selecting and Implementing Java Strategy

extra attention in the real-time implementation. But the model also showed how a new distributed
architecture helped meet the specified requirements, proving how valuable time can be saved early
in the design process before moving to the actual development step.
As part of this thesis the VDM development tool Overture, has been updated. The Real-Time Log
Viewer (RTLV), in Overture, has been re-designed and re-implemented for faster processing and
loading. The new design successfully contributed to the VDM community and together with the
VDM-RT modeling language proved to be a valuable tool, both within chapter 5 but also for the
Terma case study in chapter 7. The usage of formal modeling with VDM-RT is an important part
of the TJARP method and contributes to meeting the second thesis goal.

8.2.3 Step 3 and 4: Selecting and Implementing Java Strategy

Chapter 6 presented Java Strategy Selection and Implementation as the third and fourth step of
the TJARP method. Furthermore, an analysis uncovering the characteristics of relevant JVMs
was performed and thus contributing to the first thesis goal. This analysis revealed that Aicas’
JamaicaVM provides the best real-time characteristics but at the price of significantly reduced
performance. The Oracle HotSpot provides the best performance but no real-time guarantees,
while Atego’s PERC Ultra is an intermediate solution providing soft real-time performance and
medium performance.
The chapter also identified three different strategies for achieving real-time performance using
Java, along with their strengths and weaknesses. These strategies are used as sub-steps in step 3
of the method and thus contribute to the second thesis goal. The strategies are:

Optimizing Standard Java: This approach relies on optimization of the existing application and
the current JVM. Advantages of this solution are that it is a simple and fast way of im-
proving the performance and timing predictability of the application. However, the major
disadvantage is that no real-time guarantees can be provided by this approach.

Substituting the JVM: This approach is concerned with substituting the current JVM with a
real-time JVM, including a real-time garbage collector. A significant advantage of this ap-
proach is that there is no need to rewrite the application to make use of different thread types
or memory models. Disadvantages are that only soft real-time guarantees are achievable and
the performance of the real-time JVMs is limited.

Applying the RTSJ: This approach relies on re-design and re-implementation of the existing
application using the RTSJ, entirely or partly. An advantage of this approach is that it is
possible to achieve hard real-time performance. However, a large disadvantage is the effort
associated with utilizing the RTSJ, caused by its memory model.

The three approaches were applied to the Car Controller example, in order to gain practical expe-
rience, which could contribute to the analysis. Applying the third approach to the Car Controller
example was particular challenging, as the work with the RTSJ revealed to be cumbersome and
error prone.
In addition to the three approaches described above a fourth approach exists. This approach targets
the use of Java for certifiable safety critical systems e.g. through the SCJ specification (see chapter
3) or commercial alternatives. This approach has been left out of the TJARP method intentionally
as it is still too immature for use in industry. This approach will be further described as part of
future work (see section 8.3).

91

Chapter 8. Concluding Remarks and Future Work

8.2.4 Applying the TJARP Method on the T-Core Case Study

Chapter 7 describes the application of the TJARP method on the Terma T-Core case study. The
purpose of the case study was to evaluate the TJARP method by analyzing and introducing soft
real-time performance to the existing Track Manager (TM) component. Furthermore, the design
and Java strategy was determined, for a newly introduced Engagement Manager (EM) component,
with hard real-time constraints.

The case study proved that the TJARP method was able to analyze an existing complex system.
The existing functional requirements of the TM component were extended with non-functional
timing requirements, and the design of the additional EM component was developed. Figure 8.1
provides an overview of the degree of real-time required for the different components of the T-
Core case study. The system was modeled using VDM-RT which helped identify several areas of
concern. Here especially the design of the EM component was refined as the model determined
timing bottlenecks in the initial design.

Track

Management

(TM)

Infrastructure

Operator

Infrastructure

Engagement

Manager

(EM)

Infrastructure

Non Real-TimeSoft Real-Time Hard Real-Time

Figure 8.1: Degrees of real-time performance in the T-Core case study components

The experience gained through use of the model gave valuable input to the implementation of the
EM component. The component was implemented using the RTSJ and executed on a separate
JVM (the JamaicaVM), in order to isolate the hard real-time computations as identified by the
model. The TM component was tested on the PERC Ultra JVM in order to improve its real-time
guarantees. However, the test results revealed that the JVM was unable to meet the performance
requirements of the system, and therefore the HotSpot had to be reintroduced. The final proto-
type of the EM component showed how the periodic communication with an imaginary weapon
system was in fact able to meet hard real-time requirements. The periodic communication were
guaranteed with maximum jitter value as low as 1,76%, even with an additional JVM doing inten-
sive computation on the same node. This illustrates how the TJARP method can help determine
a design which accommodates a temporal constrained component with achieving hard real-time
guarantees. Furthermore, it is shown how the method supports development of systems with need
for mixed real-time performance.

The case study allowed for evaluation of the TJARP method on a real-life case, and hence con-
tributing to the second thesis goal. The method proved to be effective and helped select a strategy
for the introduction of real-time guarantees. However, the case also provided the authors with
important experience e.g. the sequential progress between step 2 and 3 actually turned out to be
iterative. By continuously involving and updating the model in the implementation phase of step
3 and 4, the authors were able to do early testing and design updates on the model, saving valuable
time and effort.

92

Future Work

8.3. Future Work

Through the work on this thesis the authors has become aware of several interesting areas, which
could be investigated further in the future. These areas are either concrete proposals for improving
the TJARP method or simply related to the subjects described in this thesis. The following sections
from 8.3.1 to 8.3.6 describe how future work within these areas could improve the results of this
thesis.

8.3.1 Letting the TJARP Method Further Exploit the VDM Model

Practical experience was gained from applying the TJARP method to the T-Core case study. Here it
turned out that the interaction between step 2 and step 3, were exhibiting a more iterative behavior
than first described through chapters 5 and 6.
It became clear that the development process benefitted significantly from bringing the model
from step 2, into step 3 and do continuously design space exploration using the executable model.
Therefore, it is believed that the description of the TJARP method should be altered in order to
encourage further usage of the VDM model in step 3. This would benefit the selection of real-time
Java strategy, by allowing the strategy to be tested on the model before it is implemented during
step 4.

8.3.2 Utilize VDM Modeling for Designing RTSJ Applications

Several times through this thesis it has been pointed out that the RTSJ is difficult to use in practice.
This is mainly due to its complex memory model which introduces several types of memory areas
with strict memory access rules.
However, the VDM language can potentially ease the task of working with the RTSJ, by augment-
ing the model with information about the RTSJ memory areas and their access rules. A concurrent
model could be used for identifying potential violations of the memory access rules, which occurs
when sharing resources between active objects. Hence, the active objects, their use of memory
areas and interaction could be designed using the VDM model before any RTSJ code is written.
This could be achieved by implementing a RTSJ memory library in VDM-RT which could be ref-
erenced by the model similar to the actual RTSJ implementation e.g. by adding class instances to a
specific memory area implementation which is then subject to invariant checks for each operation.
This proposal could contribute to the RTSJ community in general, however the TJARP method
would also benefit implicitly as it utilizes the RTSJ in sub-step 3.3. Additionally, this idea supports
the proposal of utilizing the VDM model further during step 3 as described in section 8.3.1. It
would then be possible to explore different designs of RTSJ components by using the model
during step 3.

8.3.3 Extending the TJARP Method with Support for Mission Critical Systems

Support for certifiable safety critical applications has been left out of the TJARP method inten-
tionally, as the available solutions are still too immature to be used in industry. Available solutions
for using Java in certifiable safety critical systems include the SCJ specification (see section 3)
and the commercial alternative by Atego, the PERC Pico [Nilsen07].
However, in the future, support for certifiable safety critical systems could be added to the TJARP
method by expanding step 3 with another sub-step. This sub-step should then be concerned with
redesigning and rewriting mission critical parts of the application for using SCJ or an alternative
solution.

93

Chapter 8. Concluding Remarks and Future Work

The introduction of support for these systems further motivates the TJARP method’s use of a
formal modeling technique like VDM during the development process. This potential expan-
sion to the method would also benefit from incorporating the two proposals described in sec-
tions 8.3.1 and 8.3.2.

8.3.4 Extending the TJARP Method with Support for Distributed Nodes

Many Java based applications rely on a distributed architecture, where different Java applications
communicate in order to achieve a common goal. This distributed communication is beyond
the scope of this thesis. However, this is an interesting and highly relevant area for future work.
Appendix E describes some of the most relevant specifications and available middleware solutions
for optimizing real-time performance in a distributed environment. However, as described in the
appendix, the only official language extension for distributed real-time Java (DRTSJ) is unfinished
and currently marked as inactive.
The TJARP method can be extended to include the notion of distributed computation, by utilizing
the advanced features of VDM-RT to do architectural prototyping on distributed nodes (see sec-
tion 5.4.4). The method could further include distributed communication as a separate sub-step
in the third step of the method. The introduction of real-time guarantees across nodes in systems,
such as T-Core, is highly relevant, and a candidate for future work.

8.3.5 Further Exploiting the VDM Language and Tool Support

The VDM-RT modeling language together with the Overture tool, have proven to be valuable
inputs to the TJARP method. Especially the ability to raise the level of abstraction while still
maintaining the notion of time has proven to be useful. However, the many benefits described in
chapter 5 does not fully cover all the possibilities offered by the language and tool support. Addi-
tional features such as combinatorial testing and model coverage could be interesting additions to
the second step of the method. These features allow for further increasing the confidence within
the behavior of the model, and thus contribute to the second thesis goal.
The Real-Time Log Viewer (RTLV) feature of the Overture tool has been re-implemented as part
of this thesis. This new design has increased its usability by reducing the load time and improved
the general performance. However, several additional features of the RTLV would make it even
better. The user interface could be extended with a “live scroll bar”, where the user is able to see
a total overview of the log events and select special areas of interest which is then loaded by the
main view. Similarly the ability to zoom in and zoom out could increase the usability even further.
This is supported by the new architectural design of the RTLV.
The usage of VDM-RT in the TJARP method benefits greatly from validation conjectures, even
though these are still an experimental feature of the Overture tool. Future work with conjectures
should focus on improved tool support, e.g. by specifying conjectures through the user interface
and not as comments within the model code as is the case in the current version. Similarly is the
support for higher time resolution than the current milliseconds desirable, e.g. by specifying “ns”
for nanoseconds instead of “ms” for milliseconds.

8.3.6 Improvements to the T-Core Case Study

The application of the TJARP method on the T-Core case study has provided the authors with valu-
able experiences as described in chapter 7. The limited timeframe of this thesis forced the authors
to do a simplified proof-of-concept, with focus on the important aspects for evaluating the method.
However, the case study, with both the VDM-RT model and the actual Java implementation could

94

Personal Learning Outcomes

benefit from future work.
The model could be extended to provide even more information about the temporal behavior of
the existing T-Core system if a more detailed use of duration were utilized. This could be
done by analyzing the real-life durations of specific operations and then use these values within
the model. The evaluation of different JVMs and their influence on these duration statements
could be implemented by adding a scalar, e.g. of one for the HotSpot and four for the PERC Ultra
to model the difference in performance between the two.
The Java implementation of the EM component is simplified in order to extract only relevant
attributes. Therefore, the current implementation could also benefit from future work. The com-
ponent receives only track updates generated on the same JVM, as the communication between the
TM component (on the HotSpot) and the EM component (on the JamaicaVM) caused additional
difficulties.

8.4. Personal Learning Outcomes

Prior to this thesis both authors had very limited experience with academic research projects.
Previous work was mostly concerned with technical implementations and the associated docu-
mentation. The work supporting this thesis required a comprehensive and thorough analysis of
the available literature where the authors were required to extract only relevant information. This
process has strengthened our ability to quickly obtain an overview of interesting and important
parts of the available literature. This is an important ability as some research papers are highly
relevant while others provide little or no useful information for the task at hand. The area of real-
time Java is highly influenced by commercial interests and it has been an interesting challenge of
providing a neutral view on the available solutions and technologies.
The authors have gained a much deeper knowledge of the possibilities for obtaining real-time
performance with Java as desired by the two learning goals in section 1.3. Before this thesis the
authors had a great interest in both Java and real-time systems together with a basic knowledge
of both, but knew very little about real-time Java. The work of this thesis has promoted a better
understanding of the temporal characteristics of standard Java including the challenges of using
the essential high-level language features, such as garbage collection and platform independence,
while providing deterministic temporal behavior.
This thesis has been completed in cooperation with Terma A/S who provided the T-Core case
study, which at first, was too specific and product oriented to be the main subject for a master’s
thesis. Therefore, the authors learned to raise the levels of abstraction and generalize the given
challenge, in order to propose a universal solution which could be put to use by others. This
interaction with a company, which has a clear business goal of achieving real-time for its Java
systems, served as a great motivation. This also allowed the authors to participate in a technical
workshop held by Atego, which served as an introduction to the PERC Ultra JVM and the general
challenges of obtaining real-time performance with Java. Therefore, to learn about the subject
of real-time Java from a practitioner was a great learning experience. Here the authors were
confirmed, that a substantial part of the material already produced for this thesis was indeed correct
and highly relevant.
During this thesis, the main focus area has shifted several times. The original idea was to investi-
gate if it was possible to achieve real-time performance using Java. As our knowledge of real-time
Java was very limited beforehand, the initial approach was to research the area, where it quickly
became clear that it was indeed possible. However, several solutions were available and it was
difficult to assess which particular solution was the best choice. Hence the idea of a methodology,

95

Chapter 8. Concluding Remarks and Future Work

for selecting the best approach for achieving real-time performance using Java, became the focus
of the thesis.
Through the progress of this thesis, we have evolved as software engineers both in relation to
the technical knowledge obtained, but also through the ability to communicate a highly detailed
research area in a broad and consumable fashion. Through our education, to become software
engineers, we have learned to divide large and overwhelming challenges in to smaller and more
manageable parts. These skills were also put to use through this thesis where the task of analyzing
the available strategies were broken down. First an investigation was carried out, uncovering
why standard Java does not provide real-time guarantees. Afterwards existing solutions were
researched and tried out. Finally, the theory and the practical experiences made were put together
into this thesis.

8.5. Final Remarks

The goals of this thesis were to provide an overview of available real-time technologies for Java,
and to propose a methodology to facilitate the process of selecting the optimum strategy. The
authors are very pleased with the result of this thesis which successfully meets all specified goals.
The thesis proves that the possibilities and options for achieving real-time guarantees using Java
systems are many. The task of providing a complete and detailed overview of all available solu-
tions is an unrealistic task for the course of a master´s thesis. Instead, a general method has been
developed to provide a step-by-step approach supported by formal modeling to determine and
analyze real-time requirements, as well as selecting the optimum path. This has been supported
by a detailed analysis of some of the available language specifications and runtime environment
implementations. A very realistic and suitable set of benchmark tests have been created, config-
ured and applied to some of the most relevant JVM implementations on the market, including the
Atego PERC Ultra and Aicas JamaicaVM. The proposed method has been applied successfully
on an industrial case study, where hard real-time performance was obtained. The case study was
a simplified proof-of-concept and allows for future work and optimizations, but the experience
obtained were valuable input for evaluation of the method.
To conclude, obtaining real-time guarantees with Java is in fact possible. However, many tradeoffs
and compromises must be made, as presented throughout this thesis.
The authors sincerely hope that others will adopt the TJARP method and use it for evaluating
possible implementation strategies for reaching real-time performance with Java. The work sup-
porting the method can optionally, be used in isolation for evaluating different approaches, such
as the JVM benchmark results or the analysis of official language extensions for Java. It is be-
lieved that the shortcomings mentioned as future work, will strengthen the method and real-time
Java even further. Especially the possibilities for using VDM-RT to model the complex memory
approach of RTSJ before implementation, is an interesting area for future research.

96

References

[Aicas06] Aicas GmbH. The JamaicaVM brings Java Technology to Mission
Software in an unmanned aircraft by EADS. Press Release, Jun 2006.
http://www.aicas.com/press/pr_34_en_28-Jun-06.
html [Accessed: 9. Dec, 2012]. [cited at p. 62]

[Aicas12] Aicas GmbH. JamaicaVM 6.1 - User Manual: Java Technology for
Critical Embedded Systems. Technical Report, Aicas, 2012. [cited at p. 49,

51, 68]

[aJile] aJile Systems Inc. aJile Systems. Web, Dec 2012. http://www.
ajile.com/ [Accessed: 9. Dec, 2012]. [cited at p. 53]

[Atego06] Atego Systems, Inc. Lockheed Martin Selects Aonix PERC Vir-
tual Machine for Aegis Weapon System. Press Release, Oct 2006.
http://www.atego.com/pressreleases/pressitem/lockheed-
martin-selects-aonix-perc-virtual-machine-for-
aegis-weapon-system [Accessed: 9. Dec, 2012]. [cited at p. 59]

[Atego12] Atego Systems, Inc. PERC R© Ultra SMP 6.1 - User Manual. Techni-
cal Report, Atego, 2012. [cited at p. 51, 68]

[Bacon&03] Bacon, David F. and Cheng, Perry and Rajan, V.T. The Metronome:
A Simpler Approach to Garbage Collection in Real-time Systems. In
Workshop on Java Technologies for Real-Time and Embedded Sys-
tems (JTRES), OTM Workshops, pages 466–478, 2003. [cited at p. 7,

28]

[Baker06] Baker, Theodore P. An Analysis of Fixed-Priority Schedulability on
a Multiprocessor. Real-Time Syst., 32(1-2):49–71, February 2006.
[cited at p. 7, 13]

[Baker&88] Baker, T.P. and Shaw, A. The cyclic executive model and Ada. In
Real-Time Systems Symposium, 1988., Proceedings., pages 120 –
129, dec 1988. [cited at p. 12]

97

http://www.aicas.com/press/pr_34_en_28-Jun-06.html
http://www.aicas.com/press/pr_34_en_28-Jun-06.html
http://www.ajile.com/
http://www.ajile.com/
http://www.atego.com/pressreleases/pressitem/lockheed-martin-selects-aonix-perc-virtual-machine-for-aegis-weapon-system
http://www.atego.com/pressreleases/pressitem/lockheed-martin-selects-aonix-perc-virtual-machine-for-aegis-weapon-system
http://www.atego.com/pressreleases/pressitem/lockheed-martin-selects-aonix-perc-virtual-machine-for-aegis-weapon-system

[Barbacci&08] Barbacci, Mario R. and Ellison, Robert and Lattanze, Anthony J. and
Stafford, Judith A. and Weinstock, Charles B. and Wood, William G.
Quality Attribute Workshops (QAWs). [cited at p. 33]

[Benowitz&03A] Benowitz, Edward G. and Niessner, Albert E. Experiences in adopt-
ing real-time java for flight-like software. In OTM 2003 Workshops,
pages 490–496, Springer Verlag, 2003. [cited at p. 28]

[Benowitz&03B] Benowitz, Edward G. and Niessner, Albert E. A patterns catalog
for RTSJ software designs. In In Workshop on Java Technologies
for Real-Time and Embedded Systems (JTRES), OTM Workshops,
pages 497–507, 2003. [cited at p. 28]

[Bloch01] Bloch, Joshua. Effective Java programming language guide. Sun
Microsystems, Inc., Mountain View, CA, USA, 2001. [cited at p. 21]

[Bøgholm&08] Bøgholm, Thomas and Kragh-Hansen, Henrik and Olsen, Petur. Model-
Based Schedulability Analysis of Real-Time Systems. Master’s the-
sis, Department of Computer Science, Aalborg University, Jun 2008.
137 pages. [cited at p. 45]

[Bollella&00] Bollella, Gregory and Gosling, James. The Real-Time Specification
for Java. IEEE Computer, 33(6):47–54, 2000. [cited at p. 23]

[CD] Purdue University. Collision Detector A Famility of Real-time Java
Benchmarks. Web, Dec 2012. http://sss.cs.purdue.edu/
projects/cdx/ [Accessed: 10. Dec, 2012]. [cited at p. 55, 127]

[Chen&05] Chen, Yaofei and Dios, R. and Mili, A. and Wu, Lan and Wang, Ke-
fei. An empirical study of programming language trends. Software,
IEEE, 22(3):72 – 79, May-Jun 2005. [cited at p. 1]

[Chung&09] Chung, Lawrence and do Prado Leite, Julio. On Non-Functional
Requirements in Software Engineering. In Borgida, Alexander and
Chaudhri, Vinay and Giorgini, Paolo and Yu, Eric, editors, Conceptual
Modeling: Foundations and Applications, pages 363–379, Springer
Berlin / Heidelberg, 2009. [cited at p. 33]

[Clarke&86] Clarke, E. M. and Emerson, E. A. and Sistla, A. P. Automatic veri-
fication of finite-state concurrent systems using temporal logic spec-
ifications. ACM Transactions on Programming Languages and Sys-
tems, 8:244–263, 1986. [cited at p. 35]

[Coffman&71] Coffman, E. G. and Elphick, M. and Shoshani, A. System Deadlocks.
ACM Comput. Surv., 3(2):67–78, Jun 1971. [cited at p. 15]

98

http://sss.cs.purdue.edu/projects/cdx/
http://sss.cs.purdue.edu/projects/cdx/

[Crocker10] Crocker, David. Dynamic Memory Allocation in Critical Embed-
ded Systems. Web, 2010. http://critical.eschertech.
com/2010/07/30/dynamic-memory-allocation-in-critical-
embedded-systems/ [Accessed: 9. Dec, 2012]. [cited at p. 18]

[Davis&11] Davis, Robert I. and Burns, Alan. A survey of hard real-time schedul-
ing for multiprocessor systems. ACM Comput. Surv., 43(4):35:1–
35:44, October 2011. [cited at p. 14]

[Dawson07] Dawson, Michael. Real-time Java Part 6: Simplifying real-time Java
development. jul 2007. [cited at p. 28]

[Dawson08] Dawson, Michael H. Challenges in Implementing the Real-Time Spec-
ification for Java (RTSJ) in a Commercial Real-Time Java Virtual
Machine. In Proceedings of the 2008 11th IEEE Symposium on
Object Oriented Real-Time Distributed Computing, pages 241–247,
IEEE Computer Society, Washington, DC, USA, 2008. 7 pages.
[cited at p. 19]

[Dijkstra65] Dijkstra, Edsger W. Solution of a problem in concurrent program-
ming control. Commun. ACM, 8(9):569–, September 1965. [cited at p. 15]

[Dijkstra68] Dijkstra, Edsger W. Cooperating sequential processes. In F. Genuys,
editor, Programming Languages: NATO Advanced Study Institute,
pages 43–112, Academic Press, 1968. [cited at p. 15]

[DO-178B] RTCA SC-167/EUROCAE WG-12. Software Considerations in Air-
borne Systems and Equipment Certification. Technical Report RTCA/DO-
178B, RTCA Inc, 1140 Connecticut Avenue, N.W., Suite 1020, Wash-
ington, D.C. 20036, December 1992. [cited at p. 27]

[Douglass01] Douglass, Bruce Powel. Capturing Real-Time Requirements. Nov
2001. http://www.embedded.com/design/prototyping-
and-development/4023862/Capturing-Real-Time-Requirements
[Accessed: 9. Dec, 2012]. [cited at p. 31]

[FijiVM] Fiji Systems Inc. Java. Anywhere. On time. Web, Dec 2012. http:
//fiji-systems.com/ [Accessed: 9. Dec, 2012]. [cited at p. 53]

[Fitzgerald&07] Fitzgerald, John and Larsen, Peter Gorm and Tjell, Simon and Ver-
hoef, Marcel. Validation Support for Distributed Real-Time Embed-
ded Systems in VDM++. Technical Report CS-TR:1017, School of
Computing Science, Newcastle University, April 2007. 18 pages.

99

http://critical.eschertech.com/2010/07/30/dynamic-memory-allocation-in-critical-embedded-systems/
http://critical.eschertech.com/2010/07/30/dynamic-memory-allocation-in-critical-embedded-systems/
http://critical.eschertech.com/2010/07/30/dynamic-memory-allocation-in-critical-embedded-systems/
http://www.embedded.com/design/prototyping-and-development/4023862/Capturing-Real-Time-Requirements
http://www.embedded.com/design/prototyping-and-development/4023862/Capturing-Real-Time-Requirements
http://fiji-systems.com/
http://fiji-systems.com/

[cited at p. 34, 43]

[Gamma&95] Gamma, E. and Helm, R. and Johnson, R. and Vlissides, J. Design
Patterns. Elements of Reusable Object-Oriented Software. Volume of
Addison-Wesley Professional Computing Series, Addison-Wesley Pub-
lishing Company, edition, 1995. 395 pages. . [cited at p. 125]

[Gilb97] Gilb, Thomas. Towards the Engineering of Requirements. Requir.
Eng., 2(3):165–169, 1997. [cited at p. 33]

[Glinz05] Glinz, Martin. Rethinking the Notion of Non-Functional Require-
ments. In Proceedings of the Third World Congress for Software
Quality (3WCSQ’05, pages 55–64, 2005. [cited at p. 33]

[Gosling&96] Gosling, James and Joy, Bill and Steele, Guy L. The Java Language
Specification. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1st edition, 1996. [cited at p. 14]

[Hertz&04] Hertz, Matthew and Berger, Emery D. Automatic vs. Explicit Mem-
ory Management: Settling the Performance Debate. OOPSLA ’04,
2004. [cited at p. 19]

[Hertz&05] Hertz, Matthew and Berger, Emery D. Quantifying the performance
of garbage collection vs. explicit memory management. In Proceedings
of the 20th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pages 313–326,
ACM, New York, NY, USA, 2005. [cited at p. 18, 19]

[Higuera-Toledano&12] Higuera-Toledano, M. Teresa and Wellings, Andy, editors. Distributed,
Embedded and Real-time Java Systems. Springer, 2012. 378 pages.
[cited at p. 1, 14, 25, 137]

[Hoare74] Hoare, C. A. R. Monitors: an operating system structuring concept.
Commun. ACM, 17(10):549–557, October 1974. [cited at p. 15]

[IBM04] IBM developerWorks. Java theory and practice: Garbage collec-
tion and performance. Web, Jan. 2004. http://www.ibm.com/
developerworks/java/library/j-jtp01274/index.html
[Accessed: 9. Dec, 2012]. [cited at p. 49]

[IBM07] IBM developerWorks. Real-time Java, Part 1: Using Java code to
program real-time systems. Web, Apr. 2007. https://www.
ibm.com/developerworks/java/library/j-rtj1/ [Ac-
cessed: 9. Dec, 2012]. [cited at p. 1]

[JamaicaVM] Aicas GmbH. JamaicaVM - Java Technology for Realtime. Web,
Dec 2012. http://www.aicas.com/jamaica.html [Accessed:
9. Dec, 2012]. [cited at p. 53]

100

http://www.ibm.com/developerworks/java/library/j-jtp01274/index.html
http://www.ibm.com/developerworks/java/library/j-jtp01274/index.html
https://www.ibm.com/developerworks/java/library/j-rtj1/
https://www.ibm.com/developerworks/java/library/j-rtj1/
http://www.aicas.com/jamaica.html

[JavaRTS] Oracle. Java Real-Time System. Web, Dec 2012. http://www.
oracle.com/technetwork/java/javase/tech/index-
jsp-139921.html [Accessed: 9. Dec, 2012]. [cited at p. 53]

[Jørgensen12] Jørgensen, Peter W. V. Evaluation of Development Process and Method-
ology for Co-Models. Master’s thesis, Aarhus University School of
Engineering, Dec 2012. 80 pages. [cited at p. 123]

[JSR001] Java Community Process. Java Specification Requests: JSR 1 - Real-
Time Specification for Java. 1998. http://jcp.org/en/jsr/
detail?id=1 [Accessed: 9. Dec, 2012]. [cited at p. 2, 23]

[Karlsson97] Karlsson, Joachim and Ryan, Kevin. A Cost-Value Approach for
Prioritizing Requirements. IEEE Softw., 14(5):67–74, Sep 1997.
[cited at p. 36]

[Larsen&09] Peter Gorm Larsen and John Fitzgerald and Sune Wolff. Methods for
the Development of Distributed Real-Time Embedded Systems using
VDM. Intl. Journal of Software and Informatics, 3(2-3), October
2009. [cited at p. 38]

[Larsen&10a] Larsen, Peter Gorm and Lausdahl, Kenneth and Battle, Nick. The
VDM-10 Language Manual. Technical Report TR-2010-06, The
Overture Open Source Initiative, April 2010. [cited at p. 37, 38, 42]

[Larsen&10b] Larsen, Peter Gorm and Lausdahl, Kenneth and Ribeiro, Augusto
and Wolff, Sune and Battle, Nick. Overture VDM-10 Tool Support:
User Guide. Technical Report TR-2010-02, The Overture Initiative,
www.overturetool.org, May 2010. 103 pages. [cited at p. 38, 39]

[Larsen&10c] Larsen, Peter Gorm and Wolff, Sune and Battle, Nick and Fitzgerald,
John and Pierce, Ken. Development Process of Distributed Embed-
ded Systems using VDM. Technical Report TR-2010-02, The Over-
ture Open Source Initiative, April 2010. [cited at p. 38]

[Larsen11] Larsen, Peter Gorm. Introduction to the Modeling of Mission Criti-
cal Systems Course. Slideshow. [cited at p. 40]

[Lauesen02] Lauesen, Søren. Software Requirements: Styles and Techniques.
Addison-Wesley, 2002. [cited at p. 32]

[Lehoczky&89] Lehoczky, J. and Sha, L. and Ding, Y. The rate monotonic scheduling
algorithm: exact characterization and average case behavior. In Real
Time Systems Symposium, 1989., Proceedings., pages 166 –171,
dec 1989. [cited at p. 13]

101

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-139921.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-139921.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-139921.html
http://jcp.org/en/jsr/detail?id=1
http://jcp.org/en/jsr/detail?id=1
www.overturetool.org

[Levanoni&06] Levanoni, Yossi and Petrank, Erez. An on-the-fly reference-counting
garbage collector for java. ACM Trans. Program. Lang. Syst.,
28(1):1–69, January 2006. [cited at p. 19]

[Lieberman&83] Lieberman, Henry and Hewitt, Carl. A real-time garbage collector
based on the lifetimes of objects. Commun. ACM, 26(6):419–429,
June 1983. [cited at p. 19]

[Lindstrom&05] Lindstrom, Gary and Mehlitz, Peter C. and Visser, Willem. Model
checking real time java using java pathfinder. In Proceedings of the
Third international conference on Automated Technology for Veri-
fication and Analysis, pages 444–456, Springer-Verlag, Berlin, Hei-
delberg, 2005. [cited at p. 45]

[Liu&73] Liu, C. L. and Layland, James W. Scheduling Algorithms for Multi-
programming in a Hard-Real-Time Environment. J. ACM, 20(1):46–
61, January 1973. [cited at p. 13]

[Locke&11] Locke, Doug and Andersen, B. Scott and Brosgol, Ben and Fulton,
Mike and Henties, Thomas and Hunt, James J. and Nielsen, Johan
Olmütz and Nilsen, Kelvin and Schoeberl, Martin and Tokar, Joyce
and Vitek, Jan and Wellings, Andy. Safety-Critical Java Technology
Specification, Public draft. 2011. [cited at p. 27]

[Lu&11] Lu, Yue and Kraft, Johan and Nolte, Thomas and Bate, Iain. A
statistical approach to simulation model validation in response-time
analysis of complex real-time embedded systems. In Proceedings of
the 2011 ACM Symposium on Applied Computing, pages 711–716,
ACM, New York, NY, USA, 2011. [cited at p. 45]

[Manna&92] Manna, Zohar and Pnueli, Amir. The temporal logic of reactive and
concurrent systems. Springer-Verlag New York, Inc., New York, NY,
USA, 1992. [cited at p. 35]

[McCarthy60] McCarthy, John. Recursive Functions of Symbolic Expressions and
Their Computation by Machine, Part I. Communications of the ACM,
April 1960, 1960. [cited at p. 18]

[Mikhalenko06] Mikhalenko, Peter. Real-Time Java: An Introduction. May 2006.
http://onjava.com/pub/a/onjava/2006/05/10/real-
time-java-introduction.html [Accessed: 9. Dec, 2012].
[cited at p. 2]

[Mok83] Mok, A. K. Fundamental design problems of distributed systems for
the hard-real-time environment. Technical Report, Cambridge, MA,
USA, 1983. [cited at p. 13, 16]

102

http://onjava.com/pub/a/onjava/2006/05/10/real-time-java-introduction.html
http://onjava.com/pub/a/onjava/2006/05/10/real-time-java-introduction.html

[Nilsen07] Nilsen, Kelvin. Improving abstraction, encapsulation, and perfor-
mance within mixed-mode real-time Java applications. In Proceedings
of the 5th international workshop on Java technologies for real-time
and embedded systems, pages 13–22, ACM, New York, NY, USA,
2007. [cited at p. 28, 69, 93]

[Nilsen09] Nilsen, Kelvin. Differentiating Features of the PERC Virtual Ma-
chine. Technical Report, Atego, 2009. [cited at p. 59, 60]

[Oracle08] Oracle Technology Network. The Java HotSpot Performance Engine
Architecture. Web, 2008. http://www.oracle.com/technetwork/
java/whitepaper-135217.html [Accessed: 9. Dec, 2012].
[cited at p. 14, 49]

[Oracle12] Java SE HotSpot at a Glance. Web, Nov 2012. http://www.
oracle.com/technetwork/java/javase/tech/index-
jsp-136373.html [Accessed: 9. Dec, 2012]. [cited at p. 57]

[OVM] Purdue University. OVM Project. Web, Dec 2012. http://www.
cs.purdue.edu/homes/jv/soft/ovm/ [Accessed: 9. Dec,
2012]. [cited at p. 53]

[PERC] Atego. Aonix PERC. Web, Dec 2012. http://www.atego.
com/products/aonix-perc/ [Accessed: 9. Dec, 2012]. [cited at p. 53]

[Phipps99] Phipps, Geoffrey. Comparing observed bug and productivity rates
for Java and C. Software — Practice and Experience, 29:345–358,
1999. [cited at p. 2]

[Pizlo&04] Pizlo, F. and Fox, J.M. and Holmes, D. and Vitek, J. Real-time Java
scoped memory: design patterns and semantics. In Object-Oriented
Real-Time Distributed Computing, 2004. Proceedings. Seventh IEEE
International Symposium on, pages 101 –110, may 2004. [cited at p. 28]

[Pizlo&09] Pizlo, Filip and Ziarek, Lukasz and Vitek, Jan. Real time Java on
resource-constrained platforms with Fiji VM. In Proceedings of the
7th International Workshop on Java Technologies for Real-Time and
Embedded Systems, pages 110–119, ACM, New York, NY, USA,
2009. [cited at p. 53]

[Plsek09] Plsek, Ales. SOLEIL: An Integrated Approach for Designing and
Developing Component-based Real-time Java Systems. PhD thesis,
Université des Sciences et Technologie de Lille - Lille I, Sep 2009.
[cited at p. 2, 28]

[Rajkumar89] Rajkumar, R. Task Synchronization in Real-time Systems. Carnegie-
Mellon University, 1989. [cited at p. 13]

103

http://www.oracle.com/technetwork/java/whitepaper-135217.html
http://www.oracle.com/technetwork/java/whitepaper-135217.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136373.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136373.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136373.html
http://www.cs.purdue.edu/homes/jv/soft/ovm/
http://www.cs.purdue.edu/homes/jv/soft/ovm/
http://www.atego.com/products/aonix-perc/
http://www.atego.com/products/aonix-perc/

[Rajkumar91] Rajkumar, R. Synchronization in Real-time Systems: A Priority In-
heritance Approach. Kluwer international series in engineering and
computer science: Real-time systems, Kluwer Academic Publishers,
1991. [cited at p. 13]

[Ramakrishna&96] Ramakrishna, Y. S. and Melliar-Smith, P.M. and Moser, L.E. and
Dillon, L. K. and Kutty, G. Interval Logics and Their Decision Pro-
cedures - Part I: An Interval Logic. Theoretical Computer Science,
170:166–1, 1996. [cited at p. 35]

[Ribeiro&11] Ribeiro, Augusto and Lausdahl, Kenneth and Larsen, Peter Gorm.
Run-Time Validation of Timing Constraints for VDM-RT Models. In
9th Overture Workshop, June 2011, Limerick, Ireland, 2011. [cited at p. 39]

[RTSJRI] Timesys. RTSJ Reference Implementation (RI) and Technology Com-
patibility Kit (TCK). Web, Dec 2012. http://www.timesys.
com/java/ [Accessed: 9. Dec, 2012]. [cited at p. 53]

[Sha&86] Sha, Lui and Lehoczky, John P. and Rajkumar, Ragunathan. Solu-
tions for Some Practical Problems in Prioritized Preemptive Schedul-
ing. In IEEE Real-Time Systems Symposium, pages 181–191, IEEE
Computer Society, 1986. [cited at p. 13]

[Sha&90] Sha, L. and Rajkumar, R. and Lehoczky, J.P. Priority inheritance pro-
tocols: an approach to real-time synchronization. Computers, IEEE
Transactions on, 39(9):1175 –1185, sep 1990. [cited at p. 13, 15, 16]

[SPEC] Standard Performance Evaluation Corporation. SPECjvm2008. Web,
Dec 2012. http://www.spec.org/jvm2008/ [Accessed: 10.
Dec, 2012]. [cited at p. 56, 127]

[Stankovic88] Stankovic, John A. Misconceptions About Real-Time Computing.
IEEE Computer, 21(10):10–19, 1988. [cited at p. 33]

[Sun01] Sun Microsystems. The Java HotSpot Virtual Machine. Technical
White Paper. Web, May 2001. 23 pages. . [cited at p. 57]

[Sun03] Sun Microsystems. Sun Bug Database Bug 4813310 - Map Thread
priorities to system thread or process priorities. Web, 2003. http:
//bugs.sun.com/bugdatabase/view_bug.do?bug_id=
4813310 [Accessed: 9. Dec, 2012]. [cited at p. 21]

[Sun06] Sun Microsystems. Memory Management in the Java HotSpot Vir-
tual Machine. web, April 2006. 21 pages. A white paper from Sun
Microsystems. [cited at p. 19, 20]

[Tene&05] Tene, Gil and Posva, Ivan. Java Performance Myths Exposed. 2005.
Azul Systems. [cited at p. 49]

104

http://www.timesys.com/java/
http://www.timesys.com/java/
http://www.spec.org/jvm2008/
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4813310
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4813310
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4813310

[Terma10] Terma A/S. Track Management A component in the T-Core software
complex. Web. http://www.terma.com/defense/joint-
and-land-systems/air-defense/ [Accessed: 9. Dec, 2012].
[cited at p. 71]

[Terma11] Terma A/S. BMD-Flex International Air and Missile Defense Com-
mand and Control. Web. http://www.terma.com/defense/
joint-and-land-systems/ballistic-missile-defense/
[Accessed: 9. Dec, 2012]. [cited at p. 5, 71]

[Terma12] Terma A/S. C-RAID Situational Awareness and C2 Capabilities for
Tactical, Maritime Platforms. Web. http://www.terma.com/
defense/naval-tactical-solutions/c-raid-naval-
c2-system-for-small-maritime-units/ [Accessed: 9.
Dec, 2012]. [cited at p. 71]

[Thiele&00] Thiele, L. and Chakraborty, S. and Naedele, M. Real-time calcu-
lus for scheduling hard real-time systems. In Circuits and Systems,
2000. Proceedings. ISCAS 2000 Geneva. The 2000 IEEE Interna-
tional Symposium on, pages 101 –104 vol.4, 2000. [cited at p. 45]

[TIOBE12] TIOBE Software. TIOBE Programming Community Index for Novem-
ber 2012. Web. http://www.tiobe.com/index.php/content/
paperinfo/tpci/index.html [Accessed: 9. Dec, 2012]. [cited at p. 1]

[VDMTools] CSK. VDMTools homepage. Web, Dec 2012. http://www.vdmtools.
jp/en/ [Accessed: 9. Dec, 2012]. [cited at p. 39]

[Venners99] Venners, Bill. Inside the Java Virtual Machine. McGraw-Hill Pro-
fessional, 1st edition, 1999. [cited at p. 19]

[Walkup&94] Walkup, Elizabeth A. and Borriello, Gaetano. Interface timing ver-
ification with application to synthesis. In Proceedings of the 31st
annual Design Automation Conference, pages 106–112, ACM, New
York, NY, USA, 1994. [cited at p. 35]

[WebSphereRT] IBM. IBM R© WebSphere R© Real-Time. Web, Dec 2012. http://
www.ibm.com/software/webservers/realtime/ [Accessed:
9. Dec, 2012]. [cited at p. 53]

[Wegener&98] Wegener, Joachim and Grochtmann, Matthias. Verifying Timing
Constraints of Real-Time Systems by Means of Evolutionary Test-
ing. Real-Time Syst., 15(3):275–298, November 1998. [cited at p. 45]

105

http://www.terma.com/defense/joint-and-land-systems/air-defense/
http://www.terma.com/defense/joint-and-land-systems/air-defense/
http://www.terma.com/defense/joint-and-land-systems/ballistic-missile-defense/
http://www.terma.com/defense/joint-and-land-systems/ballistic-missile-defense/
http://www.terma.com/defense/naval-tactical-solutions/c-raid-naval-c2-system-for-small-maritime-units/
http://www.terma.com/defense/naval-tactical-solutions/c-raid-naval-c2-system-for-small-maritime-units/
http://www.terma.com/defense/naval-tactical-solutions/c-raid-naval-c2-system-for-small-maritime-units/
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.vdmtools.jp/en/
http://www.vdmtools.jp/en/
http://www.ibm.com/software/webservers/realtime/
http://www.ibm.com/software/webservers/realtime/

[Wellings&02] Wellings, A. and Clark, R. and Jensen, D. and Wells, D. A. frame-
work for integrating the real-time specification for Java and Java’s re-
mote method invocation. In Object-Oriented Real-Time Distributed
Computing, 2002. (ISORC 2002). Proceedings. Fifth IEEE Interna-
tional Symposium on, pages 13 –22, 2002. [cited at p. 137]

[Wieringa03] Wieringa, R. J. Design Methods for Reactive Systems: Yourdon,
Statemate and the UML. Morgan Kaufmann Publishers, 2003. [cited at p. 33]

106

Appendices

107

AppendixA
Terminology

τFIFO: First In First Out. Describes the principle of a queue mechanism where the items leave
the queue in same order as they arrive. For FIFO scheduling this means threads will be
activated in the order they become ready.

τJCP: Java Community Process. A formalized forum which allows interested parties to specify
and develop technical specifications for extending the Java language and technology.

τJSR: Java Specification Request. A formal document that describes a proposed specification
within the Java Community Process. A final JSR must provide a reference implementation
and a technology compatibility kit to verify the specification.

τMonitor: An object or module often used in concurrent programming for signaling other threads
that a certain condition has been met.

τMutex: An object or module, used in concurrent programming to ensure mutual exclusion when
multiple tasks access a shared resource.

τNP-Hard Problem : A problem is NP-hard if a given solution can be translated into one solving
any non-deterministic polynomial time problems.

τPreemption: Is the act of temporarily interrupting an active task with the intention of resuming
the task at a later time.

τProcessor Utilization: The amount of CPU time a task or set of tasks are utilizing. Usually
given in percentage.

τProfiler: A tool capable of analyzing the runtime behavior of an application and providing an
overview of specific attributes such as memory usage, CPU load etc.

τRace Condition: An error situation which can arise in software systems when multiple tasks
or processes depend on a shared state or event. Failure to synchronize access to shared
resources may result in race conditions where the value of the resource is corrupted or
invalid.

τReflection: The ability of a computer application to examine and modify the execution behavior
at runtime. This often involves loading or changing specific objects depending on changing
system states.

109

Appendix A. Terminology

τSchedulable: A given task is schedulable if it is ready for operation and the required deadlines
can be met.

τSemaphore: A object or variable that allows for controlling access to a shared resource. Sema-
phores can be binary, and thus acts as an mutex, or they can be counting semaphore which
increments and decrements an interval value each time they are activated.

τStarvation: Resource starvation in computer science occur when a task or process is denied
access to a resource which is required for the task or process to meet its purpose. For
instance, when continuous processing in high priority threads prevents lower priority threads
from executing.

τTransitive Closure: Transitive closure of a graph is the set of nodes that can be referenced from
the initial node. Meaning that isolated subsets of the graph is not part of the transitive
closure set.

τWCET: Worst-Case-Execution-Time. Is the maximum length of time a given tasks could take
to execute a specific operation.

110

AppendixB
Case Study Details

This appendix provides details about the two case studies used in this thesis. Details about the Car
Controller example is found in section B.1, while section B.2 provides details about the T-Core
case study. The source code created for each case study is included on the attached CD.

B.1. Car Controller

This section describes the details of the Car Controller case study. Section B.1.1 elaborates on the
Java implementation and section B.1.2 on the VDM-RT implementation.

B.1.1 Java Application

Here the software design of the Java application in the Car Controller case study will be de-
scribed. The Car Controller case study was first introduced in section 1.5.1. Figure B.1 provides
an overview of the classes in the application.
The application has four active objects, where the BrakePedalEventHandler and the
GasPedalEventHandler are asynchronous event handlers. They handle incoming events of
the types BrakePedalEvent and GasPedalEvent, which are triggered when the driver al-
ters the pressure on the brake pedal or gas pedal, respectively. The remaining two active objects are
the Navigation and CruiseController, which are periodic threads. The Navigation
thread updates the in-car navigation display with a period of 33 ms. The CruiseController
thread monitors the speed of the car with a period of 50 ms and alters the speed if necessary, in
order to keep a constant speed.
The Car Controller interfaces with three peripherals found in the car through instances of the
classes Brakes, Engine and Display. The Engine class is shared among the Cruise-
Controller thread and the GasPedalEventHandler thread, hence it needs synchroniza-
tion such that both active objects does not alter the speed simultaneously.
The implementation of the Car Controller uses the API specified by the RTSJ (see chapter 3).
Therefore, in order to test the application on a standard Java JVM, a wrapper library has been
implemented. This library provides the same API as specified by the RTSJ, however the function-
ality is implemented using standard Java. This enables execution of the same application on both
standard Java and RTSJ compliant JVM’s without altering the application code.

111

Appendix B. Case Study Details

BrakePedalEvent GasPedalEvent

Brakes

BrakePedalEventHandler GasPedalEventHandler

CruiseControllerNavigation

EngineDisplay

activeObjects

events

peripherals

Figure B.1: Class diagram of the Car Controller software

B.1.2 VDM-RT Model

This section extends section 5.4 and describes the simplified VDM-RT model of the Car Controller
used to illustrate important concepts. The model structure is similar to the Java equivalent, with
a few additional classes. Figure B.2 shows the class diagram of the model, where the additional
World, Driver and CarEnvironment are included. The World class is used for loading and
starting the different scenarios of the model. The Driver class is used to stimulate the system
with external events such as activating pedals. The CarEnvironment class is used to configure
the architectural distribution of classes on different CPU instances. The CarEnvironment is
identified by using the system keyword in the class definition.
The pedal classes identified as peripherals in section B.1.1 are simple classes with async op-
erations which models asynchronous events. The Engine class is a simplified representation
of an engine, where set- and get-operations are protected with permission predicates to model
the behavior of a shared resource. The implementation of the CruiseController class is
illustrated in listing B.1, where the simplified adjustment of speed is modeled in the operation
MonitorCruiseSpeed. The operation is periodically invoked through the thread declara-
tion.

112

Terma T-Core

World

CarEnvironment

Pedal

BrakePedalGasPedal

Navigation

CruiseController

Driver

Engine

Display

Brakes

GPS

Figure B.2: Structural class diagram of the Car Controller model

�
1

2 public MonitorCruiseSpeed : () ==> ()
3 MonitorCruiseSpeed() ==
4 (
5 dcl newRpm : nat :=
6 CalculateNewMotorRpm(engine.GetRPM(), engine.GetRPM());
7 if cruiseActive then engine.SetRPM(newRpm);
8);
9

10 thread
11 periodic(50E6,100,100,0)
12 (MonitorCruiseSpeed)
� �

Listing B.1: Processing and thread declaration within the CruiseController class

The Navigation class is implemented similarly with a periodic invocation of the processing
operations.

B.2. Terma T-Core

This section describes the details of the T-Core case study. Section B.2.1 elaborates on the im-
plementation of the VDM-RT model. Section describes the design and evaluation of the Java im-
plementation of Engagement Manager (EM) component in the T-Core case study. Section B.2.3
provides further details of the obtained test results.

113

Appendix B. Case Study Details

B.2.1 VDM-RT Model

This section elaborates on the T-Core model presented in section 7.3 of this thesis.
The structure of the model is illustrated in figure 7.3 (see page 76). The classes implemented
on the server node are all related directly to existing classes within the T-Core framework. The
model reflects their functional behavior with focus on temporal analysis. The classes marked
within the weapon control node are the additional Engagement Manager component responsible
for evaluating detected tracks, and if needed communicate with the weapon class.
The World class is the starting point-of-execution where different scenarios are specified. The
scenarios are described in text files with track information specified as VDM tuples and loaded by
the TrackSensor class. Listing B.2 shows the definition of the SensorEvent tuple which is
read from text files.�

1 --Type, Unique track id for this sensor, Category,
2 --Identity, Track Type, Latitude, Longitude, Altitude
3 SensorEvent = SensorEventType * nat * TrackCategory
4 * TrackIdentity * AirTrackType * nat * nat * nat;
� �

Listing B.2: The operation for adding tracks within the TrackManager

Once an event is read and parsed by the TrackSensor class, the events are passed to the
TrackManager class by use of the asynchronous operations within the TrackReceiver
class. The sequence of detecting a new track, and passing the information through the sys-
tem is illustrated in figure B.3. The figure shows how the TrackManager further publishes
the new track information to subscribing instances of the TrackListener class by use of the
Infrastructure class.

TrackSensor Track TrackProviderTrackReceiver TrackManager TrackListener

id = addTrack

HandleEvent

Infrastructure

setInfo

t = create

trackableCreated(track)TrackID

DetectTrack

id = AddTrack(t)

Do correlation
Assign ID

PublishCreate(t)

PublishCreate(t)

For all providers

For all listeners

Figure B.3: Sequence diagram for track creation in the model

When a new track is added to the TrackManager class, the operation AddTrack is invoked.

114

VDM-RT Model

The operation is shown in listing B.3. The operation uses the correlation algorithm implemented in
GetCorrelatedTrackID to determine a new Trackmanagement Item Reference Key (TIRK)
which is a unique key for all tracks in the system (line 4). When the key is determined the
TrackManager class makes use of the EvaluateTrack operation to determine if a track is
to be deemed hostile based on a simple set of rules. Once the track is processed it is published to
subscribing listeners (line 13 and 14).�

1 public AddTrack : Track ==> Track‘TrackID
2 AddTrack(track) ==
3 (
4 dcl trackId : Track‘TrackID := GetCorrelatedTrackID(track);
5 if trackId not in set (dom tracks) then
6 (
7 --New Track
8 track.SetTrackId(trackId);
9

10 --Evaluate and publish track if we have a
11 --working infrastructure
12 track.SetIdentity(EvaluateTrack(track));
13 if infrastructure <> nil then
14 infrastructure.PublishCreate(track);
15

16 --Save track
17 tracks := tracks munion {trackId |-> track};
18)
19 else
20 (
21 --Track is deemed equal to another track through correlation
22 --Return that track id to sensor for future references
23 skip;
24);
25 return trackId;
26);
� �

Listing B.3: The operation for adding tracks within the TrackManager

The simplified track correlation algorithm is shown in listing B.4. The real algorithm from the
T-Core system uses complex rules for merging tracks detected by different sensors. However,
the model implementation raises the level of abstraction and implements a simplified version to
model processing of tracks. The algorithm first checks if the track is located at the same position
as an already known track, by defining an offset radius which creates a 3D-sphere with the current
track as center (line 14 and 15). If the new track is within the sphere and of similar type then the
tracks are correlated. The check for type is to avoid merging two different but close tracks e.g. an
airplane at low altitude and a ground vehicle. If the track is merged then the TIRK of the original
track is returned, if not a new TIRK is created and returned.�

1 public GetCorrelatedTrackID : Track ==> Track‘TrackID
2 GetCorrelatedTrackID(t) ==

115

Appendix B. Case Study Details

3 (
4 --Real life correlation is represented by
5 --SystemTrackCorrelation interface containing
6 --one SystemTrack TIRK and all corresponding LocalTrack TIRKs
7 --This is simplified (abstraction) by this algorithm
8

9

10 dcl id : Track‘TrackID;
11 dcl trackPos : GeoArea‘Position := t.GetPosition().#2;
12

13 --Create correlation area to merge similar tracks
14 dcl correlationArea : GeoCircle :=
15 new GeoCircle(trackPos,correlationRadius,correlationRadius);
16

17 --The current algorithm does not support correlating
18 --two existing (seperate) tracks, only one existing and one new
19 if t.GetTrackId().TIRK <> 0 then
20 (
21 id := t.GetTrackId()
22)
23 --If track position is within specified radius of an
24 --already known track with similar category
25 --(avoid merging a <GROUND> track with an <AIR>
26 -- track at same position) then merge them into one
27 else if exists localTrack in set (rng tracks) &
28 correlationArea.IsInside3D(localTrack.GetPosition().#2)
29 and (localTrack.GetTrackType().Category =
30 t.GetTrackType().Category or
31 t.GetTrackType().Category = <UNKNOWN>) then
32 (
33 let localTrack in set (rng tracks) be st
34 (correlationArea.IsInside3D(trackPos) and
35 (localTrack.GetTrackType().Category =
36 t.GetTrackType().Category or
37 t.GetTrackType().Category = <UNKNOWN>))
38 in id := localTrack.GetTrackId();
39)
40 --Else if track has no ID assume it to be unknown
41 --and create new ID
42 else
43 (
44 id := mk_Track‘TrackID(tirkCounter,t.GetOwnerID());
45 tirkCounter := tirkCounter+1;
46);
47

48 return id;
49);
� �

Listing B.4: The correlation algorithm within the TrackManager

116

RTSJ Implementation

When the TrackManager class, as explained above, publishes new track information, it is re-
ceived by instances of the TrackListener class. The TrackEvaluationHandler inherits
from the TrackListener, and evaluates the track to see if it is inside a predefined area and of
the type HOSTILE. If so, the track is passed to the TrackEngagementHandler which creates
and starts the periodic thread implemented in the WeaponComHandler (WCH). The WCH class
inherits from the Schedulable class to model periodic time-based invocations by invoking the
inherited WaitForNextPeriod operation as shown in listing B.5. When derived classes in-
voke the operation, their self reference is added to the Scheduler class, and then blocked by
calling the Block operation (line 11 and 12). The Scheduler does periodic checks each mil-
lisecond, and when it reaches the required point in time it unblocks the Schedulable instance
by invoking the Release operation (line 1 and 2).�

1 public Release : () ==> ()
2 Release() == skip;
3

4 public WaitForNextPeriod : () ==> ()
5 WaitForNextPeriod() ==
6 (
7 dcl now : nat := scheduler.GetTime();
8 dcl offset : real := period - (now - lastSchedule);
9

10 if offset > 0 then
11 scheduler.AddSchedulable(self,offset);
12 Block();
13);
14

15 private Block : () ==> ()
16 Block() == lastSchedule := scheduler.GetTime();
17

18 protected Run : () ==> ()
19 Run() == is subclass responsibility;
20

21 thread
22 Run();
23

24 sync
25 per Block => #req(Block) <= #fin(Release)
� �

Listing B.5: Synchronization operation for the Schedulable class

The implementation of the WCH, with both the Scheduler and the Schedulable, has al-
lowed for modeling the jitter experienced within real JVM implementations and resembles the
behavior of periodic treads in RTSJ.

B.2.2 RTSJ Implementation

Section 7.4.2 provided a code example of how the TrackEvaluationHandler class has been
implemented using the RTSJ. In this section the implementations of the EngagementHandler
and the WeaponComHandler threads will be presented.

117

Appendix B. Case Study Details

Listing B.6 shows how the EngagementHandler thread has been implemented using the
RTSJ.

1 private class EngagementHandler extends RealtimeThread {
2 public EngagementHandler() {
3 super(new PriorityParameters(17));
4 this.setDaemon(true);
5 }
6

7 public void run() {
8 while(isRunning) {
9 //Block until data is available

10 try {
11 trackEngagementQueue.waitForData();
12 }
13 catch(UnsupportedOperationException e){ aLog.error("", e); }
14 catch(InterruptedException e){ aLog.error("", e); }
15

16 //Read the data for the WeaponComHandler
17 final LatLongAltitude position =
18 (LatLongAltitude)trackEngagementQueue.read();
19

20 //For now we assume a single weapon which is always ready
21 //Spawn and start the NHRT WeaponComHandler in a parent scope.
22 nhrtMemory.enter(new Runnable() {
23 public void run() {
24 (new WeaponComHandler(position)).start();
25 }
26 });
27 }
28 }
29 }

Listing B.6: Java code from the RTSJ implementation of EngagementHandler

The thread extends the RealTimeThread class as defined by the RTSJ (line 1). This, among
other things, allows the thread to have a priority of 17 (line 3), whereas standard Java threads
are only allowed priorities of 1-10. The EngagementHandler thread runs inside a loop, until
the EM component is removed from the T-Core framework (line 8). The thread is blocked until it
receives a position from the TrackEvaluationHandler through the trackEngagement-
Queue (line 11). When this happens it means that a hostile track has been detected inside
a protected geographical area. The thread then extracts the position of the hostile track from
the queue (line 17) and it should then localize an available weapon. However, this function-
ality has been left out of this initial implementation, instead it is simply assumed that a single
weapon is always available. Therefore, after obtaining the position, the EngagementHandler
thread spawns a WeaponComHandler thread which communicates with the weapon (line 24).
The WeaponComHandler thread is a NoHeapRealTimeThread (NHRT) as defined by the
RTSJ. Such threads are only able to execute within a scoped memory area, which does not have
the heap memory area as its direct parent. As the EngagementHandler thread operates in

118

RTSJ Implementation

the heap memory area, the scoped memory area called nhrtMemory (line 22) is used as par-
ent to spawn the WeaponComHandler thread and its own scoped memory area inside. The
WeaponComHandler thread receives the position of the track to engage through its constructor
(line 24).
Listing B.7 shows how the WeaponComHandler thread has been implemented using the RTSJ.

1 private class WeaponComHandler extends NoHeapRealtimeThread{
2 LatLongAltitude trackPosition;
3

4 public WeaponComHandler(LatLongAltitude position){
5 super(
6 new PriorityParameters(20),
7 new PeriodicParameters(new RelativeTime(5, 0)),
8 new LTMemory(1*1024*1024));
9 this.trackPosition = position;

10 }
11

12 public void run() {
13 long startTime = System.nanoTime();
14 long endTime = 0L;
15 weaponComStart[currentIteration] = startTime;
16 //Do a series of periodic timestamps
17 //to simulate real-time communication
18 for(int i = 0; i < 10; i++)
19 {
20 waitForNextPeriod();
21 //Do communication
22 endTime = System.nanoTime();
23 weaponComJitter[currentIteration][i] = endTime-startTime;
24 startTime = endTime;
25 }
26 weaponComEnd[currentIteration] = endTime;
27 currentIteration++;
28 }
29 }

Listing B.7: Java code from the RTSJ implementation of WeaponComHandler

As mentioned the WeaponComHandler thread is implemented as a NHRT (line 1). The thread
has a variable for holding the position of the track which is to be engaged (line 2). The variable
is set through the constructor (line 9) but is not currently used as this implementation does not
communicate with real hardware. Instead the communication of 10 messages is simulated by
measuring the timeliness of this periodic thread. The WeaponComHandler thread is made
periodic by specifying its period of 5 ms in the NHRT’s constructor (line 7). It is then possible
to use the RTSJ defined method waitForNextPeriod (line 20) which blocks the thread until
the next period begins. The advantage of this compared to the standard way of making periodic
threads in Java using the Sleep method, is that there is no need for calculating how long the
processing of the current iteration has taken. A series of timestamps is done through the execution
in order to measure the timeliness of the WeaponComHandler thread.

119

Appendix B. Case Study Details

B.2.3 Test Results

This section provides charts detailing the test results of the EM component in addition to those
presented in section 7.4.2. The results should be viewed in connection with figure 7.7 (page
86) and table 7.1 (page 85), which describe the timings intervals covered by each of the chart
figures B.4 to B.7.

██

██

██

██

██

██

██

██

██

██

██

0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
ra

ck
 E

v
a

lu
a

ti
o

n
 T

im
e

(m
s)

Track No.

Figure B.4: Evaluation Duration for the TrackEvaluationHandler

██

██

██

██

██

██

██

██

0 200 400 600 800 1000 1200 1400 1600 1800 2000

D
el

a
y

 f
ro

m
 E

v
a

lu
a

ti
o

n
 t

o
 W

ea
p

o
n

C
o

m
m

u
n

ic
a

ti
o

n
 (

m
s)

:

Track No.

Figure B.5: Evaluation/Communication Delay Between the TrackEvaluationHandler and
the WeaponComHandler

120

Test Results

██

██

██

██

██

██

██

0 200 400 600 800 1000 1200 1400 1600 1800 2000

W
ea

p
o

n
 C

o
m

m
u

n
ic

a
ti

o
n

 T
o

ta
l

T
im

e
(m

s)

Track No.

Figure B.6: Weapon Communication Total Duration for the WeaponComHandler

██

██

██

██

██

██

██

██

██

██

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

W
ea

p
o

n
s

C
o

m
m

u
n

ic
a

ti
o

n
 P

er
io

d
 (

m
s)

Iteration No.

Figure B.7: Weapon Communication Period for the WeaponComHandler

121

AppendixC
Overture Real-Time Log Viewer

This appendix provides additional details about the re-development of the Real-Time Log Viewer
(RTLV) plugin for the Overture tool (see section 5.3). This plugin has been developed in collabo-
ration with Peter W. V. Jørgensen, which provide a similar version of this appendix in his Master’s
thesis [Jørgensen12].
The new design of the RTLV plugin, and the performance gain resulting from it, are described in
sections C.1 and C.2 .

C.1. Design

When executing a VDM-RT model, a series of events are logged and timestamped by a component
of the Overture tool, called the RT Logger. During execution, these events are triggered by various
actions such as function calls, object creations and thread activations. So far these events have been
written to a text file (the trace file), which make them readable to humans. However, these files
can grow to immense sizes and contain up to thousands of lines. As a consequence, this makes it
difficult for a human to use them for getting an overview of the entire execution. The RTLV plugin
has facilitated this problem, by enabling graphical visualization of these events, as exemplified in
figure 5.3 on page 44. The RTLV plugin offers three different view types for inspecting the logged
events:

Architecture Overview: This is a simple overview of the CPUs and buses comprising the mod-
eled system. From this view, it is possible to see how CPUs are connected via different
communication buses.

Execution Overview: This is a detailed overview of the CPUs and buses illustrating thread swaps,
operation calls and communication across the buses.

CPU Overview: This is a detailed view, provided for each CPU of the system. From this view, it
is possible to inspect how threads execute code contained within different objects, and how
they block on synchronous bus communication etc.

Within these views, it is possible for the user to scroll through all the logged events, and inspect
the execution details at a particular point in time. This makes the trace file analysis much more
manageable.

123

Appendix C. Overture Real-Time Log Viewer

The following sections elaborate on the RTLV design. Section C.1.1 describes the differences
between the old and the new design. Section C.1.2 describes the new design in details.

C.1.1 Old vs. New Design

The old approach of writing and reading the text files, containing the event data, is illustrated in
figure C.1.

RT Logger RT Log Viewer

Disk

text_file.logrt

Generates
Reads

Figure C.1: Old RT Log Viewer

The problem with this approach is its lack of performance, which also motivated the RTLV plugin
re-design. Using the old approach, the time it takes to read the large text files from the disk is not
only slow, but also time-consuming to process the data structure representing the events and their
relations. In addition to this, the code doing the processing of all the events was very inefficient.
These issues resulted in a bad user experience, as the entire Overture tool would stall for minutes,
before showing the overviews. In worst case, it would even result in the Overture tool crashing.
Therefore, the RT Logger and the RTLV plugin needed a re-design, in order to become efficient.
Before the work of this thesis commenced, the RT Logger was re-designed, and re-implemented.
This new implementation produces an object oriented data structure, used for drawing the different
overviews efficiently. However, the RTLV plugin was not yet able to parse this data structure, and
display the data graphically. Therefore, this functionality was implemented as part of this thesis.
The new and more efficient approach to writing and reading events, is illustrated in figure C.2.
The new data structure can be binary serialized and deserialized. This makes it possible to save

RT Logger RT Log Viewer

Disk

binary_file.logbin

Generates

Deserializable

Object

Oriented

Datastructure

Serializable

Reads

Figure C.2: New RT Log Viewer

this data structure to a file, or keep it in memory, in order to visualize it using the RTLV plugin

124

Detailed Design of the New RT Log Viewer

immediately.

C.1.2 Detailed Design of the New RT Log Viewer

The new RTLV plugin design promotes a clear separation of concerns, and loose coupling between
classes. This is done by defining three layers (as Java packages): data, draw and view. Each
layer has its own area of responsibility, e.g. the classes within the draw layer, are responsible for
drawing information specific to the user interface. The design is illustrated in figure C.3. Classes
inheriting from the TraceViewer class, are part of the draw layer. The data layer is composed
of classes, inheriting from EventHandler and TraceData. Finally, all top-level classes, such
as the VdmRtLogEditor class, are part of the view layer. This architecture makes it easier to
extend the RTLV plugin with additional functionality, as well as changing the data representations,
drawing functionality etc.
The approach taken by the old RTLV plugin design, was to iterate through all events, when the
trace file was loaded. This allowed the RTLV plugin to save the state of each data item (CPU,
bus, threads etc.) at each point in time, but introduced severe performance overhead when loading
the trace file. Instead the new design loads the binary file, and parses only the visible amount of
events. However, when the user moves the inspection to another point in time, the RTLV plugin
must determine the current state of each data item, at that specific time. This requires processing
of all events, for that specific data item, up until the given time. For example, a thread may
be active or inactive, based on events which occurred prior to the current time. To accommodate
this, the new design saves all state information in a series of classes, managed by the TraceData
class (TraceThread, TraceCPU etc.). The classes inheriting from the EventHandler class,
are part of a strategy-pattern [Gamma&95], where the active event-handler is changed, based on
the specific event being processed. The iteration and processing of events, are controlled by the
TraceFileRunner class.
The event-handlers process the current event, updates the corresponding data item class (Trace-
CPU, TraceBus etc.), and invokes the required drawing functions through instances of Trace-
Viewer. These are also based on the strategy-pattern, where the active strategy is changed based
on which view is selected (CPU, architecture or execution).

C.2. Results

The impact on the load time of the RTLV plugin overview, resulting from the new design, is
illustrated in figure C.4.
It can be seen how the load time of the old RTLV plugin grows non-linearly, as the number of
events to display increase. The line representing the load time of the new RTLV plugin, can be
hard to see, as its load time is constantly low. This is due to the new design, which only parses
and draws a small amount of events, when the RTLV plugin is loaded. The old approach was to
load all events, when initiating the RTLV plugin. A disadvantage of the new approach, compared
to the old one, is that scrolling and moving inspection between different events, can exhibit longer
load times, as the new RTLV plugin loads the events as needed. However, practical experience
has shown that this relatively small increase in load time does not inhibit the user experience of
the plugin.
Therefore, the new version of this plugin heightens the usability by an increase in performance
and load times. The design of the plugin has been changed to support a clear separation of logic
concerns to promote reuse and additional optimizations in future releases.

125

Appendix C. Overture Real-Time Log Viewer

ITraceRunner

TraceFileRunner

TraceViewer

ArchitectureViewer

OverviewEventViewer CPUEventViewer

TraceFileVisitor

TraceData

TraceResource

TraceCPU TraceBus TraceObject

TraceThreadTraceMessage

NextGen Data

Structure

VdmRtLogEditor

EventHandler

ThreadEventHandler

BusMessageEventHandler

OperationEventHandler

Old Data

Structure

TraceEventViewer

Figure C.3: Class diagram of the new RTLV design

0

50

100

150

200

250

10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000

L
o

a
d

 T
im

e
(s

)

Number of Events

Old RT Log Viewer New RT Log Viewer

Figure C.4: New vs. old RTLV load times

126

AppendixD
Java Virtual Machine Analysis

This appendix provides a brief technical overview of the parameters used for comparing Java
Virtual Machines (JVM) in chapter 6 including the two benchmark applications which are applied
in three different tests as described in section 6.4.2. The first test consists of the SPECjvm2008
(SPEC) benchmark [SPEC], the second of the Collision Detector (CD) benchmark [CD] and the
third of both combined.
The basis for optimizing garbage collectors with standard Java is described in section D.1. The
qualitative and quantitative parameters used for comparing JVMs is explained in D.2. Details
of the SPEC benchmark is described in section D.3.1 and the CD benchmark is described in
section D.3.2.

D.1. Optimizing Standard Java

This section explains the parameters used for optimizing the runtime behavior of the Car Con-
troller on the two JVMs: The Oracle HotSpot and the Atego PERC Ultra. Section 6.3 describes
the difference in jitter values for the Car Controller running with default settings on the HotSpot,
compared to running with an optimized garbage collector. The settings used for the jitter results
(see table 6.1 on page 52) are shown in table D.1 for the HotSpot and table D.2 for the PERC
Ultra.

Parameter Description

Xmx512m Sets the maximum heap size to 512MB
Xms512m Sets the initial heap size to 512MB
XX:NewRatio=10 Defines the ratio between young and tenured

generations to 1:10

Table D.1: Configuration parameters for GC optimizing the HotSpot JVM

127

Appendix D. Java Virtual Machine Analysis

Parameter Description

eager-jit JIT compile methods as soon as classes are loaded
eager-link Recursively resolve all referenced classes
region-size 1m Sets the memory regions to 1MB each
num-regions 512 Defines a heap with 512 regions
gcprio 7 Sets the garbage collector priority to 7
gc 50 Activates garbage collector when the available heap

is less than 50 percent
gcperiod 2500 Sets the garbage collector period in ticks
gcslice 0 Instructs the garbage collector to operate in FIFO

scheduling mode allowing it to complete a full cycle
each time (unless preempted)

timeslice 30 Sets the maximum number of ticks for each thread
before they are preempted

tickperiod 500 Sets the number of microseconds per tick

Table D.2: Configuration parameters for GC optimizing the PERC Ultra JVM

128

Comparison

D.2. Comparison

Table D.3 describes the grading scale which the analysis in chapter 6 is based upon. The JVMs
are given grades from 1 to 3, where the minimum requirements are described in the table. The
higher grade includes the requirements of the grades below.

Attribute Type Grades
1 2 3

Maturity Qualiative Proof-of-concept
or research project
and compliant with
JVM Specification

Real-life deploy-
ments, regular
updates and SDK
support

Widespread usage
and dedicated li-
braries

Specification
Support

Qualiative Java Language
Specification
support

RTSJ support SCJ support

Scheduling Qualiative Relies on the OS
scheduler

Own RT scheduler Own RT scheduler
with support for
priorities exceed-
ing standard Java
priorities

Synchronization Qualiative No support for
priority inversion
avoidance

Support for the
priority inheritance
protocol

Support for the pri-
ority ceiling proto-
col

Memory Man-
agement

Qualiative Heap memory Real-time garbage
collector

Support for mem-
ory areas unaf-
fected by garbage
collection

Determinism Quantitative
Assigned relatively based on benchmark results e.g. the JVM
achieving highest performance value is assigned 3 etc.

Performance Quantitative
Initialization Quantitative

Table D.3: Scale for rating the attributes of the individual JVMs

D.3. Benchmark

This section describes the two benchmark applications used for extracting the quantitative at-
tributes for each JVM. Section D.3.1 describes the SPEC benchmark and section D.3.2 describes
the CD benchmark. Finally the results are illustrated in section D.3.3.

D.3.1 SPECjvm2008

The main purpose of the SPEC benchmark is to measure the performance of the JVM, the un-
derlying hardware and operating system. The SPEC benchmark was chosen because it provides
a good comparison of throughput across the three JVM’s tested: Oracle HotSpot, Atego PERC
Ultra and Aicas JamaicaVM.
The SPEC benchmark consists of several individual benchmark tests where the compress bench-

129

Appendix D. Java Virtual Machine Analysis

0

10

20

30

40

50

60

70

80

90

100

00:00 01:00 02:00 03:00 04:00 05:00

C
P

U
 U

sa
g

e
(%

)

CPU Usage

Figure D.1: CPU profile of the SPECjvm2008 Compress benchmark

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

90000000

00:00 01:00 02:00 03:00 04:00 05:00

M
em

o
ry

 H
ea

p
 U

sa
g

e
(B

y
te

s)

Heap Memory

Figure D.2: Memory profile of the SPECjvm2008 Compress benchmark

mark was selected. The compress algorithm compresses data by searching for common substrings
and replaces them with a predefined variable. The algorithm is deterministic, which mean that the
exact same test is executed on all three JVMs.
The compress algorithm provides a high CPU load and memory consumption. The CPU profile is
illustrated in figure D.1 and the memory profile in figure D.2..
The benchmark has been configured through a series of command-line parameters, where the
most interesting are shown in table D.4. The column test describes in which of the three tests the
corresponding parameter is used.

130

Collision Detector

Parameter Description Test

compress Selects and runs the compress benchmark one and three
wt 0s Warmup time. Specified to zero to begin test once

loading is completed
one and three

ikv Ignore Kit Validation. Specified to zero to ignore
checksum validation

one and three

it 240s Iteration Time. Specified to four minutes for each
iteration

one

mi 5 Minimum Number of Iterations. Specified to five
iterations

one and three

mi 100 Minimum Number of Iterations. Specified to 100 to
make sure SPEC does not finish before CD iterations

three

Table D.4: Configuration parameters for the SPECjvm2008 tests

D.3.2 Collision Detector

The CD benchmark is an open source application that simulates an air traffic control system which
must determine if monitored aircrafts are on collision course. The application targets both hard
and soft real-time applications, and includes RTSJ support. CD consists of a simulator thread
which generates a series of simulated radar frames. The frames are received periodically by a
detector thread which computes a full 3D collision detection algorithm to detect potential air-
plane collisions. During execution the benchmark timestamps each periodically scheduling of
the detector thread, which can later be compared with expected values to calculate the deviation
(jitter).
The CD benchmark supports both Java and RTSJ which makes it ideal comparing the three JVMs.
However, a few minor alterations were required to execute it on the three JVMs and extract the
desired results:

JVM Support: The CD benchmark allows for building and executing the application on different
JVMs. The initial version has been extended with support for the PERC Ultra and the Aicas
JamaicaVM.

SPECjvm2008 Support: The initial version of the CD benchmark includes support for loading
third party JAR files in order to simulating background noise. However, it was prepared
for the SPECjvm98 benchmark which is now obsolete. The application has instead been
updated with support for the new SPECjvm2008.

Fair Initialization: The benchmark has been updated with additional configuration parameters,
e.g. one parameter to configure a delay for the detector thread in order to allow the SPEC
thread to begin processing in test three.

Output Data: Additional configuration parameters have been added to allow the CD benchmark
to be part of an automatic test environment. Here the CD benchmark is loaded with an
output path, thus allowing it to run several consecutive tests and not override the results of
the previous tests.

The altered version of the CD benchmark has been configured with a series of command-line
parameters which are listed in table D.5. The table shows for which test the corresponding param-
eters have been used. Notice that the benchmark is configured to “presimulate”, thus generating

131

Appendix D. Java Virtual Machine Analysis

all frames before the detector thread starts its periodic invocation. This is chosen as test two must
determine the jitter without noise, and test three uses the SPEC benchmark to generate noise. The
noise generated by the simulator is therefore ignored.

Table D.5: Configuration parameters for the Collision Detector benchmark

Parameter Description Test

col.bin Select the col profile for input data.
Contains 40 aircrafts and includes col-
lisions

two and three

MAX_FRAMES 5000 Maximum number of frames generated
by simulator thread

two and three

BUFFER_FRAMES 5001 Size of frame buffer for detector thread two and three
DETECTOR_PERIOD 50 Period in milliseconds for detector

thread
two and three

SIMULATOR_PRIORITY 5 Priority for simulator thread two and three
DETECTOR_PRIORITY 10 * Priority for detector thread two and three
PRESIMULATE Generate all frames before starting de-

tector thread
two and three

USE_SPEC_NOISE Activate the SPECjvm2008 benchmark
in background

three

SPEC_METHOD "main" Specifies the SPECjvm2008 function
to invoke

three

DETECTOR_STARTUP _OFF-
SET_MILLIS 0

Detector offset in time calculations two and three

DETECTOR_STARTUP
_WAIT_MILLIS 60000

Detector wait time before starting CD
benchmark

three

* For RTSJ execution with the JamaicaVM this priority is raised to 20 to exceed priorities of
normal Java.

In addition to command-line parameters, the three JVMs were configured for each test. A fair con-
figuration for comparison was chosen. Test one was defined with a heap size of 1024 megabytes,
and both test two and three with 512 megabyte heap. The PERC Ultra has further been config-
ured to allow it to execute the SPEC benchmark which uses multiple recursive invocations for its
compress algorithm. This required raising the max stack size to 1024 kilobytes.

D.3.3 Benchmark Results

The three tests were applied to all three JVMs. The following figures show the jitter distribution
for the detector thread in test two and three. Notice that test two is with the CD benchmark and no
noise generation, where test three is with the CD but with the SPEC benchmark generating noise.
Figure D.9 shows the result of test three with the JamaicaVM utilizing the real-time scheduling
policy of the OS with real-time kernel patch. This is achieved by specifying the scheduling policy
to FIFO through the JamaicaVM configuration and allows the JVM to preempt OS threads by
increasing the priority of its own threads.

132

Benchmark Results

0,00%

25,00%

50,00%

75,00%

100,00%

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

J
it

te
r

(%
)

Periods

299%

Figure D.3: Jitter distribution for the HotSpot test two

0,00%

25,00%

50,00%

75,00%

100,00%

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

J
it

te
r

(%
)

Periods

103

Figure D.4: Jitter distribution for the HotSpot test three

0,00%

25,00%

50,00%

75,00%

100,00%

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

J
it

te
r

(%
)

Periods

Figure D.5: Jitter distribution for the PERC Ultra test two

133

Appendix D. Java Virtual Machine Analysis

0,00%

25,00%

50,00%

75,00%

100,00%

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

J
it

te
r

(%
)

Periods

5099

296

2300

Figure D.6: Jitter distribution for the PERC Ultra test three

0,00%

25,00%

50,00%

75,00%

100,00%

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

J
it

te
r

(%
)

Periods

Figure D.7: Jitter distribution for the JamaicaVM test two with RTSJ

0,00%

25,00%

50,00%

75,00%

100,00%

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

J
it

te
r

(%
)

Periods

Figure D.8: Jitter distribution for the JamaicaVM test three with RTSJ

134

Benchmark Results

0,00%

25,00%

50,00%

75,00%

100,00%

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

J
it

te
r

(%
)

Periods

Figure D.9: Jitter distribution for the JamaicaVM test three with RTSJ and real-time RT Linux
priorities

135

AppendixE
Distributed Computing

This appendix provides an overview of some of the available solutions for introducing real-time
performance across distributed nodes. The notion of distributed communication is beyond the
scope of this thesis. However, this appendix serves as an input for further investigation and analy-
sis as distributed computing is an essential feature of many modern Java applications i.e. they use a
network of interconnected nodes to achieve a common goal. Distributed computing is widely sup-
ported by standard Java, where developers have several options to implement inter-process com-
munication from a high abstraction layer. This is typically achieved through the integrated Java
Remote Method Invocation (RMI) or third party middleware’s such as Common Object Request
Broker Architecture (CORBA) or Data Distribution Service (DDS) [Wellings&02]. In contrast
to typical distribution services, where a high abstraction layer is often the main focus, real-time
applications require a more stringent control of Quality of Service (QoS) parameters such as high
performance and dependability.
The Java community and industry, offers several commercial and open-source platforms for dis-
tributed real-time communication. These can be described by the following categories each with
different purpose and characteristics [Higuera-Toledano&12]:

Control-Flow: Is the concept of distributing both application data and the point of execution
between nodes in a simple request/response model. Java RMI and other solutions based on
Remote Procedure Call (RPC) belong in this category.

Data-Flow: This covers distribution of data with no point of execution among entities. This
include systems based on the publish/subscribe paradigm such as DDS.

Networked: This is a category of entities which have no clear execution point and data can be
exchanged both synchronous and asynchronous.

Available solutions for standard Java cover all of the above categories, but do not provide the
necessary features for real-time implementations. Such features may include distributed real-time
threads, scheduling of remote invocations, handling of remote memory etc.
The following section describes an official language extension in section E.1, relevant middleware
solutions in section E.2 and real-time transport solutions in section E.3.

137

Appendix E. Distributed Computing

E.1. Distributed RTSJ

The RTSJ (see chapter 3) does not address the subject of introducing distributed computing in
real-time systems, and does not describe how to guarantee end-to-end predictability. The main
effort towards a formal specification for distributed real-time computing in Java, is in progress
under the τJava Community Process with the title JSR-50. The specification named Distributed
Real-Time Specification for Java (DRTSJ) is led by an expert group with members of industry, and
was initially formed in April 2000. The Expert Group has formed a draft of the DRTSJ, where
some of the essential features are summarized in the following:

Distributable Threads: Includes a new thread named DistributableThread, of which in-
stances can span across multiple nodes. A special feature is the definition of an active head
which is the initial execution point, and receiver of potential failure or exceptions.

Scheduling: Supports the Schedulable interface from RTSJ but provides a user-defined schedul-
ing algorithm, instead of a JVM-defined scheduling algorithm.

Serializable Classes: Several important classes specified by RTSJ has been marked Serial-
izable by the DRTSJ in order to support RMI on objects.

Unfortunately the current status of the DRTSJ is unfinished and marked as inactive. However sev-
eral third-party middleware solutions are available each with specific purpose and characteristics.

E.2. Middleware

Some middleware implementations try to add features from RTSJ to existing distributed solutions,
leaving a non-RTSJ-compliant platform. Others try to merge their features, for distributed commu-
nication, into the RTSJ. As a result there are two overall strategies for distributed real-time Java;
Middleware communication with an RTSJ flavor, or an RTSJ implementation with additional fea-
tures for distributed communication. Choosing the correct strategy is a difficult task since several
different solutions and platforms exist, and it is beyond the scope of this thesis to describe them
all. However a few of the most promising efforts is described in brief:

RT-CORBA: An enhanced version of CORBA from the Object Management Group (OMG) in-
tended for real-time applications, which provides the traditional features of cross-language
communication. Mapping RT-CORBA to RTSJ is not an easy effort, and requires some
balancing between the two worlds, i.e. RT-CORBA encourages the use of mutex for syn-
chronization, and only provides one real-time thread implementation where RTSJ uses the
Synchronized keyword and provides two real-time thread implementations. This solu-
tion is within the control-flow category.

RTZen: CORBA and RT-CORBA have received criticism for introducing significant overhead,
which has limited its deployment in the industry. However the RTZen project, from the
University of California, tries to provide an Object Request Broker (ORB) implementation
to RT-CORBA. RTZen is designed to comply with the RTSJ while keeping the footprint
and processing overhead at a minimum. As with RT-CORBA, RTZen also falls within the
control-flow category.

138

Real-Time Transport

DREQUIEMI: Another approach, also within the control-flow category, is DREQUIEMI which
tries to optimize the existing RMI framework towards real-time. DREQUIEMI, from the
Universidad Carlos III de Madrid, is RTSJ compliant with additional extension to support
distributed computing. Some of these features include a new type of memory object called
No-heap remote objects to suppress garbage collection on certain remote objects. Addition-
ally they included a time-triggered communication abstraction to allow the developers to
use a periodic communication protocol like CAN or FlexRay.

Open Splice: This is a DDS model and falls within the data-flow category. Open Splice is an
open source implementation of the OMG DDS specification and currently maintained by
PrimTech. It allows for a distributed publish/subscribe model and provides a rich set of
QoS attributes as well as data filtering.

E.3. Real-Time Transport

All relevant real-time communication implementations for Java and RTSJ are unable to guarantee
any timing requirements, if the underlying network protocol does not provide the necessary pre-
dictability. One widely used protocol in modern network is TCP/IP which, per default, does not
guarantee any timing boundaries on message delivery, nor does it guarantee end-to-end response
times. Many alternatives have been proposed in the literature including low level protocols such
as TTA, CAN or FlexRay. Another approach motivated by reuse of existing Ethernet setups, have
been developed using specialized routing equipment. This approach resulted in a specification for
Real Time Ethernet, a solution well suited for integrating real-time components, into an existing
non-real-time distributed environment.

139

Department of Engineering
Aarhus University
Edison, Finlandsgade 22
8200 Aarhus N
Denmark

Tel.: +45 4189 3000

Mads von Qualen and Martin Askov Andersen, A Methodology for
Transforming Java Applications Towards Real-Time Performance,
2013

	Master_Final_Censored.pdf
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Java and Real-Time
	3 Real-Time Extensions for Java
	4 Real-Time Requirements
	5 Modeling Real-Time Systems
	6 Towards Real-Time Java
	7 Case Study: Terma T-Core
	8 Concluding Remarks and Future Work
	Appendices
	A Terminology
	B Case Study Details
	C Overture Real-Time Log Viewer
	D Java Virtual Machine Analysis
	E Distributed Computing

